Science.gov

Sample records for ion-beam irradiation effects

  1. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice.

    PubMed

    Gan, Lu; Wang, Zhen Hua; Zhang, Hong; Zhou, Rong; Sun, Chao; Liu, Yang; Si, Jing; Liu, Yuan Yuan; Wang, Zhen Guo

    2015-02-01

    Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction. Our previous work had proved that a natural antioxidant shikonin possessed protective effect on cerebral ischemic injury. Here we investigated the effects of shikonin on carbon ion beam induced radiation brain injury in mice. Pretreatment with shikonin significantly increased the SOD and CAT activities and the ratio of GSH/GSSG in mouse brain tissues compared with irradiated group (P<0.01), while obviously reduced the MDA and PCO contents and the ROS levels derived from of the brain mitochondria. The shikonin also noticeably improved the spatial memory deficits caused by carbon ion beam irradiation. All results demonstrated that shikonin could improve the irradiated brain injury which might resulted from its modulation effects on the oxidative stress induced by the 12C6+ ion beam.

  2. Effects of Ga ion-beam irradiation on monolayer graphene

    SciTech Connect

    Wang, Quan; Mao, Wei; Zhang, Yanmin; Shao, Ying; Ren, Naifei; Ge, Daohan

    2013-08-12

    The effects of Ga ion on the single layer graphene (SLG) have been studied by Raman spectroscopy (RS), SEM, and field-effect characterization. Under vacuum conditions, Ga ion-irradiation can induce disorders and cause red shift of 2D band of RS, rather than lattice damage in high quality SLG. The compressive strain induced by Ga ion decreases the crystalline size in SLG, which is responsible for the variation of Raman scattering and electrical properties. Nonlinear out-put characteristic and resistance increased are also found in the I-V measurement. The results have important implications during CVD graphene characterization and related device fabrication.

  3. Focused helium-ion beam irradiation effects on electrical properties of multi-layer WSe2

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Stanford, Michael; Cross, Nick; Duscher, Gerd; Mandrus, David; Rack, Philip

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving great attention due to their excellent opto-electronic properties. Tuning optical and electrical properties of mono and few layers TMDs, such as Tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to fabricate the next generation opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on structural, optical and electrical properties of few layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy and electrical measurements. By controlling the ion irradiation dose, we selectively introduced precise defects in few layer WSe2 thereby locally tuning the electrically resistivity of the material. Hole transport in the few layer WSe2 is severely affected compared to electron transport for the same dose of helium ion beam irradiation studied. Furthermore, by selectively exposing the ion beams, we demonstrate the lateral p-n junction in few layer WSe2 flakes, which constitute an important advance towards two dimensional opto-electronic devices. Materials Science and Technology Division, ORNL, Oak Ridge, TN 37831, USA.

  4. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Oono, Yutaka

    2017-01-01

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or 60Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30-110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  5. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    NASA Astrophysics Data System (ADS)

    Luo, Shanwei; Zhou, Libin; Li, Wenjian; Du, Yan; Yu, Lixia; Feng, Hui; Mu, Jinhu; Chen, Yuze

    2016-09-01

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M1 populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD50) for a large-scale mutant screening. Among 2472 M2 plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M2 populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  6. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    NASA Astrophysics Data System (ADS)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  7. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  8. Effect of ion beam irradiation and rubbing on the directional behavior and alignment mechanism of liquid crystals on polyimide surfaces

    SciTech Connect

    Lee, Kang-Min; Oh, Byeong-Yun; Kim, Young-Hwan; Seo, Dae-Shik

    2009-01-01

    We investigated the effects of ion beam (IB) irradiation and rubbing on the directional behavior and alignment mechanism of liquid crystals (LCs) on polyimide (PI) surfaces. We found that the LC direction follows the IB irradiation alignment direction on the PI surface regardless of whether the irradiation occurs before or after rubbing. We assumed that the LC direction depends strongly on the C-O bonds created from C=O bonds on the PI surface broken by IB irradiation and conducted an investigation of the chemical bonding state of the PI surface by x-ray photoelectron spectroscopy.

  9. Silicon ion irradiation effects on the magnetic properties of ion beam synthesized CoPt phase

    SciTech Connect

    Balaji, S.; Amirthapandian, S.; Panigrahi, B. K.; Mangamma, G.; Kalavathi, S.; Gupta, Ajay; Nair, K. G. M.

    2012-06-05

    Ion beam mixing of Pt/Co bilayers using self ion (Pt{sup +}) beam results in formation of CoPt phase. Upon ion beam annealing the ion mixed samples using 4 MeV Si{sup +} ions at 300 deg. C, diffusion of Co towards the Pt/Co interface is observed. The Si{sup +} ion beam rotates the magnetization of the CoPt phase from in plane to out of plane of the film.

  10. Carbon-Ion Beam Irradiation Effectively Suppresses Migration and Invasion of Human Non-Small-Cell Lung Cancer Cells

    SciTech Connect

    Akino, Yuichi; Teshima, Teruki Kihara, Ayaka; Kodera-Suzumoto, Yuko; Inaoka, Miho; Higashiyama, Shigeki; Furusawa, Yoshiya; Matsuura, Nariaki

    2009-10-01

    Purpose: Control of cancer metastasis is one of the most important issues in cancer treatment. We previously demonstrated that carbon particle irradiation suppresses the metastatic potential of cancer cells, and many studies have reported that photon irradiation promotes it. The purpose of this study was to investigate the effect of carbon beam on non-small-cell lung cancer (NSCLC) cell aggressiveness and gene expression. Methods and Materials: A549 (lung adenocarcinoma) and EBC-1 (lung squamous cell carcinoma) cells were treated with 290 MeV/nucleon carbon ion beam at the Heavy Ion Medical Accelerator in Chiba or with 4-MV X-ray at Osaka University. We tested proliferative, migratory, and invasive activities by cell proliferation assay, Boyden chamber assay, and Matrigel chemoinvasion assay, respectively. cDNA microarray and reverse transcription polymerase chain reaction were also performed to assess mRNA expression alteration. Results: X-irradiation increased cell proliferation of A549 cells at 0.5 Gy, whereas high-dose X-ray reduced migration and invasion of A549 cells. By contrast, carbon beam irradiation did not enhance proliferation, and it reduced the migration and invasion capabilities of both A549 and EBC-1 cells more effectively than did X-irradiation. Carbon beam irradiation induced alteration of various gene expression profiles differently from X-ray irradiation. mRNA expression of ANLN, a homologue of anillin, was suppressed to 60% levels of basal expression in carbon beam-irradiated A549 cells after 12 h. Conclusion: Carbon beam effectively suppresses the metastatic potential of A549 and EBC-1 cells. Carbon beam also has different effects on gene expressions, and downregulation of ANLN was induced only by carbon beam irradiation.

  11. Radiosensitizing effect of carboplatin and paclitaxel to carbon-ion beam irradiation in the non-small-cell lung cancer cell line H460.

    PubMed

    Kubo, Nobuteru; Noda, Shin-ei; Takahashi, Akihisa; Yoshida, Yukari; Oike, Takahiro; Murata, Kazutoshi; Musha, Atsushi; Suzuki, Yoshiyuki; Ohno, Tatsuya; Takahashi, Takeo; Nakano, Takashi

    2015-03-01

    The present study investigated the ability of carboplatin and paclitaxel to sensitize human non-small-cell lung cancer (NSCLC) cells to carbon-ion beam irradiation. NSCLC H460 cells treated with carboplatin or paclitaxel were irradiated with X-rays or carbon-ion beams, and radiosensitivity was evaluated by clonogenic survival assay. Cell proliferation was determined by counting the number of viable cells using Trypan blue. Apoptosis and senescence were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and senescence-associated β-galactosidase (SA-β-gal) staining, respectively. The expression of cleaved caspase-3, Bax, p53 and p21 was analyzed by western blotting. Clonogenic survival assays demonstrated a synergistic radiosensitizing effect of carboplatin and paclitaxel with carbon-ion beams; the sensitizer enhancement ratios (SERs) at the dose giving a 10% survival fraction (D10) were 1.21 and 1.22, respectively. Similarly, carboplatin and paclitaxel showed a radiosensitizing effect with X-rays; the SERs were 1.41 and 1.29, respectively. Cell proliferation assays validated the radiosensitizing effect of carboplatin and paclitaxel with both carbon-ion beam and X-ray irradiation. Carboplatin and paclitaxel treatment combined with carbon-ion beams increased TUNEL-positive cells and the expression of cleaved caspase-3 and Bax, indicating the enhancement of apoptosis. The combined treatment also increased SA-β-gal-positive cells and the expression of p53 and p21, indicating the enhancement of senescence. In summary, carboplatin and paclitaxel radiosensitized H460 cells to carbon-ion beam irradiation by enhancing irradiation-induced apoptosis and senescence.

  12. Ar Ion Beam Irradiation Effects on Magnetostriction of Tb-Fe Thin Film

    DTIC Science & Technology

    2007-11-02

    TbFe2, DyFe2, and (Tb,Dy)Fe2 compounds using different processes of thin film formation systems[2], i.e., flash evaporation[ 3 -7], ion beam sputtering...collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 00 JUN 2003 2. REPORT TYPE N/A 3 . DATES...is low energy process[ 3 -7]. Base pressure was 8.8x10-5 Pa, and substrate temperature was maintained at ~400 K. The TbFe2 powder pulverized into 40

  13. Effects of prenatal irradiation with accelerated heavy-ion beams on postnatal development in rats: III. Testicular development and breeding activity

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    With a significant increase in human activities dealing with space missions, potential teratogenic effects on the mammalian reproductive system from prenatal exposure to space radiation have become a hot topic that needs to be addressed. However, even for the ground experiments, such effects from exposure to high LET ionizing radiation are not as well studied as those for low LET ionizing radiations such as X-rays. Using the Heavy-Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, effects on gonads in prenatal male fetuses, on postnatal testicular development and on breeding activity of male offspring were studied following exposure of the pregnant animals to either accelerated carbon-ion beams with a LET value of about 13 keV/μm or neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on gestation day 15. The effects of X-rays at 200 kVp estimated for the same biological end points were studied for comparison. A significantly dose-dependent increase of apoptosis in gonocytes appeared 6 h after irradiations with a dose of 0.5 Gy or more. Measured delayed testis descent and malformed testicular seminiferous tubules were observed to be significantly different from the control animals at a dose of 0.5 Gy. These effects are observed to be dose- and LET-dependent. Markedly reduced testicular weight and testicular weight to body weight ratio were scored at postnatal day 30 even in the offspring that were prenatally irradiated with neon-ions at a dose of 0.1 Gy. A dose of 0.5 Gy from neon-ion beams induced a marked decrease in breeding activity in the prenatally irradiated male rats, while for the carbon-ion beams or X-rays, the significantly reduced breeding activity was observed only when the prenatal dose was at 1.0 Gy or more. These findings indicated that prenatal irradiations with heavy-ion beams on gestation day 15 generally induced markedly detrimental effects on prenatal gonads, postnatal testicular development and male

  14. Temperature measurements during high flux ion beam irradiations

    SciTech Connect

    Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; Weber, William J.

    2016-02-16

    A systematic study of the ion beam heating effect was performed in a temperature range of –170 to 900 °C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 1012 cm–2 s–1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. Furthermore, a simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beamanalysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.

  15. Temperature measurements during high flux ion beam irradiations

    DOE PAGES

    Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; ...

    2016-02-16

    A systematic study of the ion beam heating effect was performed in a temperature range of –170 to 900 °C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 1012 cm–2 s–1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggestsmore » that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. Furthermore, a simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beamanalysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.« less

  16. Characterisation of dual ion beam irradiated yttria-stabilised zirconia by specific analytical techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwen; Wang, Xu; Liu, Shiyi; Tang, Meixiong; Zhao, Ziqiang

    2015-01-01

    The combined effect of dual ion beam irradiated yttria-stabilized zirconia was investigated through Rutherford backscattering spectrometry/channeling (RBS/C), high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Compared with other experimental results of single ion beam irradiation, a multistep damage accumulation model can also explain the irradiation effects of dual ion beam. Irradiation damage created by Ar + He ions are simply additive and no synergy effect has been observed. The variation trends of step height and displacement damage are similar. The synergic effects of displacement damage between heavy recoil atoms and α-particle in nuclear waste matrices will not cause more serious damage than the sum of two kinds of ions. The two experimental damage peaks are consistent with those calculated using stopping and range of ions in matter (SRIM). Phase stability and irradiation resistance is further confirmed by high resolution transmission electron microscopy (HRTEM).

  17. Secondary particle tracks generated by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  18. Irradiation of Materials using Short, Intense Ion Beams

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.

    2016-10-01

    We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).

  19. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions

    SciTech Connect

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam Justin; Ivanov, Ilia N.; Ward, Thomas Zac; Rack, Philip D.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  20. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    NASA Astrophysics Data System (ADS)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-06-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  1. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions

    DOE PAGES

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; ...

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuningmore » the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  2. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model.

    PubMed

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-06-27

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area.

  3. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model

    PubMed Central

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-01-01

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area. PMID:27345436

  4. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    SciTech Connect

    Kumar, Pragati Agarwal, Avinash; Saxena, Nupur; Singh, Fouran; Gupta, Vinay

    2014-07-28

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ{sub a}/Γ{sub b}) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  5. Magnetic strip patterns induced by focused ion beam irradiation

    SciTech Connect

    Makarov, D.; Tibus, S.; Rettner, C. T.; Thomson, T.; Terris, B. D.; Schrefl, T.; Albrecht, M.

    2008-03-15

    Focused ion beam exposure was used to locally alter the magnetic properties of a continuous Co/Pd multilayer film with perpendicular magnetic anisotropy. The saturation magnetization, coercivity, and magnetic anisotropy of the films can be tuned by Ga irradiation depending on exposure dose. As a result, a periodic strip pattern consisting of 80 nm wide exposed strips which are magnetically soft, separated by 170 nm wide magnetically hard, unexposed areas was created. Due to strong magnetostatic coupling between the strips, a number of magnetic domain configurations could be stabilized and these have been observed by magnetic force microscopy and magneto-optic Kerr effect measurements. The magnetic domain configurations and their reversal behavior were investigated by micromagnetic simulations as a function of exposure dose and strip period.

  6. Texture coefficient analysis of ion beam irradiated copper nanowires

    NASA Astrophysics Data System (ADS)

    Rana, Pallavi; Chaudhary, Ritika; Chauhan, R. P.

    2016-05-01

    Radiation may deteriorate physical properties of the materials and leave negative as well as positive impacts especially on crystalline materials. The energy deposited by ions to the grains and grain boundaries could also influence other properties of grains like: strain, reflection of charge carriers from grain boundaries, in addition to their grain size and orientation. The intensity of a peak in the XRD spectra is the direct reflection of orientation of a miller plane in the crystal. The increased intensity symbolizes the crystalline behavior due to defects annealing, while decreased intensity portray the defects formation and slender amorphisation. Orientation distribution function is a probability distribution function that quantified the texture of a polycrystalline material. The coefficients of harmonic expansion of orientation distribution function is the measurement of the texture coefficient `TC'. This study focused on the investigation of effect of ion beam irradiation on the preffered orientation of the planes of copper nanowires.

  7. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation.

    PubMed

    Lian, J; Helean, K B; Kennedy, B J; Wang, L M; Navrotsky, A; Ewing, R C

    2006-02-09

    The lanthanide stannates, Ln2Sn2O7, Ln=La-Lu and Y, have the isometric pyrochlore structure, A2B2O7, and their structural properties have been refined by Rietveld analysis of powder neutron and synchrotron X-ray diffraction data. In this study, the enthalpies of formation of selected stannate pyrochlores, Ln=La, Nd, Sm, Eu, Dy, and Yb, were measured by high-temperature oxide melt solution calorimetry. Their radiation response was determined by 1 MeV Kr2+ ion irradiation combined with in situ TEM observation over the temperature range of 25 to 1000 K. The enthalpy of formation from binary oxides of stannate pyrochlores became more endothermic (from -145 to -40 kJ/mol) as the size of the lanthanide in the A-site decreases. A more exothermic trend of the enthalpy of formation was observed in stannate pyrochlores with larger lanthanide ions, particularly La, possibly as a result of increased covalency in the Sn-O bond. In contrast to lanthanide titanate pyrochlores, Ln2Ti2O7, that are generally susceptible to radiation-induced amorphization and zirconate pyrochlores, Ln2Zr2O7, that are generally resistant to radiation-induced amorphization, the lanthanide stannate pyrochlores show a much greater variation in their response to ion irradiation. La, Nd, and Gd stannates experience the radiation-induced transformation to the aperiodic state, and the critical amorphization temperatures are approximately 960, 700, and 350 K, respectively. Y and Er stannate pyrochlores cannot be amorphized by ion beam irradiation, even at 25 K, and instead disorder to a defect fluorite structure. Comparison of the calorimetric and ion irradiation data for titanate, zirconate, and stannate pyrochlores reveals a strong correlation among subtle changes in crystal structure with changing composition, the energetics of the disordering process, and the temperature above which the material can no longer be amorphized. In summary, as the structure approaches the ideal, ordered pyrochlore structure

  8. Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation*

    PubMed Central

    Ling, Anna Pick Kiong; Ung, Ying Chian; Hussein, Sobri; Harun, Abdul Rahim; Tanaka, Atsushi; Yoshihiro, Hase

    2013-01-01

    Objective: Heavy ion beam, which has emerged as a new mutagen in the mutation breeding of crops and ornamental plants, is expected to result in the induction of novel mutations. This study investigates the morphological and biochemical responses of Oryza sativa toward different doses of carbon ion beam irradiation. Methods: In this study, the dry seeds of O. sativa were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, followed by in-vitro germination under controlled conditions. Morphological and biochemical studies were conducted to investigate the morphological and physiological responses of O. sativa towards ion beam irradiation. Results: The study demonstrated that low doses (10 Gy) of ion beam have a stimulating effect on the height, root length, and fresh weight of the plantlets but not on the number of leaves. Meanwhile, doses higher than 10 Gy caused reductions in all the morphological parameters studied as compared to the control samples. The highest total soluble protein content [(2.11±0.47) mg/g FW] was observed in plantlets irradiated at 20 Gy. All irradiated plantlets were found to have 0.85% to 58.32% higher specific activity of peroxidase as compared to the control samples. The present study also revealed that low doses of ion beam (10 and 20 Gy) had negligible effect on the total chlorophyll content of O. sativa plantlets while 40 Gy had a stimulating effect on the chlorophyll content. Plantlets irradiated between 40 to 120 Gy were shown to be 0.38% to 9.98% higher in total soluble nitrogen content which, however, was not significantly different from the control samples. Conclusions: Carbon ion beam irradiation administered at low to moderate doses of 10 to 40 Gy may induce O. sativa mutants with superior characteristics. PMID:24302713

  9. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  10. Gamma and ion-beam irradiation of DNA: Free radical mechanisms, electron effects, and radiation chemical track structure

    NASA Astrophysics Data System (ADS)

    Sevilla, Michael D.; Becker, David; Kumar, Anil; Adhikary, Amitava

    2016-11-01

    The focus of our laboratory's investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ-) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre-), and aqueous (or, solvated) electrons (eaq-)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species.

  11. Effects of X-ray and carbon ion beam irradiation on membrane permeability and integrity in Saccharomyces cerevisiae cells.

    PubMed

    Cao, Guozhen; Zhang, Miaomiao; Miao, Jianshun; Li, Wenjian; Wang, Jufang; Lu, Dong; Xia, Jiefang

    2015-03-01

    Saccharomyces cerevisiae has served as a eukaryotic model in radiation biology studies of cellular responses to ionizing radiation (IR). Research in this field has thus far mainly been focused on DNA strand breaks, DNA base damage, or inhibition of protein activity. However, the effects of IR on S. cerevisiae cell membranes have barely been studied. Here, we investigated the changes in the permeability and integrity of S. cerevisiae cell membranes induced by high-linear energy transfer carbon ion (CI) beam or low-linear energy transfer X-ray. After CI exposure, protein elution and nucleotide diffusion were more pronounced than after X-ray treatment at the same doses, although these features were most prevalent following irradiation doses of 25-175 Gy. Flow cytometry of forward scatter light versus side scatter light and double-staining with fluorescein diacetate and propidium iodide showed that CI and X-ray irradiation significantly affected S. cerevisiae cell membrane integrity and cellular enzyme activity compared with untreated control cells. The extent of lesions in CI-irradiated cells, which exhibited markedly altered morphology and size, was greater than that in X-ray-irradiated cells. The relationships between permeabilized cells, esterase activity, and non-viable cell numbers furthermore indicated that irradiation-induced increases in cell permeabilization and decreases in esterase activity are dependent on the type of radiation and that these parameters correspond well with cell viability. These results also indicate that the patterns of cell inactivity due to X-ray or CI irradiation may be similar in terms of cell membrane damage.

  12. A study on the effect of low energy ion beam irradiation on Au/TiO2 system for its application in photoelectrochemical splitting of water

    NASA Astrophysics Data System (ADS)

    Verma, Anuradha; Srivastav, Anupam; Sharma, Dipika; Banerjee, Anamika; Sharma, Shailja; Satsangi, Vibha Rani; Shrivastav, Rohit; Avasthi, Devesh Kumar; Dass, Sahab

    2016-07-01

    Nanostructured TiO2 thin films were deposited on indium tin oxide (ITO) substrate via sol-gel technique and were modified by plasmonic Au layer. The plasmonic Au modified TiO2 (Au/TiO2) thin films were then irradiated with 500 keV Ar2+ ion beam at different ion fluences viz. 1 × 1016, 3 × 1016 and 1 × 1017 to study the effect of nuclear energy deposition on the morphology, crystallinity, band gap, surface plasmon resonance (SPR) peak exhibited by Au particles and photoelectrochemical properties of the system. Prepared thin films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS) measurements and UV-visible spectroscopy. The photoelectrochemical measurements revealed that both Au/TiO2 and Au/TiO2 thin film irradiated at 1 × 1016 fluence exhibits enhanced photoelectrochemical response in comparison to pristine TiO2. The film irradiated at 1 × 1016 fluence offered maximum applied bias photon-to-current efficiency (ABPE) and shows 6 times increment in photocurrent density which was attributed to more negative flat band potential, maximum decrease in band gap, high open circuit voltage (Voc) and reduced charge transfer resistance.

  13. High electronic excitations and ion beam mixing effects in high energy ion irradiated Fe/Si multilayers

    SciTech Connect

    Bauer, P.; Dufour, C.; Jaouen, C.; Marchal, G.; Pacaud, J.; Grilhe, J.; Jousset, J.C.

    1997-01-01

    M{umlt o}ssbauer spectroscopy ({sup 57}Fe) shows evidence for mixing effects induced by electronic energy deposition in nanoscale Fe/Si multilayers irradiated with swift heavy ions. A decrease in the mixing efficiency with electronic stopping power is reported; a threshold is found, under which iron environment modifications no longer occur. The kinetics of Fe{endash}Si phase formation after irradiation suggests the existence of three regimes: (i) for high excitation levels, a magnetic amorphous phase is formed directly in the wake of the incoming ion and an almost complete mixing is reached at low fluence (10{sup 13} U/cm{sup 2}); (ii) for low excitation levels, a paramagnetic Si-rich amorphous phase is favored at the interface while crystalline iron subsists at high fluences; (iii) for intermediate excitation levels, saturation effects are observed and the formation rate of both magnetic and paramagnetic phases points to direct mixing in the ion wake but with a reduced track length in comparison to U irradiation. The measured interfacial mixing cross section induced by electronic energy deposition suggests that a thermal diffusion process is mainly involved in addition to damage creation. {copyright} {ital 1997 American Institute of Physics.}

  14. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  15. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam

    SciTech Connect

    Thome, Lionel; Debelle, Aurelien; Garrido, Frederico; Trocellier, Patrick; Serruys, Yves; Miro, Sandrine

    2013-04-08

    Single and dual-beam irradiations of oxide (c-ZrO{sub 2}, MgO, Gd{sub 2}Ti{sub 2}O{sub 7}) and carbide (SiC) single crystals were performed to study combined effects of nuclear (S{sub n}) and electronic (S{sub e}) energy losses. Rutherford backscattering experiments in channeling conditions show that the S{sub n}/S{sub e} cooperation induces a strong decrease of the irradiation-induced damage in SiC and MgO and almost no effects in c-ZrO{sub 2} and Gd{sub 2}Ti{sub 2}O{sub 7}. The healing process is ascribed to electronic excitations arising from the electronic energy loss of swift ions. These results present a strong interest for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where expected cooperative S{sub n}/S{sub e} effects may lead to the preservation of the integrity of nuclear devices.

  16. Ion beam irradiation effect on thermoelectric properties of Bi2Te3 and Sb2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Fu, Gaosheng; Zuo, Lei; Lian, Jie; Wang, Yongqiang; Chen, Jie; Longtin, Jon; Xiao, Zhigang

    2015-09-01

    Thermoelectric energy harvesting is a very promising application in nuclear power plants for self-maintained wireless sensors. However, the effects of intensive radiation on the performance of thermoelectric materials under relevant reactor environments such as energetic neutrons are not fully understood. In this work, radiation effects of bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric thin film samples prepared by E-beam evaporation are investigated using Ne2+ ion irradiations at different fluences of 5 × 1014, 1015, 5 × 1015 and 1016 ions/cm2 with the focus on the transport and structural properties. Electrical conductivities, Seebeck coefficients and power factors are characterized as ion fluence changes. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of the samples are obtained to assess how phase and microstructure influence the transport properties. Carrier concentration and Hall mobility are obtained from Hall effect measurements, which provide further insight into the electrical conductivity and Seebeck coefficient mechanisms. Positive effects of ion irradiations from Ne2+ on thermoelectric material property are observed to increase the power factor to 208% for Bi2Te3 and 337% for Sb2Te3 materials between fluence of 1 and 5 × 1015 cm2, due to the increasing of the electrical conductivity as a result of ionization radiation-enhanced crystallinity. However, under a higher fluence, 5 × 1015 cm2 in this case, the power factor starts to decrease accordingly, limiting the enhancements of thermoelectric materials properties under intensive radiation environment.

  17. Tailoring the properties of copper nanowires by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Narinder; Kumar, Rajesh; Kumar, Sushil; Chakarvarti, S. K.

    2016-02-01

    In the present paper, we investigated the change in the properties of copper nanowires under the irradiance of 80 MeV Si7+ ion beam. The nanowires were electrodeposited in the cylindrical pores of the track-etched polycarbonate membranes. The phase, morphology and optical absorbance of the fabricated nanowires were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy, respectively. The XRD study showed a face centered cubic crystal structure of copper nanowires. Further measurements with FESEM revealed that nanowires were continuous, aligned with uniform diameter having high aspect ratio. The XRD spectra of irradiated nanowires indicated an improved crystalinity at low ion fluences while it declines at higher ion fluences. The optical absorbance properties of the irradiated copper nanowires were also examined. The absorption spectra exhibited a peak at 568 nm which was attributed to the surface plasmon resonance. A significant increase in absorbance after irradiation accounts for the possibility of defects formation. The electrical properties measured from I-V characteristics showed an increase in resistivity of irradiated nanowires.

  18. 200 MeV Ag15+ ion beam irradiation effects on spray deposited 5 wt% `Li' doped V2O5 thin film

    NASA Astrophysics Data System (ADS)

    Kovendhan, M.; Joseph, D. Paul; Manimuthu, P.; Sendilkumar, A.; Asokan, K.; Venkateswaran, C.; Mohan, R.

    2016-05-01

    Lithium 5 wt% doped V2O5 thin film was deposited onto ITO substrate by spray pyrolysis technique. The substrate temperature was kept at 450 °C. 200 MeV Ag15+ ion beams at a fluence of 5×1012 ions/cm2 was irradiated on 5 wt% `Li' doped V2O5 film of thickness 1367 nm. The XRD pattern confirms that the pristine film is non stoichiometry with orthorhombic structure and upon irradiation the crystallinity decreased and an obvious textured growth along (020) plane is induced. Raman peak observed at 917 cm-1 is due to oxygen deficiency. Upon irradiation, the optical transparency and band gap of the film decreased. Electrical transport property study shows that the resistivity increased by one order for the irradiated film.

  19. Ion beam analysis of the effect of O 2 and H 2O on the oxidation of iron under irradiation

    NASA Astrophysics Data System (ADS)

    Lapuerta, S.; Moncoffre, N.; Bérerd, N.; Jaffrezic, H.; Millard-Pinard, N.; Crusset, D.

    2006-08-01

    In this paper, the role of air humidity on the iron corrosion under irradiation is studied in the context of geological disposal of nuclear wastes. The irradiation experiments are performed at room temperature using a 3 MeV extracted proton beam with a 10 nA intensity. Different atmospheres are studied: humid air with a relative humidity (RH) fixed at 45%, dry air and a 15N2 atmosphere (45% RH). The hydrogen and oxygen distribution profiles at the iron surface in contact with atmosphere are measured using respectively ERDA (Elastic Recoil Detection Analysis) and RBS (Rutherford Backscattering Spectrometry) analysis. From these experiments it is clearly demonstrated that the coupling of O2 + H2O enhances iron oxidation whereas for iron hydrogenation, humidity is sufficient whatever the atmosphere. An interpretation is given, which is based on the reaction mechanisms and the species formed by air ionisation.

  20. Mechanical and Raman spectroscopic studies of multi-ion-beam irradiated 12,18Cr-oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwen; Qian, Xin; Wang, Xu; Liu, Shiyi; Wang, Cheng; Li, Ting; Zhao, Ziqiang; Lu, Daogang

    2013-02-01

    12,18Cr-oxide dispersion strengthened (ODS) steels were irradiated at room temperature by single beam (2.2 MeV He+ or 3.0 MeV H+ or 21.0 MeV Si4+), dual-ion-beam (2.2 MeV He+ and 3.0 MeV H+) and triple-ion-beam (21.0 MeV Si4+, 2.2 MeV He+ and 3.0 MeV H+). Five combination of H, He, He+H, Si, Si+He+H irradiation were used. The mechanical properties of 12,18Cr-ODS steels exhibited that triple-ion-beam irradiation could strengthen irradiation swelling and hardening effect. Carbon segregation and several new carbon peaks appeared in the Raman spectrum of irradiated 12Cr-ODS steel. A clear correlation was established between the carbon distribution and the damage distribution.

  1. The response of the pyrochlore structure-type to ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Lian, Jie

    Pyrochlore with the general formula of A3+2B4+2O7 (Fd3m; Z = 8) has been proposed as the candidate waste form for the immobilization of actinides, particularly plutonium from dismantled nuclear weapons. Because actinides decay by alpha-decay events, radiation effects on the waste form are a concern. The effects of radiation on different pyrochlore compositions, A2B2O7 (A = La ˜ Lu, and Y; B = Ti, Sn, and Zr), have been investigated by 50 KeV He+, 600 KeV Ar+, 1.0 MeV Kr+, and 1.5 MeV Xe+ ion irradiations. Titanate pyrochlores are generally sensitive to ion beam damage and can be amorphized at a low damage level (˜0.2 dpa). The critical amorphization temperature, Tc, increases from ˜480 to ˜1120 K with increasing A-site cation size. A dramatically increasing radiation "resistance" to ion beam induced-amorphization has been observed with increasing Zr-content in the Gd2Ti2-xZrxO7 system. The pure end-member, Gd2Zr2O7, cannot be amorphized, even at doses as high as ˜100 dpa. Although zirconate pyrochlores are generally considered to be radiation "resistant", ion beam-induced amorphization occurs for La2Zr2O7 at a dose of ˜5.5 dpa at room temperature. Stannate pyrochlores A2Sn 2O7 (A = La, Nd, Gd) are readily amorphized by ion beam damage at a relatively low dose (˜1 dpa) at room temperature; while no evidence of amorphization has been observed in A2Sn2O7 (A = Er, Y, Lu) irradiated with 1 MeV Kr+ ions at a dose of ˜6 dpa at 25 K. The factors that influence the response of different pyrochlore compositions to ion irradiation-induced amorphization are discussed in terms of cation radius ratio, defect formation energies, and the tendency of the pyrochlore structure-type to undergo an order-disorder transition to the defect-fluorite structure. The "resistance" of the pyrochlore structure to ion beam-induced amorphization is not only affected by the relative sizes of the A- and B-site cations, but also the cation electronic configurations. Pyrochlore compositions

  2. Formation of long-range ordered quantum dots arrays in amorphous matrix by ion beam irradiation

    SciTech Connect

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Dubcek, P.; Drazic, G.; Salamon, K.; Bernstorff, S.; Holy, V.

    2009-08-10

    We demonstrate the production of a well ordered three-dimensional array of Ge quantum dots in amorphous silica matrix. The ordering is achieved by ion beam irradiation and annealing of a multilayer film. Structural analysis shows that quantum dots nucleate along the direction of the ion beam used for irradiation, while the mutual distance of the quantum dots is determined by the diffusion properties of the multilayer material rather than the distances between traces of ions that are used for irradiation.

  3. Characterization of polymeric films subjected to lithium ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Groenewold, Gary S.; Cannon, W. Roger; Lessing, Paul A.; Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark; Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D.

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium-plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C-O and C-C bonds, which furnish radical intermediates that react by radical recombination with Hrad and OHrad . Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O-methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by

  4. Characterization of polymeric films subjected to lithium ion beam irradiation

    SciTech Connect

    Gary S. Groenewold; W. Roger Cannon; Paul A. Lessing; Recep Avci; Muhammedin Deliorman; Mark Wolfenden; Doug W. Akers; J. Keith Jewell

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with Hradical dot and OHradical dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O–methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were

  5. Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams

    NASA Astrophysics Data System (ADS)

    Okamura, M.; Yasuno, N.; Ohtsuka, M.; Tanaka, A.; Shikazono, N.; Hase, Y.

    2003-05-01

    The efficiency of ion-beam irradiation combined with tissue culture in obtaining floral mutants was investigated and compared with those of gamma rays and X-rays in carnation. Leaf segments of carnation plants in vitro were irradiated with the 220 MeV carbon ions, and cultured till the shoot regenerated. The carbon ion had the highest effect in reducing the regeneration frequency, and the RBE value with respect to gamma-rays was four. The higher mutation frequency and the wider mutation spectrum were obtained in plants irradiated with the carbon ions than low LET radiations. Three new carnation varieties developed by ion-beam irradiation were applied for the registration of the Japanese Ministry of Agriculture, Forestry and Fisheries. The results indicate that ion beam irradiation could induce wide variety of flower-color and -shape mutants, and that the combined method of ion-beam irradiation with tissue culture is useful to obtain the commercial varieties in a short time.

  6. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.

    PubMed

    Yamada, Koji; Kazama, Yusuke; Mitra, Sharbanee; Marukawa, Yuka; Arashida, Ryo; Abe, Tomoko; Ishikawa, Takahiro; Suzuki, Kengo

    2016-08-01

    Euglena gracilis is a common phytoplankton species, which also has motile flagellate characteristics. Recent research and development has enabled the industrial use of E. gracilis and selective breeding of this species is expected to further expand its application. However, the production of E. gracilis nuclear mutants is difficult because of the robustness of its genome. To establish an efficient mutation induction procedure for E. gracilis, we employed Fe-ion beam irradiation in the RIKEN RI beam factory. A decrease in the survival rate was observed with the increase in irradiation dose, and the upper limit used for E. gracilis selective breeding was around 50 Gy. For a practical trial of Fe-ion irradiation, we conducted a screening to isolate high-temperature-tolerant mutants. The screening yielded mutants that proliferated faster than the wild-type strain at 32 °C. Our results demonstrate the effectiveness of heavy-ion irradiation on E. gracilis selective breeding.

  7. Magnetic modification at sub-surface of FeRh bulk by energetic ion beam irradiation

    SciTech Connect

    Koide, T.; Iwase, A.; Uno, H.; Sakane, H.; Sakamaki, M.; Amemiya, K.; Matsui, T.

    2015-05-07

    Ferromagnetic layered structure has been made at sub-surface of the antiferromagnetic FeRh bulk samples by high energy He ion beam irradiation. In accordance with the Transport of Ions in Matter simulation, such ion beam can effectively deposit the elastic collision energy in several μm regions in the depth from the surface. Measurement with a superconducting quantum interference device reveals the irradiated samples to be ferromagnetic. Assuming that only the part the energy deposited can be modified to be ferromagnetic, the corresponding irradiation induced magnetization is consistent with the data that we previously reported. On the other hand, the X-ray magnetic circular dichroism (XMCD) spectra for the irradiated samples are totally unchanged as those for the unirradiated samples. Since XMCD signal in total emission yield method is considered to be surface sensitive with a typical probing depth of several nm, the surface magnetic state is maintained to be antiferromagnetic. By utilizing these phenomena, three-dimensional magnetic patterning of FeRh can be realized, which may potentially be used for future magnetic exchange device application such as nano-scale sensors and memories.

  8. Magnetic modification at sub-surface of FeRh bulk by energetic ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Koide, T.; Uno, H.; Sakane, H.; Sakamaki, M.; Amemiya, K.; Iwase, A.; Matsui, T.

    2015-05-01

    Ferromagnetic layered structure has been made at sub-surface of the antiferromagnetic FeRh bulk samples by high energy He ion beam irradiation. In accordance with the Transport of Ions in Matter simulation, such ion beam can effectively deposit the elastic collision energy in several μm regions in the depth from the surface. Measurement with a superconducting quantum interference device reveals the irradiated samples to be ferromagnetic. Assuming that only the part the energy deposited can be modified to be ferromagnetic, the corresponding irradiation induced magnetization is consistent with the data that we previously reported. On the other hand, the X-ray magnetic circular dichroism (XMCD) spectra for the irradiated samples are totally unchanged as those for the unirradiated samples. Since XMCD signal in total emission yield method is considered to be surface sensitive with a typical probing depth of several nm, the surface magnetic state is maintained to be antiferromagnetic. By utilizing these phenomena, three-dimensional magnetic patterning of FeRh can be realized, which may potentially be used for future magnetic exchange device application such as nano-scale sensors and memories.

  9. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  10. Control of cell behavior on PTFE surface using ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-05-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 × 1016 ions/cm2, cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 × 1017 ions/cm2, the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  11. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation

    PubMed Central

    Ishii, Kotaro; Kazama, Yusuke; Morita, Ryouhei; Hirano, Tomonari; Ikeda, Tokihiro; Usuda, Sachiko; Hayashi, Yoriko; Ohbu, Sumie; Motoyama, Ritsuko; Nagamura, Yoshiaki; Abe, Tomoko

    2016-01-01

    A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET). LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation) revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET–dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO) analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice. PMID:27462908

  12. Evaluation of Surface Damage of Organic Films due to Irradiation with Energetic Ion Beams

    SciTech Connect

    Hada, Masaki; Hontani, Yusaku; Ichiki, Kazuya; Seki, Toshio; Ibuki, Sachi; Ninomiya, Satoshi; Matsuo, Jiro; Aoki, Takaaki

    2011-01-07

    The surface of L-leucine films irradiated with an Ar{sub 5000} cluster ion beam (5 keV) was characterized by using the X-ray reflective (XRR) measurement method, atomic force microscopy (AFM) and ellipsometry. No significant damage was detected on the surface of the L-leucine films irradiated with the Ar cluster ion beam. Therefore, the large cluster-low-energy (about 1 eV/atom) beam would be suitable for low-damage etching of organic materials.

  13. Fabricating high-density magnetic storage elements by low-dose ion beam irradiation

    SciTech Connect

    Neb, R.; Sebastian, T.; Pirro, P.; Hillebrands, B.; Pofahl, S.; Schaefer, R.; Reuscher, B.

    2012-09-10

    We fabricate magnetic storage elements by irradiating an antiferromagnetically coupled ferromagnetic/nonmagnetic/ferromagnetic trilayer by a low-dose ion beam. The irradiated areas become ferromagnetically coupled and are capable of storing information if their size is small enough. We employ Fe/Cr/Fe trilayers and a 30 keV focused Ga{sup +}-ion beam to demonstrate the working principle for a storage array with a bit density of 7 Gbit/in.{sup 2}. Micromagnetic simulations suggest that bit densities of at least two magnitudes of order larger should be possible.

  14. Electron-Cloud Effects on Heavy-Ion Beams

    SciTech Connect

    Azevedo, T; Friedman, A; Cohen, R; Vay, J

    2004-03-29

    Stray electrons can be introduced in positive-charge accelerators for heavy ion fusion (or other applications) as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We are developing a capability for self-consistent simulation of ion beams with the electron clouds they produce. We report on an ingredient in this capability, the effect of specified electron cloud distributions on the dynamics of a coasting ion beam. We consider here electron distributions with axially varying density, centroid location, or radial shape, and examine both random and sinusoidally varying perturbations. We find that amplitude variations are most effective in spoiling ion beam quality, though for sinusoidal variations which match the natural ion beam centroid oscillation or breathing mode frequencies, the centroid and shape perturbations can also be effective. We identify a possible instability associated with resonance with the beam-envelope ''breathing'' mode. One conclusion from this study is that heavy-ion beams are surprisingly robust to electron clouds, compared to a priori expectations.

  15. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    SciTech Connect

    Thomé, Lionel Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis; Velisa, Gihan; Miro, Sandrine; Trocellier, Patrick; Serruys, Yves

    2015-03-14

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (S{sub n}) and Electronic (S{sub e}) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (S{sub n} and S{sub e}), whereas single low-energy irradiation (S{sub n} alone) or even sequential (S{sub n} + S{sub e}) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between S{sub n} and S{sub e} in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery S{sub n}/S{sub e} effects may preserve the integrity of nuclear devices.

  16. Modifications of optical properties of PC/ABS by dual ions beam irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jae-Won; Lee, Jae-Sang; Lee, Byung-hoon; Kim, Min-kyu; Moon, Byung-Sik; Lee, Chan-Young; Choi, Byung-Ho

    2013-03-01

    Polycarbonate (PC)/acrylonitrile butadien styrene (ABS) blends used in the inner parts of automobiles require a glossy and metallic colored optical property. Such a surface can be produced by ion beam irradiation, but the surface treated by a single ion species irradiation tends to be degraded upon a long term exposure under UV and visible lights, which includes the loss of glossiness and the delamination of the irradiated layer. Such degradations can be prevented or greatly reduced by a combined irradiation of heavy and light ions such as N and He ions. This may be attributable to a graded interface between the irradiation affected layer and the base materials by overlapping penetration depths of the heavy and light ions. This work is motivated by an effort to substitute the conventional Cr plating process with the ion beam process in the automobile industry.

  17. Three dimensional approach to investigating biological effects along energetic ion beam pathways

    NASA Astrophysics Data System (ADS)

    Li, Xinglin; Sun, Shuguang; Wang, Shanying; Li, Wenjian; Qu, Ying; Cui, Weidong; Sun, Tianren; Zhang, Jian; Wang, Jufang; Zhou, Guangming; Man, Shuli; Chen, Yi; Lu, Fuping; Wei, Zengquan; Jin, Genming

    2017-03-01

    Heavy ion beams have many exciting applications, including radiotherapy of deep-seated tumors and simulation tests of space irradiation for astronauts. These beams often use a feature that concentrates the energy deposition largely along the end of the energy pathway, leading to different distributions of biological effects along the axial direction. Currently, there is relatively little information regarding the radial directional difference of biological effects along the heavy ion paths. This study utilized a filter membrane that was quantatively applied with cells to demonstrate a 3D distribution model of irradiation on biological effects in living organisms. Some results have indicated that there is excitatory effect on the non-irradiated regions with energetic ions, which may give new insights into the distribution of biological effects along the paths of heavy ion beams with mid-high energy.

  18. Three dimensional approach to investigating biological effects along energetic ion beam pathways

    PubMed Central

    Li, Xinglin; Sun, Shuguang; Wang, Shanying; Li, Wenjian; Qu, Ying; Cui, Weidong; Sun, Tianren; Zhang, Jian; Wang, Jufang; Zhou, Guangming; Man, Shuli; Chen, Yi; Lu, Fuping; Wei, Zengquan; Jin, Genming

    2017-01-01

    Heavy ion beams have many exciting applications, including radiotherapy of deep-seated tumors and simulation tests of space irradiation for astronauts. These beams often use a feature that concentrates the energy deposition largely along the end of the energy pathway, leading to different distributions of biological effects along the axial direction. Currently, there is relatively little information regarding the radial directional difference of biological effects along the heavy ion paths. This study utilized a filter membrane that was quantatively applied with cells to demonstrate a 3D distribution model of irradiation on biological effects in living organisms. Some results have indicated that there is excitatory effect on the non-irradiated regions with energetic ions, which may give new insights into the distribution of biological effects along the paths of heavy ion beams with mid-high energy. PMID:28294181

  19. Emulation of reactor irradiation damage using ion beams

    SciTech Connect

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.

  20. Emulation of reactor irradiation damage using ion beams

    DOE PAGES

    Was, G. S.; Jiao, Z.; Getto, E.; ...

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  1. Shaping of Au nanoparticles embedded in various layered structures by swift heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Dawi, E. A.; ArnoldBik, W. M.; Ackermann, R.; Habraken, F. H. P. M.

    2016-10-01

    We present a novel method to extend the ion-beam induced shaping of metallic nanoparticles in various layered structures. Monodisperse Au nanoparticles having mean diameter of 30 nm and their ion-shaping process is investigated for a limited number of experimental conditions. Au nanoparticles were embedded within a single plane in various layered structures of silicon nitride films (Si3N4), combinations of oxide-nitride films (SiO2-Si3N4) and amorphous silicon films (a-Si) and have been sequentially irradiated at 300 K at normal incidence with 50 and 25 MeV Ag ions, respectively. Under irradiation with heavy Ag ions and with sequential increase of the irradiation fluence, the evolution of the Au peak derived from the Rutherford Backscattering Spectrometry show broadening in Au peak, which indicates that the Au becomes distributed over a larger depth region, indicative of the elongation of the nanoparticles. The latter is observed almost for every layer structure investigated except for Au nanoparticles embedded in pure a-Si matrix. The largest elongation rate at all fluences is found for the Au nanoparticles encapsulated in pure Si3N4 films. For all irradiation energy applied, we again demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned.

  2. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  3. Nanopatterning of metal-coated silicon surfaces via ion beam irradiation: Real time x-ray studies reveal the effect of silicide bonding

    SciTech Connect

    El-Atwani, Osman; Gonderman, Sean; Suslova, Anastassiya; Fowler, Justin; El-Atwani, Mohamad; DeMasi, Alexander; Ludwig, Karl; Paul Allain, Jean

    2013-03-28

    We investigated the effect of silicide formation on ion-induced nanopatterning of silicon with various ultrathin metal coatings. Silicon substrates coated with 10 nm Ni, Fe, and Cu were irradiated with 200 eV argon ions at normal incidence. Real time grazing incidence small angle x-ray scattering (GISAXS) and x-ray fluorescence (XRF) were performed during the irradiation process and real time measurements revealed threshold conditions for nanopatterning of silicon at normal incidence irradiation. Three main stages of the nanopatterning process were identified. The real time GISAXS intensity of the correlated peaks in conjunction with XRF revealed that the nanostructures remain for a time period after the removal of the all the metal atoms from the sample depending on the binding energy of the metal silicides formed. Ex-situ XPS confirmed the removal of all metal impurities. In-situ XPS during the irradiation of Ni, Fe, and Cu coated silicon substrates at normal incidence demonstrated phase separation and the formation of different silicide phases that occur upon metal-silicon mixing. Silicide formation leads to nanostructure formation due the preferential erosion of the non-silicide regions and the weakening of the ion induced mass redistribution.

  4. Controlling domain wall nucleation and injection through focussed ion beam irradiation in perpendicularly magnetized nanowires

    NASA Astrophysics Data System (ADS)

    Beguivin, A.; Petit, D. C. M. C.; Mansell, R.; Cowburn, R. P.

    2017-01-01

    Using Ga+ focussed ion beam irradiation of Ta/Pt/CoFeB/Pt perpendicularly magnetized nanowires, the nucleation and injection fields of domain walls into the nanowires is controlled. The nucleation and injection fields can be varied as a function of dose, however, the range of injection fields is found to be limited by the creation of a step in anisotropy between the irradiated and unirradiated regions. This can be altered by defocussing the beam, which allows the injection fields to be further reduced. The ability to define an arbitrary dose profile allows domain walls to be injected at different fields either side of an asymmetrically irradiated area, which could form the initial stage of a logic device. The effect of the thickness of the magnetic layer and the thickness of a Ta underlayer on the dose required to remove the perpendicular anisotropy is also studied and is seen that for similar Ta underlayers the dose is determined by the thickness of the magnetic layer rather than its anisotropy. This finding is supported by some transport of ions in matter simulations.

  5. Focused Ion Beam Induced Effects on MOS Transistor Parameters

    SciTech Connect

    Abramo, Marsha T.; Antoniou, Nicholas; Campbell, Ann N.; Fleetwood, Daniel M.; Hembree, Charles E.; Jessing, Jeffrey R.; Soden, Jerry M.; Swanson, Scot E.; Tangyunyong, Paiboon; Vanderlinde, William E.

    1999-07-28

    We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.

  6. Change in Ion Beam Induced Current from Si Metal-Oxide-Semiconductor Capacitors after Gamma-Ray Irradiation

    SciTech Connect

    Ohshima, T.; Onoda, S.; Hirao, T.; Takahashi, Y.; Vizkelethy, G.; Doyle, B. L.

    2009-03-10

    To investigate the effects of gamma-ray irradiation on transient current induced in MOS capacitors by heavy ion incidence, Si MOS capacitors were irradiated with gamma-rays up to 60.9 kGy(SiO2). The change in Transient Ion Beam Induced Current (TIBIC) signals due to gamma-ray irradiation was investigated using 15 MeV-oxygen ion microbeams. After gamma-ray irradiation, the peak current of the TIBIC signal vs. bias voltage curve shifted toward negative voltages. This shift can be interpreted in terms of the charge trapped in the oxide. In this dose range, no significant effects of the interface traps induced by gamma-ray irradiation on the TIBIC signals were observed.

  7. Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces

    SciTech Connect

    Wu, J. H.; Ye, W.; Cardozo, B. L.; Saltzman, D.; Sun, K.; Sun, H.; Mansfield, J. F.; Goldman, R. S.

    2009-10-12

    We have investigated the formation and coarsening of Ga droplets on focused-ion-beam (FIB) irradiated GaAs surfaces. To separately examine formation and coarsening, Ga droplets were fabricated by Ga{sup +} FIB irradiation of GaAs substrates with and without pre-patterned holes. We determined the droplet growth rate and size distribution as a function of FIB energy following irradiation. The data suggest a droplet formation mechanism that involves Ga precipitation from a Ga-rich layer, followed by droplet coarsening via a combination of diffusion and Ostwald ripening or coalescence via droplet migration (dynamic coalescence)

  8. Storage Stability in Reversion Mutation of a Rice Line Devoid of LOX-1, 2 Acquired by Ion Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Jiang, Jiayue; Wu, Jinhua; Wu, Yuejin; Song, Mei; Wang, Xiangqin; Liu, Binmei; Yu, Zengliang

    2009-02-01

    The effect of absence of lipoxygenase isoenzyme (LOX) on storage stability was investigated. Rice mutant 1297 without lipoxygenase isoenzyme-1 LOX-1 or lipoxygenase isoenzyme-2 (LOX-2) generated by ion beam irradiation from Wanjian2090 and reversion mutant RM1297 with LOX-1 and LOX-2 were subjected to an accelerated-aging experiment. Shanyou63 (with LOX-1 and LOX-2) served as control. Results showed that the germination and dehydrogenase activity decreased while the electrical conductivity and free fatty acid content increased in all varieties with accelerated aging. In 1297 that lacked LOX-1 and 2, there were slight changes in germination, dehydrogenase activity, membrane permeability and free fatty acid content during the thirty-day accelerated-aging experiment. But in varieties with LOX-1 and LOX-2, significant changes were observed, suggesting that LOX-1, 2 might be a definite factor which influenced seed lifespan. This study also indicates that ion beam irradiation may be used as mutagen to generate mutant and reversion mutants for biological study and could become a new direction in ion beam application.

