Science.gov

Sample records for ion-enhanced field emission

  1. The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown

    SciTech Connect

    Li, Yingjie; Go, David B.

    2014-09-14

    The presence of a positive gas ion can enhance cold electron field emission by deforming the potential barrier and increasing the tunneling probability of electrons—a process known as ion-enhanced field emission. In microscale gas discharges, ion-enhanced field emission produces additional emission from the cathode and effectively reduces the voltage required to breakdown a gaseous medium at the microscale (<10 μm). In this work, we enhance classic field emission theory by determining the impact of a gaseous ion on electron tunneling and compute the effect of ion-enhanced field emission on the breakdown voltage. We reveal that the current density for ion-enhanced field emission retains the same scaling as vacuum cold field emission and that this leads to deviations from traditional breakdown theory at microscale dimensions.

  2. Theoretical analysis of 1D resonant tunneling behavior in ion-enhanced cold field and thermo-field emission

    NASA Astrophysics Data System (ADS)

    Tan, Xi; Rumbach, Paul; Griggs, Nathaniel; Jensen, Kevin L.; Go, David B.

    2016-12-01

    In cold field and thermo-field emission, positive ions or adsorbates very close to the cathode surface can enhance emission current by both resonant and non-resonant processes. In this paper, resonant tunneling behavior is investigated by solving the one-dimensional Schrödinger equation in the presence of an ion, and the enhancement due to resonant processes is evaluated. Results shows that as the applied electric field increases, the resonant states move from higher to lower energies as the ion energy levels are shifted down. Conversely, as the ion position moves closer to the cathode, the resonant states shift up in energy. Further, through a simplified perturbation analysis, the general scaling of these trends can be predicted. These shifts of resonant states directly impact the emission current density, and they are especially relevant when the applied field is on the order of a few volts per nanometer (˜0.5-3 V/nm) and the ion is a few nanometers (˜0.5-3 nm) away from the cathode. Further, when the energy level for resonant emission coincides with the Fermi level of a metallic cathode, the current density is particularly enhanced. The results of this study suggest that it may be possible to control (augment/inhibit) the resonant emission current by manipulating the supply function of a cathode relative to the operating conditions of the emitter in either ion-enhanced or adsorbate-enhanced field emission, which can be applied to various plasma and electron emission technologies.

  3. Field emission chemical sensor

    DOEpatents

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  4. Field emission electron source

    DOEpatents

    Zettl, Alexander Karlwalter; Cohen, Marvin Lou

    2000-01-01

    A novel field emitter material, field emission electron source, and commercially feasible fabrication method is described. The inventive field emission electron source produces reliable electron currents of up to 400 mA/cm.sup.2 at 200 volts. The emitter is robust and the current it produces is not sensitive to variability of vacuum or the distance between the emitter tip and the cathode. The novel emitter has a sharp turn-on near 100 volts.

  5. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.

    PubMed

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn(2+) ions induce hydrogen peroxide (H2O2) production from the ubiquinone binding site of mitochondrial complex II (IIQ) and generally enhance H2O2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H2O2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn(2+) and different respiratory chain inhibitors led to a dynamically increasing H2O2emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn(2+) stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca(2+) increased the rate of H2O2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H2O2 emission: stimulating its production from distinct sites (e.g. site IIQ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Graphene field emission devices

    SciTech Connect

    Kumar, S. Raghavan, S.; Duesberg, G. S.; Pratap, R.

    2014-09-08

    Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm{sup −1} at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.

  7. Fundamental properties of field emission-driven direct current microdischarges

    NASA Astrophysics Data System (ADS)

    Rumbach, Paul; Go, David B.

    2012-11-01

    For half a century, it has been known that the onset of field emission in direct current microdischarges with gap sizes less than 10 μm can lead to breakdown at applied voltages far less than predicted by Paschen's law. It is still unclear how field emission affects other fundamental plasma properties at this scale. In this work, a one-dimensional fluid model is used to predict basic scaling laws for fundamental properties including ion density, electric field due to space charge, and current-voltage relations in the pre-breakdown regime. Computational results are compared with approximate analytic solutions. It is shown that field emission provides an abundance of cathode electrons, which in turn create large ion concentrations through ionizing collisions well before Paschen's criterion for breakdown is met. Breakdown due to ion-enhanced field emission occurs when the electric field due to space charge becomes comparable to the applied electric field. Simple scaling analysis of the 1D Poisson equation demonstrates that an ion density of n+ ≈ 0.1VAɛ0/qd2 is necessary to significantly distort the electric field. Defining breakdown in terms of this critical ion density leads analytically to a simple, effective secondary emission coefficient γ' of the same mathematical form initially suggested by Boyle and Kisliuk [Phys. Rev. 97, 255 (1955)].

  8. Photo Field Emission and Field Emission Energy Distributions from Silicon.

    DTIC Science & Technology

    1982-07-13

    Devices. London: Prentice- Hall, International, Inc., 1979. 8. Blakemore , J. Semiconductor Statistics . New York: Pergammon Press. 1962. 9. Boltaks, B. I...Continue on reverse side if necessary and identify by block nmber) thesis, silicon, semiconductors , electron, field, emission 20. ABSTRACT (Continue on...reverse side It necessary and Identify by block number) Electron field emission from semiconductors is investigated both theoreti- cally and

  9. Properties of a field emission-driven Townsend discharge

    NASA Astrophysics Data System (ADS)

    Rumbach, Paul; Go, David

    2012-10-01

    For half a century, it has been known that the onset of field emission in direct current (DC) microplasmas with gap sizes less than 10 μm can lead to breakdown at applied voltages far less than predicted by Paschen's law. It is still unclear how field emission affects other fundamental plasma properties at this scale. In this work, a one-dimensional fluid model is used to predict basic scaling laws for fundamental properties such as ion density, electric field due to space charge, and current voltage relations in the pre-breakdown regime. Computational results are compared with approximate analytic solutions. It is shown that ionizing collisions by field-emitted electrons produce significant ion densities well before Paschen's criteria for breakdown is met. When positive space charge densities become sufficiently large, the effect of ion-enhanced field emission leads to breakdown. Defining breakdown mathematically using a solvability condition leads to a full modified Paschen's curve, while defining it physically in terms of a critical ion density leads analytically to an effective secondary emission coefficient, γ', of the form initially suggested by Boyle and Kisliuk.footnotetextBoyle, W.S. and Kisliuk, P., Phys. Rev. 97, 255 (1955).

  10. Emission properties of explosive field emission cathodes

    SciTech Connect

    Roy, Amitava; Patel, Ankur; Menon, Rakhee; Sharma, Archana; Chakravarthy, D. P.; Patil, D. S.

    2011-10-15

    The research results of the explosive field emission cathode plasma expansion velocity and the initial emission area in the planar diode configuration with cathodes made of graphite, stainless steel, polymer velvet, carbon coated, and carbon fiber (needle type) cathodes are presented. The experiments have been performed at the electron accelerator LIA-200 (200 kV, 100 ns, and 4 kA). The diode voltage has been varied from 28-225 kV, whereas the current density has been varied from 86-928 A/cm{sup 2} with 100 ns pulse duration. The experimentally obtained electron beam diode perveance has been compared with the 1 dimensional Child-Langmuir- law. It was found that initially only a part of the cathode take part in the emission process. The plasma expands at 1.7-5.2 cm/{mu}s for 4 mm anode-cathode gap for various cathode materials. It was found that the plasma expansion velocity increases with the decrease in the cathode diameter. At the beginning of the accelerating pulse, the entire cathode area participates in the electron emission process only for the multiple needle type carbon fiber cathode.

  11. Junction-based field emission structure for field emission display

    DOEpatents

    Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.

    2002-01-01

    A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

  12. Photo Field Emission and Field Emission Energy Distributions from Silicon.

    NASA Astrophysics Data System (ADS)

    Herman, Michael H.

    Electron field emission from semiconductors is investigated both theoretically and experimentally. The theoretical predictions of the general Stratton theory are calculated specifically for silicon, in the {100 }, {110}, and {111} directions. A method of simplifying the calculation of the energy distribution for arbitrary semiconductor bands is obtained, utilizing the effective mass approximation. Experimental field emission energy distributions (FEEDs) are reported for both n- and p-type samples of low resistivity. The experimental distributions are characterized by a high intensity single peak, of energy 0.4 eV or more below the Fermi level, with subsidiary peak of lower intensity, rising from just below the Fermi level. The larger peak drops in energy with increasing field. Presented data demonstrates that this peak lowering is not attributable to sample resistance. Observation of the subsidiary peak is linked to either low sample temperature or low doping, implying that the carrier concentration affects its presence. Experimental FEEDs are compared to those expected theoretically. It is concluded that they are not similar. Comparison with photoemission work indicates that the large peak is due to a band of surface acceptor states. The subsidiary peak is tentatively ascribed to conduction band electrons. Finally, a phenomenological model of photo-field emission (PFE) is proposed. Based upon both FEED and PFE experiments, this model assumes that emission occurs primarily from surface states. A second component of the current is due to tunnelling of photogenerated electrons. In addition to photoconductivity, a self-regulating breakdown mechanism is necessary for qualitative agreement with experimental data. One such mechanism, avalanche, is investigated for the dielectric emitter model. Qualitative agreement is obtained with the characteristic non-linear Fowler-Nordheim behavior observed experimentally.

  13. The JPL Field Emission Spectrometer

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.; Kahle, Anne B.

    1995-01-01

    The Jet Propulsion Laboratory (JPL) Field Emission Spectrometer (FES) was built by Designs and Prototypes based on a set of functional requirements supplied by JPL. The instrument has a spectral resolution of 6 wavenumbers (wn) and can acquire spectra from either the Mid Infrared (3-5 mu m) or the Thermal Infrared (8-12 pm) depending on whether the InSb or HgCdTe detector is installed respectively. The instrument consists of an optical head system unit and battery. The optical head which is tripod mounted includes the interferometer and detector dewar assembly. Wavelength calibration of the interferometer is achieved using a Helium-Neon laser diode. The dewar needs replenishing with liquid Nitrogen approximately every four hours. The system unit includes the controls for operation and the computer used for acquiring viewing and processing spectra. Radiometric calibration is achieved with an external temperature-controlled blackbody that mounts on the fore-optics of the instrument. The blackbody can be set at 5 C increments between 10 and 55 C. The instrument is compact and weighs about 33 kg. Both the wavelength calibration and radiometric calibration of the instrument have been evaluated. The wavelength calibration was checked by comparison of the position of water features in a spectrum of the sky with their position in the output from a high resolution atmospheric model. The results indicatethat the features in the sky spectrum are within 6-8 wn of their position ill the model spectrum. The radiometric calibration was checked by first calibrating the instrument using the external blackbody supplied with the instrument and then measuring the radiance from another external blackbody at a series of temperatures. The temperatures of these radiance spectra were then recovered by inventing Planck's law and the recovered temperatures compared lo the measured blackbody temperature. These results indicate that radiometric calibration is good to 0.5 C over the range of

  14. Field Emission and Nanostructure of Carbon Films

    SciTech Connect

    Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

    1999-11-29

    The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

  15. Gunn effect in field-emission phenomena

    NASA Astrophysics Data System (ADS)

    Litovchenko, V.; Evtukh, A.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.

    2005-02-01

    The peculiarities of electron field emission from nanostructured GaN surface have been investigated. The current-voltage characteristics of emission current in Fowler-Nordheim plot show two parts with different slopes. There are emission current oscillations in the changing slope region. As an explanation for the experimental results a model based on the electron-emission analysis from lower (Γ) valley, upper (U) valley, and electron transition between valleys due to heating in electric field has been proposed. The electron affinities for the emission from Γ and U valleys have been determined. The decreased affinities from there valleys have been estimated for quantization in nanostructured GaN.

  16. OIL AND GAS FIELD EMISSIONS SURVEY

    EPA Science Inventory

    The report gives results of an oil and gas field emissions survey. The production segment of the oil and gas industry has been identified as a source category that requires the development of more reliable emissions inventory methodologies. The overall purpose of the project was ...

  17. OIL AND GAS FIELD EMISSIONS SURVEY

    EPA Science Inventory

    The report gives results of an oil and gas field emissions survey. The production segment of the oil and gas industry has been identified as a source category that requires the development of more reliable emissions inventory methodologies. The overall purpose of the project was ...

  18. Deducing dust emission mechanisms from field measurements

    USDA-ARS?s Scientific Manuscript database

    Field observations are needed to both develop and test theories on dust emission for use in global modeling systems. The mechanism of dust emission (aerodynamic entrainment, saltation bombardment, aggregate disintegration) and the amount and particle-size distribution of emitted dust may vary under ...

  19. Field emission and scattering from conducting nanofibers

    NASA Astrophysics Data System (ADS)

    Marinov, Toma M.

    Field emission from conducting nanofibers has a significant importance due to its possible application in electronics like flat panel displays, x-ray machines, sensors, etc. The standard theoretical model describing field emission is the Fowler-Nordheim model, which is valid for bulk material, constant applied electric field and O°K. A more general theoretical model is required in the realistic cases of arbitrary electromagnetic fields and arbitrary but finite temperature. This work presents an asymptotic procedure for calculating field emission from nanofibers of finite length for static and dynamic fields at arbitrary finite temperature. It investigates the behavior of a nanofiber in the presence of electrostatic and EM fields. The resultant field potentials outside the system are obtained by employing the slender-body approximation ([1], [2], [3]). The total external potential is used in conjunction with the the Wentzel-Krammers-Brillouin approximation [4] to estimate the tunneling probability of the electrons in the fiber due the total external field. Unlike the standard Fowler-Nordheim method [5], the current density of the field emission is obtained by using quantum wire density of states. In addition, this work investigates radiative and scattering properties of conducting nanofibers for the purpose of nanoantenna applications. The results for the distributions of the induced currents are compared to the results from the solution of Hallen's integral equation [6] and the corresponding radiation patterns are compared. The results are extended for the case of a broadside uniform array of N aligned fibers.

  20. Pulsar Emission Geometry and Accelerating Field Strength

    NASA Technical Reports Server (NTRS)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  1. Polypyrrole nanostructures and their field emission investigations

    NASA Astrophysics Data System (ADS)

    Harpale, Kashmira; More, Mahendra A.; Koinkar, Pankaj M.; Patil, Sandip S.; Sonawane, Kishor M.

    2015-03-01

    Polypyrrole (PPy) nanostructures have been synthesized on indium doped tin oxide (ITO) substrates by a facile electrochemical route employing cyclic voltammetry (CV) mode. The morphology of the PPy thin films was observed to be influenced by the monomer concentration. Furthermore, FTIR revealed formation of electrically conducting state of PPy. Field emission investigations of the PPy nanostructures were carried out at base pressure of 1×10-8mbar. The values of turn-on field, corresponding to emission current density of 1 μA/cm2 were observed to be 0.6, 1.0 and 1.2 V/μm for the PPy films characterized with rod-like, cauliflower and granular morphology, respectively. In case of PPy nanorods maximum current density of 1.2 mA/cm2 has been drawn at electric field of 1 V/μm. The low turn on field, extraction of very high emission current density at relatively lower applied field and good emission stability propose the PPy nanorods as a promising material for field emission based devices.

  2. High-resolution simulation of field emission

    SciTech Connect

    Herrmannsfeldt, W.B. ); Becker, R. ); Brodie, I.; Rosengreen, A.; Spindt, C.A. )

    1990-03-01

    High-resolution simulations of field emission electron sources have been made using the electron optics program EGN2. Electron emission distributions are made using the Fowler-Nordheim equation. Mesh resolution in the range of 1-5 {angstrom} is required to adequately model surface details that can result in emission currents in the range found experimentally. A typical problem starts with mechanical details with dimensions of about 1{mu}. To achieve high resolution a new boundary is defined by the tip, a nearby equipotential line, and a pair of field lines. The field lines (one of which is normally the axis of symmetry) define Neumann boundaries. This new boundary is then used by the boundary preprocessor POLYGON to create an enlarged version of the problem, typically by a factor of ten. This process can be repeated until adequate resolution is obtained to simulate surface details, such as microprotusion, that could sufficiently enhance the surface electric fields and cause field emission. When simulating experimental conditions under which emission of several microamperes per tip were observed, it was found that both a locally reduced work function and a surface protrusion were needed to duplicate the experimental results. If only a local region of reduced work function is used, the area involved and the extent of the reduction both need to be very large to reproduce the emission. If only a surface protrusion is used, it is possible to get the observed emission current with a reasonable protrusion of length a few times radius, but then the resulting beam spreads over a very large solid angle due to the strong local radial electric fields. 8 refs., 14 figs., 1 tab.

  3. Field emission and growth of fullerene nanotubes

    SciTech Connect

    Rinzler, A.G.; Hafner, J.H.; Nilolaev, P.; Colbert, D.T.; Smalley, R.E.

    1994-11-01

    Efforts to control the growth of individual carbon nanotubes from nanotube seed crystals have led to a characterization of their field-induced electron emission behavior. The application of a bias voltage in the growth apparatus was motivated by the prolific formation of nanotubes in the carbon are growth method, in which the electric field appears to play a central role. The authors report here the ability to achieve various tube tip configurations by the controlled application of voltage, heat and chemicals to an individual nanotube, and that these states are well characterized by the emission currents they induce.

  4. Electron field emission for ultrananocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhirnov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E.; Konov, V.; Pimenov, S.; Karabutov, A.; Rakhimov, A.; Suetin, N.

    2001-03-01

    Ultrananocrystalline diamond (UNCD) films 0.1-2.4 μm thick were conformally deposited on sharp single Si microtip emitters, using microwave CH4-Ar plasma-enhanced chemical vapor deposition in combination with a dielectrophoretic seeding process. Field-emission studies exhibited stable, extremely high (60-100 μA/tip) emission current, with little variation in threshold fields as a function of film thickness or Si tip radius. The electron emission properties of high aspect ratio Si microtips, coated with diamond using the hot filament chemical vapor deposition (HFCVD) process were found to be very different from those of the UNCD-coated tips. For the HFCVD process, there is a strong dependence of the emission threshold on both the diamond coating thickness and Si tip radius. Quantum photoyield measurements of the UNCD films revealed that these films have an enhanced density of states within the bulk diamond band gap that is correlated with a reduction in the threshold field for electron emission. In addition, scanning tunneling microscopy studies indicate that the emission sites from UNCD films are related to minima or inflection points in the surface topography, and not to surface asperities. These data, in conjunction with tight binding pseudopotential calculations, indicate that grain boundaries play a critical role in the electron emission properties of UNCD films, such that these boundaries: (a) provide a conducting path from the substrate to the diamond-vacuum interface, (b) produce a geometric enhancement in the local electric field via internal structures, rather than surface topography, and (c) produce an enhancement in the local density of states within the bulk diamond band gap.

  5. Enhanced field emission of WS₂ nanotubes.

    PubMed

    Viskadouros, G; Zak, A; Stylianakis, M; Kymakis, E; Tenne, R; Stratakis, E

    2014-06-25

    Results on electron field emission from free standing tungsten disulfide (WS2) nanotubes (NTs) are presented. Experiments show that the NTs protruding on top of microstructures are efficient cold emitters with turn-on fields as low as 1 V/μm and field enhancement of few thousands. Furthermore, the emission current shows remarkable stability over more than eighteen hours of continuous operation. Such performance and long-term stability of the WS2 cathodes is comparable to that reported for optimized carbon nanotube (CNTs) based emitters. Besides this, it is found that the WS2 cathodes prepared are less sensitive than CNTs in chemical reactive ambients. The high field enhancement and superior reliability achieved indicates a potential for vacuum nanoelectronics and flat panel display applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electric Field Dependence of Photo-Induced Field Emission Current.

    NASA Astrophysics Data System (ADS)

    Egert, Charles Michael

    We have measured the photo-induced field emission current from a tungsten field emitter as a function of electric field. These experiments were performed with a retardation energy analyzer to measure total current and a 127(DEGREES) cylindrical differential energy analyzer to measure the energy resolved PFE current. The results of these experiments are compared with a simple theory of PFE, developed by Schwartz and Schaich, which is an extension of field emission theory including the surface photoeffect, but assuming constant photoexcitation matrix elements. Our experimental results disagree with this theory in two ways: First, for high fields and photon energy (electrons emitted above the field emission barrier maximum) theory predicts a larger increase in PFE current than is observed experimentally. Second, we have also confirmed the existence of a field dependent oscillatory component of the PFE current emitted from the W(110) surface with photon energies of 2.7 eV and 3.5 eV. The simple theory described here, as well as more sophisticated calculations, have been unable to explain this oscillatory feature. We have also reported, for the first time, the field dependence of the energy resolved PFE current measured with a 127(DEGREES) cylindrical energy analyzer. These preliminary results show evidence of the oscillatory component previously only observed in the total PFE current.

  7. Preliminary Results of Field Emission Cathode Tests

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  8. Stable field emission from nanoporous silicon carbide.

    PubMed

    Kang, Myung-Gyu; Lezec, Henri J; Sharifi, Fred

    2013-02-15

    We report on a new type of stable field emitter capable of electron emission at levels comparable to thermal sources. Such an emitter potentially enables significant advances in several important technologies which currently use thermal electron sources. These include communications through microwave electronics, and more notably imaging for medicine and security where new modalities of detection may arise due to variable-geometry x-ray sources. Stable emission of 6 A cm(-2) is demonstrated in a macroscopic array, and lifetime measurements indicate these new emitters are sufficiently robust to be considered for realistic implementation. The emitter is a monolithic structure, and is made in a room-temperature process. It is fabricated from a silicon carbide wafer, which is formed into a highly porous structure resembling an aerogel, and further patterned into an array. The emission properties may be tuned both through control of the nanoscale morphology and the macroscopic shape of the emitter array.

  9. PISCES field chemical emissions monitoring project: Site 21 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 21. Site 21 is a pilot-scale electrostatic precipitator and wet flue gas desulfurization (FGD) system. The flue gas for the pilot unit is provided by an adjacent power plant boiler which bums a medium-sulfur bituminous, coal. The primary objective in the Site 21 sampling and analytical program was to quantify the various components of variance in the measurement of trace chemical species. In addition to the replicate sample trains typically conducted at previous PISCES field measurements, duplicate analyses and duplicate (simultaneous) sample trains were also conducted. This enabled the variance due to sampling, analytical, and process conditions to be estimated. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report.

  10. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul

    2013-09-17

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  11. Formation of nanofilament field emission devices

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.; Musket, Ronald G.; Bernhardt, Anthony F.

    2000-01-01

    A process for fabricating a nanofilament field emission device. The process enables the formation of high aspect ratio, electroplated nanofilament structure devices for field emission displays wherein a via is formed in a dielectric layer and is self-aligned to a via in the gate metal structure on top of the dielectric layer. The desired diameter of the via in the dielectric layer is on the order of 50-200 nm, with an aspect ratio of 5-10. In one embodiment, after forming the via in the dielectric layer, the gate metal is passivated, after which a plating enhancement layer is deposited in the bottom of the via, where necessary. The nanofilament is then electroplated in the via, followed by removal of the gate passification layer, etch back of the dielectric, and sharpening of the nanofilament. A hard mask layer may be deposited on top of the gate metal and removed following electroplating of the nanofilament.

  12. Electrochemical sharpening of field emission tips

    DOEpatents

    Bernhardt, A.F.

    1999-04-06

    A method is disclosed for sharpening field emitter tips by electroetching/polishing. In gated field emitters, it is very important to initiate electron emission at the lowest possible voltage and thus the composition of the emitter and the gate, as well as the emitter-gate structure, are important factors. This method of sharpening the emitter tips uses the grid as a counter electrode in electroetching of the emitters, which can produce extremely sharp emitter tips as well as remove asperities and other imperfections in the emitters, each in relation to the specific grid hole in which it resides. This has the effect of making emission more uniform among the emitters as well as lowering the turn-on voltage. 3 figs.

  13. Integrated field emission array for ion desorption

    DOEpatents

    Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David

    2016-08-23

    An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.

  14. Nitrous oxide emissions from cropped fields

    SciTech Connect

    Mosier, A.R.; Hutchinson, G.L.

    1981-04-01

    From mid-May to mid-September 1978, nitrous oxide (N/sub 2/O) emissions from an irrigated corn (Zea mays L.) field in northern Colorado totaled only 2.5 kg N ha/sup -1/, and even smaller losses were measured from a nearby sugarbeet (Beta vulgaris L.) field. Fluxes measured by a simple soil cover method compared favorably with micrometeorological estimates of vertical N/sub 2/O flux density. About 30% of the N/sub 2/O lost from the corn field was emitted during the 2 weeks following fertilization while NH/sub 3/ was being rapidly nitrified, and 59% was evolved during the week following the field's first irrigation, when restricted oxygen diffusion favored denitrification. Other occurrences of irrigation or precipitation exceeding 0.7 cm were also followed by rapid, though much smaller, increases in N/sub 2/O emissions. The flux of N/sub 2/O was not significantly correlated with soil nitrate concentration but was strongly correlated with soil water content and N/sub 2/O concentration in the soil atmosphere, which always exceeded the ambient atmospheric concentration. We found no evidence that either site ever behaved as a sink for tropspheric N/sub 2/O. Total N/sub 2/O emissions from the corn field amounted to only 1.3% of the 200 kg NH/sub 3/-N ha/sup -1/ applied to the crop, a much smaller fraction than has been used in models predicting the effect of agricultural fertilizers upon stratospheric ozone depletion.

  15. Processing of materials for uniform field emission

    DOEpatents

    Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung

    1999-01-01

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.

  16. Processing of materials for uniform field emission

    DOEpatents

    Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.

    1999-01-12

    This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.

  17. Field measurement of diesel particulate matter emissions.

    PubMed

    Volkwein, Jon C; Mischler, Steven E; Davies, Brian; Ellis, Clive

    2008-03-01

    A primary means to reduce environmental levels of diesel particulate matter (DPM) exposure to miners is to reduce the amount of DPM emission from the engine. A quick and economic method to estimate engine particulate emission levels has been developed. The method relies on the measurement of pressure increase across a filter element that is briefly used to collect a DPM sample directly from the engine exhaust. The method has been refined with the inclusion of an annular aqueous denuder to the tube which permits dry filter samples to be obtained without addition of dilution air. Tailpipe filter samples may then be directly collected in hot and water-supersaturated exhaust gas flows from water bath-cooled coal mine engines without the need for dilution air. Measurement of a differential pressure (DP) increase with time has been related to the mass of elemental carbon (EC) on the filter. Results for laboratory and field measurements of the method showed agreement between DP increase and EC collected on the filter with R(2) values >0.86. The relative standard deviation from replicate samples of DP and EC was 0.16 and 0.11, respectively. The method may also have applications beyond mining, where qualitative evaluation of engine emissions is desirable to determine if engine or control technology maintenance may be required.

  18. Methyl bromide emissions from tarped fields

    SciTech Connect

    Cicerone, R.J.; Williams, J.; Wang, N.Y.

    1995-12-31

    Once in the stratosphere, bromine atoms can destroy ozone effectively. Because of this potential effect, certain organobromine compounds including methyl bromide (MeBr) are being controlled or eliminated by national and international regulations. It would be valuable to determine the fraction of MeBr used in soil fumigations that subsequently enters the atmosphere to better assess the need for, and value of, strong regulations. We have designed and conducted several experiments accompanying field fumigations with MeBr/chloropicrin mixtures. In each of three field-fumigation experiments new Irvine, CA in which the fumigated field was covered immediately with plastic tarping, we have deployed static flux chambers on top of the tarping and measured escape fluxes of MeBr. After tarp removal, the same chambers were replaced on the bare soil to continue the measurements. We have also measured soil bromide contents before and after the fumigation. One experiment yielded an escape fraction of 80 to 87% (with 19% remaining as bromide) while the other two experiments yielded escape fractions of 30 to 35% (with about 70% remaining as bromide). This paper will summarize stratospheric bromine chemistry, describe the field experiments and discuss factors that influence emissions, including soil pH, moisture and organic content and injection technique. We acknowledge TriCal, Inc. for many helpful discussions and for professional field applications of MeBr.

  19. Magnetic field emission gun with zirconiated emitter.

    PubMed

    Troyon, M

    1989-03-01

    A magnetic-field-superimposed field emission gun with low aberrations and equipped with a zirconiated tungsten emitter has been developed for applications where very stable high probe currents are required. It has been tested on a conventional electron microscope at 10 kV and on an electron beam testing system at 1 kV. Probe current i = 250 nA in a probe size d = 0.4 micron is obtained at 10 kV; at 1 kV the resolution is 0.1 micron with i = 5 nA, and 0.4 micron with i = 30 nA. For these probe currents, the spatial broadening effect due to electron-electron interactions in the beam is the preponderant factor limiting the probe size.