  9. Thermal cycling and high power density hydrogen ion beam irradiation of tungsten layers on tungsten substrate

    NASA Astrophysics Data System (ADS)

    Airapetov, A. A.; Begrambekov, L. B.; Gretskaya, I. Yu; Grunin, A. V.; Dyachenko, M. Yu; Puntakov, N. A.; Sadovskiy, Ya A.

    2016-09-01

    Tungsten layers with iron impurity were deposited on tungsten substrates modeling re-deposited layers in a fusion device. The samples were tested by thermocycling and hydrogen ion beam tests. Thermocycling revealed globule formation on the surface. The size of the globules depended on iron impurity content in the coating deposited. Pore formation was observed which in some cases lead to exfoliation of the coatings. Hydrogen ion irradiation lead to formation of blisters on the coating and finally its exfoliation.

  10. Virus inactivation studies using ion beams, electron and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Smolko, Eduardo E.; Lombardo, Jorge H.

    2005-07-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle (α, d and ß) and γ irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D37 dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule.

  11. Radical Formation and Chemical Track Structure in Ion-Beam Irradiated DNA

    NASA Astrophysics Data System (ADS)

    Becker, David; Adhikary, Amitava; Khanduri, Deepti; Sevilla, Michael D.

    2009-12-01

    Ion-beam irradiation of hydrated DNA at 77 K results in formation of at least three base radicals and a variety of radicals on the sugar phosphate backbone that can be observed using Electron Spin Resonance (ESR) spectroscopy. From dose-response curves for these radicals, we have formulated a radiation-chemical model of the track structure for ion-beam irradiated DNA. The model for chemical behavior posits that the base radicals trapped at 77 K are formed almost entirely in the track penumbra. The lower yields observed in ion-beam irradiated samples results from the fact that only a portion of the energy deposited by the ion beam ends up in this γ-like region. The remainder of the energy is deposited in the core in which the proximity of ion-radical formation results in the fast recombination of oppositely charged radicals, so few survive in the core at 77 K. However, a second group of radicals, neutral sugar radicals, are not as susceptible to recombination as are ion radicals, and can survive after formation in the core; these are presumed to form predominantly in the core. They include the sugar radicals, C1'ṡC3'ṡC5'ṡ, formed from oxidative processes, and C3'ṡdephos and phosphorous radicals which are formed after immediate strand breaks. The later species are thought to result from reductive cleavage by low energy electrons (LEE.) The high energy density in the core results in excited state processes that produce additional sugar radicals. The spatial characteristics of the radicals, deduced from PELDOR experiments, indicates that multiply damaged cluster sites (MDS) are formed in the core; these would be biologically significant, if formed in cells.

  12. Microstructure evolution of metallic nanocrystalline thin-films under ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Kaoumi, Djamel

    The microstructural evolution of nanocrystalline metallic thin-films under ion irradiation, especially grain growth and second-phase precipitation, was studied with detailed in situ experiments, and a theoretical model was developed to explain the results of grain-growth. Free-standing Zr, Pt, Cu and Au, Cu-Fe, and Zr-Fe nanocrystalline thin films prepared by sputter deposition were irradiated in-situ at the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory with Ar and Kr ions to fluences in excess of 1016 ion/cm2 at temperatures ranging from 20 to 773 K. The microstructural evolution of the thin-films was followed in situ by systematically recording bright field images and diffraction patterns at successive ion-irradiation doses. Grain growth was observed as a result of irradiation in all samples at all irradiation temperatures. The results suggest the existence of three regimes with increasing irradiating temperature: a low temperature regime (below about 0.15 to 0.22 Tm) where grain-growth does not depend on the irradiation temperature, a thermally assisted regime where both the grain-growth rate and the final grain size increase with increasing irradiation temperature, and a thermal regime where thermal effects dominate ion beam effects. Similarly to thermal grain growth, the ion-irradiation induced grain growth curves could be best fitted with curves of the type: Dn-Dn0=KF with n˜3 in the low temperature regime. The effect of solute addition on grain-growth was investigated using Zr(Fe) and Cu(Fe) supersaturated solid-solutions. In the case of Zr-Fe, Zr2Fe precipitates formed during irradiation (with the dose-to-precipitation of Zr2Fe decreasing with increasing irradiation temperature), whereas Cu-Fe remained as a solid-solution. The grain-growth rate and final size decreased in both alloys with respect to the pure metallic films as a result of second-phase particle pinning (Zener drag) (Zr-Fe), and solute drag (Cu-Fe). The grain

  13. Optical and dielectric properties of ion beam irradiated Ag/polymethyl methacrylate nanocomposites.

    PubMed

    Gavade, Chaitali; Singh, N L; Khanna, P K

    2014-08-01

    Changes in the dielectric, optical, structural and thermal properties of PMMA/silver nanocomposites of different concentrations of silver nanoparticles (5%, 10%, 15%) due to swift heavy ion irradiation were studied by means of impedance gain phase analyzer, UV-visible spectroscopy, X-ray diffraction and differential scanning calorimetry. Samples were irradiated with 120 MeV Si-ions at fluences of 1 x 10(11), 1 x 10(12) ions/cm2. Dependence of dielectric properties on frequency, ion beam fluence and filler concentration was studied. The results revealed the enhancement in dielectric properties after dopping nanoparticles and also upon irradiation. Optical properties like band gap was estimated for pure polymer and nanocomposite films from their optical absorption spectra in the wavelength region 200-800 nm. It was found that the band gap value shifted to lower energy (from 4.58 eV to 3.21 eV) on doping with silver nanoparticles. Differential scanning calorimetry analysis revealed a decrease in the glass transition temperature upon irradiation, which may be attributed to scissioning of polymer chain due to ion beam irradiation which is also confirmed with XRD analysis.

  14. Surface reformation and electro-optical characteristics of liquid crystal alignment layers using ion beam irradiation

    SciTech Connect

    Oh, Byeong-Yun; Lee, Kang-Min; Kim, Byoung-Yong; Kim, Young-Hwan; Han, Jin-Woo; Han, Jeong-Min; Lee, Sang-Keuk; Seo, Dae-Shik

    2008-09-15

    The surface modification characteristics of liquid crystal (LC) alignment layers irradiated with various argon (Ar) ion beam (IB) energies were investigated as a substitute for rubbing technology. Various pretilt angles were created on the IB-irradiated polyimide (PI) surfaces after IB irradiation, but the Ar ions did not alter the morphology on the PI surface, indicating that the pretilt angle was not due to microgrooves. The chemical bonding states of the IB-irradiated PI surfaces were analyzed in detail by x-ray photoelectron spectroscopy to verify the compositional behavior for the LC alignment. Chemical structure analysis showed that the alignment ability of LCs was due to the preferential reorientation of the carbon network due to the breaking of C=O double bonds in the imide ring parallel to the incident IB direction. The potential of applying nonrubbing technology to display devices was further supported by the superior electro-optical characteristics compared to rubbed PI.

  15. Control of tunnel barriers in multi-wall carbon nanotubes using focused ion beam irradiation.

    PubMed

    Tomizawa, H; Suzuki, K; Yamaguchi, T; Akita, S; Ishibashi, K

    2017-04-21

    We have formed tunnel barriers in individual multi-wall carbon nanotubes using the Ga focused ion beam irradiation. The barrier height was estimated by the temperature dependence of the current (Arrhenius plot) and the current-voltage curves (Fowler-Nordheim plot). It is shown that the barrier height has a strong correlation with the barrier resistance that is controlled by the dose. Possible origins for the variation in observed barrier characteristics are discussed. Finally, the single electron transistor with two barriers is demonstrated.

  16. Induction of somatic instability in stable yellow leaf mutant of rice by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Maekawa, M.; Hase, Y.; Shikazono, N.; Tanaka, A.

    2003-05-01

    Any class II type active transposons have not been discovered in rice though transposon (mobile element) is very useful for gene isolation in several plant species. In order to capture somatic instability induced by an endogenous active transposon in rice, stable yellow leaf plants derived from a variegated yellow leaf ( yl-v) mutant found in F2 of a cross between distantly related rice varieties were irradiated with carbon and helium ion beams. In M1 plants derived from the seeds irradiated with 50 Gy of 220 MeV carbon ions, a variegated yl plant was generated and this plant showed small or large sectors in leaves expanded later. Most of panicle-row M2 lines segregated into variegated and stable yl plants. In total, the ratio of variegated to stable yl plants was 3:1, suggesting that clear variegation observed on M1 plants might be caused by activation of a cryptic inactive autonomous element by carbon ion beam irradiation.

  17. Simulating Electron Cloud Effects in Heavy-Ion Beams

    SciTech Connect

    Cohen, R.H.; Friedman, A.; Lund, S.W.; Molvik, A.W.; Azevedo, T.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2004-08-04

    Stray electrons can be introduced in heavy ion fusion accelerators as a result of ionization of ambient gas or gas released from walls due to halo-ion impact, or as a result of secondary-electron emission. We summarize here results from several studies of electron-cloud accumulation and effects: (1) Calculation of the electron cloud produced by electron desorption from computed beam ion loss; the importance of ion scattering is shown; (2) Simulation of the effect of specified electron cloud distributions on ion beam dynamics. We find electron cloud variations that are resonant with the breathing mode of the beam have the biggest impact on the beam (larger than other resonant and random variations), and that the ion beam is surprisingly robust, with an electron density several percent of the beam density required to produce significant beam degradation in a 200-quadrupole system. We identify a possible instability associated with desorption and resonance with the breathing mode. (3) Preliminary investigations of a long-timestep algorithm for electron dynamics in arbitrary magnetic fields.

  18. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  19. Evaluation of surface damage on organic materials irradiated with Ar cluster ion beam

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ichiki, K.; Ninomiya, S.; Seki, T.; Aoki, T.; Matsuo, J.

    2011-01-01

    The sputtering yields of organic materials under large cluster ion bombardment are much higher than those under conventional monomer ion bombardment. The sputtering rate of arginine remains constant with fluence for an Ar cluster ion beam, but decreases with fluence for Ar monomer. Additionally, because Ar cluster etching induces little damage, Ar cluster ion can be used to achieve molecular depth profiling of organic materials. In this study, we evaluated the damage to poly methyl methacrylate (PMMA) and arginine samples irradiated with Ar atomic and Ar cluster ion beams. Arginine samples were analyzed by secondary ion mass spectrometry (SIMS) and PMMA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The chemical structure of organic materials remained unchanged after Ar cluster irradiation, but was seriously damaged. These results indicated that bombardment with Ar cluster ions induced less surface damage than bombardment with Ar atomic ion. The damage layer thickness with 5 keV Ar cluster ion bombardment was less than 1 nm.

  20. Evaluation of surface damage on organic materials irradiated with Ar cluster ion beam

    SciTech Connect

    Yamamoto, Y.; Ichiki, K.; Ninomiya, S.; Matsuo, J.; Seki, T.; Aoki, T.

    2011-01-07

    The sputtering yields of organic materials under large cluster ion bombardment are much higher than those under conventional monomer ion bombardment. The sputtering rate of arginine remains constant with fluence for an Ar cluster ion beam, but decreases with fluence for Ar monomer. Additionally, because Ar cluster etching induces little damage, Ar cluster ion can be used to achieve molecular depth profiling of organic materials. In this study, we evaluated the damage to poly methyl methacrylate (PMMA) and arginine samples irradiated with Ar atomic and Ar cluster ion beams. Arginine samples were analyzed by secondary ion mass spectrometry (SIMS) and PMMA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The chemical structure of organic materials remained unchanged after Ar cluster irradiation, but was seriously damaged. These results indicated that bombardment with Ar cluster ions induced less surface damage than bombardment with Ar atomic ion. The damage layer thickness with 5 keV Ar cluster ion bombardment was less than 1 nm.

  1. Compositional investigation of liquid crystal alignment on tantalum oxide via ion beam irradiation

    SciTech Connect

    Kim, Jong-Yeon; Oh, Byeong-Yun; Kim, Byoung-Yong; Kim, Young-Hwan; Han, Jin-Woo; Han, Jeong-Min; Seo, Dae-Shik

    2008-01-28

    The homogeneously aligned liquid crystal display on Ta{sub 2}O{sub 5} via ion beam (IB) irradiation was first embodied with controllability of pretilt angle depending on incident angle of the IB. As a result of x-ray photoelectron spectroscopic analysis, the intensity of Ta-O and O-Ta bondings as a function of incident angle behaved reversely with the pretilt angle and the lowest amplitude was observed at 45 deg. It revealed that the creation of pretilt angle was attributed to the irradiation of the IB by breaking Ta-O and O-Ta bonding so orientational order was generated by directional IB. Comparable electro-optical characteristics to rubbed polyimide were also achieved.

  2. Design of quantum dot lattices in amorphous matrices by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Buljan, M.; Bogdanović-Radović, I.; Karlušić, M.; Desnica, U. V.; Radić, N.; Jakšić, M.; Salamon, K.; Dražić, G.; Bernstorff, S.; Holý, V.

    2011-10-01

    We report on the highly controllable self-assembly of semiconductor quantum dots and metallic nanoparticles in a solid amorphous matrix, induced by ion beam irradiation of an amorphous multilayer. We demonstrate experimentally and theoretically a possibility to tune the basic structural properties of the quantum dots in a wide range. Furthermore, the sizes, distances, and arrangement type of the quantum dots follow simple equations dependent on the irradiation and the multilayer properties. We present a Monte Carlo model for the simulation and prediction of the structural properties of the materials formed by this method. The presented results enable engineering and simple production of functional materials or simple devices interesting for applications in nanotechnology.

  3. Design of quantum dot lattices in amorphous matrices by ion beam irradiation

    SciTech Connect

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Jaksic, M.; Salamon, K.; Drazic, G.; Bernstorff, S.; Holy, V.

    2011-10-15

    We report on the highly controllable self-assembly of semiconductor quantum dots and metallic nanoparticles in a solid amorphous matrix, induced by ion beam irradiation of an amorphous multilayer. We demonstrate experimentally and theoretically a possibility to tune the basic structural properties of the quantum dots in a wide range. Furthermore, the sizes, distances, and arrangement type of the quantum dots follow simple equations dependent on the irradiation and the multilayer properties. We present a Monte Carlo model for the simulation and prediction of the structural properties of the materials formed by this method. The presented results enable engineering and simple production of functional materials or simple devices interesting for applications in nanotechnology.

  4. Surface modification and adhesion improvement of PTFE film by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Lee, S. W.; Hong, J. W.; Wye, M. Y.; Kim, J. H.; Kang, H. J.; Lee, Y. S.

    2004-06-01

    The polytetrafluoroethylene (PTFE) surfaces, modified by 1 kV Ar + or O 2+ ion beam irradiation, was investigated with in-situ X-ray photoelectron spectroscopy (XPS), scanning electron micrographs (SEM), atomic force microscopy (AFM) measurements. The surface of PTFE films modified by Ar + ion irradiation was carbonized and the surface roughness increased with increasing ion doses. The surface of PTFE films modified by both Ar + ion in O 2 atmosphere and O 2+ ion irradiation formed the oxygen function group on PTFE surface, and the surface roughness change was relatively small. The adhesion improvement in Ar + ion irradiated PTFE surface is attributed to mechanical interlocking due to the surface roughness and CF-radical, but that in Ar + ion irradiation in an O 2 atmosphere was contributed by the CO complex and CF-radical with mechanical interlocking. The CO complex and CF-radical in O 2+ ion irradiated surface contributed to the adhesion.

  5. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    SciTech Connect

    Buljan, M.; Karlusic, M.; Bogdanovic-Radovic, I.; Jaksic, M.; Radic, N.; Salamon, K.; Bernstorff, S.

    2012-09-03

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  6. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Buljan, M.; Karlušić, M.; Bogdanović-Radović, I.; Jakšić, M.; Salamon, K.; Bernstorff, S.; Radić, N.

    2012-09-01

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  7. Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning

    SciTech Connect

    Elsaesser, Thilo; Weyrather, Wilma K.; Friedrich, Thomas; Durante, Marco; Iancu, Gheorghe; Kraemer, Michael; Kragl, Gabriele; Brons, Stephan; Winter, Marcus; Weber, Klaus-Josef; Scholz, Michael

    2010-11-15

    Purpose: To present the first direct experimental in vitro comparison of the biological effectiveness of range-equivalent protons and carbon ion beams for Chinese hamster ovary cells exposed in a three-dimensional phantom using a pencil beam scanning technique and to compare the experimental data with a novel biophysical model. Methods and Materials: Cell survival was measured in the phantom after irradiation with two opposing fields, thus mimicking the typical patient treatment scenario. The novel biophysical model represents a substantial extension of the local effect model, previously used for treatment planning in carbon ion therapy for more than 400 patients, and potentially can be used to predict effectiveness of all ion species relevant for radiotherapy. A key feature of the new approach is the more sophisticated consideration of spatially correlated damage induced by ion irradiation. Results: The experimental data obtained for Chinese hamster ovary cells clearly demonstrate that higher cell killing is achieved in the target region with carbon ions as compared with protons when the effects in the entrance channel are comparable. The model predictions demonstrate agreement with these experimental data and with data obtained with helium ions under similar conditions. Good agreement is also achieved with relative biological effectiveness values reported in the literature for other cell lines for monoenergetic proton, helium, and carbon ions. Conclusion: Both the experimental data and the new modeling approach are supportive of the advantages of carbon ions as compared with protons for treatment-like field configurations. Because the model predicts the effectiveness for several ion species with similar accuracy, it represents a powerful tool for further optimization and utilization of the potential of ion beams in tumor therapy.

  8. Ion beam mixing effects in Ag precipitates embedded in MgO crystals

    NASA Astrophysics Data System (ADS)

    Fuchs, G.; Abouchacra, G.; Treilleux, M.; Thevenard, P.; Serughetti, J.

    1988-05-01

    MgO single crystals have been implanted at room temperature with 8 × 10 16 Ag cm -2 of 180 keV energy. After 973 K thermal annealing, Ag atoms precipitate in the MgO matrix. The MgOAg samples were then irradiated at 77 K with 800 keV xenon up to 1.7 × 10 16 ions cm -2. The modification of the metallic precipitated phase induced by such ionic bombardment, has been characterized by optical absorption spectroscopy (OAS) and transmission electron microscopy (TEM). The evolution of the optical spectra with xenon bombardment has been interpreted in terms of silver precipitate dispersion induced by ion beam mixing effects. The inhibition of atomic diffusion or radiation induced diffusion, due the low sample temperature during irradiation, increases the efficiency of atomic mixing effects. TEM observations confirm this assumption.

  9. Dose response and mutation induction by ion beam irradiation in buckwheat

    NASA Astrophysics Data System (ADS)

    Morishita, T.; Yamaguchi, H.; Degi, K.; Shikazono, N.; Hase, Y.; Tanaka, A.; Abe, T.

    2003-05-01

    The biological effects of ion beams were investigated to pursue the development of a method for breeding by mutation in buckwheat. Common buckwheat (Botansoba, Bot) and tartary buckwheat (Rotundatiem, Rot) seeds were exposed to various ions in linear energy transfer (LET) at 9-630 keV/μm. The lethal dose 50 (LD 50) of ion beams were 10-300 Gy (Bot) and 30-500 Gy (Rot). It was indicated that a penetrating depth in excess of 1.7 mm is necessary to thoroughly saturate the target, and ions with a penetrating depth of less than 2.2 mm were affected by the presence of hulls. The maximum values of the relative biological effectiveness were 17.7 (Rot) and 22.5 (Bot) at 305 keV/μm. The effective cross sections increased with the LET, and the maximum values were 2.7 (Rot) and 3.0 μm 2 (Bot). The mutation induction effects of He and C ions were higher than those of gamma rays.

  10. Generation of low-divergence megaelectronvolt ion beams from thin foil irradiated with an ultrahigh-contrast laser

    SciTech Connect

    Wang, W. P.; Zhang, H.; Shen, B. F.; Xu, Y.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.; Wu, B.; Jiao, C. Y.; Wu, Y. C.; Zhu, B.; Dong, K. G.; Hong, W.; Gu, Y. Q.

    2012-11-19

    Megaelectronvolt (MeV) ion beams with low divergence (10 Degree-Sign ) are experimentally generated from a thin foil irradiated by an ultrahigh-contrast laser at a peak intensity of {approx}10{sup 18} W/cm{sup 2}. The high-contrast ({approx}10{sup 11}) laser is obtained with a pulse cleaner based on noncollinear optical-parametric amplification and second-harmonic generation processes. The effects of the foil density, foil thickness, as well as the density gradients at the front and back sides of the foil are investigated with two-dimensional particle-in-cell simulations. The beam parameters of maximum energy and divergence strongly depend on the density gradients at the back side of the foil.

  11. Local control of magnetic damping in ferromagnetic/non-magnetic bilayers by interfacial intermixing induced by focused ion-beam irradiation

    SciTech Connect

    King, J. A.; Burn, D. M.; Sallabank, E. A.; Hindmarch, A. T.; Atkinson, D. E-mail: abarman@bose.res.in; Ganguly, A.; Pal, S.; Barman, A. E-mail: abarman@bose.res.in; Hase, T. P. A.

    2014-06-16

    The influence of interfacial intermixing on the picosecond magnetization dynamics of ferromagnetic/non-magnetic thin-film bilayers was studied. Low-dose focused-ion-beam irradiation was used to induce intermixing across the interface between a 10 nm Ni{sub 81}Fe{sub 19} layer and a 2–3 nm capping layer of either Au or Cr. Time-resolved magneto-optical Kerr effect was used to study magnetization dynamics as a function of ion-beam dose. With an Au cap, the damping of the un-irradiated bilayer was comparable with native Ni{sub 81}Fe{sub 19} and increased with increasing ion dose. In contrast, for Ni{sub 81}Fe{sub 19}/Cr the damping was higher than that for native Ni{sub 81}Fe{sub 19}, but the damping decreased with increasing dose.

  12. Significance of Heavy-Ion Beam Irradiation-Induced Avermectin B1a Production by Engineered Streptomyces avermitilis

    PubMed Central

    Bo, Yong-Heng; Chen, Ji-Hong; Li, Wen-Jian; Liang, Jian-Ping; Xiao, Guo-Qing; Wang, Yu-Chen; Liu, Jing; Hu, Wei; Jiang, Bo-Ling

    2017-01-01

    Heavy-ion irradiation technology has advantages over traditional methods of mutagenesis. Heavy-ion irradiation improves the mutation rate, broadens the mutation spectrum, and shortens the breeding cycle. However, few data are currently available regarding its effect on Streptomyces avermitilis morphology and productivity. In this study, the influence of heavy-ion irradiation on S. avermitilis when cultivated in approximately 10 L stirred-tank bioreactors was investigated. The specific productivity of the avermectin (AVM) B1a-producing mutant S. avermitilis 147-G58 increased notably, from 3885 to 5446 μg/mL, approximately 1.6-fold, compared to the original strain. The mycelial morphology of the mutant fermentation processes was microscopically examined. Additionally, protein and metabolite identification was performed by using SDS-PAGE, 2- and 3-dimensional electrophoresis (2DE and 3DE). The results showed that negative regulation gene deletion of mutants led to metabolic process upregulating expression of protein and improving the productivity of an avermectin B1a. The results showed that the heavy-ion beam irradiation dose that corresponded to optimal production was well over the standard dose, at approximately 80 Gy at 220 AMeV (depending on the strain). This study provides reliable data and a feasible method for increasing AVM productivity in industrial processes. PMID:28243599

  13. Site-selective local fluorination of graphene induced by focused ion beam irradiation

    PubMed Central

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-01

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases. PMID:26822900

  14. Site-selective local fluorination of graphene induced by focused ion beam irradiation.

    PubMed

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-29

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.

  15. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  16. Study of the thermal effect on silicon surface induced by ion beam from plasma focus device

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Ahmad, M.; Al-Hawat, Sh.; Akel, M.

    2017-04-01

    Structural modifications in form of ripples and cracks are induced by nitrogen ions from plasma focus on silicon surface. The investigation of such structures reveals correlation between ripples and cracks formation in peripheral region of the melt spot. The reason of such correlation and structure formation is explained as result of thermal effect. Melting and resolidification of the center of irradiated area occur within one micro second of time. This is supported by a numerical simulation used to investigate the thermal effect induced by the plasma focus ion beams on the silicon surface. This simulation provides information about the temperature profile as well as the dynamic of the thermal propagation in depth and lateral directions. In accordance with the experimental observations, that ripples are formed in latter stage after the arrival of last ion, the simulation shows that the thermal relaxation takes place in few microseconds after the end of the ion beam arrival. Additionally, the dependency of thermal propagation and relaxation on the distance of the silicon surface from the anode is presented.

  17. Amorphous formation on metal surfaces by an intense pulsed ion beam irradiation

    SciTech Connect

    Yatsuzuka, M.; Yamasaki, T.; Uchida, H.; Hashimoto, Y.

    1995-12-31

    Recently, intense pulsed ion beams (PIBs) have been interested as a tool for surface modification of metals, because irradiation of PIBs to metals leads to rapid heating of the near surface which is immediately followed by rapid cooling and resolidification. In this paper formation of an amorphous layer on a Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy by a PIB irradiation is successfully demonstrated. A shot of the mixed carbon and fluorine PIB was irradiated on a Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy to make amorphous structure. The amorphous nature of the PIB-processed surface was examined by the X-ray diffractometry. The diffraction pattern of the non-processed substrate reveals the crystalline phase which is characterized by the narrow spectrum. On the other hand, the PIB-processed Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy surface exhibit the typical diffraction pattern of the amorphous structure, when the maximum X-ray diffraction depth is within 0.66 {micro}m. Assuming that a single species of carbon of fluorine ions is injected into the nickel target, ion range, heating temperature and cooling rate for a nickel substrate are estimated to be 0.23 {micro}m, 3,150 K and 3.8 {times} 10{sup 5}K/sec, respectively. The cooling rate estimated above is enough for producing amorphous structure of nickel alloys.

  18. Cratering behavior in single- and poly-crystalline copper irradiated by an intense pulsed ion beam

    SciTech Connect

    Wood, B.P.; Bitteker, L.J.; Waganaar, W.J.; Perry, A.J.

    1998-12-31

    When treated with intense pulsed ion beams (IPIB), many materials exhibit increased wear resistance, fatigue life, and hardness. However, this treatment often results in cratering and roughening of the surface. In this work, high purity single crystal and polycrystalline copper samples were irradiated with pulses from an IPIB to gain insight into the causes of this cratering behavior. Samples were treated with 1,2,5, and 10 shots at 2 J/cm{sup 2} and 5 J/cm{sup 2} average energy fluence per shot. Shots were about 400 ns in duration and consisted of a mixture of carbon, hydrogen, and oxygen ions at 300 keV. It was found that the single crystal copper cratered far less than the polycrystalline copper at the lower energy fluence. At the higher energy fluence, cratering was replaced by other forms of surface damage, and the single crystal copper sustained less damage at all but the largest number of shots. Molten debris from the Lucite anode (the ion source) was removed and redeposited on the samples with each shot.

  19. Extended calibration range for prompt photon emission in ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Bellini, F.; Boehlen, T. T.; Chin, M. P. W.; Collamati, F.; De Lucia, E.; Faccini, R.; Ferrari, A.; Lanza, L.; Mancini-Terracciano, C.; Marafini, M.; Mattei, I.; Morganti, S.; Ortega, P. G.; Patera, V.; Piersanti, L.; Russomando, A.; Sala, P. R.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Voena, C.

    2014-05-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum. This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80 MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported.

  20. Persistent ion beam induced conductivity in zinc oxide nanowires

    SciTech Connect

    Johannes, Andreas; Niepelt, Raphael; Gnauck, Martin; Ronning, Carsten

    2011-12-19

    We report persistently increased conduction in ZnO nanowires irradiated by ion beam with various ion energies and species. This effect is shown to be related to the already known persistent photo conduction in ZnO and dubbed persistent ion beam induced conduction. Both effects show similar excitation efficiency, decay rates, and chemical sensitivity. Persistent ion beam induced conduction will potentially allow countable (i.e., single dopant) implantation in ZnO nanostructures and other materials showing persistent photo conduction.

  1. Persistent ion beam induced conductivity in zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Johannes, Andreas; Niepelt, Raphael; Gnauck, Martin; Ronning, Carsten

    2011-12-01

    We report persistently increased conduction in ZnO nanowires irradiated by ion beam with various ion energies and species. This effect is shown to be related to the already known persistent photo conduction in ZnO and dubbed persistent ion beam induced conduction. Both effects show similar excitation efficiency, decay rates, and chemical sensitivity. Persistent ion beam induced conduction will potentially allow countable (i.e., single dopant) implantation in ZnO nanostructures and other materials showing persistent photo conduction.

  2. Ion beam irradiation of cuprate high-temperature superconductors: Systematic modification of the electrical properties and fabrication of nanopatterns

    NASA Astrophysics Data System (ADS)

    Lang, W.; Marksteiner, M.; Bodea, M. A.; Siraj, K.; Pedarnig, J. D.; Kolarova, R.; Bauer, P.; Haselgrübler, K.; Hasenfuss, C.; Beinik, I.; Teichert, C.

    2012-02-01

    Irradiation of thin films of the cuprate high-temperature superconductor YBaCuO (YBCO) with 75 keV He ions leads to an exponential increase of the resistivity and a non-linear decrease of the critical temperature. At a fluence above 3×1015 cm the material becomes semiconducting. Calculations of ion-target interactions using the MARLOWE code indicated that these effects are due to the creation of point defects, primarily by displacing oxygen atoms, and that the lateral broadening of the ion's collision cascades is smaller than 10 nm in a 100 nm thick YBCO film. Irradiating a YBCO film through a silicon stencil mask with minimum aperture of 125 nm placed on top of the sample results in a local modification of its electrical properties. We demonstrate that this technique can be used to produce patterns of sub-100 nm size, visualized by scanning electron microscopy and conductive atomic force microscopy. This simple one-step process does not require the removal of target material and avoids the contamination problems associated with chemical etching and focused ion beam techniques.

  3. Defect recovery and damage reduction in borosilicate glasses under double ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Mir, A. H.; Peuget, S.; Toulemonde, M.; Bulot, P.; Jegou, C.; Miro, S.; Bouffard, S.

    2015-11-01

    A sodium borosilicate glass was irradiated sequentially and simultaneously with alpha particles and gold ions. Alpha particles induced partial recovery of the network damage and mechanical properties in the gold pre-irradiated glass, while no such recovery effect was observed during gold irradiation of the alpha pre-irradiated glass. The damage capacity of the gold ions was significantly reduced during simultaneous irradiation with alpha particles and gold ions. These results highlight that the irradiation sequence of the ions plays an important role in controlling the final damage level; and if properly employed, irradiation can be employed to induce defect recovery. Such results are of paramount importance to understand the radiation damage in nuclear reactor components and in nuclear waste glass matrices which are subjected to multiple particle irradiations.

  4. Selective Improvement of NO2 Gas Sensing Behavior in SnO2 Nanowires by Ion-Beam Irradiation.

    PubMed

    Kwon, Yong Jung; Kang, Sung Yong; Wu, Ping; Peng, Yuan; Kim, Sang Sub; Kim, Hyoun Woo

    2016-06-01

    We irradiated SnO2 nanowires with He ions (45 MeV) with different ion fluences. Structure and morphology of the SnO2 nanowires did not undergo noticeable changes upon ion-beam irradiation. Chemical equilibrium in SnO2/gas systems was calculated from thermodynamic principles, which were used to study the sensing selectivity of the tested gases, demonstrating the selective sensitivity of the SnO2 surface to NO2 gas. Being different from other gases, including H2, ethanol, acetone, SO2, and NH3, the sensor response to NO2 gas significantly increases as the ion fluence increases, showing a maximum under an ion fluence of 1 × 10(16) ions/cm(2). Photoluminescence analysis shows that the relative intensity of the peak at 2.1 eV to the peak at 2.5 eV increases upon ion-beam irradiation, suggesting that structural defects and/or tin interstitials have been generated. X-ray photoelectron spectroscopy indicated that the ionic ratio of Sn(2+/)Sn(4+) increases by the ion-beam irradiation, supporting the formation of surface Sn interstitials. Using thermodynamic calculations, we explained the observed selective sensing behavior. A molecular level model was also established for the adsorption of NO2 on ion-irradiated SnO2 (110) surfaces. We propose that the adsorption of NO2-related species is considerably enhanced by the generation of surface defects that are comprised of Sn interstitials.

  5. Nano- and Micro-Structured UHMWPE Composites Filled With Hydroxyapatite Irradiated by Nitrogen Ion Beams for Bio-Medical Applications

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Kornienko, L. A.; Chaikina, M. V.; Sergeev, V. P.; Ivanova, L. R.; Shilko, S. V.

    2014-02-01

    The effect of filling the ultra-high-molecular-weight polyethylene (UHMWPE) with nano- and microparticles of hydroxyapatite (HA) on its structure and tribotechnical properties is investigated, aiming at application of the modified UHMWPE in endoprosthetics. An introduction of 0.1-0.5 wt% HA nanoparticles into UHMWPE is shown to result in a threefold increase in its wear resistance. A similar effect is observed in the case where 20 wt% of HA microparticles is used. Treatment of the surface of nano- and microcomposites with a nitrogen ion beam increases the wear resistance by an additional 10-30%. A combined treatment of UHMWPE powder and fillers in a planetary ball mill leads to a uniform distribution of the latter in the polymer matrix and, consequently, to the formation of a more ordered permolecular structure. In the irradiated UHMWPE micro- and nanocomposites reinforced with HA, the tribotechnical properties are shown to improve due to the formation of new chemical bonds (primarily via cross-linking) and ordered permolecular structure.

  6. Effects of a dielectric material in an ion source on the ion beam current density and ion beam energy

    SciTech Connect

    Fujiwara, Y. Sakakita, H.; Nakamiya, A.; Hirano, Y.; Kiyama, S.

    2016-02-15

    To understand a strong focusing phenomenon that occurs in a low-energy hydrogen ion beam, the electron temperature, the electron density, and the space potential in an ion source with cusped magnetic fields are measured before and after the transition to the focusing state using an electrostatic probe. The experimental results show that no significant changes are observed before or after the transition. However, we found unique phenomena that are characterized by the position of the electrostatic probe in the ion source chamber. Specifically, the extracted ion beam current density and energy are obviously enhanced in the case where the electrostatic probe, which is covered by a dielectric material, is placed close to an acceleration electrode.

  7. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Ahmad, S. B.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Seymour, C.; Mothersill, C. E.

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced "bystander effects" studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 × 1013 H+/cm2 s. The average saturation value for the photon output was found to be 40 × 106 cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 × 103, 10 × 106, and 35 × 106 cps for wavelengths of 280 ± 5 nm, 320 ± 5 nm and 340 ± 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a "damage cross section" of the order of 10-14 cm2. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  8. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Thongkumkoon, P.; Prakrajang, K.; Suwannakachorn, D.; Yu, L. D.

    2014-05-01

    Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms.

  9. Ion beam irradiation of lanthanum and thorium-doped yttrium titanates

    NASA Astrophysics Data System (ADS)

    Lian, J.; Zhang, F. X.; Peters, M. T.; Wang, L. M.; Ewing, R. C.

    2007-05-01

    Y2Ti2O7 pyrochlores doped with La have been sintered at 1373 K for 12 h with the designed compositions of the (LaxY1-x)2Ti2O7 system (x = 0, 0.08, 0.5, and 1), and the phase compositions were analyzed by X-ray diffraction. Limited amounts of La were incorporated into yttrium titanate pyrochlore structure for La-doped samples; while, the end member composition of La2Ti2O7 formed a layered perovskite structure. Ion beam-induced amorphization occurred for all compositions in the (LaxY1-x)2Ti2O7 binary under 1 MeV Kr2+ irradiation at room temperature, and the critical amorphization dose decreased with increasing amounts of La3+. The critical amorphization temperatures for Y2Ti2O7, (La0.162Y0.838)2Ti2O7 and La2Ti2O7 were determined to be ∼780, 890 and 920 K, respectively. Th4+ and Fe3+-doped yttrium titanate pyrochlores were synthesized at 1373 K by sintering Y2Ti2O7 with (ThO2 + Fe2O3). Pyrochlore structures and the chemical compositions were primarily identified by the X-ray diffraction and energy dispersive X-ray (EDX) measurements. The lattice parameter and the critical amorphization dose (1 MeV Kr2+ at room temperature) increase for yttrium titanate pyrochlores with the addition of Th. The increasing 'resistance' to amorphization with less La and greater Th and Fe contents for (Y1-xLax)2Ti2O7 and Y2Ti2O7-Fe2O3-ThO2 systems, respectively, are consistent with the changes in the average ionic radius ratio at the A-sites and B-sites. These results suggest that the addition of lanthanides and actinides (e.g., Th, U, or Pu) will affect the structural stability, as well as the radiation response behavior of the pyrochlore structure-type.

  10. Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings.

    PubMed

    Yoshihara, Ryouhei; Nozawa, Shigeki; Hase, Yoshihiro; Narumi, Issay; Hidema, Jun; Sakamoto, Ayako N

    2013-11-01

    To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV (12)C(6+)), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV (12)C(6+). Mutation spectra showed that both radiations increased the frequency of frameshifts and other mutations, including deletions and insertions, but only γ-rays increased the frequency of total base substitutions. These results suggest that the type of DNA lesions which cause base substitutions were less often induced by 320-MeV (12)C(6+) than by γ-rays in Arabidopsis seedlings. Furthermore, γ-rays never increased the frequencies of G:C to T:A or A:T to C:G transversions, which are caused by oxidized guanine; 320-MeV (12)C(6+), however, produced a slight increase in both transversions. Instead, γ-rays produced a significant increase in the frequency of G:C to A:T transitions. These results suggest that 8-oxoguanine has little effect on mutagenesis in Arabidopsis cells.

  11. The acquisition of Clostridium tyrobutyricum mutants with improved bioproduction under acidic conditions after two rounds of heavy-ion beam irradiation

    PubMed Central

    Zhou, Xiang; Yang, Zhen; Jiang, Ting-Ting; Wang, Shu-Yang; Liang, Jian-Ping; Lu, Xi-Hong; Wang, Liang

    2016-01-01

    End-product inhibition is a key factor limiting the production of organic acid during fermentation. Two rounds of heavy-ion beam irradiation may be an inexpensive, indispensable and reliable approach to increase the production of butyric acid during industrial fermentation processes. However, studies of the application of heavy ion radiation for butyric acid fermentation engineering are lacking. In this study, a second 12C6+ heavy-ion irradiation-response curve is used to describe the effect of exposure to a given dose of heavy ions on mutant strains of Clostridium tyrobutyricum. Versatile statistical elements are introduced to characterize the mechanism and factors contributing to improved butyric acid production and enhanced acid tolerance in adapted mutant strains harvested from the fermentations. We characterized the physiological properties of the strains over a large pH value gradient, which revealed that the mutant strains obtained after a second round of radiation exposure were most resistant to harsh external pH values and were better able to tolerate external pH values between 4.5 and 5.0. A customized second round of heavy-ion beam irradiation may be invaluable in process engineering. PMID:27426447

  12. Physical and biological properties of the ion beam irradiated PMMA-based composite films

    NASA Astrophysics Data System (ADS)

    Shanthini, G. M.; Martin, Catherine Ann; Sakthivel, N.; Veerla, Sarath Chandra; Elayaraja, K.; Lakshmi, B. S.; Asokan, K.; Kanjilal, D.; Kalkura, S. Narayana

    2015-02-01

    Polymethyl methacrylate (PMMA) and PMMA-hydroxyapatite (PMMA-HAp) composite films, prepared by the solvent evaporation method were irradiated with 100 MeV Si7+ ions. Crystallographic, morphological and the functional groups of the pristine and irradiated samples were studied using glancing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) respectively. SEM reveals the creation of pores, along with an increase in porosity and cluster size on irradiation. Decrease in crystalline nature and crystallite size with an increase in ion fluence was observed from GIXRD patterns. The surface roughness and the wettability of the material were also enhanced, which could favour the cell-material interaction. The irradiated samples adsorbed significantly greater amount of proteins than pristine. Also, irradiation does not produce any toxic byproducts or leachants, and maintains the viability of 3T3 cells. The response of the irradiated samples towards biomedical applications was demonstrated by the improved antimicrobial activity, haemocompatibility and cytocompatibility. Swift heavy ion irradiation (SHI) could be an effective tool to modify and engineer the surface properties of the polymers to enhance the biocompatibility.

  13. Electron Cloud Effects in Intense, Ion Beam Linacs Theory and Experimental Planning for HIF

    NASA Astrophysics Data System (ADS)

    Molvik, A. W.; Cohen, R. H.; Lund, S. M.; Bieniosek, F. M.; Lee, E. P.

    2002-05-01

    Heavy-ion accelerators for HIF will operate at high aperture-fill factors with high beam current and long pulses. This will lead to beam ions impacting walls: liberating gas molecules and secondary electrons. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the approximately 4 kV ion beam potential. Diagnostics are being developed tto measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles, as well as their effect on the ion beam.

  14. Comparison of Biological Effectiveness of Carbon-Ion Beams in Japan and Germany

    SciTech Connect

    Uzawa, Akiko; Ando, Koichi Koike, Sachiko; Furusawa, Yoshiya; Matsumoto, Yoshitaka; Takai, Nobuhiko; Hirayama, Ryoichi; Watanabe, Masahiko; Scholz, Michael; Elsaesser, Thilo; Peschke, Peter

    2009-04-01

    Purpose: To compare the biological effectiveness of 290 MeV/amu carbon-ion beams in Chiba, Japan and in Darmstadt, Germany, given that different methods for beam delivery are used for each. Methods and Materials: Murine small intestine and human salivary gland tumor (HSG) cells exponentially growing in vitro were irradiated with 6-cm width of spread-out Bragg peaks (SOBPs) adjusted to achieve nearly identical beam depth-dose profiles at the Heavy-Ion Medical Accelerator in Chiba, and the SchwerIonen Synchrotron in Darmstadt. Cell kill efficiencies of carbon ions were measured by colony formation for HSG cells and jejunum crypts survival in mice. Cobalt-60 {gamma} rays were used as the reference radiation. Isoeffective doses at given survivals were used for relative biological effectiveness (RBE) calculations and interinstitutional comparisons. Results: Isoeffective D{sub 10} doses (mean {+-} standard deviation) of HSG cells ranged from 2.37 {+-} 0.14 Gy to 3.47 {+-} 0.19 Gy for Chiba and from 2.31 {+-} 0.11 Gy to 3.66 {+-} 0.17 Gy for Darmstadt. Isoeffective D{sub 10} doses of gut crypts after single doses ranged from 8.25 {+-} 0.17 Gy to 10.32 {+-} 0.14 Gy for Chiba and from 8.27 {+-} 0.10 Gy to 10.27 {+-} 0.27 Gy for Darmstadt, whereas isoeffective D{sub 30} doses after three fractionated doses were 9.89 {+-} 0.17 Gy through 13.70 {+-} 0.54 Gy and 10.14 {+-} 0.20 Gy through 13.30 {+-} 0.41 Gy for Chiba and Darmstadt, respectively. Overall difference of RBE between the two facilities was 0-5% or 3-7% for gut crypt survival or HSG cell kill, respectively. Conclusion: The carbon-ion beams at the National Institute of Radiological Sciences in Chiba, Japan and the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany are biologically identical after single and daily fractionated irradiation.

  15. Formation of tin-tin oxide core-shell nanoparticles in the composite SnO2-x/nitrogen-doped carbon nanotubes by pulsed ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Korusenko, P. M.; Nesov, S. N.; Bolotov, V. V.; Povoroznyuk, S. N.; Pushkarev, A. I.; Ivlev, K. E.; Smirnov, D. A.

    2017-03-01

    The complex methods of transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy were used to investigate the changes in the morphology, phase composition, and electronic structure of the composite SnO2-x/nitrogen-doped multiwalled carbon nanotubes (SnO2-x/N-MWCNTs) irradiated with the pulsed ion beam of nanosecond duration. The irradiation of the composite SnO2-x/N-MWCNTs leads to the formation of nanoparticles with the core-shell structure on the surface of CNTs with a sharp interfacial boundary. It has been established that the "core" is a metal tin (Sn0) with a typical size of 5-35 nm, and the "shell" is a thin amorphous layer (2-6 nm) consisting of nonstoichiometric tin oxide with a low oxygen content. The "core-shell" structure Snsbnd SnOx is formed due to the process of heating and evaporation of SnO2-x under the effect of the ion beam, followed by vapor deposition on the surface of carbon nanotubes.

  16. Lethal and mutagenic effects of ion beams and γ-rays in Aspergillus oryzae.

    PubMed

    Toyoshima, Yoshiyuki; Takahashi, Akemi; Tanaka, Hisaki; Watanabe, Jun; Mogi, Yoshinobu; Yamazaki, Tatsuo; Hamada, Ryoko; Iwashita, Kazuhiro; Satoh, Katsuya; Narumi, Issay

    2012-12-01

    Aspergillus oryzae is a fungus that is used widely in traditional Japanese fermentation industries. In this study, the lethal and mutagenic effects of different linear energy transfer (LET) radiation in freeze-dried conidia of A. oryzae were investigated. The lethal effect, which was evaluated by a 90% lethal dose, was dependent on the LET value of the ionizing radiation. The most lethal ionizing radiation among that tested was (12)C(5+) ion beams with an LET of 121keV/μm. The (12)C(5+) ion beams had a 3.6-times higher lethal effect than low-LET (0.2keV/μm) γ-rays. The mutagenic effect was evaluated by the frequency of selenate resistant mutants. (12)C(6+) ion beams with an LET of 86keV/μm were the most effective in inducing selenate resistance. The mutant frequency following exposure to (12)C(6+) ion beams increased with an increase in dose and reached 3.47×10(-3) at 700Gy. In the dose range from 0 to 700Gy, (12)C(5+) ion beams were the second most effective in inducing selenate resistance, the mutant frequency of which reached a maximum peak (1.67×10(-3)) at 400Gy. To elucidate the characteristics of mutation induced by ionizing radiation, mutations in the sulphate permease gene (sB) and ATP sulfurylase gene (sC) loci, the loss of function of which results in a selenate resistant phenotype, were compared between (12)C(5+) ion beams and γ-rays. We detected all types of transversions and transitions. For frameshifts, the frequency of a +1 frameshift was the highest in all cases. Although the incidence of deletions >2bp was generally low, deletions >20bp were characteristic for (12)C(5+) ion beams. γ-rays had a tendency to generate mutants carrying a multitude of mutations in the same locus. Both forms of radiation also induced genome-wide large-scale mutations including chromosome rearrangements and large deletions. These results provide new basic insights into the mutation breeding of A. oryzae using ionizing radiation.

  17. Raman and photoluminescence study of ion beam irradiated porous silicon: a case for the astrophysical extended red emission?

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Strazzulla, G.; Compagnini, G.; Longo, P.

    2004-03-01

    We have measured photoluminescence (PL) and Raman spectra of porous silicon (PS) thin films subjected to irradiation with 30 keV He+ ion beams. Fluence has been changed between 1014 and 1016 ions/cm2. The results show a decrease of the photoluminescence intensity by increasing the ion fluence, probably due to the formation of induced non-radiative recombination centres. The increase of defects density and the partial amorphization of the samples have been studied through Raman spectroscopy and a comparison with the induced damage in single-crystalline silicon has been considered. The characteristic PL wavelength (600-800 nm) supports the hypothesis that silicon nanostructures are an attractive carrier for the so called "Extended Red Emission" (ERE) observed in many astronomical objects. However, the possibility to tune the PL quantum efficiency by ion irradiation indicates that silicon nanostructures in space could loss their photoluminescence capability in those environments where cosmic ion bombardment plays a relevant role.

  18. A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach

    NASA Astrophysics Data System (ADS)

    Russo, G.; Attili, A.; Battistoni, G.; Bertrand, D.; Bourhaleb, F.; Cappucci, F.; Ciocca, M.; Mairani, A.; Milian, F. M.; Molinelli, S.; Morone, M. C.; Muraro, S.; Orts, T.; Patera, V.; Sala, P.; Schmitt, E.; Vivaldo, G.; Marchetto, F.

    2016-01-01

    The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.

  19. A novel algorithm for the calculation of physical and biological irradiation quantities in scanned ion beam therapy: the beamlet superposition approach.

    PubMed

    Russo, G; Attili, A; Battistoni, G; Bertrand, D; Bourhaleb, F; Cappucci, F; Ciocca, M; Mairani, A; Milian, F M; Molinelli, S; Morone, M C; Muraro, S; Orts, T; Patera, V; Sala, P; Schmitt, E; Vivaldo, G; Marchetto, F

    2016-01-07

    The calculation algorithm of a modern treatment planning system for ion-beam radiotherapy should ideally be able to deal with different ion species (e.g. protons and carbon ions), to provide relative biological effectiveness (RBE) evaluations and to describe different beam lines. In this work we propose a new approach for ion irradiation outcomes computations, the beamlet superposition (BS) model, which satisfies these requirements. This model applies and extends the concepts of previous fluence-weighted pencil-beam algorithms to quantities of radiobiological interest other than dose, i.e. RBE- and LET-related quantities. It describes an ion beam through a beam-line specific, weighted superposition of universal beamlets. The universal physical and radiobiological irradiation effect of the beamlets on a representative set of water-like tissues is evaluated once, coupling the per-track information derived from FLUKA Monte Carlo simulations with the radiobiological effectiveness provided by the microdosimetric kinetic model and the local effect model. Thanks to an extension of the superposition concept, the beamlet irradiation action superposition is applicable for the evaluation of dose, RBE and LET distributions. The weight function for the beamlets superposition is derived from the beam phase space density at the patient entrance. A general beam model commissioning procedure is proposed, which has successfully been tested on the CNAO beam line. The BS model provides the evaluation of different irradiation quantities for different ions, the adaptability permitted by weight functions and the evaluation speed of analitical approaches. Benchmarking plans in simple geometries and clinical plans are shown to demonstrate the model capabilities.

  20. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1996-01-01

    An improved magnetically-confined anode plasma pulsed ion beam source. Beam rotation effects and power efficiency are improved by a magnetic design which places the separatrix between the fast field flux structure and the slow field structure near the anode of the ion beam source, by a gas port design which localizes the gas delivery into the gap between the fast coil and the anode, by a pre-ionizer ringing circuit connected to the fast coil, and by a bias field means which optimally adjusts the plasma formation position in the ion beam source.

  1. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    SciTech Connect

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; Hamada, Nobuyuki; Wada, Seiichi; Tanaka, Atsushi; Shinagawa, Masahiko; Ohtsuki, Takahiro; Mori, Takahisa; Saha, Manujendra N.; Hoque, Ariful S.; Islam, Salequl; Kogure, Kimitaka; Funayama, Tomoo; Kobayashi, Yasuhiko

    2010-01-15

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated beta-galactosidase (SA-beta-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependent kinase inhibitor p21{sup WAF1/CIP1} in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells (<1% of initially irradiated cells) could not form a colony: however, they showed a morphological phenotype consistent with cellular senescence, that is, enlarged and flattened appearance. The senescent nature of these attached cells was further indicated by staining for SA-beta-gal. The mean telomere length was not changed after irradiation with C-ions. Phosphorylation of p53 at serine 15 as well as the expression of p21{sup WAF1/CIP1} was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.

  2. Ion beam irradiation of nanostructures: sputtering, dopant incorporation, and dynamic annealing

    NASA Astrophysics Data System (ADS)

    Johannes, Andreas; Holland-Moritz, Henry; Ronning, Carsten

    2015-03-01

    Nanostructured materials are today subject to intense research, as their mesoscopic properties will enable a variety of new applications in the future. They can be grown with specific properties under equilibrium conditions by a variety of different top-down and bottom-up synthesis techniques. Subsequent modification, including doping or alloying using the highly non-equilibrium process of ion irradiation, significantly expands the potpourri of functionality of what is today an important material class. Important and newly discovered effects must be considered compared to ion irradiation of bulk or thin film counterparts, as the ion range becomes comparable to the size of the nanotructure. Here, we will review recent high fluence irradiation studies reporting on non-linear incorporation of implanted species, enhanced sputtering yields, morphological changes induced by the high thermal impact, as well as strongly enhanced dynamic annealing for such confined nanostructures. Our review will also include the concurrent and recent progress in developing new simulation tools in order to describe and quantify those newly observed effects.

  3. Fundamental Concepts of Ion-Beam Processing

    NASA Astrophysics Data System (ADS)

    Averback, R. S.; Bellon, P.

    The basic concepts underlying the response of materials to ion-beam irradiation are outlined. These include the slowing of energetic ions, the creation of defects, sputtering, ion-beam mixing, the acceleration of kinetic processes, and phase transformations. Several examples are cited to illustrate how each of these concepts can be exploited to modify materials in ways not easily achieved, or not even possible, by more conventional processing methods. The chapter attempts to provide a physical understanding of the basic effects of ion-beam irradiation on materials, to enable readers in other areas of research to better understand the more technical chapters that follow, and to develop ideas relevant to their own disciplines. We provide references to more quantitative treatments of the topics covered here.

  4. Growth stress buildup in ion beam sputtered Mo thin films and comparative study of stress relaxation upon thermal annealing or ion irradiation

    SciTech Connect

    Debelle, A.; Abadias, G.; Michel, A.; Jaouen, C.; Pelosin, V.

    2007-09-15

    In an effort to address the understanding of the origin of growth stress in thin films deposited under very energetic conditions, the authors investigated the stress state and microstructure of Mo thin films grown by ion beam sputtering (IBS) as well as the stress relaxation processes taking place during subsequent thermal annealing or ion irradiation. Different sets of samples were grown by varying the IBS deposition parameters, namely, the energy E{sub 0} and the flux j of the primary ion beam, the target-to-sputtering gas mass ratio M{sub 1}/M{sub 2} as well as film thickness. The strain-stress state was determined by x-ray diffraction using the sin{sup 2} {psi} method and data analyzed using an original stress model which enabled them to correlate information at macroscopic (in terms of stress) and microscopic (in terms of defect concentration) levels. Results indicate that these refractory metallic thin films are characterized by a high compressive growth stress (-2.6 to -3.8 GPa), resulting from the creation of a large concentration (up to {approx}1.4%) of point or cluster defects, due to the atomic peening mechanism. The M{sub 1}/M{sub 2} mass ratio enables tuning efficiently the mean deposited energy of the condensing atoms; thus, it appears to be the more relevant deposition parameter that allows modifying both the microstructure and the stress level in a significant way. The growth stress comes out to be highly unstable. It can be easily relaxed either by postgrowth thermal annealing or ion irradiation in the hundred keV range at very low dose [<0.1 dpa (displacement per atom)]. It is shown that thermal annealing induces deleterious effects such as oxidation of the film surface, decrease of the film density, and in some cases adhesion loss at the film/substrate interface, while ion irradiation allows controlling the stress level without generating any macroscopic damage.

  5. Measuring radiation damage dynamics by pulsed ion beam irradiation. 2015 Annual Progress Report for DOE/NE/NEET

    SciTech Connect

    Kucheyev, S. O.

    2016-03-07

    The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation processes in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 2, this project had the following two major milestones: (i) measurement of the temperature dependence of defect dynamics in SiC and (ii) the evaluation of the robustness of the pulsed beam method from studies of the defect generation rate. As we describe below, both of these milestones have been met.

  6. A positron beam study on vacancy formation in iron by ion beam irradiation at low temperature

    NASA Astrophysics Data System (ADS)

    Iwai, T.; Murakami, K.; Katano, Y.; Iwata, T.; Onitsuka, T.; Abe, H.

    2010-04-01

    This study intends to investigate cascade damage structure produced by energetic ion irradiation. Cascade damage structure is preserved at low temperature below stage I where interstitial atoms begin to migrate. Then positron beam is implanted to the irradiated surface as a vacancy probe to evaluate vacancy concentration remained in the irradiated specimens. By this method, defect production efficiency was evaluated for iron irradiated with proton and carbon ions. The defect production efficiency values indicate enhanced recombination for carbon irradiation due to primary knock-on atoms (PKA) with higher energies.

  7. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    SciTech Connect

    Offermann, Dustin T; Flippo, Kirk A; Gaillard, Sandrine A

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  8. Biaxial texturing of inorganic photovoltaic thin films using low energy ion beam irradiation during growth

    SciTech Connect

    Groves, James R; De Paula, Raymond F; Hayes, Garrett H; Li, Joel B; Hammond, Robert H; Salleo, Alberto; Clemens, Bruce M

    2010-05-07

    We describe our efforts to control the grain boundary alignment in polycrystalline thin films of silicon by using a biaxially textured template layer of CaF{sub 2} for photovoltaic device applications. We have chosen CaF{sub 2} as a candidate material due to its close lattice match with silicon and its suitability as an ion beam assisted deposition (mAD) material. We show that the CaF{sub 2} aligns biaxially at a thickness of {approx}10 nm and, with the addition of an epitaxial CaF{sub 2} layer, has an in-plane texture of {approx}15{sup o}. Deposition of a subsequent layer of Si aligns on the template layer with an in-plane texture of 10.8{sup o}. The additional improvement of in-plane texture is similar to the behavior observed in more fully characterized IBAD materials systems. A germanium buffer layer is used to assist in the epitaxial deposition of Si on CaF{sub 2} template layers and single crystal substrates. These experiments confirm that an mAD template can be used to biaxially orient polycrystalline Si.

  9. Carbon-ion beams induce production of an immune mediator protein, high mobility group box 1, at levels comparable with X-ray irradiation.

    PubMed

    Yoshimoto, Yuya; Oike, Takahiro; Okonogi, Noriyuki; Suzuki, Yoshiyuki; Ando, Ken; Sato, Hiro; Noda, Shin-ei; Isono, Mayu; Mimura, Kousaku; Kono, Koji; Nakano, Takashi

    2015-05-01

    X-ray radiotherapy activates tumor antigen-specific T-cell responses, and increases in the serum levels of high mobility group box 1 (HMGB1) induced by X-ray irradiation play a pivotal role in activating anti-tumor immunity. Here, we examined whether carbon-ion beams, as well as X-rays, can induce HMGB1 release from human cancer cell lines. The study examined five human cancer cell lines: TE2, KYSE70, A549, NCI-H460 and WiDr. The proportion of cells surviving X- or carbon-ion beam irradiation was assessed in a clonogenic assay. The D10, the dose at which 10% of cells survive, was calculated using a linear-quadratic model. HMGB1 levels in the culture supernatants were assessed by an ELISA. The D10 dose for X-rays in TE2, KYSE70, A549, NCI-H460 and WiDr cells was 2.1, 6.7, 8.0, 4.8 and 7.1 Gy, respectively, whereas that for carbon-ion beams was 0.9, 2.5, 2.7, 1.8 and 3.5 Gy, respectively. X-rays and carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of A549, NCI-H460 and WiDr cells at 72 h post-irradiation with a D10 dose. Furthermore, irradiation with X-rays or carbon-ion beams significantly increased HMGB1 levels in the culture supernatants of all five cell lines at 96 h post-irradiation. There was no significant difference in the amount of HMGB1 induced by X-rays and carbon-ion beams at any time-point (except at 96 h for NCI-H460 cells); thus we conclude that comparable levels of HMGB1 were detected after irradiation with iso-survival doses of X-rays and carbon-ion beams.

  10. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Numerical study on the thermo-stress of ZrO2 thermal barrier coatings by high-intensity pulsed ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Di; Liu, Chen; Zhu Xiao, Peng; Lei, Kai Ming

    2009-11-01

    This paper studies numerically the thermo-mechanical effects of ZrO2 thermal barrier coatings (TBCs) irradiated by a high-intensity pulsed ion beam in consideration of the surface structure. Taking the deposited energy of ion beams in TBCs as the source term in the thermal conduction equation, the distribution of temperature in TBCs was simulated. Then, based on the distribution, the evolution of thermal stress was calculated by the finite element method. The results show that tensile radial stress formed at the valley of TBC surfaces after irradiation by HIPIB. Therefore, if cracks happen, they must be at valleys instead of peaks. As for the stress waves, no matter whether through peak or valley position, tensile and compressive stresses are present alternately inside TBCs along the depth direction, and the strength of stress decreases with time.

  11. Surface pattern formation during MeV energy ion beam irradiation

    SciTech Connect

    Srivastava, S. K.; Nair, K. G. M.; Kannan, R. Kamala; Kamruddin, M.; Panigrahi, B. K.; Tyagi, A. K.

    2012-06-05

    Surface patterning during high energy heavy ion irradiation is a relatively recent observation. We report in this paper the results of a study on the formation of self organized ripple patterns on silica surface irradiated with MeV energy gold ions.

  12. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam.

    PubMed

    Agodi, C; Battistoni, G; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Domenico, A Di; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-09-21

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose-monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose-monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements carried out with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a poly-methyl methacrylate target. Charged secondary particles, produced at 90° with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight have been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time-of-flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover, a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploiting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with E(Prod)(kin) > 83 MeV and emitted at 90° with respect to the beam line is dN(P)/(dN(C)dΩ) (E(Prod)(kin) > 83 MeV, θ = 90°) = (2.69 ± 0.08(stat) ± 0.12(sys)) × 10⁻⁴ sr⁻¹.

  13. The effects of analyte mass and collision gases on ion beam formation in an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Larsen, Jessica J.; Edmund, Alisa J.; Farnsworth, Paul B.

    2016-11-01

    Planar laser induced fluorescence (PLIF) was used to evaluate the effect of matrix components on the formation and focusing of a Ba ion beam in a commercial inductively coupled plasma mass spectrometer. Cross sections of the ion beams were taken in the second vacuum stage, in front of the entrance to the mass analyzer. Under normal operating conditions, the addition of Pb shifted the position of the Ba ion beam to the right. PLIF was also used to evaluate the effect of a collision reaction interface (CRI) on Ca and Ba ion beams. A wider velocity distribution of ions and a decrease in overall intensity were observed for the CRI images. The fluorescence and mass spectrometer signals decreased with increased CRI flow rates. These effects were most obvious for Ca ions with He gas.

  14. Homogeneously aligned liquid crystal molecules on reformed poly(methyl methacrylate) via ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Jeong, Hae-Chang; Park, Hong-Gyu; Lee, Ju Hwan; Jang, Sang Bok; Oh, Byeong-Yun; Han, Jeong-Min; Seo, Dae-Shik

    2016-04-01

    We demonstrated uniform LC alignment using IB-irradiated poly(methyl methacrylate) (PMMA) as an alignment layer. We confirmed the topographical changes on PMMA caused by IB irradiation. Moreover, the wettability and chemical modification of the PMMA surface were investigated as functions of incidence angle. The results show that PMMA irradiated with IB at an incidence angle of 30° had a higher molecular polarity than PMMA irradiated with IB at other incidence angles, resulting in strong van der Waals interactions between the surface and LC molecules. The LC cells containing PMMA irradiated with IB at an incidence angle of 30° exhibited good thermal stability (180°) compared with LC cells containing conventional rubbing PI (150°). In addition, LC molecules on PMMA irradiated with IB at an incidence angle of 30° were observed to switch faster than those on conventional rubbing PI. Therefore, PMMA irradiated with IB under the optimal conditions may allow for PMMA to be applied in advanced LC devices as an alternative alignment layer.

  15. Degradation of HT9 under simultaneous ion beam irradiation and liquid metal corrosion

    NASA Astrophysics Data System (ADS)

    Frazer, D.; Qvist, S.; Parker, S.; Krumwiede, D. L.; Caro, M.; Tesmer, J.; Maloy, S. A.; Wang, Y. Q.; Hosemann, P.

    2016-10-01

    A potentially promising coolant/structural material pair for a liquid-metal-cooled fast reactors is lead bismuth eutectic (LBE) coolant with the ferritic/martensitic steel HT9. The challenge of deploying LBE, however, is the corrosive environment it creates for structural materials. This corrosion can be mitigated with precise oxygen content control in the LBE to allow for the growth of passive protective oxide layers on the surface of the steel. In this paper, results are reported from the Irradiation Corrosion Experiment II (ICE-II), which allowed the simultaneous irradiation of a sample while in contact with LBE. It was found that a characteristic multilayer structure with an outer Fe3O4 oxide and inner FeCr2O4 spinel was grown and the oxidation was significantly larger in the irradiated region when compared to the region that was only exposed to LBE corrosion. Possible mechanisms are discussed to help understand this irradiation enhanced corrosion behavior.

  16. Cohesive energy effects on the atomic transport induced by ion beam mixing

    NASA Astrophysics Data System (ADS)

    Chang, G. S.; Jung, S. M.; Song, J. H.; Kim, H. B.; Woo, J. J.; Byun, D. H.; Whang, C. N.

    1997-01-01

    Atomic transport in the radiation enhanced diffusion (RED) region has been studied from the shifts of a marker layer in ion beam mixed {Pd}/{Co} and {Pd}/{Au} bilayers. 80 keV Ar + with a dose of 1.5 × 10 16 ions/cm 2 were irradiated into the bilayers at temperature region from 90 K to 700 K. In the {Pd}/{Co} system, the atomic flux of Pd ( JPd) transported across the interface is nearly same with JCo in the thermal spike region, while JPd is always larger than JCo in the RED regio However, in the {Pd}/{Au} system, JPd is nearly same with JAu in both of the thermal spike and RED regions. We have developed a model to describe the atomic transport in the RED region, which predicts that the atom with small cohesive energy has more mobility than that with large cohesive energy.

  17. Dual and Triple Ion-Beam Irradiations of Fe, Fe(Cr) and Fe(Cr)-ODS Final Report: IAEA SMoRE CRP

    SciTech Connect

    Fluss, M J; Hsiung, L L; Marian, J

    2011-11-20

    Structures of nanoparticles in Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y2O3 (K3) and Fe-20Cr-4.5Al-0.34Ti-0.5Y2O3 (MA956) oxide dispersion strengthened (ODS) ferritic steels produced by mechanical alloying (MA) and followed by hot extrusion have been studied using high-resolution transmission electron microscopy (HRTEM) techniques to gain insight about the formation mechanism of nanoparticles in MA/ODS steels. The observations of Y-Al-O complex-oxide nanoparticles in both ODS steels imply that decomposition of Y2O3 in association with internal oxidation of Al occurred during mechanical alloying. While the majority of oxide nanoparticles formed in both steels is Y4Al2O9, a few oxide particles of YAlO3 are also occasionally observed. These results reveal that Ti (0.3 wt %) plays an insignificant role in forming oxide nanoparticles in the presence of Al (4.5 wt %). HRTEM observations of crystalline nanoparticles larger than {approx}2 nm and amorphous or disordered cluster domains smaller than {approx}2 nm provide an insight into the formation mechanism of oxide nanoparticle in MA/ODS steels, which we believe from our observations involves a solid-state amorphous precursor followed by recrystallization. Dual ion-beam irradiations using He{sup +} + Fe{sup +8} ions were employed to gain more detailed insight about the role of nanoparticles in suppressing radiation-induced swelling. This is elaborated through TEM examinations of cavity distributions in ion-irradiated Fe-14Cr and K3-ODS ferritic steels. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoscale oxide particles and clusters in ion-irradiated K3-ODS are presented. Finally, we describe the results from triple ion-beam irradiations using H{sup +} + He{sup +} + Fe{sup +8} ions to emulate fusion first wall radiation effects. Preliminary work is reported that confirms the existence of significant hydrogen synergistic effects described earlier by Tanaka et al., for Fe(Cr) and by Wakai et al

  18. Effect of reactive ion beam etching on the photoluminescence of CdTe epitaxial layers

    SciTech Connect

    Martinez-Pastor, J.; Fuster, D.; Abellan, M.; Anguita, J.; Sochinskii, N. V.

    2008-03-01

    We demonstrated the effect of reactive ion beam etching (RIBE) process on the PL properties of CdTe/sapphire metal organic vapor phase epitaxy layers. At optimum conditions, the RIBE attack does not make significant morphological changes but it results in an increase of the concentration of acceptor impurities. This was revealed by an increase of the overall photoluminescence (PL) intensity and, simultaneously, a decrease of the PL decay time, more important on the low energy side of PL spectrum due to the recombination of carriers in acceptor pairs.

  19. Focused ion beam imaging of laser ablation sub-surface effects on layered materials

    NASA Astrophysics Data System (ADS)

    Téllez, Helena; Vadillo, José M.; Chater, Richard J.; Laserna, J. Javier; McPhail, David S.

    2008-12-01

    The focussed ion beam (FIB) represents a useful and versatile tool to allow visualization of sub-surface features related to the thermal effects of laser-target interaction with high spatial resolution. The possibility of performing a contamination-free milling process on specific sample locations provides significant advantage over conventional metallurgical procedures involving cutting and polishing. In particular, the direct visualization of the thermal features occurring at fluences below the phase explosion allows a deeper understanding of the extension of the laser heat-affected zone, the sub-surface alloying processes and additional features related to the photo-thermal mechanism of laser ablation.

  20. Effects of polycrystallinity in nano patterning by ion-beam sputtering

    SciTech Connect

    Yoon, Sun Mi; Kim, J.-S.; Yoon, D.; Cheong, H.; Kim, Y.; Lee, H. H.

    2014-07-14

    Employing graphites with distinctly different mean grain sizes, we study the effects of polycrystallinity on the pattern formation by ion-beam sputtering. The grains influence the growth of the ripples in a highly anisotropic fashion; both the mean uninterrupted ripple length along the ridges and the surface width depend on the mean size of the grains, which is attributed to the large sputter yield at the grain boundary compared with that on the terrace. In contrast, the ripple wavelength does not depend on the mean size of the grains, indicating that the mass transport across the grain boundaries should efficiently proceed by both thermal diffusion and ion-induced processes.

  1. Engineering Chemically Active Defects in Monolayer MoS2 Transistors via Ion-Beam Irradiation and Their Healing via Vapor Deposition of Alkanethiols.

    PubMed

    Bertolazzi, Simone; Bonacchi, Sara; Nan, Guangjun; Pershin, Anton; Beljonne, David; Samorì, Paolo

    2017-03-01

    Irradiation of 2D sheets of transition metal dichalcogenides with ion beams has emerged as an effective approach to engineer chemically active defects in 2D materials. In this context, argon-ion bombardment has been utilized to introduce sulfur vacancies in monolayer molybdenum disulfide (MoS2 ). However, a detailed understanding of the effects of generated defects on the functional properties of 2D MoS2 is still lacking. In this work, the correlation between critical electronic device parameters and the density of sulfur vacancies is systematically investigated through the fabrication and characterization of back-gated monolayer MoS2 field-effect transistors (FETs) exposed to a variable fluence of low-energy argon ions. The electrical properties of pristine and ion-irradiated FETs can be largely improved/recovered by exposing the devices to vapors of short linear thiolated molecules. Such a solvent-free chemical treatment-carried out strictly under inert atmosphere-rules out secondary healing effects induced by oxygen or oxygen-containing molecules. The results provide a guideline to design monolayer MoS2 optoelectronic devices with a controlled density of sulfur vacancies, which can be further exploited to introduce ad hoc molecular functionalities by means of thiol chemistry approaches.

  2. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    NASA Astrophysics Data System (ADS)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  3. Polarity-inverted ScAlN film growth by ion beam irradiation and application to overtone acoustic wave (000-1)/(0001) film resonators

    SciTech Connect

    Suzuki, Masashi; Yanagitani, Takahiko; Odagawa, Hiroyuki

    2014-04-28

    Polarity inversion in wurtzite film is generally achieved by the epitaxial growth on a specific under-layer. We demonstrate polarity inversion of c-axis oriented ScAlN films by substrate ion beam irradiation without using buffer layer. Substrate ion beam irradiation was induced by either sputtering a small amount of oxide (as a negative ion source) onto the cathode or by applying a RF bias to the substrate. Polarity of the films was determined by a press test and nonlinear dielectric measurement. Second overtone thickness extensional mode acoustic resonance and suppression of fundamental mode resonance, indicating complete polarity inversion, were clearly observed in bilayer highly oriented (000-1)/(0001) ScAlN film.

  4. Development of ion beams for space effects testing using an ECR ion source

    SciTech Connect

    Benitez, Janilee; Hodgkinson, Adrian; Johnson, Mike; Loew, Tim; Lyneis, Claude; Phair, Larry

    2013-04-19

    At LBNL's 88-Inch Cyclotron and Berkeley Accelerator Space Effects (BASE) Facility, a range of ion beams at energies from 1 to 55 MeV/nucleon are used for radiation space effects testing. By bombarding a component with ion beams the radiation component of the space environment can be simulated and single event effects (SEEs) determined. The performance of electronic components used in space flight and high altitude aircraft can then be evaluated. The 88- Inch Cyclotron is coupled to the three electron cyclotron resonance ion sources (ECR, AECR-U, VENUS). These ion sources provide a variety of ion species, ranging from protons to heavy ions such as bismuth, for these tests. In particular the ion sources have been developed to provide {sup c}ocktails{sup ,} a mixture of ions of similar mass-to-charge ratio, which can be simultaneously injected into the cyclotron, but selectively extracted from it. The ions differ in both their linear energy transfer (LET) deposited to the part and in their penetration depth into the tested part. The current heavy ion cocktails available are the 4.5, 10, 16, and 30 MeV per nucleon.

  5. Flux effect on the ion-beam nitriding of austenitic stainless-steel AISI 304L

    SciTech Connect

    Abrasonis, G.; Riviere, J.P.; Templier, C.; Pranevicius, L.; Barradas, N.P.

    2005-06-15

    The effect of flux and Ar pretreatment during ion-beam nitriding of austenitic stainless steel is investigated. The ion energy and temperature were 1.2 keV and 400 deg. C, respectively, the ion current densities were 0.5, 0.67, and 0.83 mA cm{sup -2}. The nitrogen distribution profiles were measured using nuclear reaction analysis. The obtained nitrogen distribution profiles were analyzed by the means of the nitrided layer thickness evolution due to sputtering and diffusion and the model of trapping-detrapping. Both approaches could fit well the experimental results, however, different diffusion coefficients have to be assumed for each current density. In addition, the diffusion coefficients are higher for higher current densities. On the other hand, it is shown that the pretreatment with Ar-ion beam at nitriding temperatures produces only a thermal effect without any other influence on the following nitrogen diffusion. The results are discussed in relation with surface and temperature effects and atomic transport mechanisms.

  6. Development of an irradiation method with lateral modulation of SOBP width using a cone-type filter for carbon ion beams.

    PubMed

    Ishizaki, Azusa; Ishii, Keizo; Kanematsu, Nobuyuki; Kanai, Tatsuaki; Yonai, Shunsuke; Kase, Yuki; Takei, Yuka; Komori, Masataka

    2009-06-01

    Passive irradiation methods deliver an extra dose to normal tissues upstream of the target tumor, while in dynamic irradiation methods, interplay effects between dynamic beam delivery and target motion induced by breathing or respiration distort the dose distributions. To solve the problems of those two irradiation methods, the authors have developed a new method that laterally modulates the spread-out Bragg peak (SOBP) width. By reducing scanning in the depth direction, they expect to reduce the interplay effects. They have examined this new irradiation method experimentally. In this system, they used a cone-type filter that consisted of 400 cones in a grid of 20 cones by 20 cones. There were five kinds of cones with different SOBP widths arranged on the frame two dimensionally to realize lateral SOBP modulation. To reduce the number of steps of cones, they used a wheel-type filter to make minipeaks. The scanning intensity was modulated for each SOBP width with a pair of scanning magnets. In this experiment, a stepwise dose distribution and spherical dose distribution of 60 mm in diameter were formed. The nonflatness of the stepwise dose distribution was 5.7% and that of the spherical dose distribution was 3.8%. A 2 mm misalignment of the cone-type filter resulted in a nonflatness of more than 5%. Lateral SOBP modulation with a cone-type filter and a scanned carbon ion beam successfully formed conformal dose distribution with nonflatness of 3.8% for the spherical case. The cone-type filter had to be set to within 1 mm accuracy to maintain nonflatness within 5%. This method will be useful to treat targets moving during breathing and targets in proximity to important organs.

  7. Development of an irradiation method with lateral modulation of SOBP width using a cone-type filter for carbon ion beams

    SciTech Connect

    Ishizaki, Azusa; Ishii, Keizo; Kanematsu, Nobuyuki; Kanai, Tatsuaki; Yonai, Shunsuke; Kase, Yuki; Takei, Yuka; Komori, Masataka

    2009-06-15

    Passive irradiation methods deliver an extra dose to normal tissues upstream of the target tumor, while in dynamic irradiation methods, interplay effects between dynamic beam delivery and target motion induced by breathing or respiration distort the dose distributions. To solve the problems of those two irradiation methods, the authors have developed a new method that laterally modulates the spread-out Bragg peak (SOBP) width. By reducing scanning in the depth direction, they expect to reduce the interplay effects. They have examined this new irradiation method experimentally. In this system, they used a cone-type filter that consisted of 400 cones in a grid of 20 cones by 20 cones. There were five kinds of cones with different SOBP widths arranged on the frame two dimensionally to realize lateral SOBP modulation. To reduce the number of steps of cones, they used a wheel-type filter to make minipeaks. The scanning intensity was modulated for each SOBP width with a pair of scanning magnets. In this experiment, a stepwise dose distribution and spherical dose distribution of 60 mm in diameter were formed. The nonflatness of the stepwise dose distribution was 5.7% and that of the spherical dose distribution was 3.8%. A 2 mm misalignment of the cone-type filter resulted in a nonflatness of more than 5%. Lateral SOBP modulation with a cone-type filter and a scanned carbon ion beam successfully formed conformal dose distribution with nonflatness of 3.8% for the spherical case. The cone-type filter had to be set to within 1 mm accuracy to maintain nonflatness within 5%. This method will be useful to treat targets moving during breathing and targets in proximity to important organs.

  8. Effect of carbon on ion beam mixing of Fe-Ti bilayers

    SciTech Connect

    Hirvonen, J.P.; Nastasi, M.; Lappalainen, R.; Sickafus, K.; Helsinki Univ. . Dept. of Physics; Los Alamos National Lab., NM )

    1989-01-01

    The influence of implanted carbon on ion beam mixing of a Fe-Ti system was investigated. Carbon was introduced into bilayer samples by implanting {sup 13}C isotopes. The implantation energies were selected to set the mean range of carbon ions in either the iron or titanium layer. The effect of implanted carbon on 400 keV Ar ion mixing in the temperature range from 0 to 300{degree}C was studied using Rutherford backscattering spectroscopy at the energy of 5 MeV. Changes in carbon concentration profiles were probed utilizing the resonance of the nuclear reaction {sup 13}C(p,{gamma}){sup 14}N at the proton energy of 1.748 MeV. The measurements revealed that mixing was not affected by carbon implanted into the titanium layer. However, carbon in the iron layer remarkably retarded mixing at all temperatures investigated. Significant changes in carbon depth distributions were observed only when the sample with implanted carbon in the iron layer was mixed at 300{degree}C. These results are explained in terms of the enhanced mobility of carbon in an evaporated iron film which allows segregation to the interface. At low temperatures, however, vacancy-carbon interaction in iron may have a contribution to the retarded ion beam mixing. 19 refs., 3 figs.

  9. Introduction to Ion Beam Therapy

    SciTech Connect

    Martisikova, Maria

    2010-01-05

    Presently, ion beam therapy reaches an increasing interest within the field of radiation therapy, which is caused by the promising clinical results obtained in the last decades. Ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue in comparison to the standard therapy using high energy photons. Heavy ions, like carbon, offer in addition increased biological effectiveness, which makes them suitable for treatment of radioresistant tumors. This contribution gives an overview over the physical and biological properties of ion beams. Common fundamental principles of ion beam therapy are summarized and differences between standard therapy with high energy photons, proton and carbon ion therapy are discussed. The technologies used for the beam production and delivery are introduced, with emphasis to the differences between passive and active beam delivery systems. The last part concentrates on the quality assurance in ion therapy. Specialties of dosimetry in medical ion beams are discussed.

  10. Electron cloud effects on an intense ion beam in a four solenoid lattice

    SciTech Connect

    Department of Nuclear Engineering, University of California at Berkeley,; 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, USA.; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA-94720, USA.; University of Maryland, College Park, MD 20742-3511, USA.; Lawrence Liveremore National Laboratory, Livermore, California 94550, USA.; Voss Scientific, Albuquerque, NM 87108, USA.; Coleman, Josh; Coleman, J.E.; Seidl, P.A.; Henestroza, E.; Roy, P.K.; Vay, J.L.; Haber, I.; Molvik, A.W.; Sharp, W.M.; Welch, D.R.

    2007-07-01

    The Solenoid Transport Experiment (STX) at LBNL successfully demonstrated the transport of a space-charge dominated ion beam in a two-solenoid lattice. Initial experiments showed a strong dependence of electron cloud effects on solenoid field strength. A current-reducing aperture, two solenoids and in-bore diagnostics were added to the two-solenoid lattice in order to study electron cloud effects more closely. Experiments were conducted with a 10 {micro}s, singly charged potassium ion bunch at an ion energy of 0.3 MeV and currents of 26 mA and 45 mA. A qualitative comparison of experimental and calculated results are presented, including a comparison of the effects of manipulating electrons on the beam dynamics, quantifying beam-induced gas desorption, ionization, and electron effects.

  11. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    NASA Astrophysics Data System (ADS)

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  12. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma.

    PubMed

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  13. Ion beam modification of aromatic polymers

    NASA Astrophysics Data System (ADS)

    Shukushima, Satoshi; Nishikawa, Shinya; Matsumoto, Yasuyo; Hibino, Yutaka

    1993-06-01

    We studied the optical, mechanical and thermal properties of aromatic polymer films which had been irradiated with 1 MeV H +, H 2+ and He + ions. The examined aromatic polymers were polyetherether ketone (PEEK), polyetherimide (PEI), polycther sulfon (PES), polysulfon (PSF), and polyphenylene sulfide (PPS). The optical densities at 300 nm of PES greatly increased after the irradiation. The optical densities at 400 nm of all the examined polymer linearly increased with the irradiation dose. Elongations of all the polymers at room temperature were reduced after irradiation. The PEEK film which had been irradiated with 1 MeV H + was not deformed above the melting point. This demonstrates that cross-linking occurs in PEEK films by ion beam irradiation. As for the effects, depending on the mass of the irradiated ions, it was found that the ions with a high mass induced larger effects on the arematic polymers for the same absorption energy.

  14. Preparation of ion-track membranes of poly( p-phenylene terephthalamide): Control of pore shape by irradiation with different ion beams

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuyuki; Yamaki, Tetsuya; Koshikawa, Hiroshi; Asano, Masaharu; Voss, Kay-Obbe; Neumann, Reinhard; Yoshida, Masaru

    2007-07-01

    The preparation of ion-track membranes of thermally stable poly( p-phenylene terephthalamide) (PPTA) was performed by ion beam irradiation followed by chemical etching with a sodium hypochlorite solution. Cylindrical pores were observed in the membrane irradiated with 197Au and 238U ions at an energy of 11.1 MeV/n. In contrast, funnel shape pores appeared in the membrane irradiated with 84Kr, 102Ru and 129Xe ion at energies of 6.2, 3.6 and 3.5 MeV/n, respectively. The 197Au and 238U ion irradiation was found to exhibit more than four times larger sensitivity to the track etching under the same etching conditions. Consequently, the pore shape can be controlled by the masses and energies of the irradiated ions, in close relation to the etching sensitivity of the track.

  15. Four-Dimensional Lung Treatment Planning in Layer-Stacking Carbon Ion Beam Treatment: Comparison of Layer-Stacking and Conventional Ungated/Gated Irradiation

    SciTech Connect

    Mori, Shinichiro; Kanematsu, Nobuyuki; Asakura, Hiroshi; Sharp, Gregory C.; Kumagai, Motoki; Dobashi, Suguru; Nakajima, Mio; Yamamoto, Naoyoshi; Kandatsu, Susumu; Baba, Masayuki

    2011-06-01

    Purpose: We compared four-dimensional (4D) layer-stacking and conventional carbon ion beam distribution in the treatment of lung cancer between ungated and gated respiratory strategies using 4DCT data sets. Methods and Materials: Twenty lung patients underwent 4DCT imaging under free-breathing conditions. Using planning target volumes (PTVs) at respective respiratory phases, two types of compensating bolus were designed, a full single respiratory cycle for the ungated strategy and an approximately 30% duty cycle for the exhalation-gated strategy. Beams were delivered to the PTVs for the ungated and gated strategies, PTV(ungated) and PTV(gated), respectively, which were calculated by combining the respective PTV(Tn)s by layer-stacking and conventional irradiation. Carbon ion beam dose distribution was calculated as a function of respiratory phase by applying a compensating bolus to 4DCT. Accumulated dose distributions were calculated by applying deformable registration. Results: With the ungated strategy, accumulated dose distributions were satisfactorily provided to the PTV, with D95 values for layer-stacking and conventional irradiation of 94.0% and 96.2%, respectively. V20 for the lung and Dmax for the spinal cord were lower with layer-stacking than with conventional irradiation, whereas Dmax for the skin (14.1 GyE) was significantly lower (21.9 GyE). In addition, dose conformation to the GTV/PTV with layer-stacking irradiation was better with the gated than with the ungated strategy. Conclusions: Gated layer-stacking irradiation allows the delivery of a carbon ion beam to a moving target without significant degradation of dose conformity or the development of hot spots.

  16. Deposition of PTFE thin films by ion beam sputtering and a study of the ion bombardment effect

    NASA Astrophysics Data System (ADS)

    He, J. L.; Li, W. Z.; Wang, L. D.; Wang, J.; Li, H. D.

    1998-02-01

    Ion beam sputtering technique was employed to prepare thin films of Polytetrafluroethylene (PTFE). Simultaneous ion beam bombardment during film growth was also conducted in order to study the bombardment effects. Infrared absorption (IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis was used to evaluate the material's integrity. It was found that PTFE thin films could be grown at room temperature by direct sputtering of a PTFE target. The film's composition and structure were shown to be dependent on the sputtering energy. Films deposited by single sputtering at higher energy (˜1500 eV) were structurally quite similar to the original PTFE material. Simultaneous ion beam bombarding during film growth caused defluorination and structural changes. Mechanism for sputtering deposition of such a polymeric material is also discussed.

  17. Ion beam sputter etching of orthopedic implanted alloy MP35N and resulting effects on fatigue

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Christopher, M.; Bahnuik, E.; Wang, S.

    1981-01-01

    The effects of two types of argon ion sputter etched surface structures on the tensile stress fatigue properties of orthopedic implant alloy MP35N were investigated. One surface structure was a natural texture resulting from direct bombardment by 1 keV argon ions. The other structure was a pattern of square holes milled into the surface by a 1 keV argon ion beam through a Ni screen mask. The etched surfaces were subjected to tensile stress only in fatigue tests designed to simulate the cyclic load conditions experienced by the stems of artificial hip joint implants. Both types of sputter etched surface structures were found to reduce the fatigue strength below that of smooth surface MP35N.

  18. Electron Cloud Effects in Intense, Ion Beam Linacs Theory and Experimental Planning for HIF

    SciTech Connect

    Molvik, A W; Cohen, R H; Lund, S M; Bieniosek, F M; Lee, E P; Prost, L R; Seidl, P A; Vay, P-A

    2002-05-23

    Heavy-ion accelerators for heavy-ion inertial fusion energy (HIF) will operate at high aperture-fill factors with high beam current and long durations. (Injected currents of order 1 A and 20 {micro}s at a few MeV for each of {approx}100 beams, will be compressed to the order of 100 A and 0.2 {micro}s, reaching GeV energies in a power plant driver.) This will be accompanied by beam ions impacting walls, liberating gas molecules and secondary electrons. Without special preparation, the {approx}10% electron population predicted for driver-scale experiments will affect beam transport; but wall conditioning and other mitigation techniques should result in substantial reduction. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the {approx}4 kV ion beam potential. Trapped electrons can modify the beam space charge, vacuum pressure, ion transport dynamics, and halo generation, and can potentially cause ion-electron instabilities. Within quadrupole (and dipole) magnets, the longitudinal electron velocity is limited to drift velocities (E x B and {del}B) and the electron density can vary azimuthally, radially, and longitudinally. These variations can cause centroid misalignment, emittance growth and halo growth. Diagnostics are being developed to measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles. We will also measure the depth of trapping of electrons, their axial and radial transport, and the effects of electrons on the ion beam.

  19. Fabrication of a TEM sample of ion-irradiated material using focused ion beam microprocessing and low-energy Ar ion milling.

    PubMed

    Jin, Hyung-Ha; Shin, Chansun; Kwon, Junhyun

    2010-01-01

    Cross-section-view TEM samples of ion-irradiated material are successfully fabricated using a focused ion beam (FIB) system and low-energy Ar ion milling. Ga ion-induced damages in FIB processing are reduced remarkably by the means of low-energy Ar ion milling. There are optimized ion milling conditions for the reduction and removal of the secondary artifacts such as defects and ripples. Incident angles and accelerated voltages are especially more important factors on the preservation of a clean surface far from secondary defects and surface roughing due to Ga and Ar ion bombardment.

  20. Study of the evolution of the atomic composition of thin NbN films under irradiation with mixed ion beams by methods of electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Dement'eva, M. M.; Prikhod'ko, K. E.; Gurovich, B. A.; Kutuzov, L. V.; Komarov, D. A.

    2016-11-01

    The variation in the atomic composition of ultrathin NbN films under irradiation by mixed ion beams to a doze of 4 dpa (for nitrogen) is experimentally studied by methods of electron energy loss spectroscopy with a transmission electron microscope in the transmission scan mode on cross-cut samples. The behavior of the substitution of nitrogen atoms by oxygen atoms has been established; it is characterized by changing the composition of the conducting part of the film from NbN to NbNO.

  1. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  2. Influence of Ion Beam Irradiation on Structural, Magnetic and Electrical Characteristics of Ho-DOPED AlN Thin Films

    NASA Astrophysics Data System (ADS)

    Hassan, Najam Ul; Hussain, Zahid; Naeem, M.; Shah, Ishfaq Ahmad; Husnain, G.; Ahmad, Ishaq; Ullah, Zaka

    Holmium (Ho)-doped AlN thin films of thicknesses 60, 90 and 300 nm were grown in pure nitrogen atmosphere via RF magnetron sputtering. The deposited thin films were irradiated with protons at a dose of 5×1014 ions/cm2 and the effects of irradiation on structural, magnetic and electrical characteristics of thin films were investigated. Rutherford backscattering spectroscopy (RBS) confirmed the presence of Al, N and Ho in prepared samples. X-ray diffraction analysis showed that crystallinity of the thin films was enhanced after irradiation and thicker films were more crystalline. Atomic force microscopy (AFM) revealed that the surface roughness and porosity of the thin films were increased after irradiation. Magnetic measurements showed that diamagnetic AlN:Ho thin films can be transformed into paramagnetic and ferromagnetic ones via suitable irradiation. The increase in carrier concentrations after irradiation was responsible for tuning the electrical and magnetic characteristics of thin films for applications in various high voltage microelectronic and magnetic devices.

  3. Effects of focused ion beam milling on austenite stability in ferrous alloys

    SciTech Connect

    Knipling, K.E.; Rowenhorst, D.J.; Fonda, R.W.; Spanos, G.

    2010-01-15

    The susceptibility of fcc austenite to transform to bcc during focused ion beam milling was studied in three commercial stainless steels. The alloys investigated, in order of increasing austenite stability, were: (i) a model maraging steel, Sandvik 1RK91; (ii) an AISI 304 austenitic stainless steel; and (iii) AL-6XN, a super-austenitic stainless steel. Small trenches were milled across multiple austenite grains in each alloy using a 30 kV Ga{sup +} ion beam at normal incidence to the specimen surface. The ion beam dose was controlled by varying the trench depth and the beam current. The factors influencing the transformation of fcc austenite to bcc (listed in order of decreasing influence) were found to be: (i) alloy composition (i.e., austenite stability), (ii) ion beam dose (or trench depth), and (iii) crystallographic orientation of the austenite grains. The ion beam current had a negligible influence on the FIB-induced transformation of austenite in these alloys.

  4. Simulation of ion beam sputtering with SDTrimSP, TRIDYN and SRIM

    NASA Astrophysics Data System (ADS)

    Hofsäss, H.; Zhang, K.; Mutzke, A.

    2014-08-01

    A quantitative simulation of ion beam sputtering and related collision cascade effects is essential for applications of ion beam irradiation in thin film deposition, surface treatment and sculpting with focused ion beams, ion beam smoothing of surfaces and ion-induced nanopattern formation. The understanding of fundamental ion-solid interaction processes relevant for nanostructure formation, ion-induced mass redistribution, sputter yield amplification, ion beam mixing and dynamic compositional changes requires reliable simulations of ion-solid interaction processes in particular at low ion energies. In this contribution we discuss the possibilities, the key benefits and the limitations of three popular binary collision Monte Carlo simulation programs (SDTrimSP, TRIDYN and SRIM). The focus will be set to the calculation of angle dependent sputter yields, angular distribution of sputtered particles, sputter yields for compound materials, sputter yield amplification effects, as well as the extraction of parameters relevant for modeling ion-induced surface pattern formation from vacancy and recoil atom distributions.

  5. Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

    PubMed Central

    Chakravadhanula, Venkata Sai Kiran; Mishra, Yogendra Kumar; Kotnur, Venkata Girish; Avasthi, Devesh Kumar; Strunskus, Thomas; Zaporotchenko, Vladimir; Fink, Dietmar; Kienle, Lorenz

    2014-01-01

    Summary The development of new fabrication techniques of plasmonic nanocomposites with specific properties is an ongoing issue in the plasmonic and nanophotonics community. In this paper we report detailed investigations on the modifications of the microstructural and plasmonic properties of metal–titania nanocomposite films induced by swift heavy ions. Au–TiO2 and Ag–TiO2 nanocomposite thin films with varying metal volume fractions were deposited by co-sputtering and were subsequently irradiated by 100 MeV Ag8+ ions at various ion fluences. The morphology of these nanocomposite thin films before and after ion beam irradiation has been investigated in detail by transmission electron microscopy studies, which showed interesting changes in the titania matrix. Additionally, interesting modifications in the plasmonic absorption behavior for both Au–TiO2 and Ag–TiO2 nanocomposites were observed, which have been discussed in terms of ion beam induced growth of nanoparticles and structural modifications in the titania matrix. PMID:25247124

  6. Ion Beam Modification of Materials

    SciTech Connect

    Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

    2005-10-10

    This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

  7. Plasma effects of active ion beam injections in the ionosphere at rocket altitudes

    NASA Technical Reports Server (NTRS)

    Arnoldy, R. L.; Cahill, L. J., Jr.; Kintner, P. M.; Moore, T. E.; Pollock, C. J.

    1992-01-01

    Data from ARCS rocket ion beam injection experiments are primarily discussed. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes.

  8. Effect of radial plasma transport at the magnetic throat on axial ion beam formation

    NASA Astrophysics Data System (ADS)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2016-08-01

    Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high field mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.

  9. Effective removal of Ga residue from focused ion beam using a plasma cleaner.

    PubMed

    Ko, Dong-Su; Park, Young Min; Kim, Sung-Dae; Kim, Young-Woon

    2007-01-01

    Samples prepared using the focused ion beam (FIB) inevitably contain the surface damage induced by energetic Ga+ ions. An effective method of removing the surface damage is demonstrated using a plasma cleaner, a device which is widely used to minimize the surface contamination in scanning transmission electron microscopy (STEM). Surface bombardment with low-energy Ar+ ions was induced by biasing the sample immersed in the plasma source, so as to etch off the surface materials. The etch rates of SiO2, measured with a bias voltage of 100-300 V, were found to vary linearly with both the time and bias and were able to be controlled from 1.4 to 9 nm/min. The removal of the Ga residue was confirmed using energy dispersive spectroscopy (EDS) after the plasma processing of the FIB-prepared sample. When the FIB-prepared sample was processed via plasma etching for 10 min with a bias of 150 V, the surface Ga damage was completely removed.

  10. Pulsed-ion-beam nitriding and smoothing of titanium surface in a vacuum

    SciTech Connect

    Zhu, X.P.; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi; Lei, M.K.

    2005-08-29

    Both nitriding and smoothing of titanium have been achieved under irradiation of intense pulsed ion beam in a vacuum of 2x10{sup -2} Pa. Applying a screening method, we find that medium ion-beam intensity and multi-shot irradiation are effective for the processing, where repetitive surface melting with limited ablation favored Ti nitride formation as well as surface smoothing. The present results demonstrate that ambient gas atoms/molecules can be efficiently incorporated in metal matrices to form compounds under the ion-beam irradiation. The finding is of great significance for extending application scope of the ion-beam technique in materials research and processing, combined with the recent success in introducing ambient gas into the processing chamber.

  11. Vertically aligned liquid crystals on a {gamma}-Al{sub 2}O{sub 3} alignment film using ion-beam irradiation

    SciTech Connect

    Park, Hong-Gyu; Kim, Young-Hwan; Oh, Byeong-Yun; Lee, Won-Kyu; Kim, Byoung-Yong; Seo, Dae-Shik; Hwang, Jeong-Yeon

    2008-12-08

    Using ion-beam (IB) irradiation, liquid crystals (LCs) were vertically aligned (VA) on a {gamma}-Al{sub 2}O{sub 3} alignment film. Atomic-layer deposition was used to orient the LCs on high-quality {gamma}-Al{sub 2}O{sub 3} alignment films. The LC molecule orientation indicates the vertical direction of the atomic-layer-deposited {gamma}-Al{sub 2}O{sub 3} alignment films. X-ray photoelectron spectroscopy showed that IB irradiation changed the chemical structure, shifting the Al-O binding energy and altering the Al-O bonding intensity. The low-voltage transmittance characteristics of the VA LC displays on the {gamma}-Al{sub 2}O{sub 3} alignment films were also measured, showing reduced voltage and power requirements.

  12. Effectiveness of respiratory-gated radiotherapy with audio-visual biofeedback for synchrotron-based scanned heavy-ion beam delivery

    NASA Astrophysics Data System (ADS)

    He, Pengbo; Li, Qiang; Zhao, Ting; Liu, Xinguo; Dai, Zhongying; Ma, Yuanyuan

    2016-12-01

    A synchrotron-based heavy-ion accelerator operates in pulse mode at a low repetition rate that is comparable to a patient’s breathing rate. To overcome inefficiencies and interplay effects between the residual motion of the target and the scanned heavy-ion beam delivery process for conventional free breathing (FB)-based gating therapy, a novel respiratory guidance method was developed to help patients synchronize their breathing patterns with the synchrotron excitation patterns by performing short breath holds with the aid of personalized audio-visual biofeedback (BFB) system. The purpose of this study was to evaluate the treatment precision, efficiency and reproducibility of the respiratory guidance method in scanned heavy-ion beam delivery mode. Using 96 breathing traces from eight healthy volunteers who were asked to breathe freely and guided to perform short breath holds with the aid of BFB, a series of dedicated four-dimensional dose calculations (4DDC) were performed on a geometric model which was developed assuming a linear relationship between external surrogate and internal tumor motions. The outcome of the 4DDCs was quantified in terms of the treatment time, dose-volume histograms (DVH) and dose homogeneity index. Our results show that with the respiratory guidance method the treatment efficiency increased by a factor of 2.23-3.94 compared with FB gating, depending on the duty cycle settings. The magnitude of dose inhomogeneity for the respiratory guidance methods was 7.5 times less than that of the non-gated irradiation, and good reproducibility of breathing guidance among different fractions was achieved. Thus, our study indicates that the respiratory guidance method not only improved the overall treatment efficiency of respiratory-gated scanned heavy-ion beam delivery, but also had the advantages of lower dose uncertainty and better reproducibility among fractions.

  13. Synergistic effect of heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin and X-rays, but not carbon-ion beams, on lethality in human oral squamous cell carcinoma cells.

    PubMed

    Musha, Atsushi; Yoshida, Yukari; Takahashi, Takeo; Ando, Koichi; Funayama, Tomoo; Kobayashi, Yasuhiko; Negishi, Akihide; Yokoo, Satoshi; Nakano, Takashi

    2012-07-01

    The purpose of this study is to clarify the effect of a heat shock protein 90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in combination with X-rays or carbon-ion beams on cell killing in human oral squamous cell carcinoma LMF4 cells. Cell survival was measured by colony formation assay. Cell-cycle distribution was analyzed by flow cytometry. Expression of DNA repair-related proteins was investigated by western blotting. The results showed 17-AAG to have synergistic effects on cell lethality with X-rays, but not with carbon-ion beams. The 17-AAG decreased G(2)/M arrest induced by X-rays, but not by carbon-ion beams. Both X-ray and carbon-ion irradiation up-regulated expression of non-homologous end-joining-associated proteins, Ku70 and Ku80, but 17-AAG inhibited only X-ray-induced up-regulation of these proteins. These results show that 17-AAG with X-rays releases G(2)/M phase arrest; cells carrying misrepaired DNA damage then move on to the G(1) phase. We demonstrate, for the first time, that the radiosensitization effect of 17-AAG is not seen with carbon-ion beams because 17-AAG does not affect these changes.

  14. Effects of low-fluence swift iodine ion bombardment on the crystallization of ion-beam-synthesized silicon carbide

    NASA Astrophysics Data System (ADS)

    Intarasiri, S.; Yu, L. D.; Singkarat, S.; Hallén, A.; Lu, J.; Ottosson, M.; Jensen, J.; Possnert, G.