  20. Field Emission Microplasma Actuated Microchannel Flow

    NASA Astrophysics Data System (ADS)

    Tholeti, Siva Sashank; Shivkumar, Gayathri; Alexeenko, Alina

    2015-11-01

    Flow actuation by dielectric barrier discharges (DBD) involve no moving parts and provide high power density for flow enhancement, heating and mixing applications in microthrusters, micropumps and microcombustors. Conventional micro-DBDs require voltages ~ kV for flow enhancement of a few m/s for 500 μm high channel. However for gaps <10 microns, field emission lowers the breakdown voltage following modified Paschen curve. We consider a micropump concept that takes advantage of the field emission from a micro-DBD with dielectric thickness of 3 μm and a peak voltage of -325 V at 10 MHz. At 760 Torr, for electrode thickness of 1 μm, Knudsen number with respect to the e-nitrogen collisions is 0.1. So, kinetic approach of particle-in-cell method with Monte Carlo collisions is applied in nitrogen at 300 K to resolve electron (ne) and ion (ni) number densities. Body force, fb = eE(ni-ne) , where, e is electron charge and E is electric field. The major source of heating from plasma is Joule heating, J.E, where J is current density. At 760 Torr, for fb,avg = 1 mN/cubic mm and J.E = 8 W/cubic mm, micro-DBD induced a flow with a velocity of 4.1 m/s for a 64 mW/m power input for a channel height of 500 μm. The PIC/MCC plasma simulations are coupled to a CFD solver for analysis of the resulting flow actuation in microchannels at various Reynolds numbers. This work was supported by NSF ECCS Grant No. 1202095.

  1. A novel field emission microscopy method to study field emission characteristics of freestanding carbon nanotube arrays.

    PubMed

    Li, Yunhan; Sun, Yonghai; Jaffray, David A; Yeow, John T W

    2017-04-18

    Field emission (FE) uniformity and the mechanism of emitter failure of freestanding carbon nanotube (CNT) arrays have not been well studied due to the difficulty of observing and quantifying FE performance of each emitter in CNT arrays. Herein a field emission microscopy (FEM) method based on poly(methyl methacrylate) (PMMA) thin film is proposed to study the FE uniformity and CNT emitter failure of freestanding CNT arrays. FE uniformity of freestanding CNT arrays and different levels of FE current contributions from each emitter in the arrays are recorded and visualized. FEM patterns on the PMMA thin film contain the details of the CNT emitter tip shape and whether multiple CNT emitters occur at an emission site. Observation of real-time FE performance and the CNT emitter failure process in freestanding CNT arrays are successfully achieved using a microscopic camera. High emission currents through CNT emitters causes Joule heating and light emission followed by an explosion of the CNTs. The proposed approach is capable of resolving the major challenge of building the relationship between FE performance and CNT morphologies, which can significantly facilitate the study of FE non-uniformity, the emitter failure mechanism and the development of stable and reliable FE devices in practical applications.

  2. A novel field emission microscopy method to study field emission characteristics of freestanding carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Li, Yunhan; Sun, Yonghai; Jaffray, David A.; Yeow, John T. W.

    2017-04-01

    Field emission (FE) uniformity and the mechanism of emitter failure of freestanding carbon nanotube (CNT) arrays have not been well studied due to the difficulty of observing and quantifying FE performance of each emitter in CNT arrays. Herein a field emission microscopy (FEM) method based on poly(methyl methacrylate) (PMMA) thin film is proposed to study the FE uniformity and CNT emitter failure of freestanding CNT arrays. FE uniformity of freestanding CNT arrays and different levels of FE current contributions from each emitter in the arrays are recorded and visualized. FEM patterns on the PMMA thin film contain the details of the CNT emitter tip shape and whether multiple CNT emitters occur at an emission site. Observation of real-time FE performance and the CNT emitter failure process in freestanding CNT arrays are successfully achieved using a microscopic camera. High emission currents through CNT emitters causes Joule heating and light emission followed by an explosion of the CNTs. The proposed approach is capable of resolving the major challenge of building the relationship between FE performance and CNT morphologies, which can significantly facilitate the study of FE non-uniformity, the emitter failure mechanism and the development of stable and reliable FE devices in practical applications.

  3. Field emission microplasma actuation for microchannel flows

    NASA Astrophysics Data System (ADS)

    Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.

    2016-06-01

    Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m-3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier-Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min-1 mm-1 for an input power of 64 μW mm-1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.

  4. Field thermal infrared emissivity dependence on soil moisture

    USDA-ARS?s Scientific Manuscript database

    Emissivity dependence on soil water content has been already reported and modeled under controlled conditions at the laboratory. This study completes and extends that previous work by providing emissivity measurements under field conditions without elimination of impurities, local heterogeneities or...

  5. Field Emission from Lateral Multiwalled Carbon Nanotube Yarn Emitters

    NASA Astrophysics Data System (ADS)

    Chen, Guohai; Song, Yenan

    2016-10-01

    A field emission from a lateral emitter made by a multiwalled carbon nanotube (MWCNT) yarn was investigated. The lateral emitter showed an excellent field emission performance with a low turn-on electric field of 1.13 V/um at an emission current of 1 uA, high emission current of 0.2 mA at an applied voltage of 700 V, and long-time emission stability for over 20 h without any significant current decay under an initial emission current of about 0.10 mA. The lateral emitter also demonstrated a uniform line emission pattern. It is suggested that the field emission occurs from the outmost MWCNTs which are protruding out from the yarn surface.

  6. Locally Resolved Electron Emission Area and Unified View of Field Emission from Ultrananocrystalline Diamond Films.

    PubMed

    Chubenko, Oksana; Baturin, Stanislav S; Kovi, Kiran K; Sumant, Anirudha V; Baryshev, Sergey V

    2017-09-27

    In this paper, we study the effect of the actual, locally resolved, field emission area on electron emission characteristics of uniform planar conductive nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) field emitters. High resolution imaging experiments were carried out in a field emission microscope with a specialty imaging anode screen such that electron emission micrographs were taken concurrently with measurements of I-V characteristics. An automated image processing algorithm was applied to process the extensive imaging data sets and calculate the emission area per image. It was routinely found that field emission from as-grown planar (N)UNCD films was always confined to a counted number of discrete emitting centers across the surface, which varied in size and electron emissivity. It was established that the actual field emission area critically depends on the applied electric field and that the field emission area and overall electron emissivity improve with the sp(2)-fraction present in the film, irrespective of the original substrate roughness or morphology. Most importantly, when as-measured I-E characteristics were normalized by the electric field-dependent emission area, the resulting j-E curves demonstrated a strong kink and departed from the Fowler-Nordheim law, finally saturating at a value on the order of 100 mA/cm(2). This value was nearly identical for all studied films regardless of substrate. It was concluded that the saturation value is specific to the intrinsic fundamental properties of (N)UNCD.

  7. Photo-enhanced field electron emission of cadmium sulfide nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Jinling; Lv, Yinghua; Liu, Ning; Li, Yanqing; Gao, Peng; Bai, Xuedong

    2011-11-01

    The response of field electron emission of cadmium sulfide (CdS) nanowires (NWs) to visible light has been investigated. It is found that, upon light illumination, the turn-on voltage drops, emission current increases obviously, and the Fowler-Nordheim behavior deviates from a straight line. A process of field emission coupled with semiconducting properties of CdS NWs is proposed. Photon-excited electron transition from the valence band to the conductance band of CdS nanowires increases the quantity of emitting electrons, and the photoemission decreases the effective work function of CdS emitters, which largely enhances the field emission performance. The response of field emission of CdS NWs to light illumination suggests an approach for tuning field emission of semiconductor emitters.

  8. Status review of field emission displays

    NASA Astrophysics Data System (ADS)

    Ghrayeb, Joseph; Daniels, Reginald

    2001-09-01

    Cathode ray tube (CRT) technology dominates the direct view display market. Mature CRT technology for many designs is still the preferred choice. CRT manufacturers have greatly improved the size and weight of the CRT displays. High performance CRTs continue to be in great demand, however, supply have to contend with the vanishing CRT vendor syndrome. Therefore, the vanishing CRT vendor syndrome fuels the search for an alternate display technology source. Within the past 10 years, field emission display (FED) technology had gained momentum and, at one time, was considered the most viable electronic display technology candidate [to replace the CRT]. The FED community had advocated and promised many advantages over active matrix liquid crystal displays (AMLCD), electro luminescent (EL) or Plasma displays. Some observers, including potential FED manufacturers and the Department of Defense, (especially the Defense Advanced Research Project Agency (DARPA)), consider the FED entry as having leapfrog potential. Despite major investments by US manufacturers as well as Asian manufacturers, reliability and manufacturing difficulties greatly slowed down the advancement of the technology. The FED manufacturing difficulties have caused many would-be FED manufacturing participants to abandon FED research. This paper will examine the trends, which are leading this nascent technology to its downfall. FED technology was once considered to have the potential to leapfrog over AMLCD's dominance in the display industry. At present the FED has suffered severe setbacks and there are very few [FED] manufacturers still pursuing research in the area. These companies have yet to deliver a display beyond the prototype stage.

  9. Pisces field chemical emissions monitoring project: Site 117 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 117. Site 117 is a 1 MW selective catalytic reduction (SCR) pilot plant. The host boiler is an 850 MW boiler which burned a residual fuel oil. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report.

  10. Field emission characteristics from graphene on hexagonal boron nitride

    SciTech Connect

    Yamada, Takatoshi; Masuzawa, Tomoaki; Ebisudani, Taishi; Okano, Ken; Taniguchi, Takashi

    2014-06-02

    An attempt has been made to utilize uniquely high electron mobility of graphene on hexagonal boron nitride (h-BN) to electron emitter. The field emission property of graphene/h-BN/Si structure has shown enhanced threshold voltage and emission current, both of which are key to develop novel vacuum nanoelectronics devices. The field emission property was discussed along with the electronic structure of graphene investigated by Fowler-Nordheim plot and ultraviolet photoelectron spectroscopy. The result suggested that transferring graphene on h-BN modified its work function, which changed field emission mechanism. Our report opens up a possibility of graphene-based vacuum nanoelectronics devices with tuned work function.

  11. PISCES field chemical emissions monitoring project: Site 112 emissions report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 112. Site 112 is a tangentially fired boiler firing residual oil. Site 112 employs electrostatic precipitators and a flue gas desulfurization system for particulate and SO{sub 2} control. Sampling at Site 112 was performed in July and August of 1992 for volatile organic compounds (VOCs) and mercury. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts - as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  12. [Effects of rice plants on methane emission from paddy fields].

    PubMed

    Jia, Zhongjun; Cai, Zucong

    2003-11-01

    Methane emission from rice paddy fields is the net result of the combination of many processes, i.e., CH4 production, CH4 oxidation and CH4 transportation in paddy soil. Rice plants play a key role in the CH4 emission from paddy fields, particularly in all the processes involved. The positive and negative effects of rice plants on CH4 emission from paddy fields are well recognized as the main factors influencing the temporal variation of CH4 emission flux in paddy field. Process-based studies about the effects of rice plants on methane emission from paddy fields were summarized, and different roles of rice plants on this emission were discussed. Root exudates and litters of rice plants could serve as the substrate for methanogenesis and enhance the CH4 production of paddy soils, resulting in a high CH4 emission peak, particularly in rice late growing season. Rhizospheric CH4 oxidation induced by rice root-excreted oxygen constitutes a main biogenic sink of CH4, which could account for 36-90% of CH4 produced in paddy soil over the entire growing season of rice. Up to 80% and more of CH4 released from rice field during a growing season could be emitted by rice plant-mediated transport. The fully developed aerenchyma of rice plants could be of importance in CH4 emission during rice growing seasons, and responsible for the CH4 emission peak observed at rice early growing season.

  13. Pulsar Emission Geometry and Accelerating Field Strength

    DTIC Science & Technology

    2011-11-01

    ar X iv :1 11 1. 03 25 v1 [ as tr o- ph .H E ] 1 N ov 2 01 1 2011 Fermi Symposium, Roma., May. 9-12 1 Pulsar Emission Geometry and Accelerating...observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems. The high...the Vela and CTA 1 pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission

  14. Comparison of Field Measurements to Methane Emissions ...

    EPA Pesticide Factsheets

    Due to both technical and economic limitations, estimates of methane emissions from landfills rely primarily on models. While models are easy to implement, there is uncertainty due to the use of parameters that are difficult to validate. The objective of this research was to compare modeled emissions using several greenhouse gas (GHG) emissions reporting protocols including: (1) Intergovernmental Panel on Climate Change (IPCC); (2) U.S. Environmental Protection Agency Greenhouse Gas Reporting Program (EPA GHGRP); (3) California Air Resources Board (CARB); (4) Solid Waste Industry for Climate Solutions (SWICS); and (5) an industry model from the Dutch waste company Afvalzorg, with measured data collected over 3 calendar years from a young landfill with no gas collection system. By working with whole landfill measurements of fugitive methane emissions and methane oxidation, the collection efficiency could be set to zero, thus eliminating one source of parameter uncertainty. The models consistently overestimated annual methane emissions by a factor ranging from 4 – 32.Varying input parameters over reasonable ranges reduced this range to 1.3 - 8. Waste age at the studied landfill was less than four years and the results suggest the need for measurements at additional landfills to evaluate the accuracy of the tested models to young landfills. This is a submission to a peer reviewed journal. The paper discusses landfill emission measurements and models for a new la

  15. Field emission from graphene based composite thin films

    NASA Astrophysics Data System (ADS)

    Eda, Goki; Emrah Unalan, H.; Rupesinghe, Nalin; Amaratunga, Gehan A. J.; Chhowalla, Manish

    2008-12-01

    Field emission from graphene is challenging because the existing deposition methods lead to sheets that lay flat on the substrate surface, which limits the field enhancement. Here we describe a simple and general solution based method for the deposition of field emitting graphene/polymer composite thin films. The graphene sheets are oriented at some angles with respect to the substrate surface leading to field emission at low threshold fields (˜4Vμm-1). Our method provides a route for the deposition of graphene based thin film field emitter on different substrates, opening up avenues for a variety of applications.

  16. Experiments with Low Voltage Field Emission EPMA

    NASA Astrophysics Data System (ADS)

    Fournelle, J.; Cathey, H. E.

    2014-12-01

    We report results from 5-7 keV Field Emission EPMA experiments on selected natural minerals and synthetic materials to illustrate some strengths -- and pitfalls --of low keV FE-EPMA. In a silicate mineral in pseudotachylite from South Mountain, AZ (Goodwin, 1999), the spatial resolution (equation of Merlet & Llovet, 2012, with an 80 nm diameter beam) at 7 keV for Si Ka is calculated to be 588 nm, 391 nm for Ca Ka and 641 nm for Fe La. This pseudotachylite contains abundant 5-10 um sieve-textured crystals full of inclusions with low BSE intensity. Previous 15 keV work suggested the sieve phase was amphibole. At 7 keV, it is possible to identify the compositions of the submicron inclusions as SiO2 and a K-rich alumino-silicate phase; the host composition is epidote. The enhanced resolution of FE-EPMA reveals problems with some microanalytical standards. Vicenzi and Rose (2008) showed submicron inclusions in the Smithsonian Kakanui hornblende standard. Our 7 keV experiments show the ~400 nm inclusions consist of a silicate phase (glass?), Fe-Ti oxide and possibly a gas bubble, concentrated along planes or grain boundaries. SEM imaging of an inclusion analyzed with a focused FE beam shows radiating trails of debris on the hornblende host, consistent with residue from a popped vapor bubble in the inclusion. How should FE-EPMA handle standards that may have inclusions? Use a focused beam avoiding inclusions? Sometimes, perhaps. However, we used a defocused beam to "average" the phases. The results show little or no deviation from the published wet chemical analysis. Operation at reduced keV may require use of non-traditional X-ray lines (e.g. Gopon et al, 2013 for Fe Ll vs Fe La). Experiments at 5 keV were also performed upon a synthetic material enriched in Nd (Nd-Mg-Zn). Fischer & Baun (1967) demonstrated problems with the Ma/Mb lines of REE; we find that use of the Nd Mz line is necessary in order to achieve reasonable results in this material (98 wt% total, Nd 36 wt

  17. High-Performance Field-Emission Properties of Boron Nitride Nanotube Field Emitters.

    PubMed

    Yun, Ki Nam; Sun, Yuning; Han, Jun Soo; Song, Yoon-Ho; Lee, Cheol Jin

    2017-01-18

    Boron nitride nanotubes (BNNTs) have attracted considerable attention as a field emission material because of their high mechanical strength, high negative electron affinity, and high oxidation resistance. Nevertheless, the obtained field-emission properties of BNNTs have indicated poor emission performance, which is a very high turn-on electric field with a low emission current. We fabricated BNNT field emitters and investigated their field-emission properties. The field-emission properties of the BNNT field emitters were considerably enhanced compared to those of other BN nanomaterial-based field emitters. The turn-on and the threshold electric fields of the BNNT field emitter were 3.1 and 5.4 V/μm at the gap distance of 750 μm, respectively. Both the turn-on and the threshold electric fields of the BNNT field emitters were decreased by increasing the gap distance between the emitter tip and the anode electrode. Degradation of the emission current during field emission operation for 20 h showed no significant difference according to the gap distance. Emission current fluctuation of the BNNT field emitters showed that the smaller gap was more unstable than the larger gap. The enhanced emission properties are mainly attributed to the small diameter, high-quality, and straight structure of BNNTs as well as the stable network formation of the BNNT film with good mechanical and electrical contact between the BNNTs and the cathode electrode. The remarkable emission performance of the BNNT field emitters might have promising applications for various field-emission devices.

  18. Field emission from a selected multiwall carbon nanotube.

    PubMed

    Passacantando, M; Bussolotti, F; Santucci, S; Di Bartolomeo, A; Giubileo, F; Iemmo, L; Cucolo, A M

    2008-10-01

    The electron field emission characteristics of individual multiwalled carbon nanotubes were investigated by a piezoelectric nanomanipulation system operating inside a scanning electron microscopy chamber. The experimental set-up ensures a precise evaluation of the geometric parameters (multiwalled carbon nanotube length and diameter and anode-cathode separation) of the field emission system. For several multiwalled carbon nanotubes, reproducible and quite stable emission current behaviour was obtained, with a dependence on the applied voltage well described by a series resistance modified Fowler-Nordheim model. A turn-on field of ∼30 V µm(-1) and a field enhancement factor of around 100 at a cathode-anode distance of the order of 1 µm were evaluated. Finally, the effect of selective electron beam irradiation on the nanotube field emission capabilities was extensively investigated.

  19. Recent progress in nanostructured next-generation field emission devices

    NASA Astrophysics Data System (ADS)

    Mittal, Gaurav; Lahiri, Indranil

    2014-08-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.

  20. Field emission properties of single crystal chromium disilicide nanowires

    SciTech Connect

    Valentin, L. A.; Carpena-Nunez, J.; Yang, D.; Fonseca, L. F.

    2013-01-07

    The composition, crystal structure, and field emission properties of high-crystallinity chromium disilicide (CrSi{sub 2}) nanowires synthesized by a vapor deposition method have been studied. High resolution transmission electron microscopy, energy dispersive spectroscopy, and selected area electron diffraction studies confirm the single-crystalline structure and composition of the CrSi{sub 2} nanowires. Field emission measurements show that an emission current density of 0.1 {mu}A/cm{sup 2} was obtained at a turn-on electric field intensity of 2.80 V/{mu}m. The maximum emission current measured was 1.86 mA/cm{sup 2} at 3.6 V/{mu}m. The relation between the emission current density and the electric field obtained follows the Fowler-Nordheim equation, with an enhancement coefficient of 1140. The electrical conductivity of single nanowires was measured by using four-point-probe specialized microdevices at different temperatures, and the calculated values are close to those reported in previous studies for highly conductive single crystal bulk CrSi{sub 2}. The thermal tolerance of the nanowires was studied up to a temperature of 1100 Degree-Sign C. The stability of the field emission current, the I-E values, their thermal tolerance, and high electrical conductivity make CrSi{sub 2} nanowires a promising material for field emission applications.

  1. Rf Gun with High-Current Density Field Emission Cathode

    SciTech Connect

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  2. Modeling and Electrostatic Focusing for a Field Emission Electron Source

    DTIC Science & Technology

    2013-06-01

    mechanisms of the beam formation, transport, field emission energy distributions, the effects of the emission properties, and parametric studies are...metals, the valence electrons possess the conduction energy band and are described by Sommerfeld free electron gas model with Fermi- Dirac statistics...which defines the electrons energy distribution. For the emission from not electrical conductors the Sommerfeld theory of metals with Fermi- Dirac

  3. Time-Resolved Emission Spectroscopy of Field Reversed Configuration Thruster

    DTIC Science & Technology

    2016-08-31

    Field Reversed Configuration (FRC) thrusters are candidates for next generation high -powered electric propulsion (EP) • Advantages over competing...16468 Introduction • Field Reversed Configuration (FRC) thrusters are candidates for next generation high -powered electric propulsion (EP) • Advantages...Briefing Charts 3. DATES COVERED (From - To) 06 September 2016 - 01 November 2016 4. TITLE AND SUBTITLE Time-Resolved Emission Spectroscopy of Field

  4. Studying electric field enhancement factor of the nanostructured emission surface

    NASA Astrophysics Data System (ADS)

    Zartdinov, A. N.; Nikiforov, K. A.

    2016-08-01

    Mathematical model of nanostructured field emission surface is proposed. In order to determine geometrical parameters of the surface structure digital processing of scanning electron microscopy images was used. Effective value of local electrical field enhancement factor is defined and calculated within the Fowler-Nordheim theory. It was found effective enhancement factor decreases as the applied electrical field increases for a fixed geometry.

  5. Very Stable Electron Field Emission From Strontium Titanate Coated Carbon Nanotube Matrices With Low Emission Thresholds

    SciTech Connect

    Pandey, Archana; Prasad, Abhishek; Moscatello, Jason; Engelhard, Mark H.; Wang, Chong M.; Yap, Yoke K.

    2013-01-22

    PMMA-STO-CNT matrices were created by opened-tip vertically-aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coating of strontium titanate and Poly(methyl methacrylate). Emission threshold of 0.8 V/μm was demonstrated, about five-fold lower than that of the as-grown VAMWCNTs. Theoretical simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs’ repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolong emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices.

  6. Can dust emission mechanisms be determined from field measurements?

    USDA-ARS?s Scientific Manuscript database

    Field observations are needed to develop and test theories on dust emission for use in dust modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary under sed...

  7. Disentangling dust emission mechanisms – a field study

    USDA-ARS?s Scientific Manuscript database

    Field observations are needed to both develop and test theories on dust emission for use in global modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary un...

  8. PCDD AND PCDF EMISSIONS FROM SIMULATED SUGARCANE FIELD BURNING

    EPA Science Inventory

    The emissions from simulated sugarcane field burns were sampled and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs and PCDFs). Sugarcane leaves from Hawaii and Florida were burned in a manner simulating the natural physical dimensions and biomass density fou...

  9. PCDD AND PCDF EMISSIONS FROM SIMULATED SUGARCANE FIELD BURNING

    EPA Science Inventory

    The emissions from simulated sugarcane field burns were sampled and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs and PCDFs). Sugarcane leaves from Hawaii and Florida were burned in a manner simulating the natural physical dimensions and biomass density fou...

  10. Positional control of plasmonic fields and electron emission

    SciTech Connect

    Word, R. C.; Fitzgerald, J. P. S.; Könenkamp, R.

    2014-09-15

    We report the positional control of plasmonic fields and electron emission in a continuous gap antenna structure of sub-micron size. We show experimentally that a nanoscale area of plasmon-enhanced electron emission can be motioned by changing the polarization of an exciting optical beam of 800 nm wavelength. Finite-difference calculations are presented to support the experiments and to show that the plasmon-enhanced electric field distribution of the antenna can be motioned precisely and predictively.

  11. Field emission studies of novel ZnO nanostructures in high and low field regions

    NASA Astrophysics Data System (ADS)

    Ramgir, Niranjan S.; Late, Dattatray J.; Bhise, Ashok B.; Mulla, Imtiaz S.; More, Mahendra A.; Joag, Dilip S.; Pillai, Vijayamohanan K.

    2006-06-01

    A study of the field emission characteristics of novel structures of ZnO, namely marigolds, multipods and microbelts, has been carried out in both the close proximity configuration and the conventional field emission microscope. The use of a conventional field emission microscope overcomes the drawback of arc formation at high field values. The nonlinearity in the Fowler-Nordheim (F-N) plot, a characteristic feature of semiconductors has been observed and explained on the basis of electron emission from both the conduction and the valence bands. The current stability exhibited by these structures is also promising for future device applications.

  12. Connecting Photospheric Magnetic Fields and Transition Temperature Plasma Emission

    NASA Astrophysics Data System (ADS)

    Schmit, Donald

    2016-05-01

    The connectivity of quiet sun magnetic fields is not well understood. One observational obstacle to probe this question has been the sparse spectral observations spanning the transition temperatures (3×104 K< T < 1×105K) between the chromosphere and corona. The Si IV lines observed by IRIS provide a rich dataset to address the structure of the cool quiet sun. We use over 900 deep exposures from IRIS to map the correlation between transition-temperature emission structures and magnetic field concentrations. Ultimately, our aim is to discern the topology and energetic equilibrium of the magnetic structures that span the quiet sun. We use both a potential field model and a snapshot of the Bifrost 3D MHD simulation to interpret our emission data. In a broad sense, we find there is a clear correlation between magnetic fields and strong Si IV emission. However, more pointed statistics suggest that the relationship is quite complex. We do not find evidence for cool loops longer than 3 Mm in length, but we see ubiquitous, smooth emission nearly everywhere in the quiet sun. Emission voids on scales larger than 8 Mm cannot be well explained by their proximity to magnetic fields. This evidence suggests that weak-field transition-temperature loops contribute significantly to quiet sun transition-temperature emission measure, and evolutionary effects likely play a role in structuring the magnetic atmosphere.

  13. Field electron emission from pencil-drawn cold cathodes

    SciTech Connect

    Chen, Jiangtao; Yang, Bingjun; Liu, Xiahui; Yang, Juan; Yan, Xingbin

    2016-05-09

    Field electron emitters with flat, curved, and linear profiles are fabricated on flexible copy papers by direct pencil-drawing method. This one-step method is free of many restricted conditions such as high-temperature, high vacuum, organic solvents, and multistep. The cold cathodes display good field emission performance and achieve high emission current density of 78 mA/cm{sup 2} at an electric field of 3.73 V/μm. The approach proposed here would bring a rapid, low-cost, and eco-friendly route to fabricate but not limited to flexible field emitter devices.

  14. Applications of 1 MV field-emission transmission electron microscope.

    PubMed

    Tonomura, Akira

    2003-01-01

    A newly developed 1 MV field-emission transmission electron microscope has recently been applied to the field of superconductivity by utilizing its bright and monochromatic field-emission electron beam. This microscope allows individual magnetic vortices inside high-Tc superconductors to be observed, thus, opening the way to investigate the unusual behaviour of vortices, which reflects the anisotropic layered structure of these superconducting materials. One example is the observation of the arrangements of chain vortex lines that are formed when a magnetic field is applied obliquely to the layer plane of the materials.

  15. Collective near-field thermal emission from polaritonic nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Tervo, Eric; Zhang, Zhuomin; Cola, Baratunde

    2017-06-01

    The spectral characteristics of near-field thermal emission from nanoparticle arrays are explained by comparison to the dispersions for propagating modes. Using the coupled dipole model, we analytically calculate the spectral emission from single particles, chains, planes, and three-dimensional arrays of Si O2 and SiC. We show that the differences in their spectra are due to the existence or absence of propagating surface phonon polariton modes and that the emission is dominated by these modes when they are present. This work paves the way for understanding and control of near-field radiation in nanofluids, nanoparticle beds, and certain metamaterials.

  16. Field emission from CNT films deposited on porous Si

    NASA Astrophysics Data System (ADS)

    Stepińska, Izabela; Wronka, Halina; Waszuk, Stanisław; Radomska, Joanna; Kozłowski, Mirosław; Czerwosz, ElŻbieta; Craciunoiu, Florea

    2015-09-01

    The carbon nanotubes films on various type of porous Si substrate were prepared. Three methods of porous Si preparation electrolysis, wet etching with silver nitrate and with potassium hydroxide were used. CNTs films were obtained by two step method containing PVD and CVD process. These yield of field emission depended on the type of film. I-U characteristics and F-N plots are discussed for these films. The short-term stability of emission measurements results are also presented. Depending on technological parameters of Si etching the topography of samples is different and it affects on the emission currents intensity and the electric threshold field.

  17. Light emission from carbon nanofilaments/nanotubes at field electron emission

    NASA Astrophysics Data System (ADS)

    Ormont, A. B.; Izrael'yants, K. R.; Musatov, A. L.