    2007-04-01

    Ion beam synthesis using high-fluence carbon ion implantation in silicon in combination with subsequent or in situ thermal annealing has been shown to be able to form nanocrystalline cubic SiC (3C-SiC) layers in silicon. In this study, a silicon carbide layer was synthesized by 40-keV C12+ implantation of a p-type (100) Si wafer at a fluence of 6.5×1017 ions/cm2 at an elevated temperature. The existence of the implanted carbon in Si substrate was investigated by time-of-flight energy elastic recoil detection analysis. The SiC layer was subsequently irradiated by 10-30 MeV I127 ions to a very low fluence of 1012 ions/cm2 at temperatures from 80 to 800 °C to study the effect on the crystallization of the SiC layer. Infrared spectroscopy and Raman scattering measurement were used to monitor the formation of SiC and detailed information about the SiC film properties was obtained by analyzing the peak shape of the Si-C stretching mode absorption. The change in crystallinity of the synthesized layer was probed by glancing incidence x-ray diffraction measurement and transmission electron microscopy was also used to confirm the results and to model the crystallization process. The results from all these measurements showed in a coherent way that the synthesized structure was a polycrystalline layer with nanometer sized SiC crystals buried in a-Si matrix. The crystallinity of the SiC layer was enhanced by the low-fluence swift heavy ion bombardment and also favored by higher energy, higher fluence, and higher substrate temperature. It is suggested that electronic stopping plays a dominant role in the enhancement.

  15. Formation of Carbonized Polystyrene Sphere/hemisphere Shell Arrays by Ion Beam Irradiation and Subsequent Annealing or Chloroform Treatment

    PubMed Central

    Song, Xianyin; Dai, Zhigao; Xiao, Xiangheng; Li, Wenqing; Zheng, Xudong; Shang, Xunzhong; Zhang, Xiaolei; Cai, Guangxu; Wu, Wei; Meng, Fanli; Jiang, Changzhong

    2015-01-01

    Heat-resistant two-dimensional (2D) sphere/hemisphere shell array is significant for the fabrication of novel nanostructures. Here large-area, well-ordered arrays of carbonized polystyrene (PS) hollow sphere/hemisphere with controlled size and morphology are prepared by combining the nanosphere self-assembly, kV Ag ion beam modification, and subsequent annealing or chloroform treatment. Potential mechanisms for the formation and evolution of the heat-resistant carbonized PS spherical shell with increasing ion fluence and energy are discussed. Combined with noble metal or semiconductor, these modified PS sphere arrays should open up new possibilities for high-performance nanoscale optical sensors or photoelectric devices. PMID:26640125

  16. Effect of the annealing temperature and ion-beam bombardment on the properties of solution-derived HfYGaO films as liquid crystal alignment layers

    SciTech Connect

    Park, Hong-Gyu; Lee, Yun-Gun; Jang, Sang Bok; Lee, Ju Hwan; Jeong, Hae-Chang; Seo, Dae-Shik; Oh, Byeong-Yun

    2015-11-15

    Hafnium yttrium gallium oxide (HfYGaO) films were applied to liquid crystal displays (LCDs) as liquid crystal (LC) alignment layers, replacing conventional polyimide (PI) layers. The HfYGaO alignment layers were prepared by fabricating solution-processed HfYGaO films, annealing them, and treating them with ion-beam (IB) irradiation. The authors studied the effects of annealing temperature and IB irradiation of the solution-derived HfYGaO films on the orientation of LC molecules. The LC molecules on the solution-derived HfYGaO films were homogeneously and uniformly aligned by IB irradiation, irrespective of the annealing temperature. Atomic force microscopy analyses revealed that the surface reformation of the HfYGaO films induced by IB irradiation strengthened the van der Waals force between the LC molecules and the HfYGaO films, leading to uniform LC alignment. Enhanced electro-optical characteristics were observed in the twisted-nematic (TN) LCDs based on IB-irradiated HfYGaO films compared with those of TN-LCDs based on PI layers, demonstrating the high application potential of the proposed solution-derived HfYGaO films as LC alignment layers.

  17. Effect of surface texture by ion beam sputtering on implant biocompatibility and soft tissue attachment

    NASA Technical Reports Server (NTRS)

    Gibbons, D. F.

    1977-01-01

    The objectives in this report were to use the ion beam sputtering technique to produce surface textures on polymers, metals, and ceramics. The morphology of the texture was altered by varying both the width and depth of the square pits which were formed by ion beam erosion. The width of the ribs separating the pits were defined by the mask used to produce the texture. The area of the surface containing pits varies as the width was changed. The biological parameters used to evaluate the biological response to the texture were: (1) fibrous capsule and inflammatory response in subcutaneous soft tissue; (2) strength of the mechanical attachment of the textured surface by the soft tissue; and (3) morphology of the epidermal layer interfacing the textured surface of percutaneous connectors. Because the sputter yield on teflon ribs was approximately an order of magnitude larger than any other material the majority of the measurements presented in the report were obtained with teflon.

  18. The effect of residual gas scattering on Ga ion beam patterning of graphene

    SciTech Connect

    Thissen, Nick F. W. E-mail: a.a.bol@tue.nl; Vervuurt, R. H. J.; Weber, J. W.; Kessels, W. M. M.; Bol, A. A. E-mail: a.a.bol@tue.nl; Mulders, J. J. L.

    2015-11-23

    The patterning of graphene by a 30 kV Ga{sup +} focused ion beam (FIB) is studied by in-situ and ex-situ Raman spectroscopy. It is found that the graphene surrounding the patterned target area can be damaged at remarkably large distances of more than 10 μm. We show that scattering of the Ga ions in the residual gas of the vacuum system is the main cause of the large range of lateral damage, as the size and shape of the tail of the ion beam were strongly dependent on the system background pressure. The range of the damage was therefore greatly reduced by working at low pressures and limiting the total amount of ions used. This makes FIB patterning a feasible alternative to electron beam lithography as long as residual gas scattering is taken into account.

  19. Real time x-ray studies during nanostructure formation on silicon via low energy ion beam irradiation using ultrathin iron films

    SciTech Connect

    El-Atwani, Osman; Suslova, Anastassiya; Gonderman, Sean; Fowler, Justin; El-Atwani, Mohamad; DeMasi, Alexander; Ludwig, Karl; Paul Allain, Jean

    2012-12-24

    Real time grazing incidence small angle x-ray scattering and x-ray fluorescence (XRF) are used to elucidate nanodot formation on silicon surfaces during low energy ion beam irradiation of ultrathin iron-coated silicon substrates. Four surface modification stages were identified: (1) surface roughening due to film erosion, (2) surface smoothing and silicon-iron mixing, (3) structure formation, and (4) structure smoothing. The results conclude that 2.5 Multiplication-Sign 10{sup 15} iron atoms in a 50 nm depth triggers surface nanopatterning with a correlated nanodots distance of 25 nm. Moreover, there is a wide window in time where the surface can have correlated nanostructures even after the removal of all the iron atoms from the sample as confirmed by XRF and ex-situ x-ray photoelectron spectroscopy (XPS). In addition, in-situ XPS results indicated silicide formation, which plays a role in the structure formation mechanism.

  20. Luminescence study of Dy or Ce activated LiCaBO3 phosphor for γ-ray and C5+ ion beam irradiation.

    PubMed

    Oza, Abha H; Dhoble, N S; Lochab, S P; Dhoble, S J

    2015-11-01

    The photoluminescence and thermoluminescence characteristics of rare earths (Dy or Ce) activated LiCaBO3 phosphors have been studied. Phosphors were synthesized by modified solid state synthesis. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and thermoluminescence (TL) for structural, morphological and luminescence studies. Dy(3+) activated LiCaBO3 shows emission at 486 and 577 nm due to (4) F9/2 →(6) H15/2 and (4) F9/2 → (6) H13/2 transition, respectively, whereas the PL emission spectra of Ce(3+) activated LiCaBO3 phosphor shows a broad band peaking at 432 nm, which is due to the transition from 5d level to the ground state of the Ce(3+) ion. The thermoluminescence study was also carried out for both these phosphors for γ-ray irradiation and carbon beam irradiation. Linearity was studied for a 0.4-3.1 Rad dose γ-rays. Linear behaviour over this dose range was observed. Gamma ray-irradiated phosphors were shown to be negligible fading upon storage. All the samples were also studied for 75 MeV C(5+) ion beam exposure in the range of 3.75 × 10(12) - 7.5 × 10(13) ion cm(-2) fluence. In addition to this, trapping parameters of all the samples were also calculated using Chen's peak shape method.

  1. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation.

    PubMed

    Sudhagar, P; Asokan, K; Jung, June Hyuk; Lee, Yong-Gun; Park, Suil; Kang, Yong Soo

    2011-12-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.

  2. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation

    PubMed Central

    2011-01-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs. PMID:27502653

  3. Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation

    PubMed Central

    Friedrich, Thomas; Scholz, Uwe; ElsäSser, Thilo; Durante, Marco; Scholz, Michael

    2013-01-01

    For tumor therapy with light ions and for experimental aspects in particle radiobiology the relative biological effectiveness (RBE) is an important quantity to describe the increased effectiveness of particle radiation. By establishing and analysing a database of ion and photon cell survival data, some remarkable properties of RBE-related quantities were observed. The database consists of 855 in vitro cell survival experiments after ion and photon irradiation. The experiments comprise curves obtained in different labs, using different ion species, different irradiation modalities, the whole range of accessible energies and linear energy transfers (LETs) and various cell types. Each survival curve has been parameterized using the linear-quadratic (LQ) model. The photon parameters, α and β, appear to be slightly anti-correlated, which might point toward an underlying biological mechanism. The RBE values derived from the survival curves support the known dependence of RBE on LET, on particle species and dose. A positive correlation of RBE with the ratio α/β of the photon LQ parameters is found at low doses, which unexpectedly changes to a negative correlation at high doses. Furthermore, we investigated the course of the β coefficient of the LQ model with increasing LET, finding typically a slight initial increase and a final falloff to zero. The observed fluctuations in RBE values of comparable experiments resemble overall RBE uncertainties, which is of relevance for treatment planning. The database can also be used for extensive testing of RBE models. We thus compare simulations with the local effect model to achieve this goal. PMID:23266948

  4. Thin film growth rate effects for primary ion beam deposited diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Nir, D.; Mirtich, M.

    1986-01-01

    Diamondlike carbon (DLC) films were grown by primary ion beam deposition and the growth rates were measured for various beam energies, types of hydrocarbon gases and their ratio to Ar, and substrate materials. The growth rate had a linear dependence upon hydrocarbon content in the discharge chamber, and only small dependence on other parameters. For given deposition conditions a threshold in the atomic ratio of carbon to argon gas was identified below which films did not grow on fused silica substrate, but grew on Si substrate and on existing DLC films. Ion source deposition parameters and substrate material were found to affect the deposition threshold and film growth rates.

  5. Charged particle’s flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    NASA Astrophysics Data System (ADS)

    Agodi, C.; Battistoni, G.; Bellini, F.; Cirrone, G. A. P.; Collamati, F.; Cuttone, G.; De Lucia, E.; De Napoli, M.; Di Domenico, A.; Faccini, R.; Ferroni, F.; Fiore, S.; Gauzzi, P.; Iarocci, E.; Marafini, M.; Mattei, I.; Muraro, S.; Paoloni, A.; Patera, V.; Piersanti, L.; Romano, F.; Sarti, A.; Sciubba, A.; Vitale, E.; Voena, C.

    2012-09-01

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose-monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose-monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements carried out with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a poly-methyl methacrylate target. Charged secondary particles, produced at 90° with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight have been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time-of-flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover, a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploiting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with EProdkin > 83 MeV and emitted at 90° with respect to the beam line is dNP/(dNCdΩ) (EProdkin > 83 MeV, θ = 90°) = (2.69 ± 0.08stat ± 0.12sys) × 10-4 sr-1.

  6. Ion Beam Propulsion Study

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  7. Ion beam analysis of the effects of radiation on the chemical etching of poly(tetrafluorethylene)

    NASA Astrophysics Data System (ADS)

    Arnold, G. W.; Rye, R. R.

    1990-02-01

    Rutherford backscattering (RBS) and elastic recoil detection (ERD) have been used to characterize the effects of X-ray irradiation on the alkali etching of poly(tetrafluorethylene) (PTFE/Teflon). Etching of an irradiated (20 min MgK α X-rays) sample produces no RBS evidence of F surface loss (~ 150 Å depth resolution) while X-ray photoelectron spectroscopy (XPS) measurements (~ 30 Å sampling depth) show extensive F loss; thus the F loss in irradiated Teflon is limited to depths between 30 and 150 Å. In sharp contrast, etching of an unirradiated sample produces an RBS measured F loss to depths of 3000-4000 Å. ERD measurements show a similar H depth distribution, suggested to result from a water reaction during the dissolution of excess Na. An n-hexane rinse leaves a surface Na residue on X-ray irradiated material but subsurface on unirradiated etched material. The present results and those of previous adhesion studies show that the major factor affecting adhesion to Teflon is the mechanical interlocking of the porous etched surface.

  8. CRionScan: A stand-alone real time controller designed to perform ion beam imaging, dose controlled irradiation and proton beam writing

    NASA Astrophysics Data System (ADS)

    Daudin, L.; Barberet, Ph.; Serani, L.; Moretto, Ph.

    2013-07-01

    High resolution ion microbeams, usually used to perform elemental mapping, low dose targeted irradiation or ion beam lithography needs a very flexible beam control system. For this purpose, we have developed a dedicated system (called “CRionScan”), on the AIFIRA facility (Applications Interdisciplinaires des Faisceaux d'Ions en Région Aquitaine). It consists of a stand-alone real-time scanning and imaging instrument based on a Compact Reconfigurable Input/Output (Compact RIO) device from National Instruments™. It is based on a real-time controller, a Field Programmable Gate Array (FPGA), input/output modules and Ethernet connectivity. We have implemented a fast and deterministic beam scanning system interfaced with our commercial data acquisition system without any hardware development. CRionScan is built under LabVIEW™ and has been used on AIFIRA's nanobeam line since 2009 (Barberet et al., 2009, 2011) [1,2]. A Graphical User Interface (GUI) embedded in the Compact RIO as a web page is used to control the scanning parameters. In addition, a fast electrostatic beam blanking trigger has been included in the FPGA and high speed counters (15 MHz) have been implemented to perform dose controlled irradiation and on-line images on the GUI. Analog to Digital converters are used for the beam current measurement and in the near future for secondary electrons imaging. Other functionalities have been integrated in this controller like LED lighting using Pulse Width Modulation and a “NIM Wilkinson ADC” data acquisition.

  9. Ion beam texturing

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.

    1976-01-01

    A microscopic surface texture is created by sputter etching a surface while simultaneously sputter depositing a lower sputter yield material onto the surface. A xenon ion beam source has been used to perform this texturing process on samples as large as three centimeters in diameter. Ion beam textured surface structures have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, Stainless steel, Au, and Ag. Surfaces have been textured using a variety of low sputter yield materials - Ta, Mo, Nb, and Ti. The initial stages of the texture creation have been documented, and the technique of ion beam sputter removal of any remaining deposited material has been studied. A number of other texturing parameters have been studied such as the variation of the texture with ion beam power, surface temperature, and the rate of texture growth with sputter etching time.

  10. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  11. Effects of carbon-ion beams on human pancreatic cancer cell lines that differ in genetic status.

    PubMed

    Matsui, Yoshifumi; Asano, Takehide; Kenmochi, Takashi; Iwakawa, Mayumi; Imai, Takashi; Ochiai, Takenori

    2004-02-01

    The relative biologic effectiveness (RBE) of carbon-ion beams at 3 different linear energy transfer (LET) values (13, 50, and 80 keV/microm) accelerated by the Heavy Ion Medical Accelerator in Chiba on human pancreatic cancer cell lines differing in genetic status was determined. The RBE values were calculated as D10, the dose (Gy) required to reduce the surviving fraction to 10%, relative to X-rays. We also investigated apoptosis and the relationship between D10 and the cell cycle checkpoint using morphologic examination and flow cytometry analysis, respectively. The RBE values calculated by the D10 values ranged from 1.16 to 1.77 for the 13-keV/microm beam and from 1.83 to 2.46 for the 80-keV/microm beam. A correlation between the D10 values of each cell line and intensity of G2/M arrest was observed. In contrast, LET values did not clearly correlate with induction of apoptosis. These results suggest that carbon-ion beam therapy is a promising modality. Elucidation of the mechanisms of G2/M arrest and apoptosis may provide clues to enhancing the effects of radiation on pancreatic cancer.

  12. Ion beam damage assessment and waveguide formation induced by energetic Si-ion irradiation in lanthanum aluminate crystal

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Huang, Q.; Crespillo, M. L.; Qiao, M.; Liu, P.; Wang, X. L.

    2017-02-01

    Lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and its physical, electronic and optical properties strongly depend on the crystal structure, which can be easily altered in an irradiation environment and therefore affect the performance of LaAlO3-based devices. On the other hand, the preparation of LaAlO3 waveguide is also a scientific challenge for its potential application prospects in optoelectronics field. In this work, the damage evolution behavior of LaAlO3 crystal under Si-ion irradiation has been discussed in detail utilizing complementary characterization techniques, and then, single-mode waveguide of LaAlO3 crystal in the visible band can be obtained based on ion-irradiation-induced lattice damage behavior. Waveguide optical-coupling techniques are used to show its competitive features. Thus, novel optical waveguides with optimized features in LaAlO3 crystals can be tailored by a proper selection of ion mass, energy and fluence using the modification of the target material during ion irradiation process.

  13. Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys

    SciTech Connect

    Saraf, Laxmikant V.

    2011-04-01

    The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is looked upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.

  14. Effects on axial momentum spread on the electron-ion two-stream instability in high-intensity ion beams

    SciTech Connect

    R. Davidso; H. Qin

    2000-06-15

    Use is made of the Vlasov-Maxwell equations to describe the electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating through a stationary population of (unwanted) background electrons. The ion beam is treated as continuous in the z-direction, and the electrons are electrostatically confined in the transverse direction by the space-charge potential produced by the excession charge. The analysis is carried out for arbitrary beam intensity, consistent with transverse confinement of the beam particles, and arbitrary fractional charge neutralization by the background electrons. For the case of overlapping step-function ion and electron density profiles, corresponding to monoenergetic electrons and ions in the transverse direction, detailed stability properties are calculated, including the important effects of an axial momentum spread, over a wide range of system parameters for dipole perturbations with azimuthal mode number l=1. The two-stream instability growth rate is found to increase with increasing beam intensity, increasing fractional charge neutralization, and decreasing proximity of the conducting wall. It is shown that Landau damping associated with a modest axial momentum spread of the beam ions and background electrons has a strong stabilizing influence on the instability.

  15. Electron cloud effects in intense, ion beam linacs theory and experimental planning for heavy-ion fusion

    SciTech Connect

    Molvik, A.W.; Cohen, R.H.; Lund, S.M.; Bieniosek, F.M.; Lee, E.P.; Prost, L.R.; Seidl, P.A.; Vay, Jean-Luc

    2002-05-21

    Heavy-ion accelerators for HIF will operate at high aperture-fill factors with high beam current and long pulses. This will lead to beam ions impacting walls: liberating gas molecules and secondary electrons. Without special preparation a large fractional electron population ({approx}>1%) is predicted in the High-Current Experiment (HCX), but wall conditioning and other mitigation techniques should result in substantial reduction. Theory and particle-in-cell simulations suggest that electrons, from ionization of residual and desorbed gas and secondary electrons from vacuum walls, will be radially trapped in the {approx}4 kV ion beam potential. Trapped electrons can modify the beam space charge, vacuum pressure, ion transport dynamics, and halo generation, and can potentially cause ion-electron instabilities. Within quadrupole (and dipole) magnets, the longitudinal electron flow is limited to drift velocities (E x B and {del}B) and the electron density can vary azimuthally, radially, and longitudinally. These variations can cause centroid misalignment, emittance growth and halo growth. Diagnostics are being developed to measure the energy and flux of electrons and gas evolved from walls, and the net charge and gas density within magnetic quadrupoles, as well as the their effect on the ion beam.

  16. Luminescence study of γ-ray and C5+ ion beam-irradiated LiCaBO3:Cu phosphor

    NASA Astrophysics Data System (ADS)

    Oza, Abha H.; Dhoble, N. S.; Lochab, S. P.; Dhoble, S. J.

    2015-07-01

    Cu-doped LiCaBO3 phosphors were prepared by modified solid-state synthesis and the formation of compound was confirmed by X-ray diffraction study. LiCaBO3:Cu+ (Cu = 0.02, 0.05, 0.1 and 0.2 mol%) were studied for photoluminescence (PL) study and prominent PL emission spectra were obtained for Cu+ with transition 3d94s1 → 3d10. The phosphors were further studied by thermoluminescence (TL) property for exposure to γ-ray irradiation of 1.2 rad with 137Cs source. TL of LiCaBO3:Cu was also studied for C5+ (3.75 × 1012 ion cm-2) beam irradiation for 1 min exposure time. Trapping parameters (activation energy and frequency factor) for single deconvoluted peaks were obtained by Chen's peak shape method.

  17. Ion Beam Therapy in Europe

    NASA Astrophysics Data System (ADS)

    Kraft, Gerhard

    2009-03-01

    At present, seven facilities in Europe treat deep-seated tumors with particle beams, six with proton beams and one with carbon ions. Three of these facilities are in Moscow, St. Petersburg and Dubna, Russia. Other facilities include the TSL Uppsala, Sweden, CPO Orsay, France, and PSI Villigen, Switzerland, all for proton therapy, and GSI, Darmstadt, Germany, which utilizes carbon ions only. But only two of these facilities irradiate with scanned ion beams: the Paul Scherer Institute (PSI), Villigen (protons) and the Gesellschaft für Schwerionenforschung (GSI), Darmstadt. These two facilities are experimental units within physics laboratories and have developed the technique of intensity-modulated beam scanning in order to produce irradiation conforming to a 3-D target. There are three proton centers presently under construction in Munich, Essen and Orsay, and the proton facility at PSI has added a superconducting accelerator connected to an isocentric gantry in order to become independent of the accelerator shared with the physics research program. The excellent clinical results using carbon ions at National Institute of Radiological Science (NIRS) in Chiba and GSI have triggered the construction of four new heavy-ion therapy projects (carbon ions and protons), located in Heidelberg, Pavia, Marburg and Kiel. The projects in Heidelberg and Pavia will begin patient treatment in 2009, and the Marburg and Kiel projects will begin in 2010 and 2011, respectively. These centers use different accelerator designs but have the same kind of treatment planning system and use the same approach for the calculation of the biological effectiveness of the carbon ions as developed at GSI [1]. There are many other planned projects in the works. Do not replace the word "abstract," but do replace the rest of this text. If you must insert a hard line break, please use Shift+Enter rather than just tapping your "Enter" key. You may want to print this page and refer to it as a style

  18. High-powered pulsed-ion-beam acceleration and transport

    SciTech Connect

    Humphries, S. Jr.; Lockner, T.R.

    1981-11-01

    The state of research on intense ion beam acceleration and transport is reviewed. The limitations imposed on ion beam transport by space charge effects and methods available for neutralization are summarized. The general problem of ion beam neutralization in regions free of applied electric fields is treated. The physics of acceleration gaps is described. Finally, experiments on multi-stage ion acceleration are summarized.

  19. Metal impurity-assisted formation of nanocone arrays on Si by low energy ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Steeves Lloyd, Kayla; Bolotin, Igor L.; Schmeling, Martina; Hanley, Luke; Veryovkin, Igor V.

    2016-10-01

    Fabrication of nanocone arrays on Si surfaces was demonstrated using grazing incidence irradiation with 1 keV Ar+ ions concurrently sputtering the surface and depositing metal impurity atoms on it. Among three materials compared as co-sputtering targets Si, Cu and stainless steel, only steel was found to assist the growth of dense arrays of nanocones at ion fluences between 1018 and 1019 ions/cm2. The structural characterization of samples irradiated with these ion fluences using Scanning Electron Microscopy and Atomic Force Microscopy revealed that regions far away from co-sputtering targets are covered with nanoripples, and that nanocones popped-up out of the rippled surfaces when moving closer to co-sputtering targets, with their density gradually increasing and reaching saturation in the regions close to these targets. The characterization of the samples' chemical composition with Total Reflection X-ray Fluorescence Spectrometry and X-ray Photoelectron Spectroscopy revealed that the concentration of metal impurities originating from stainless steel (Fe, Cr and Ni) was relatively high in the regions with high density of nanocones (Fe reaching a few atomic percent) and much lower (factor of 10 or so) in the region of nanoripples. Total Reflection X-ray Fluorescence Spectrometry measurements showed that higher concentrations of these impurities are accumulated under the surface in both regions. X-ray Photoelectron Spectroscopy experiments showed no direct evidence of metal silicide formation occurring on one region only (nanocones or nanoripples) and thus showed that this process could not be the driver of nanocone array formation. Also, these measurements indicated enhancement in oxide formation on regions covered by nanocones. Overall, the results of this study suggest that the difference in concentration of metal impurities in the thin near-surface layer forming under ion irradiation might be responsible for the differences in surface structures.

  20. Low-energy ion beam bombardment effect on the plant-cell-envelope mimetic membrane for DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-09-01

    This study is a systematic analysis of the mechanisms involved in ion-beam induced DNA transfer, an important application of ion beam biotechnology. Cellulose membranes were used to mimic the plant cell envelope. Ion beams of argon (Ar) or nitrogen (N) at an energy of 25 keV bombarded the cellulose membranes at fluences ranging from 1015 to 1016 ions/cm2. The damage to the ion-beam-bombarded membranes was characterized using infrared spectroscopy, a micro tensile test and scanning electron microscopy (SEM). Chain scission was the dominant radiation damage type in the membrane. DNA diffusion across the membrane was significantly increased after ion beam bombardment. The increase in DNA transfer is therefore attributed to chain scission, which increases the permeability by increasing the number of pores in the membrane.

  1. Surface Treatment of Polymers by Ion Beam Irradiation to Control the Human Osteoblast Adhesion: Fluence and Current Density Study

    SciTech Connect

    Guibert, G.; Mikhailov, S.; Rossel, T.; Weder, G.; Betschart, B.; Meunier, C.

    2009-03-10

    In the biomaterial field, the modification of surfaces are used to create polymers with high performances, preserving their bulk properties and creating specific interactions between the designed surfaces and the cells or tissues. The polymers were irradiated with a 900 keV Helium beam to modify their surface properties. Cell cultivation on the samples was done using human osteoblasts cells (hFOB 1.19). For PTFE, PS and PEEK polymers, the cell adhesion occurs after reached some threshold values of fluences. For PET or PMMA polymers, the cells adhere on the non irradiated samples, however the fluence value modifies the cell density. For PMMA and PTFE both, the fluence and the current density influence the cell adhesion. By modifying the appropriate parameters on each material, the control of the cell adhesion is possible. Indeed the surface treatment must be selected and adapted according to the further application: for biosensors, tissue engineering, tissue regeneration, neural probes, drug delivery, bio-actuators etc.

  2. Effects of additives on the preferred orientation of Mn-Zn ferrite thin films deposited by ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Cho, Hae Seok; Kim, Hyeong Joon

    1995-03-01

    We investigated the effects of additives on the preferred orientation of the Mn-Zn ferrite thin films deposited on SiO2(1000 Å)/Si(100) at 350 °C by ion beam sputtering. A mosaic target, consisting of a single crystal (100) Mn-Zn ferrite with a metal strip on it, was employed as the target. The preferred orientation of the ferrite films was (hhh) for the target with or without Fe and Zn additives, and (h00) for Ti addition. In the case of Cu addition, a weak (311) orientation appeared with a strong (hhh) preferred orientation. The origin of the changes in the preferred orientation with different additives was discussed. The easy axis of magnetization, however, lay in the direction parallel to the film plane due to large shape anisotropy, irrespective of the preferred orientation.

  3. Effects of Ion Beam on Nanoindentation Characteristics of Glassy Polymeric Carbon Surface

    SciTech Connect

    Rodrigues, M. G.; Da Cruz, N. C.; Rangel, E. C.; Zimmerman, R. L.; Ila, Dr. Daryush; Poker, David B; Hensley, Dale K

    2005-01-01

    Glassy polymeric carbon (GPC) is a useful material for medical applications due to its chemical inertness and biocompatible characteristics. Mitral and aortic and hydrocephalic valves are examples of GPC prosthetic devices that have been fabricated and commercialized in Brazil. In this work, ion beam was used to improve the mechanical characteristics of GPC surface and therefore to avoid the propagation of microcracks where the cardiac valves are more fragile. A control group of phenolic resin samples heat-treated at 300, 400, 700, 1000, 1500, and 2500 C was characterized by measuring their hardness and Young's reduced elastic modulus with the depth of indentation. The control group was compared to results obtained with samples heat-treated at 700, 1000, and 1500 C and bombarded with energetic ions of silicon, carbon, oxygen, and gold at energies of 5, 6, 8, and 10 MeV, respectively, with fluences between 1.0 x 10{sup 13} and 1.0 x 10{sup 16} ions/cm{sup 2}. GPC nonbombarded samples showed that hardness depends on the heat treatment temperature (HTT), with a maximum hardness for heat treatment at 1000 C. The comparison between the control group and bombarded group also showed that hardness, after bombardment, had a greater increase for samples prepared at 700 C than for samples prepared at higher temperatures. The Young's elastic modulus presents an exponential relationship with depth. The parameters obtained by fitting depend on the HTT and on the ion used in the bombardment more than on energy and fluence. The hardness results show clearly that bombardment can promote carbonization, increase the linkage between the chains of the polymeric material, and promote recombination of broken bonds in lateral groups that are more numerous for samples heat-treated at 700 C.

  4. Focused ion beam milling of diamond : effects of H2O on yield, surface morphology and microstructure.

    SciTech Connect

    Mayer, Thomas Michael; Hodges, V. Carter; Adams, David Price; Vasile, Michael J.

    2003-06-01

    The effects of H{sub 2}O vapor introduced during focused ion beam (FIB) milling of diamond(100) are examined. In particular, we determine the yield, surface morphology, and microstructural damage that results from FIB sputtering and H{sub 2}O-assisted FIB milling processes. Experiments involving 20 keV Ga{sup +} bombardment to doses {approx}10{sup 18} ions/cm{sup 2} are conducted at a number of fixed ion incidence angles, {theta}. For each {theta} selected, H{sub 2}O-assisted ion milling shows an increased material removal rate compared with FIB sputtering (no gas assist). The amount by which the yield is enhanced depends on the angle of incidence with the largest difference occurring at {theta} = 75{sup o}. Experiments that vary pixel dwell time from 3 {micro}s to 20 ms while maintaining a fixed H{sub 2}O gas pressure demonstrate the additional effect of beam scan rate on yield for gas-assisted processes. Different surface morphologies develop during ion bombardment depending on the angle of ion incidence and the presence/absence of H{sub 2}O. In general, a single mode of ripples having a wave vector aligned with the projection of the ion beam vector forms for {theta} as high as 70{sup o}. H{sub 2}O affects this morphology by lowering the ripple onset angle and decreasing the ripple wavelength. At high angles of incidence ({theta} > 70{sup o}) a step/terrace morphology is observed. H{sub 2}O-assisted milling at {theta} > 70{sup o} results in a smoother stepped surface compared with FIB sputtering. Transmission electron microscopy shows that the amorphized thickness is reduced by 20% when using H{sub 2}O-assisted FIB milling.

  5. Effective implantation of light emitting centers by plasma immersion ion implantation and focused ion beam methods into nanosized diamond

    NASA Astrophysics Data System (ADS)

    Himics, L.; Tóth, S.; Veres, M.; Tóth, A.; Koós, M.

    2015-02-01

    Two different implantation techniques, plasma immersion ion implantation and focused ion beam, were used to introduce nitrogen ions into detonation nanodiamond crystals with the aim to create nitrogen-vacancy related optically active centers of light emission in near UV region. Previously samples were subjected to a defect creation process by helium irradiation in both cases. Heat treatments at different temperatures (750 °C, 450 °C) were applied in order to initiate the formation of nitrogen-vacancy related complex centers and to decrease the sp2 carbon content formed under different treatments. As a result, a relatively narrow and intensive emission band with fine structure at 2.98, 2.83 and 2.71 eV photon energies was observed in the light emission spectrum. It was assigned to the N3 complex defect center. The formation of this defect center can be expected by taking into account the relatively high dose of implanted nitrogen ions and the overlapped depth distribution of vacancies and nitrogen. The calculated depth profiles distribution for both implanted nitrogen and helium by SRIM simulation support this expectation.

  6. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    SciTech Connect

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-02-16

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N{sup +} and C{sup 4+} ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C{sup 4+} irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes.

  7. Performance and Controllability of Pulsed Ion Beam Ablation Propulsion

    SciTech Connect

    Yazawa, Masaru; Buttapeng, Chainarong; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    We propose novel propulsion driven by ablation plasma pressures produced by the irradiation of pulsed ion beams onto a propellant. The ion beam ablation propulsion demonstrates by a thin foil (50 {mu}mt), and the flyer velocity of 7.7 km/s at the ion beam energy density of 2 kJ/cm2 adopted by using the Time-of-flight method is observed numerically and experimentally. We estimate the performance of the ion beam ablation propulsion as specific impulse of 3600 s and impulse bit density of 1700 Ns/m2 obtained from the demonstration results. In the numerical analysis, a one-dimensional hydrodynamic model with ion beam energy depositions is used. The control of the ion beam kinetic energy is only improvement of the performance but also propellant consumption. The spacecraft driven by the ion beam ablation provides high performance efficiency with short-pulsed ion beam irradiation. The numerical results of the advanced model explained latent heat and real gas equation of state agreed well with experimental ones over a wide range of the incident ion beam energy density.

  8. Flyer Acceleration by Pulsed Ion Beam Ablation and Application for Space Propulsion

    SciTech Connect

    Harada, Nobuhiro; Buttapeng, Chainarong; Yazawa, Masaru; Kashine, Kenji; Jiang Weihua; Yatsui, Kiyoshi

    2004-02-04

    Flyer acceleration by ablation plasma pressure produced by irradiation of intense pulsed ion beam has been studied. Acceleration process including expansion of ablation plasma was simulated based on fluid model. And interaction between incident pulsed ion beam and a flyer target was considered as accounting stopping power of it. In experiments, we used ETIGO-II intense pulsed ion beam generator with two kinds of diodes; 1) Magnetically Insulated Diode (MID, power densities of <100 J/cm2) and 2) Spherical-focused Plasma Focus Diode (SPFD, power densities of up to 4.3 kJ/cm2). Numerical results of accelerated flyer velocity agreed well with measured one over wide range of incident ion beam energy density. Flyer velocity of 5.6 km/s and ablation plasma pressure of 15 GPa was demonstrated by the present experiments. Acceleration of double-layer target consists of gold/aluminum was studied. For adequate layer thickness, such a flyer target could be much more accelerated than a single layer. Effect of waveform of ion beam was also examined. Parabolic waveform could accelerate more efficiently than rectangular waveform. Applicability of ablation propulsion was discussed. Specific impulse of 7000{approx}8000 seconds and time averaged thrust of up to 5000{approx}6000N can be expected. Their values can be controllable by changing power density of incident ion beam and pulse duration.

  9. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  10. Ion-beam technologies

    SciTech Connect

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  11. Ion beam modification of biological materials in nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Anuntalabhochai, S.

    2012-07-01

    Ion interaction with biological objects in nanoscale is a novel research area stemming from applications of low-energy ion beams in biotechnology and biomedicine. Although the ion beam applications in biotechnology and biomedicine have achieved great successes, many mechanisms remain unclear and many new applications are to be explored. We have carried out some research on exploring the mechanisms and new applications besides attaining ion beam induction of mutation breeding and gene transformation. In the studies on the mechanisms, we focused our investigations on the direct interaction in nanoscale between ions and biological living materials. Our research topics have included the low-energy ion range in DNA, low-energy ion or neutral beam bombardment effect on DNA topological form change and mutation, low-energy ion or neutral beam bombardment effect on the cell envelope and gene transformation, and molecular dynamics simulation of ultra-low-energy ion irradiation of DNA. In the exploration of new applications, we have started experiments on ion irradiation or bombardment, in the nanoscaled depth or area, of human cells for biomedical research. This paper introduces our experiments and reports interesting results.

  12. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  13. Ion Beam Bombardment of Biological Tissue

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Yu, L. D.; Vilaithong, T.; Phanchaisri, B.; Anuntalabhochai, S.; Brown, I. G.

    2003-10-01

    While ion implantation has become a well-established technique for the surface modification of inorganic materials, the ion bombardment of cellular tissue has received little research attention. A program in ion beam bioengineering has been initiated at Chiang Mai University, and the ion beam induced transfer of plasmid DNA molecules into bacterial cells (E. coli) has been demonstrated. Subsequent work has been directed toward exploration of ion beam bombardment of plant cells in an effort to understand the possible mechanisms involved in the DNA transfer. In particular, ion beam bombardment of onion cells was carried out and the effects investigated. Among the novel features observed is the formation of "microcraters" - sub-micron surface features that could provide a pathway for the transfer of large molecules into the interior cell region. Here we describe our onion skin ion bombardment investigations.

  14. Negative Ion Beam Extraction and Emittance

    SciTech Connect

    Holmes, Andrew J. T.

    2007-08-10

    The use of magnetic fields to both aid the production of negative ions and suppress the co-extracted electrons causes the emittance and hence the divergence of the negative ion beam to increase significantly due to the plasma non-uniformity from jxB drift. This drift distorts the beam-plasma meniscus and experimental results of the beam emittance are presented, which show that non-uniformity causes the square of the emittance to be proportional to the 2/3 power of the extracted current density. This can cause the divergence of the negative ion beam to be significantly larger than its positive ion counterpart. By comparing results from positive and negative ion beam emittances from the same source, it is also possible to draw conclusions about their vulnerability to magnetic effects. Finally emittances of caesiated and un-caesiated negative ion beams are compared to show how the surface and volume modes of production interact.

  15. Ion-beam synthesis and photoluminescence of SiC nanocrystals assisted by MeV-heavy-ion-beam annealing

    NASA Astrophysics Data System (ADS)

    Khamsuwan, J.; Intarasiri, S.; Kirkby, K.; Chu, P. K.; Singkarat, S.; Yu, L. D.

    2012-07-01

    This work explored a novel way to synthesize silicon carbide (SiC) nanocrystals for photoluminescence. Carbon ions at 90 keV were implanted in single crystalline silicon wafers at elevated temperature, followed by irradiation using xenon ion beams at an energy of 4 MeV with two low fluences of 5 × 1013 and 1 × 1014 ions/cm2 at elevated temperatures for annealing. X-ray diffraction, Raman scattering, infrared spectroscopy and transmission electron microscopy were used to characterize the formation of nanocrystalline SiC. Photoluminescence was measured from the samples. The results demonstrated that MeV-heavy-ion-beam annealing could indeed induce crystallization of SiC nanocrystals and enhance emission of photoluminescence with violet bands dominance due to the quantum confinement effect.

  16. Focused ion beam system

    SciTech Connect

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  17. Focused ion beam system

    DOEpatents

    Leung, Ka-Ngo; Gough, Richard A.; Ji, Qing; Lee, Yung-Hee Yvette

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  18. Ion beam generating apparatus

    DOEpatents

    Brown, Ian G.; Galvin, James

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  19. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  20. Ion beam analysis

    SciTech Connect

    Robertson, J.D. )

    1990-01-01

    A new ion beam analysis facility has recently been installed at a Van de Graaff accelerator. Its use is expected to support many energy and environmental research projects. Material composition and spatial distribution analyses at the facility are based upon Rutherford backscattering spectrometry, particle-induced X-ray emission, and particle-induced gamma-ray emission analysis. An overview of these three techniques is presented in this article.

  1. Effect of ion-beam treatment on structure and fracture resistance of 12Cr1MoV steel under static, cyclic and dynamic loading

    SciTech Connect

    Panin, S. V. Vlasov, I. V. Sergeev, V. P.; Maruschak, P. O.

    2015-10-27

    Features of the structure and properties modification of 12Cr1MoV steel subjected to irradiation by zirconium ion beam have been investigated with the use of optical and electron microscopy as well as microhardness measurement. It has been shown that upon treatment the structure modification occurred across the entire cross-section of specimens with the thickness of 1 mm. Changes in the mechanical properties of these specimens under static, cyclic and impact loading are interpreted in terms of identified structure changes.

  2. Effect of the ion-beam bombardment and annealing temperature on sol-gel derived yttrium aluminum oxide film as liquid crystal alignment layer

    NASA Astrophysics Data System (ADS)

    Jeong, Hae-Chang; Heo, Gi-Seok; Kim, Eun-Mi; Lee, Ju Hwan; Han, Jeong-Min; Seo, Dae-Shik

    2017-02-01

    We demonstrated a homogeneous liquid-crystal (LC) alignment state on yttrium aluminum oxide (YAlO) films, where the alignment was induced by ion-beam (IB) irradiation. Topographical analysis was performed by atomic force microscopy as a function of annealing temperature. Higher annealing temperatures yielded a smoother surface, accompanied by reduced light scattering. Transparency in the visible region increased on the surface fabricated at higher annealing temperatures. LC alignment mechanism was determined by X-ray diffraction (XRD) analysis. Moreover, IB-irradiated YAlO films annealed at temperatures greater than 200 °C exhibited good thermal stability and low capacitance-voltage hysteresis. The IB-irradiated YAlO films are suitable as alternative alignment layers in advanced LC display applications.

  3. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  4. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  5. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, Graeme (Inventor)

    1984-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids (16, 18) with multiple pairs of aligned holes positioned to direct a group of beamlets (20) along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam (14). An accelerator electrode device (22) downstream from the extraction grids, is at a much lower potential than the grids to accelerate the combined beam.

  6. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  7. Comparison of thermoluminescence characteristics in γ-ray and C(5+) ion beam-irradiated LiCaAlF6 :Ce phosphor.

    PubMed

    Yerpude, M M; Dhoble, N S; Lochab, S P; Dhoble, S J

    2016-08-01

    We compare the thermoluminescence (TL) behavior of Ce(3+) ion-activated LiCaAlF6 exposed to γ-rays and a carbon ion beam. The reported phosphor is synthesized using an in-house precipitation method with varying concentrations of activator ion and is characterized by X-ray diffraction (XRD) and TL. Rietveld refinement is performed to study the structural statistics. The TL glow curve consists of a prominent glow peak at 232°C with three shoulders at 115, 159 and 333°C when exposed to γ-rays from a (60) Co source. When exposed to a C(5+) ion beam, the TL glow curve consists of five peaks with peak temperatures near 156, 221, 250, 287 and 330°C, and is found to vary slightly with changing fluence. Glow curve convolution deconvolution (GCCD) functions are applied to the TL curves for complete analysis of the glow curve structure and TL traps. The order of kinetics (b), activation energy (E) and frequency factor are determined using Chen's peak shape method and theoretical curves are drawn using GCCD functions. A track interaction model (TIM) is used to explain the sublinearity/saturation at higher fluences. Ion beam parameters are analyzed using Monte-Carlo simulation-based SRIM-2013 code. Copyright © 2016 John Wiley & Sons, Ltd.

  8. SU-E-T-671: Range-Modulation Effects of Carbon Ion Beams in Lung Tissue

    SciTech Connect

    Witt, M; Weber, U; Simeonov, Y; Zink, K

    2015-06-15

    Purpose: When particles traversing inhomogeneous materials like lung they show a characteristic range modulation which cannot be observed in homogeneous materials. It is possible to describe the range modulation by a convolution of an unperturbed Bragg-Curve and a normal distribution. The sigma of the normal distribution is a parameter for the strength of the modulation effect. A new material parameter (modulation power, P-mod) is introduced which is independent of the material thickness. It is defined as the square of sigma divided by the mean water equivalent thickness of the target (µ). Methods: The modulation power of lung tissue was determined by actual Bragg-peak measurements after traversing an ex-vivo porcine lung and by Monte-Carlo simulations with micro-CT data of human lung tissue. The determined modulation powers were used to show the effect of range modulation effects in a simplified treatment situation. A four centimeter spread-out Bragg-peak after traversing eight centimeter of lung tissue was simulated in FLUKA. The SOBP with and without consideration of range modulation effects were compared. Results: As well in the measurements as in the MC simulations range modulation effects of lung tissue were observed. The determined modulation powers showed a great range from 0.05 mm, in the micro-CT data, to 0.7 mm in the lung measurements. The SOBP comparison showed that range modulation effects Result in over- and underdosages at the distal and proximal edge of the SOBP. In the investigated case, the last 0.5 cm of the SOBP showed an underdosage of up to 50% at the distal edge, while 0.5 cm distal to the SOBP an overdosage of up to 50% was observed. Conclusion: Range modulation effects occur in inhomogeneous materials like lung. These modulation effects may Result in clinically relevant over- and underdosages but are currently not considered in commercially available treatment planning systems.

  9. Focused ion beams using a high-brightness plasma source

    NASA Astrophysics Data System (ADS)

    Guharay, Samar

    2002-10-01

    High-brightness ion beams, with low energy spread, have merits for many new applications in microelectronics, materials science, and biology. Negative ions are especially attractive for the applications that involve beam-solid interactions. When negative ions strike a surface, especially an electrically isolated surface, the surface charging voltage is limited to few volts [1]. This property can be effectively utilized to circumvent problems due to surface charging, such as device damage and beam defocusing. A compact plasma source, with the capability to deliver either positive or negative ion beams, has been developed. H- beams from this pulsed source showed brightness within an order of magnitude of the value for beams from liquid-metal ion sources. The beam angular intensity is > 40 mAsr-1 and the corresponding energy spread is <2.5 eV [2]. Using a simple Einzel lens with magnification of about 0.1, a focused current density of about 40 mAcm-2 is obtained. It is estimated that an additional magnification of about 0.1 can yield a focused current density of > 1 Acm-2 and a spot size of 100 nm. Such characteristics of focused beam parameters, using a dc source, will immediately open up a large area of new applications. [1] P. N. Guzdar, A. S. Sharma, S. K. Guharay, "Charging of substrates irradiated by particle beams" Appl. Phys. Lett. 71, 3302 (1997). [2] S. K. Guharay, E. Sokolovsky, J. Orloff, "Characteristics of ion beams from a Penning source for focused ion beam applications" J. Vac. Sci Technol. B17, 2779 (1999).

  10. Intense non-relativistic cesium ion beam

    SciTech Connect

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm.

  11. Effect of oxygen on ion-beam induced synthesis of SiC in silicon

    NASA Astrophysics Data System (ADS)

    Artamonov, V. V.; Valakh, M. Ya.; Klyui, N. I.; Melnik, V. P.; Romanyuk, A. B.; Romanyuk, B. N.; Yuhimchuk, V. A.

    1999-01-01

    The properties of Si-structures with a buried silicon carbide (SiC) layer created by high-dose carbon implantation into Cz-Si or Fz-Si wafers followed by high-temperature annealing were studied by Raman and infrared spectroscopy. The effect of additional oxygen implantation on the peculiarities of SiC layer formation was also studied. It was shown that under the same implantation and post-implantation annealing conditions the buried SiC layer is more effectively formed in Cz-Si or in Si (Cz-or Fz-) subjected to additional oxygen implantation. So we can conclude that oxygen in silicon promotes the SiC layer formation due to SiO x precipitate creation and accommodation of the crystal volume in the region where SiC phase is formed. Carbon segregation and amorphous carbon film formation on SiC grain boundaries were revealed.

  12. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells.

    PubMed

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-06-11

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC.

  13. Spacecraft charging during ion beam emissions in sunlight

    NASA Technical Reports Server (NTRS)

    Lai, S. T.; Mcneil, W. J.; Aggson, T. L.

    1990-01-01

    During ion beam emissions from the SCATHA satellite, the potential of the negatively charged satellite body shows a sinusoidal oscillation frequency of once-per-spin of the satellite. The minimum occurs when the ion beam is sunward. The processes that may be responsible for the voltage modulation are considered. Neutralization of ion beam space charge by photoelectrons is examined. The photoelectrons are accelerated by the negative potential of the satellite. Effects of electron impact ionization, excitation of metastable states, and photoionization of xenon neutral atoms in the ion beam are studied in detail. Critical ionization velocity interaction is unlikely under the condition considered.

  14. Evaluation of annealing and double ion beam irradiation by a laser-induced and laser-detected surface acoustic wave diagnostic system

    NASA Astrophysics Data System (ADS)

    Kitazawa, Sin-iti; Wakai, Eiichi; Aoto, Kazumi

    2016-10-01

    The effects of annealing and double ion irradiation on nuclear structural materials were investigated using a novel, non-destructive, non-contact diagnostic method. A laser-induced and laser-detected surface acoustic wave (SAW) was adopted as a diagnostic system. The SAWs propagation velocity and the SAWs vibration velocity along the normal direction of the surface were measured to investigate mechanical properties of the substrates. Change of the shear modulus was detected in the annealed substrates. Non-linear effect on amplitude of the excited SAW was observed on the double ion irradiated materials. The potential of the SAW diagnostic system for assessing nuclear structural materials was demonstrated.

  15. Effect of defect accumulation on ion-beam damage morphology by electronic excitation in lithium niobate: A MonteCarlo approach

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Crespillo, M. L.; Olivares, J.; García, G.; Agulló-López, F.

    2010-07-01

    We present a MonteCarlo approach to the non-radiative exciton-decay model recently proposed to describe ion-beam damage in LiNbO 3 produced in the electronic excitation regime. It takes into account the statistical (random) spatial distribution of ion impacts on the crystal surface. The MonteCarlo approach is necessary to simulate the evolution of the damage morphology with irradiation fluence from the single track regime to the overlapping track regime. A detailed comparison between the morphologies found for sub-threshold and above threshold irradiations is presented. Moreover, a good representation of the Avrami's type kinetics for amorphization has been achieved and it is in fair accordance with experiment. For moderate fluences where homogeneous amorphous layers are generated, the new approach predicts that the amorphous and crystalline layers are separated by a diffuse (thick) boundary that includes a mixed amorphous-crystalline composition.

  16. Fast dose analysis of movement effects during treatments with scanned proton and carbon-ion beams

    NASA Astrophysics Data System (ADS)

    Vignati, A.; Varasteh Anvar, M.; Giordanengo, S.; Monaco, V.; Attili, A.; Donetti, M.; Marchetto, F.; Mas Milian, F.; Ciocca, M.; Russo, G.; Sacchi, R.; Cirio, R.

    2017-01-01

    Charged particle therapy delivered using scanned pencil beams shows the potential to produce better dose conformity than conventional radiotherapy, although the dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of engines to monitor the dose as it is being delivered is highly desirable, in order to enhance the development of adaptive treatment techniques in hadrontherapy. A tool for fast dose distributions analysis is presented, which integrates on GPU a Fast Forward Planning, a Fast Image Deformation algorithm, a fast computation of Gamma-Index and Dose-Volume Histogram. The tool is being interfaced with the Dose Delivery System and the Optical Tracking System of a synchrotron-based facility to investigate the feasibility to quantify, spill by spill, the effects of organ movements on dose distributions during treatment deliveries with protons and carbon-ions. The dose calculation and comparison times for a patient treated with protons on a 61.3 cm3 planning target volume, a CT matrix of 512x512x125 voxels, and a computation matrix of 170x170x125 voxels are within 1 s per spill. In terms of accuracy, the absolute dose differences compared with benchmarked Treatment Planning System results are negligible (<10-4 Gy).

  17. Tetragonal WSi{sub 2} formation by 0.5{endash}5 MeV Xe-ion-beam irradiation at 250{degree}C and 450{degree}C

    SciTech Connect

    Yamaguchi, T.; Nakata, J.

    1997-03-01

    We studied two-step tungsten-silicidation processes, which consist of low-energy W implantation followed by high-energy Xe irradiation. The formation of silicides was studied by Rutherford backscattering spectroscopy, x-ray diffraction and transmission electron microscopy. The formed silicide layer is richer in Si than that formed by thermal annealing. The transformation from the hexagonal to tetragonal (usually formed by thermal annealing above 600{degree}C) WSi{sub 2} phase occurred and a tetragonal WSi{sub 2} layer was successfully formed by 1-MeV Xe{sup +} and 5-MeV Xe{sup ++} ion irradiation at under irradiation temperatures of 410 and 450{degree}C. The transformation did not occur by 0.5-MeV Xe{sup +} ions at the same substrate temperature. The tetragonal phase was also observed after irradiation by 1-MeV Xe{sup +} at 250{degree}C. The phase transformation rate normalized to the nuclear energy deposition density E{sub n} increases with the electronic energy deposition density E{sub e}. This fact indicates that the phase transformation is enhanced by the inelastic electronic scattering of high-energy ion irradiation. The irradiation temperature dependence of the phase transformation was also studied. The mechanism of the silicidation by elastic nuclear scattering and that of the phase transformation by inelastic electronic scattering of high-energy heavy-ion-beam irradiation are qualitatively discussed. {copyright} {ital 1997 American Institute of Physics.}

  18. Microdosimetry in ion-beam therapy

    NASA Astrophysics Data System (ADS)

    Magrin, Giulio; Mayer, Ramona

    2015-05-01

    The information of the dose is not sufficiently describing the biological effects of ions on tissue since it does not express the radiation quality, i.e. the heterogeneity of the processes due to the slowing-down and the fragmentation of the particles when crossing a target. Depending on different circumstances, the radiation quality can be determined using measurements, calculations, or simulations. Microdosimeters are the primary tools used to provide the experimental information of the radiation quality and their role is becoming crucial for the recent clinical developments in particular with carbon ion therapy. Microdosimetry is strongly linked to the biological effectiveness of the radiation since it provides the physical parameters which explicitly distinguish the radiation for its capability of damaging cells. In the framework of ion-beam therapy microdosimetry can be used in the preparation of the treatment to complement radiobiological experiments and to analyze the modification of the radiation quality in phantoms. A more ambitious goal is to perform the measurements during the irradiation procedure to determine the non-targeted radiation and, more importantly, to monitor the modification of the radiation quality inside the patient. These procedures provide the feedback of the treatment directly beneficial for the single patient but also for the characterization of the biological effectiveness in general with advantages for all future treatment. Traditional and innovative tools are currently under study and an outlook of present experience and future development is presented here.

  19. Electromagnetic ion beam instabilities

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Foosland, D. W.; Smith, C. W.; Lee, M. A.; Goldstein, M. L.

    1984-01-01

    The linear theory of electromagnetic instabilities driven by an energetic ion beam streaming parallel to a magnetic field in a homogeneous Vlasov plasma is considered. Numerical solutions of the full dispersion equation are presented. At propagation parallel to the magnetic field, there are four distinct instabilities. A sufficiently energetic beam gives rise to two unstable modes with right-hand polarization, one resonant with the beam, the other nonresonant. A beam with sufficiently large T (perpendicular to B)/T (parallel to B) gives rise to the left-hand ion cyclotron anisotropy instability at relatively small beam velocities, and a sufficiently hot beam drives unstable a left-hand beam resonant mode. The parametric dependences of the growth rates for the three high beam velocity instabilities are presented here. In addition, some properties at oblique propagation are examined. It is demonstrated that, as the beam drift velocity is increased, relative maxima in growth rates can arise at harmonics of the ion cyclotron resonance for both right and left elliptically polarized modes.

  20. The role of electronic energy loss in ion beam modification of materials

    DOE PAGES

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; ...

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while inmore » other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.« less

  1. The role of electronic energy loss in ion beam modification of materials

    SciTech Connect

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; Zhang, Yanwen

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while in other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.

  2. Focused Ion Beam Fabrication of Graded Channel FET’s (Field Effect Transistors) in GaAs and Si.

    DTIC Science & Technology

    1986-10-27

    LAB OF ELECTRON.. J MELNGRILIS UNLSSIFIED 27 OCT B6 RORASI3-8-C-215FG9/ IIII’.EOMNE’." 11N JZ3=V..0r 𔃾 MICROCOPY RESOLUTION TEST CHART NATIONAL...BUREAU OF SIAN(OARDS IQ63 A .’C .4 li ii - J . - . N N ".~- . ~ AD-A 173 782 October 27, 1986 Focused Ion Beam Fabrication of Graded Channel FET’s 9 in...a and identify by blocit number i ’ 19. ABSTRACT (Continue on nruerso if nectisew and identify by biock numborp Work by J . J . Meingailis and his

  3. Focused ion beam lithography and anodization combined nanopore patterning.

    PubMed

    Lu, Kathy; Zhao, Jingzhong

    2010-10-01

    In this study, focused ion beam lithography and anodization are combined to create different nanopore patterns. Uniform-, alternating-, and gradient-sized shallow nanopore arrays are first made on high purity aluminum by focused ion beam lithography. These shallow pore arrays are then used as pore initiation sites during anodization by different electrolytes. Depending on the nature of the anodization electrolyte, the nanopore patterns by focused ion beam lithography play different roles in further pore development during anodization. The pore-to-pore distance by focused ion beam lithography should match with that by anodization for guided pore development to be effective. Ordered and heterogeneous nanopore arrays are obtained by the focused ion beam lithography and anodization combined approach.

  4. Applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Gelerinter, E.; Spielberg, N.

    1980-01-01

    Wire adhesion in steel belted radial tires; carbon fibers and composite; cold welding, brazing, and fabrication; hydrogen production, separation, and storage; membrane use; catalysis; sputtering and texture; and ion beam implantation are discussed.

  5. Surface modification using ionic liquid ion beams

    NASA Astrophysics Data System (ADS)

    Takaoka, Gikan H.; Hamaguchi, Takuya; Takeuchi, Mitsuaki; Ryuto, Hiromichi

    2014-12-01

    We developed an ionic liquid (IL) ion source using 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and produced IL ion beams by applying a high electric field between the tip and the extractor. Time-of-flight measurements showed that small cluster and fragment ions were contained in the positive and negative ion beams. The positive and negative cluster ions were deposited on Si(1 0 0) substrates. X-ray photoelectron spectroscopy measurements showed that the composition of the deposited layers was similar to that of an IL solvent. This suggests that a cation (A+) or an anion (B-) was attached to an IL cluster (AB)n, resulting in the formation of positive cluster ions (AB)nA+ or negative cluster ions (AB)nB-, respectively. The surfaces of the IL layers deposited on Si(1 0 0) substrates were flat at an atomic level for positive and negative cluster ion irradiation. Moreover, the contact angles of the deposited layers were similar to that of the IL solvent. Thus, surface modification of Si(1 0 0) substrates was successfully demonstrated with BMIM-PF6 cluster ion beams.

  6. Chemical modifications at Teflon interfaces induced by MeV ion beams

    NASA Astrophysics Data System (ADS)

    Ingemarsson, P. Anders; Keane, Michael P.; Gelius, Ulrik

    1989-10-01

    The effect of MeV ion beams incident on Teflon surfaces was studied by x-ray photoelectron spectroscopy (XPS). Irradiation with 20-MeV 35Cl4+ was carried out at doses ranging from 1012 to 1014 ions/cm2. Residual gas analysis was performed during irradiation to identify molecular fragments released from the Teflon surface. XPS spectra were recorded before and after ion irradiation. On some substrates, gold thin films were evaporated before and after ion bombardment, respectively, to detect possible modifications in thin-film adhesion. Changes in the XPS spectra were interpreted in terms of chemical and structural shifts, and related to the observed adhesion modifications.

  7. Ion beam sculpting molecular scale devices

    NASA Astrophysics Data System (ADS)

    Stein, Derek Martin

    We envision solid-state nanopores at the heart of a device capable of detecting, manipulating, and ultimately sequencing individual DNA molecules. To reliably fabricate holes whose diameter is commensurate with that of the DNA molecule (˜2nm), low energy ion beams are employed to tailor the size of holes in solid-state membranes by a new technique we call "ion beam sculpting". The transmission rate of ions through the hole is monitored to provide a direct, real-time measure of the hole area that is used as a feedback signal to trigger the termination of the ion irradiation process when the desired hole size is obtained. The sensitivity of the transmitted ion count rate to atomic-scale material rearrangements at the perimeter of a hole led to a surprising discovery: Low-energy ion beams stimulate the lateral transport of matter when incident on a surface, resulting in the growth of a thin film from the boundary of a hole that closes the hole. The net flow of matter is determined by a competition between sputter erosion, which opens the hole, and a hole closing process that dominates at high temperature and low flux. The timescale for lateral matter transport under ion irradiation is surprisingly long---on the order of a second. Two physical models are proposed to account for the surprising ion-stimulated transport of matter. One model is based on the viscous flow of a stressed surface layer, while the other is based on the diffusion of mobile, ion-stimulated species at the surface of the material into the hole. The predictions of the latter are compared to ion beam sculpting experiments. We exploit ion beam sculpting to fabricate solid-state nanopores used as electronic detectors of individual DNA molecules. In ionic solution, negatively charged DNA molecules are drawn to the nanopore by an applied electrochemical potential, resulting in a detectable characteristic ionic current blockade when a molecules occludes the nanopore. The applicability of the ion sculpting

  8. A Monte Carlo-based treatment-planning tool for ion beam therapy

    PubMed Central

    Böhlen, T.T.; Bauer, J.; Dosanjh, M.; Ferrari, A.; Haberer, T.; Parodi, K.; Patera, V.; Mairani, A.

    2013-01-01

    Ion beam therapy, as an emerging radiation therapy modality, requires continuous efforts to develop and improve tools for patient treatment planning (TP) and research applications. Dose and fluence computation algorithms using the Monte Carlo (MC) technique have served for decades as reference tools for accurate dose computations for radiotherapy. In this work, a novel MC-based treatment-planning (MCTP) tool for ion beam therapy using the pencil beam scanning technique is presented. It allows single-field and simultaneous multiple-fields optimization for realistic patient treatment conditions and for dosimetric quality assurance for irradiation conditions at state-of-the-art ion beam therapy facilities. It employs iterative procedures that allow for the optimization of absorbed dose and relative biological effectiveness (RBE)-weighted dose using radiobiological input tables generated by external RBE models. Using a re-implementation of the local effect model (LEM), the MCTP tool is able to perform TP studies using ions with atomic numbers Z ≤ 8. Example treatment plans created with the MCTP tool are presented for carbon ions in comparison with a certified analytical treatment-planning system. Furthermore, the usage of the tool to compute and optimize mixed-ion treatment plans, i.e. plans including pencil beams of ions with different atomic numbers, is demonstrated. The tool is aimed for future use in research applications and to support treatment planning at ion beam facilities. PMID:23824131

  9. Effect of using stencil masks made by focused ion beam milling on permalloy (Ni81Fe19) nanostructures.

    PubMed

    Bates, J R; Miyahara, Y; Burgess, J A J; Iglesias-Freire, O; Grütter, P

    2013-03-22

    Focused ion beam (FIB) milling is a common fabrication technique to make nanostencil masks which has the unintended consequence of gallium ion implantation surrounding milled features in silicon nitride membranes. We observe major changes in film structure, chemical composition, and magnetic behaviour of permalloy nanostructures deposited by electron beam evaporation using silicon nitride stencil masks made by a FIB as compared to stencil masks made by regular lithography techniques. We characterize the stenciled structures and both types of masks using transmission electron microscopy, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy, magnetic force microscopy and kelvin probe force microscopy. All these techniques demonstrate distinct differences at a length scale of a 1-100 nm for the structures made using stencil mask fabricated using a FIB. The origin of these differences seems to be related to the presence of implanted ions, a detailed understanding of the mechanism however remains to be developed.

  10. The effect of CH4/H2 ratio on the surface properties of HDPE treated by CHx ion beam bombardment

    NASA Astrophysics Data System (ADS)

    Ding, Wanyu; Guo, Yuanyuan; Ju, Dongying; Sato, Susumu; Tsunoda, Teruo

    2016-06-01

    The surface of high density polyethylene (HDPE) substrate was bombarded by the CHx group ion beam, which was generated by the mixture of CH4/H2. Varying the CH4/H2 ratio, HDPE surfaces with different chemical bond structures and properties were obtained. Raman and XPS results show that sp2 and sp3 bond structures are formed at HDPE surface bombarded by CHx group ions. The sp3 bond fraction at bombarded HDPE surface depends on the H2 ratio in CH4/H2 mixture, because the H ion/atom/molecule can improve the growth of sp3 bond structure. For HDPE surface bombarded by CH4/H2 = 50/50, sp3 bond fraction reaches the maximum of 30.5%, the surface roughness decreases to 17.04 nm, and the static contact angle of polar H2O molecule increased to 140.2∘.

  11. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    NASA Astrophysics Data System (ADS)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L. D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-05-01

    This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  12. Exploring Cryogenic Focused Ion Beam Milling as a Group III-V Device Fabrication Tool

    DTIC Science & Technology

    2013-09-01

    focused ion beam (cryo-FIB) milling as a Group III-V device fabrication tool. Cryogenic cooling of III-V semiconductor material during Ga + FIB irradiation...potential applications of cryogenic focused ion beam (cryo-FIB) milling as a Group III-V device fabrication tool. Cryogenic cooling of III-V semiconductor...sensitivity to the Ga ion beam . This sensitivity is manifested as changes in the structure and chemical composition of the starting material upon exposure to

  13. Data-driven RBE parameterization for helium ion beams.

    PubMed

    Mairani, A; Magro, G; Dokic, I; Valle, S M; Tessonnier, T; Galm, R; Ciocca, M; Parodi, K; Ferrari, A; Jäkel, O; Haberer, T; Pedroni, P; Böhlen, T T

    2016-01-21

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter (α/β)ph of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the RBEα = αHe/αph and Rβ = βHe/βph ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival (RBE10) are compared with the experimental ones. Pearson's correlation coefficients were, respectively, 0.85 and 0.84 confirming the soundness of the introduced approach. Moreover, due to the lack of experimental data at low LET, clonogenic experiments have been performed irradiating A549 cell line with (α/β)ph = 5.4 Gy at the entrance of a 56.4 MeV u(-1)He beam at the Heidelberg Ion Beam Therapy Center. The proposed parameterization reproduces the measured cell survival within the experimental uncertainties. A RBE formula, which depends only on dose, LET and (α/β)ph as input parameters is proposed, allowing a straightforward implementation in a TP system.

  14. Advanced techniques for characterization of ion beam modified materials

    DOE PAGES

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; ...

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  15. Advanced techniques for characterization of ion beam modified materials

    SciTech Connect

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; Kluth, Patrick; Tuomisto, Filip

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiation effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.

  16. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L. D.

    2013-07-01

    Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  17. Stability of colliding ion beams

    SciTech Connect

    Foote, E.A.; Kulsrud, R.M.

    1980-11-01

    We determine conditions for stability of two identical colliding ion beams in the presence of neutralizing electrons, but no background ions. Such a situation is envisioned for the Counterstreaming Ion Torus. The ion beams are taken to be Maxwellian in their frames of reference. The approximation of electrostatic and electromagnetic modes is made. The stability of the electrostatic modes depends on the relation between the ion electron temperature ratio and the relative beam velocities. The stability of the electromagnetic mode depends on the relation between the ion plasma ..beta.. and the relative beam velocities.

  18. Effects of arrival rate and gas pressure on the chemical bonding and composition in titanium nitride films prepared on Si(100) substrates by ion beam and vapor deposition

    NASA Astrophysics Data System (ADS)

    Matsuoka, M.; Isotani, S.; Mittani, J. C. R.; Chubaci, J. F. D.; Ogata, K.; Kuratani, N.

    2005-01-01

    Thin titanium nitride films were prepared at room temperature by titanium metal vapor deposition on silicon substrates with simultaneous irradiation by a 2 keV nitrogen ion beam. Arrival rate ratios, ARR(N/Ti), defined as the ratio of the flux of incident atomic nitrogen particles in the ion beam relative to the flux of titanium atoms transported to the substrate, ranged from 0.17 to 2.5. The gas pressure in the vacuum chamber was maintained at 1.3×10-3 or 6.7×10-3 Pa during the deposition and irradiation process. Analyses of Ti 2p x-ray photoelectron spectroscopy spectra indicated the presence of metal Ti0, nitride TiN, oxide TiO2, oxynitride TiNxOy, and carbide TiC phases. The Ti0 phase was observed exclusively and predominantly in the films prepared at 1.3×10-3 Pa and ARR(N/Ti)=0.17, 0.21, and 0.28, and the TiN phase is major in the others, as confirmed by the x-ray diffractometry analyses. The chemical composition ratio N/Ti in the films prepared at 1.3×10-3 Pa increased linearly with increasing ARR(N/Ti) up to ARR(N/Ti)=0.42 and tended to be constant with further increase in ARR(N/Ti), while this ratio in the films prepared at 6.7×10-3 Pa was almost constant independently of ARR(N/Ti), similar to the constant value observed at 1.3×10-3 Pa and higher ARR(N/Ti). This dependence may be understood by comparison with the flux of evaporated titanium atoms, the flux of nitrogen in the beam, and the impingement rate of nitrogen gas in the vacuum chamber, evaluated through the kinetic theory of gases. On the other hand, titanium is known to be one of the chemically active materials which form stable compounds with gases by chemisorption, this fact leading to considerable incorporation of contaminant oxygen and carbon in the depositing titanium film.

  19. Laser-cooled continuous ion beams

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  20. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws.

    PubMed

    Sulania, Indra; Agarwal, Dinesh C; Kumar, Manish; Kumar, Sunil; Kumar, Pravin

    2016-07-27

    We report the formation of self-organized nano-dots on the surface of InP(100) upon irradiating it with a 500 keV Ar(4+) ion beam. The irradiation was carried out at an angle of 25° with respect to the normal at the surface with 5 different fluences ranging from 1.0 × 10(15) to 1.0 × 10(17) ions per cm(2). The morphology of the ion-irradiated surfaces was examined by atomic force microscopy (AFM) and the formation of the nano-dots on the irradiated surfaces was confirmed. The average size of the nano-dots varied from 44 ± 14 nm to 94 ± 26 nm with increasing ion fluence. As a function of the ion fluence, the variation in the average size of the nano-dots has a great correlation with the surface roughness, which changes drastically up to the ion fluence of 1.0 × 10(16) ions per cm(2) and attains almost a saturation level for further irradiation. The roughness and the growth exponent values deduced from the scaling laws suggest that the kinetic sputtering and the large surface diffusion steps of the atoms are the primary reasons for the formation of the self-organized nanodots on the surface. X-ray photo-electron spectroscopy (XPS) studies show that the surface stoichiometry changes with the ion fluence. With irradiation, the surface becomes more indium (In)-rich owing to the preferential sputtering of the phosphorus atoms (P) and the pure metallic In nano-dots evolve at the highest ion fluence. The cross-sectional scanning electron microscopy (SEM) analysis of the sample irradiated with the highest fluence showed the absence of the nanostructuring beneath the surface. The surface morphological changes at this medium energy ion irradiation are discussed in correlation with the low and high energy experiments to shed more light on the mechanism of the well separated nano-dot formation.

  1. Fluorine-ion-beam modification of magnetic properties of thin GaMnAs films

    SciTech Connect

    Mello, S. L. A. E-mail: mms@if.ufrj.br; Sant'Anna, M. M. E-mail: mms@if.ufrj.br Codeço, C. F. S.; Dong, S. N.; Liu, X.; Furdyna, J. K. E-mail: mms@if.ufrj.br; Yoo, T.

    2015-05-07

    Magnetic and electrical transport properties of fluorine-ion-beam irradiated GaMnAs films were studied as a function of ion fluence and energy of impinging ions. The different nature of defects created by ions of low- and high-energies is explored in this work by means of transport and magnetization measurements. Our results show that the saturation magnetization of the irradiated samples is suppressed as the ion fluence is increased. Interestingly, however, the same effect is not observed in the case of critical temperature, which remains nearly the same for irradiated and non-irradiated samples measured by superconducting quantum interference device. Magnetotransport measurements appear to provide more reliable results regarding the critical temperature, since they are consistent with the ion-irradiation-induced disorder in the GaMnAs film, quantified here as the increase of the resistivity. We discuss this behavior based on the inhomogeneity of damages caused by the irradiation process.

  2. Direct evaluation of radiobiological parameters from clinical data in the case of ion beam therapy: an alternative approach to the relative biological effectiveness.

    PubMed

    Cometto, A; Russo, G; Bourhaleb, F; Milian, F M; Giordanengo, S; Marchetto, F; Cirio, R; Attili, A

    2014-12-07

    The relative biological effectiveness (RBE) concept is commonly used in treatment planning for ion beam therapy. Whether models based on in vitro/in vivo RBE data can be used to predict human response to treatments is an open issue. In this work an alternative method, based on an effective radiobiological parameterization directly derived from clinical data, is presented. The method has been applied to the analysis of prostate cancer trials with protons and carbon ions.Prostate cancer trials with proton and carbon ion beams reporting 5 year-local control (LC5) and grade 2 (G2) or higher genitourinary toxicity rates (TOX) were selected from literature to test the method. Treatment simulations were performed on a representative subset of patients to produce dose and linear energy transfer distribution, which were used as explicative physical variables for the radiobiological modelling. Two models were taken into consideration: the microdosimetric kinetic model (MKM) and a linear model (LM). The radiobiological parameters of the LM and MKM were obtained by coupling them with the tumor control probability and normal tissue complication probability models to fit the LC5 and TOX data through likelihood maximization. The model ranking was based on the Akaike information criterion.Results showed large confidence intervals due to the limited variety of available treatment schedules. RBE values, such as RBE = 1.1 for protons in the treated volume, were derived as a by-product of the method, showing a consistency with current approaches. Carbon ion RBE values were also derived, showing lower values than those assumed for the original treatment planning in the target region, whereas higher values were found in the bladder. Most importantly, this work shows the possibility to infer the radiobiological parametrization for proton and carbon ion treatment directly from clinical data.

  3. Hard three-dimensional sp 2 carbon-bonded phase formed by ion beam irradiation of fullerene, a-C and polymeric a-C:H films

    NASA Astrophysics Data System (ADS)

    Baptista, D. L.; Foerster, C. E.; Lepienski, C. M.; Zawislak, F. C.

    2004-06-01

    The formation of new carbon amorphous phase through the ion irradiation of fullerene, a-C and polymeric a-C:H films is presented. The carbon films were subjected to N irradiation at 400 keV in the fluence range from 10 13 to 3 × 10 16 N cm -2. Modifications in the carbon structure, as function of the irradiation fluence, were investigated using the Rutherford backscattering spectrometry, nuclear reaction analysis, Fourier transform infrared, Raman spectroscopy, UV-VIS-NearIR spectrophotometry and nanoindentation techniques. After high fluence, the three carbon samples were transformed into very similar hard (≈14 GPa) and non-hydrogenated amorphous carbon layers with very low optical gaps (≈0.2 eV) and an unusual sp 2 rich-bonded atomic network. The mechanical properties of the irradiated films correlated with the bonding topologies of this new sp 2 carbon phase are analyzed in terms of the constraint-counting model. The results show that the unusual rigidity was achieved by the distortion of the sp 2 carbon bond angles, giving origin to a constrained three-dimensional sp 2 carbon bonded network.

  4. Monte Carlo simulations of the relative biological effectiveness for DNA double strand breaks from 300 MeV u-1 carbon-ion beams

    NASA Astrophysics Data System (ADS)

    Huang, Y. W.; Pan, C. Y.; Hsiao, Y. Y.; Chao, T. C.; Lee, C. C.; Tung, C. J.

    2015-08-01

    Monte Carlo simulations are used to calculate the relative biological effectiveness (RBE) of 300 MeV u-1 carbon-ion beams at different depths in a cylindrical water phantom of 10 cm radius and 30 cm long. RBE values for the induction of DNA double strand breaks (DSB), a biological endpoint closely related to cell inactivation, are estimated for monoenergetic and energy-modulated carbon ion beams. Individual contributions to the RBE from primary ions and secondary nuclear fragments are simulated separately. These simulations are based on a multi-scale modelling approach by first applying the FLUKA (version 2011.2.17) transport code to estimate the absorbed doses and fluence energy spectra, then using the MCDS (version 3.10A) damage code for DSB yields. The approach is efficient since it separates the non-stochastic dosimetry problem from the stochastic DNA damage problem. The MCDS code predicts the major trends of the DSB yields from detailed track structure simulations. It is found that, as depth is increasing, RBE values increase slowly from the entrance depth to the plateau region and change substantially in the Bragg peak region. RBE values reach their maxima at the distal edge of the Bragg peak. Beyond this edge, contributions to RBE are entirely from nuclear fragments. Maximum RBE values at the distal edges of the Bragg peak and the spread-out Bragg peak are, respectively, 3.0 and 2.8. The present approach has the flexibility to weight RBE contributions from different DSB classes, i.e. DSB0, DSB+ and DSB++.

  5. Measurement of secondary particle production induced by particle therapy ion beams impinging on a PMMA target

    NASA Astrophysics Data System (ADS)

    Toppi, M.; Battistoni, G.; Bellini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Frallicciardi, P. M.; Marafini, M.; Mattei, I.; Morganti, S.; Muraro, S.; Paramatti, R.; Patera, V.; Pinci, D.; Piersanti, L.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Senzacqua, M.; Solfaroli Camillocci, E.; Traini, G.; Voena, C.

    2016-05-01

    Particle therapy is a technique that uses accelerated charged ions for cancer treatment and combines a high irradiation precision with a high biological effectiveness in killing tumor cells [1]. Informations about the secondary particles emitted in the interaction of an ion beam with the patient during a treatment can be of great interest in order to monitor the dose deposition. For this purpose an experiment at the HIT (Heidelberg Ion-Beam Therapy Center) beam facility has been performed in order to measure fluxes and emission profiles of secondary particles produced in the interaction of therapeutic beams with a PMMA target. In this contribution some preliminary results about the emission profiles and the energy spectra of the detected secondaries will be presented.

  6. He and H irradiation effects on the nanoindentation hardness of CLAM steel

    NASA Astrophysics Data System (ADS)

    Jiang, Siben; Peng, Lei; Ge, Hongen; Huang, Qunying; Xin, Jingping; Zhao, Ziqiang

    2014-12-01

    In this study, He and H ion irradiation induced hardening behavior of China Low Activation Martensitic (CLAM) steel was investigated, and the influence of Si on irradiation hardening was also examined. CLAM steel with different Si contents, Heat 0912 and Heat 0408D, were irradiated with single He (He concentration range from 0 to 2150 appm) ion beam and He/H dual ion beams. Then nanoindentation tests were applied to evaluate the ion irradiation induced hardening effect. The result of Heat 0912 showed hardening effect would be more serious with higher He concentration, and the trend saturated when He concentration reach 1000 appm. Comparing the result of Heat 0912 and Heat 0408D, higher Si content might improve the resistance to hardening.

  7. Ions beams and ferroelectric plasma sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration <300 mus and dimensionless perveance Q up to 8 x 10-4. Transverse profile measurements 33 cm downstream of the ion source showed that the dependence of beam radius on Q was consistent with space charge expansion. It was concluded that the beam was perveance-dominated with a charge neutralization fraction of approximately zero in the absence of neutralizing plasma. Since beam expansion occurred primarily due to space charge, the decrease in effective perveance due to neutralization by FEPS plasma can be inferred from the reduction in beam radius. Results on propagation of the ion beam through FEPS plasma demonstrate that after the FEPS is triggered, the beam radius decreases to its neutralized value in about 5 mus. The duration of neutralization was about 10 mus at a charging voltage VFEPS = 5.5 kV and 35 mus at VFEPS = 6.5 kV. With VFEPS = 6.5 kV, the transverse current density profile 33 cm downstream

  8. Ion Beam Processing.

    DTIC Science & Technology

    1987-03-13

    ure are only those which had the greatest effect . Several features of this periodic chart are worth not- ing: i) some elements improve more than one...from nearly all the groups of the periodic table can have beneficial effects on a given property. iv) Ions which improve properties are highlighted...here, but ions which have deleterious effects may also be implanted which facilitates the study of mechanisms of wear and corrosion. v) Elements to

  9. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  10. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  11. Ion beam microtexturing of surfaces

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1981-01-01

    Some recent work in surface microtecturing by ion beam sputtering is described. The texturing is accomplished by deposition of an impurity onto a substrate while simultaneously bombarding it with an ion beam. A summary of the theory regarding surface diffusion of impurities and the initiation of cone formation is provided. A detailed experimental study of the time-development of individual sputter cones is described. A quasi-liquid coating was observed that apparently reduces the sputter rate of the body of a cone compared to the bulk material. Experimental measurements of surface diffusion activation energies are presented for a variety of substrate-seed combinations and range from about 0.3 eV to 1.2 eV. Observations of apparent crystal structure in sputter cones are discussed. Measurements of the critical temperature for cone formation are also given along with a correlation of critical temperature with substrate sputter rate.

  12. Ion beam inertial confinement target

    DOEpatents

    Bangerter, Roger O.; Meeker, Donald J.

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  13. Low energy ion beam induced changes in structural and thermal properties of polycarbonate

    NASA Astrophysics Data System (ADS)

    Reheem, A. M. Abdel; Atta, A.; Maksoud, M. I. A. Abdel

    2016-10-01

    The aim of the present study is extended for obtaining relation between the collision of ion beam with polycarbonate polymer (PC) and the introduced modification of technological applications. Polycarbonate films are irradiated by a 6 keV argon ion beam extracted from locally design cold cathode ion source with different ion fluences. The films are characterized using X-ray Diffraction (XRD), Mechanical tester, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The increase in ion beam irradiation leads to an increase in the tensile strength and reduction in elongation at break for PC. TGA Analysis shows that the thermal decomposition temperature of irradiated polycarbonate changes with ion fluence. The DSC graphs show improvements in thermal stability with increase in the activation energy after ion beam irradiation. Ion penetration depths and distributions of scattered atoms are calculated using SRIM Monte Carlo simulation programs.

  14. Ion irradiation effects on metallic nanocrystals

    SciTech Connect

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C.

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  15. Optical studies of ion-beam synthesized metal alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Magudapathy, P.; Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-01

    AuxAg1-x alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ˜45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar+ ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar+ ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of AuxAg1-x nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  16. Peculiarities of temperature dependent ion beam sputtering and channeling of crystalline bismuth.

    PubMed

    Langegger, Rupert; Hradil, Klaudia; Steiger-Thirsfeld, Andreas; Bertagnolli, Emmerich; Lugstein, Alois

    2014-08-01

    In this paper, we report on the surface evolution of focused ion beam treated single crystalline Bi(001) with respect to different beam incidence angles and channeling effects. 'Erosive' sputtering appears to be the dominant mechanism at room temperature (RT) and diffusion processes during sputtering seem to play only a minor role for the surface evolution of Bi. The sputtering yield of Bi(001) shows anomalous behavior when increasing the beam incidence angle along particular azimuthal angles of the specimen. The behavior of the sputtering yield could be related to channeling effects and the relevant channeling directions are identified. Dynamic annealing processes during ion irradiation retain the crystalline quality of the Bi specimen allowing ion channeling at RT. Lowering the specimen temperature to T = -188 °C reduces dynamic annealing processes and thereby disables channeling effects. Furthermore unexpected features are observed at normal beam incidence angle. Spike-like features appear during the ion beam induced erosion, whose growth directions are not determined by the ion beam but by the channeling directions of the Bi specimen.

  17. Ion beam mixing of Fe with sapphire and silica

    SciTech Connect

    Sinha, S. K.; Vigen, K. M.; Kothari, D. C.; Som, T.; Kulkarni, V. N.; Nair, K. G. M.

    1999-06-10

    We have studied ion beam mixing of Fe with sapphire, silica, Al and Si using different mass of the ions (Ne{sup +},Ar{sup +}), different doses (5x10{sup 15} to 2x10{sup 17} ions/cm{sup 2}) and different temperatures (273 deg. K, 423 deg. K and 573 deg. K). Thin film of Fe was deposited by thermal evaporation method. Ion energy was chosen from 30 to 110 keV so that F{sub d} is maximum at the interface. All the specimens were analyzed by RBS. It is found that the square of the diffusion length Dt is proportional to the ion dose for both types of the substrates (Al{sub 2}O{sub 3} and SiO{sub 2}) implying that mixing is due to the ballistic effect (i.e. cascade mixing). Also mixing is more when irradiated by Ar{sup +} ions than Ne{sup +} ions. Comparison of Dt's shows that mixing is less in ceramics than in pure-elements Al and Si. In Fe-Al{sub 2}O{sub 3} samples, mixing decreases with increase in irradiation temperatures implying de-mixing in crystalline ionic bonded oxide whereas mixing increases in the covalently bonded oxide SiO{sub 2}. Irradiated annealed samples of Fe/Al{sub 2}O{sub 3} and Fe/SiO{sub 2} show de-mixing and mixing respectively.

  18. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  19. Electron Cooling of Intense Ion Beam

    SciTech Connect

    Dietrich, J.; Kamerdjiev, V.; Maier, R.; Prasuhn, D.; Stein, J.; Stockhorst, H.; Korotaev, Yu.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-03-20

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) are presented. Intensity of the proton beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Results of the instability investigations performed at COSY during last years are presented in this report in comparison with previous results from HIMAC (Chiba, Japan) CELSIUS (Uppsala, Sweden) and LEAR (CERN). Methods of the instability suppression, which allow increasing the cooled beam intensity, are described. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584.

  20. Particle radiotherapy with carbon ion beams

    PubMed Central

    2013-01-01

    Carbon ion radiotherapy offers superior dose conformity in the treatment of deep-seated malignant tumours compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. The algorithm of treatment planning and beam delivery system is tailored to the individual parameters of the patient. The present article reviews the available literatures for various disease sites including the head and neck, skull base, lung, liver, prostate, bone and soft tissues and pelvic recurrence of rectal cancer as well as physical and biological properties. PMID:23497542

  1. Maskless, resistless ion beam lithography

    SciTech Connect

    Ji, Qing

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  2. Ion-beam machining of millimeter scale optics.

    PubMed

    Shanbhag, P M; Feinberg, M R; Sandri, G; Horenstein, M N; Bifano, T G

    2000-02-01

    An ion-beam microcontouring process is developed and implemented for figuring millimeter scale optics. Ion figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target substrate to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional machining processes, are avoided. Ion-beam figuring is presented as an alternative for the final figuring of small (<1-mm) optical components. The depth of the material removed by an ion beam is a convolution between the ion-beam shape and an ion-beam dwell function, defined over a two-dimensional area of interest. Therefore determination of the beam dwell function from a desired material removal map and a known steady beam shape is a deconvolution process. A wavelet-based algorithm has been developed to model the deconvolution process in which the desired removal contours and ion-beam shapes are synthesized numerically as wavelet expansions. We then mathematically combined these expansions to compute the dwell function or the tool path for controlling the figuring process. Various models have been developed to test the stability of the algorithm and to understand the critical parameters of the figuring process. The figuring system primarily consists of a duo-plasmatron ion source that ionizes argon to generate a focused (approximately 200-microm FWHM) ion beam. This beam is rastered over the removal surface with a perpendicular set of electrostatic plates controlled by a computer guidance system. Experimental confirmation of ion figuring is demonstrated by machining a one-dimensional sinusoidal depth profile in a prepolished silicon substrate. This profile was figured to within a rms error of 25 nm in one iteration.

  3. Ion beam deposited protective films

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1981-01-01

    Single or dual ion beam sources were used to deposit thin films for different applications. Metal and metal oxide films were evaluated as protective coatings for the materials. Film adherence was measured and the most promising films were then tested under environments similar to operating conditions. It was shown that some materials do protect die material (H-13 steel) and do reduce thermal fatigue. Diamondlike films have many useful applications. A series of experiments were conducted to define and optimize new approaches to the manufacture of such films. A dual beam system using argon and methane gases was developed to generate these films.

  4. Radioactive Ion Beams and Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Laxdal, R. E.; Morton, A. C.; Schaffer, P.

    2014-02-01

    Experiments performed at radioactive ion beam facilities shed new light on nuclear physics and nuclear structure, as well as nuclear astrophysics, materials science and medical science. The many existing facilities, as well as the new generation of facilities being built and those proposed for the future, are a testament to the high interest in this rapidly expanding field. The opportunities inherent in radioactive beam facilities have enabled the search for radioisotopes suitable for medical diagnosis or therapy. In this article, an overview of the production techniques and the current status of RIB facilities and proposals will be presented. In addition, accelerator-generated radiopharmaceuticals will be reviewed.

  5. Monte Carlo simulations of ripple filters designed for proton and carbon ion beams in hadrontherapy with active scanning technique

    NASA Astrophysics Data System (ADS)

    Bourhaleb, F.; Attili, A.; Cirio, R.; Cirrone, P.; Marchetto, F.; Donetti, M.; Garella, M. A.; Giordanengo, S.; Givehchi, N.; Iliescu, S.; La Rosa, A.; Pardo, J.; Pecka, A.; Peroni, C.

    2008-02-01

    Proton and carbon ion beams have a very sharp Bragg peak. For proton beams of energies smaller than 100 MeV, fitting with a gaussian the region of the maximum of the Bragg peak, the sigma along the beam direction is smaller than 1 mm, while for carbon ion beams, the sigma derived with the same technique is smaller than 1 mm for energies up to 360 MeV. In order to use low energy proton and carbon ion beams in hadrontherapy and to achieve an acceptable homogeneity of the spread out Bragg peak (SOBP) either the peak positions along the beam have to be quite close to each other or the longitudinal peak shape needs to be broaden at least few millimeters by means of a properly designed ripple filter. With a synchrotron accelerator in conjunction with active scanning techniques the use of a ripple filter is necessary to reduce the numbers of energy switches necessary to obtain a smooth SOBP, leading also to shorter overall irradiation times. We studied the impact of the design of the ripple filter on the dose uniformity in the SOBP region by means of Monte Carlo simulations, implemented using the package Geant4. We simulated the beam delivery line supporting both proton and carbon ion beams using different energies of the beams. We compared the effect of different kind of ripple filters and their advantages.

  6. Data-driven RBE parameterization for helium ion beams

    NASA Astrophysics Data System (ADS)

    Mairani, A.; Magro, G.; Dokic, I.; Valle, S. M.; Tessonnier, T.; Galm, R.; Ciocca, M.; Parodi, K.; Ferrari, A.; Jäkel, O.; Haberer, T.; Pedroni, P.; Böhlen, T. T.

    2016-01-01

    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter {{(α /β )}\\text{ph}} of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the \\text{RB}{{\\text{E}}α}={α\\text{He}}/{α\\text{ph}} and {{\\text{R}}β}={β\\text{He}}/{β\\text{ph}} ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival (\\text{RB}{{\\text{E}}10} ) are compared with the experimental ones. Pearson’s correlation coefficients were, respectively, 0.85 and 0.84 confirming the soundness of the introduced approach. Moreover, due to the lack of experimental data at low LET, clonogenic experiments have been performed irradiating A549 cell line with {{(α /β )}\\text{ph}}=5.4 Gy at the entrance of a 56.4 MeV u-1He beam at the Heidelberg Ion Beam Therapy Center. The proposed parameterization reproduces the measured cell survival within the experimental uncertainties. A RBE formula, which depends only on dose, LET and {{(α /β )}\\text{ph}} as input parameters is proposed, allowing a straightforward implementation in a TP system.

  7. Radiation protection considerations along a radioactive ion beam transport line

    NASA Astrophysics Data System (ADS)

    Sarchiapone, Lucia; Zafiropoulos, Demetre

    2016-09-01

    The goal of the SPES project is to produce accelerated radioactive ion beams for Physics studies at “Laboratori Nazionali di Legnaro” (INFN, Italy). This accelerator complex is scheduled to be built by 2016 for an effective operation in 2017. Radioactive species are produced in a uranium carbide target, by the interaction of 200 μA of protons at 40 MeV. All of the ionized species in the 1+ state come out of the target (ISOL method), and pass through a Wien filter for a first selection and an HMRS (high mass resolution spectrometer). Then they are transported by an electrostatic beam line toward a charge state breeder (where the 1+ to n+ multi-ionization takes place) before selection and reacceleration at the already existing superconducting linac. The work concerning dose evaluations, activation calculation, and radiation protection constraints related to the transport of the radioactive ion beam (RIB) from the target to the mass separator will be described in this paper. The FLUKA code has been used as tool for those calculations needing Monte Carlo simulations, in particular for the evaluation of the dose rate due to the presence of the radioactive beam in the selection/interaction points. The time evolution of a radionuclide inventory can be computed online with FLUKA for arbitrary irradiation profiles and decay times. The activity evolution is analytically evaluated through the implementation of the Bateman equations. Furthermore, the generation and transport of decay radiation (limited to gamma, beta- and beta+ emissions) is possible, referring to a dedicated database of decay emissions using mostly information obtained from NNDC, sometimes supplemented with other data and checked for consistency. When the use of Monte Carlo simulations was not feasible, the Bateman equations, or possible simplifications, have been used directly.

  8. Transmission electron microscopy study of focused ion beam damage in small intrinsic Josephson junctions of single crystalline Bi2Sr2CaCu2O y

    NASA Astrophysics Data System (ADS)

    Kakizaki, Yoshihiro; Koyama, Junpei; Yamaguchi, Ayami; Umegai, Shunpei; Ayukawa, Shin-ya; Kitano, Haruhisa

    2017-04-01

    We report a transmission electron microscopy (TEM) study on the damage produced by the focused ion beam (FIB) etching for small Bi2Sr2CaCu2O y (Bi2212) intrinsic Josephson junctions (IJJs). The selected area diffraction patterns of TEM images demonstrate that the FIB damage causes the formation of an amorphous layer. The thickness of FIB damage is at least 30 nm for the Ga+ ion beam emitted at 50 pA and 30 kV, independent of the incident direction of the Ga+ ion beam. We also confirmed that the damage or the redeposition due to the FIB etching was effectively removed by the additional irradiation of Ar ions after the FIB etching. This suggests the advantage of the combinatorial method of the FIB and Ar-ion etchings in the successful fabrication of small and high-quality IJJs.

  9. Effect of oxygen partial pressure on the structural and optical properties of ion beam sputtered TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Tantray, Firdous A.; Chouhan, Romita; Rajput, Swati; Agrawal, Arpana; Andrews, Joseph T.; Sen, Pranay K.; Gupta, Mukul; Sen, Pratima

    2016-10-01

    We report the effect of oxygen partial pressure on the structural, electronic and nonlinear optical properties of ion beam sputtered TiO2 thin films deposited on glass substrate at 40% of oxygen (S1) and 20% of oxygen (S2) partial pressure. XRD data shows the crystalline nature of S1 film while the film S2 was amorphous in nature. The energy band gap of the thin films calculated from their UV-Vis spectra was found to be 3.63 eV (S1) and 3.56 eV (S2). The decrease in the band gap with decrease in oxygen partial pressure may be attributed to the amorphous nature of the film. The nonlinear refractive indices for both the films were obtained from the closed aperture Z-scan experiment performed using a cw He-Ne laser source operating at 632.8 nm and were found to be 17.6×10-9 m2/W and -5.64×10-9 m2/W for S1and S2 films, respectively. The reversal in the sign of the nonlinear refractive index may also be ascribed to the crystallinity of the grown films.

  10. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method

    NASA Astrophysics Data System (ADS)

    Bharathy, P. Vijai; Nataraj, D.; Chu, Paul K.; Wang, Huaiyu; Yang, Q.; Kiran, M. S. R. N.; Silvestre-Albero, J.; Mangalaraj, D.

    2010-10-01

    Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp 3/sp 2 hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.

  11. Effect of MgO spacer and annealing on interface and magnetic properties of ion beam sputtered NiFe/Mg/MgO/CoFe layer structures

    SciTech Connect

    Bhusan Singh, Braj; Chaudhary, Sujeet

    2012-09-15

    The effect of variation in the thickness of ion assisted ion beam sputtered MgO spacer layer deposited at oxygen ion assisted energy of 50 eV on the extent of magnetic coupling of NiFe and CoFe layers in Si/NiFe(10 nm)/Mg(1 nm)/MgO(2,4,6 nm)/CoFe(10 nm) sandwich structure is investigated. At MgO spacer layer thickness of 4 nm, the separate reversal of magnetizations of the two ferromagnetic layers is observed in the hystresis loop recorded along easy direction. This results in a 3.5 Oe wide plateau like region during magnetization reversal, which became 4.5 Oe at 6 nm thin MgO. At 2 nm thin MgO, the absence of plateau during magnetization reversal region revealed ferromagnetic coupling between the two ferromagnetic layers, which is understood to arise due to the growth of very thin and low density (1.22 gm/cc) MgO spacer layer, indicating the presence of pinholes as revealed by x-ray reflectometry. After vaccum annealing (200 Degree-Sign C/1 h), the plateau region for 4 and 6 nm thin MgO case decreased to 1.5 Oe and 2.0 Oe, respectively, due to enhanced interface roughness/mixing. In addition, an enhancement of the in-plane magnetic anisotropy is also observed.

  12. Graphene engineering by neon ion beams

    DOE PAGES

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; ...

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of graphenemore » based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.« less

  13. Graphene engineering by neon ion beams

    SciTech Connect

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-02-18

    Achieving the ultimate limits of materials and device performance necessitates the engineering of matter with atomic, molecular, and mesoscale fidelity. While common for organic and macromolecular chemistry, these capabilities are virtually absent for 2D materials. In contrast to the undesired effect of ion implantation from focused ion beam (FIB) lithography with gallium ions, and proximity effects in standard e-beam lithography techniques, the shorter mean free path and interaction volumes of helium and neon ions offer a new route for clean, resist free nanofabrication. Furthermore, with the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of graphene based nanoelectronics is coming to the forefront. Here, we will discuss the use of energetic Ne ions in engineering graphene devices and explore the mechanical, electromechanical and chemical properties of the ion-milled devices using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we demonstrate that the mechanical, electrical and optical properties of the exact same devices can be quantitatively extracted. Additionally, the effect of defects inherent in ion beam direct-write lithography, on the overall performance of the fabricated devices is elucidated.

  14. Control of secondary electrons from ion beam impact using a positive potential electrode

    NASA Astrophysics Data System (ADS)

    Crowley, T. P.; Demers, D. R.; Fimognari, P. J.

    2016-11-01

    Secondary electrons emitted when an ion beam impacts a detector can amplify the ion beam signal, but also introduce errors if electrons from one detector propagate to another. A potassium ion beam and a detector comprised of ten impact wires, four split-plates, and a pair of biased electrodes were used to demonstrate that a low-voltage, positive electrode can be used to maintain the beneficial amplification effect while greatly reducing the error introduced from the electrons traveling between detector elements.

  15. Amending the uniformity of ion beam current density profile

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Xu, Dequan; Liu, Ying; Xu, Xiangdong; Fu, Shaojun

    2008-03-01

    The uniformity of ion beam current density profile has been amended by changing the flow of the gas and making a new beam channel. The platform scanned in the horizontal orientation in this experiment, so the horizontal ion beam current distribution had hardly any effect on the etching uniformity and amending the ion beam current density profile in the vertical orientation was sufficient for the purpose of plat etching profile. The ratio of the ion source's working gas inputs has some effect for the uniformity and a ratio of 6.50sccm: 8.00sccm: 9.60sccm of the three gas inputs flow1: flow2: flow3 will lead to a more uniform profile. According to the horizontal distribution and the original vertical ion beam current density distribution measured by Faraday Cup, a new beam channel was made. The uniformity of ion beam current density profile is enhanced from +/-4.31%to +/-1.96% in this experiment.

  16. Reactive ion beam figuring of optical aluminium surfaces

    NASA Astrophysics Data System (ADS)

    Bauer, Jens; Frost, Frank; Arnold, Thomas

    2017-03-01

    Ultra-smooth and arbitrarily shaped reflective optics are necessary for further progress in EUV/XUV lithography, x-ray and synchrotron technology. As one of the most important technological mirror optic materials, aluminium behaves in a rather difficult way in ultra-precision machining with such standard techniques as diamond-turning and subsequent ion beam figuring (IBF). In particular, in the latter, a strong surface roughening is obtained. Hence, up to now it has not been possible to attain the surface qualities required for UV or just visible spectral range applications. To overcome the limitations mainly caused by the aluminium alloy structural and compositional conditions, a reactive ion beam machining process using oxygen process gas is evaluated. To clarify the principle differences in the effect of oxygen gas contrary to oxygen ions on aluminium surface machining, we firstly focus on chemical-assisted ion beam etching (CAIBE) and reactive ion beam etching (RIBE) experiments in a phenomenological manner. Then, the optimum process route will be explored within a more quantitative analysis applying the concept of power spectral density (PSD) for a sophisticated treatment of the surface topography. Eventually, the surface composition is examined by means of dynamic secondary ion mass spectrometry (SIMS) suggesting a characteristic model scheme for the chemical modification of the aluminium surface during oxygen ion beam machining. Monte Carlo simulations were applied to achieve a more detailed process conception.

  17. Self-organized ordering of nanostructures produced by ion-beam sputtering.

    PubMed

    Castro, Mario; Cuerno, Rodolfo; Vázquez, Luis; Gago, Raúl

    2005-01-14

    We study the self-organized ordering of nanostructures produced by ion-beam sputtering of targets amorphizing under irradiation. By introducing a model akin to models of pattern formation in aeolian sand dunes, we extend consistently the current continuum theory of erosion by IBS. We obtain new nonlinear effects responsible for the in-plane ordering of the structures, whose strength correlates with the degree of ordering found in experiments. Our results highlight the importance of redeposition and surface viscous flow to this nanopattern formation process.

  18. Time resolved ion beam induced charge collection

    SciTech Connect

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  19. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  20. Ion-Beam-Assisted Deposition of MoS2 and Other Low-Friction Films

    DTIC Science & Technology

    2007-11-02

    Prepared For: Air Force Wright Aeronautical Lab(WRDC/MLBT), Wright-Patterson AFB,OH 45433 Descriptors, Keywords: ion beam film deposition MoS2 solid...NUMBERS Ion-Beam-Assisted Deposition of MoS2 and Other Low-Friction Films PE - 63224C, 61153N WU -2855, 3409 6. AUTHOR(S) Robert N. Bolster 7... MoS2 ) are effective as solid lubricants. Ion-beam-assisted deposition, which employs ion beam sputtering with an assist beam impinging on the growing

  1. Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field

    SciTech Connect

    Mikhail, Dorf A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2010-02-02

    This paper extends studies of ion beam transport through a background plasma along a solenoidal magnetic field [I. Kaganovich et al., Phys. Plasmas 15, 103108 (2008)] to the important regime of moderate magnetic field strength satisfying ωce > 2βbωpe . Here, ωce and ω pe are the electron cyclotron frequency and electron plasma frequency, respectively, and βb = vb/ c is the directed ion beam velocity normalized to the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are calculated analytically, and verified by comparison with the numerical simulations. The degrees of beam charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz force associated with the excited electromagnetic field is calculated. It is found that the plasma response to the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field is below or above the threshold value specified by ω cr ce = 2βbωpe, and corresponding to the resonant excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic purposes is also discussed.