    2016-01-01

    The spatial distribution of light emission has been studied in planar field electron emitters with long and sparse carbon nanofilaments/nanotubes. The photographic recording of light emission of the emitting nanofilaments/nanotubes is shown to be efficient to determine the position of individual nanofilaments/ nanotubes in different emitter surface areas, as well as to highlight the nanofilaments/nanotube agglomerate distribution over the emitter surface, which mainly contributes to its emission.

  18. Emittance of a Field Emission Electron Source

    DTIC Science & Technology

    2010-01-05

    mode within the wiggler in order for the laser threshold to be reached. The mode is characterized by a waist radius w and a divergence , the product...the field line red or curved compared to a massive particle trajectory blue or straight. The field lines originate on the surface at s ,zs and...emitter surface s ,zs and along the evalu- ation plane h ,zh. The equivalent sphere characterized by a , is also shown. The red curved line

  19. Methane emissions from rice fields: Effect of soil properties

    SciTech Connect

    Sass, R.L.; Fisher, F.M.; Lewis, S.T. ); Jund, M.F.; Turner, F.T. )

    1994-06-01

    Atmospheric methane concentration has been increasing at the rate of approximately 1% per year. How much of this increase is due to increased emissions from flooded rice fields is unknown but rice cultivation will continue to increase, raising the possibility of further methane emission increases. At the same time, irrigated rice is one of the few sources where management of methane emission is possible. This paper reviews several emission studies carried out by the authors over a 4 year period on three different soil types as well as new data. Evidence is presented that methane emission values in different soils can be compared by correlating them with soil texture quantified by the amount of sand present in the soil. Emission values were found to be characteristic of the soil type. 24 refs., 2 figs., 4 tabs.

  20. Ab initio dynamics of field emission from diamond surfaces

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi

    2013-09-01

    We propose a new interpretation of the efficiency of field emission, which is understood based on the concept of electron affinity. We use time-dependent density functional theory to simulate field emission from clean and chemically modified diamond (001) surfaces under applied electric fields. We find that the emission efficiency is governed by the self-consistent electrostatic potential (VSCF) at the surface rather than by the sign of the electron affinity, which is determined by VSCF in the vacuum region far from the surface. We resolve the paradox that the emission efficiency of a clean (001) surface with positive electron affinity is even higher than that of a H/OH-co-terminated (001) surface with negative electron affinity.

  1. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    SciTech Connect

    Xu, Jinzhuo; Ou-Yang, Wei Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo; Xu, Peng; Wang, Miao; Li, Jun

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  2. Field emission of electrons by carbon nanotube twist-yarns

    NASA Astrophysics Data System (ADS)

    Zakhidov, Al. A.; Nanjundaswamy, R.; Obraztsov, A. N.; Zhang, M.; Fang, S.; Klesch, V. I.; Baughman, R. H.; Zakhidov, A. A.

    2007-09-01

    Field emission with high current density at low operating voltage was found for the yarns obtained by solid state spinning process from forest of vertically aligned multiwall carbon nanotubes. The nanotube forest was produced catalytically by CVD method. It is found that only a small fraction of carbon nanotubes from their total amount in the yarn yields to electron emission from its free end. This led to resistive heating of the emitting tubes and limiting of the emission current. The field emission microscopy pictures of MWNT yarn in free-end geometry appears to be very different from that of the conventional non-yarn carbon nanotube-based cathodes described in all previous studies. The FEM patterns are found to consist of the set of line and arc segments rather than a set of spots. Possible explanation of this effect is presented and discussed. The field emission from the lateral side of the yarns showed the self-enhanced currents increasing with operation time. We assume that this current increase may be due to untwisting and unwrapping of yarns resulted of application of the electric field. The lowest threshold field of about 0.7 V/μm was obtained after a few cycles of applied field increase. The prototypes of cathodoluminescent lamps and alphanumerical indicators based on MWNT twist-yarn cold cathodes are demonstrated.

  3. Methane Emissions from Rice Fields - Final Report

    SciTech Connect

    Khalil, M. Aslam; Rasmussen,Reinhold A.

    2002-12-03

    Methane (Ch4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning.

  4. Miniature field emission light sources for bio-chips

    NASA Astrophysics Data System (ADS)

    Cichy, Bartłomiej; Górecka-Drzazga, Anna; Dziuban, Jan A.

    2009-01-01

    A concept based on preparation of miniature field emission light sources (FELS) for integration with bio-chips is presented. Glass and silicon-glass micro-fluidic systems (biochips) with spectrofluorometric detection are designated for this solution. Planar, miniature silicon-glass field emission light sources were designed and fabricated for this conception. Carbon nanotubes (CNTs) have been used as a low-voltage electron emissive layer. Nanocrystalline yttria matrices doped with rare earth (Re) ions (Re: Eu3+, Tb3+) have been synthesized and utilized as phosphor layers. Light emission spectral characteristics of fabricated sources allow to couple them with typical fluorescent markers as e.g. Alexa, Fluorescein or TO-PRO, used on the wide scale in biochemical researches. Fabricated FELSs are characterized by the intensive and homogenous light emission with well defined sharp emission lines. The efficient and stable field emission from carbon nanotubes has also been noticed. Fabricated FELS are technologically compatible with highly developing micromachined fluidic systems and are able to direct on-chip integration with these microsystems.

  5. Photostimulated field emission — image rounded barrier model

    NASA Astrophysics Data System (ADS)

    Schwartz, C.; Cole, M. W.

    1982-03-01

    A theory of photostimulated field emission (PFE) is presented which is analogous to that of the surface effect in photoemission. We generalize and extend previous calculations of Bagchi and Taranko. Results are compared with data of Lee and Reifenberger. The theory does not yield the observed oscillatory dependence of the current as a function of applied field.

  6. Field Emission from Self-Catalyzed GaAs Nanowires.

    PubMed

    Giubileo, Filippo; Di Bartolomeo, Antonio; Iemmo, Laura; Luongo, Giuseppe; Passacantando, Maurizio; Koivusalo, Eero; Hakkarainen, Teemu V; Guina, Mircea

    2017-09-16

    We report observations of field emission from self-catalyzed GaAs nanowires grown on Si (111). The measurements were taken inside a scanning electron microscope chamber with a nano-controlled tungsten tip functioning as anode. Experimental data were analyzed in the framework of the Fowler-Nordheim theory. We demonstrate stable current up to 10(-7) A emitted from the tip of single nanowire, with a field enhancement factor β of up to 112 at anode-cathode distance d = 350 nm. A linear dependence of β on the anode-cathode distance was found. We also show that the presence of a Ga catalyst droplet suppresses the emission of current from the nanowire tip. This allowed for the detection of field emission from the nanowire sidewalls, which occurred with a reduced field enhancement factor and stability. This study further extends GaAs technology to vacuum electronics applications.

  7. A knife-edge array field emission cathode

    SciTech Connect

    Lee, Bo

    1994-08-01

    many cathode applications require a new type of cathode that is able to produce short pulsed electron beams at high emission current. Gated field emitter arrays of micrometer size are recognized as candidates to meet this need and have become the research focus of vacuum microelectronics. Existing fabrication methods produce emitters that are limited either in frequency response or in current emission. One reason is that the structure of these emitters are not sufficiently optimized. In this study, the author investigated the factors that affect the performance of field emitters. An optimum emitter structure, the knife-edge field emitter array, was developed from the analysis. Large field enhancement factor, large effective emission area, and small emitter capacitance are the advantages of the structure. The author next explored various options of fabricating the knife-edge emitter structure. He proposed a unique thin film process procedure and developed the fabrication techniques to build the emitters on (110) silicon wafers. Data from the initial cathode tests showed very low onset voltages and Fowler-Nordheim type emission. Emission simulation based on the fabricated emitter structure indicated that the knife-edge emitter arrays have the potential to produce high performance in modulation frequency and current emission. Several fabrication issues that await further development are discussed and possible solutions are suggested.

  8. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  9. Superior Field Emission Properties of Layered WS2-RGO Nanocomposites

    PubMed Central

    Rout, Chandra Sekhar; Joshi, Padmashree D.; Kashid, Ranjit V.; Joag, Dilip S.; More, Mahendra A.; Simbeck, Adam J.; Washington, Morris; Nayak, Saroj K.; Late, Dattatray J.

    2013-01-01

    We report here the field emission studies of a layered WS2-RGO composite at the base pressure of ~1 × 10−8 mbar. The turn on field required to draw a field emission current density of 1 μA/cm2 is found to be 3.5, 2.3 and 2 V/μm for WS2, RGO and the WS2-RGO composite respectively. The enhanced field emission behavior observed for the WS2-RGO nanocomposite is attributed to a high field enhancement factor of 2978, which is associated with the surface protrusions of the single-to-few layer thick sheets of the nanocomposite. The highest current density of ~800 μA/cm2 is drawn at an applied field of 4.1 V/μm from a few layers of the WS2-RGO nanocomposite. Furthermore, first-principles density functional calculations suggest that the enhanced field emission may also be due to an overalp of the electronic structures of WS2 and RGO, where graphene-like states are dumped in the region of the WS2 fundamental gap. PMID:24257504

  10. Fabrication of carbon nanotubes field emission cathode by composite plating.

    PubMed

    Wang, Fang-Hsing; Lin, Tzu-Ching; Tzeng, Shien-Der

    2010-07-01

    Carbon nanotubes (CNTs) have high aspect ratio and have great potential to be applied as the field emission cathode because of its large field enhancement factor. In this work, a high performance carbon nanotube field emission cathode (CNTFC) was fabricated by using a composite plating method. The CNTs were purified by acid solutions and then dispersed in electrobath with nickel ions at temperatures of 60, 70, or 80 degrees C for the electroless plating process on glass substrate. The resulting CNT-Ni composite film has strong adhesion on the glass substrate. The degree of graphitization and the microstructure of the CNTFCs were studied by Raman spectroscopy and scanning electron microscopy. The field emission properties of the CNTFCs show a low turn-on electric field E(on) of about 1.2 V/microm, and a low threshold electric field E(th) of about 1.9 V/microm. Such a composite plating method could be applied to the fabrication of large area CNT field-emission displays.

  11. Re-grown aligned carbon nanotubes with improved field emission.

    PubMed

    Lim, Xiaodai; Zhu, Yanwu; Varghese, Binni; Gao, Xingyu; Wee, Andrew Thye Shen; Sow, Chorng-Haur

    2012-01-01

    In this work, a simple technique to improve the field emission property of multi-walled carbon nanotubes is presented. Re-grown multi-walled carbon nanotubes are grown on the same substrates after the as-grown multi-walled carbon nanotubes are transferred to other substrates using polydimethylsiloxane as intermediation. For the duration of the synthesis of the re-grown multi-walled carbon nanotubes, similar synthesis parameters used in growing the as-grown multi-walled carbon nanotubes are utilized. As a form of possible application, field emission studies show -2.6 times improvement in field enhancement factor and more uniform emission for the re-grown multi-walled carbon nanotubes. In addition, the turn-on field is reduced from 2.85 V/microm to 1.40 V/microm. Such significant improvements are attributed to new emission sites comprising of sharp carbonaceous impurities encompassing both tip and upper portion of the multi-walled carbon nanotubes. As such, this technique presents a viable route for the production of multi-walled carbon nanotubes with better field emission quality.

  12. Field emission properties of carbon nanotubes coated with boron nitride.

    PubMed

    Park, Noejung; Han, Seungwu; Ihm, Jisoon

    2003-01-01

    Field emission properties of carbon nanotubes coated with a single layer of boron nitride are calculated using the first-principles pseudopotential method. At lower bias voltage, the emission current of the coated nanotube is comparable to that of the bare carbon nanotube and is dominated by the contribution from localized states at the tip of the tube. At higher voltage, newly generated hybridized states between the carbon nanotube tip and the even-membered boron nitride rings contribute significantly to the emission current because they experience a low tunneling barrier compared with the bare carbon nanotube case. Our results suggest that the insulator coating can, besides protecting the nanotube tip from the attack of gas molecules, substantially enhance the field emission current.

  13. Field emission from non-uniform carbon nanotube arrays.

    PubMed

    Dall'agnol, Fernando F; den Engelsen, Daniel

    2013-07-10

    Regular arrays of carbon nanotubes (CNTs) are frequently used in studies on field emission. However, non-uniformities are always present like dispersions in height, radius, and position. In this report, we describe the effect of these non-uniformities in the overall emission current by simulation. We show that non-uniform arrays can be modeled as a perfect array multiplied by a factor that is a function of the CNTs spacing.

  14. Field emission properties of ultrasmall Zr spots on W

    SciTech Connect

    Fursey, G.N.; Glazanov, D.V.

    1995-05-01

    The aims of the investigation were to obtain small and supersmall Zr/ZrO spots on W surface, estimating the limit emission capabilities of such systems, and to analyze their physical mechanisms, which determine their stability. Ultrasmall Zr spots with radii of {approximately} 100 {Angstrom} were obtained. For such spots field emission current densities of {approximately} 10{sup 9} A/cm{sup 2} were achieved in stationary regime. The numerical simulation of the emitter heating in the three-dimensional axial-symmetrical model showed good qualitative agreement with the experimental results for both localized and nonlocalized emission. 25 refs., 6 figs.

  15. Neptune radio emission in dipole and multipole magnetic fields

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; King, N. V.; Romig, J. H.; Warwick, J. W.

    1995-01-01

    We study Neptune's smooth radio emission in two ways: we simulate the observations and we then consider the radio effects of Neptune's magnetic multipoles. A procedure to deduce the characteristics of radio sources observed by the Planetary Radio Astronomy experiment minimizes limiting assumptions and maximizes use of the data, including quantitative measurement of circular polarization. Study of specific sources simulates time variation of intensity and apparent polarization of their integrated emission over an extended time period. The method is applied to Neptune smooth recurrent emission (SRE). Time series are modeled with both broad and beamed emission patterns, and at two frequencies which exhibit different time variation of polarization. These dipole-based results are overturned by consideration of more complex models of Neptune's magnetic field. Any smooth emission from the anticipated auroral radio source is weak and briefly observed. Dominant SRE originates complex fields at midlatitude. Possible SRE source locations overlap that of 'high-latitude' emission (HLE) between +(out) and -(in) quadrupoles. This is the first identification of multipolar magnetic structure with a major source of planetary radio emission.

  16. Methane emission from rice fields: The effect of floodwater management

    NASA Astrophysics Data System (ADS)

    Sass, R. L.; Fisher, F. M.; Wang, Y. B.; Turner, F. T.; Jund, M. F.

    1992-09-01

    Rice fields emit methane and are important contributors to the increasing atmospheric CH4 concentration. Manipulation of rice floodwater may offer a means of mitigating methane emission from rice fields without reducing rice yields. To test methods for reducing methane emission, we applied four water management methods to rice fields planted on silty-clay soils near Beaumont, Texas. The four water treatments investigated were: normal permanent flood (46 days post planting), normal flood with mid- season drainage aeration, normal flood with multiple drainage aeration, and late flood (76 days post planting). Methane emission rates varied markedly with water regime, showing the lowest seasonal total emission (1.2 g m-2) with a multiple-aeration treatment and the highest (14.9 g m-2) with a late flood. Although the multiple- aeration water management treatment emitted 88% less methane than the normal irrigation treatment and did not reduce rice yields, the multiple-aeration treatment did require 2.7 times more water than the 202 mm required by the normal floodwater treatment. A comparison of measured methane emission and production rates obtained from incubated soil cores indicated that, depending on time of season and flood condition, from zero to over 90% of the methane produced was oxidized. The average amount of methane which was oxidized during times of high emission was 73.1 ± 13.7 percent of that produced.

  17. Diamond-Coated Carbon Nanotubes for Efficient Field Emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Stevan; Withers, James C.

    2005-01-01

    Field-emission cathodes containing arrays of carbon nanotubes coated with diamond or diamondlike carbon (DLC) are undergoing development. Multiwalled carbon nanotubes have been shown to perform well as electron field emitters. The idea underlying the present development is that by coating carbon nanotubes with wideband- gap materials like diamond or DLC, one could reduce effective work functions, thereby reducing threshold electric-field levels for field emission of electrons and, hence, improving cathode performance. To demonstrate feasibility, experimental cathodes were fabricated by (1) covering metal bases with carbon nanotubes bound to the bases by an electrically conductive binder and (2) coating the nanotubes, variously, with diamond or DLC by plasma-assisted chemical vapor deposition. In tests, the threshold electric-field levels for emission of electrons were reduced by as much as 40 percent, relative to those of uncoated- nanotube cathodes. Coating with diamond or DLC could also make field emission-cathodes operate more stably by helping to prevent evaporation of carbon from nanotubes in the event of overheating of the cathodes. Cathodes of this type are expected to be useful principally as electron sources for cathode-ray tubes and flat-panel displays.

  18. Observation of Field-Emission Dependence on Stored Energy.

    PubMed

    Shao, Jiahang; Antipov, Sergey P; Baryshev, Sergey V; Chen, Huaibi; Conde, Manoel; Doran, Darrell S; Gai, Wei; Jing, Chunguang; Liu, Wanming; Power, John; Qiu, Jiaqi; Shi, Jiaru; Wang, Dan; Wang, Faya; Whiteford, Charles E; Wisniewski, Eric; Xiao, Liling

    2015-12-31

    Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. A very strong correlation of the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system.

  19. Observation of field emission dependence on stored energy

    SciTech Connect

    Shao, Jiahang; Antipov, Sergey P.; Baryshev, Sergey V.; Chen, Huaibi; Conde, Manoel; Doran, Darrell S.; Gai, Wei; Jing, Chunguang; Liu, Wanming; Power, John; Qiu, Jiaqi; Shi, Jiaru; Wang, Dan; Wang, Faya; Whiteford, Charles E.; Wisniewski, Eric; Xiao, Liling

    2015-12-23

    Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. Avery strong correlation of the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system.

  20. Process system and method for fabricating submicron field emission cathodes

    DOEpatents

    Jankowski, A.F.; Hayes, J.P.

    1998-05-05

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape. 3 figs.

  1. Process system and method for fabricating submicron field emission cathodes

    DOEpatents

    Jankowski, Alan F.; Hayes, Jeffrey P.

    1998-01-01

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  2. Electron Field Emission Properties of Textured Platinum Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    2002-01-01

    During ground tests of electric microthrusters and space tests of electrodynamic tethers the electron emitters must successfully operate at environmental pressures possibly as high as 1x10(exp -4) Pa. High partial pressures of oxygen, nitrogen, and water vapor are expected in such environments. A textured platinum surface was used in this work for field emission cathode assessments because platinum does not form oxide films at low temperatures. Although a reproducible cathode conditioning process did not evolve from this work, some short term tests for periods of 1 to 4 hours showed no degradation of emission current at an electric field of 8 V/mm and background pressures of about 1x10(exp -6) Pa. Increases of background pressure by air flow to about 3x10(exp -4) Pa yield a hostile environment for the textured platinum field emission cathode.

  3. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing

    SciTech Connect

    Sun, Yuning; Shin, Dong Hoon; Yun, Ki Nam; Leti, Guillaume; Hwang, Yeon Mo; Song, Yenan; Saito, Yahachi; Lee, Cheol Jin

    2014-07-15

    The carbon nanotube (CNT) field emitters have been fabricated by attaching a CNT film on a graphite rod using graphite adhesive material. The CNT field emitters showed much improved field emission properties due to increasing crystallinity and decreasing defects in CNTs after the high temperature thermal annealing at 900 °C in vacuum ambient. The CNT field emitters showed the low turn-on electric field of 1.15 V/μm, the low threshold electric field of 1.62 V/μm, and the high emission current of 5.9 mA which corresponds to a current density of 8.5 A/cm{sup 2}. In addition, the CNT field emitters indicated the enhanced field emission properties due to the multi-stage effect when the length of the graphite rod increases. The CNT field emitter showed good field emission stability after the high temperature thermal annealing. The CNT field emitter revealed a focused electron beam spot without any focusing electrodes and also showed good field emission repeatability.

  4. Field-emission from quantum-dot-in-perovskite solids

    NASA Astrophysics Data System (ADS)

    García de Arquer, F. Pelayo; Gong, Xiwen; Sabatini, Randy P.; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R.; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-01

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 1012 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  5. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  6. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  7. Field emission from quantum size GaN structures

    NASA Astrophysics Data System (ADS)

    Yilmazoglu, O.; Pavlidis, D.; Litvin, Yu. M.; Hubbard, S.; Tiginyanu, I. M.; Mutamba, K.; Hartnagel, H. L.; Litovchenko, V. G.; Evtukh, A.

    2003-12-01

    Whisker structures and quantum dots fabricated by photoelectrochemical (PEC) etching of undoped and doped metalorganic chemical vapor deposition (MOCVD)-grown GaN (2×10 17 or 3×10 18 cm -3) are investigated in relation with their field-emission characteristics. Different surface morphologies, corresponding to different etching time and photocurrent, results in different field-emission characteristics with low turn-on voltage down to 4 V/μm and the appearance of quantum-size effect in the I- V curves.

  8. Nanocrystalline graphite: Promising material for high current field emission cathodes

    SciTech Connect

    Krivchenko, V. A.; Pilevsky, A. A.; Rakhimov, A. T.; Seleznev, B. V.; Suetin, N. V.; Timofeyev, M. A.; Bespalov, A. V.; Golikova, O. L.

    2010-01-15

    Electron field emission properties of nanocrystalline graphite (NCG) films, grown by plasma enhanced chemical vapor deposition method on conductive Si substrates without using of any catalyst, were investigated. Current-voltage characteristics were measured in pulse-periodic regime. It was shown that grown NCG films can operate at field emission current density up to 10 A/cm{sup 2}. It was found that NCG films contain, along with the normally oriented to the substrate nanoflakes, carbon whiskers consisted of graphene nanoribbons and nanowires with length considerably higher than of the nanoflakes.

  9. Scanning probe microscopy and field emission schemes for studying electron emission from polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Baturin, Stanislav S.; Baryshev, Sergey V.

    2016-09-01

    The letter introduces a diagram that rationalizes tunneling atomic force microscopy (TUNA) observations of electron emission from polycrystalline diamonds as described in the recent publications [Chatterjee et al., Appl. Phys. Lett. 104, 171907 (2014); Harniman et al., Carbon 94, 386 (2015)]. The direct observations of electron emission from the grain boundary sites by TUNA could indeed be the evidence of electrons originating from grain boundaries under external electric fields. At the same time, from the diagram, it follows that TUNA and field emission schemes are complimentary rather than equivalent for results interpretation. It is further proposed that TUNA could provide better insights into emission mechanisms by measuring the detailed structure of the potential barrier on the surface of polycrystalline diamonds.

  10. Field emission characteristics of regular arrays of carbon nanotubes.

    PubMed

    Al-Ghamdi, A A; Al-Heniti, S; Al-Hazmi, F S; Faidah, Adel S; Shalaan, E; Husain, M

    2014-06-01

    The developments of electronic devices based on micron-sized vacuum electron sources during the last decades have triggered intense research on highly efficient carbon based thin film electron emitters. The synthesis of massive arrays of carbon nanotubes that are oriented on patterned Fe catalyst deposited on quartz substrates is reported. The well-ordered nanotubes can be used as electron field emission arrays. Scaling up of the synthesis process should be entirely compatible with the existing semiconductor processes, and should allow the development of nanotubes devices integrated into future technology. The emission from carbon nanotubes array is explained by Fowler-Nordheim tunneling of electrons from tip-like structures in the nanometer range, which locally amplify the applied field by the field enhancement factor beta. We found that the low pressure chemical vapour deposition (LPCVD) system can produce nanotubes capable of excellent emission currents at lower voltages. The carbon nanotubes array shows good field emission with turn on field E(alpha) = 1.30 V/microm at the current density of 3.50 mA/cm2 with enhancement factor beta = 1.22 x 10(2).

  11. Enhanced field emission of amorphous Alq3 submicrometre thorns

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zuo, Yalu; Han, Xuemeng; An, Yurong; Li, Yue; Guo, Xiaobin; Wang, Jianbo; Xi, Li

    2013-11-01

    Amorphous tris-(8-hydroxyquinoline)aluminum (Alq3) layers, which first form Alq3 islands and then grow into submicrometre thorns, with different nominal thicknesses are investigated. The field emission characteristics of Alq3 submicrometre thorns with nominal thicknesses of 20 nm, 50 nm and 100 nm include low turn-on fields of 3.2 V µm-1, 6.8 V µm-1 and 9.0 V µm-1 at 10 µA cm-2, and low threshold fields of 5.1 V µm-1, 10.0 V µm-1 and 13.0 V µm-1 at 1 mA cm-2, respectively. The enhanced field emission properties are governed by the morphology of Alq3 submicrometre thorns, which can be controlled by the evaporation rate and the layer thickness. A significant hysteresis in the cycle testing of the current density with a rise and fall electric field process, which is an undesirable property for practical applications, is observed in the case of the considered samples. This hysteresis can be eliminated via an increase in the nominal thicknesses and tests, and this is important for practical applications. The microstructure and adsorption/desorption effect are responsible for this hysteresis phenomenon. Amorphous Alq3 submicrometre thorns with good field emission properties are promising candidates for application as field emitters.

  12. Memristive model of hysteretic field emission from carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Gorodetskiy, Dmitriy V.; Gusel'nikov, Artem V.; Shevchenko, Sergey N.; Kanygin, Mikhail A.; Okotrub, Alexander V.; Pershin, Yuriy V.

    2016-01-01

    Some instances of electron field emitters are characterized by frequency-dependent hysteresis in their current-voltage characteristics. We argue that such emitters can be classified as memristive systems and introduce a general framework to describe their response. As a specific example of our approach, we consider field emission from a carbon nanotube array. Our experimental results demonstrate a low-field hysteresis, which is likely caused by an electrostatic alignment of some of the nanotubes in the applied field. We formulate a memristive model of such phenomena, whose results are in agreement with the experimental results.

  13. Field emission of GaN-filled carbon nanotubes: high and stable emission current.

    PubMed

    Liao, L; Li, J C; Liu, C; Xu, Z; Wang, W L; Liu, S; Bai, X D; Wang, E G

    2007-03-01

    Field electron emission of GaN-filled carbon nanotubes, grown by microwave plasma enhanced chemical vapor deposition, was investigated. The detailed structural characterization shows that the filled nanotube has a GaN-core/C-shell structure, in which the GaN wire corresponds to a wurtzite structure. The field emission properties of the GaN-filled carbon nanotubes have been achieved with high and stable emission current. It is attributed to the unique cable-like structure, which makes the GaN-core/C-shell composite mechanically solid and chemically stable. This study suggests the GaN-filled carbon nanotube as an ideal candidate for future high-current and high-power field emitter applications.

  14. Optical and field emission properties of Zinc Oxide nanostructures.

    PubMed

    Pan, Hui; Zhu, Yanwu; Ni, Zhenhua; Sun, Han; Poh, Cheekok; Lim, Sanhua; Sow, Chornghaur; Shen, Zexiang; Feng, Yuanping; Lin, Jianyi

    2005-10-01

    Zinc Oxide (ZnO) nano-pikes were produced by oxidative evaporation and condensation of Zn powders. The crystalline structure and optical properties of the ZnO nanostructures (ZnONs) greatly depend on the deposition position of the ZnONs. TEM and XRD indicated that the ZnONs close to the reactor center, ZnON-A, has better crystalline structure than the ZnONs away from the center, ZnON-B. ZnON-A showed the PL and Raman spectra characteristic of perfect ZnO crystals, whereas ZnON-B produced very strong green emission band at 500 nm in the photoluminescence (PL) spectrum and very strong Raman scattering peak at 560 cm(-1), both related to the oxygen deficiency due to insufficient oxidation of zinc vapor. ZnON-B exhibited better field emission properties with higher emission current density and lower turn-on field than ZnON-A.

  15. Hydrogen sensing characteristics from carbon nanotube field emissions

    NASA Astrophysics Data System (ADS)

    Dong, Changkun; Luo, Haijun; Cai, Jianqiu; Wang, Fuquan; Zhao, Yangyang; Li, Detian

    2016-03-01

    An innovative hydrogen sensing concept is demonstrated based on the field emission from multi-walled carbon nanotubes, where the low emission currents rise in proportion to hydrogen partial pressures above 10-9 Torr. Experimental and first principles studies reveal that the sensing mechanism is attributed to the effective work function reduction from dissociative hydrogen chemisorption. The embedded Ni catalyst would assist both the hydrogen dissociation and work function reduction. This technique is promising to build miniature low cost hydrogen sensors for multiple applications. This work is valuable for studies of nanocarbon-gas reaction mechanisms and the work function properties in adsorption related applications, including field emission, hydrogen storage, energy cells, and gas sensing.