  2. Ion beam-induced interfacial growth in Si and silicides

    NASA Astrophysics Data System (ADS)

    Fortuna, F.; Nédellec, P.; Ruault, M. O.; Bernas, H.; Lin, X. W.; Boucaud, P.

    1995-12-01

    We review the mechanisms and consequences of ion beam-induced epitaxial crystallization (IBIEC) in the transition metal- or rare earth-implanted {aSi}/{cSi} systems, as determined from in situ transmission electron microscopy (TEM) during irradiation, combined with channeling, high resolution TEM and optical measurements. IBIEC experiments on nm-size crystals confirm previously measured low values of interface roughness in IBIEC. We have performed interfacial growth simulations which indicate that the IBIEC process is, in fact, interface roughness-limited. They also suggest that interfacial growth processes are similar in several respects to surface growth processes, and that they largely determine (i) the growth habit of silicide precipitation, which is dominated by the interfacial energy, (ii) the possibility of trapping a large fraction of the impurities in non-equilibrium sites, leading to significant supersaturation. A consequence of this effect is to allow incorporation of large (over 300-fold supersaturation) Er concentrations in the substitutional sites of the Si lattice, leading to room-temperature photoluminescence (without any oxygen co-implantation). Evidence of a new, thermally induced instability in interfacial growth is presented: it displays both intermittency and very high growth rates, and is strongly affected by ion irradiation.

  3. Induction of apoptosis by accelerated heavy-ion beams in cultured fetal rat testes and its modification

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Tanaka, Kaoru; Shang, Yi; Fujita, Kazuko; Ninomiya, Yasuharu; Moreno, Stephanie G.; Coffigny, Herve; Hayata, Isamu; Murakami, Masahiro; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru

    The increasing human activities in space missions make the study on effects from high-LET ionizing radiation an important issue to be addressed. We reported previously that prenatal irradiations with heavy-ion beams on gestation day 15 generally induced markedly detrimental effects on prenatal gonads, postnatal testicular development and male breeding activity in rats. To explore the mechanisms involved in radiation-induced gonocyte apoptosis in fetal gonads, which played a critical role in the fate of postnatal testis development, accelerated heavy-ion irradiations and organotypic culture of Wistar fetal rat testes were applied to investigations focused on cellular and molecular events after irradiations with or without chemical addition. Results showed that, in addition to the clustered distribution, both the time course and the percentage of apoptosis in gonocytes on gestation day 15 equivalent in vitro appeared similar to that in utero after exposure to either carbon-ion beams with a LET value of about 13 keV/µm or neon-ion beams with a LET value of about 30 keV/µm. Irradiations induced increased p53 expression in a dose dependent manner and decreased expressions of p21 and Bcl- 2 by Western Blot examination. Administration of pan-caspase inhibitor prior to irradiations effectively inhibited apoptosis occurrence and reduced the extent of clustered apoptosis, while such effects were not observed with the presence of p53 inhibitor, gap junction inhibitor, or nitric oxide specific scavenger. These findings indicated that irradiations of cultured fetal rat testes manifested pathologically similar apoptosis induction in gonocytes to that in utero. P53 expression was possibly responsible for the response to radiation damage rather than induction of apoptosis. The syncytial organization of gonocytes played a key role in formation of the clustered apoptosis, an event that both gap junction inhibitor and nitric oxide specific scavenger were incapable of preventing.

  4. Ion Beam Synthesis Of Metal - Silicon Carbide - Si Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Lindner, J. K. N.; Tsang, W. M.; Stritzker, B.; Wong, S. P.

    2003-08-01

    High doses of Ti, Ni, Mo, or W ions were implanted at elevated temperatures either conventionally or using a MEVVA ion source into ion beam synthesized Si/SiC/Si or SiC/Si layer structures in order to create metallic layers contacting the SiC. The depth distribution of metal atoms and the formation of silicide and carbide phases as well as the formation of cavities at the lower SiC/Si interface are studied by Rutherford backscattering spectroscopy (RBS) and cross-sectional transmission electron microscopy (XTEM). A brief survey of the effects ocurring in the ion beam metallization of SiC films is given and the benefit of using ion beams for metallization of thin films is elucidated.

  5. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  6. Ion beam texturing of surfaces

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Textured surfaces, typically with conical structures, have been produced previously by simultaneously etching a surface and seeding that surface with another material. A theory based on surface diffusion predicts a variation in cone spacing with surface temperature, as well as a critical temperature below which cones will not form. Substantial agreement with theory has been found for several combinations of seed and surface materials, including one with a high sputter yield seed on a low sputter yield surface (gold on aluminum). Coning with this last combination was predicted by the theory for a sufficiently mobile seed material. The existence of a minimum temperature for the formation of cones should also be important to those interested in ion-beam machining smooth surfaces. Elements contained in the environmental contaminants or in the sputtered alloys or compounds may serve as seed material.

  7. MeV ion beam lithography of biocompatible halogenated Parylenes using aperture masks

    NASA Astrophysics Data System (ADS)

    Whitlow, Harry J.; Norarat, Rattanaporn; Roccio, Marta; Jeanneret, Patrick; Guibert, Edouard; Bergamin, Maxime; Fiorucci, Gianni; Homsy, Alexandra; Laux, Edith; Keppner, Herbert; Senn, Pascal

    2015-07-01

    Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1 ×1013 - 1 ×1016 1 MeV 16O+ ions cm-2) through aperture masks under high vacuum and a low pressure (<10-3 mbar) oxygen atmosphere. Biocompatibility of the irradiated and unirradiated surfaces was tested by cell-counting to determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.

  8. ION BEAM FOCUSING MEANS FOR CALUTRON

    DOEpatents

    Backus, J.G.

    1959-06-01

    An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

  9. Effect of film thickness on the magneto-structural properties of ion beam sputtered transition metal-metalloid FeCoNbB/Si (100) alloy thin films

    NASA Astrophysics Data System (ADS)

    Gupta, Pooja; Tripathi, Yagyanidhi; Kumar, Dileep; Rai, S. K.; Gupta, Mukul; Reddy, V. R.; Svec, Peter

    2016-08-01

    The structure and magnetic properties of ion beam sputtered transition metal-metalloid FeCoNbB/Si(100) alloy thin film have been studied as a function of film thickness using complementary techniques of x-ray reflectivity (XRR), grazing incidence x-ray diffraction, and magneto optical Kerr effect. Thicknesses of the films range from ˜200 to 1500 Å. The coercivity of all the films ranges between 4 and 14 Oe, which suggests soft magnetic nature of FeCoNbB/Si thin films. Films with thickness up to 800 Å are amorphous in nature and are found to possess uniaxial magnetic anisotropy in the film plane, although no magnetic field was applied during deposition. The presence of the two fold symmetry in such amorphous thin films may be attributed to quenched-in stresses developed during deposition. Upon increasing the film thickness to ˜1200 Å and above, the structure of FeCoNbB films transforms from amorphous to partially nanocrystalline structure and has bcc-FeCo nanocrystalline phase dispersed in remaining amorphous matrix. The crystalline volume fraction (cvf) of the films is found to be proportional to the film thickness. Azimuthal angle dependence of remanence confirms the presence of in-plane four-fold anisotropy (FFA) in the crystalline film with cvf ˜75%. Synchrotron x-ray diffraction measurement using area detector suggests random orientation of crystallites and thus clearly establishes that FFA is not related to texture/cubic symmetry in such polycrystalline thin films. As supported by asymmetric Bragg diffraction measurements, the origin of FFA in such partially crystalline thin film is ascribed to the additional compressive stresses developed in the film upon crystallization. Results indicate that promising soft magnetic properties in such films can be optimized by controlling the film thickness. The revelation of controllable and tunable anisotropy suggests that FeCoNbB thin films can have potential application in electromagnetic applications.

  10. Ion-beam-induced bending of freestanding amorphous nanowires: The importance of the substrate material and charging

    SciTech Connect

    Cui, Ajuan; Li, Wuxia; Liu, Zhe; Luo, Qiang; Gu, Changzhi; Fenton, J. C.; Shen, Tiehan H.

    2013-05-27

    Ion-beam irradiation offers great flexibility and controllability in the construction of freestanding nanostructures with multiple advanced functionalities. Here, we present and discuss the bending of free-standing nanowires, against, towards, and ultimately parallel to a flux of directional ion irradiation. Bending components both along and perpendicular to the incident ion beam were observed, and the bending behavior was found to depend both on the ion beam scanning strategy and on the conductivity of the supporting substrate. This behavior is explained by an ion-irradiation-related electrostatic interaction. Our findings suggest the prospect of exploiting this technique to engineer 3D nanostructures for advanced applications.

  11. Theory and simulation of emittance, space charge and electron pressure effects on focusing of neutralized ion beams

    SciTech Connect

    Lemons, D.S.; Jones, M.E.

    1986-01-01

    We investigate the final focus mode characterized by warm comoving electrons and vacuum propagation. In particular, we extend a previous envelope equation analysis of ion focusing in this mode to include the effects of ion emittance as well as ion space charge and initial electron temperature. Our major result is a simple equation relating initial R/sub o/ and final R/sub f/ beam radii to ion emittance epsilon and perveance K and electron Debye length lambda/sub D/ which is supported by one dimensional, electrostatic, particle-in-cell simulations of radial ion focusing. Finally, we use this equation to find the allowed temperature of neutralizing electrons for typical Heavy Ion Fusion reactor and High Temperature Experiment scenarios.

  12. Theory and simulation of emittance, space charge and electron pressure effects on focusig of neutralized ion beams

    SciTech Connect

    Lemons, D.S.; Jones, M.E.

    1986-01-21

    We investigate the final focus mode characterized by warm comoving electrons and vacuum propagation. In particular, we extend a previous envelope equation analysis of ion focusing in this mode to include the effects of ion emittance as well as ion space charge and initial electron temperature. Our major result is a simple equation relating initial R/sub o/ and final R/sub f/ beam radii to ion emittance epsilon and perveance K and electron Debye lengthe lambda/sub D/ which is supported by one dimensional, electrostatic, particle-in-cell simulations of radial ion focusing. Finally, we use this equation to find the allowed temperature of neutralizing electrons for typical Heavy Ion Fusion reactor and High Temperature Experiment scenarios.

  13. Ion-beam nano-patterning by using porous anodic alumina as a mask

    NASA Astrophysics Data System (ADS)

    Shin, S. W.; Lee, S. G.; Lee, J.; Whang, C. N.; Lee, J.-H.; Choi, I.-H.; Kim, T. G.; Song, J. H.

    2005-08-01

    Anodized aluminium oxide (AAO) with self-organized and ordered nano-hole arrays may be a good candidate for an irradiation mask to modify the properties of a nano-scale region. In order to use AAO as a mask for ion beam patterning, the ion beam transmittance of AAO should first be tested. In an AAO with a high aspect ratio (about 100), anodized from Al bulk foil, the ion beam transmittance was extremely low. However, when AAO with low aspect ratio (about 5), fabricated with thin film Al on SiO2, was irradiated with 80 keV Co ions, the Co ion transmittance was enormously improved. After selective etching of the unirradiated region, ion beam patterned 80 nm SiO2 dot arrays have been fabricated. This shows a potential of AAO with a low aspect ratio for an ion beam patterning nano-mask. In order to demonstrate the ion beam nano-patterning, magnetic nano-patterning was performed. A Co/Pt multilayer film with a perpendicular magnetic anisotropy was ion irradiated through an AAO mask with a low aspect ratio, 460 nm height and 50 nm diameter, and the magnetic properties were investigated by MOKE. The formation of a magnetic nano-pattern was confirmed by MFM.

  14. Development of polyatomic ion beam system using liquid organic materials

    NASA Astrophysics Data System (ADS)

    Takaoka, G. H.; Nishida, Y.; Yamamoto, T.; Kawashita, M.

    2005-08-01

    We have developed a new type of polyatomic ion beam system using liquid organic materials such as octane and ethanol, which consists of a capillary type of nozzle, an ionizer, a mass-separator and a substrate holder. Ion current extracted after ionization was 430 μA for octane and 200 μA for ethanol, respectively. The mass-analysis was realized using a compact E × B mass filter, and the mass-analyzed ion beams were transferred toward the substrate. The ion current density at the substrate was a few μA/cm2 for the mass-separated ion species. Interactions of polyatomic ion beams with silicon (Si) surfaces were investigated by utilizing the ellipsometry measurement. It was found that the damaged layer thickness irradiated by the polyatomic ions with a mass number of about 40 was smaller than that by Ar ion irradiation at the same incident energy and ion fluence. The result indicated that the rupture of polyatomic ions occurred upon its impact on the Si surface with an incident energy larger than a few keV. In addition, the chemical modification of Si surfaces such as wettability could be achieved by adjusting the incident energy for the ethanol ions, which included all the fragment ions.

  15. Progress report of the innovated KIST ion beam facility

    NASA Astrophysics Data System (ADS)

    Kim, Joonkon; Eliades, John A.; Yu, Byung-Yong; Lim, Weon Cheol; Chae, Keun Hwa; Song, Jonghan

    2017-01-01

    The Korea Institute of Science and Technology (KIST, Seoul, Republic of (S.) Korea) ion beam facility consists of three electrostatic accelerators: a 400 kV single ended ion implanter, a 2 MV tandem accelerator system and a 6 MV tandem accelerator system. The 400 kV and 6 MV systems were purchased from High Voltage Engineering Europa (HVEE, Netherlands) and commissioned in 2013, while the 2 MV system was purchased from National Electrostatics Corporation (NEC, USA) in 1995. These systems are used to provide traditional ion beam analysis (IBA), isotope ratio analysis (ex. accelerator mass spectrometry, AMS), and ion implantation/irradiation for domestic industrial and academic users. The main facility is the 6 MV HVEE Tandetron system that has an AMS line currently used for 10Be, 14C, 26Al, 36 Cl, 41Ca and 129I analyses, and three lines for IBA that are under construction. Here, these systems are introduced with their specifications and initial performance results.

  16. Monte Carlo simulations of nanoscale Ne+ ion beam sputtering: investigating the influence of surface effects, interstitial formation, and the nanostructural evolution

    NASA Astrophysics Data System (ADS)

    Mahady, Kyle; Tan, Shida; Greenzweig, Yuval; Livengood, Richard; Raveh, Amir; Rack, Philip

    2017-01-01

    We present an updated version of our Monte-Carlo based code for the simulation of ion beam sputtering. This code simulates the interaction of energetic ions with a target, and tracks the cumulative damage, enabling it to simulate the dynamic evolution of nanostructures as material is removed. The updated code described in this paper is significantly faster, permitting the inclusion of new features, namely routines to handle interstitial atoms, and to reduce the surface energy as the structure would otherwise develop energetically unfavorable surface porosity. We validate our code against the popular Monte-Carlo code SRIM-TRIM, and study the development of nanostructures from Ne+ ion beam milling in a copper target.

  17. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Chang, O.; Wang, J.

    2011-05-20

    Full particle PIC simulations are performed to study the neutralization of an ion beam in the cohesionless, mesothermal regime. Simulations further confirmed that neutralization is achieved through interactions between the trapped electrons and the potential well established by the propagation of the beam front along the beam direction and is not through plasma instabilities as previous studies suggested. In the transverse direction, the process is similar to that of the expansion of mesothermal plasma into vacuum. Parametric simulations are also performed to investigate the effects of beam radius and domain boundary condition on the neutralization process. The results suggests that, while the qualitative behavior may be similar in ground tests, quantitative parameters such as the beam potential will be affected significantly by the vacuum chamber because of the limits imposed on the expansion process by the finite chamber space.

  18. Effect of ion and ion-beam mass ratio on the formation of ion-acoustic solitons in magnetized plasma in the presence of electron inertia

    SciTech Connect

    Kalita, B. C.; Barman, S. N.

    2009-05-15

    The propagation of ion-acoustic solitary waves in magnetized plasma with cold ions and ion-beams together with electron inertia has been investigated theoretically through the Korteweg-de Vries equation. Subject to the drift velocity of the ion beam, the existence of compressive solitons is found to become extinct as {alpha} (=cold ion mass/ion-beam mass) tends to 0.01 when {gamma}=0.985 ({gamma} is the beam velocity/phase velocity). Interestingly, a transitional direction of propagation of solitary waves has been unearthed for change over, from compressive solitons to rarefactive solitons based on {alpha} and {sigma}{sub {upsilon}}(=cosine of the angle {theta} made by the wave propagation direction {xi} with the direction of the magnetic field) for fixed Q(=electron mass/ion mass). Further, the direction of propagation of ion-acoustic waves is found to be the deterministic factor to admit compressive or rarefactive solitons subject to beam outsource.

  19. Polymer metallization: Low energy ion beam surface modification to improve adhesion

    NASA Astrophysics Data System (ADS)

    Bertrand, P.; Lambert, P.; Travaly, Y.

    1997-08-01

    The interface formation between copper and poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) films is studied in situ by Ion Scattering Spectrometry (ISS). Very low metal fluxes (˜ 10 13 atoms/cm 2 s) and hence low deposition rates are obtained by using a Knudsen's effusion cell. This allows to reach very low metal coverages down to the sub-monolayer regime. The results indicate that without surface activation, Cu atoms interact only very weakly with both polymer surfaces. Indeed, the oxygen/carbon ISS intensity ratio remains nearly unaffected by the metal deposition, showing no preferential shadowing effect. Moreover, the ISS polymer signals are still detected after exposure to Cu atom fluences corresponding to several monolayers coverage. Cu diffusion below the polymer surface is evidenced by the presence of an inelastic multiple collision contribution in the ISS spectra. It is observed that 2 keV 3He + ion beam irradiation prior to metallization induces a drastic modification in the interface formation. Ion beam irradiation prevents the metal diffusion into the polymer bulk and leads to an increase of the metal concentration at the surface. In order to explain these results, the surface modifications produced by the ion beam on pristine polymers are studied by ISS and ToF-SIMS. Dehydrogenation and preferential loss of O containing fragments are found. These modifications are associated with the production of radicals leading to the creation of new adsorption sites for the Cu atoms. It is proposed that the reaction between radicals of different macrochains induces a surface crosslinking, that can prevent the diffusion for the deposited metal atoms into the polymer bulk.

  20. Non-Contact Wafer Fabrication Process Using Gas Cluster Ion Beams

    SciTech Connect

    Toyoda, Noriaki; Yamada, Iaso; Isogai, Hiromichi

    2008-11-03

    Gas cluster ion beam (GCIB) was used for precise wafer fabrication process. GCIB realizes a quite low-energy ion beam and shows very precise and good repeatability. To obtain thickness uniformity of Si over the whole wafer, small beam diameter ({approx}4 mm) of GCIB was used. Thickness variations on the wafer can be reduced by location specific irradiation of collimated GCIB. By controlling the scan speed of GCIB irradiation based on the removal thickness at each irradiation position, thickness and height uniformity of Si can be improved to several tens of nm. In addition, etching enhancement by using Ar/SF{sub 6} mixed cluster was studied.

  1. Kinetic Simulations of Ion Beam Neutralization

    SciTech Connect

    Wang, Joseph

    2010-05-21

    Ion beam emission/neutralization is one of the most fundamental problems in spacecraft plasma interactions and electric propulsion. Although ion beam neutralization is readily achieved in experiments, the understanding of the underlying physical process remains at a rather primitive level. No theoretical or simulation models have convincingly explained the detailed neutralization mechanism, and no conclusions have been reached. This paper presents a fully kinetic simulation of ion beam neutralization and plasma beam propagation and discusses the physics of electron-ion coupling and the resulting propagation of a neutralized mesothermal plasma.

  2. Development of a low-energy particle irradiation facility for the study of the biological effectiveness of the ion track end

    NASA Astrophysics Data System (ADS)

    Manti, L.; Campajola, L.; Perozziello, F. M.; Kavanagh, J. N.; Schettino, G.

    2012-07-01

    Uncertainties surround the radiobiological consequences of exposure to charged particles, despite the increasing use of accelerated ion beams for cancer treatment (hadrontherapy). In particular, little is known about the long-term effects on normal tissue at the beam entrance or in the distal part of the Spread-Out Bragg Peak (SOBP). Moreover, although the relative biological effectiveness (RBE) of particle radiation has been traditionally related to the radiation linear energy transfer (LET), it has become increasingly evident that radiation-induced cell death, as well as long term radiation effects, is not adequately described by this parameter. Hence, exploring the effectiveness of various ion beams at or around the Bragg peak of monoenergetic ion beams can prove useful to gain insights into the role played by parameters other than the particle LET in determining the outcome of particle radiation exposures. In this context, the upgrade of the Tandem irradiation facility at Naples University here described, has allowed us to perform a series of preliminary radiobiological measurements using proton and carbon ion beams. The facility is currently used to irradiate normal and cancer cell lines with ion beams such as oxygen and fluorine.

  3. ATR signaling cooperates with ATM in the mechanism of low dose hypersensitivity induced by carbon ion beam.

    PubMed

    Xue, Lian; Furusawa, Yoshiya; Yu, Dong

    2015-10-01

    Little work has been done on the mechanism of low dose hyper-radiosensitivity (HRS) and later appeared radioresistance (termed induced radioresistance (IRR)) after irradiation with medium and high linear energy transfer (LET) particles. The aim of this study was to find out whether ATR pathway is involved in the mechanism of HRS induced by high LET radiation. GM0639 cells and two ATM deficient/mutant cells, AT5BIVA and AT2KY were irradiated by carbon ion beam. Thymidine block technique was developed to enrich the G2-phase population. Radiation induced early G2/M checkpoint was quantitatively assess with dual-parameter flow cytometry by detecting the cells positive for phospho-histone H3. The involvement of ATR pathway in HRS/IRR response was detected with pretreatment of specific inhibitors prior to carbon ion beam. The link between the early G2/M checkpoint and HRS/IRR under carbon ion beam was first confirmed in GM0639 cells, through the enrichment of cell population in G2-phase or with Aurora kinase inhibitor that attenuates the transition from G2 to M phase. Interestingly, the early G2/M arrest could still be observed in ATM deficient/mutant cells with an effect of ATR signaling, which was discovered to function in an LET-dependent manner, even as low as 0.2Gy for carbon ion radiation. The involvement of ATR pathway in heavy particles induced HRS/IRR was determined with the specific ATR inhibitor in GM0639 cells, which affected the HRS/IRR occurrence similarly as ATM inhibitor. These data demonstrate that ATR pathway may cooperate with ATM in the mechanism of low dose hypersensitivity induced by carbon ion beam.

  4. Two-dimensional silicon-based detectors for ion beam therapy

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Granja, C.; Jakůbek, J.; Hartmann, B.; Telsemeyer, J.; Huber, L.; Brons, S.; Pospíšil, S.; Jäkel, O.

    2012-02-01

    Radiation therapy with ion beams is a highly precise kind of cancer treatment. As ion beams traverse material, the highest ionization density occurs at the end of their path. Due to this Bragg-peak, ion beams enable higher dose conformation to the tumor and increased sparing of the surrounding tissue, in comparison to standard radiation therapy using high energy photons. Ions heavier than protons offer in addition increased biological effectiveness and lower scattering. The Heidelberg Ion Beam Therapy Center (HIT) is a state-of-the-art ion beam therapy facility and the first hospital-based facility in Europe. It provides proton and carbon ion treatments. A synchrotron is used for ion acceleration. For dose delivery to the patient, narrow pencil-like beams are scanned over the target volume.

  5. Hydrodynamic Efficiency of Ablation Propulsion with Pulsed Ion Beam

    SciTech Connect

    Buttapeng, Chainarong; Yazawa, Masaru; Harada, Nobuhiro; Suematsu, Hisayuki; Jiang Weihua; Yatsui, Kiyoshi

    2006-05-02

    This paper presents the hydrodynamic efficiency of ablation plasma produced by pulsed ion beam on the basis of the ion beam-target interaction. We used a one-dimensional hydrodynamic fluid compressible to study the physics involved namely an ablation acceleration behavior and analyzed it as a rocketlike model in order to investigate its hydrodynamic variables for propulsion applications. These variables were estimated by the concept of ablation driven implosion in terms of ablated mass fraction, implosion efficiency, and hydrodynamic energy conversion. Herein, the energy conversion efficiency of 17.5% was achieved. In addition, the results show maximum energy efficiency of the ablation process (ablation efficiency) of 67% meaning the efficiency with which pulsed ion beam energy-ablation plasma conversion. The effects of ion beam energy deposition depth to hydrodynamic efficiency were briefly discussed. Further, an evaluation of propulsive force with high specific impulse of 4000s, total impulse of 34mN and momentum to energy ratio in the range of {mu}N/W was also analyzed.

  6. Drag of ballistic electrons by an ion beam

    SciTech Connect

    Gurevich, V. L.; Muradov, M. I.

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  7. Biomedical applications of ion-beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Gibbons, D. F.; Vankampen, C. L.; Babbush, C. A.

    1979-01-01

    Microscopically-rough surface texture of various biocompatible alloys and polymers produced by ion-beam sputtering may result in improvements in response of hard or soft tissue to various surgical implants.

  8. Low-damage milling of an amino acid thin film with cluster ion beam

    SciTech Connect

    Hada, Masaki; Ibuki, Sachi; Ninomiya, Satoshi; Matsuo, Jiro; Hontani, Yusaku; Yamamoto, Yasuyuki; Ichiki, Kazuya; Seki, Toshio; Aoki, Takaaki

    2011-11-01

    In this work, we characterized the surface damage layer and sputtering yield of polycrystalline L-leucine films before and after irradiation with Ar cluster or monomer ion beams with x ray photoelectron spectroscopy and ellipsometry. Irradiation with Ar monomer ion beams induced heavy damage on the surface of L-leucine films, such as bond breaking and carbonization. In contrast, no significant surface damage was observed in the films irradiated with Ar cluster ion beams. The sputtering yield of L-leucine decreased dramatically with increasing fluence of monomer Ar ions and approached the value of the sputtering yield of graphite; but under irradiation with Ar cluster ion beams, the sputtering yield remained constant with fluence. The differences in sputtering yield behavior were explained in relation with the surface damage layer on organic materials. Thus, cluster ion beams could potentially be used to mill down biological materials without significant damage on the surface and could contribute to various applications in the analysis and processing of life matter.

  9. Neurosurgical applications of ion beams

    NASA Astrophysics Data System (ADS)

    Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.

    1989-04-01

    The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema

  10. TXRF spectrometry at ion beam excitation

    NASA Astrophysics Data System (ADS)

    Egorov, V.; Egorov, E.; Afanas’ef, M.

    2017-02-01

    The work presents short discussion of TXRF and PIXE methods peculiarities. Taking into account of these peculiarities we elaborate the experimental scheme for TXRF measurements at ion beam excitation of characteristical fluorescence. The scheme is built on base of the planar X-ray waveguide-resonator with specific design. Features of the new experimental method and possibilities of Sokol-3 ion beam analytical complex were used for the method application in real measurements.

  11. Ion beam microtexturing and enhanced surface diffusion

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1982-01-01

    Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.

  12. Effects of vacuum annealing and oxygen ion beam bombarding on the electrical and optical properties of ITO films deposited by E-beam evaporation

    NASA Astrophysics Data System (ADS)

    Pan, Yongqiang; Hang, Lingxia

    2012-10-01

    Tin doped indium oxide (ITO) transparent conductive thin films with composition of 10 wt% SnO2 and 89.8 wt% In2O3 have been deposited by electron beam evaporation technique on K9 glass substrates at room temperature. The post annealing processes are done in vacuum with different annealing temperature at 100, 200, 300 and 350 ° for 1 hour, respectively. The oxygen ion energy is 800 eV; oxygen ion beam bombarding time is 10,20,30,40 and 50min, respectively. The results show that conductivity of ITO thin films are improved by increasing annealing temperature. The resistivity of the ITO thin films decrease from 5.2×10-3Ω •cm at room temperature to 1.3×10-3Ω •cm(350 °C). The transmittance values of all samples in the visible range have been increased. As the oxygen ion beam bombarding time increases the resistivity reduce from 5.2×10-3Ω •cm to 9×10-4Ω •cm, the transmittance value improve from 66% to 82% at 550nm. Finally, the vacuum annealing and oxygen ion beam bombarding are done simultaneously, at temperature of 350 °C for 1 hours, ion bombardment time for 40 min. The resistivity of obtained ITO thin film is 7×10-4Ω •cm. The maximum transmittance value is above 89% in the visible wavelength region.

  13. Production of highly charged ion beams with SECRAL.

    PubMed

    Sun, L T; Zhao, H W; Lu, W; Zhang, X Z; Feng, Y C; Li, J Y; Cao, Y; Guo, X H; Ma, H Y; Zhao, H Y; Shang, Y; Ma, B H; Wang, H; Li, X X; Jin, T; Xie, D Z

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e microA of Xe(37+), 1 e microA of Xe(43+), and 0.16 e microA of Ne-like Xe(44+). To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi(31+) beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e microA of Bi(31+), 22 e microA of Bi(41+), and 1.5 e microA of Bi(50+) have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  14. Effect of Ar Ion Beam Implantation on Morphological and Physiological Characteristics of Liquorice (Glycyrrhiza uralensis Fisch) Under Short-Term Artificial Drought Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangsheng; Wu, Lijun; Yu, Lixiang; Wei, Shenglin; Liu, Jingnan; Yu, Zengliang

    2007-04-01

    Ar+ ion beam with low energy of 30 keV was implanted into liquorice (Glycyrrhiza uralensis Fisch) seeds at the doses of 0, 600, 900 and 1200 × (2.6 × 1013) ions/cm2, respectively. The seeds were sowed in pots and after one month the plants were subjected to different drought conditions for two months. Then the plants' morphological and physiological characteristics, anti-oxidation enzymes and levels of endogenous hormones were investigated. The results showed that ion implantation at a proper dose can greatly enhance the liquorice seedlings' resistance against drought stress.

  15. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  16. Effects of Ion Irradiation on Seedlings Growth Monitored by Ultraweak Delayed Luminescence

    PubMed Central

    Abe, Tomoko; Cirrone, Giuseppe A. P.; Cuttone, Giacomo; Gulino, Marisa; Musumeci, Francesco; Romano, Francesco; Ryuto, Hiromichi; Scordino, Agata

    2016-01-01

    The optical technique based on the measurement of delayed luminescence emitted from the biological samples has demonstrated its ability to provide valid and predictive information on the functional status of various biological systems. We want to extend this technique to study the effect of ionizing radiation on biological systems. In particular we are interested in the action of ion beams, used for therapeutic purposes or to increase the biological diversity. In general, the assessment of the damage that radiation produces both in the target objects and in the surrounding tissues, requires considerable time because is based on biochemical analysis or on the examination of the evolution of the irradiated systems. The delayed luminescence technique could help to simplify this investigation. We have so started our studies performing irradiations of some relatively simple vegetable models. In this paper we report results obtained from mung bean (Vigna radiata) seeds submitted to a 12C ion beam at the energy of 62 MeV/nucleon. The dry seeds were irradiated at doses from 50 to 7000 Gy. The photoinduced delayed luminescence of each seed before and after ion irradiation was measured. The growth of seedlings after irradiation was compared with that of untreated seeds. A growth reduction on increasing the dose was registered. The results show strong correlations between the ion irradiation dose, seeds growth and delayed luminescence intensity. In particular, the delayed luminescence intensity is correlated by a logistic function to the seedlings elongation and, after performing a suitable measurement campaign based on blind tests, it could become a tool able to predict the growth of seeds after ion irradiation. Moreover these results demonstrate that measurements of delayed luminescence could be used as a fast and non-invasive technique to check the effects of ion beams on relatively simple biological systems. PMID:27936220

  17. Metformin enhances the radiosensitivity of human liver cancer cells to γ-rays and carbon ion beams.

    PubMed

    Kim, Eun Ho; Kim, Mi-Sook; Furusawa, Yoshiya; Uzawa, Akiko; Han, Soorim; Jung, Won-Gyun; Sai, Sei

    2016-12-06

    The purpose of this study was to investigate the effect of metformin on the responses of hepatocellular carcinoma (HCC) cells to γ-rays (low-linear energy transfer (LET) radiation) and carbon-ion beams (high-LET radiation). HCC cells were pretreated with metformin and exposed to a single dose of γ-rays or carbon ion beams. Metformin treatment increased radiation-induced clonogenic cell death, DNA damage, and apoptosis. Carbon ion beams combined with metformin were more effective than carbon ion beams or γ-rays alone at inducing subG1 and decreasing G2/M arrest, reducing the expression of vimentin, enhancing phospho-AMPK expression, and suppressing phospho-mTOR and phospho-Akt. Thus, metformin effectively enhanced the therapeutic effect of radiation with a wide range of LET, in particular carbon ion beams and it may be useful for increasing the clinical efficacy of carbon ion beams.

  18. Mass spectrometer and methods of increasing dispersion between ion beams

    DOEpatents

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  19. Multiscale approach predictions for biological outcomes in ion-beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Verkhovtsev, Alexey; Surdutovich, Eugene; Solov’Yov, Andrey V.

    2016-06-01

    Ion-beam therapy provides advances in cancer treatment, offering the possibility of excellent dose localization and thus maximising cell-killing within the tumour. The full potential of such therapy can only be realised if the fundamental mechanisms leading to lethal cell damage under ion irradiation are well understood. The key question is whether it is possible to quantitatively predict macroscopic biological effects caused by ion radiation on the basis of physical and chemical effects related to the ion-medium interactions on a nanometre scale. We demonstrate that the phenomenon-based MultiScale Approach to the assessment of radiation damage with ions gives a positive answer to this question. We apply this approach to numerous experiments where survival curves were obtained for different cell lines and conditions. Contrary to other, in essence empirical methods for evaluation of macroscopic effects of ionising radiation, the MultiScale Approach predicts the biodamage based on the physical effects related to ionisation of the medium, transport of secondary particles, chemical interactions, thermo-mechanical pathways of biodamage, and heuristic biological criteria for cell survival. We anticipate this method to give great impetus to the practical improvement of ion-beam cancer therapy and the development of more efficient treatment protocols.

  20. Multiscale approach predictions for biological outcomes in ion-beam cancer therapy

    PubMed Central

    Verkhovtsev, Alexey; Surdutovich, Eugene; Solov’yov, Andrey V.

    2016-01-01

    Ion-beam therapy provides advances in cancer treatment, offering the possibility of excellent dose localization and thus maximising cell-killing within the tumour. The full potential of such therapy can only be realised if the fundamental mechanisms leading to lethal cell damage under ion irradiation are well understood. The key question is whether it is possible to quantitatively predict macroscopic biological effects caused by ion radiation on the basis of physical and chemical effects related to the ion-medium interactions on a nanometre scale. We demonstrate that the phenomenon-based MultiScale Approach to the assessment of radiation damage with ions gives a positive answer to this question. We apply this approach to numerous experiments where survival curves were obtained for different cell lines and conditions. Contrary to other, in essence empirical methods for evaluation of macroscopic effects of ionising radiation, the MultiScale Approach predicts the biodamage based on the physical effects related to ionisation of the medium, transport of secondary particles, chemical interactions, thermo-mechanical pathways of biodamage, and heuristic biological criteria for cell survival. We anticipate this method to give great impetus to the practical improvement of ion-beam cancer therapy and the development of more efficient treatment protocols. PMID:27297618

  1. Relationship between plant growth and cytological effect in root apical meristem after exposure of wheat dry seeds to carbon ion beams

    NASA Astrophysics Data System (ADS)

    Liu, Qingfang; Wang, Zhuanzi; Zhou, Libin; Qu, Ying; Lu, Dong; Yu, Lixia; Du, Yan; Jin, Wenjie; Li, Wenjian

    2013-06-01

    In order to analyze the relationship between plant growth and cytological effects, wheat dry seeds were exposed to various doses of 12C6+ beams and the biological endpoints reflecting plant growth and root apical meristem (RAM) activities were investigated. The results showed that most of the seeds were able to germinate normally within all dose range, while the plant survival rate descended at higher doses. The seedling growth including root length and seedling height also decreased significantly at higher doses. Mitotic index (MI) in RAM had no changes at 10 and 20 Gy and decreased obviously at higher doses and the proportion of prophase cells had the same trend with MI. These data suggested that RAM cells experienced cell cycle arrest, which should be responsible for the inhibition of root growth after exposure to higher doses irradiation. Moreover, various types of chromosome aberrations (CAs) were observed in the mitotic cells. The frequencies of mitotic cells with lagging chromosomes and these with anaphase bridges peaked around 60 Gy, while the frequencies of these with fragments increased as the irradiation doses increased up to 200 Gy. The total frequencies of mitotic cells with CAs induced by irradiation increased significantly with the increasing doses. The serious damage of mitotic chromosomes maybe caused cell cycle arrest or cell death. These findings suggested that the influences of 12C6+ beams irradiation on plant growth were related to the alternation of mitotic activities and the chromosomal damages in RAM.

  2. Optical studies of ion-beam synthesized metal alloy nanoparticles

    SciTech Connect

    Magudapathy, P. Srivatsava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Sairam, T. N.; Panigrahi, B. K.

    2015-06-24

    Au{sub x}Ag{sub 1-x} alloy nanoparticles with tunable surface plasmon resonance (SPR) have been synthesized on a silica glass substrate. A small Au foil on an Ag foil is irradiated as target substrates such that ion beam falls on both Ag foil and Au foils. Silica slides are kept at an angle ∼45° with respect to the metallic foils. While irradiating the metallic foils with 100 keV Ar{sup +} ions, sputtered Au and Ag atoms get deposited on the silica-glass. In this configuration the foils have been irradiated by Ar{sup +} ions to various fluences at room temperature and the sputtered species are collected on silica slides. Formation of Au{sub x}Ag{sub 1-x} nanoparticles has been confirmed from the optical absorption measurements. With respect to the exposure area of Au and Ag foils to the ion beam, the SPR peak position varies from 450 to 500 nm. Green photoluminescence has been observed from these alloy metal nanoparticles.

  3. Simulation of target response due to uranium ion beam impact

    NASA Astrophysics Data System (ADS)

    Richter, H.; Noah, E.; Aiginger, H.; Poljanc, K.

    2009-12-01

    Metal targets were irradiated at GSI with a highly focused uranium ion beam with a kinetic energy of 350MeV/u. Out of these targets two copper samples, that had been irradiated multiple times with a maximum intensity of 2.36 · 109 , were chosen for simulations. In order to characterize the behavior of the target under the load of the ion beam, FLUKA was used to generate the initial distribution of deposited energy which was in turn used as an input for ANSYS AUTODYN to calculate the dynamic response of the target. In the simulations of the first sample a good approximation of the so-called hydrodynamic tensile limit, the crucial parameter for target failure, was found to be -1.08 GPa. This acquired value was used for the simulation of the second sample which had been irradiated with two high-intensity shots. These simulations resulted in the full penetration of the sample which was in agreement with metallurgical examinations. This paper presents the performed simulations.

  4. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, Ann N.; Soden, Jerry M.

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  5. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOEpatents

    Campbell, A.N.; Soden, J.M.

    1998-12-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.

  6. Precise Fabrication of Silicon Wafers Using Gas Cluster Ion Beams

    SciTech Connect

    Isogai, Hiromichi; Toyoda, Eiji; Izunome, Koji; Kashima, Kazuhiko; Mashita, Takafumi; Toyoda, Noriaki; Yamada, Isao

    2009-03-10

    Precise surface processing of a silicon wafer was studied by using a gas cluster ion beam (GCIB). The damage caused to the silicon surface was strongly dependent on irradiation parameters. The extent of damage varied with the species of source gas and the acceleration voltage (Va) of cluster ions. It also varied with the cluster size and residual gas pressure. The influence of electron acceleration voltage (Ve) used for ionization of a neutral cluster was also investigated. The irradiation damage, such as an amorphous silicon (a-Si) layer, a mixed layer of a-Si and c-Si (transition layer), and surface roughness, was increased with Ve. It is suggested that the increase in the amount of energy per atom was induced by high Ve, because of variation of the cluster size and/or cluster charge. An undamaged smooth surface can be produced by Ar-GCIB irradiation at low Ve and Va.

  7. Thickness dependence of magnetic properties and giant magneto-impedance effect in amorphous Co73Si12B15 thin films prepared by Dual-Ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Wang, San-sheng; Hu, Teng; He, Tong-fu; Chen, Zi-yu; Yi, Zhong; Meng, Li-Fei

    2017-03-01

    Dual-Ion Beam Assisted Deposition is a suitable method for the preparation of giant magneto-impedance (GMI) materials. In this paper, Co73Si12B15 thin films with different thicknesses were prepared by Dual-Ion Beam Assisted Deposition, and the influences of film thickness on magnetic properties and GMI effect were investigated. It was found that the asymmetric magnetic hysteresis loop in the prepared Co73Si12B15 thin films occurs at ambient temperature, and the shift behavior of hysteresis loop associated with film thickness. With the film thickness increasing, the values of shift field and coercive field and other parameters such as remanence and shift ratio appeared complex variation. At a certain frequency, the large GMI effect is only observed in some films, which have good magnetic properties including low coercivity, low remanence ratio and high shift ratio. The results indicated that the thickness dependence of magnetic properties nonlinearly determined the GMI effect in Co73Si12B15 thin films.

  8. On the role of ion-based imaging methods in modern ion beam therapy

    NASA Astrophysics Data System (ADS)

    Magallanes, L.; Brons, S.; Marcelos, T.; Takechi, M.; Voss, B.; Jäkel, O.; Rinaldi, I.; Parodi, K.

    2014-11-01

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  9. On the role of ion-based imaging methods in modern ion beam therapy

    SciTech Connect

    Magallanes, L. Rinaldi, I.; Brons, S.; Marcelos, T. Parodi, K.; Takechi, M.; Voss, B.; Jäkel, O.

    2014-11-07

    External beam radiotherapy techniques have the common aim to maximize the radiation dose to the target while sparing the surrounding healthy tissues. The inverted and finite depth-dose profile of ion beams (Bragg peak) allows for precise dose delivery and conformai dose distribution. Furthermore, increased radiobiological effectiveness of ions enhances the capability to battle radioresistant tumors. Ion beam therapy requires a precise determination of the ion range, which is particularly sensitive to range uncertainties. Therefore, novel imaging techniques are currently investigated as a tool to improve the quality of ion beam treatments. Approaches already clinically available or under development are based on the detection of secondary particles emitted as a result of nuclear reactions (e.g., positron-annihilation or prompt gammas, charged particles) or transmitted high energy primary ion beams. Transmission imaging techniques make use of the beams exiting the patient, which have higher initial energy and lower fluence than the therapeutic ones. At the Heidelberg Ion Beam Therapy Center, actively scanned energetic proton and carbon ion beams provide an ideal environment for the investigation of ion-based radiography and tomography. This contribution presents the rationale of ion beam therapy, focusing on the role of ion-based transmission imaging methods towards the reduction of range uncertainties and potential improvement of treatment planning.

  10. Tilting of carbon encapsulated metallic nanocolumns in carbon-nickel nanocomposite films by ion beam assisted deposition

    SciTech Connect

    Krause, Matthias; Muecklich, Arndt; Zschornak, Matthias; Wintz, Sebastian; Gemming, Sibylle; Abrasonis, Gintautas; Oates, Thomas W. H.; Luis Endrino, Jose

    2012-07-30

    The influence of assisting low-energy ({approx}50-100 eV) ion irradiation effects on the morphology of C:Ni ({approx}15 at. %) nanocomposite films during ion beam assisted deposition (IBAD) is investigated. It is shown that IBAD promotes the columnar growth of carbon encapsulated metallic nanoparticles. The momentum transfer from assisting ions results in tilting of the columns in relation to the growing film surface. Complex secondary structures are obtained, in which a significant part of the columns grows under local epitaxy via the junction of sequentially deposited thin film fractions. The influence of such anisotropic film morphology on the optical properties is highlighted.

  11. Ferromagnetic GeMn thin film prepared by ion implantation and ion beam induced epitaxial crystallization annealing

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Niu, H.; Yan, D. C.; Hsieh, H. H.; Lee, C. P.; Chi, C. C.

    2012-06-01

    Ferromagnetic GeMn was prepared by Mn implantation followed by ion beam-induced epitaxial crystallization annealing. The damage caused by Mn implantation was repaired by subsequent helium ion irradiation. Various structural analyses were performed and Mn ions were found to incorporate uniformly into the Ge lattice without the formation of any secondary phases. The remnant magnetic moment exhibited room temperature ferromagnetism. Anomalous Hall effect and field dependent magnetization were measured at the same time at room temperature indicating spin polarized free carrier transport. Additional measurement using x-ray magnetic circular dichroism also revealed that the carriers were spin-polarized.

  12. Copper Ion Beam Irradiation-Induced Effects on Structural, Morphological and Optical Properties of Tin Dioxide Nanowires

    NASA Astrophysics Data System (ADS)

    A. Khan, M.; Qayyum, A.; I., Ahmed; T., Iqbal; A. Khan, A.; Waleed, R.; Mohuddin, B.; Malik, M.

    2016-07-01

    Not Available Supported by the Department of Physics, the University of AJK, High Tech. Centralized Instrumentation Lab, the University of AJK, Pakistan and the Experimental Physics Division, and the National Center for Physics, Islamabad Pakistan.

  13. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, Donald J.

    1988-01-01

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  14. Confined ion beam sputtering device and method

    DOEpatents

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  15. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  16. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    SciTech Connect

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  17. Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams

    NASA Astrophysics Data System (ADS)

    Lehmann, H. Immo; Graeff, Christian; Simoniello, Palma; Constantinescu, Anna; Takami, Mitsuru; Lugenbiel, Patrick; Richter, Daniel; Eichhorn, Anna; Prall, Matthias; Kaderka, Robert; Fiedler, Fine; Helmbrecht, Stephan; Fournier, Claudia; Erbeldinger, Nadine; Rahm, Ann-Kathrin; Rivinius, Rasmus; Thomas, Dierk; Katus, Hugo A.; Johnson, Susan B.; Parker, Kay D.; Debus, Jürgen; Asirvatham, Samuel J.; Bert, Christoph; Durante, Marco; Packer, Douglas L.

    2016-12-01

    High-energy ion beams are successfully used in cancer therapy and precisely deliver high doses of ionizing radiation to small deep-seated target volumes. A similar noninvasive treatment modality for cardiac arrhythmias was tested here. This study used high-energy carbon ions for ablation of cardiac tissue in pigs. Doses of 25, 40, and 55 Gy were applied in forced-breath-hold to the atrioventricular junction, left atrial pulmonary vein junction, and freewall left ventricle of intact animals. Procedural success was tracked by (1.) in-beam positron-emission tomography (PET) imaging; (2.) intracardiac voltage mapping with visible lesion on ultrasound; (3.) lesion outcomes in pathohistolgy. High doses (40–55 Gy) caused slowing and interruption of cardiac impulse propagation. Target fibrosis was the main mediator of the ablation effect. In irradiated tissue, apoptosis was present after 3, but not 6 months. Our study shows feasibility to use high-energy ion beams for creation of cardiac lesions that chronically interrupt cardiac conduction.

  18. Feasibility Study on Cardiac Arrhythmia Ablation Using High-Energy Heavy Ion Beams

    PubMed Central

    Lehmann, H. Immo; Graeff, Christian; Simoniello, Palma; Constantinescu, Anna; Takami, Mitsuru; Lugenbiel, Patrick; Richter, Daniel; Eichhorn, Anna; Prall, Matthias; Kaderka, Robert; Fiedler, Fine; Helmbrecht, Stephan; Fournier, Claudia; Erbeldinger, Nadine; Rahm, Ann-Kathrin; Rivinius, Rasmus; Thomas, Dierk; Katus, Hugo A.; Johnson, Susan B.; Parker, Kay D.; Debus, Jürgen; Asirvatham, Samuel J.; Bert, Christoph; Durante, Marco; Packer, Douglas L.

    2016-01-01

    High-energy ion beams are successfully used in cancer therapy and precisely deliver high doses of ionizing radiation to small deep-seated target volumes. A similar noninvasive treatment modality for cardiac arrhythmias was tested here. This study used high-energy carbon ions for ablation of cardiac tissue in pigs. Doses of 25, 40, and 55 Gy were applied in forced-breath-hold to the atrioventricular junction, left atrial pulmonary vein junction, and freewall left ventricle of intact animals. Procedural success was tracked by (1.) in-beam positron-emission tomography (PET) imaging; (2.) intracardiac voltage mapping with visible lesion on ultrasound; (3.) lesion outcomes in pathohistolgy. High doses (40–55 Gy) caused slowing and interruption of cardiac impulse propagation. Target fibrosis was the main mediator of the ablation effect. In irradiated tissue, apoptosis was present after 3, but not 6 months. Our study shows feasibility to use high-energy ion beams for creation of cardiac lesions that chronically interrupt cardiac conduction. PMID:27996023

  19. Graphene engineering by neon ion beams

    NASA Astrophysics Data System (ADS)

    Iberi, Vighter; Ievlev, Anton V.; Vlassiouk, Ivan; Jesse, Stephen; Kalinin, Sergei V.; Joy, David C.; Rondinone, Adam J.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-03-01

    Achieving the ultimate limits of lithographic resolution and material performance necessitates engineering of matter with atomic, molecular, and mesoscale fidelity. With the advent of scanning helium ion microscopy, maskless He+ and Ne+ beam lithography of 2D materials, such as graphene-based nanoelectronics, is coming to the forefront as a tool for fabrication and surface manipulation. However, the effects of using a Ne focused-ion-beam on the fidelity of structures created out of 2D materials have yet to be explored. Here, we will discuss the use of energetic Ne ions in engineering graphene nanostructures and explore their mechanical, electromechanical and chemical properties using scanning probe microscopy (SPM). By using SPM-based techniques such as band excitation (BE) force modulation microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy, we are able to ascertain changes in the mechanical, electrical and optical properties of Ne+ beam milled graphene nanostructures and surrounding regions. Additionally, we are able to link localized defects around the milled graphene to ion milling parameters such as dwell time and number of beam passes in order to characterize the induced changes in mechanical and electromechanical properties of the graphene surface.

  20. Developments in focused ion beam metrology

    NASA Astrophysics Data System (ADS)

    Salen, Jesse A.; Athas, Gregory J.; Barnes, Drew; Bassom, Neil J.; Yansen, Don E.