  16. Electromagnetic plasma wave emissions from the auroral field lines

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1977-01-01

    The most important types of auroral radio emissions are reviewed, both from a historical perspective as well as considering the latest results. Particular emphasis is placed on four types of electromagnetic emissions which are directly associated with the plasma on the auroral field lines. These emissions are (1) auroral hiss, (2) saucers, (3) ELF noise bands, and (4) auroral kilometric radiation. Ray tracing and radio direction finding measurements indicate that both the auroral hiss and auroral kilometric radiation are generated along the auroral field lines relatively close to the earth, at radial distances from about 2.5 to 5 R sub e. For the auroral hiss the favored mechanism appears to be amplified Cerenkov radiation. For the auroral kilometric radiation several mechanisms have been proposed, usually involving the intermediate generation of electrostatic waves by the precipitating electrons.

  17. Work function measurements by the field emission retarding potential method

    NASA Technical Reports Server (NTRS)

    Swanson, L. W.; Strayer, R. W.; Mackie, W. A.

    1971-01-01

    Using the field emission retarding potential method true work functions have been measured for the following monocrystalline substrates: W(110), W(111), W(100), Nb(100), Ni(100), Cu(100), Ir(110) and Ir(111). The electron elastic and inelastic reflection coefficients from several of these surfaces have also been examined near zero primary beam energy.

  18. Sub-micronewton thrust measurements of indium field emission thrusters

    NASA Technical Reports Server (NTRS)

    Ziemer, J. K.

    2003-01-01

    The performance of three indium field emission thrusters (In-FETs) developed by the Austrian Research Center Seibersdorf (ARCS) have been measured up to 200 muN, 2 mA, and 20 W using a submicronewton resolution thrust stand.

  19. Sub-micronewton thrust measurements of indium field emission thrusters

    NASA Technical Reports Server (NTRS)

    Ziemer, J. K.

    2003-01-01

    The performance of three indium field emission thrusters (In-FETs) developed by the Austrian Research Center Seibersdorf (ARCS) have been measured up to 200 muN, 2 mA, and 20 W using a submicronewton resolution thrust stand.

  20. Measuring Coronal Magnetic Fields with Coronal Emission Line Polarimetry

    NASA Astrophysics Data System (ADS)

    Lin, H.

    2003-12-01

    Magnetic field is the dominating field in the solar corona, responsible for the majestic coronal structures and dynamic events. However, no direct measurements of the coronal magnetic fields are routinely available and we can only infer the coronal magnetic field structures from observed intensity images. Although several methods for the diagnostics of coronal magnetic fields have been demonstrated, measurement of the coronal magnetic fields remains a very challenging observational task. This paper reports on a concerted effort at the Institute for Astronomy (IfA) to establish routine vector coronal magnetic field measurement capabilities using spectropolarimetric observation of the near infrared Fe XIII 1074.7 nm coronal emission line. The IfA effort includes observations of two-dimensional circular polarization maps of the emission line which carry information about the coronal magnetic field strength. High resolution observation of the linear polarization maps which yield the projected direction of the coronal magnetic field in the plane of the sky will also be obtained. The latest results from these experiments will be presented.

  1. Low-threshold field emission from carbon nano-clusters.

    PubMed

    Yafyasov, A; Bogevolnov, V; Fursey, G; Pavlov, B; Polyakov, M; Ibragimov, A

    2011-05-01

    Detonation carbon materials (DCM) composed of non-equilibrium nano-structures show the low-threshold field emission (LTFE). These materials have forward-looking application especially due to high reproducibility of the LTFE-phenomenon on a surface of emitter, where the emitting centers are homogeneously distributed. In this paper we link the effect of LTFE to the nature of the corresponding wave functions based on the experiment results obtained for DCM by the field effect on electrolytes. As we had shown before DCM had been described by an ultra-relativistic dispersion function with extremely small effective mass of electrons and the size-quantization effect had been observed in DCM at even room temperature. Our results based on emission and electrolyte technics of the field-effect measurements in DCM along with modern observations of the field emission in strong electric fields allowed to propose a new resonance transmission model for LTFE-phenomenon, which is alternative to most widely discussed models based on the field-enhancing factors or barrier-lowering mechanisms.

  2. Influence of Ion Field Emission on the Dust Charge

    NASA Astrophysics Data System (ADS)

    Pavlu, J.; Richterova, I.; Safrankova, J.; Nemecek, Z.

    2005-12-01

    In the interplanetary space where the dominant process charging the dust immersed in the tenuous ambient plasma is photoelectron current, the grains collect a positive charge. This charge can be further enhanced by impacts of the energetic ions. The attainable charge is limited by the ion field emission. However, the ion field emission is a term generally used for three different processes: Field ionization, field desorption, and field evaporation. First of them can be of interest under laboratory conditions but negligible in the interplanetary space because the surrounding gas is often fully ionized. Field desorption can be important but under particular circumstances, e.g., for dust grains freshly released from larger objects (like comets) because the grains are bombarded by energetic particles that rapidly clean-up their surfaces. On the other hand, the field evaporating dust grains may be important sources of heavy ions in the space. There is an observational evidence of pickup ions in the solar wind and the field emission of dust grain material was suggested to be responsible for the production of these ions. For these reasons, the knowledge of basic characteristics of the ion field emission from the dust grains is significant for understanding of the plasma processes in the space. The present study deals with the ion field emission from highly charged spherical samples form a MF resin (alternatively covered by a thin layer of Ni) and Au. The samples were charged by the ion beam of various energies up to 5 keV. Investigations of spontaneous grain discharging allow us to suggest that the field desorption (together with post-ionization) is the main process responsible for observed gradual discharging of used metallic grain samples. However, the grain charge is accumulated in a thick surface layer of non-conducting samples. The thickness of this layer depends on the mass and energy of primary ions. We can thus conclude that the charging history (mass and energy

  3. Cathodoluminescence studies of nanocrystalline silicon films for field emission displays

    NASA Astrophysics Data System (ADS)

    Biaggi Labiosa, Azlin M.

    The cathodoluminescence (CL) emission from p-type porous silicon (PSi) films excited with low energy electron beams compatible with field emission display (FED) technologies was investigated. First, a study was carried out to find the optimal PSi configuration that would yield the strongest CL emission. It was found that the highest, stable CL intensities were obtained from samples prepared from p-type wafers with resistivity between 1-2 Ocm. Afterwards, the effects on the morphological details and the chemical composition due to the electron irradiation of the PSi films were studied. During a continuous irradiation of 10 hours the CL intensity of the films reduced in less than 10%. In situ SIMS analyses before and after prolonged e-beam excitation showed minor compositional changes of the film and reduced sputtering of the silicon nanoparticles due to the electron irradiation. It was also found that the electron bombardment causes microscale morphological modifications of the films, but the nanoscale features appear to be unchanged. The structural changes are manifested by the increase in the density of the nanoparticles which explains the significant enhancement of the photoluminescence (PL) that follows the electron irradiation. Second, after a thorough characterization of the PSi films under electron irradiation, tuning of the CL emission of PSi films was investigated. The PSi films used for this experiment were non-oxidized films unlike the ones used for the CL characterization that were oxidized films. The tuning was achieved by controlling the average size of the nanostructure thus showing that the origin of this CL emission is associated with the quantum confinement and the surface chemistry effects that are known to exist in the porous silicon system. However, the CL emission obtained from these samples was unstable which is attributed to the breaking of Si--H bonds due to the electron irradiation. Dangling bonds are then formed on the surface and this in

  4. Aproaches for mitigation of greenhouse gas emission from agricultural fields

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Itoh, M.

    2009-12-01

    Percentage of atmospheric methane emitted form rice paddy is estimated at 60Tg/yr (20 - 100Tg/yr) which is near 10% of total global methane emission of 535Tg/yr (410 - 660Tg) (IPCC(1995), and which is near 30% of anthropogenic CH4 emission. Thus, mitigation of CH4 emission is required to be speed up. CH4 in paddy soil is emanated by the activities of anaerobic bacteria which is called methane producer through reduction of CO2 or decomposition of acetic acid, and it is transported to atmosphere through soil or paddy water surface. It is effective to control methane emission from rice paddy that period is prolonged on intermittent irrigation drainage, composted rice straw is incorporated as fertilizer instead of flesh one, or other. However, empirical approach of these kinds of experiments had not been sufficient because such a kind of experiment required significant times and efforts. In this study, we conducted demonstrative experiments to verify the effects of water management method differences in order to reduce CH4 emission from rice paddy at 9 experimental sites in 8 prefectures. In this, we used new gas analyzer which can measure CH4, CO2 and N2O at once developed by National Institute for Agro-Environmental Sciences (NIAES), Japan. In this report, we show the preliminary results in first year of this study. Nakaboshi (mid-season-drainage) is one of cultivation methods in rice paddy that surface water in paddy field is once drained for about 10 days and the field is maintained like upland field to give adequate stress to rice plant for better harvest qualities and yields. Our targeted evaluation was dependencies of Nakaboshi periods lengths and Nakaboshi periods to CH4 emission reduction amounts for total cultivation periods within harvest yield maintained. The longer length of Nakaboshi period was prolonged, the lesser emission amounts of CH4 decreased even after when Nakaboshi period lasted, as a whole. In some soil types, for example in Kagoshima

  5. Electron field emission in nanostructures: A first-principles study

    NASA Astrophysics Data System (ADS)

    Driscoll, Joseph Andrew

    The objective of this work was to study electron field emission from several nanostructures using a first-principles framework. The systems studied were carbon nanowires, graphene nanoribbons, and nanotubes of varying composition. These particular structures were chosen because they have recently been identified as showing novel physical phenomena, as well as having tremendous industrial applications. We examined the field emission under a variety of conditions, including laser illumination and the presence of adsorbates. The goal was to explore how these conditions affect the field emission performance. In addition to the calculations, this dissertation has presented computational developments by the author that allowed these demanding calculations to be performed. There are many possible choices for basis when performing an electronic structure calculation. Examples are plane waves, atomic orbitals, and real-space grids. The best choice of basis depends on the structure of the system being analyzed and the physical processes involved (e.g., laser illumination). For this reason, it was important to conduct rigorous tests of basis set performance, in terms of accuracy and computational efficiency. There are no existing benchmark calculations for field emission, but transport calculations for nanostructures are similar, and so provide a useful reference for evaluating the performance of various basis sets. Based on the results, for the purposes of studying a non-periodic nanostructure under field emission conditions, we decided to use a real-space grid basis which incorporates the Lagrange function approach. Once a basis was chosen, in this case a real-space grid, the issue of boundary conditions arose. The problem is that with a non-periodic system, field emitted electron density can experience non-physical reflections from the boundaries of the calculation volume, leading to inaccuracies. To prevent this issue, we used complex absorbing potentials (CAPs) to absorb

  6. Quiver-quenched optical-field-emission from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Chi; Zhou, Xu; Zhai, Feng; Li, Zhenjun; Yao, Fengrui; Qiao, Ruixi; Chen, Ke; Yu, Dapeng; Sun, Zhipei; Liu, Kaihui; Dai, Qing

    2017-09-01

    Carbon nanotubes (CNTs) enable large electric field enhancement for an extremely broad bandwidth spanning from the optical domain down to static fields. This is due to their high aspect ratio, small tip radius, and high structural stability. CNTs therefore represent an ideal model-system for the investigation of nonlinear and strong-field phenomena. In this paper, we extend the range of optical-field-emission materials from metal nanostructures to CNTs. Quiver-quenched optical-field-emission (i.e., the transition to a sub-cycle regime) is observed for CNTs tips in a short-wavelength laser field of 820 nm that requires a mid-infrared excitation field of conventional metal tips emitters. This special property relies on the ultrasmall tips radius (˜1 nm) and the high optical-field enhancement (˜21.6) properties of CNTs. This study suggests that CNTs are excellent candidates for optically driven ultrafast electron sources with both high spatial and high temporal coherence. They also provide more freedom for the manipulation and control of electron dynamics at the attosecond timescale, which extends the bandwidth of light-wave electronic devices.

  7. X-ray emission from massive stars with magnetic fields

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Hamann, W.-R.; Cassinelli, J. P.; Brown, J. C.; Todt, H.

    2011-12-01

    We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from ``normal'' massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a ``hybrid'' scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities. Based on observations obtained with \\xmm and \\cxo.

  8. Nanotube field electron emission: principles, development, and applications.

    PubMed

    Li, Yunhan; Sun, Yonghai; Yeow, J T W

    2015-06-19

    There is a growing trend to apply field emission (FE) electron sources in vacuum electronic devices due to their fast response, high efficiency and low energy consumption compared to thermionic emission ones. Carbon nanotubes (CNTs) have been regarded as a promising class of electron field emitters since the 1990s and have promoted the development of FE technology greatly because of their high electrical and thermal conductivity, chemical stability, high aspect ratio and small size. Recent studies have shown that FE from CNTs has the potential to replace conventional thermionic emission in many areas and that it exhibits advanced features in practical applications. Consequently, FE from nanotubes and applications thereof have attracted much attention. This paper provides a comprehensive review of both recent advances in CNT field emitters and issues related to applications of CNT based FE. FE theories and principles are introduced, and the early development of field emitters is related. CNT emitter types and their FE performance are discussed. The current situation for applications based on nanotube FE is reviewed. Although challenges remain, the tremendous progress made in CNT FE over the past ten years indicates the field's development potential.

  9. Field emission properties of ZnO nanosheet arrays

    SciTech Connect

    Naik, Kusha Kumar; Rout, Chandra Sekhar E-mail: dj.late@ncl.res.in E-mail: csrout@iitbbs.ac.in; Khare, Ruchita; More, Mahendra A.; Chakravarty, Disha; Late, Dattatray J. E-mail: dj.late@ncl.res.in E-mail: csrout@iitbbs.ac.in; Thapa, Ranjit E-mail: dj.late@ncl.res.in E-mail: csrout@iitbbs.ac.in

    2014-12-08

    Electron emission properties of electrodeposited ZnO nanosheet arrays grown on Indium tin oxide coated glass substrates have been studied. Influence of oxygen vacancies on electronic structures and field emission properties of ZnO nanosheets are investigated using density functional theory. The oxygen vacancies produce unshared d electrons which form an impurity energy state; this causes shifting of Fermi level towards the vacuum, and so the barrier energy for electron extraction reduces. The ZnO nanosheet arrays exhibit a low turn-on field of 2.4 V/μm at 0.1 μA/cm{sup 2} and current density of 50.1 μA/cm{sup 2} at an applied field of 6.4 V/μm with field enhancement factor, β = 5812 and good field emission current stability. The nanosheet arrays grown by a facile electrodeposition process have great potential as robust high performance vertical structure electron emitters for future flat panel displays and vacuum electronic device applications.

  10. Field emission from open ended aluminum nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Tondare, V. N.; Balasubramanian, C.; Shende, S. V.; Joag, D. S.; Godbole, V. P.; Bhoraskar, S. V.; Bhadbhade, M.

    2002-06-01

    This letter reports the field emission measurements from the nanotubes of aluminum nitride which were synthesized by gas phase condensation using the solid-vapor equilibria. A dc arc plasma reactor was used for producing the vapors of aluminum in a reactive nitrogen atmosphere. Nanoparticles and nanotubes of aluminum nitride were first characterized by transmission electron microscope and tube dimensions were found to be varying from 30 to 200 nm in diameter and 500 to 700 nm in length. These tubes were mixed with nanoparticles of size range between 5 and 200 nm in diameter. Tungsten tips coated with these nanoparticles and tubes were used as a field emitter. The field emission patterns display very interesting features consisting of sharp rings which were often found to change their shapes. The patterns are attributed to the open ended nanotubes of aluminum nitride. A few dot patterns corresponding to the nanoparticles were also seen to occur. The Fowler-Nordheim plots were seen to be nonlinear in nature, which reflects the semi-insulating behavior of the emitter. The field enhancement factor is estimated to be 34 500 indicating that the field enhancement due to the nanometric size of the emitter is an important cause for the observed emission.

  11. Enhancement of field emission characteristics of carbon nanotubes on oxidation.

    PubMed

    Mathur, Ashish; Roy, Susanta Sinha; Ray, Sekhar Chandra; Hazra, Kiran Shankar; Hamilton, Jeremy; Dickinson, Calum; McLaughlin, James; Misra, Devi Shankar

    2011-08-01

    Vertically aligned multi-walled carbon nanotubes (CNTs) were grown on p-type silicon wafer using thermal chemical vapor deposition process and subsequently treated with oxygen plasma for oxidation. It was observed that the electron field emission (EFE) characteristics are enhanced. It showed that the turn-on electric field (E(TOE)) of CNTs decreased from 0.67 (untreated) to 0.26 V/microm (oxygen treated). Raman spectra showed that the numbers of defects are increased, which are generated by oxygen-treatment, and absorbed molecules on the CNTs are responsible for the enhancement of EFE. Scanning electron microscopy and Transmission electron microscopy images were used to identify the quality and physical changes of the nanotube morphology and surfaces; revealing the evidence of enhancement in the field emission properties after oxygen-plasma treatment.

  12. Field measurements of dust emission from sand dunes

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Kok, J. F.; Martin, R. L.; Turney, F. A.; Souza Freire, L.; Chamecki, M.

    2016-12-01

    Mineral dust affects Earth's radiation budget, the climate system, biogeochemistry, as well as human health. Model simulations of the global dust emission rate vary by a factor of 8, ranging from 500 to 4000 Tg/yr. A primary reason for these divergent model results is a lack of understanding of the exact sources and emission mechanism of dust. Regions containing soils with a large proportion of fine clay and silt particles, like topographic depressions, have long been treated as the primary source of mineral dust. However, recent remote sensing results suggest that sand dunes, which contain only a small fraction of fine dust, might be a major contributor to mineral dust emissions, and account for over 40% of North Africa dust storms. This makes it problematic that dust emissions from sand dunes are generally not accounted for in climate models. In order to evaluate the potential of sand dunes as an important global source of dust emissions, we conducted a field campaign at the Oceano sand dunes in California. Comparing with soils that contain a larger proportion of fine dust particles, the size distribution of sand dunes is finer, however vertical dust flux of sand dunes per unit horizontal sand saltation flux is smaller. This emission efficiency of sand dunes remains constant when shear velocity increases.

  13. Application of carbon nanotubes for field emission display

    NASA Astrophysics Data System (ADS)

    Wang, Qunhua

    2000-10-01

    Carbon nanotubes have great features to be excellent electron emitters. They are among the best candidates to replace metal emitters in field emission displays. In this work, carbon nanotubes have been synthesized by arc-discharge, catalytic decomposition of hydrocarbon and nano template method. Arc-discharge produces nanotubes with the highest quality. Impurity particles in the raw material can be removed by filtration or oxidation. A slurry procedure has been developed to make films of randomly orientated nanotubes. Electron field emission of nanotubes made by three different methods has been measured and compared. Arc-produced nanotubes showed the best performance and stability. It is suggested that the defects of different tubes may account for their emission behavior. Carbon nanotube based diode and triode field emission display prototypes were successfully fabricated and tested. For the diode nanotube display prototype, row-column structure was used. Tests of the display prototype confirmed the emission stability and uniformity. Display pixels were well defined and switchable under a half-voltage "off pixel" scheme. With the available modern circuit board printing technology, the scale-up in display size is straightforward. Great efforts have been put into the development of a triode nanotube display prototype. The design was based on that of the planar emitter triode structure for diamond film. Several key engineering problems such as patternable thick dielectric layer and gate gap control etc. were solved. The achieved emitter arrays showed good uniformity. Emission behavior with regarding to emitter size was studied. The effectiveness of the gate control was confirmed by I-V measurement and modulating test at 40 V pulse input to the gate electrode.

  14. FIELD MEASUREMENT OF GREENHOUSE GAS EMISSION RATES AND DEVELOPMENT OF EMISSION FACTORS FOR WASTEWATER TREATMENT

    EPA Science Inventory

    The report gives results of field testing to develop more reliable green house gas (GHG) emission estimates for Wastewater treatment (WWT) lagoons. (NOTE: Estimates are available for the amount of methane (CH4) emitted from certain types of waste facilities, but there is not adeq...

  15. FIELD MEASUREMENT OF GREENHOUSE GAS EMISSION RATES AND DEVELOPMENT OF EMISSION FACTORS FOR WASTEWATER TREATMENT

    EPA Science Inventory

    The report gives results of field testing to develop more reliable green house gas (GHG) emission estimates for Wastewater treatment (WWT) lagoons. (NOTE: Estimates are available for the amount of methane (CH4) emitted from certain types of waste facilities, but there is not adeq...

  16. Discrete space charge affected field emission: Flat and hemisphere emitters

    SciTech Connect

    Jensen, Kevin L.; Shiffler, Donald A.; Tang, Wilkin; Rittersdorf, Ian M.; Lebowitz, Joel L.; Harris, John R.; Lau, Y. Y.; Petillo, John J.; Luginsland, John W.

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  17. Nanotube field electron emission: principles, development, and applications

    NASA Astrophysics Data System (ADS)

    Li, Yunhan; Sun, Yonghai; Yeow, J. T. W.

    2015-06-01

    There is a growing trend to apply field emission (FE) electron sources in vacuum electronic devices due to their fast response, high efficiency and low energy consumption compared to thermionic emission ones. Carbon nanotubes (CNTs) have been regarded as a promising class of electron field emitters since the 1990s and have promoted the development of FE technology greatly because of their high electrical and thermal conductivity, chemical stability, high aspect ratio and small size. Recent studies have shown that FE from CNTs has the potential to replace conventional thermionic emission in many areas and that it exhibits advanced features in practical applications. Consequently, FE from nanotubes and applications thereof have attracted much attention. This paper provides a comprehensive review of both recent advances in CNT field emitters and issues related to applications of CNT based FE. FE theories and principles are introduced, and the early development of field emitters is related. CNT emitter types and their FE performance are discussed. The current situation for applications based on nanotube FE is reviewed. Although challenges remain, the tremendous progress made in CNT FE over the past ten years indicates the field’s development potential.

  18. Field emission from single-crystalline HfC nanowires

    SciTech Connect

    Yuan, Jinshi; Tang, Jie; Zhang Han; Shinya, Norio; Nakajima, Kiyomi; Qin, Lu-Chang

    2012-03-12

    Single HfC nanowire field emitter/electrode structures have been fabricated using nano-assembling and electron beam induced deposition. Field ion microscopy has been applied to study the atomic arrangement of facets formed on a field evaporation-modified HfC nanowire tip. Field evaporation and crystal form studies suggest that the {l_brace}111{r_brace} and {l_brace}110{r_brace} crystal planes have lower work functions, while the {l_brace}100{r_brace}, {l_brace}210{r_brace}, and {l_brace}311{r_brace} planes have higher work functions. Field emission measurement permits us to obtain that the work function of the {l_brace}111{r_brace} crystal plane is about 3.4 eV.

  19. Intense-field renormalization of cavity-induced spontaneous emission

    NASA Astrophysics Data System (ADS)

    Agarwal, G. S.; Lange, W.; Walther, H.

    1993-12-01

    We examine theoretically the recent experiments of Lange and Walther on the dynamical interaction of Rydberg atoms in a microwave cavity in the presence of a strong driving field. In particular, we study how the intense field renormalizes the cavity-induced spontaneous emission. For this purpose we derive the master equation for the atomic dynamics by adiabatically eliminating the cavity-field variables, while treating the intense driving field nonperturbatively. We present analytical and numerical solutions of the master equation, taking into account the turn on and turn off of the atom-field coupling in the rest frame of the atoms, as well as the velocity distribution of the atomic beam. We obtain good agreement between theoretical results and experiments.

  20. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  1. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    EPA Science Inventory

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  2. Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds.

    PubMed

    Pandey, Archana; Prasad, Abhishek; Moscatello, Jason P; Engelhard, Mark; Wang, Chongmin; Yap, Yoke Khin

    2013-01-22

    Novel PMMA-STO-CNT matrices were created by opened-tip vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) with conformal coatings of strontium titanate (STO) and poly(methyl methacrylate) (PMMA). Emission threshold of 0.8 V/μm was demonstrated, about 5-fold lower than that of the as-grown VA-MWCNTs. This was obtained after considering the related band structures under the perspective of work functions and tunneling width as a function of the STO thickness. We showed that there is an optimum thickness of STO coatings to effectively reduce the work function of CNTs and yet minimize the tunneling width for electron emissions. Furthermore, simulation and modeling suggest that PMMA-STO-CNT matrices have suppressed screening effects and Coulombs' repulsion forces between electrons in adjacent CNTs, leading to low emission threshold, high emission density, and prolonged emission stability. These findings are important for practical application of VA-MWCNTs in field emission devices, X-ray generation, and wave amplification.

  3. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1998-01-01

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced.

  4. Multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1998-10-13

    A multi-layer resistive carbon film field emitter device for cold cathode field emission applications is disclosed. The multi-layered film of the present invention consists of at least two layers of a conductive carbon material, preferably amorphous-tetrahedrally coordinated carbon, where the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure can be a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film can be a plurality of carbon layers, where adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. 8 figs.

  5. Field emission properties of chemical vapor deposited individual graphene

    SciTech Connect

    Zamri Yusop, Mohd; Kalita, Golap; Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki

    2014-03-03

    Here, we report field emission (FE) properties of a chemical vapor deposited individual graphene investigated by in-situ transmission electron microscopy. Free-standing bilayer graphene is mounted on a cathode microprobe and FE processes are investigated varying the vacuum gap of cathode and anode. The threshold field for 10 nA current were found to be 515, 610, and 870 V/μm for vacuum gap of 400, 300, and 200 nm, respectively. It is observed that the structural stability of a high quality bilayer graphene is considerably stable during emission process. By contacting the nanoprobe with graphene and applying a bias voltage, structural deformation and buckling are observed with significant rise in temperature owing to Joule heating effect. The finding can be significant for practical application of graphene related materials in emitter based devices as well as understanding the contact resistance influence and heating effect.

  6. AC Magnetic Field Frequency Dependence of Magnetoacoustic Emission

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Wincheski, B.; Fulton, J. P.; DeNale, R.

    1992-01-01

    Our recent study has proved a strong correlation between the low-frequency AC applied magnetic field amplitude dependence of the asymmetry of the magnetoacoustic emission (MAE) burst and the strength of the domain wall-defect interaction in iron-base ferromagnets. For the present study the AC magnetic field frequency dependence of the asymmetry has been investigated in the range of 1 to 200 Hz. When represented by the third moment of the rectified acoustic emission pulses, the asymmetry becomes a bell-shaped function of frequency with its center located around 25 Hz. This experiment has been performed with low carbon, high yield stress steel specimens of three different levels of domain wall-defect interaction strength. The results show that the increase in the interaction strength causes a vertical down shift of the asymmetry in the entire frequency range investigated.

  7. Continuous measurements of N2O emissions from arable fields

    NASA Astrophysics Data System (ADS)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  8. BVOC emission pattern from Quercus robur under field conditions

    NASA Astrophysics Data System (ADS)

    Pokorska, O.; Dewulf, J.; Joó; Šimpraga, M.; Steppe, K.; Amelynck, C.; Schoon, N.; Muller, J. J.; van Langenhove, H.

    2010-12-01

    Over the past decades biogenic volatile organic compounds (BVOC) have been widely studied not only for better understanding their functions, biosynthesis and regulation, but also because they have great impact on regional and global air quality [1]. Since all BVOCs react with hydroxyl radicals (OH●) and may also react with nitrate radicals (NO3●) and ozone (O3), they contribute to the formation of ozone and secondary organic aerosols. In this study we focus on Quercus robur which is a widely spread tree species in Europe and known as a strong isoprene emitter. We aimed to investigate seasonal patterns of BVOC emissions from Quercus robur under field conditions and to explore the intra-species variations within Quercus robur trees as both are of great importance for accurate modeling and regional inventories. Measurements were performed during a period from May till October 2009 at the campus of Ghent University (Belgium) using a dynamic branch enclosure system. Experiments were conducted on four potted Quercus robur trees with a varying 1-1.5 m height. Samples were collected on Tenax TA-Carbotrap adsorbent tubes and analyzed by TD-GC-MS. Isoprene was the predominant compound released by Quercus robur (QR1) with a pronounced seasonal emission. The normalized emission rates for isoprene calculated according to Guenther’s algorithm (standard conditions of temperature 30°C and PAR 1000 µmol m-2 s-1) varied from 29.89 µg h-1 g(DW)-1 in Spring (May) to 28.62 µg h-1 g(DW)-1 in Fall (October) reaching peak of 105.51 µg h-1 g(DW)-1 in August. Apart from isoprene, through the whole measurement period trans-β-ocimene and β-caryophyllene were the only BVOC emitted in detectable range (sum of the emissions varied between 0.15 µg h-1 g(DW)-1 in July and 0.24 µg h-1 g(DW)-1 in October). No clear seasonal pattern was observed for those compounds. In May when acorns where developing on enclosed branch, emissions of limonene and β-farnesene were also observed. The

  9. Peculiarities of the Field Electron Emission from Dust Grains

    SciTech Connect

    Richterova, I.; Beranek, M.; Pavlu, J.; Nemecek, Z.; Safrankova, J.

    2008-09-07

    The goal of the paper is investigation of the electron field emission that limits the attainable grain charge and can prevent electrostatic fragmentation of loosely bounded aggregates of dust grains. We have found that the effective work function of the spherical amorphous carbon grains does not depend on the relative beam energy. Preliminary results on an influence of the ion treatment/cleaning using the simultaneous electron and ion bombardments are discussed.

  10. Theory and simulation of field emission diode oscillators

    SciTech Connect

    Benedik, A. I.; Ryskin, N. M.; Han, S. T.

    2013-08-15

    The results of a theoretical analysis of a diode oscillator with a field-emission cathode are presented. A small-signal analysis of self-excitation conditions is performed. The time-domain particle-in-cell code is developed, and the performance of an X-band oscillator is numerically demonstrated using the simulation code. The simulation shows a rather high output power and efficiency for reasonable values of cathode current density.

  11. Hydrocarbon emissions in the Bakken oil field in North Dakota

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.; Petron, G.; Miller, B.; Frost, G. J.; Peischl, J.; Kort, E. A.; Smith, M. L.; Karion, A.; Dlugokencky, E. J.; Montzka, S. A.; Sweeney, C.; Ryerson, T. B.; Tans, P. P.; Schnell, R. C.

    2014-12-01

    Within the past five years, the production of oil and natural gas in the United States from tight formations has increased rapidly due to advances in technology, such as horizontal drilling and hydraulic fracturing. With the expansion of oil and natural gas extraction operations comes the need to better quantify their emissions and potential impacts on climate forcing and air quality. The Bakken formation within the Williston Basin in North Dakota has emerged as a large contributor to the recent growth in oil production and accounts for over 10% of domestic production. Close to 30% of associated gas co-produced with the oil is flared. Very little independent information is currently available to assess the oil and gas industry emissions and their impacts on regional air quality. In May 2014, an airborne field campaign was conducted by the National Oceanic and Atmospheric Administration's (NOAA) Earth System Research Laboratory and the University of Michigan to investigate hydrocarbon emissions from operations in the oil field. Here, we present results from the analysis for methane, several non-methane hydrocarbons and combustion tracers in 72 discrete air samples collected by the aircraft on nine different flights. Samples were obtained in the boundary layer upwind and downwind of the operations and in the free troposphere. We will show results of a multiple species analysis and compare them with field campaign data from other U.S. oil and gas fields, measurements from NOAA's Global Monitoring Division long-term observing network, and available bottom-up information on emissions from oil and gas operations.

  12. Characterization of radiofrequency field emissions from smart meters.

    PubMed

    Tell, Richard A; Kavet, Robert; Mezei, Gabor

    2013-01-01

    This study presents measurement data that describe radiofrequency emission levels and patterns from smart meters (rated nominally at 1 W) currently deployed in Pacific Gas and Electric Company's service territory in northern California. The smart meters in our investigation could not be set to operate continuously and required a Field Service Unit to induce short periods of emitted fields. To obtain peak field data under both laboratory and ambient conditions, a spectrum analyzer scanned across the 83 transmitting channels between 902 and 928 MHz used by the smart meter on a random frequency-hopping basis. To obtain data describing temporal emission patterns, the analyzer operated in scope mode. Duty cycle was estimated using transmit data acquired by the system operator from over 88,000 m. Instantaneous peak fields at 0.3 m in front of the meters were no more than 15% of the US Federal Communications Commission (FCC) exposure limit for the general public, and 99.9% of the meters operated with a duty cycle of 1.12% or less during the sampling period. In a sample of measurements in six single-detached residences equipped with individual smart meters, no interior measurement of peak field exceeded 1% of the FCC's general public exposure limit.

  13. Field Enhancement Properties of Nanotubes in a Field Emission Set-Up

    NASA Technical Reports Server (NTRS)

    Adessi, Ch.; Devel, M.

    2001-01-01

    This slide presentation reviews the mechanisms of emission of nanotubes. The field enhancement properties of carbon nanotubes, involved in the emission of electrons, is investigated theoretically for various single-wall (SWNT) and multi-wall nanotubes (MWNT). The presentation points out big differences between (n,0) and (n,n) nanotubes, and propose phenomenological laws for the variations of the enhancement factor with length and diameter

  14. Particulate emission reductions from road paving in California oil fields

    SciTech Connect

    Cowherd, C.

    1982-06-01

    Calculation of road dust emissions before and after paving shows that paving is an effective measure for reducing road dust emissions in Kern County oil fields. Control efficiency values for particles smaller than 10 ..mu..m aerodynamic diameter averaged about 70 percent for paving with coldmix asphalt and 95 percent for paving with hot-mix asphalt. These control efficiencies are about the same for other particle size fractions up to 30 ..mu..m aerodynamic diameter. The higher efficiency associated with hot-mix asphalt reflects the substantially lower quantities of surface road dust found on hot-mix roads in comparison to cold-mix roads in Kern County. The emission reductions achievable by paving a given road depend on the VMT as well as the type of asphalt pavement used. VMT increases with increasing traffic count and length of the road segment. Emission reductions also depend on the texture (silt content) of the surface before paving and on the traffic characteristics, i.e., vehicle speed, vehicle weight and number of wheels per vehicle.

  15. Field emission properties of a graphene/polymer composite.

    PubMed

    Patole, Shashikant P; Lee, Jong Hak; Park, Jae Hong; Yu, Seong Man; Makotchenko, V G; Nazarov, A S; Fedorov, V E; Shin, Dong Wook; Alegaonkar, Prashant S; More, Mahendra A; Yoo, Ji-Beom

    2013-11-01

    Thin graphene/polymer sheet composites were fabricated using easily soluble expanded graphite (ESEG), and their field emission (FE) parameters were examined. Due to the high dispersability of ESEG, a stable graphene suspension was prepared by ultrasonication in toluene without the need for a surfactant. The suspension consisted of exfoliated graphene sheets with a thickness of 1 - 2 nm. Using a calendering process, the solution was further shear mixed with ethyl cellulose to obtain a well-dispersed graphene/polymer composite. The composite was screen printed onto a conducing substrate to fabricate the FE cathode layers. The FE measurements were taken in a diode configuration at an applied electrostatic field and inter-electrode distance of 1.7 to 6 V/microm and approximately 200 microm, respectively. The threshold turn-on-field was approximately 3.5 V/microm at a current density of approximately 10 microA/cm2 with a corresponding mean field enhancement factor of 1350 +/- 50. Emission occurred mainly from the edges and bends of the graphene layers. The luminescence uniformity of the composite cathode layers was examined using a phosphor-coated anode.

  16. Simulation of Limiting Current for a Field Emission Microtriode

    NASA Astrophysics Data System (ADS)

    Verboncoeur, J. P.

    1996-11-01

    Field emission from Spindt-type field emission microtriodes has been described in many previous works, for example Jensen(K. L. Jensen and E. G. Zaidman, Bull. Am. Phys. Soc.) 40, 1798 (1995). and Liu(Y. F. Liu and Y. Y. Lau, submitted to J. Vac. Sci. Tech. B) (1995). In this work, the mechanisms which limit the anode current are studied. The configuration is the standard gated conical cathode, with azimuthal symmetry. The fields in the gap are computed self-consistently, and the Fowler-Nordheim model is used to obtain the local current at the surface. The transport of the electrons in the vicinity of the cathode is examined for virtual cathode formation. The cathode surface is represented by piecewise linear sections, removing any near-field problems due to stair-step type approximations of diagonal surfaces. The simulations are performed using the self-consistent particle-in-cell code, OOPIC (J. P. Verboncoeur, A. B. Langdon and! N. T. Gladd, Comp. Phys. Comm.) 87, 199 (1995).. This work supported in part by AFOSR/MURI grant F49620-95-1-0253.

  17. A thin film triode type carbon nanotube field emission cathode

    NASA Astrophysics Data System (ADS)

    Sanborn, Graham; Turano, Stephan; Collins, Peter; Ready, W. Jud

    2013-01-01

    The field electron emission of carbon nanotubes has been heavily studied over the past two decades for various applications, such as in display technologies, microwave amplifiers, and spacecraft propulsion. However, a commercializable lightweight and internally gated electron source has yet to be realized. This work presents the fabrication and testing of a novel internally gated carbon nanotube field electron emitter. Several specific methods are used to prevent electrical shorting of the gate layer, a common failure for internally gated devices. A unique design is explored where the etch pits extend into the silicon substrate and isotropic etching is used to create a lateral buffer zone between the gate and carbon nanotubes. Carbon nanotubes are self-aligned to and within 10 microns from the gate, which creates large electric fields at low potential inputs. Initial tests confirm high field emission performance with an anode current density (based on total area of the device) of 293 μA cm-2 and a gate current density of 1.68 mA cm-2 at 250 V.

  18. Neutrino emissivity from electron-positron annihilation in hot matter in a strong magnetic field

    SciTech Connect

    Amsterdamski, P.; Haensel, P. )

    1990-10-15

    The neutrino emissivity due to electron-positron annihilation in a strong magnetic field is computed. A strong magnetic field can significantly increase the neutrino emissivity at {ital T}{similar to}10{sup 9} K.

  19. Thermal-field-emission electron optics for nanolithography

    NASA Astrophysics Data System (ADS)

    Gesley, Mark

    1989-02-01

    A new column design for the 25-kV vector-scan Gaussian beam lithography system is described. A field-emission gun, consisting of a three-element electrostatic lens and Zr/O/W<100> cathode operated in a thermal-field mode for current stability, is combined in a demagnifying optics with a magnetic objective lens to focus a high-current-density (1000-3000 A/cm2) electron beam at high resolution (100-300 Å) at the wafer plane without a severe reduction in field size. Optimum beam semiangle, focus mode, and column magnification are determined. The modified system retains the original deflection coils and pattern-generation system which allows immediate implementation of existing subfield stitching, chip registration, and proximity correction software.

  20. Inverse methods for stellarator error-fields and emission

    NASA Astrophysics Data System (ADS)

    Hammond, K. C.; Anichowski, A.; Brenner, P. W.; Diaz-Pacheco, R.; Volpe, F. A.; Wei, Y.; Kornbluth, Y.; Pedersen, T. S.; Raftopoulos, S.; Traverso, P.

    2016-10-01

    Work at the CNT stellarator at Columbia University has resulted in the development of two inverse diagnosis techniques that infer difficult-to-measure properties from simpler measurements. First, CNT's error-field is determined using a Newton-Raphson algorithm to infer coil misalignments based on measurements of flux surfaces. This is obtained by reconciling the computed flux surfaces (a function of coil misalignments) with the measured flux surfaces. Second, the plasma emissivity profile is determined based on a single CCD camera image using an onion-peeling method. This approach posits a system of linear equations relating pixel brightness to emission from a discrete set of plasma layers bounded by flux surfaces. Results for both of these techniques as applied to CNT will be shown, and their applicability to large modular coil stellarators will be discussed.

  1. Molecular dynamics simulations of field emission from a planar nanodiode

    SciTech Connect

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    2015-03-15

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.

  2. Carbon-nanotube-polymer nanocomposites for field-emission cathodes.

    PubMed

    Connolly, Thomas; Smith, Richard C; Hernandez, Yenny; Gun'ko, Yurii; Coleman, Jonathan N; Carey, J David

    2009-04-01

    The electron field-emission (FE) characteristics of functionalized single-walled carbon-nanotube (CNT)-polymer composites produced by solution processing are reported. It is shown that excellent electron emission can be obtained by using as little as 0.7% volume fraction of nanotubes in the composite. Furthermore by tailoring the nanotube concentration and type of polymer, improvements in the charge transfer through the composite can be obtained. The synthesis of well-dispersed randomly oriented nanotube-polymer composites by solution processing allows the development of CNT-based large area cathodes produced using a scalable technology. The relative insensitivity of the cathode's FE characteristics to the electrical conductivity of the composite is also discussed.

  3. Molecular dynamics simulations of field emission from a planar nanodiode

    NASA Astrophysics Data System (ADS)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei

    2015-03-01

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.

  4. Work function measurements using a field emission retarding potential technique

    NASA Astrophysics Data System (ADS)

    Hamanaka, M. H. M. O.; Dall'Agnol, F. F.; Pimentel, V. L.; Mammana, V. P.; Tatsch, P. J.; den Engelsen, D.

    2016-03-01

    Herein we describe the measurement of the work function of a metal with advanced equipment based on the field emission retarding potential (FERP) method using a carbon nanotube (CNT) as cathode. The accuracy of the FERP method using a CNT emitter is described and a comparison between measurements of the work functions of aluminum, barium, calcium, gold, and platinum with published data will be presented. Our FERP equipment could be optimized with the aid of particle tracing simulations. These simulations led us to insert a magnetic collimator to improve the collection efficiency at the anode.

  5. Quantum-size resonance tunneling in the field emission phenomenon

    NASA Astrophysics Data System (ADS)

    Litovchenko, V.; Evtukh, A.; Kryuchenko, Yu.; Goncharuk, N.; Yilmazoglu, O.; Mutamba, K.; Hartnagel, H. L.; Pavlidis, D.

    2004-07-01

    Theoretical analyses have been performed of the quantum-size (QS) resonance tunneling in the field-emission (FE) phenomenon for different models of the emitting structures. Such experimentally observed peculiarities have been considered as the enhancement of the FE current, the deviation from the Fowler-Nordheim law, the appearance of sharp current peaks, and a negative resistance. Different types of FE cathodes with QS structures (quantized layers, wires, or dots) have been studied experimentally. Resonance current peaks have been observed, from which the values of the energy-level splitting can be estimated.

  6. Performance of a carbon nanotube field emission electron gun

    NASA Astrophysics Data System (ADS)

    Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul

    2007-04-01

    A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.

  7. Field Emission of Thermally Grown Carbon Nanostructures on Silicon Carbide

    DTIC Science & Technology

    2012-03-22

    process, current CNT field emission issues, and patterning of silicon carbide ( SiC ). 2.2. CNT Background 2.2.1. CNT Structure CNT’s basic...density is obtain when S=3h [46] 2.5. Patterning of SiC 2.5.1. Silicon Carbide Properties As a result of its structure and material, SiC has...Its chemical inertness, however, limits the available techniques needed to pattern a SiC wafer. 2.5.2. Silicon Carbide Etching Because SiC

  8. Novel field emission SEM column with beam deceleration technology.

    PubMed

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-11-01

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Enhanced field-emission from SnO2:WO(2.72) nanowire heterostructures.

    PubMed

    Shinde, Deodatta R; Chavan, Padmakar G; Sen, Shashwati; Joag, Dilip S; More, Mahendra A; Gadkari, S C; Gupta, S K

    2011-12-01

    The field-emission properties of SnO(2):WO(2.72) hierarchical nanowire heterostructure have been investigated. Nanoheterostructure consisting of SnO(2) nanowires as stem and WO(2.72) nanothorns as branches are synthesized in two steps by physical vapor deposition technique. Their field emission properties were recorded. A low turn-on field of ~0.82 V/μm (to draw an emission current density ~10 μA/cm(2)) is achieved along with stable emission for 4 h duration. The emission characteristic shows the SnO(2):WO(2.72) nanoheterostructures are extremely suitable for field-emission applications.

  10. Emission of Methyl halides from Japanese rice paddy fields.

    NASA Astrophysics Data System (ADS)

    Komori, D.; Sudo, S.; Akiyama, H.; Nishimura, S.; Yagi, K.; Hayashi, K.; Tanaka, Y.; Yamada, K.; Toyoda, S.; Koba, K.; Yoshida, N.

    2005-12-01

    Rice paddy field is one of emission source of methyl halide (MeX: X = Cl, Br, I) which are concerned about stratospheric ozone depletion and enhanced aerosol formation. Although significant amounts of MeX which are estimated to be emitted from rice paddies affect to regional and global atmospheric environment, understandings and recent estimations of production and consumption mechanisms of MeX have large uncertainty with depending on environmental conditions. In this study, new flux data sets of MeX emissions from Japanese rice paddy fields were reported. The fluxes of MeX were compared with environmental data sets which included meteorological parameters (ambient air temperature, ambient MeX concentrations, humidity, solar irradiance), soil parameters (soil temperature, pH, redox potential, soil water contents) to understand the emission mechanisms of MeX. Gas fluxes of C2H4 were also measured, which indicate rice plants growth and ageing. Observations of MeX flux were conducted with using automated closed chamber sampling system in Tsukuba, Japan, during a cultivation season of rice from May 2005 to September 2005. Rice plants were cultivated under intermittent irrigation. Soil gases were collected manually by using evacuated 1L stainless canisters once a week and every 4 hours in certain day during this period. Other environmental parameters were automatically obtained every 10 minutes. Seasonal variation of gas emissions of C2H4 were observed in maximum tillering phase and heading phase. In addition, clearly diurnal flux trends of C2H4 depending on solar irradiance were observed. These results suggested rice plant was remarkably growing in these phase. Similarly, large amounts of gas emissions of MeBr and MeI were observed in the same phase. Diurnal flux trends of MeBr and MeI were associated with solar irradiance. Results were generally consistent with previous reports (Redeker et al., 2000). On the other hand, MeCl flux was increased in later periods than

  11. Silicon-based metallic micro grid for electron field emission

    NASA Astrophysics Data System (ADS)

    Kim, Jaehong; Jeon, Seok-Gy; Kim, Jung-Il; Kim, Geun-Ju; Heo, Duchang; Shin, Dong Hoon; Sun, Yuning; Lee, Cheol Jin

    2012-10-01

    A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented.

  12. Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes

    NASA Astrophysics Data System (ADS)

    Wang, Ru-Zhi; Zhao, Wei; Yan, Hui

    2017-03-01

    Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.

  13. Electron emission and fragmentation of molecules in intense laser fields

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Prümper, G.; Hatamoto, T.; Okunishi, M.; Mathur, D.

    2007-06-01

    We have constructed an apparatus for high-resolution electron spectroscopy and electron-ion coincidence experiments on gas-phase molecules in intense laser fields. The apparatus comprises an electron time-of-flight (TOF) spectrometer and an ion TOF spectrometer with a position detector, placed on either side of an effusive molecular beam. The ionizing radiation is either the fundamental (800 nm wavelength) of a Ti:sapphire laser or frequency doubled 400-nm light, with pulse durations of ~ 150 fs and the repetition rate of 1 kHz. We have investigated the electron emission and fragmentation of linear alcohol molecules, methanol, ethanol and 1-propanol, in laser fields with peak intensities up to ~ 1×10 14 W/cm2. Details of our apparatus are described along with an overview of some recent results.

  14. Near-field beamforming analysis for acoustic emission source localization.

    PubMed

    He, Tian; Pan, Qiang; Liu, Yaoguang; Liu, Xiandong; Hu, Dayong

    2012-07-01

    This paper attempts to introduce a near-field acoustic emission (AE) beamforming method to estimate the AE source locations by using a small array of sensors closely placed in a local region. The propagation characteristics of AE signals are investigated based on guided wave theory to discuss the feasibility of using beamforming techniques in AE signal processing. To validate the effectiveness of the AE beamforming method, a series of pencil lead break tests at various regions of a thin steel plate are conducted. The potential of this method for engineering applications are explored through rotor-stator rubbing tests. The experimental results demonstrate that the proposed method can effectively determine the region where rubbing occurs. It is expected that the work of this paper may provide a helpful analysis tool for near-field AE source localization.

  15. Generalized Mechanism of Field Emission from Nanostructured Semiconductor Film Cathodes

    PubMed Central

    Wang, Ru-Zhi; Zhao, Wei; Yan, Hui

    2017-01-01

    Considering the effect of both the buffer layer and substrate, a series of ultrathin multilayered structure cathodes (UTMC) is constructed to simulate the field emission (FE) process of nanostructured semiconductor film cathodes (NSFCs). We find a generalized FE mechanism of the NSFCs, in which there are three distinct FE modes with the change of the applied field. Our results clearly show significant differences of FE between conventional emitters and nanofilm emitters, which the non-Fowler-Nordheim characteristics and the resonant FE will be inevitable for NSFCs. Moreover, the controllable FE can be realized by fine-tuning the quantum structure of NSFCs. The generalized mechanism of NSFCs presented here may be particularly useful for design high-speed and high-frequency vacuum nano-electronic devices.

  16. Fatigue crack localization with near-field acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Zhang, Yunfeng

    2013-04-01

    This paper presents an AE source localization technique using near-field acoustic emission (AE) signals induced by crack growth and propagation. The proposed AE source localization technique is based on the phase difference in the AE signals measured by two identical AE sensing elements spaced apart at a pre-specified distance. This phase difference results in canceling-out of certain frequency contents of signals, which can be related to AE source direction. Experimental data from simulated AE source such as pencil breaks was used along with analytical results from moment tensor analysis. It is observed that the theoretical predictions, numerical simulations and the experimental test results are in good agreement. Real data from field monitoring of an existing fatigue crack on a bridge was also used to test this system. Results show that the proposed method is fairly effective in determining the AE source direction in thick plates commonly encountered in civil engineering structures.

  17. Wide-field turbulence imaging with beam emission spectroscopy

    SciTech Connect

    McKee, G. R.; Fonck, R. J.; Uzun-Kaymak, I. U.; Yan, Z.; Shafer, M. W.

    2010-10-15

    Imaging of the size, shape, time-averaged, and time-resolved dynamics of long-wavelength density turbulence structures is accomplished with an expanded, high-sensitivity, wide-field beam emission spectroscopy (BES) diagnostic on DIII-D. A 64-channel BES system is configured with an 8x8 grid of discrete channels that image an approximately 7x9 cm region at the outboard midplane. The grid covers multiple correlation lengths and each channel shape matches the measured radial-poloidal correlation length asymmetry of turbulent eddies. The wide field 8x8 imaging capability allows for sampling of essentially the full two-dimensional spatial correlation function for typical plasma conditions. The sampled area can be radially scanned over 0.4

  18. Density functional theory for field emission from carbon nano-structures.

    PubMed

    Li, Zhibing

    2015-12-01

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission.

  19. The Role of Field Electron Emission in Polypropylene/Aluminum Nanodielectrics Under High Electric Fields.

    PubMed

    Zhang, Guoqiang; Li, Yue; Tang, Saide; Thompson, Rhett D; Zhu, Lei

    2017-03-09

    Polymer/metallic particle nanocomposites or nanodielectrics can exhibit colossal dielectric constants with a relatively low dissipation factor under low electric fields and thus seem to be promising for high-energy density dielectric capacitors. To study this possibility, this work focused on the dielectric performance and loss mechanisms in polypropylene (PP)/aluminum nanoparticle (nAl NP) composites under high electric fields. Phosphonic acid-terminated poly(ethylene-co-1-butene) was grafted to the Al2O3 surface layer on the nAl NPs in order to achieve reasonable dispersion in the PP matrix. The dielectric breakdown study showed that the breakdown strength decreased to nearly 1/20 that of the neat PP film as the nAl content increased to 25.0 vol %. The leakage current study revealed three electronic conduction mechanisms in the PP/100 nm nAl nanocomposites, namely, ohmic conduction at low fields, hopping conduction at intermediate fields, and Fowler-Nordheim (FN) field electron emission above a critical field, depending on the filler content. Compared to the 100 nm nAl NPs, smaller (e.g., 18 nm) nAl NPs needed a much higher electric field to exhibit FN field electron emission. It was the FN electron tunneling that induced a substantial reduction in breakdown strength for the PP/nAl nanocomposites. Meanwhile, electron-tunneling injected space charges (electrons) from nAl NPs into the PP matrix, and internal electronic conduction led to significant dielectric nonlinearity at high poling fields. Although polymer/metallic NP composites are not suitable for high-field electric applications, they can be good candidates for electrical switches and quantum tunneling composites operated at relatively low electric fields.

  20. Nanometer-scale features produced by electric-field emission

    NASA Astrophysics Data System (ADS)

    McBride, S. E.; Wetsel, G. C., Jr.

    1991-12-01

    Nanometer-scale features have been formed in air on metallic surfaces with various tip/sample material combinations (W/Au, Au/Au, Au/Pt, and W/Pt) using a scanning tunneling microscope (STM) instrument. The instrument has sufficient stability, computer control, and in-process measurement capability to record important processing signals while creating nanoscale patterns. The sample surface can be quantitatively characterized using both tunneling spectroscopy and imaging before and after pulsing the tip-sample voltage (Vt). Images show that the form of the created features ranges from craters to mounds when Vt exceeds a threshold value, Vc, which is dependent on the tunneling resistance (R). Results of measurement of Vc vs R combined with results of the measurement of tip displacement versus Vt allow the determination of the threshold electric field (Ec). For the W tip and the Pt sample, Ec has been determined to be 0.23 V/Å. Electric fields of this magnitude are sufficient to remove atoms by high-field emission.

  1. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  2. Origin of enhanced field emission characteristics postplasma treatment of multiwalled carbon nanotube array

    SciTech Connect

    Lee, Kyu; Lim, Seong Chu; Lee, Young Hee; Choi, Young Chul

    2008-08-11

    Field emission properties of chemical-vapor-deposition-grown multiwalled carbon nanotubes (MWCNTs) with plasma treatment have been investigated. Origin of the enhanced field emission current was interpreted in terms of surface morphology of MWCNTs, work function, field enhancement factor, and emission area. Contrary to the general belief, the change in the work function increased slightly with the plasma treatment time, whereas the field enhancement factor decreased. We found that the number of emittable MWCNTs played a dominant role in the current enhancement.

  3. Beam extraction experiment with field-emission arrays

    SciTech Connect

    Ishizuka, H.; Watanabe, A.; Shiho, M.

    1995-12-31

    An experimental project aimed to develop FEL drivers using a field-emission array is under way. The subject covers design and fabrication of novel micro-emitters, operation of FEAs, beam formation and emittance diagnostics. So far the generation of a focused beam has been demonstrated with an array of double-gated microemitters. Active control of FEAs has greatly improved the stability of the emission current. Large FEAs with an emitting area of up to 2 x 2 cm{sup 2} have been fabricated for the production of high-current beams. DC beams (1 - 5 keV < 100 {mu}A) extracted from Spindt cathodes were propagated over 1 m and projected on a fluorescent screen. Separate images of FEA tips were observed and emittance measurement has been carried out. The cathode is going to be replaced by a double-gated FEA to improve the beam quality. Pulsed extraction of high currents will also be tested, employing a non-gated FEA as the cathode of a 1 MV induction linac. Results of these experiments will be presented and perspectives concerning the FEA gun will be discussed.

  4. Field emission from optimized structure of carbon nanotube field emitter array

    NASA Astrophysics Data System (ADS)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-04-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  5. Influence of the Electric Field on Secondary Electron Emission Yield

    SciTech Connect

    Beranek, M.; Richterova, I.; Nemecek, Z.; Pavlu, J.; Safrankova, J.

    2008-09-07

    We have applied a technique based on levitation of a single charged grain in the quadrupole. We have used 3-6 micrometer spherical grains from amorphous carbon. These grains were charged by an electron beam with the energy tunable up to 10 keV and the grain charge was continuously monitored. If the grain is charged by an constant energy, its surface potential is set to the value when incident electrons are slow down to the energy where the secondary emission yield is equal to unity. Our investigations reveal that this energy changes proportionally to the grain surface field. Moreover, we have observed a shift of charging characteristics after a long-time electron bombardment.

  6. Thermionic field emission transport in carbon nanotube transistors.

    PubMed

    Perello, David J; Lim, Seong Chu; Chae, Seung Jin; Lee, Innam; Kim, Moon J; Lee, Young Hee; Yun, Minhee

    2011-03-22

    With experimental and analytical analysis, we demonstrate a relationship between the metal contact work function and the electrical transport properties saturation current (Isat) and differential conductance (σsd=∂Isd/∂Vsd) in ambient exposed carbon nanotubes (CNT). A single chemical vapor deposition (CVD) grown 6 mm long semiconducting single-walled CNT is electrically contacted with a statistically significant number of Hf, Cr, Ti, Pd, and Au electrodes, respectively. The observed exponentially increasing relationship of Isat and σsd with metal contact work function is explained by a theoretical model derived from thermionic field emission. Statistical analysis and spread of the data suggest that the conduction variability in same CNT devices results from differences in local surface potential of the metal contact. Based on the theoretical model and methodology, an improved CNT-based gas sensing device layout is suggested. A method to experimentally determine gas-induced work function changes in metals is also examined.