    1998-09-01

    We present the ability of a focused ion beam system (FIB) to perform as an effective metrology tool. This feature is a benefit in areas where FIB technology is or can be used, or where pre-measurement cross-sectioning is required, such as the case in thin film head trimming, integrated circuit inspection, and micro-electromechanical device (MEMS) development. The FIB is a proven tool for taking high- resolution images, performing mills and depositions, and cross-sectioning samples. We demonstrate the FIB's ability to perform these tasks in a repeatable manner and take accurate measurements independently of the operator. First, we find a quantitative method for analyzing the image quality in order to remove any operator discrepancy. We show that this task can be achieved by analyzing the FIB's Modulation Transfer Function (MTF). The MTF is a proven method for measuring the quality of light optics, but has never been used as a standard in FIB imaging because sub- 100m pitch resolution targets can not easily be fabricated; however, we demonstrate a new method for obtaining the MTF. By correlating changes in FIB parameters to changes in the MTF, we have a FIB image standard, as well as an image calibration tool that is transparent to the operator. Second, we describe how current FIB software can use an automated 'measure tool' to take accurate measurements independently of the operator. We show that when using both these methods, the FIB is a repeatable metrology tool for a variety of applications.

  1. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  2. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  3. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  4. Ion-beam technology and applications

    NASA Technical Reports Server (NTRS)

    Hudson, W. R.; Robson, R. R.; Sovey, J. S.

    1977-01-01

    Ion propulsion research and development yields a mature technology that is transferable to a wide range of nonpropulsive applications, including terrestrial and space manufacturing. A xenon ion source was used for an investigation into potential ion-beam applications. The results of cathode tests and discharge-chamber experiments are presented. A series of experiments encompassing a wide range of potential applications is discussed. Two types of processes, sputter deposition, and erosion were studied. Some of the potential applications are thin-film Teflon capacitor fabrication, lubrication applications, ion-beam cleaning and polishing, and surface texturing.

  5. Potential biomedical applications of ion beam technology

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  6. Focused-Ion-Beam Material Removal Rates

    DTIC Science & Technology

    1993-09-01

    AD-A270 852 SIll II 111111111 lillI I ARMY RESEARCH LABORATORY Focused -Ion-Beam Material Removal Rates by Bruce GeOl ARL-MR-1 14 September 1993 93...DATES COVERED September 1993 Summary, January 1991-present 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Focused -Ion-Beam Material Removal Rates PE: 91A 6...AUTHOR( S ) Bruce Geil 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION U.S. Army Research Laboratory REPORT NUMBER Attn

  7. Is Prostate Cancer a Good Candidate for Ion Beam Therapy?

    NASA Astrophysics Data System (ADS)

    Rossi, Carl J.

    Organ-confined prostate cancer now constitutes one of the most commonly treated malignancies with ion beam therapy (IBT). Because of this, questions have been raised regarding the efficacy and cost-effectiveness of such treatment. This chapter details the clinical results obtained with both proton and carbon ion therapy, discusses ongoing clinical trials, and seeks to place IBT in the context of other technological evolutions in radiation oncology.

  8. Examination of the Ion Beam Response of III-V Semiconductor Substrates

    NASA Astrophysics Data System (ADS)

    Grossklaus, Kevin A.

    This work examines the response of the III-V materials to ion beam irradiation in a series of four experimental studies and describes the observed results in terms of the fundamental materials processes and properties that control ion-induced change in those compounds. Two studies investigate the use of Ga+ focused ion beam (FIB) irradiation of III-V substrate materials to create nanostructures. In the first, the creation of FIB induced group III nanodots on GaAs, InP, InAs, and AlAs is studied. The analysis of those results in terms of basic material properties and a simple nanodot growth model represents the first unified investigation of the fundamental processes that drive the nanodot forming behavior of the III-V compounds. The second nanostructure formation study reports the discovery and characterization of unique spike-like InAs nanostructures, termed "nanospikes," which may be useful for nanoscale electronic or thermoelectric applications. A novel method for controlling nanospike formation using InAs/InP heterostructures and film pre-patterning is developed, and the electrical properties of these ion erosion created nanostructures are characterized by in-situ TEM nanoprobe testing in a first-of-its-kind examination. The two remaining studies examine methods for using ion beam modification of III-V substrates to accommodate lattice-mismatched film growth with improved film properties. The first examines the effects of film growth on a wide range of different FIB created 3-D substrate patterns, and finds that 3-D surface features and patterns significantly alter film morphology and that growth on or near FIB irradiated regions does not improve film threading defect density. The second substrate modification study examines broad beam ion pre-implantation of GaAs wafers before InGaAs film growth, and is the first reported study of III-V substrate pre-implantation. Ar + pre-implantation was found to enhance the formation of threading defects in InGaAs films and

  9. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  10. Simulation of ion beam injection and extraction in an EBIS

    SciTech Connect

    Zhao, L. Kim, J. S.

    2016-02-15

    An example simulation of Au+ charge breeding using FAR-TECH’s integrated EBIS (electron beam ion source) modeling toolset is presented with the emphasis on ion beam injection and extraction. The trajectories of injected ions are calculated with PBGUNS (particle beam gun simulation) self-consistently by including the space charges from both ions and electrons. The ion beam, starting with initial conditions within the 100% acceptance of the electron beam, is then tracked by EBIS-PIC (particle-in-cell EBIS simulation code). In the trap, the evolution of the ion charge state distribution is estimated by charge state estimator. The extraction of charge bred ions is simulated with PBGUNS. The simulations of the ion injections show significant ion space charge effects on beam capture efficiency and the ionization efficiency.

  11. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A.

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are rzonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory,'' and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  12. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are nonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory'', and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  13. Intense ion beam neutralization using underdense background plasma

    SciTech Connect

    Berdanier, William; Roy, Prabir K.; Kaganovich, Igor

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  14. Moessbauer and adhesion study of ion beam-modified Fe-PTFE interfaces

    NASA Astrophysics Data System (ADS)

    Ingemarsson, P. Anders; Ericsson, Tore; Wappling, Roger; Possnert, Goran

    Conversion electron Moessbauer spectroscopy was used to study ion beam-induced effects at Fe-PTFE thin film interfaces and to relate these effects to accompanying modifications in adhesion. Irradiation with 16 MeV S-32(3+) ions to doses in the range between 5 x 10 to the 11th and 2 x 10 to the 14th ions/sq cm was carried out before or after deposition of thin Fe-57 layers. For both pre- and post-bombardment, a substantial adhesion enhancement was observed. Associated with this were significant changes in the Moessbauer spectra indicating the formation of Fe-C and Fe-F compounds. This compound formation can be associated with the observed improvement in thin film adhesion.

  15. Space processing applications of ion beam technology. [surface finishing, welding, milling and film deposition

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1977-01-01

    Ion thruster engines for spacecraft propulsion can serve as ion beam sources for potential space processing applications. The advantages of space vacuum environments and the possible gravity effects on thruster ion beam materials operations such as thin film growth, ion milling, and surface texturing were investigated. The direct gravity effect on sputter deposition and vapor deposition processes are discussed as well as techniques for cold and warm welding.

  16. Biophysical models in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Scholz, Michael; Elsässer, Thilo

    One major rationale for the application of heavy ion beams in tumor therapy is their increased relative biological effectiveness (RBE) in the Bragg peak region. For dose prescription, the increased effectiveness has to be taken into account in treatment planning. Hence, the complex dependencies of RBE on the dose level, biological endpoint, position in the field etc. require biophysical models, which have to fulfill two important criteria: simplicity and quantitative precision. Simplicity means that the number of free parameters should be kept at a minimum. Due to the lack of precise quantitative data, at least at present, this requirement is incompatible with approaches aiming at the molecular modeling of the whole chain of production, processing and repair of biological damages. Quantitative precision is required since steep gradients in the dose response curves are observed for most tumor and normal tissues; thus, even small uncertainties in the estimation of the biologically effective dose can transform into large uncertainties in the clinical outcome. The paper will give a general introduction into the field, followed by a description of a specific model, the so called 'Local Effect Model' (LEM). This model has been successfully applied within treatment planning in the GSI pilot project for carbon ion tumor therapy over almost 10 years now. The model is based on the knowledge of charged particle track structure in combination with the response of the cells or tissues under consideration to conventional photon radiation. The model is compared to other approaches developed for the calculation of the biological effects of high-LET radiation. Furthermore, recent improvements of the model are described. Due to the quantitative precision, besides applications in tumor therapy the LEM seems to be adequate for the calculation of stochastic radiation effects, i.e. in the framework of radiation protection. Examples for the calculation of cell transformation are

  17. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  18. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  19. Future Directions in Ion Beam Therapy

    NASA Astrophysics Data System (ADS)

    Habermehl, Daniel; Combs, Stephanie; Debus, Jürgen

    There is a growing interest in ion beam therapy (IBT) worldwide which has led to an increasing number of new treatment facilities. This development is accompanied by intensive radiobiological, physical and clinical research of both proton therapy (PT) and carbon ion radiotherapy (CIRT). Current developments in IBT with high impact for future challenges will be summarized in this chapter.

  20. Ion beam analysis techniques in interdisciplinary applications

    SciTech Connect

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-11-16

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  1. Ion Beam Analysis Techniques in Interdisciplinary Applications

    SciTech Connect

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-12-31

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  2. Metal assisted focused-ion beam nanopatterning

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates.

  3. Focused ion beam micromilling and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  4. Algorithm for ion beam figuring of low-gradient mirrors.

    PubMed

    Jiao, Changjun; Li, Shengyi; Xie, Xuhui

    2009-07-20

    Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.

  5. Solar wind double ions beams and the heliospheric current sheet

    NASA Technical Reports Server (NTRS)

    Hammond, C. M.; Feldman, W. C.; Phillips, J. L.; Goldstein, B. E.; Balogh, A.

    1995-01-01

    Double ion beams are often observed in the solar wind, but little work has been done in relating these beams to structures within the solar wind. Double ion beams are observed as beams of a given ion species and charge state occurring at two different energies. We use the three-dimensional ion plasma instrument on board the Ulysses spacecraft to look for evidence of such beams associated with the heliospheric current sheet. In a subset chosen independently of plasma parameters consisting of 8 of cover 47 crossings of the current sheet made during the inecliptic phase of the Ulysses mission we find that these double ion beams are always present on either side of the current sheet. The double beams are present in both the proton and helium species. The secondary beam typically has a higher helium abundance, which suggests that these beams are formed in the helium-rich corona rather than in interplanetary space. The double beams are not present in the interior of the current sheet. Neither collisions nor effects of plasma beta can account for the disappearance of the double beams inside the current sheet in all eight cases. We postulate that these beams are formed by reconnection occurring near the Sun in the boundary region between the open field lines of the coronal holes and the closed field line region of the heliospheric current sheet. Such a scenario would be consistent with previous X ray measurements which suggect that reconnection is occurring in this region.

  6. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  7. Heteroepitaxial growth of single-domain cubic boron nitride films by ion-beam-assisted MBE

    NASA Astrophysics Data System (ADS)

    Hirama, Kazuyuki; Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Yamamoto, Hideki; Kumakura, Kazuhide

    2017-03-01

    Cubic boron nitride (c-BN) films were grown on diamond (001) substrates by a new ion-beam-assisted molecular-beam-epitaxy (MBE) method with the irradiation of Ar+ ions and atomic nitrogen radicals (N*). From X-ray diffraction and cross-sectional transmission electron microscopy images, we confirmed the heteroepitaxial growth of single-domain c-BN(001) films on the diamond (001) substrates. Additionally, we revealed the growth phase diagram of BN films in the ion-beam-assisted MBE. This diagram indicates that the flux intensity of Ar+ ions should be higher than that of boron atoms for epitaxial c-BN growth.

  8. Effect of molecular adsorption on the electrical conductance of single au nanowires fabricated by electron-beam lithography and focused ion beam etching.

    PubMed

    Shi, Ping; Zhang, Jingying; Lin, Hsin-Yu; Bohn, Paul W

    2010-11-22

    Metal nanowires are one of the potential candidates for nanostructured sensing elements used in future portable devices for chemical detection; however, the optimal methods for fabrication have yet to be fully explored. Two routes to nanowire fabrication, electron-beam lithography (EBL) and focused ion beam (FIB) etching, are studied, and their electrical and chemical sensing properties are compared. Although nanowires fabricated by both techniques exhibit ohmic conductance, I-V characterization indicates that nanowires fabricated by FIB etching exhibit abnormally high resistivity. In addition, the resistivity of nanowires fabricated by FIB etching shows very low sensitivity toward molecular adsorption, while those fabricated by EBL exhibit sensitive resistance change upon exposure to solution-phase adsorbates. The mean grain sizes of nanowires prepared by FIB etching are much smaller than those fabricated by EBL, so their resistance is dominated by grain-boundary scattering. As a result, these nanowires are much less sensitive to molecular adsorption, which mediates nanowire conduction through surface scattering. The much reduced mean grain sizes of these nanowires correlate with Ga ion damage caused during the ion milling process. Thus, even though the nanowires prepared by FIB etching can be smaller than their EBL counterparts, their reduced sensitivity to adsorption suggests that nanowires produced by EBL are preferred for chemical and biochemical sensing applications.

  9. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    SciTech Connect

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  10. Pulsed ion beam surface treatment for preparing rapidly solidified corrosion resistant steel and aluminum surfaces

    SciTech Connect

    Buchheit, R.G.; Maestas, L.M.; McIntyre, D.C.; Stinnett, R.W.; Greenly, J.B.

    1995-03-01

    Intense, pulsed ion beams were used to melt and rapidly resolidify Types 316F, 316L and sensitized 304 stainless steel surfaces to eliminate the negative effects of microstructural heterogeneity on localized corrosion resistance. Anodic polarization curves determined for 316F and 316L showed that passive current densities were reduced and pitting potentials were increased due to ion beam treatment. Type 304 samples sensitized at 600 C for 100 h showed no evidence of grain boundary attack when surfaces were ion beam treated. Equivalent ion beam treatments were conducted with a 6061-T6 aluminum alloy. Electrochemical impedance experiments conducted with this alloy exposed to an aerated chloride solution showed that the onset of pitting was delayed compared to untreated control samples.

  11. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  12. Ion-beam induced atomic mixing in isotopically controlled silicon multilayers

    NASA Astrophysics Data System (ADS)

    Radek, M.; Bracht, H.; Liedke, B.; Böttger, R.; Posselt, M.

    2016-11-01

    Implantation of germanium (Ge), gallium (Ga), and arsenic (As) into crystalline and preamorphized isotopically controlled silicon (Si) multilayer structures at temperatures between 153 K and 973 K was performed to study the mechanisms mediating ion-beam induced atomic mixing. Secondary-ion-mass-spectrometry was applied to determine concentration-depth profiles of the stable isotopes before and after ion implantation. The intermixing is analytically described by a depth-dependent displacement function. The maximum displacement is found to depend not only on temperature and microstructure but also on the doping type of the implanted ion. Molecular dynamics calculations evaluate the contribution of cascade mixing, i.e., thermal-spike mixing, to the overall observed atomic mixing. Calculated and experimental results on the temperature dependence of ion-beam mixing in the amorphous and crystalline structures provide strong evidence for ion-beam induced enhanced crystallization and enhanced self-diffusion, respectively. On the other hand, the former process is confirmed by channeling Rutherford backscattering analyses of the amorphous layer thickness remaining after implantation, the latter process is consistently attributed to the formation of highly mobile Si di-interstitials formed under irradiation and in the course of damage annealing. The observed ion-beam mixing in Si is compared to recent results on ion-beam mixing of Ge isotope multilayers that, in contrast to Si, are fully described by thermal-spike mixing only.

  13. X-ray emission study of ion beam mixed Cu/Al films on polyimide

    SciTech Connect

    Kurmaev, E.Z.; Zatsepin, D.A.; Winarski, R.P.; Stadler, S.; Ederer, D.L.; Moewes, A.; Fedorenko, V.V.; Shamin, S.N.; Galakhov, V.R.; Chang, G.S.; Whang, C.N.

    1999-03-01

    Cu (40 nm)/Al/polyimide/Si was mixed with 80 keV Ar{sup +} and N{sub 2}{sup +} from 5.0{times}10{sup 15} to 15{times}10{sup 15} ions/cm{sup 2}. Ultrasoft x-ray emission valence spectra (XES) of Cu, C, N and O excited by electron and photon radiation were used for study of chemical reactions in Cu/Al/PI/Si and PI/Si systems induced by ion beam mixing in dependence of type of ions and dose. It is found that ion beam mixing changes the chemical state of Cu atoms with respect to that of pure metal. These changes depend on the dose of ion beam bombardment and type of ions and are attributed to a formation of CuAl{sub 2}O{sub 4} interfacial layer, which can be responsible for enhanced interfacial adhesion strength. On the other hand, it is shown that the shape of C {ital K}{alpha}, N {ital K}{alpha} and O {ital K}{alpha} XES of ion beam mixed polyimide layer (PI/Si) is modified with ion bombardment. This means that the ion-beam mixing process is able to break the bonding of constituent atoms of irradiated PI layers and can induce the formation of chemically bonded complexes linking atoms in the Cu, Al and PI layers.{copyright} {ital 1999 American Vacuum Society.}

  14. Ion beam modification of CR-39 (DOP) and polyamide nylon-6 polymers

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Prasad, Rajendra; Vijay, Y. K.; Acharya, N. K.; Verma, K. C.; De, Udayan

    2003-12-01

    Swift heavy ions interact predominantly through inelastic scattering while traversing any polymeric medium and produce excited/ionized atoms. This results into the modification of physical and chemical response of the polymer. CR-39 (DOP) and polyamide nylon-6 polymer samples were irradiated with 70 MeV C 5+ ion beam to the fluences of 10 11, 10 12 and 10 13 ions cm -2. Modifications due to irradiation were studied using Fourier transform infra red (FTIR) spectroscopic and X-ray diffraction (XRD) technique. Considerable deformation has been observed in both the polymers at the fluence of 10 12 and 10 13 ions cm -2. XRD analyses show slight shift of peak position and significant changes in peak width and intensity. Particle size or grain size, calculated by applying Scherrer formula, indicates measurable changes in particle size in the irradiated samples. XRD peaks at d-values of 4.335 Å and 3.838 Å for the virgin polyamide nylon-6 gradually change with increasing fluence into one broad peak. Some difference in the irradiation effect in these two different polymers has been observed.

  15. SU-E-T-770: Tumor Control in Ion Beam Radiotherapy with Different Ions in Presence of Hypoxia

    SciTech Connect

    Attili, A; Giordanengo, S; Torriani, F; Russo, G; Ourhaleb, F; Dalmasso, F; Cirio, R; Battistoni, G; Kraan, A

    2015-06-15

    Purpose: The reduced concentration of oxygen in cells (hypoxia) results in a lower cell death rate after irradiation that can lead to treatment failure. The effect can be expressed by the oxygen enhancement ratio (OER). So far, only few attempts to include OER in treatment planning for ion beam therapy were made, which are based on the dose averaged LET estimates and do not distinguish among ion species and fractionation schemes. To overcome these limitations, we implemented a new OER model and used it to estimate tumor control in clinical cases. Methods: The model, based on the microdosimetric kinetic model, was benchmarked with in-vitro data from different ions irradiation. It was included in the simulation of treatments of a set of clinical cases (glioblastoma) using p, Li, He, C and O ion beams. Tumor Control Probability (TCP) was estimated as a function of oxygen partial pressure, dose per fraction and primary ion type. Results: The modelized OER was found to be strongly dependent on both LET and ion type, and showed a decreasing OER for increasing dose per fraction with a slope that depends on the LET and ion type, in good agreement with the experimental data. In the clinical cases studied, an increase in TCP by increasing ion charge and dose per fraction (more than 30% variation from p to O for moderate hypoxia) was found. Higher OER decrease rates as function of dose per fraction were found for lighter ions (up to 20% varying from 2 to 8 Gy(RBE)). Conclusions: A novel modeling of the OER that explicitly includes the dependence on ion type and dose per fraction was implemented. The model was exploited to evaluate the impact of hypoxia in ion beam radiotherapy, facilitating the identification of the treatment condition optimality, including fractionation scheme and ion type.

  16. Ion Beam Analysis applied to laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Macková, A.; Havranek, V.; Malinsky, P.; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, J.; Dudzak, R.

    2016-04-01

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed.

  17. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Behar, Moni; García Bermúdez, Gerardo

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  18. Ion beam neutralization using three-dimensional electron confinement by surface modification of magnetic poles

    NASA Astrophysics Data System (ADS)

    Nicolaescu, Dan; Sakai, Shigeki; Gotoh, Yasuhito; Ishikawa, Junzo

    2011-07-01

    Advanced implantation systems used for semiconductor processing require transportation of quasi-parallel ion beams, which have low energy (11B+, 31P+,75As+, Eion=200-1000 eV). Divergence of the ion beam due to space charge effects can be compensated through injection of electrons into different regions of the ion beam. The present study shows that electron confinement takes place in regions of strong magnetic field such as collimator magnet provided with surface mirror magnetic fields and that divergence of the ion beam passing through such regions is largely reduced. Modeling results have been obtained using Opera3D/Tosca/Scala. Electrons may be provided by collision between ions and residual gas molecules or may be injected by field emitter arrays. The size of surface magnets is chosen such as not to disturb ion beam collimation, making the approach compatible with ion beam systems. Surface magnets may form thin magnetic layers with thickness h=0.5 mm or less. Conditions for spacing of surface magnet arrays for optimal electron confinement are outlined.

  19. Cellular track model for study of heavy ion beams

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Ngo, Duc M.

    1993-01-01

    Track theory is combined with a realistic model of a heavy ion beam to study the effects of nuclear fragmentation on cell survival and biological effectiveness. The effects of secondary reaction products are studied as a function of depth in a water column. Good agreement is found with experimental results for the survival of human T-l cells exposed to monoenergetic carbon, neon, and argon beams under aerobic and hypoxia conditions. The present calculation, which includes the effect of target fragmentation, is a significant improvement over an earlier calculation because of the use of a vastly improved beam model with no change in the track theory or cellular response parameters.

  20. Rhenium ion beam for implantation into semiconductors

    SciTech Connect

    Kulevoy, T. V.; Seleznev, D. N.; Alyoshin, M. E.; Kraevsky, S. V.; Yakushin, P. E.; Khoroshilov, V. V.; Gerasimenko, N. N.; Smirnov, D. I.; Fedorov, P. A.; Temirov, A. A.

    2012-02-15

    At the ion source test bench in Institute for Theoretical and Experimental Physics the program of ion source development for semiconductor industry is in progress. In framework of the program the Metal Vapor Vacuum Arc ion source for germanium and rhenium ion beam generation was developed and investigated. It was shown that at special conditions of ion beam implantation it is possible to fabricate not only homogenous layers of rhenium silicides solid solutions but also clusters of this compound with properties of quantum dots. At the present moment the compound is very interesting for semiconductor industry, especially for nanoelectronics and nanophotonics, but there is no very developed technology for production of nanostructures (for example quantum sized structures) with required parameters. The results of materials synthesis and exploration are presented.

  1. Scanning He+ Ion Beam Microscopy and Metrology

    SciTech Connect

    Joy, David C.

    2011-11-10

    The CD-SEM has been the tool of choice for the imaging and metrology of semiconductor devices for the past three decades but now, with critical dimensions at the nanometer scale, electron beam instruments can no longer deliver adequate performance. A scanning microscope using a He+ ion beam offers superior resolution and depth of field, and provides enhanced imaging contrast. Device metrology performed using ion beam imaging produces data which is comparable to or better than that from a conventional CD-SEM although there are significant differences in the experimental conditions required and in the details of image formation. The charging generated by a He+ beam, and the sample damage that it can cause, require care in operation but are not major problems.

  2. Ion beam and laser induced surface modifications

    NASA Astrophysics Data System (ADS)

    Appleton, B. R.

    1984-01-01

    The capabilities of energetic ion beam and laser processing of surfaces are reviewed. Ion implantation doping, ion beam mixing, and laser and electron beam processing techniques are capable of producing new and often unique surface properties. The inherent control of these techniques has led to significant advances in our ability to tailor the properties of solids for a wide range of technological applications. Equally important, these techniques have allowed tests of fundamental materials interactions under conditions not heretofore achievable and have resulted in increased understanding of a broad range of materials phenomena. These include new metastable phase formation, rapid nucleation and crystal growth kinetics, amorphous metals and metaglasses, supersaturated solid solutions and substitutional alloys, interface interactions, solute trapping, laser-assisted chemical modifications, and a host of other.

  3. Ion Beam Scattering by Background Helium

    NASA Astrophysics Data System (ADS)

    Grillet, Anne; Hughes, Thomas; Boerner, Jeremiah

    2015-11-01

    The presence of background gases can cause charged particle beams to become more diffuse due to scattering. Calculations for the transport of an ion beam have been performed using Aleph, a particle-in-cell plasma modeling code, and verified against a general envelop equation for charged particle beams. We have investigated the influence of background helium on the coherence and transmitted current of the ion beam. Collisions between ions and neutral particles were calculated assuming isotropic elastic scattering. Since this tends to predict larger scattering angles than are expected at high energies, these are conservative estimates for beam scattering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration.

  4. Ion beam driven warm dense matter experiments

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Ni, P. A.; Leitner, M.; Roy, P. K.; More, R.; Barnard, J. J.; Kireeff Covo, M.; Molvik, A. W.; Yoneda, H.

    2007-11-01

    We report plans and experimental results in ion beam-driven warm dense matter (WDM) experiments. Initial experiments at LBNL are at 0.3-1 MeV K+ beam (below the Bragg peak), increasing toward the Bragg peak in future versions of the accelerator. The WDM conditions are envisioned to be achieved by combined longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. Initial experiments include an experiment to study transient darkening at LBNL; and a porous target experiment at GSI heated by intense heavy-ion beams from the SIS 18 storage ring. Further experiments will explore target temperature and other properties such as electrical conductivity to investigate phase transitions and the critical point.

  5. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1984-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  6. Radioactive-ion-beam research at Livermore

    NASA Astrophysics Data System (ADS)

    Haight, R. C.; Mathews, G. J.; Ward, R. A.; Woosley, S. E.

    1983-06-01

    The ability to produce secondary radioactive heavy ion beams which can be isolated, focused, and transported to a secondary target can enable reaction studies and other research with the approximately more than 1300 nuclei with decay lifetimes approximately more than 1 microsec. Current research in secondary beam production and future applications in astrophysics, nuclear structure, heavy ion physics, and radiotherapy are examined as well as associated spin off and technology transfer in applied physics.

  7. Ion beam analysis of sialon ceramics

    NASA Astrophysics Data System (ADS)

    Vickridge, I. C.; Brown, I. W. M.; Ekström, T. C.; Trompetter, W. J.

    1996-09-01

    Sialons, or silicon-aluminium-oxy-nitrides, are a family of materials that have exceptional high temperature mechanical and tribological properties, but which are susceptible to oxidation. Ion beam analysis is an ideal tool to study the composition of the altered surface layer of sialons after oxidation. In particular simultaneous detection of gamma rays, charged particles, and X-rays induced by 1.4 MeV deuterons allows an almost complete picture of the composition to be obtained.

  8. Ion-beam nitriding of steels

    NASA Technical Reports Server (NTRS)

    Salik, J.

    1985-01-01

    The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.

  9. Radioactive Ion Beams at INFN Laboratories

    SciTech Connect

    Calabretta, L.; Celona, L.; Chines, F.; Cosentino, L.; Cuttone, G.; Finocchiaro, P.; Maggiore, M.; Pappalardo, A.; Piazza, L.; Re, M.; Rifuggiato, D.; Rovelli, A.; Pappalardo, A.; Andrighetto, A.; Prete, G.; Biasetto, L.; Manzolaro, M.; Sarchiapone, L.; Galata, A.; Lombardi, A.

    2010-04-30

    The LNS and the LNL are the two laboratories of INFN devoted to the research on nuclear physics. Since the 1995 the LNS are involved in the design and construction of the Radioactive Ion Beam facilities called EXCYT. In the early of 2000 the LNL starts a project for second generation RIB facilities called SPES. In the 2004 at the LNS we start also the production of RIB by in flight fragmentation. Here the status and perspective of these three projects are presented.

  10. Quasi-liquid states observed on ion beam microtextured surfaces

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    Liquid-like properties have been observed on surface structures developed by means of ion beam microtexturing. The structures include cones, pyramids, or wavelike formations. The observed liquid-like effects are drips and ripples on the sides of cones, droplet formation, the apparent flow and coalescence of closely packed structures, wetting angle and other surface tension effects, and the bending of cones by additional heating. The bulk temperatures are in the range of 50-600 C. These effects are seen to some extent on Cu, Al, Au, Pb, and Ni substrates.

  11. Intense ion-beam dynamics in the NICA collider

    NASA Astrophysics Data System (ADS)

    Kozlov, O. S.; Meshkov, I. N.; Sidorin, A. O.; Trubnikov, G. V.

    2016-12-01

    The problems of intense ion-beam dynamics in the developed and optimized optical structure of the NICA collider are considered. Conditions for beam collisions and obtaining the required parameters of luminosity in the operation energy range are discussed. The restriction on collider luminosity is related to effects of the domination of the space charge and intrabeam scattering. Applying methods of cooling, electron and stochastic ones, will permit one to suppress these effects and reach design luminosity. The work also deals with systems of magnetic field correction and problems of calculating the dynamic aperture of the collider.

  12. Study of surface reactions in plasma etching using mass-analyzed ion beams

    NASA Astrophysics Data System (ADS)

    Karahashi, Kazuhiro

    2001-10-01

    We have constructed a new mass-analyzed low-energy ion beam etching apparatus (MALIEA) for investigate desorption products from silicon or silicon dioxide surfaces during CFx+ (x=1-3) ion bombardments. In this paper, we describe this newly developed ion beam apparatus, and results of CF3+ ion bombardment experiments. The apparatus consists of an ion beam source, an ultra high vacuum (UHV) process chamber, and a detector chamber. As there are three differentially pumping stages between the source and process chamber, the process chamber was maintained at UHV condition during all experiments. Therefore, experiments were not affected by contaminations form the ion source. Pure ion beams such as F+, CF+, CF2+ and CF3+, were obtained with good mass resolutions by a 90\\x81‹ mass-selecting electromagnet. The sample is mounted on a manipulator, located at the foci of a hemispherical energy analyzer and x-ray sources to allow chemical analysis of irradiated surfaces. The desorption products and scattered ions were detected by a rotatable differentially pumped quadrupole mass spectrometer (QMS). In experiments of CF3+ irradiation on silicon dioxide surface\\x81@at 1000eV, etching rate was about 1.1 atoms/ion, and silicon flourides for etching products were detected by QMS. Therefore, it is possible to investigate the interaction between silicon or silicon dioxide surfaces and low-energy CFx+(x=1-3) ions with a well-defined energy. This work was supported by NEDO.

  13. ECR Based Low Energy Ion Beam Facility at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Taki, G. S.; Chakraborty, D. K.; Ghosh, Subhash; Majhi, S.; Pal, Gautam; Mallik, C.; Bhandari, R. K.; Krishna, J. B. M.; Dey, K.; Sinha, A. K.

    2012-11-01

    A low energy heavy ion irradiation/implantation facility has been developed at VECC, Kolkata for materials science and atomic physics research, utilizing indigenously developed 6.4 GHz ECR ion source. The facility provides high charge state ion beams of N, O, Ne, Ar, S, Kr, Xe, Fe, Ti, Hf etc. up to a few micro amperes to an energy of 10 keV per charge state.The beam energy can be further enhanced by floating the target at a negative potential (up to 25 kV). The ion beam is focused to a spot of about 2 mm diameter on the target using a set of glaser lenses. A x-y scanner is used to scan the beam over a target area of 10 mm x 10 mm to obtain uniform implantation. The recently commissioned multi facility sample chamber has provision for mounting multiple samples on indigenously developed disposable beam viewers for insitu beam viewing during implantation. The ionization chamber of ECR source is mainly pumped by ECR plasma. An additional pumping speed has been provided through extraction hole and pumping slots to obtain low base pressure. In the ion source, base pressure of 1x10-7 Torr in injector stage and ~5x10-8 Torr in extraction chamber have been routinely obtained. The ultra-high vacuum multi facility experimental chamber is generally kept at ~ 1x10-7 Torr during implantation on the targets. This facility is a unique tool for studying fundamental and technologically important problems of materials science and atomic physics research. High ion flux available from this machine is suitable for generating high defect densities i.e. high value of displacement-per-atom (dpa). Recently this facility has been used for studies like "Tunability of dielectric constant of conducting polymer Polyaniline (PANI) by low energy Ar9+ irradiation" and "Fe10+ implantation in ZnO for synthesis of dilute magnetic semiconductor".

  14. Room Temperature Ion-Beam-Induced Recrystallization and Large Scale Nanopatterning.

    PubMed

    Satpati, Biswarup; Ghosh, Tanmay

    2015-02-01

    We have studied ion-induced effects in the near-surface region of two eutectic systems. Gold and Silver nanodots on Silicon (100) substrate were prepared by thermal evaporation under high vacuum condition at room temperature (RT) and irradiated with 1.5 MeV Au2+ ions at flux ~1.25 x 10(11) ions cm-2 s-1 also at RT. These samples were characterized using cross-sectional transmission electron microscopy (XTEM) and associated techniques. We have observed that gold act as catalysis in the recrystallization process of ion-beam-induced amorphous Si at room temperature and also large mass transport up to a distance of about 60 nm into the substrate. Mass transport is much beyond the size (~ 6-20 nm) of these Au nanodots. Ag nanoparticles with diameter 15-45 nm are half-way embedded into the Si substrate and does not stimulate in recrystallization. In case of Au nanoparticles upon ion irradiation, mixed phase formed only when the local composition and transient temperature during irradiation is sufficient to cause mixing in accordance with the Au-Si stable phase diagram. Spectroscopic imaging in the scanning TEM using spatially resolved electron energy loss spectroscopy provides one of the few ways to measure the real-space nanoscale mixing.

  15. Microsecond pulse width, intense, light-ion beam accelerator

    NASA Astrophysics Data System (ADS)

    Rej, D. J.; Bartsch, R. R.; Davis, H. A.; Faehl, R. J.; Greenly, J. B.; Waganaar, W. J.

    1993-10-01

    A relatively long-pulse width (0.1-1 μs) intense ion beam accelerator has been built for materials processing applications. An applied Br, magnetically insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2 MV, 300-kJ Marx generator. The diode is designed with the aid of multidimensional particle-in-cell simulations. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse shaping. The effect of a plasma opening switch on diode behavior is considered.

  16. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    SciTech Connect

    Zhu, X. P.; Zhang, Z. C.; Lei, M. K.; Pushkarev, A. I.

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  17. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    NASA Astrophysics Data System (ADS)

    Zhu, X. P.; Zhang, Z. C.; Pushkarev, A. I.; Lei, M. K.

    2016-01-01

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200-300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  18. Evaluation of SCCVII tumor cell survival in clamped and non-clamped solid tumors exposed to carbon-ion beams in comparison to X-rays.

    PubMed

    Hirayama, Ryoichi; Uzawa, Akiko; Takase, Nobuhiro; Matsumoto, Yoshitaka; Noguchi, Miho; Koda, Kana; Ozaki, Masakuni; Yamashita, Kei; Li, Huizi; Kase, Yuki; Matsufuji, Naruhiro; Koike, Sachiko; Masunaga, Shin-ichiro; Ando, Koichi; Okayasu, Ryuichi; Furusawa, Yoshiya

    2013-08-30

    The aim of this study was to measure the RBE (relative biological effectiveness) and OER (oxygen enhancement ratio) for survival of cells within implanted solid tumors following exposure to 290MeV/nucleon carbon-ion beams or X-rays. Squamous cell carcinoma cells (SCCVII) were transplanted into the right hind legs of syngeneic C3H male mice. Irradiation with either carbon-ion beams with a 6-cm spread-out Bragg peak (SOBP, at 46 and 80keV/μm) or X-rays was delivered to 5-mm or less diameter tumors. We defined three different oxygen statuses of the irradiated cells. Hypoxic and normoxic conditions in tumors were produced by clamping or not clamping the leg to avoid blood flow. Furthermore, single-cell suspensions were prepared from non-irradiated tumors and directly used to determine the radiation response of aerobic cells. Single-cell suspensions (aerobic condition) were fully air-saturated. Single-cell suspensions were prepared from excised and trypsinized tumors, and were used for in vivo-in vitro colony formation assays to obtain cell survival curves. The RBE values increased with increasing LET in SOBP beams. The maximum RBE values in three different oxygen conditions; hypoxic tumor, normoxic tumor and aerobic cells, were 2.16, 1.76 and 1.66 at an LET of 80keV/μm, respectively. After X-ray irradiation the OERh/n values (hypoxic tumor/normoxic tumor) were lower than the OERh/a (hypoxic tumor/aerobic cells), and were 1.87±0.13 and 2.52±0.11, respectively. The OER values of carbon-ion irradiated samples were small in comparison to those of X-ray irradiated samples. However, no significant changes of the OER at proximal and distal positions within the SOBP carbon-ion beams were observed. To conclude, we found that the RBE values for cell survival increased with increasing LET and that the OER values changed little with increasing LET within the SOBP carbon-ion beams.

  19. Spectrometer for cluster ion beam induced luminescence

    SciTech Connect

    Ryuto, H. Sakata, A.; Takeuchi, M.; Takaoka, G. H.; Musumeci, F.

    2015-02-15

    A spectrometer to detect the ultra-weak luminescence originated by the collision of cluster ions on the surfaces of solid materials was constructed. This spectrometer consists of 11 photomultipliers with band-pass interference filters that can detect the luminescence within the wavelength ranging from 300 to 700 nm and of a photomultiplier without filter. The calibration of the detection system was performed using the photons emitted from a strontium aluminate fluorescent tape and from a high temperature tungsten filament. Preliminary measurements show the ability of this spectrometer to detect the cluster ion beam induced luminescence.

  20. Plasma formed ion beam projection lithography system

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  1. Physics with fast molecular-ion beams

    SciTech Connect

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  2. Aifira: An ion beam facility for multidisciplinary research

    NASA Astrophysics Data System (ADS)

    Sorieul, S.; Alfaurt, Ph.; Daudin, L.; Serani, L.; Moretto, Ph.

    2014-08-01

    During the last decade, the CENBG (Centre d'Études Nucléaires de Bordeaux Gradignan) commissioned a new facility called AIFIRA (Applications Interdisciplinaires des Faisceaux d'ions en Région Aquitaine). It allowed the development of a multidisciplinary activity based on the "in-house" expertise of CENBG in ion beam analysis. The great flexibility offered by the five beam lines confers a lot of possibilities for chemical analysis and nuclear physics. Indeed, not only the macrobeam and the external beam lines provide the full set of IBA techniques for routine sample analysis but an additional beam line is devoted to the production of monoenergetic neutrons through the interaction of the incoming ion with selected targets. In addition, the two high-resolution microbeam lines are used for chemical analyses, 2D/3D imaging, and targeted cell irradiation. Besides, the combination of the nanobeam line flexibility, the uniqueness of the micro-irradiation design completed by the internal CENBG expertise confers a great specificity to AIFIRA in biomedical field. After a detailed technical overview of the platform, the article focuses on the two high-resolution lines as they tap most of the activity. Thus a quick overview of the most significant results concerning biomedical samples is proposed in order to highlight the analytical possibilities of AIFIRA microbeam lines. A summary of the development status of the micro-irradiation line is also done.

  3. Intense laser-driven ion beams in the relativistic-transparency regime: acceleration, control and applications

    NASA Astrophysics Data System (ADS)

    Fernandez, Juan C.

    2016-10-01

    Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.

  4. Ion beam figuring approach for thermally sensitive space optics.

    PubMed

    Yin, Xiaolin; Deng, Weijie; Tang, Wa; Zhang, Binzhi; Xue, Donglin; Zhang, Feng; Zhang, Xuejun

    2016-10-01

    During the ion beam figuring (IBF) of a space mirror, thermal radiation of the neutral filament and particle collisions will heat the mirror. The adhesive layer used to bond the metal parts and the mirror is very sensitive to temperature rise. When the temperature exceeds the designed value, the mirror surface shape will change markedly because of the thermal deformation and stress release of the adhesive layer, thereby reducing the IBF accuracy. To suppress the thermal effect, we analyzed the heat generation mechanism. By using thermal radiation theory, we established a thermal radiation model of the neutral filament. Additionally, we acquired a surface-type Gaussian heat source model of the ion beam sputtering based on the removal function and Faraday scan result. Using the finite-element-method software ABAQUS, we developed a method that can simulate the thermal effect of the IBF for the full path and all dwell times. Based on the thermal model, which was experimentally confirmed, we simulated the thermal effects for a 675  mm×374  mm rectangular SiC space mirror. By optimizing the dwell time distribution, the peak temperature value of the adhesive layer during the figuring process was reduced under the designed value. After one round of figuring, the RMS value of the surface error changed from 0.094 to 0.015λ (λ=632.8  nm), which proved the effectiveness of the thermal analysis and suppression method.

  5. Application of ion-beam analysis techniques to the study of irradiationn damage in zirconium alloys

    SciTech Connect

    Howe, L.M.; Phillips, D.; Zou, H.; Forster, J.; Siegele, R.; Davies, J.A.; Motta, A.T.; Faldowski, J.A.; Okamoto, P.R.

    1995-12-01

    Ion-beam-analysis techniques are being used to provide an understanding of the nature of collision cascades, irradiation-induced phase changes, lattice location of solute atoms and defect-solute atom interactions in various zirconium alloys. In zirconium intermetallic compounds, such as Zr{sub 3}Fe, Zr{sub 2}Fe, ZrFe{sub 2}, Zr{sub 3}(Fe{sub x},Ni{sub 1-x}) and (Zr,M){sub 3}Fe, electron and ion irradiations have been used to obtain detailed information on the crystalline-to-amorphous transformation occurring during the irradiation. Transmission-electron-microscopy (TEM) observations have provided information on the nature of the damage produced in individual cascades, the critical dose required for amorphization, and the critical temperature for amorphization. In a study on the electron-energy dependence of amorphization in Zr{sub 3}Fe, Zr{sub 2},Fe and ZrCr{sub 2}, in situ high-voltage-electron-microscope investigations were combined with high-energy forward-elastic-recoil measurements to yield information on the threshold displacement energies for Zr and Fe or Cr in these lattices, as well as the role of secondary displacements of lattice atoms by recoil impurities (C,O) at low electron energies. In Zr implanted with {sup 56}Fe ions and subsequently bombarded with {sup 40}Ar ions at 723 K, subsequent secondary-ion-mass-spectrometry (SIMS) analyses were used to monitor the effect of irradiation on the migration of Fe in the Zr lattice. In addition, ion-channeling investigations have been used to determine the lattice sites of solute atoms in Zr as well as the details of the interaction between the solute atoms and the irradiation-produced defects.

  6. Micro/nanofabrication of poly(L-lactic acid) using focused ion beam direct etching

    NASA Astrophysics Data System (ADS)

    Oyama, Tomoko Gowa; Hinata, Toru; Nagasawa, Naotsugu; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi; Taguchi, Mitsumasa

    2013-10-01

    Micro/nanofabrication of biocompatible and biodegradable poly(L-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachment properties.

  7. Channeling technique to make nanoscale ion beams

    NASA Astrophysics Data System (ADS)

    Biryukov, V. M.; Bellucci, S.; Guidi, V.

    2005-04-01

    Particle channeling in a bent crystal lattice has led to an efficient instrument for beam steering at accelerators [Biryukov et al., Crystal Channeling and its Application at High Energy Accelerators, Springer, Berlin, 1997], demonstrated from MeV to TeV energies. In particular, crystal focusing of high-energy protons to micron size has been demonstrated at IHEP with the results well in match with Lindhard (critical angle) prediction. Channeling in crystal microstructures has been proposed as a unique source of a microbeam of high-energy particles [Bellucci et al., Phys. Rev. ST Accel. Beams 6 (2003) 033502]. Channeling in nanostructures (single-wall and multi-wall nanotubes) offers the opportunities to produce ion beams on nanoscale. Particles channeled in a nanotube (with typical diameter of about 1 nm) are trapped in two dimensions and can be steered (deflected, focused) with the efficiency similar to that of crystal channeling or better. This technique has been a subject of computer simulations, with experimental efforts under way in several high-energy labs, including IHEP. We present the theoretical outlook for making channeling-based nanoscale ion beams and report the experience with crystal-focused microscale proton beams.

  8. Lithium ion beam impact on selenium nanowires

    NASA Astrophysics Data System (ADS)

    Panchal, Suresh; Chauhan, R. P.

    2017-03-01

    This study is structured on Li3+ ion irradiation effect on the different properties of selenium (Se) nanowires (NW's) (80 nm). Template technique was employed for the synthesis of Se nanowires. Exploration of the effect of 10 MeV Li3+ ions on Se NW's was done for structural and electrical analysis with the help of characterization tools. X-ray diffraction revealed the variation in peak intensity only, with no peak shifting. The grain size and texture coefficients of various planes were also found to vary. Current-Voltage characteristics (IVC) show an increment in the conductivity up to a fluence of 1×1012 ions/cm2 and a decrease at the next two fluences. The effects of irradiation are presented in this paper and possible reasons for the variation in properties are also discussed in this study.

  9. Ion beam surface treatment: A new technique for thermally modifying surfaces using intense, pulsed ion beams

    SciTech Connect

    Stinnett, R.W.; Buchheit, R.G.; Neau, E.L.

    1995-08-01

    The emerging capability to produce high average power (10--300 kW) pulsed ion beams at 0.2{minus}2 MeV energies is enabling us to develop a new, commercial-scale thermal surface treatment technology called Ion Beam Surface Treatment (IBEST). This new technique uses high energy, pulsed ({le}500 ns) ion beams to directly deposit energy in the top 1--20 micrometers of the surface of any material. The depth of treatment is controllable by varying the ion energy and species. Deposition of the energy in a thin surface layer allows melft of the layer with relatively small energies (1--10J/cm2) and allows rapid cooling of the melted layer by thermal conduction into the underlying substrate. Typical cooling rates of this process (109 K/sec) are sufficient to cause amorphous layer formation and the production of non-equilibrium microstructures (nanocrystalline and metastable phases). Results from initial experiments confirm surface hardening, amorphous layer and nanocrystalline grain size formation, corrosion resistance in stainless steel and aluminum, metal surface polishing, controlled melt of ceramic surfaces, and surface cleaning and oxide layer removal as well as surface ablation and redeposition. These results follow other encouraging results obtained previously in Russia using single pulse ion beam systems. Potential commercialization of this surface treatment capability is made possible by the combination of two new technologies, a new repetitive high energy pulsed power capability (0.2{minus}2MV, 25--50 kA, 60 ns, 120 Hz) developed at SNL, and a new repetitive ion beam system developed at Cornell University.

  10. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Kurz, C.; Mairani, A.; Parodi, K.

    2012-08-01

    Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight

  11. Shadow overlap ion-beam lithography for nanoarchitectures.

    PubMed

    Choi, Yeonho; Hong, Soongweon; Lee, Luke P

    2009-11-01

    Precisely constructed nanoscale devices and nanoarchitectures with high spatial resolution are critically needed for applications in high-speed electronics, high-density memory, efficient solar cells, optoelectronics, plasmonics, optical antennas, chemical sensors, biological sensors, and nanospectroscopic imaging. Current methods of classical optical lithography are limited by the diffraction effect of light for nanolithography, and the state of art of e-beam or focused ion beam lithography limit the throughput and further reduction less than few nanometers for large-area batch fabrication. However, these limits can be surpassed surprisingly by utilizing the overlap of two shadow images. Here we present shadow overlap of ion-beam lithography (SOIL), which can combine the advantages of parallel processing, tunable capability of geometries, cost-effective method, and high spatial resolution nanofabrication technique. The SOIL method relies on the overlap of shadows created by the directional metal deposition and etching angles on prepatterned structures. Consequently, highly tunable patterns can be obtained. As examples, unprecedented nanoarchitectures for optical antennas are demonstrated by SOIL. We expect that SOIL can have a significant impact not only on nanoscale devices, but also large-scale (i.e., micro and macro) three-dimensional innovative lithography.

  12. Studies of Limits on Uncontrolled Heavy Ion Beam Losses for Allowing Hands-On Maintenance

    SciTech Connect

    Reginald M. Ronningen; Igor Remec

    2010-09-11

    Dose rates from accelerator components activated by 1 W/m beam losses are obtained semiempirically for a 1 GeV proton beam and by use of Monte Carlo transport codes for the proton beam and for 777 MeV/u 3He, 500 MeV/u 48Ca, 86Kr, 136Xe, and 400 MeV/u 238U ions. The dose rate obtained by the semi-empirical method, 0.99 mSv/h (99 mrem/h) at 30 cm, 4 h after 100 d irradiation by a 1-GeV proton beam, is consistent with studies at several accelerator facilities and with adopted hands-on maintenance dose rate limits. Monte Carlo simulations verify this result for protons and extend studies to heavy ion beam losses in drift-tube linac and superconducting linac accelerating structures. The studies indicate that the 1 W/m limit imposed on uncontrolled beam losses for high-energy proton beams might be relaxed for heavy ion beams. These studies further suggest that using the ratio of neutrons produced by a heavy ion beam to neutrons produced by a proton beam along with the dose rate from the proton beam (for thin-target scenarios) should allow an estimate of the dose rates expected from heavy ion beam losses.

  13. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  14. Focused ion beam techniques for fabricating geometrically-complex components and devices.

    SciTech Connect

    Mayer, Thomas Michael; Adams, David Price; Hodges, V. Carter; Vasile, Michael J.

    2004-03-01

    We have researched several new focused ion beam (FIB) micro-fabrication techniques that offer control of feature shape and the ability to accurately define features onto nonplanar substrates. These FIB-based processes are considered useful for prototyping, reverse engineering, and small-lot manufacturing. Ion beam-based techniques have been developed for defining features in miniature, nonplanar substrates. We demonstrate helices in cylindrical substrates having diameters from 100 {micro}m to 3 mm. Ion beam lathe processes sputter-define 10-{micro}m wide features in cylindrical substrates and tubes. For larger substrates, we combine focused ion beam milling with ultra-precision lathe turning techniques to accurately define 25-100 {micro}m features over many meters of path length. In several cases, we combine the feature defining capability of focused ion beam bombardment with additive techniques such as evaporation, sputter deposition and electroplating in order to build geometrically-complex, functionally-simple devices. Damascene methods that fabricate bound, metal microcoils have been developed for cylindrical substrates. Effects of focused ion milling on surface morphology are also highlighted in a study of ion-milled diamond.

  15. Enhancement of exchange bias and training effect in ion-beam sputtered Fe{sub 46}Mn{sub 54}/Ni{sub 81}Fe{sub 19} bilayers

    SciTech Connect

    Fulara, Himanshu; Chaudhary, Sujeet Kashyap, Subhash C.; Granville, Simon

    2014-01-28

    We present a remarkable enhancement by 300% of the exchange-bias field at room temperature, without affecting the coercivity value, via optimum magnetic annealing (250 °C/3 kOe) in ion-beam sputtered FeMn(30 nm)/NiFe(10 nm) bilayers. This specific behavior has been attributed to a higher degree of γ-FeMn(111) orientation that offers more interfacial FeMn moments to get pinned with the moments of the adjacent NiFe layer. Unlike the absence of training effect at room temperature, a pronounced training effect and an accompanying magnetization reversal asymmetry are evidenced upon field cooling below 50 K due to the presence of biaxial exchange induced anisotropy across the interdiffused FeMn/NiFe interface. The present findings not only have technological significance but also are of relevance to the understanding of interfacial spin disorder and frustration in these exchange-biased systems.