  7. Continuous field investigation assessing nitrogen and phosphorus emission from irrigated paddy field

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2016-04-01

    In order to maintain good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Other than urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Rice is one of the staple products of Asia and paddy field occupies large areas in Asian countries. Rice is also widely cultivated in Japan. Paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by discharging fertilizer, it is also suggested that paddy field has water purification function. Regarding to nutrient emission from paddy field, existing monitored data are insufficient so as to discuss quantitatively seasonal change of material behavior including flooding season and dry season and to evaluate year round comprehensive impact from paddy field to the river system. These are not sufficient data for discussion of material flow and emission impact quantitatively as well as qualitatively. We have carried out field investigation in paddy fields in middle reach of the Tone River Basin. The aim of the survey is understanding of water and nutrient balance in paddy field. In order to understand emission impact from paddy field to river system, all input and output flow are measured to calculate nutrient balance in paddy field. Therefore we observed quantity of water flow into/from paddy field, water quality change of inflow and outflow during flooding season. We set focus on a monitoring paddy field IM, and monitored continuously water and nutrient behavior. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and depth of flooding water, we tried to quantitatively understand N and P cycle around paddy field including seasonal tendency, change accompanying with rainy events and occurred according to agricultural events like fertilization. At the beginning of flooding season, we

  8. Effect of metal nanoparticles decoration on electron field emission property of graphene sheets.

    PubMed

    Baby, Tessy Theres; Ramaprabhu, Sundara

    2011-10-05

    The electron field emission from metal nanoparticle decorated hydrogen exfoliated graphene (metal/HEG) occurs at low turn on and threshold fields due to its low work function and high field enhancement factor.

  9. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    SciTech Connect

    Wang, Tong

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  10. High Field Emission Current Density from Patterned Carbon Nanotube Field Emitter Arrays with Random Growth.

    PubMed

    Khaneja, Mamta; Ghosh, Santanu; Gautam, Seema; Kumar, Prashant; Rawat, J S; Chaudhury, P K; Vankar, V D; Kumar, Vikram

    2015-05-01

    High field emission (FE) current density from carbon nanotube (CNT) arrays grown on lithographically patterned silicon substrates is reported. A typical patterned field emitter array consists of bundles of nanotubes separated by a fixed gap and spread over the entire emission area. Emission performance from such an array having randomly oriented nanotube growth within each bundle is reported for different bundle sizes and separations. One typical sample with aligned CNTs within the bundle is also examined for comparison. It is seen that the current density from an array having random nanotube growth within the bundles is appreciably higher as compared to its aligned counterpart. The influence of structure on FE current densities as revealed by Raman spectroscopy is also seen. It is also observed that current density depends on edge length and increases with the same for all samples under study. Highest current density of -100 mA cm(-2) at an applied field of 5 V/μm is achieved from the random growth patterned sample with a bundle size of 2 μm and spacing of 4 μm between the bundles.

  11. The thermal-field emission model for carrier injection characteristics of an organic field effect transistor

    NASA Astrophysics Data System (ADS)

    Kimura, Yasuo; Oba, Tomohisa; Shimakura, Naoko; Niwano, Michio

    2009-02-01

    We have investigated the influence of carrier injection on the characteristics of an organic field effect transistor (OFET) using a rubrene single crystal. The mobility estimated from the transfer characteristic of the OFET depended strongly on the channel length and the thickness of the rubrene single crystal although the mobility is intrinsically independent of the dimensions of an OFET. On the other hand, the temperature dependence of the saturation drain current was in good agreement with the thermal-field emission theory. These suggest that OFETs are controlled not only by the carrier accumulation at the channel but also by the carrier injection.

  12. Study of thermal-field emission properties and investigation of temperature dependent noise in the field emission current from vertical carbon nanotube emitters

    NASA Astrophysics Data System (ADS)

    Kolekar, Sadhu; Patole, S. P.; Patil, Sumati; Yoo, J. B.; Dharmadhikari, C. V.

    2017-10-01

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well-defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD) in order to understand the effect of temperature on distribution of electron emission spots and ring like structures in Field Emission Microscope (FEM) image. The FEM images could be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 from FEM image is typically, 4.5 × 107 and the actual number emitters per cm2 present as per Atomic Force Microscopy (AFM) data is 1.2 × 1012. The measured Current-Voltage (I-V) characteristics exhibit non linear Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current were recorded at different temperatures and Fast Fourier transformed into temperature dependent power spectral density. The latter was found to obey power law relation S(f) = A(Iδ/fξ), where δ and ξ are temperature dependent current and frequency exponents respectively.

  13. Behavior of Catalyst Particle at Tip of Carbon Nanotube during Field Emission

    NASA Astrophysics Data System (ADS)

    Fujieda, Tadashi; Okai, Makoto; Hidaka, Kishio; Matsumoto, Hiroaki; Tokumoto, Hiroshi

    2008-01-01

    A catalyst particle at the tip of a multi-walled carbon nanotube (MWNT) during field emission inside a transmission electron microscope was observed in-situ. The particle streamed from the tip like a liquid as the emission current abruptly increased from 20 to 40 µA. This was due to the temperature rise at the tip of the MWNT, resulting from the increased emission current and dipole moment in the particle caused by the electric field. Maintenance of this high emission current led to an electrical discharge, which severely damaged the MWNT electron emitter. Under high emission currents, in particular, the catalyst particle caused an unstable emission.

  14. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  15. Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon

    PubMed Central

    2012-01-01

    Here, we demonstrate the simple fabrication of a single-walled carbon nanotube (SWCNT) field emission electrode which shows excellent field emission characteristics and remarkable field emission stability without requiring posttreatment. Chemically functionalized SWCNTs were chemically attached to a silicon substrate. The chemical attachment led to vertical alignment of SWCNTs on the surface. Field emission sweeps and Fowler-Nordheim plots showed that the Si-SWCNT electrodes field emit with a low turn-on electric field of 1.5 V μm−1 and high electric field enhancement factor of 3,965. The Si-SWCNT electrodes were shown to maintain a current density of >740 μA cm−2 for 15 h with negligible change in applied voltage. The results indicate that adhesion strength between the SWCNTs and substrate is a much greater factor in field emission stability than previously reported. PMID:22853557

  16. Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon.

    PubMed

    Shearer, Cameron J; Fahy, Adam; Barr, Matthew; Dastoor, Paul C; Shapter, Joseph G

    2012-08-01

    Here, we demonstrate the simple fabrication of a single-walled carbon nanotube (SWCNT) field emission electrode which shows excellent field emission characteristics and remarkable field emission stability without requiring posttreatment. Chemically functionalized SWCNTs were chemically attached to a silicon substrate. The chemical attachment led to vertical alignment of SWCNTs on the surface. Field emission sweeps and Fowler-Nordheim plots showed that the Si-SWCNT electrodes field emit with a low turn-on electric field of 1.5 V μm-1 and high electric field enhancement factor of 3,965. The Si-SWCNT electrodes were shown to maintain a current density of >740 μA cm-2 for 15 h with negligible change in applied voltage. The results indicate that adhesion strength between the SWCNTs and substrate is a much greater factor in field emission stability than previously reported.

  17. Experimental Development of Low-emittance Field-emission Electron Sources

    SciTech Connect

    Lueangaranwong, A.; Buzzard, C.; Divan, R.; Korampally, V.; Piot, P.

    2016-10-10

    Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.

  18. External magnetic field distribution mapping using terahertz emission from indium antimonide

    NASA Astrophysics Data System (ADS)

    Katrine Mag-usara, Valynn; Bulgarevich, Dmitry S.; Shiwa, Mitsuharu; Watanabe, Makoto; Tani, Masahiko

    2017-02-01

    We demonstrate and report the feasibility of utilizing terahertz (THz) surface emission from semiconductors as a mapping tool for magnetic field distribution. Using a standard THz time-domain spectroscopy setup, the THz emission of indium antimonide (InSb) was systematically measured at several different points of an external magnetic field. The initial results suggest promising directions in developing a practical THz emission-based magnetic field mapping technique for non-destructive electromagnetic imaging applications.

  19. Fabrication of carbon nanotube emitters on the graphite rod and their high field emission performance

    SciTech Connect

    Sun, Yuning; Hoon Shin, Dong; Nam Yun, Ki; Song, Yenan; Saito, Yahachi; Jin Lee, Cheol

    2014-01-27

    Carbon nanotube (CNT) emitters with small emission area were fabricated on graphite rods using CNT films. By introducing the edge polishing process, the field emission performance of the CNT emitter was much improved, which showed a very high emission current of 6.34 mA (1.6 A/cm{sup 2}) under an applied electric field of 5.3 V/μm. It also indicates good long-term emission stability, which reveals no degradation in the emission current for 20 h. The emission patterns demonstrate uniform and well-focused electron beam spots. The enhanced field emission performance is mainly attributed to the suppressed edge emission after the edge polishing process.

  20. Enhancement of electron field emission property with silver incorporation into diamondlike carbon matrix

    SciTech Connect

    Ahmed, Sk. Faruque; Moon, Myoung-Woon; Lee, Kwang-Ryeol

    2008-05-12

    Effects of silver doping on the electron field emission properties of diamondlike carbon films deposited on silicon substrates by the rf reactive sputtering technique were studied in detail. It was found that the threshold field and effective emission barrier were reduced by Ag doping and the emission current strongly depends on the Ag doping percentage. The threshold field was found to decrease from 6.8 to 2.6 V/{mu}m with a variation of Ag at. % from 0 to 12.5. The field enhancement factor was calculated and we have explained the emission mechanism.

  1. Field emission chemical sensor for receptor/binder, such as antigen/antibody

    DOEpatents

    Panitz, John A.

    1986-01-01

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  2. Electron field emission from composite electrodes of carbon nanotubes-boron-doped diamond and carbon felts

    NASA Astrophysics Data System (ADS)

    Rosolen, J. Mauricio; Tronto, Simone; Marchesin, Marcel S.; Almeida, Erica C.; Ferreira, Neidenei G.; Patrick Poá, C. H.; Silva, S. Ravi P.

    2006-02-01

    The electron field emission of carbon nanotube (CNT)/boron-doped diamond (BDD)/carbon felt electrodes (CNT/BDD/felt) have been investigated. The composite electrode was initially prepared with the growth of BDD on carbon felt and the subsequent growth of CNT by chemical decomposition of methanol. The composite electrodes were characterised using scanning electron microscopy and transmission electron microscopy. For the CNT/BDD/felt samples, the electron field emission was observed at macroscopic fields as low as 1.1Vμm-1. The emission current versus time plot shows significant potential for future field emission applications.

  3. Field emission from optimized structure of carbon nanotube field emitter array

    SciTech Connect

    Chouhan, V. E-mail: vijaychouhan84@gmail.com; Noguchi, T.; Kato, S.

    2016-04-07

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  4. Improved Field Emission Algorithms for Modeling Field Emission Devices Using a Conformal Finite-Difference Time-Domain Particle-in-Cell Method

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Loverich, J.; Stoltz, P. H.; Nieter, C.

    2013-10-01

    This work introduces a conformal finite difference time domain (CFDTD) particle-in-cell (PIC) method with an improved field emission algorithm to accurately and efficiently study field emission devices. The CFDTD method is based on the Dey-Mittra algorithm or cut-cell algorithm, as implemented in the Vorpal code. For the field emission algorithm, we employ the elliptic function v(y) found by Forbes and a new fitting function t(y)2 for the Fowler-Nordheim (FN) equation. With these improved correction factors, field emission of electrons from a cathode surface is much closer to the prediction of the exact FN formula derived by Murphy and Good. This work was supported in part by both the U.S. Department of Defense under Grant No. FA9451-07-C-0025 and the U.S. Department of Energy under Grant No. DE-SC0004436.

  5. Plasma-induced field emission study of carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Xia, Liansheng; Zhang, Huang; Liu, Xingguang; Yang, Anmin; Shi, Jinshui; Zhang, Linwen; Liao, Qingliang; Zhang, Yue

    2011-10-01

    An investigation on the plasma-induced field emission (PFE) properties of a large area carbon nanotube (CNT) cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9-127.8A/cm2 are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06-0.49Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170-350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO2, N2(CO), and H2 gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  6. Shielded field emission EPMA for microanalysis of radioactive materials

    NASA Astrophysics Data System (ADS)

    Restani, R.; Wälchli, A.

    2012-03-01

    A standard Jeol 8500F electron probe microanalyzer (EPMA) with field emission gun (FEG) has been installed in a lead shielded cabin of the laboratory and customized for remote control. The wavelength-dispersive X-ray spectrometers (WDS) have been additionally shielded against β,γ-radiation with tungsten alloy modules. These measures have proven to be very effective for the examination of specimens with an activity of less than 20 GBq 137Cs. The background intensity is dependent on crystal type, spectrometer and sample position. The efficiency of the spectrometer with Xe-sealed counter is higher but also its sensitivity to the specimen's γ-radiation than the Ar/CH4 flow counter. The possibility of applying high beam currents increases the peak-to-background ratio for the analysis of low concentrations in the active sample. The high electron beam density of the FE-gun allows for the recording of high resolution elemental X-ray maps in the range of a few tenths of a micrometre at even medium acceleration voltage and thus short acquisition time. It is thus a valuable instrument in post irradiation examinations of spent fuel rods and materials irradiated by other sources.

  7. Controlling field-emission patterns of isolated single-walled carbon nanotube rope

    NASA Astrophysics Data System (ADS)

    Tong, Yu; Lim, Seong Chu; Park, Kyung Ah; Jeong, Hee Jin; Jeong, Seung Yoi; Lee, Young Hee; Liu, Chang; Cheng, Hui-Ming; Choi, Yoon

    2005-07-01

    We report a method of controlling field-emission patterns from an isolated single-walled carbon nanotube (SWCNT) rope. By positioning two soda-lime glass flakes on both sides of a SWCNT rope, we found an anomalous current jump, enlarging the field emission current above the threshold bias voltage. The electron trajectories were systematically controlled with different configurations of glass flakes. This was explained by the induced charges on the surface of the dielectric that modified the electric field distribution near the cathode and anode, and hence, the electron trajectories and the field emission patterns as well. This opens a possibility of tuning electron beam trajectories in field emission that can be applied to various electron sources such as field emission displays and cold cathode lamps.

  8. Field Emission Stability of Individual Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Fujieda, Tadashi; Okai, Makoto; Tokumoto, Hiroshi

    2009-02-01

    We investigated the emission stability of individual multi-walled carbon nanotubes (MWNTs) and clarified the mechanism of emission current instability. An initial decrease in the emission current, which is generally seen in the case of metal emitters, was hardly observed. Furthermore, the current fluctuation was much lower than that for a metal emitter, and the peak-to-peak fluctuation was less than 2% when the emission pattern was pentagonal. However, spikelike and steplike noises occurred, with a frequency approximately proportional to the product of the emission current and the background pressure. These noises may be caused by physical adsorption and ion impact desorption of residual gas molecules. The number of these noise events depended on the emission pattern: it was much greater in the case of a nonpentagonal emission pattern than in the case of a pentagonal emission pattern. This type of current noise is considered to be due to ionic-collision-induced damage at the surface of the tip when the emission pattern is nonpentagonal.

  9. Field emission theory for an enhanced surface potential: a model for carbon field emitters

    NASA Astrophysics Data System (ADS)

    Choy, T. C.; Harker, A. H.; Stoneham, A. M.

    2004-02-01

    We propose a non-JWKB-based theory of electron field emission for carbon field emitters in which, for electrons with energy in the vicinity of the order of ϑ to the Fermi level, the effective (1/x) surface potential is strongly enhanced. The model grossly violates the WKB validity criteria and necessitates an analytic treatment of the one-dimensional Schrödinger equation, which we first obtain. We determine ϑ (which is field-dependent) from the wavefunction matching point close to the surface. For reasonable values of the surface parameters—work function \\varphi \\approx 2 -5 eV, electron affinity \\chi \\approx 2 \\varphi and an empirical electron loss factor \\sigma \\approx 10^{-3} (and with no other adjustable parameters)—the theory provides an intriguing agreement with experimental data from carbon epoxy graphite composite (PFE) and certain graphitized carbon nanotube field emitters. We speculate on the surface potential enhancement, which can be interpreted as a massive (field-induced) dielectric effect of dynamic origin. This can be related via time-dependent perturbation theory to second-order non-linear polarizability enhancements at ultraviolet {\\sim }3000~\\AA wavelengths near the tunnelling region. Finally some exact mathematical results are included in the appendix for future reference.

  10. A model for effective field enhancement for Fowler-Nordheim field emission

    SciTech Connect

    Feng, Y.; Verboncoeur, J.P.

    2005-10-01

    The local field enhancement factor {beta} is often introduced in the Fowler-Nordheim equation to represent the geometrical effects at the surface of the cathode, where {beta}(s)=E{sub n}(s)/E{sub 0} for macroscopic applied field E{sub 0}. Local variation of {beta} determines the local normal surface electric field, E{sub n}(s), resulting in local dependence of injection current by the Fowler-Nordheim law. In computational models, it is impractical to determine the time-dependent local surface field each time step on a microscopic space scale. Effective {beta} is introduced in this paper which allows us to study the emission properties at a macroscopic scale. Microscopic (subgrid) local effective {beta} is calculated only at the initial time step, and then the effective {beta} can be recomputed for different surface electrical field through this model. The model allows reduction of dimensionality as well as the ability to include subgrid effects. The model is demonstrated on fundamental cases and compared to a calculation with a mesh fine enough to resolve the geometric features.

  11. Leakage and field emission in side-gate graphene field effect transistors

    NASA Astrophysics Data System (ADS)

    Di Bartolomeo, A.; Giubileo, F.; Iemmo, L.; Romeo, F.; Russo, S.; Unal, S.; Passacantando, M.; Grossi, V.; Cucolo, A. M.

    2016-07-01

    We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO2/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO2 up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current density as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices.

  12. Field Thermal Infrared Emissivity Dependence on Soil Moisture

    USDA-ARS?s Scientific Manuscript database

    Accurate estimate of land surface temperature, a key parameter in surface energy balance models, requires knowledge of the surface emissivity. Emissivity dependence on soil water content has been already reported and modeled under controlled conditions at the laboratory. This study completes and ext...

  13. In-FEEP ion beam neutralization with thermionic and field emission cathodes

    NASA Technical Reports Server (NTRS)

    Marrese, C.; Polk, J.; Mueller, J.; Owens, A.; Tajmar, M.; Fink, R.; Spindt, C.

    2002-01-01

    Charge neutralization of an In-FEEP thruster was demonstrated with three different electron sources by zeroing the floating potential of the thruster and neutralizer system. The three cathodes used in the investigation include a mixed metal thermionic cathode, a carbon nanotube field emission cathode, and a Spindt-type Mo field emission array cathode.

  14. In-FEEP ion beam neutralization with thermionic and field emission cathodes

    NASA Technical Reports Server (NTRS)

    Marrese, C.; Polk, J.; Mueller, J.; Owens, A.; Tajmar, M.; Fink, R.; Spindt, C.

    2002-01-01

    Charge neutralization of an In-FEEP thruster was demonstrated with three different electron sources by zeroing the floating potential of the thruster and neutralizer system. The three cathodes used in the investigation include a mixed metal thermionic cathode, a carbon nanotube field emission cathode, and a Spindt-type Mo field emission array cathode.

  15. Photoelectric charging of dust particles: Effect of spontaneous and light induced field emission of electrons

    SciTech Connect

    Sodha, M. S.; Dixit, A.

    2009-09-07

    The authors have analyzed the charging of dust particles in a plasma, taking into account the electron/ion currents to the particles, electron/ion generation and recombination, electric field emission, photoelectric emission and photoelectric field emission of electrons under the influence of light irradiation; the irradiance has been assumed to be at a level, which lets the particles retain the negative sign of the charge. Numerical results and discussion conclude the papers.

  16. High resolution Fowler-Nordheim field emission maps of thin silicon oxide layers

    NASA Astrophysics Data System (ADS)

    Ruskell, Todd G.; Workman, Richard K.; Chen, Dong; Sarid, Dror; Dahl, Sarah; Gilbert, Stephen

    1996-01-01

    An improved method for characterizing thin oxide films using Fowler-Nordheim field emission is reported. The method uses a conducting-tip atomic force microscope with dual feedback systems, one for the topography and a second for the field emission bias voltage. Images of the voltage required to maintain a 10 pA emission current through a 3 nm oxide film thermally grown on p-type Si(100) demonstrate a spatial resolution of 8 nm.

  17. Field Measurements of Isoprene and Monoterpene Emission Rates from Trees.

    NASA Astrophysics Data System (ADS)

    Dilts, Stephen Blair

    Monoterpene emission rates were measured by a branch enclosure technique from Pinus ponderosa in central Oregon in the early summer and fall along with photosynthesis and monoterpene needle concentrations. beta -pinene, Delta^3-carene, and alpha-pinene were the major constituents of the emissions with smaller amounts of myrcene, limonene, and beta-phellandrene. The emission rates of alpha-pinene and beta-pinene were highly correlated with their needle concentrations, while those of Delta ^3-carene were not. There was no discernible effect on emissions when photosynthesis was water stress limited in the fall, and monoterpene emissions appear to be distinct from short term photosynthetic carbon assimilation. Isoprene emission rates were measured from a Quercus robur on the Washington State University campus in the fall of 1989 and throughout the 1990 growing season, and from a Quercus rubra during most of the 1991 season and occasionally in 1992. The measured emission rates showed distinct seasonal patterns which could not be explained by temperature or light. Emission rates were initially low early in the season when the leaves were immature. Rates increased rapidly after leaf maturity to a maximum value and then declined over the rest of the season. Evidence suggests that the rate and magnitude of this decline depends on stresses on the tree. Isoprene emission rates were measured from several species near Oak Ridge, Tennessee. The mean normalized isoprene emission rate from the branch enclosure was compared to the rate measured from a Q. alba leaf in a light and temperature controlled cuvette. The branch enclosure result for Q. alba was about 65% lower than the mean leaf cuvette measurement. This difference appears be due to shading of leaves within the branch enclosure. A comparison was also made between the normalized branch enclosure results and normalized canopy isoprene flux measured by a micrometeorological gradient method with generally good agreement.

  18. Field emission studies toward improving the performance of DC high voltage photoelectron guns

    NASA Astrophysics Data System (ADS)

    BastaniNejad, Mahzad

    Field emission is the main mechanism that prevents DC high voltage photoemission electron guns from operating at the very high bias voltages required to produce low emittance beams. Gas conditioning is shown to eliminate field emission from cathode electrodes used inside DC high voltage photoelectron guns. Measurements and simulation results indicate that gas conditioning eliminates field emission from cathode electrodes via two mechanisms: sputtering and implantation, with the benefits of implantation reversed by heating the electrode. The field emission characteristics of 5 stainless steel electrodes varied significantly upon the initial application of voltage but improved to nearly the same level after helium and krypton gas conditioning, exhibiting less than 10 pA field emission at - 225kV bias voltage with a 50 mm cathode/anode gap, corresponding to a field strength ˜ 13 MV/m. Field emission could be reduced with either krypton or helium, but there were conditions related to gas choice, voltage and field strength that were more favorable than others. The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. Out of 8 electrodes (6 niobium and 2 stainless steel), the best niobium electrode performed better than the best stainless steel electrodes. Large grain niobium exhibited no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18.7 MV/m. Surface evaluation of all electrodes suggested no correlation between the surface roughness and the field emission current. Removing surface particulate contaminations and protrusions using an effective polishing and cleaning technique helps to prevent field emission. Mechanical polishing using silicon carbide paper and diamond paste is a common method of obtaining a mirror like surface finish on the cathode electrodes. However, it sometimes results rolled

  19. Effects of Gases on Field Emission from Single and Multi-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Wadhawan, A.; Stephens, K.; Stallcup, R., II; Perez, J.; Physics Department Collaboration

    2001-03-01

    We report the effects of O_2, H_2, and Ar exposure on the field emission properties of single and multi-wall carbon nanotubes. The field emission current vs. voltage curves and field emission current vs. time were measured as a function of gas exposure at 10-8 Torr over a period of approximately 8 hours. The data were collected using an automated system running under Labview. We find that H2 and Ar exposure do not significantly affect the field emission properties of either single or multi-walled carbon nanotubes. However, O2 exposure degrades the field emission properties of multi-wall tubes more than those of single-wall tubes. After O2 exposure, the turn-on voltage for multi-wall tubes increased fromm 300 to 500 volts, while the turn-on voltage for single-wall tubes increased from 200 to 250 volts. An explanation of these results will be discussed.

  20. Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls

    NASA Astrophysics Data System (ADS)

    Zhang, Bowen; Tian, Hanqin; Ren, Wei; Tao, Bo; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Pan, Shufen

    2016-09-01

    Given the importance of the potential positive feedback between methane (CH4) emissions and climate change, it is critical to accurately estimate the magnitude and spatiotemporal patterns of CH4 emissions from global rice fields and better understand the underlying determinants governing the emissions. Here we used a coupled biogeochemical model in combination with satellite-derived contemporary inundation area to quantify the magnitude and spatiotemporal variation of CH4 emissions from global rice fields and attribute the environmental controls of CH4 emissions during 1901-2010. Our study estimated that CH4 emissions from global rice fields varied from 18.3 ± 0.1 Tg CH4/yr (Avg. ±1 SD) under intermittent irrigation to 38.8 ± 1.0 Tg CH4/yr under continuous flooding in the 2000s, indicating that the magnitude of CH4 emissions from global rice fields is largely dependent on different water schemes. Over the past 110 years, our simulated results showed that global CH4 emissions from rice cultivation increased by 85%. The expansion of rice fields was the dominant factor for the increasing trends of CH4 emissions, followed by elevated CO2 concentration, and nitrogen fertilizer use. On the contrary, climate variability had reduced the cumulative CH4 emissions for most of the years over the study period. Our results imply that CH4 emissions from global rice fields could be reduced through optimizing irrigation practices. Therefore, the future magnitude of CH4 emissions from rice fields will be determined by the human demand for rice production as well as the implementation of optimized water management practices.

  1. Electronic structures of tungsten surfaces with barium overlayers by field emission and photofield emission

    NASA Astrophysics Data System (ADS)

    Ibrahim, Zahraa A. S. A.

    The total energy distributions (TEDs) in field emission (FE) and photofield emission (PFE) and the work functions have been measured at room temperature for the (100), (110) and (111) W facets with Ba overlayers in the range of coverage from 0 to 1 monolayer. In order to interpret the experimental data, the full-potential linear augmented plane wave method for calculating the electronic structures of periodic lattices within the LDA has been extended to obtain the TEDs in FE and PFE from W/vacuum and W/Ba/vacuum interfaces. A prominent peak observed experimentally at -1.90 eV in PFE from W(100) with a c(2x2) Ba overlayer is attributed, in contrast to previous work, to hybridization of dz2 -like surface states of clean W(100) with s -like states of the overlayer. It is suggested that a prominent asymmetrical peak observed at -0.65 eV in FE from W(111) is due to two bands of dz 2 -like surface resonances, and a prominent peak observed at about -2.0 eV in PFE from W(111) with a (1x1) Ba overlayer is attributed to hybridization of these same resonances with s -like states of the overlayer. It is shown that several of the peaks observed in PFE are induced by the reduced symmetry of the overlayer. It is found that when an isolated (31/2x3 1/2) Ba layer is adsorbed on W(111) it undergoes a nonmetal-to-metal transition and the surface electronic structure is dominated by inter-layer W-Ba interactions. The atomically-denser isolated (1x1) Ba layer is metallic, and when it is adsorbed on W(111) the surface electronic structure is dominated by intra-layer Ba-Ba interactions. These properties are also discussed for Ba overlayers on W(100) and W(110). A c(2x2) Ba overlayer on W(100) induces a strong electric dipole layer between the substrate and the overlayer and a weak oppositely-directed dipole layer outside the surface, which together account quantitatively for the observed reduction in work function. In view of the success of the present method in interpreting the TEDs in

  2. Energy Spread of Field Emission Electrons from Single Pentagons in Individual Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Fujieda, Tadashi; Okai, Makoto; Tokumoto, Hiroshi

    2008-04-01

    We investigated the dependence of tip radius on the field emission energy spread of electrons emitted from clean single pentagons in individual multi-walled carbon nanotubes (MWNTs) in a wide range of total emission currents (10-2000 nA). We found that the full width at half maximum of the field emission energy distribution decreases in inverse proportion to the involution of the radius of curvature at a constant total emission current. This is because as the radius of curvature increases, the space between adjoining pentagons becomes wider, and therefore the stochastic Coulomb interactions between electrons emitted from adjoining pentagons become weaker. The full widths at half maximum of the field emission energy distributions of MWNTs with tip radii of 1.8-45.0 nm were 0.38-0.60 eV at a total emission current of 2000 nA.

  3. Greenhouse gas emissions from dairy manure management: a review of field-based studies.

    PubMed

    Owen, Justine J; Silver, Whendee L

    2015-02-01

    Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small-scale laboratory experiments that have not been compared to field-scale measurements. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd(-1) yr(-1)), more than three times that from enteric fermentation (~120 kg CH4 hd(-1) yr(-1)). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd(-1) yr(-1), respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd(-1) yr(-1)) and barns (10 ± 6 kg N2O hd(-1) yr(-1)) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation.

  4. Densification effects of the carbon nanotube pillar array on field-emission properties

    NASA Astrophysics Data System (ADS)

    Wang, Kuang-Yu; Chou, Chia-Hsin; Liao, Chan-Yu; Li, Yu-Ren; Cheng, Huang-Chung

    2016-06-01

    In this study, a simple densification method for carbon nanotube (CNT) pillars is proposed to achieve high-performance field emission characteristics and stable emission. Through capillary force during solution evaporation, the CNT density in each pillar can be increased by about six times without causing damage to the crystallinity of CNTs. The densified CNT pillars exhibit lower series resistance, sharper pillars, better contacts, higher thermal conductivity, and better mechanical stiffness than as-grown ones. Therefore, the threshold field of the field emitter with such CNT pillars of 50 µm height can be reduced to 1.98 V/µm, as compared with 2.2 V/µm for the undensified ones. Moreover, the fluctuation of field-emission current decreases from 15.5 to 9.4% after the stress tests at a field of 2 V/µm for 1800 s. These findings imply that the densified CNT pillars are promising for the field-emission applications.

  5. Source sampling of particulate matter emissions from cotton harvesting - System field testing and emission factor development

    USDA-ARS?s Scientific Manuscript database

    Emission factors are used in the air pollution regulatory process to quantify the mass of pollutants emitted from a source. Accurate emission factors must be used in the air pollution regulatory process to ensure fair and appropriate regulation for all sources. Agricultural sources, including cotton...

  6. Field emission of carbon quantum dots synthesized from a single organic solvent.

    PubMed

    Liu, Xiahui; Yang, Bingjun; Yang, Juan; Yu, Shengxue; Chen, Jiangtao

    2016-11-04

    In this paper, a facile synthesis of carbon quantum dots (CQDs) and its field emission performance are reported. The CQDs are prepared from a single N, N-dimethylformamide acting as carbon and nitrogen-doping sources simultaneously. The CQDs are investigated by photoluminescence, transmission electron microscopy and x-ray photoelectron spectroscopy. The CQDs have an average size of 3 nm and are doped with N atoms. CQD dispersion shows strong fluorescence under UV illumination. For the first time, the field emission behavior of CQDs coated on Si substrate is studied. As a candidate of cold cathode, the CQDs display good field emission performance. The CQD emitter reaches the current density of 1.1 mA cm(-2) at 7.0 V μm(-1) and exhibits good long-term emission stability, suggesting promising application in field emission devices.

  7. Hysteresis phenomenon of the field emission from carbon nanotube/polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Filippov, S. V.; Popov, E. O.; Kolosko, A. G.; Romanov, P. A.

    2015-11-01

    Using the high voltage scanning method and the technique of multichannel recording and processing of field emission (FE) characteristics in real time mode we found out some subtle effects on current voltage characteristics (IVC) of the multi-tip field emitters. We observed the direct and reverse hysteresis simultaneously in the same field emission experiment. Dependence of the form of IVC hysteresis on time of high voltage scanning was observed.

  8. Emissions of Nonmethane Organic Compounds at an Illinois (USA) Landfill: Preliminary Field Measurements

    SciTech Connect

    Bogner, J.; Spokas, K.; Niemann, M.; Niemann, L.; Baker, J.

    1997-08-01

    Current US regulatory models for estimating emissions of nonmethane organic compounds (NMOCs) from municipal solid waste (MSW) landfills require field validation to determine if the models are realistic. A project was initiated to begin to develop a field method for direct measurement of landfill NMOC emissions and, concurrently, develop improved sampling and analysis methods for individual NMOCs in landfill gas matrices. Two contrasting field sites at the Greene Valley Landfill, DuPage County, Illinois, USA, were established.

  9. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    NASA Technical Reports Server (NTRS)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  10. Construction and characterization of the fringe field monochromator for a field emission gun

    PubMed

    Mook; Kruit

    2000-04-01

    Although some microscopes have shown stabilities sufficient to attain below 0.1 eV spectral resolution in high-resolution electron energy loss spectroscopy, the intrinsic energy width of the high brightness source (0.3-0.6 eV) has been limiting the resolution. To lower the energy width of the source to 50 meV without unnecessary loss of brightness, a monochromator has been designed consisting of a short (4 mm) fringe field Wien filter and a 150 nm energy selection slit (nanoslit) both to be incorporated in the gun area of the microscope. A prototype has been built and tested in an ultra-high-vacuum setup (10(-9) mbar). The monochromator, operating on a Schottky field emission gun, showed stable and reproducible operation. The nanoslits did not contaminate and the structure remained stable. By measuring the current through the slit structure a direct image of the beam in the monochromator could be attained and the monochromator could be aligned without the use of a microscope. Good dispersed imaging conditions were found indicating an ultimate resolution of 55 meV. A Mark II fringe field monochromator (FFM) was designed and constructed compatible with the cold tungsten field emitter of the VG scanning transmission microscope. The monochromator was incorporated in the gun area of the microscope at IBM T.J. Watson research center, New York. The monochromator was aligned on 100 kV and the energy distribution measured using the monochromator displayed a below 50 meV filtering capability. The retarding Wien filter spectrometer was used to show a 61 meV EELS system resolution. The FFM is shown to be a monochromator which can be aligned without the use of the electron microscope. This makes it directly applicable for scanning transmission microscopy and low-voltage scanning electron microscopy, where it can lower the resolution loss which is caused by chromatic blur of the spot.

  11. Stable field emission from arrays of vertically aligned free-standing metallic nanowires

    NASA Astrophysics Data System (ADS)

    Xavier, Stephane; Mátéfi-Tempfli, Stefan; Ferain, Etienne; Purcell, Stephen; Enouz-Védrenne, Shaïma; Gangloff, Laurent; Minoux, Eric; Hudanski, Ludovic; Vincent, Pascal; Schnell, Jean-Philippe; Pribat, Didier; Piraux, Luc; Legagneux, Pierre

    2008-05-01

    We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost fabrication and large surfaces. This technique offers an excellent control of the orientation, shape and nanowires density. It is applied to fabricate field emission arrays with a good control of the emission site density. We have prepared Co, Ni, Cu and Rh nanowires with a height of 3 µm, a diameter of 80 nm and a density of ~107 cm-2. The electron field emission measurements and total energy distributions show that the as-grown nanowires exhibit a complex behaviour, first with emission activation under high field, followed by unstable emission. A model taking into account the effect of an oxide layer covering the nanowire surface is developed to explain this particular field emission behaviour. Finally, we present an in situ cleaning procedure by ion bombardment that collectively removes this oxide layer, leading to a stable and reproducible emission behaviour. After treatment, the emission current density is ~1 mA cm-2 for a 30 V µm-1 applied electric field.

  12. New-type planar field emission display with superaligned carbon nanotube yarn emitter.

    PubMed

    Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.

  13. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Fang, Jingyue; Chang, Shengli; Qin, Shiqiao; Zhang, Xueao; Xu, Hui

    2017-02-01

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode.

  14. Modeling of Klein Tunneling for Electron Field Emission from Graphene

    DTIC Science & Technology

    2013-10-23

    relationship. Promising applications include field effect transistors, sensors, spintronic devices, and many others in nanoelectronics. In recent...dispersion relationship. Promising applications include field effect transistors, sensors, spintronic devices, and many others in nanoelectronics. In

  15. Field tests on biochar to reduce emissions from soil fumigation

    USDA-ARS?s Scientific Manuscript database

    Soil fumigation continues to be one of the most important strategies for pest management in orchards. Although low permeability tarp such as totally impermeable film (TIF) has shown to be the most effective in reducing fumigant emissions, costs are high and tarp disposal is needed after use. The obj...

  16. Novel planar field emission of ultra-thin individual carbon nanotubes.

    PubMed

    Song, Xuefeng; Gao, Jingyun; Fu, Qiang; Xu, Jun; Zhao, Qing; Yu, Dapeng

    2009-10-07

    In this work, we proposed and realized a new prototype of planar field emission device based on as-grown individual carbon nanotubes (CNTs) on the surface of a Si-SiO2 substrate. The anode, cathode and the CNT tip all lie on the same surface, so the electron emission is reduced from three-dimensional to two-dimensional. The benefits of such a design include usage of thinner CNT emitters, integrity with planar technology, stable construction, better heat dissipation, etc. A tip-to-tip field emission device was presented besides the tip-to-electrode one. Real-time, in situ observation of the planar field emission was realized in a scanning electron microscope (SEM). Measurements showed that the minimum voltage for 10 nA field emission current was only 8.0 V and the maximum emission current density in an individual CNT emitter (1.0 nm in diameter) exceeded 5.7 x 10(8) A cm(-2). These results stand out in the comparison with recent works on individual CNT field emission, indicating that the planar devices based on ultra-thin individual CNTs are more competitive candidates for next-generation electron field emitters.

  17. Leakage and field emission in side-gate graphene field effect transistors

    SciTech Connect

    Di Bartolomeo, A. Iemmo, L.; Romeo, F.; Cucolo, A. M.; Giubileo, F.; Russo, S.; Unal, S.; Passacantando, M.; Grossi, V.

    2016-07-11

    We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO{sub 2}/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO{sub 2} up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current density as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices.

  18. First results on laser-induced field emission from a CNT-based nanotip.

    PubMed

    Bionta, M R; Chalopin, B; Masseboeuf, A; Chatel, B

    2015-12-01

    We present the first demonstration of ultrafast laser-induced field emission and measurement of the energy distribution of electrons from a nanotip based on a carbon nanotube (CNT). Our experimental setup extends the studies performed on conventional tungsten or gold tips by using this new innovative tip. The carbon tip consists of concentric carbon layers in the shape of a cone, and has been previously studied as a very good candidate for cold field emission. The first laser-induced field emission from a CNT-based nanotip has been observed and we measured the energy spectrum as well as the polarization dependance of the emission. We also characterize the damage threshold of the tip, when illuminated by a high repetition rate femtosecond laser. These first results are encouraging further studies of electron emission from CNT-based carbon nanotips.

  19. Effects of ZnO Quantum Dots Decoration on the Field Emission Behavior of Graphene.

    PubMed

    Sun, Lei; Zhou, Xiongtu; Lin, Zhixian; Guo, Tailiang; Zhang, Yongai; Zeng, Yongzhi

    2016-11-23

    ZnO quantum dots (QDs) have been decorated on graphene deposited on patterned Ag electrodes as a field emission cathode by a solution process. Effects of ZnO QDs on the field emission behavior of graphene are studied by experiment and first-principles calculations. The results indicate that the attachment of ZnO QDs with a C atom leads to the enhancement of electron emission from graphene, which is mainly attributed to the reduction of the work function and ionization potential, and the increase of the Fermi level of graphene after the decoration. A change in the local density distribution and the density of states near the Fermi level may also account for this behavior. Our study may help to develop new field emission composites and expand ZnO QDs in applications for electron emission devices as well.

  20. Correlation of photon emission with electric-field-initiated nanometer-scale surface modification

    NASA Astrophysics Data System (ADS)

    Strozewski, K. J.; McBride, S. E.; Wetsel, G. C., Jr.

    1996-06-01

    Photon emission during electric-field-initiated material transfer has been measured using a scanning tunneling microscope configured for surface modification. The instrument has been integrated with a photon-counting system that measures the emission originating from the tip-sample junction under both quiescent and transient conditions. The transient photon emission recorded during nanometer-scale surface modification of gold samples is correlated with the type of feature formed on the sample surface.

  1. Low turn-on field and high field emission current density from Ag/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Patil, Girish P.; Deore, Amol B.; Bagal, Vivekanand S.; Late, Dattatray J.; More, Mahendra A.; Chavan, Padmakar G.

    2016-07-01

    High current density of 1.24 mA/cm2 was drawn at an applied field of 4.4 V/μm from Ag/TiO2 nanocomposite. Also the turn-on field has been reduced from 3.9 V/μm to 2.7 V/μm for the emission current density of 10 μA/cm2. Ag/TiO2 nanocomposite was synthesized by using UV-switchable reducing agent. TiO2 nanotube wall was decorated by Ag nanoparticles with average diameter of 17 nm. To the best of our knowledge this is the first report on the field emission studies of Ag/TiO2 nanocomposite. Simple synthesis route coupled with superior field emission properties indicate the possible use of Ag/TiO2 nanocomposite for micro/nanoelectronic devices.

  2. Emissions of N2O and NO from fertilized fields: Summary of available measurement data

    NASA Astrophysics Data System (ADS)

    Bouwman, A. F.; Boumans, L. J. M.; Batjes, N. H.

    2002-12-01

    Information from 846 N2O emission measurements in agricultural fields and 99 measurements for NO emissions was summarized to assess the influence of various factors regulating emissions from mineral soils. The data indicate that there is a strong increase of both N2O and NO emissions accompanying N application rates, and soils with high organic-C content show higher emissions than less fertile soils. A fine soil texture, restricted drainage, and neutral to slightly acidic conditions favor N2O emission, while (though not significant) a good soil drainage, coarse texture, and neutral soil reaction favor NO emission. Fertilizer type and crop type are important factors for N2O but not for NO, while the fertilizer application mode has a significant influence on NO only. Regarding the measurements, longer measurement periods yield more of the fertilization effect on N2O and NO emissions, and intensive measurements (≥1 per day) yield lower emissions than less intensive measurements (2-3 per week). The available data can be used to develop simple models based on the major regulating factors which describe the spatial variability of emissions of N2O and NO with less uncertainty than emission factor approaches based on country N inputs, as currently used in national emission inventories.

  3. Electronic Structures of Supported Nanometer-Size Clusters Using Field Emission Energy Analyzer.

    NASA Astrophysics Data System (ADS)

    Lin, Mong-Ea.

    The discrete energy states of a nanometer-size gold cluster have been measured using energy-resolved field emission microscopy. The clusters were prepared in a multiple expansion cluster source (MECS) which is capable of producing nanometer-size clusters with a narrow size distribution. An individual cluster was deposited on a tungsten field emission tip which was then transferred under vacuum into a UHV field emission chamber. A 127^circ differential energy analyzer with 80 meV resolution was used to measure the energy distribution of electrons emitted from the individual cluster. Several peaks are observed in the field emission energy distributions. A simple model will be presented to explain the structure observed and relate the observed peaks to discrete energy levels of the Au cluster. As a next example of such 'single cluster' experiments, we will discuss the evidence for electron emission from the first quantum charge state of a metal cluster. This charge state is located at an energy e^2 /2C above the highest filled electronic state of the neutral cluster and becomes populated at high rates of electron emission. We will also investigate the electrons emission rates of cluster and tungsten tips. The emission rates of cluster tips are not as stable as those of tungsten tip and do not obey Poisson distributions. The reduced chi^2 test shows two different geometrical structures of a small cluster and indicates quasimelting of this cluster. Another interesting topic to study is electron emission from the newly discovered C_{60 } molecule. C_{60} dust has been heated near a tungsten tip situated in an ultra high vacuum chamber. The rate of cluster deposition was found to greatly increase when the tip was biased positive with respect to the oven potential. These experiments have shown that with care, individual C_ {60} can be deposited on a field emitter and studied using field emission microscopy techniques. Size estimates of the field emission image indicate

  4. Effect of Biochar on Greenhouse Gas Emissions and Nitrogen Cycling in Laboratory and Field Experiments

    NASA Astrophysics Data System (ADS)

    Hagemann, Nikolas; Harter, Johannes; Kaldamukova, Radina; Ruser, Reiner; Graeff-Hönninger, Simone; Kappler, Andreas; Behrens, Sebastian

    2014-05-01

    The extensive use of nitrogen (N) fertilizers in agriculture is a major source of anthropogenic N2O emissions contributing 8% to global greenhouse gas emissions. Soil biochar amendment has been suggested as a means to reduce both CO2 and non-CO2 greenhouse gas emissions. The reduction of N2O emissions by biochar has been demonstrated repeatedly in field and laboratory experiments. However, the mechanisms of the reduction remain unclear. Further it is not known how biochar field-weathering affects GHG emissions and how agro-chemicals, such as the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP), that is often simultaneously applied together with commercial N-fertilizers, impact nitrogen transformation and N2O emissions from biochar amended soils. In order investigate the duration of the biochar effect on soil N2O emissions and its susceptibility to DMPP application we performed a microcosm and field study with a high-temperature (400 ° C) beech wood derived biochar (60 t ha-1 and 5 % (w/w) biochar in the field and microcosms, respectively). While the field site contained the biochar already for three years, soil and biochar were freshly mixed for the laboratory microcosm experiments. In both studies we quantified GHG emissions and soil nitrogen speciation (nitrate, nitrite, ammonium). While the field study was carried out over the whole vegetation period of the sunflower Helianthus annuus L., soil microcosm experiments were performed for up to 9 days at 28° C. In both experiments a N-fertilizer containing DMPP was applied either before planting of the sunflowers or at the beginning of soil microcosms incubation. Laboratory microcosm experiments were performed at 60% water filled pore space reflecting average field conditions. Our results show that biochar effectively reduced soil N2O emissions by up to 60 % in the field and in the soil microcosm experiments. No significant differences in N2O emission mitigation potential between field-aged and fresh

  5. Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic compounds, elemental carbon, organic carbon, c...

  6. Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic compounds, elemental carbon, organic carbon, c...

  7. “Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground”

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, ch...

  8. U.S. EPA'S FIELD TEST PROGRAMS TO UPDATE DATA ON LANDFILL GAS EMISSIONS

    EPA Science Inventory

    The paper discusses a field test program in which the EPA is currently engaged to improve data on landfill gas (LFG) emissions. LFG emissions data in use at this time are based on determinations made in the late 1980s and early 1990s; changes in landfill operations, such as using...

  9. U.S. EPA'S FIELD TEST PROGRAMS TO UPDATE DATA ON LANDFILL GAS EMISSIONS

    EPA Science Inventory

    The paper discusses a field test program in which the EPA is currently engaged to improve data on landfill gas (LFG) emissions. LFG emissions data in use at this time are based on determinations made in the late 1980s and early 1990s; changes in landfill operations, such as using...

  10. Modeled nitrous oxide emissions from corn fields in Iowa based on county level data

    USDA-ARS?s Scientific Manuscript database

    The US Corn Belt area has the capacity to generate high nitrous oxide (N2O) emissions due to medium to high annual precipitation, medium to heavy textured soils rich in organic matter, and high nitrogen (N) application rates. The purpose of this work was to estimate field N2O emissions from cornfiel...

  11. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    ERIC Educational Resources Information Center

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  12. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    ERIC Educational Resources Information Center

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  13. “Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground”

    EPA Science Inventory

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, ch...

  14. Emissions from prescribed burning of agricultural fields in the Pacific Northwest

    Treesearch

    A. L. Holder; B. K. Gullett; S. P. Urbanski; R. Elleman; S. O' Neill; D. Tabor; W. Mitchell; K. R. Baker

    2017-01-01

    Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide a current and comprehensive set of emissions data for air quality models, climate models,...

  15. Multi-field electron emission pattern of 2D emitter: Illustrated with graphene

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Li, Zhibing

    2016-11-01

    The mechanism of laser-assisted multi-field electron emission of two-dimensional emitters is investigated theoretically. The process is basically a cold field electron emission but having more controllable components: a uniform electric field controls the emission potential barrier, a magnetic field controls the quantum states of the emitter, while an optical field controls electron populations of specified quantum states. It provides a highly orientational vacuum electron line source whose divergence angle over the beam plane is inversely proportional to square root of the emitter height. Calculations are carried out for graphene with the armchair emission edge, as a concrete example. The rate equation incorporating the optical excitation, phonon scattering, and thermal relaxation is solved in the quasi-equilibrium approximation for electron population in the bands. The far-field emission patterns, that inherit the features of the Landau bands, are obtained. It is found that the optical field generates a characteristic structure at one wing of the emission pattern.

  16. Improved field emission performance of carbon nanotube by introducing copper metallic particles.

    PubMed

    Chen, Yiren; Jiang, Hong; Li, Dabing; Song, Hang; Li, Zhiming; Sun, Xiaojuan; Miao, Guoqing; Zhao, Haifeng

    2011-10-03

    To improve the field emission performance of carbon nanotubes (CNTs), a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO) electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  17. ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES

    SciTech Connect

    Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J.

    2012-11-20

    We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lag the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.

  18. Field Emission Study of Carbon Nanotubes: High Current Density from Nanotube Bundle Arrays

    NASA Technical Reports Server (NTRS)

    Bronikowski, Micheal J.; Manohara, Harish M.; Siegel, Peter H.; Hunt, Brian D.

    2004-01-01

    We have investigated the field emission behavior of lithographically patterned bundles of multiwalled carbon nanotubes arranged in a variety of array geometries. Such arrays of nanotube bundles are found to perform significantly better in field emission than arrays of isolated nanotubes or dense, continuous mats of nanotubes, with the field emission performance depending on the bundle diameter and inter-bundle spacing. Arrays of 2-micrometers diameter nanotube bundles spaced 5 micrometers apart (edge-to-edge spacing) produced the largest emission densities, routinely giving 1.5 to 1.8 A/cm(sup 2) at approximately 4 V/micrometer electric field, and greater than 6 A/cm(sup 2) at 20 V/micrometers.

  19. Peculiarities of the electron field emission from quantum-size structures

    NASA Astrophysics Data System (ADS)

    Litovchenko, V. G.; Evtukh, A. A.; Litvin, Yu. M.; Goncharuk, N. M.; Hartnagel, H.; Yilmazoglu, O.; Pavlidis, D.

    2003-06-01

    The electron field emission from semiconductor based layered structures has been investigated. Among studied structures were silicon tips coated with ultra-thin DLC layer, multilayer structures Si-SiO 2-Si ∗-SiO 2 with delta-doped Si ∗ layer, nanocomposite layers SiO xN y(Si) with Si nanocrystals embedded in SiO xN y matrix, GaN layers and Si-SiGe heterostructures. All of them have such peculiarities of electron field emission as peaks on emission current-voltage characteristics and corresponding Fowler-Nordheim plots. A physical model is proposed for explanation of experimental results. All emitters have layer, cluster wire or dot with quantum-size restriction in it. As a result, the quantum well with splitted electron levels exists or appears at electric field. Additional mechanism of electron emission-resonance tunneling is realized at definite electric fields.

  20. Effect of anodization voltage on electron field emission from carbon nanotubes in anodized alumina template.

    PubMed

    Wisitsoraat, A; Phokharatkul, D; Komin, K; Jaruwongrangsee, K; Tuantranont, A

    2011-12-01

    In this work, electron field emission from AAO-CNT structure is studied as a function of anodizing voltage. It is found that the turn-on electric field of AAO-CNTs reduces from 5 V/microm to 4 V/microm as anodization voltage increase from 20 to 30 V. On the other hand, CNTs the turn-on electric field of AAO-CNTs increases from 4 V/microm to 6 V/microm as anodization voltage increase from 30 to 40 V. Thus, anodization voltage of 30 V provides an optimal AAO-CNTs structure for electron field emission. The emission data have been analyzed based on the Fowler Nordhiem (F-N) model. AAO template prepared with 30 V anodization voltage is found to yield CNT nanoarray with optimum alignment and spacing that increase field enhancement factor by the lowering of field screening effect without significant lowering of CNTs density.

  1. PISCES field chemical emissions monitoring project: Site 19 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 19. Site 19 is a pulverized coal-fired boiler burning a medium-sulfur bituminous coal. Site 19 employs electrostatic precipitators for particulate control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  2. PISCES field chemical emissions monitoring project: Site 102 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 102. Site 102 is a cyclone boiler burning a sub-bituminous coal. Site 102 employs an electrostatic precipitator for particulate control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  3. PISCES field chemical emissions monitoring project: Site 118 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 118. Site 118 is a residual oil-fired boiler, with an electrostatic precipitator for particulate control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  4. PISCES field chemical emissions monitoring project: Site 101 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 101. Site 101 is a pulverized coal-fired boiler burning a sub-bituminous coal. Site 101 employs a reverse-gas fabric filter for particulate control and a wet limestone flue gas desulfurization system for SO{sub 2} control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts-as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites.

  5. [Effects of high-yielding rice cultivar and cultivation pattern on methane emission from paddy field].

    PubMed

    Fu, Zhi-qiang; Huang, Huang; Xie, Wei; He, Bao-liang

    2009-12-01

    A field experiment was conducted to observe the effects of high-yielding rice cultivars (early rice Luliangyou No. 996 and Chuanfeng No. 1, and late rice T you No. 259) and cultivation patterns (direct sowing and transplanting) on the methane emission from paddy field. The methane emission from early rice field before drying was 52%-73% of the total, while drainage and drying decreased the methane emission significantly. For late rice field, the methane emission during vegetative growth stage was 70% of the total. Under direct sowing of early rice, the average methane flux was lower, but the total methane emission was higher, compared with those under transplanting. As for late rice, both the average methane flux and the total methane emission were higher under direct sowing than under transplanting. There existed significant differences in the methane emission per unit grain production of early rice and late rice between direct sowing and transplanting. The methane emission per unit grain production under direct sowing of early rice super hybrid was increased by 4.84 g CH4 x kg(-1), compared with that under transplanting, and the emission under direct sowing of conventional early rice was increased by 3.48 g CH4 x kg(-1), compared with that under transplanting. The emission under direct sowing of hybrid rice was 6.67 g CH4 x kg(-1) higher than that under transplanting. In the same cultivation area and the same time period of direct sowing and transplanting, the methane emission was in the order of direct sowing of conventional early rice > transplanting of conventional early rice > direct sowing of early rice super hybrid > transplanting of early rice super hybrid, and direct sowing of late rice > transplanting of late rice.

  6. LZIFU: IDL emission line fitting pipeline for integral field spectroscopy data

    NASA Astrophysics Data System (ADS)

    Ho, I.-Ting

    2016-07-01

    LZIFU (LaZy-IFU) is an emission line fitting pipeline for integral field spectroscopy (IFS) data. Written in IDL, the pipeline turns IFS data to 2D emission line flux and kinematic maps for further analysis. LZIFU has been applied and tested extensively to various IFS data, including the SAMI Galaxy Survey, the Wide-Field Spectrograph (WiFeS), the CALIFA survey, the S7 survey and the MUSE instrument on the VLT.

  7. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves

    NASA Astrophysics Data System (ADS)

    Roden, Christoph A.; Bond, Tami C.; Conway, Stuart; Osorto Pinel, Anibal Benjamin; MacCarty, Nordica; Still, Dean

    We implemented a program in which emission characterization is enabled through collaborations between academic, US and international non-governmental entities that focus on evaluation, dissemination, and in-use testing, of improved cookstoves. This effort resulted in a study of field and laboratory emissions from traditional and improved biofuel cookstoves. We found that field measured particulate emissions of actual cooking average three times those measured during simulated cooking in the laboratory. Emission factors are highly dependent on the care and skill of the operator and the resulting combustion; these do not appear to be accurately reproduced in laboratory settings. The single scattering albedo (SSA) of the emissions was very low in both lab and field measurements, averaging about 0.3 for lab tests and around 0.5 for field tests, indicating that the primary particles are climate warming. Over the course of three summers in Honduras, we measured field emissions from traditional cookstoves, relatively new improved cookstoves, and "broken-in" improved cookstoves. We found that well-designed improved cookstoves can significantly reduce PM and CO emission factors below traditional cookstoves. For improved stoves, the presence of a chimney generally resulted in lower emission factors but left the SSA unaffected. Traditional cookstoves had an average PM emission factor of 8.2 g kg -1 - significantly larger than previous studies. Particulate emission factors for improved cookstoves without and with chimneys averaged about 6.6 g kg -1 and 4.5 g kg -1, respectively. The elemental carbon (EC) fraction of PM varied significantly between individual tests, but averaged about 25% for each of the categories.

  8. Pulsed laser deposition of tin oxide thin films for field emission studies

    NASA Astrophysics Data System (ADS)

    Jadhav, H.; Suryawanshi, S.; More, M. A.; Sinha, S.

    2017-10-01

    A comparative study of Pulsed Laser Deposition (PLD) based Tin Oxide (SnO2) thin films deposited at various substrate deposition temperature (Ts) has been performed. Surface morphology of the films was studied by Field Emission Scanning Electron Microscopy (FESEM) and surface composition of the films by X-ray PhotoelectronSpectroscopy (XPS) technique. X-ray diffraction (XRD) technique has been used to investigate crystalline nature of the deposited films. Field Emission (FE) properties of the SnO2 films were measured and a significantly low turn on field (2.1 V/μm) (field necessary to draw an emission current density of 10 μA/cm2) for films deposited at high substrate temperature (700 °C) was observed. Field enhancement factor estimated from FE studies was found to strongly depend on the surface morphology of the films. Overall good field emission current stability was observed for all SnO2 films. Dependence of FE properties on surface morphology, surface composition and deposition environment has been observed and analyzed systematically. Significantly low turn on field with high emission current density and field enhancement factor exhibited by films deposited when substrate was maintained at 700 °C has been mainly correlated to surface morphology and surface composition.