  16. Modeling of nanocluster formation by ion beam implantation

    SciTech Connect

    Li, Kun-Dar

    2011-08-15

    A theoretical model was developed to investigate the mechanism of the formation of nanoclusters via ion beam implantation. The evolution of nanoclusters, including the nucleation and growth process known as Ostwald ripening, was rebuilt using numerical simulations. The effects of implantation parameters such as the ion energy, ion fluence, and temperature on the morphology of implanted microstructures were also studied through integration with the Monte Carlo Transport of Ions in Matter code calculation for the distribution profiles of implanted ions. With an appropriate ion fluence, a labyrinth-like nanostructure with broad size distributions of nanoclusters formed along the ion implantation range. In a latter stage, a buried layer of implanted impurity developed. With decreasing ion energy, the model predicted the formation of precipitates on the surface. These simulation results were fully consistent with many experimental observations. With increased temperature, the characteristic length and size of nanostructures would increase due to the high mobility. This theoretical model provides an efficient numerical approach for fully understanding the mechanism of the formation of nanoclusters, allowing for the design of ion beam experiments to form specific nanostructures through ion-implantation technology.

  17. An Improved Green's Function for Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Wilson, J. W.; Tripathi, R. K.

    2003-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for the high charge and energy (HZE) by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions.

  18. An improved Green's function for ion beam transport

    NASA Technical Reports Server (NTRS)

    Tweed, J.; Wilson, J. W.; Tripathi, R. K.

    2004-01-01

    Ion beam transport theory allows testing of material transmission properties in the laboratory environment generated by particle accelerators. This is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are the main emphasis of the present work. In consequence, an analytic solution of the linear Boltzmann equation is pursued in the form of a Green's function allowing flexibility in application to a broad range of boundary value problems. It has been established that simple solutions can be found for high charge and energy (HZE) ions by ignoring nuclear energy downshifts and dispersion. Such solutions were found to be supported by experimental evidence with HZE ion beams when multiple scattering was added. Lacking from the prior solutions were range and energy straggling and energy downshift with dispersion associated with nuclear events. Recently, we have found global solutions including these effects providing a broader class of HZE ion solutions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. Optical Nanoscopy of High Tc Cuprate Nanoconstriction Devices Patterned by Helium Ion Beams

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Litombe, N. E.; Hoffman, Jennifer E.; Božović, I.

    2017-03-01

    Helium-ion beams (HIB) focused to sub-nanometer scales have emerged as powerful tools for high-resolution imaging as well as nano-scale lithography, ion milling or deposition. Quantifying irradiation effects is essential for reliable device fabrication but most of the depth profiling information is provided by computer simulations rather than experiment. Here, we use atomic force microscopy (AFM) combined with scanning near-field optical microscopy (SNOM) to provide three-dimensional (3D) dielectric characterization of high-temperature superconductor devices fabricated by HIB. By imaging the infrared dielectric response we find that amorphization caused by the nominally 0.5 nm HIB extends throughout the entire 26.5 nm thickness of the cuprate film and by about 500 nm laterally. This unexpectedly widespread structural and electronic damage can be attributed to a Helium depth distribution substantially modified by internal device interfaces. Our study introduces AFM-SNOM as a quantitative nano-scale tomographic technique for non-invasive 3D characterization of irradiation damage in a wide variety of devices.

  20. Symmetry of surface nanopatterns induced by ion-beam sputtering: Role of anisotropic surface diffusion

    NASA Astrophysics Data System (ADS)

    Renedo, Javier; Cuerno, Rodolfo; Castro, Mario; Muñoz-García, Javier

    2016-04-01

    Ion-beam sputtering (IBS) is a cost-effective technique able to produce ordered nanopatterns on the surfaces of different materials. To date, most theoretical studies of this process have focused on systems which become amorphous under irradiation, e.g., semiconductors at room temperature. Thus, in spite of the large amount of experimental work on metals, or more recently on semiconductors at high temperatures, such experimental contexts have received relatively little theoretical attention. These systems are characterized by transport mechanisms, e.g., surface diffusion, which are anisotropic as a reflection of the crystalline structure not being overruled by the irradiation. Here, we generalize a previous continuum theory of IBS at normal incidence, in order to account for anisotropic surface diffusion. We explore systematically our generalized model in order to understand the role of anisotropy in the space-ordering properties of the resulting patterns. In particular, we derive a height equation which predicts morphological transitions among hexagonal and rectangular patterns as a function of system parameters and employ an angular correlation function to assess these pattern symmetries. By suitably choosing experimental conditions, it is found that one might be able to experimentally control the type of order displayed by the patterns produced.

  1. Optical nanoscopy of high Tc cuprate nanoconstriction devices patterned by helium ion beams

    DOE PAGES

    Gozar, Adrian; Litombe, N. E.; Hoffman, Jennifer E.; ...

    2017-02-06

    Helium ion beams (HIB) focused to subnanometer scales have emerged as powerful tools for high-resolution imaging as well as nanoscale lithography, ion milling, or deposition. Quantifying irradiation effects is an essential step toward reliable device fabrication, but most of the depth profiling information is provided by computer simulations rather than the experiment. Here, we demonstrate the use of atomic force microscopy (AFM) combined with scanning near-field optical microscopy (SNOM) to provide three-dimensional (3D) dielectric characterization of high-temperature superconductor devices fabricated by HIB. By imaging the infrared dielectric response obtained from light demodulation at multiple harmonics of the AFM tapping frequency,more » we find that amorphization caused by the nominally 0.5 nm HIB extends throughout the entire 26.5 nm thickness of the cuprate film and by ~500 nm laterally. This unexpectedly widespread damage in morphology and electronic structure can be attributed to a helium depth distribution substantially modified by the internal device interfaces. Lastly, our study introduces AFM-SNOM as a quantitative tomographic technique for noninvasive 3D characterization of irradiation damage in a wide variety of nanoscale devices.« less

  2. Adaptation of ion beam technology to microfabrication of solid state devices and transducers

    NASA Technical Reports Server (NTRS)

    Topich, J. A.

    1977-01-01

    It was found that ion beam texturing of silicon surfaces can be used to increase the effective surface area of MOS capacitors. There is, however, a problem with low dielectric breakdown. Preliminary work was begun on the fabrication of ion implanted resistors on textured surfaces and the potential improvement of wire bond strength by bonding to a textured surface. In the area of ion beam sputtering, the techniques for sputtering PVC were developed. A PVC target containing valinomycin was used to sputter an ion selective membrane on a field effect transistor to form a potassium ion sensor.

  3. Plasma focus ion beam fluence and flux—For various gases

    SciTech Connect

    Lee, S.; Saw, S. H.

    2013-06-15

    A recent paper derived benchmarks for deuteron beam fluence and flux in a plasma focus (PF) [S. Lee and S. H. Saw, Phys. Plasmas 19, 112703 (2012)]. In the present work we start from first principles, derive the flux equation of the ion beam of any gas; link to the Lee Model code and hence compute the ion beam properties of the PF. The results show that, for a given PF, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow, and damage factors are relatively constant from H{sub 2} to N{sub 2} but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper provides much needed benchmark reference values and scaling trends for ion beams of a PF operated in any gas.

  4. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  5. Ion Beam Sputtered Coatings of Bioglass

    NASA Technical Reports Server (NTRS)

    Hench, Larry L.; Wilson, J.; Ruzakowski, Patricia Henrietta Anne

    1982-01-01

    The ion beam sputtering technique available at the NASA-Lewis was used to apply coatings of bioglass to ceramic, metallic, and polymeric substrates. Experiments in vivo and in vitro described investigate these coatings. Some degree of substrate masking was obtained in all samples although stability and reactivity equivalent to bulk bioglass was not observed in all coated samples. Some degree of stability was seen in all coated samples that were reacted in vitro. Both metallic and ceramic substrates coated in this manner failed to show significantly improved coatings over those obtained with existing techniques. Implantation of the coated ceramic substrate samples in bone gave no definite bonding as seen with bulk glass; however, partial and patchy bonding was seen. Polymeric substrates in these studies showed promise of success. The coatings applied were sufficient to mask the underlying reactive test surface and tissue adhesion of collagen to bioglass was seen. Hydrophilic, hydrophobic, charged, and uncharged polymeric surfaces were successfully coated.

  6. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  7. Tuning ferromagnetism by varying ion beam profiles

    NASA Astrophysics Data System (ADS)

    Hariwal, Rajesh V.; Malik, Hitendra K.; Asokan, K.

    2017-02-01

    Present study demonstrates a novel technique to tune the ferromagnetism at room temperature by varying the ion beam profiles from 3 to 7 mm during Carbon ion implantation in ZnO matrix and keeping other beam parameters constant. The interaction of implanted C ions with host ZnO matrix at different profiles result in variable ferromagnetism from 0.75 to 3.0  ×  10‑4 emu gm‑1 due to difference in the induced radiation pressure. Similar variation is also observed in the optical bandgap from 3.35 to 3.24 eV for different beam profiles. This study shows that the material properties can be tuned and controlled by the variation of beam profiles during the ion implantation.

  8. Dispensing targets for ion beam particle generators

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1974-01-01

    A target for dispensing high energy protons or neutrons or ionized atoms or ionized molecules is provided which comprises a container for the target gas, which is at atmospheric or higher pressure. The container material can release the target gas in the spot where the container is heated above a predetermined temperature by the impact of an ion beam where protons or neutrons are desired, or by electrons where ionized atoms or molecules are desired. On the outside of the container, except for the region where the beam is to impact, there is deposited a layer of a metal which is imperious to gaseous diffusion. A further protective coating of a material is placed over the layer of metal, except at the region of the ion impact area in order to adsorb any unreacted gas in the vacuum in which the target is placed, to thereby prevent reduction of the high vacuum, as well as contamination of the interior of the vacuum chamber.

  9. Development of a pepper pot emittance probe and its application for ECR ion beam studies.

    SciTech Connect

    Kondrashev, S.; Barcikowski, A.; Mustapha, B.; Ostroumov, P.N.; Vinogradov, N.; Northern Illinois Univ.

    2009-07-21

    A pepper pot-scintillator screen system has been developed and used to measure the emittance of DC ion beams extracted from a high-intensity permanent magnet ECR ion source. The system includes a fast beam shutter with a minimum dwell time of 18 ms to reduce the degradation of the CsI(Tl) scintillator by DC ion beam irradiation and a CCD camera with a variable shutter speed in the range of 1 {micro}s-65 s. On-line emittance measurements are performed by an application code developed on a LabVIEW platform. The sensitivity of the device is sufficient to measure the emittance of DC ion beams with current densities down to about 100 nA/cm{sup 2}. The emittance of all ion species extracted from the ECR ion source and post-accelerated to an energy of 75-90 keV/charge have been measured downstream of the LEBT. As the mass-to-charge ratio of ion species increases, the normalized RMS emittances in both transverse phase planes decrease from 0.5-1.0 {pi} mm mrad for light ions to 0.05-0.09 {pi} mm mrad for highly charged {sup 209}Bi ions. The dependence of the emittance on ion's mass-to-charge ratio follows very well the dependence expected from beam rotation induced by decreasing ECR axial magnetic field. The measured emittance values cannot be explained by only ion beam rotation for all ion species and the contribution to emittance of ion temperature in plasma, non-linear electric fields and non-linear space charge is comparable or even higher than the contribution of ion beam rotation.

  10. Geant4 simulation of clinical proton and carbon ion beams for the treatment of ocular melanomas with the full 3-D pencil beam scanning system

    SciTech Connect

    Farina, Edoardo; Riccardi, Cristina; Rimoldi, Adele; Tamborini, Aurora; Piersimoni, Pierluigi; Ciocca, Mario

    2015-07-01

    This work investigates the possibility to use carbon ion beams delivered with active scanning modality, for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia. The radiotherapy with carbon ions offers many advantages with respect to the radiotherapy with protons or photons, such as a higher relative radio-biological effectiveness (RBE) and a dose release better localized to the tumor. The Monte Carlo (MC) Geant4 10.00 patch-03 toolkit is used to reproduce the complete CNAO extraction beam line, including all the active and passive components characterizing it. The simulation of proton and carbon ion beams and radiation scanned field is validated against CNAO experimental data. For the irradiation study of the ocular melanoma an eye-detector, representing a model of a human eye, is implemented in the simulation. Each element of the eye is reproduced with its chemical and physical properties. Inside the eye-detector a realistic tumor volume is placed and used as the irradiation target. A comparison between protons and carbon ions eye irradiations allows to study possible treatment benefits if carbon ions are used instead of protons. (authors)

  11. Expansion Discharge Source for Ion Beam Laser Spectroscopy of Cold Molecular Ions

    NASA Astrophysics Data System (ADS)

    Porambo, Michael; Pearson, Jessica; Riccardo, Craig; McCall, Benjamin J.

    2013-06-01

    Molecular ions are important in several fields of research, and spectroscopy acts as a key tool in the study of these ions. However, problems such as low ion abundance, ion-neutral confusion, and spectral congestion due to high internal temperatures can hinder effective spectroscopic studies. To circumvent these problems, we are developing a technique called Sensitive, Cooled, Resolved, Ion BEam Spectroscopy (SCRIBES). This ion beam spectrometer will feature a continuous supersonic expansion discharge source to produce cold molecular ions, electrostatic ion optics to focus the ions into an ion beam and bend the beam away from co-produced neutral molecules, an overlap region for cavity enhanced spectroscopy, and a time-of-flight mass spectrometer. When completed, SCRIBES will be an effective tool for the study of large, fluxional, and complex molecular ions that are difficult to study with other means. The ion beam spectrometer has been successfully implemented with a hot ion source. This talk will focus on the work of integrating a supersonic expansion discharge source into the instrument. To better understand how the source would work in the whole ion beam instrument, characterization studies are being performed with spectroscopy of HN_2^+ in a section of the system to ascertain the rotational temperature of the ion expansion. Attempts are also underway to measure the ion current from a beam formed from the expansion. Once the source in this environment is properly understood, we will reintegrate it to the rest of the ion beam system, completing SCRIBES. A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel and B. J. McCall J. Chem. Phys., 135, 224201, (2011). K. N. Crabtree, C. A. Kauffman and B. J. McCall Rev. Sci. Instrum. 81, 086103, (2010).

  12. Plasma and ion beam processing at Los Alamos

    SciTech Connect

    Rej, D.J.; Davis, H.A.; Henins, I.

    1994-07-01

    Efforts are underway at Los Alamos National Laboratory to utilize plasma and intense ion beam science and technology of the processing of advanced materials. A major theme involves surface modification of materials, e.g., etching, deposition, alloying, and implantation. In this paper, we concentrate on two programs, plasma source ion implantation and high-intensity pulsed ion beam deposition.

  13. Development of a focused ion beam micromachining system

    SciTech Connect

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  14. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  15. Ion-Beam-Assisted Deposition of MoS2 and Other Low-Friction Films

    DTIC Science & Technology

    1992-09-11

    Naval Research Laboratory AD-A255 222 Dunon C 203MU32 tID~li ___ NR1JMR6176-02-nM3 Ion-Beam-Assisted Deposition of MoS2 and Other Low-Friction Films...unlimited.J 13. ABSTRACT (fxMmrn, 200 iw~tds Vacuum-deposited films of molybdenum disulfide ( MoS2 ) ame effective as solid lubricants. Ion-beam...optimized and the assist beamn ion flux was quantified and found to follow a power-law relationship with beam power. The beat way to produce MoS2 films was

  16. Theory and simulations of neutralization and focusing of ICF ion beams

    SciTech Connect

    Lemons, D.S.; Jones, M.E.

    1985-10-01

    Inertial Confinement Fusion (ICF) ion beams must be focused to a small spot during final propagation to the target. In general, both beam emittance and space charge limit the achievable spot size. Here we consider the latter and how its effect can be eliminated by injecting into the target chamber electrons which are comoving and coexstensive with the ions. Unlike focusing an ion beam through a neutralizing plasma channel, the present propagation mode requires a hard vacuum (10/sup -4/ to 10/sup -5/ Torr) target chamber into which both ions and electrons are injected, and thus avoids possibly deleterious beam plasma interactions.

  17. Simulating the ballistic effects of ion irradiation in the binary collision approximation: A first step toward the ion mixing framework

    NASA Astrophysics Data System (ADS)

    Demange, G.; Antoshchenkova, E.; Hayoun, M.; Lunéville, L.; Simeone, D.

    2017-04-01

    Understanding ballistic effects induced by ion beam irradiation can be a key point for controlling and predicting the microstructure of irradiated materials. Meanwhile, the ion mixing framework suggests an average description of displacement cascades may be sufficient to estimate the influence of ballistic relocations on the microstructure. In this work, the BCA code MARLOWE was chosen for its ability to account for the crystal structure of irradiated materials. A first set of simulations was performed on pure copper for energies ranging from 0.5 keV to 20 keV. These simulations were validated using molecular dynamics (MD). A second set of simulations on AgCu irradiated by 1 MeV krypton ions was then carried out using MARLOWE only, as such energy is beyond reach for molecular dynamics. MARLOWE simulations are found to be in good agreement with experimental results, which suggests the predictive potential of the method.

  18. Ion beam modification of polyacetylene films

    NASA Astrophysics Data System (ADS)

    Lin, Senhao; Sheng, Kanglong; Bao, Jinrong; Rong, Tingwen; Zhou, Zhiyi; Zhang, Lanping; Zhu, Dezhang; Shen, Zhiquan; Yan, Mujie

    1989-03-01

    Low energy ion implantation of polyacetylene films synthesized with rare earth compound catalysts have been studied for potassium, sodium and iodine at the energy region of 15 to 30 keV. Film samples prepared in different ways, thermally treated and/or chemically doped, were irradiated up to 1 × 10 17 ions/cm 2. The resulting surface property modifications of the (CH) x films were examined by various kinds of techniques. Compensation effects of the dopants and electrical conductivity changes in the implanted regions were observed. Some of the implanted film samples exhibited diode like characteristics. Discussions on the experimental results are presented.

  19. Sample Targeting During Single-Particle Single-Cell Irradiation

    NASA Astrophysics Data System (ADS)

    Bigelow, A. W.; Randers-Pehrson, G.; Michel, K. A.; Brenner, D. J.; Dymnikov, A. D.

    2003-08-01

    An apertured microbeam is used for single-particle single-cell irradiation to study radiobiological effects at the Radiological Research Accelerator Facility (RARAF), Center for Radiological Research, Columbia University. The present sample targeting system involves imaging techniques and a stepping motor stage to sequentially position a cell nucleus above a vertical ion beam. An interest expressed by the biology research community in targeting subnuclear components has spurred the development of microbeam II, a next-generation facility to include a focused ion beam and a more precise sample manipulator, a voice coil stage. Sample positioning precision will rely on a feedback circuit incorporating linear variable differential transformer (LVDT) position measurements. In addition, post-lens electrostatic deflection is a contender for a point-and-shoot system that could speed up the cell irradiation process for cells within an image frame. Crucial to this development is that ion beam blow up must be minimal during deflection.

  20. Development of a universal serial bus interface circuit for ion beam current integrators.

    PubMed

    Suresh, K; Panigrahi, B K; Nair, K G M

    2007-08-01

    A universal serial bus (USB) interface circuit has been developed to enable easy interfacing of commercial as well as custom-built ion beam current integrators to personal computer (PC) based automated experimental setups. Built using the popular PIC16F877A reduced instruction set computer and a USB-universal asynchronous receiver-transmitter/first in, first out controller, DLP2232, this USB interface circuit virtually emulates the ion beam current integrators on a host PC and uses USB 2.0 protocol to implement high speed bidirectional data transfer. Using this interface, many tedious and labor intensive ion beam irradiation and characterization experiments can be redesigned into PC based automated ones with advantages of improved accuracy, rapidity, and ease of use and control. This interface circuit was successfully used in carrying out online in situ resistivity measurement of 70 keV O(+) ion irradiated tin thin films using four probe method. In situ electrical resistance measurement showed the formation of SnO(2) phase during ion implantation.

  1. Radiation quality and ion-beam therapy: understanding the users' needs.

    PubMed

    Magrin, G; Mayer, R; Verona, C; Grevillot, Loïc

    2015-09-01

    Ion-beam therapy faces a growing demand of tools able to map radiation quality within the irradiated volume. Although analytical computations and simulations provide useful estimations of dose and radiation quality, the direct measure of those parameters would improve ion-beam therapy in particular when deep-seated tumours are irradiated, tissue composition and density are variable or organs at risk are near the tumour. Several ion-beam therapy facilities are studying detectors and procedures for measuring the radiation quality on a microdosimetric as well as a nanodosimetric scale. Simplicity and miniaturisation of the devices are essential for measurements first in phantoms and thereafter during therapy, particularly for intra-cavity detectors. MedAustron is studying solid-state detectors based on a single crystal chemical vapour deposition diamond. In collaboration with Italian National Institute for Nuclear Physics (INFN), Tor Vergata and Legnaro; INFN-microdosimetry and track structure project; Austrian Institute of Technology, Vienna; and Italian National agency for new technologies, energy and sustainable economic development, Rome, prototypes have been developed to characterise radiation quality in sizes equivalent to one micrometre of biological tissue.

  2. Nanopatterning of swinging substrates by ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Yoon, Sun Mi; Kim, J.-S.

    2016-05-01

    Graphite substrates are azimuthally swung during ion-beam sputtering (IBS) at a polar angle θ = 78° from the surface normal. The swinging of the substrate not only causes quasi-two-dimensional mass transport but also makes various sputter effects from the different incident angles to work together. Through variation of the swing angle, both the transport and sputtering effects synergistically produce a series of salient patterns, such as asymmetric wall-like structures, which can grow to several tens of nanometers and exhibit a re-entrant orientational change with the increased swing angle. Thus, the present work demonstrates that dynamic variables such as the swing angle, which have been little utilized, offer an additional parameter space that can be exploited to diversify the sputtered patterns, thereby expanding the applicability of an IBS as well as the comprehension of the IBS nano patterning mechanism.

  3. Ion Beam Stabilization of FePt Nanoparticle Arrays for Magnetic Storage Media

    SciTech Connect

    Toney, Michael F

    2003-07-31

    The authors describe the use of ion beam induced crosslinking to harden the organic matrix material of self-assembled arrays of monodisperse (4 nm) FePt nanoparticles, providing diamondlike carbon barriers to inhibit agglomeration of the nanoparticles under heat treatment. Such stabilization is necessary for the particles to survive the > 500 C annealing required for growth of the fct L 1{sub 0} phase of FePt, whose magnetic anisotropy is necessary for application of such arrays for high density perpendicular recording. Selective area irradiation of continuous nanoparticle coatings, using ion beams patterned over a full disk by stencil mask or with ion projection optics, followed by dissolution of the unexposed coating, is proposed as a means of fabricating extended bit patterns consisting of isolated islands of FePt nanoparticles, with characteristic dimensions of tens of nanometers.

  4. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  5. Atomic-scale thermocapillary flow in focused ion beam milling

    SciTech Connect

    Das, K.; Johnson, H. T.; Freund, J. B.

    2015-05-15

    Focused ion beams provide a means of nanometer-scale manufacturing and material processing, which is used for applications such as forming nanometer-scale pores in thin films for DNA sequencing. We investigate such a configuration with Ga{sup +} bombardment of a Si thin-film target using molecular dynamics simulation. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A flow model with Marangoni forcing, based upon the temperature gradient and geometry from the atomistic simulation, indeed reproduces the flow and thus could be used to anticipate such flows and their influence in applications.

  6. Synthesis of PbTe thermoelectric film by high energy heavy ion beam mixing

    SciTech Connect

    Gupta, Srashti; Neeleshwar, S.; Agarwal, D. C.; Avasthi, D. K.; Prakash, Jai; Tripathi, S. K.; Panigrahi, B. K.

    2011-12-12

    The Te/Pb bilayer samples were prepared by sequential thermal evaporation of Pb and Te on glass substrate. These bilayer samples were irradiated by 100 MeV Ag{sup 9+} at different fluences (3x10{sup 12}, 1x10{sup 13}, and 3x10{sup 13} ions/cm{sup 2}) to synthesis PbTe by ion beam mixing. The samples were characterized by RBS to study composition and X-ray diffraction (XRD) for phase identification before and after irradiation. Thickness of Pb and Te were 75 nm and 105 nm respectively in pristine film as deduced from RBS analysis. The RBS of irradiated sample indicates the mixing between Pb and Te layers. XRD revealed phases of PbTe in sample irradiated at 3x10{sup 13} ions/cm{sup 2}. This phase formation may be due to inter diffusion across the interface induced by swift heavy ion irradiation.

  7. Possibility of Ion Beam Pulse Compression by X-Ray Conversion

    NASA Astrophysics Data System (ADS)

    Yabe, Takashi

    1985-02-01

    A previously proposed scheme for ion beam pulse compression is reexamined from a different viewpoint. It is shown that the criticisms made by Unterseer and Meyer-ter-Vehn are not reasonable in a real target configuration. In addition, the spherically converging effect is shown to offer further advantages.

  8. Defocusing of an ion beam propagating in background plasma due to two-stream instability

    SciTech Connect

    Tokluoglu, Erinc; Kaganovich, Igor D.

    2015-04-15

    The current and charge neutralization of charged particle beams by background plasma enable ballistic beam propagation and have a wide range of applications in inertial fusion and high energy density physics. However, the beam-plasma interaction can result in the development of collective instabilities that may have deleterious effects on ballistic propagation of an ion beam. In the case of fast, light-ion beams, non-linear fields created by instabilities can lead to significant defocusing of the beam. We study an ion beam pulse propagating in a background plasma, which is subjected to two-stream instability between the beam ions and plasma electrons, using PIC code LSP. The defocusing effects of the instability on the beam can be much more pronounced in small radius beams. We show through simulations that a beamlet produced from an ion beam passed through an aperture can be used as a diagnostic tool to identify the presence of the two-stream instability and quantify its defocusing effects. The effect can be observed on the Neutralized Drift Compression Experiment-II facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma.

  9. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  10. Atomistic simulation of ion beam patterning with crater functions

    NASA Astrophysics Data System (ADS)

    Yang, Zhangcan; Lively, Michael; Allain, Jean Paul

    2013-07-01

    In this study, an atomistic model is developed to simulate ripple pattern formation when a surface is irradiated by incident low-energy energetic ions. The model treats individual ion impacts using crater functions, which represent the average change in the surface shape due to a single-ion impact. These functions incorporate the complete redistribution of mass along the surface due to an impact, and not just that due to sputtering. While most models only treat erosion, analysis of the craters reveals that the amount of mass redistributed across the surface is an order of magnitude greater than the mass removed by sputtering. Simulations in this study are conducted for 500 eV Ar+ bombardments of Si at angles of 0° to 60° with 5° increment at temperature of 350 K. Initial simulations with this model have shown agreement with prior observations of ripple pattern formation. However, some significant departures from other models based on the Bradley-Harper theory have emerged; the key difference is that the presence of crater rims plays a key role in ripple formation, which could explain phenomena such as maximum ripple amplitudes which most models do not account for. These results show that atomistic crater functions are a viable method for modeling ion beam patterning. They indicate that mass redistribution is a key mechanism for surface patterning.

  11. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia

    SciTech Connect

    Lian, Jie; Zhang, Jiaming; Namavar, Fereydoon; Zhang, Yanwen; Lu, Fengyuan; Haider, Hani; Garvin, Kevin; Weber, William J.; Ewing, Rodney C.

    2009-05-26

    Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared to bulk zirconia counterparts, and it is of particular importance to control the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) at different size regimes. In this paper, we performed ion beam bombardments on bilayers (amorphous and cubic) of pure nano-zirconia using 1 MeV Kr2+ irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. The irradiation-induced nanograins of tetragonal ZrO2 are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion-beam modification methods provide the means to control the phase stability and structure of zirconia polymorphs.

  12. Fast ion beam-plasma interaction system.

    PubMed

    Breun, R A; Ferron, J R

    1979-07-01

    A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).

  13. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1985-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter depoairion are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq. cm. resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x to to the -6/ohm. cm. for 300 angstrom film to 2.56 x 10 to the -1/ohm. cm. for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  14. Ion beam sputter deposited zinc telluride films

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1986-01-01

    Zinc telluride is of interest as a potential electronic device material, particularly as one component in an amorphous superlattice, which is a new class of interesting and potentially useful materials. Some structural and electronic properties of ZnTe films deposited by argon ion beam sputter deposition are described. Films (up to 3000 angstroms thick) were deposited from a ZnTe target. A beam energy of 1000 eV and a current density of 4 mA/sq cm resulted in deposition rates of approximately 70 angstroms/min. The optical band gap was found to be approximately 1.1 eV, indicating an amorphous structure, as compared to a literature value of 2.26 eV for crystalline material. Intrinsic stress measurements showed a thickness dependence, varying from tensile for thicknesses below 850 angstroms to compressive for larger thicknesses. Room temperature conductivity measurement also showed a thickness dependence, with values ranging from 1.86 x 10 to the -6th/ohm cm for 300 angstrom film to 2.56 x 10 to the -1/ohm cm for a 2600 angstrom film. Measurement of the temperature dependence of the conductivity for these films showed complicated behavior which was thickness dependent. Thinner films showed at least two distinct temperature dependent conductivity mechanisms, as described by a Mott-type model. Thicker films showed only one principal conductivity mechanism, similar to what might be expected for a material with more crystalline character.

  15. Ion-Beam Analysis of Airborne Pollution

    NASA Astrophysics Data System (ADS)

    Harrington, Charles; Gleason, Colin; Schuff, Katie; Battaglia, Maria; Moore, Robert; Turley, Colin; Labrake, Scott; Vineyard, Michael

    2010-11-01

    An undergraduate laboratory research program in ion-beam analysis (IBA) of atmospheric aerosols is being developed to study pollution in the Capitol District and Adirondack Mountains of New York. The IBA techniques applied in this project include proton induced X-ray emission (PIXE), proton induced gamma-ray emission (PIGE), Rutherford backscattering (RBS), and proton elastic scattering analysis (PESA). These methods are well suited for studying air pollution because they are quick, non-destructive, require little to no sample preparation, and capable of investigating microscopic samples. While PIXE spectrometry is used to analyze most elements from silicon to uranium, the other techniques are being applied to measure some of the remaining elements and complement PIXE in the study of aerosols. The airborne particulate matter is collected using nine-stage cascade impactors that separate the particles according to size and the samples are bombarded with proton beams from the Union College 1.1-MV Pelletron Accelerator. The reaction products are measured with SDD X-ray, Ge gamma-ray, and Si surface barrier charged particle detectors. Here we report on the progress we have made on the PIGE, RBS, and PESA analysis of aerosol samples.

  16. Ion beam emittance from an ECRIS

    SciTech Connect

    Spädtke, P. Lang, R.; Mäder, J.; Maimone, F.; Schlei, B. R.; Tinschert, K.; Biri, S.; Rácz, R.

    2016-02-15

    Simulation of ion beam extraction from an Electron Cyclotron Resonance Ion Source (ECRIS) is a fully 3 dimensional problem, even if the extraction geometry has cylindrical symmetry. Because of the strong magnetic flux density, not only the electrons are magnetized but also the Larmor radius of ions is much smaller than the geometrical dimension of the plasma chamber (Ø 64 × 179 mm). If we assume that the influence of collisions is small on the path of particles, we can do particle tracking through the plasma if the initial coordinates of particles are known. We generated starting coordinates of plasma ions by simulation of the plasma electrons, accelerated stochastically by the 14.5 GHz radio frequency power fed to the plasma. With that we were able to investigate the influence of different electron energies on the extracted beam. Using these assumptions, we can reproduce the experimental results obtained 10 years ago, where we monitored the beam profile with the help of viewing targets. Additionally, methods have been developed to investigate arbitrary 2D cuts of the 6D phase space. To this date, we are able to discuss full 4D information. Currently, we extend our analysis tool towards 5D and 6D, respectively.

  17. Materials processing with intense pulsed ion beams

    SciTech Connect

    Rej, D.J.; Davis, H.A.; Olson, J.C.

    1996-12-31

    We review research investigating the application of intense pulsed ion beams (IPIBs) for the surface treatment and coating of materials. The short range (0.1-10 {mu}m) and high-energy density (1-50 J/cm{sup 2}) of these short-pulsed ({le} 1 {mu}s) beams (with ion currents I = 5 - 50 kA, and energies E = 100 - 1000 keV) make them ideal to flash-heat a target surface, similar to the more familiar pulsed laser processes. IPIB surface treatment induces rapid melt and solidification at up to 10{sup 10} K/s to cause amorphous layer formation and the production of non-equilibrium microstructures. At higher energy density the target surface is vaporized, and the ablated vapor is condensed as coatings onto adjacent substrates or as nanophase powders. Progress towards the development of robust, high-repetition rate IPIB accelerators is presented along with economic estimates for the cost of ownership of this technology.

  18. In situ magnetoresistance measurements of ion-beam-etched Fe-Co thin films

    SciTech Connect

    Ohsawa, Yuichi; Yamakawa, Kiyoshi; Muraoka, Hiroaki

    2011-04-01

    The effect of ion-beam (IB) irradiation on magnetic softness in Fe-Co thin films was evaluated by means of in situ magnetoresistance (MR) measurements. A 25 nm Fe{sub 70}Co{sub 30} film was etched by Ar IB, and successive MR measurements were performed in the same IB etching chamber. Since the IB etching and MR measurements were performed alternately in vacuum, it was possible to evaluate the etching effect on magnetic softness of the single sample without any capping layer interaction. We name the thickness below which the magnetic softness of the etched film starts to decrease as the critical thickness (T{sub cr}). The T{sub cr} was found to be affected by IB energy: 150 and 250 V IB, respectively, showed 7.5 and 10 nm smaller T{sub cr} than that of 600 V IB. Structural analysis revealed the 600 V IB introduced a larger deterioration in the film crystallinity than with the 250 V IB.

  19. ITEP MEVVA ion beam for rhenium silicide production

    SciTech Connect

    Kulevoy, T.; Seleznev, D.; Kropachev, G.; Kozlov, A.; Kuibeda, R.; Yakushin, P.; Petrenko, S.; Gerasimenko, N.; Medetov, N.; Zaporozhan, O.

    2010-02-15

    The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.

  20. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    SciTech Connect

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-27

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  1. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    DOE PAGES

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; ...

    2016-04-27

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3 V,more » implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less

  2. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  3. Survey of Collective Instabilities and Beam-Plasma Interactions in Intense Heavy Ion Beams

    SciTech Connect

    Davidson, Ronald C.; Dorf, Mikhail A.; Kaganovich, Igor D.; Qin, Hong; Startsev, Edward A.; Rose, David V.; Lund, Steven M.; Welch, Dale R.; Sefkow, Adam

    2008-06-19

    This paper presents a survey of the present theoretical understanding based on advanced analytical and numerical studies of collective processes and beam-plasma interactions in intense heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion fusion. The topics include: discussion of the conditions for quiescent beam propagation over long distances; and the electrostatic Harris instability and the transverse electromagnetic Weibel instability in highly anisotropic, intense one-component ion beams. In the longitudinal drift compression and transverse compression regions, collective processes associated with the interaction of the intense ion beam with a charge-neutralizing background plasma are described, including the electrostatic electron-ion two-stream instability, the multispecies electromagnetic Weibel instability, and collective excitations in the presence of a solenoidal magnetic field. The effects of a velocity tilt on reducing two-stream instability growth rates are also discussed. Operating regimes are identified where the possible deleterious effects of collective processes on beam quality are minimized.

  4. Beam Phase Space of an Intense Ion Beam in a Neutralizing Plasma

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Bazouin, Guillaume; Beneytout, Alice; Lidia, Steven M.; Vay, Jean-Luc; Grote, David P.

    2011-10-01

    The Neutralized Drift Compression Experiment (NDCX-I) generates high intensity ion beams to explore warm dense matter physics. Transverse final focusing is accomplished with an 8-Tesla, 10-cm long pulsed solenoid magnet combined with a background neutralizing plasma to effectively cancel the space charge field of the ion beam. We report on phase space measurements of the beam before the neutralization channel and of the focused ion beam at the target plane. These are compared to WARP particle-in-cell simulations of the ion beam propagation through the focusing system and neutralizing plasma. Due to the orientation of the plasma sources with respect to the focusing magnet, the plasma distribution within the final focusing lens is strongly affected by the magnetic field, an effect which can influence the peak intensity at the target and which is included in the model of the experiment. Work performed under auspices of U.S. DoE by LLNL, LBNL under Contracts DE-AC52-07NA27344, DE-AC02-05CH1123.

  5. Erosion of a-C:D Thin Films by Low Energy D+, D2+, and D3+ Ion Beam Irradiation

    SciTech Connect

    Meyer, Fred W; Harris, Peter R; Zhang, Hengda; Jacob, W.; Schwarz-Selinger, T.; Von Toussaint, U.

    2011-01-01

    We report measurements of total C sputtering yields for room temperature a-C:D thin films irrradiated by equal velocity D{sup +}, D{sub 2}{sup +}, and D{sub 3}{sup +} beams in the energy range 30-200 eV/D. The C sputtering yields were deduced from crater volumes determined from 2-D ellipsometry scans, the known thin film C density, and the measured total number of incident D particles during the beam exposures. While our results for incident D{sub 3}{sup +} ions are in good agreement with mass loss measurements for D{sub 3}{sup +}, our results for D{sub 2}{sup +} and D{sup +} incident ions fall systematically below the D{sub 3}{sup +} results, indicating a significant molecular size effect. A molecular size effect has been previously found for CD{sub 4} production during low energy impact of same velocity D{sup +}, D{sub 2}{sup +}, and D{sub 3}{sup +} ions incident on ATJ graphite, which, however, was smaller in magnitude. The ellipsometry-based total C sputtering yields are compared with recently deduced total C production yields based on a mass spectroscopy approach.

  6. Genetic analysis of ion-beam induced extremely late heading mutants in rice

    PubMed Central

    Ichitani, Katsuyuki; Yamaguchi, Daisuke; Taura, Satoru; Fukutoku, Yasuo; Onoue, Masahira; Shimizu, Keiichi; Hashimoto, Fumio; Sakata, Yusuke; Sato, Muneharu

    2014-01-01

    Two extremely late heading mutants were induced by ion beam irradiation in rice cultivar ‘Taichung 65’: KGM26 and KGM27. The F2 populations from the cross between the two mutants and Taichung 65 showed clear 3 early: 1 late segregation, suggesting control of late heading by a recessive gene. The genes identified in KGM26 and KGM27 were respectively designated as FLT1 and FLT2. The two genes were mapped using the crosses between the two mutants and an Indica cultivar ‘Kasalath’. FLT1 was located on the distal end of the short arm of chromosome 8. FLT2 was located around the centromere of chromosome 9. FLT1 might share the same locus as EHD3 because their chromosomal location is overlapping. FLT2 is inferred to be a new gene because no gene with a comparable effect to that of this gene was mapped near the centromere of chromosome 9. In crosses with Kasalath, homozygotes of late heading mutant genes showed a large variation of days to heading, suggesting that other genes affected late heading mutant genes. PMID:25320557

  7. Tumor tracking based on correlation models in scanned ion beam therapy: an experimental study

    NASA Astrophysics Data System (ADS)

    Seregni, M.; Kaderka, R.; Fattori, G.; Riboldi, M.; Pella, A.; Constantinescu, A.; Saito, N.; Durante, M.; Cerveri, P.; Bert, C.; Baroni, G.

    2013-07-01

    Accurate dose delivery to extra-cranial lesions requires tumor motion compensation. An effective compensation can be achieved by real-time tracking of the target position, either measured in fluoroscopy or estimated through correlation models as a function of external surrogate motion. In this work, we integrated two internal/external correlation models (a state space model and an artificial neural network-based model) into a custom infra-red optical tracking system (OTS). Dedicated experiments were designed and conducted at GSI (Helmholtzzentrum für Schwerionenforschung). A robotic breathing phantom was used to reproduce regular and irregular internal target motion as well as external thorax motion. The position of a set of markers placed on the phantom thorax was measured with the OTS and used by the correlation models to infer the internal target position in real-time. Finally, the estimated target position was provided as input for the dynamic steering of a carbon ion beam. Geometric results showed that the correlation models transversal (2D) targeting error was always lower than 1.3 mm (root mean square). A significant decrease of the dosimetric error with respect to the uncompensated irradiation was achieved in four out of six experiments, demonstrating that phase shifts are the most critical irregularity for external/internal correlation models.

  8. The RBE issues in ion-beam therapy: conclusions of a joint IAEA/ICRU working group regarding quantities and units.

    PubMed

    Wambersie, A; Hendry, J H; Andreo, P; DeLuca, P M; Gahbauer, R; Menzel, H; Whitmore, G

    2006-01-01

    This paper summarises the conclusions of a working group established jointly by the International Atomic Energy Agency (IAEA) and the International Commission on Radiation Units and Measurements (ICRU) to address some of the relative biological effectiveness (RBE) issues encountered in ion-beam therapy. Special emphasis is put on the selection and definition of the involved quantities and units. The isoeffective dose, as introduced here for radiation therapy applications, is the dose that delivered under reference conditions would produce the same clinical effects as the actual treatment in a given system, all other conditions being identical. It is expressed in Gy. The reference treatment conditions are: photon irradiation, 2 Gy per fraction, 5 daily fractions a week. The isoeffective dose D(IsoE) is the product of the physical quantity absorbed dose D and a weighting factor W(IsoE). W(IsoE) is an inclusive weighting factor that takes into account all factors that could influence the clinical effects like dose per fraction, overall time, radiation quality (RQ), biological system and effects. The numerical value of W(IsoE) is selected by the radiation-oncology team for a given patient (or treatment protocol). It is part of the treatment prescription. Evaluation of the influence of RQ on W(IsoE) raises complex problems because of the clinically significant RBE variations with biological effect (late vs. early) and position in depth in the tissues which is a problem specific to ion-beam therapy. Comparison of the isoeffective dose with the equivalent dose frequently used in proton- and ion-beam therapy is discussed.

  9. Industrial ion source technology. [for ion beam etching, surface texturing, and deposition

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    Plasma probe surveys were conducted in a 30-cm source to verify that the uniformity in the ion beam is the result of a corresponding uniformity in the discharge-chamber plasma. A 15 cm permanent magnet multipole ion source was designed, fabricated, and demonstrated. Procedures were investigated for texturing a variety of seed and surface materials for controlling secondary electron emission, increasing electron absorption of light, and improved attachment of biological tissue for medical implants using argon and tetrafluoromethane as the working gases. The cross section for argon-argon elastic collisions in the ion-beam energy range was calculated from interaction potentials and permits calculation of beam interaction effects that can determine system pumping requirements. The data also indicate that different optimizations of ion-beam machines will be advantageous for long and short runs, with 1 mA-hr/cm being the rough dividing line for run length. The capacity to simultaneously optimize components in an ion-beam machine for a single application, a capacity that is not evident in competitive approaches such as diode sputtering is emphasized.

  10. Two Dimensional LIF Measurements and Potential Structure of Ion Beam Formation in an Argon Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, Evan; Scime, Earl; Good, Timothy

    2016-10-01

    We report 2-dimensional, spatially resolved observations of ion beam formation in an expanding helicon plasma. Previous studies found that a current free double layer (CFDL) spontaneously arises at low pressure, below 1 mT. We use Laser Induced Fluorescence (LIF), a non-perturbative diagnostic to measure the ion velocity distribution functions (IVDFs) of argon ions both parallel and perpendicular to the background magnetic field. We report ion beam formation as a function of the expansion chamber magnetic field (0-108 G). The ion beam appears peaked in the center of the expansion chamber and decays over a few centimeters radially. We also report the potential structure of the plasma obtained with a planar Langmuir probe. To obtain meaningful Langmuir probe measurements, averages of tens of current-voltage are needed to reduce the effects of large electrostatic fluctuations that arise in plasmas that generate ion beams. We report the dependence of density, electron temperature, and floating potential on radial and axial position in the expansion plume. NSF Award PHYS-1360278.

  11. Isochoric heating of solid gold targets with the PW-laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Steinke, Sven; Ji, Qing; Bulanov, Stepan; Barnard, John; Schenkel, Thomas; Esarey, Eric; Leemans, Wim

    2016-10-01

    We present an end-to-end simulation for isochoric heating of solid gold targets using ion beams produced with the BELLA PW laser at LBNL: (i) 2D Particle-In-Cell (PIC) simulations are applied to study the ion source characteristics of the PW laser-target interaction at the long focal length (f/#65) beamline at laser intensities of 5x1019W/cm2 at spot size of ω0 = 52 μm on a CH target. (ii) In order to transport the ion beams to an EMP-free environment, an active plasma lens will be used. This was modeled by calculating the Twiss parameters of the ion beam from the appropriate transport matrixes using the source parameters obtained from the PIC simulation. Space charge effects were considered as well. (iii) Hydrodynamic simulations indicate that these ion beams can isochorically heat a 1 mm3 gold target to the Warm Dense Matter state. This work was supported by Fusion Energy Science, and LDRD funding from Lawrence Berkeley National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  12. Heavy ion beam probe coordinate mapping and calibration at WEGA stellarator

    SciTech Connect

    Podoba, Y.; Otte, M.; Wagner, F.; Krupnik, L.; Zhezhera, A.

    2010-01-15

    The heavy ion beam probe (HIBP) is an established nonperturbing diagnostic for high spatially and temporary resolved measurements of magnetically confined plasma parameters such as potential, density, and temperature. These quantities can be determined from the change in the ion beam parameters (charge, intensity, and trajectory) passing through a plasma volume due to collisions with electrons and interaction with the confining magnetic field. One of the problems that should be solved during HIBP installation and tuning is the coordinate matching. Conventionally the coordinate mapping of the HIBP measurement point is provided by ray tracing calculations of the ion beam in the magnetic field. However, it is very difficult to include all physical effects and uncertainties in the model. Thus, the result of the calculations may differ from the real probing position. In order to improve the mapping precision of the HIBP installed at the WEGA stellarator an additional measurement of the beam position is provided using a primary beam detector array inside the vacuum vessel. This allows comparing the measured and calculated ion beam positions in order to prove the calculated coordinate precision and include adjustments in the calculation code if necessary. The principle and the results of this calibration, which is not specific to WEGA but could be adapted to other experiments as well, are presented in this work.

  13. Development of the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Tatum, B.A.

    1997-08-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility`s radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. This paper details facility development to date.

  14. Development of the Holifield Radioactive Ion Beam Facility

    NASA Astrophysics Data System (ADS)

    Tatum, B. A.; Alton, G. D.; Auble, R. L.; Beene, J. R.; Dowling, D. T.; Haynes, D. L.; Juras, R. C.; Meigs, M. J.; Mills, G. D.; Mosko, S. W.; Mueller, P. E.; Olsen, D. K.; Shapira, D.; Sinclair, J. W.; Carter, H. K.; Welton, R. F.; Williams, C. E.; Bailey, J. D.; Stracener, D. W.

    1997-05-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) construction project has been completed and the first radioactive ion beam has been successfully accelerated. The project, which began in 1992, has involved numerous facility modifications. The Oak Ridge Isochronous Cyclotron has been converted from an energy booster for heavy ion beams to a light ion accelerator with internal ion source. A target-ion source and mass analysis system have been commissioned as key components of the facility's radioactive ion beam injector to the 25MV tandem electrostatic accelerator. Beam transport lines have been completed, and new diagnostics for very low intensity beams have been developed. Work continues on a unified control system. Development of research quality radioactive beams for the nuclear structure and nuclear astrophysics communities continues. The HRIBF was formally dedicated on December 12, 1996, and approved for high intensity operation as a National User Facility, the first of its kind in North America. This paper describes facility development to date.

  15. Historical milestones and future prospects of cluster ion beam technology

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    2014-08-01

    Development of technology for processing of surfaces by means of gas cluster ion beams began only about a quarter century ago even though fundamental research related to generation of gas clusters began much earlier. Industrial applications of cluster ion beams did not start to be explored until commercial equipment was first introduced to the ion beam community in around 2000. The technology is now evolving rapidly with industrial equipment being engineered for many diverse surface processing applications which are made possible by the unique characteristics of cluster-ion/solid-surface interactions. In this paper, important historical milestones in cluster ion beam development are described. Present activities related to a wide range of industrial applications in semiconductors, magnetic and optical devices, and bio-medical devices are reviewed. Several emerging new advances in cluster beam applications for the future are also discussed.

  16. Use of energetic ion beams in materials synthesis and processing

    SciTech Connect

    Appleton, B R

    1991-01-01

    A brief review of the use energetic ion beams and related techniques for the synthesis, processing, and characterization of materials is presented. Selected opportunity areas are emphasized with examples, and references are provided for more extensive coverage.

  17. 4D offline PET-based treatment verification in scanned ion beam therapy: a phantom study

    NASA Astrophysics Data System (ADS)

    Kurz, Christopher; Bauer, Julia; Unholtz, Daniel; Richter, Daniel; Stützer, Kristin; Bert, Christoph; Parodi, Katia

    2015-08-01

    At the Heidelberg Ion-Beam Therapy Center, patient irradiation with scanned proton and carbon ion beams is verified by offline positron emission tomography (PET) imaging: the {β+} -activity measured within the patient is compared to a prediction calculated on the basis of the treatment planning data in order to identify potential delivery errors. Currently, this monitoring technique is limited to the treatment of static target structures. However, intra-fractional organ motion imposes considerable additional challenges to scanned ion beam radiotherapy. In this work, the feasibility and potential of time-resolved (4D) offline PET-based treatment verification with a commercial full-ring PET/CT (x-ray computed tomography) device are investigated for the first time, based on an experimental campaign with moving phantoms. Motion was monitored during the gated beam delivery as well as the subsequent PET acquisition and was taken into account in the corresponding 4D Monte-Carlo simulations and data evaluation. Under the given experimental conditions, millimeter agreement between the prediction and measurement was found. Dosimetric consequences due to the phantom motion could be reliably identified. The agreement between PET measurement and prediction in the presence of motion was found to be similar as in static reference measurements, thus demonstrating the potential of 4D PET-based treatment verification for future clinical applications.

  18. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia.

    PubMed

    Lian, Jie; Zhang, Jiaming; Namavar, Fereydoon; Zhang, Yanwen; Lu, Fengyuan; Haider, Hani; Garvin, Kevin; Weber, W J; Ewing, Rodney C

    2009-06-17

    Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared with bulk zirconia counterparts, and it is of particular importance for controlling the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) in different size regimes. In this work, we performed ion beam bombardments on bilayers (amorphous and cubic) of nano-zirconia using 1 MeV Kr2+ irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. A slower kinetics in the grain growth from cubic nanocrystalline zirconia was found as compared with that for the tetragonal grains recrystallized from the amorphous layer. The radiation-induced nanograins of tetragonal ZrO2 are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion beam methods provide the means to control the phase stability and structure of zirconia polymorphs.

  19. Development of laser-ion beam photodissociation methods

    SciTech Connect

    Russell, D.H.

    1990-08-01

    During this report period our research efforts have concentrated on studies of the dissociation reactions of model peptides and other biologically important molecules. In addition, a considerable amount of research effort has been directed toward improving the apparatus used for laser-ion beam photodissociation. The instrumental improvements include some changes on the original apparatus, but most of this effort involved designing a second generation laser-ion beam photodissociation instrument.

  20. A preliminary model of ion beam neutralization. [in thruster plasmas

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1979-01-01

    A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.