  9. Enhanced Field Emission From The Gold- Polyaniline (Au-PANI) Nanocomposite

    SciTech Connect

    Patil, Sandip S.; More, Mahendra A.; Koiry, Shankar P.; Aswal, D. K.

    2010-12-01

    The gold-polyaniline nanocomposite was synthesized by electrochemical route in two steps. In the first step polyaniline film was deposited by cyclic voltammetry on the ITO coated glass substrate, and then synthesis of gold-polyaniline nanocomposite via chronoamperometry. The synthesized gold-polyaniline nanocomposite film was characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), Ultra-violet spectroscopy (UV-vis) and Fourier Transform Infrared Spectrometry (FTIR). The SEM analysis shows well adherent gold nanoparticles on the surface of polyaniline nanofibers. The XRD and UV-Vis spectra indicate formation of gold nanoparticles. From the field emission studies, the value of the turn on field, corresponding to 1 nA emission current, is found to be 0.65 V/{mu}m and emission current density of 1 {mu}A/cm{sup 2} has been drawn at an applied field of 1.1 V/{mu}m. These values are observed to be superior than the reported ones. The field emission current stability investigated at 1 {mu}A over duration of more than four hours is found to be good. The observed field emission characteristics suggest the gold polyaniline nanocomposite as promising material for field emission based applications.

  10. Study of the thermal mode of a silicon carbide field emission cathode

    NASA Astrophysics Data System (ADS)

    Ivanov, A. S.; Ilyin, V. A.; Titov, V. N.

    2017-07-01

    The dependency of the thermal mode of the silicon carbide (6H-SiC) field emission arrays on the integral emission current density is considered. Experimental temperature estimates reaching values of 1100 °C are presented. Computer simulation of the thermal mode accounting for the emission of electrons from a limited area of the apex of the tip, the Joule heating at the tips, and the nonlinear dependence of the thermal conductivity of the material is performed. The possibility of increasing the integral density of the emission current above 10 A·cm-2 is demonstrated.

  11. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  12. Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties

    NASA Astrophysics Data System (ADS)

    Ramaneti, R.; Sankaran, K. J.; Korneychuk, S.; Yeh, C. J.; Degutis, G.; Leou, K. C.; Verbeeck, J.; Van Bael, M. K.; Lin, I. N.; Haenen, K.

    2017-06-01

    A "patterned-seeding technique" in combination with a "nanodiamond masked reactive ion etching process" is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of the DGH nanorods, which contain sp2-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices.

  13. Attosecond electron emission probes of ultrafast nanolocalized fields

    NASA Astrophysics Data System (ADS)

    Kling, Matthias

    2011-05-01

    Ongoing experimental and theoretical work on the temporal and spatial characterization of nanolocalized plasmonic fields will be presented. Because of their broad spectral bandwidth, plasmons in metal nanoparticles undergo ultrafast dynamics with timescales as short as a few hundred attoseconds. So far, the spatiotemporal dynamics of optical fields localized on the nanoscale has been hidden from direct access in the real space and time domain. Our ultimate goal is to characterize the nanoplasmonic fields not only on a nanometer spatial scale but also on ~100 attosecond temporal scale. Information about the nanoplasmonic fields, which are excited by few-cycle laser pulses with stable electric field waveform, can be obtained by the measurement of photoemitted electrons. We will present recent results on the large acceleration of recollision electrons in nanolocalized fields near dielectric nanoparticles following the excitation by 5-fs near-infrared laser pulses with controlled electric field waveforms. This work has been carried out in collaboration with Th. Fennel (University of Rostock), E. Ruehl (FU Berlin), and M.I. Stockman (GSU Atlanta). We acknowledge support by the DFG via Emmy-Noether program and SPP1391.

  14. Field-Emission from Chemically Functionalized Diamond Surfaces: Does Electron Affinity Picture Work?

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi

    2014-03-01

    By means of the time-dependent density functional electron dynamics, we have revisited the field-emission efficiency of chemically functionalized diamond (100) surfaces. In order to achieve high efficiency and high (chemical) stability, proper chemical species are needed to terminate diamond surfaces. Hydrogen (H) termination is well known to achieve the negative electron affinity (NEA) of diamond surface which indeed enhances field emission performance than that of clean surface with positive electron affinity (PEA). Yet, the durability of H-terminated diamond surface was concerned for long-time operation of the field-emission. Meantime, oxidation, or hydroxyl (OH) termination was considered to achieve chemical stability of the surface but presence of oxygen (O) atom should reduce the emission efficiency. Recently, H- OH-co-terminated surface is reported as NEA and was expected to achieve both emission efficiency and chemical stability. However, our simulation showed that emission efficiency of the H- OH- co-terminated surface is much lower than clean surface with PEA, thus we note that the electron affinity cannot be a unique measure to determine the emission efficiency. In this talk, we introduce necessity of new concept to understand the emission efficiency which needs to know detailed potential profile from bulk to vacuum through surface, which is strongly dependent on the surface chemical functionalization. This work was supported by ALCA project conducted by Japan Science and Technology Agency.

  15. Field emission properties of ring-shaped Si ridges with DLC coating

    NASA Astrophysics Data System (ADS)

    Prommesberger, Christian; Ławrowski, Robert; Langer, Christoph; Mecani, Mirgen; Huang, Yifeng; She, Juncong; Schreiner, Rupert

    2017-05-01

    We report on the fabrication and the emission characterization of single ring-shaped Si ridges with a coating of diamond-like carbon (DLC). The reactive ion etching and the subsequent inductively coupled plasma step were adjusted to realize ring-shaped Si ridges with a height of 7.5 μm respectively 15 μm and an apex radius of 20 - 25 nm. The samples were coated with a DLC layer (thickness ≈ 2 - 5 nm) by a filtered cathodic vacuum arc deposition system in order to lower the work function of the emitter and to improve the field emission characteristics. The field emission characterizations were done in diode configuration with cathode and anode separated by a 50 μm thick mica spacer. A higher emission current was carried out for the ring-shaped Si ridge in comparison to the point-shaped Si tips due to the increased emission area. The highest emission current of 0.22 μA at 1000 V was measured on a DLC-coated sample with the highest aspect ratio. No degradation of the emission current was observed in the plateau regime during a measurement period of 6 h. Finally, no decreasing performance of the field emission properties was found due to changes in the geometry or destructions.

  16. Fabrication of small diameter few-walled carbon nanotubes with enhanced field emission property.

    PubMed

    Qian, Cheng; Qi, Hang; Gao, Bo; Cheng, Yuan; Qiu, Qi; Qin, Lu-Chang; Zhou, Otto; Liu, Jie

    2006-05-01

    A unique type of carbon nanotubes with 2 to 5 layers of sidewalls and diameters less than 10 nm was synthesized by the thermal chemical vapor deposition (CVD) method with MgO supported Fe/Mo catalyst. Unlike the typical CVD grown multi-walled carbon nanotubes, these few-walled carbon nanotubes (FWNTs) have a high degree of structural perfection. They have enhanced electron field emission characteristics compared to the current commercial nanotubes, with a low threshold field for emission and improved emission stability.

  17. Electron emission from self-assembled quantum dots in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Schramm, A.; Schulz, S.; Schaefer, J.; Zander, T.; Heyn, Ch.; Hansen, W.

    2006-05-01

    We probe with deep level transient spectroscopy electron states in self-assembled InAs quantum dots. Two pronounced maxima are observed that we associate with emission from different quantum-dot orbital states. Fine structure clearly establishes distinct emission rates for quantum dots with one or two electrons in the s state and up to four electrons in the p-like states. In order to confirm these assignments spectra have been recorded in strong magnetic fields. The observed magnetic field dispersion of the emission energies is described with a harmonic oscillator model using an effective electron mass of m*=0.03me.

  18. Low-threshold field emission in planar cathodes with nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Zhigalov, V.; Petukhov, V.; Emelianov, A.; Timoshenkov, V.; Chaplygin, Yu.; Pavlov, A.; Shamanaev, A.

    2016-12-01

    Nanocarbon materials are of great interest as field emission cathodes due to their low threshold voltage. In this work current-voltage characteristics of nanocarbon electrodes were studied. Low-threshold emission was found in planar samples where field enhancement is negligible (<10). Electron work function values, calculated by Fowler-Nordheim theory, are anomalous low (<1 eV) and come into collision with directly measured work function values in fabricated planar samples (4.1-4.4 eV). Non-applicability of Fowler-Nordheim theory for the nanocarbon materials was confirmed. The reasons of low-threshold emission in nanocarbon materials are discussed.

  19. ZnO:Ga nanowires with low turn-on field for field-emission lighting

    NASA Astrophysics Data System (ADS)

    Yang, Su-Hua; Tsai, Ming-Wei; Lin, Jau-Wen; Chiang, Po-Jui

    2015-11-01

    ZnO:Ga nanowires were synthesized using a ZnO seed layer as a pseudo-catalyst by a vapor-phase transport method. Nanowire growth was facilitated along the longitudinal axis, and the aspect ratio was increased from 27.3 to 54.1 by doping with Ga3+, which also slightly enhanced growths of the (1 0 0) and (1 0 1) planes. The luminescent spectrum was narrower, more red-shifted, and less intense when the Ga3+ doping concentration was increased. However, the substitution of Ga for Zn enhanced the tunneling capability of electrons at the ZnO-vacuum interface. ZnO:Ga nanowires doped with 0.5 mol% of Ga3+ achieved a low turn-on electric field of 0.57 V/μm. A stable emission current of 0.85 mA/cm2 with fluctuations within ±12.9% was observed over 5 h of operation.

  20. Beam Dynamics Simulations of Optically-Enhanced Field Emission from Structured Cathodes

    SciTech Connect

    Seymour, A.; Grote, D.; Mihalcea, D.; Piot, P.; Vay, J.-L.

    2014-01-01

    Structured cathodes - cathodes with a segmented emission surface - are finding an increasing number of applications and can be combined with a variety of emission mechanisms, including photoemission and field emission. These cathodes have been used to enhance the quantum efficiency of metallic cathodes when operated as plasmonic cathodes, have produced high-current electron bunches though field emission from multiple tips, and can be used to form beams with transverse segmentations necessary for improving the performance of accelerator-based light sources. In this report we present recent progress towards the development of finite-difference time-domain particle-in-cell simulations using the emission process in structured cathodes based on the WARP framework. The simulations give further insight on the localized source of the emitted electrons which could be used for additional high-fidelity start-to-end simulations of electron accelerators that employ this type of electron source.

  1. [Factors influencing CH4 emissions from a permanently flooded rice field during rice growing period].

    PubMed

    Cai, Zucong; Xie, Deti; Xu, Hua; Wei, Chaofu; Gao, Ming

    2003-05-01

    Permanently flooded rice fields are the rice fields which emit the largest amount of CH4 in China. A 6-years (1995-2000) measurement carried out in a permanently flooded rice field in Chongqing, China showed that draining floodwater in winter and planting upland crops, either winter wheat or rape, instead of fallow under flooded conditions not only stopped CH4 emission during the winter season, but also mitigated CH4 emission during following rice growing period. CH4 emission could also be mitigated by ridge-cultivation. By using the results obtained from 1998-2000, statistical analysis indicated a significant relationship between the mean CH4 emission over the rice growing period and averaged soil moisture in winter season, which explained 56% of the variation of the CH4 emissions among the years and treatments. The averaged soil moisture (0-20 cm) in winter season and soil temperature (5 cm) over the rice growing period explained 78% of the variation. The significance of soil moisture in winter season in CH4 emission during the following rice growing period was further demonstrated by a lysimeter experiment. The relationships implied that the precipitation during non-rice growing period, which dominates soil moisture at a large spatial scale, and the soil temperature during the rice growing period would be the main factors controlling the annual variation of CH4 emissions from rice fields.

  2. Interstellar Magnetic Fields and Polarimetry of Dust Emission

    NASA Technical Reports Server (NTRS)

    Dowell, Darren

    2010-01-01

    Magnetic fields are an important ingredient in the stormy cosmos. Magnetic fields: (1) are intimately involved with winds from Active Galactic Nuclei (AGN) and stars (2) create at least some of the structures observed in the ISM (3) modulate the formation of clouds, cores, and stars within a turbulent medium (4) may be dynamically important in protostellar accretion disks (5) smooth weak shocks (C-shocks).

  3. HARD X-RAY EMISSION DURING FLARES AND PHOTOSPHERIC FIELD CHANGES

    SciTech Connect

    Burtseva, O.; Petrie, G. J. D.; Pevtsov, A. A.; Martínez-Oliveros, J. C.

    2015-06-20

    We study the correlation between abrupt permanent changes of magnetic field during X-class flares observed by the Global Oscillation Network Group and Helioseismic and Magnetic Imager instruments, and the hard X-ray (HXR) emission observed by RHESSI, to relate the photospheric field changes to the coronal restructuring and investigate the origin of the field changes. We find that spatially the early RHESSI emission corresponds well to locations of the strong field changes. The field changes occur predominantly in the regions of strong magnetic field near the polarity inversion line (PIL). The later RHESSI emission does not correspond to significant field changes as the flare footpoints are moving away from the PIL. Most of the field changes start before or around the start time of the detectable HXR signal, and they end at about the same time or later than the detectable HXR flare emission. Some of the field changes propagate with speed close to that of the HXR footpoint at a later phase of the flare. The propagation of the field changes often takes place after the strongest peak in the HXR signal when the footpoints start moving away from the PIL, i.e., the field changes follow the same trajectory as the HXR footpoint, but at an earlier time. Thus, the field changes and HXR emission are spatio-temporally related but not co-spatial nor simultaneous. We also find that in the strongest X-class flares the amplitudes of the field changes peak a few minutes earlier than the peak of the HXR signal. We briefly discuss this observed time delay in terms of the formation of current sheets during eruptions.

  4. Prevention of electron field emission from molybdenum substrates for photocathodes by the native oxide layer

    NASA Astrophysics Data System (ADS)

    Lagotzky, Stefan; Barday, Roman; Jankowiak, Andreas; Kamps, Thorsten; Klimm, Carola; Knobloch, Jens; Müller, Günter; Senkovskiy, Boris; Siewert, Frank

    2015-05-01

    Comprehensive investigations of the electron field emission (FE) properties of annealed single crystal and polycrystalline molybdenum plugs, which are used as substrates for actual alkali-based photocathodes were performed with a FE scanning microscope. Well-polished and dry-ice cleaned Mo samples with native oxide did not show parasitic FE up to a field level of 50 MV/m required for photoinjector cavities. In situ heat treatments (HT) above 400 °C, which are usual before photocathode deposition, activated field emission at lower field strength. Oxygen loading into the Mo surface, however, partially weakened these emitters. X-ray photoelectron spectroscopy of comparable Mo samples showed the dissolution of the native oxide during such heat treatments. These results reveal the suppression of field emission by native Mo oxides. Possible improvements for the photocathode preparation will be discussed.

  5. Anode distance effect on field electron emission from carbon nanotubes: a molecular/quantum mechanical simulation.

    PubMed

    He, Chunshan; Wang, Weiliang; Deng, Shaozhi; Xu, Ningsheng; Li, Zhibing; Chen, Guihua; Peng, Jie

    2009-06-25

    Field electron emission from single-walled (5,5) carbon nanotubes was simulated with a quantum chemistry method, emphasizing the effect of distance between the anode and apex. The emission probability and the field enhancement factor were obtained for different anode-apex separations with two representative applied macroscopic fields. The quantum chemistry simulation was compared to the classical finite element calculation. It was found that the field enhancement factor was overestimated by about a factor 2 in the classical calculation (for the capped carbon nanotube). The effective work function lowering due to the field penetration into the apex has important contribution to the emission probability. A peculiar decrease of the effective work function with the anode-apex separation was found for the capped carbon nanotube, and its quantum mechanical origin is discussed.

  6. Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films.

    PubMed

    Lee, Duck Hyun; Lee, Jin Ah; Lee, Won Jong; Kim, Sang Ouk

    2011-01-03

    The outstanding flexible field emission properties of carbon hybrid films made of vertically aligned N-doped carbon nanotubes grown on mechanically compliant reduced graphene films are demonstrated. The bottom-reduced graphene film substrate enables the conformal coating of the hybrid film on flexible device geometry and ensures robust mechanical and electrical contact even in a highly deformed state. The field emission properties are precisely examined in terms of the control of the bending radius, the N-doping level, and the length or wall-number of the carbon nanotubes and analyzed with electric field simulations. This high-performance flexible carbon field emitter is potentially useful for diverse, flexible field emission devices.

  7. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    SciTech Connect

    Kusa, F.; Echternkamp, K. E.; Herink, G.; Ropers, C.; Ashihara, S.

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  8. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  9. Physical properties of thin-film field emission cathodes with molybdenum cones

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.; Brodie, I.; Humphrey, L.; Westerberg, E. R.

    1976-01-01

    Field emission cathodes fabricated using thin-film techniques and electron beam microlithography are described, together with effects obtained by varying the fabrication parameters. The emission originates from the tip of molybdenum cones that are about 1.5 micron tall with a tip radius around 500 A. Such cathodes have been produced in closely packed arrays containing 100 and 5000 cones as well as singly. Maximum currents in the range 50-150 microamp per cone can be drawn. Life tests with the 100-cone arrays drawing 2 mA total emission (or 3 A per sq cm) have proceeded in excess of 7000 hr with about a 10% drop in emission current. Studies are presented of the emission characteristics and current fluctuation phenomena. It is tentatively concluded that the emission arises from only one or a few atomic sites on the cone tips.

  10. Physical properties of thin-film field emission cathodes with molybdenum cones

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.; Brodie, I.; Humphrey, L.; Westerberg, E. R.

    1976-01-01

    Field emission cathodes fabricated using thin-film techniques and electron beam microlithography are described, together with effects obtained by varying the fabrication parameters. The emission originates from the tip of molybdenum cones that are about 1.5 micron tall with a tip radius around 500 A. Such cathodes have been produced in closely packed arrays containing 100 and 5000 cones as well as singly. Maximum currents in the range 50-150 microamp per cone can be drawn. Life tests with the 100-cone arrays drawing 2 mA total emission (or 3 A per sq cm) have proceeded in excess of 7000 hr with about a 10% drop in emission current. Studies are presented of the emission characteristics and current fluctuation phenomena. It is tentatively concluded that the emission arises from only one or a few atomic sites on the cone tips.

  11. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields.

    PubMed

    Towprayoon, S; Smakgahn, K; Poonkaew, S

    2005-06-01

    One of the important cultural practices that affect methane and nitrous oxide emissions from tropical rice plantations is the water drainage system. While drainage can reduce methane emissions, it can also increase nitrous oxide emissions, as well as reduce yields. In this experiment, four different water drainage systems were compared in a rice field in central Thailand including: (1) continuous flooding, (2) mid-season drainage, (3) multiple drainage and (4) a local method (drainage was done according to local cultural practice) in order to find a system of drainage that would optimize yields while simultaneously limiting methane and nitrous oxide emissions. Methane and nitrous oxide emission were observed and compared with rice yield and physical changes of rice plants. It was found that drainage during the flowering period could reduce methane emission. Interestingly, nitrous oxide emission was related to number of drain days rather than the frequency of draining. Fewer drain days can help reduce nitrous oxide emission. The mid-season drainage and the multiple drainage, with 6.9% and 11.4% reduction in rice yield, respectively, had an average methane emission per crop 27% and 35% lower when compared to the local method. Draining with fewer drain days during the flowering period was recommended as a compromise between emissions and yield. The field drainage can be used as an option to reduce methane and nitrous oxide emissions from rice fields with acceptable yield reduction. Mid-season drainage during the rice flowering period, with a shortened drainage period (3 days), is suggested as a compromise between the need to reduce global warming and current socio-economic realities.

  12. Net summertime emission of ammonia from corn and triticale fields

    NASA Astrophysics Data System (ADS)

    Richter, Undine; Smith, Jeremy; Brümmer, Christian

    2016-04-01

    Recent advancements in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we used a quantum cascade laser (QCL) absorption spectrometer to continuously measure high-frequency concentrations of ammonia and the net exchange between an agricultural site and the atmosphere based on the eddy-covariance approach. The footprint was split into two main sectors, one planted with corn (Zea mays) and the other one with triticale. Ammonia concentrations were highly variable between 2 and almost 100 ppb with an average value of 8.1 ppb during the observation period from April to September 2015. While both deposition and emission of ammonia was observed, the total campaign exchange resulted in a loss of 3.3 kg NH3-N ha-1. Highest average emission fluxes of 65 ng N m-2 s-1 were recorded after fertilization at the beginning of the campaign in April and May. Afterwards the exchange of ammonia with the atmosphere decreased considerably, but the site remained on average a consistent source with sporadic lower peaks and an average flux of 13 ng N m-2 s-1. While management in the form of fertilization was the main driver for ammonia concentration and exchange at the site, biophysical controls from temperature, wind regime, and surface wetness are also presented.

  13. Influence of cluster-assembly parameters on the field emission properties of nanostructured carbon films

    NASA Astrophysics Data System (ADS)

    Ducati, C.; Barborini, E.; Piseri, P.; Milani, P.; Robertson, J.

    2002-11-01

    Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material.

  14. Electric field-induced emission enhancement and modulation in individual CdSe nanowires.

    PubMed

    Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru

    2012-10-23

    CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.

  15. Dark-to-arc transition in field emission dominated atmospheric microdischarges

    SciTech Connect

    Tholeti, Siva Sashank; Semnani, Abbas; Peroulis, Dimitrios; Alexeenko, Alina A.

    2015-08-15

    We study the voltage-current characteristics of gas discharges driven by field emission of electrons at the microscale. Particle-in-cell with Monte Carlo collision calculations are first verified by comparison with breakdown voltage measurements and then used to investigate atmospheric discharges in nitrogen at gaps from 1 to 10 μm. The results indicate the absence of the classical glow discharge regime because field electron emission replaces secondary electron emission as the discharge sustaining mechanism. Additionally, the onset of arcing is significantly delayed due to rarefied effects in electron transport. While field emission reduces the breakdown voltage, the power required to sustain an arc of the same density in microgaps is as much as 30% higher than at macroscale.

  16. Evidence of satellite valley position in GaN by photoexcited field emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Yilmazoglu, O.; Pavlidis, D.; Hartnagel, H. L.; Evtukh, A.; Litovchenko, V.; Semenenko, N.

    2008-06-01

    GaN field emitter rods with nanometer diameter were fabricated by photoelectrochemical etching on a n+-GaN substrate. Their electron field emission properties were investigated under ultraviolet (UV) illumination. The Fowler-Nordheim plots of the emission current show different slopes for nonilluminated and UV illuminated devices. A model based on the electron emission from valleys having different specific electron affinities is proposed to explain the experimental results. In the absence of illumination, the GaN rods are almost fully depleted and emission takes place only from the lower valley. Upon UV illumination and presence of a high electric field at the emitter tip, the upper valley of the conduction band appears to be occupied by electrons generated at the valence band. The energy difference between the lower and upper valleys was determined to be 1.15eV and is in good agreement with formerly published theoretical and measured values.

  17. Facile synthesis of ZnPc nanocubes: An electron emitting material for field emission display devices

    NASA Astrophysics Data System (ADS)

    Samanta, M.; Ghorai, U. K.; Mukherjee, M.; Howli, P.; Chattopadhyay, K. K.

    2017-05-01

    A simple low temperature water chemical route for synthesizing Zinc Phthalocyanine (ZnPc) nanostructures were reported here. The as-prepared samples were well analysed by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) technique. The plausible formation mechanism of cube like nanostructures was also explained here. Cold cathode emission properties of ZnPc nanocubes were studied by using an indigenously designed high vacuum system at anode to cathode distance 130 µm. The turn on field and enhancement factor is found to be 5.0 V/μm @ 1µA/cm2 and 1757 respectively. Cold cathode emission properties were further investigated theoretically by finite element method using ANSYS Maxwell simulation package. The obtained results strongly professed that ZnPc nanocubes can act as potential candidate for electron emitter for field emission display devices and many more.

  18. Field emission property of hydrogenated chemical vapor deposited diamond films studied by scanning tunneling microscopy.

    PubMed

    Liu, Fengbin; Wang, Jiadao; Chen, Darong

    2010-11-01

    By using scanning tunneling microscopy, the plots of tunneling current versus applied voltage, at the local points for hydrogenated and oxygenated chemical vapor deposited diamond films, were investigated. For comparison, the measurement points were adopted on the centers of the crystalline grains and at the grain boundaries, respectively. The results indicated that, for the hydrogenated chemical vapor deposited diamond, the field emission character is much better on the center of the crystalline grains than at the grain boundary. In contrast, for the oxygenated samples, the crystalline grains show a poor field emission character. The two diamond surfaces exhibit similar field emission characters at the grain boundaries. The surface emission mechanisms of the hydrogenated chemical vapor deposited diamond films were also discussed.

  19. Measurements of N2O emissions from different vegetable fields on the North China Plain

    NASA Astrophysics Data System (ADS)

    Diao, Tiantian; Xie, Liyong; Guo, Liping; Yan, Hongliang; Lin, Miao; Zhang, He; Lin, Jia; Lin, Erda

    2013-06-01

    Few studies have measured the N2O emission fluxes from vegetable fields. In order to identify the characteristics and the influencing factors of N2O emissions from different vegetable fields, we measured N2O emissions for a full year from four typical fields, including an open-ground vegetable field that has produced vegetables for over 20 years (OV20), a recently developed open-ground vegetable field that was converted from a maize field three years earlier (OV3), a recently developed greenhouse vegetable field that was converted from a maize field 3 years earlier (GV3) and a typical local maize field (Maize). Four different fertilization treatments were set additionally in the recently developed open-ground vegetable field. These were: no fertilizer or manure (OV3_CK), manure only (OV3_M) and the combination of manure with different rates of chemical fertilizer application (OV3_MF1 and OV3_MF3). The results showed that N2O emission fluxes fluctuated between 0.3 ± 0.1 and 912.4 ± 80.0 mg N2O-N m-2 h-1 with the highest emission peak occurring after fertilization followed by irrigation. Nitrogen application explained 64.6-84.5% of the N2O emission in the vegetable fields. The magnitude of the emission peaks depended on the nitrogen application rate and the duration of the emission peaks was mainly associated with soil temperature when appropriate irrigation was given after fertilization. The N2O emission peaks occurred later and lasted for a longer period when the soil temperature was <24 °C in May. However, emission peaks occurred earlier and lasted for a shorter period when the soil temperature was around 25-33 °C from June to August. The annual N2O emissions from the fertilized vegetable fields were 1.68-2.38 times higher than that from the maize field, which had an emission value of 2.88 ± 0.10 kg N ha-1 a-1. The N2O emission factor (EF) of manure nitrogen was 0.07% over the whole year, but was 0.11% and 0.02% in the spring cucumber season and the autumn

  20. Plasma sheath model in the presence of field-induced electron emission

    NASA Astrophysics Data System (ADS)

    Dahal, Jiba; Ayyaswamy, Venkattraman

    2016-10-01

    Microplasmas have become an active area of research during the last two decades with several applications including nanomaterial synthesis, electronics, lighting, biomedicine, and metamaterials for controlling electromagnetic waves. The advances in micro/nanofabrication and the further miniaturization of plasma devices have contributed to the increasing role of new physical mechanisms that were previously neglected. Electric field-induced emission of electrons is one such mechanism that is gaining significance particularly with the discovery of novel electrodes that demonstrate excellent field emission properties. These field emitted electrons and their interaction with microdischarges has shown to affect both pre-breakdown and post-breakdown regimes of operation. The current work focuses on the development of self-consistent sheath model that includes the effects of field-induced electron emission. Sheath models presented earlier accounts for other emission mechanisms such as thermionic and secondary electron emission, the strong influence of electric field on electron emission is shown to lead to unique interplay. The results obtained from the sheath model for various parameters including current-voltage characteristics, and ion/electron number density are validated with PIC-MCC results.

  1. Effect of synthesis parameters on morphology of polyaniline (PANI) and field emission investigation of PANI nanotubes

    NASA Astrophysics Data System (ADS)

    Bankar, Prashant K.; Patil, Sandip S.; More, Mahendra A.

    2015-06-01

    Polyaniline (PANI) nanostructures have been synthesized by simple chemical oxidation route at different monomer concentration along with variation in synthesis temperature. The effect of variation of synthesis parameters has been revealed using different characterization techniques. The structural and morphological characterization of the synthesized PANI nanostructures was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), whereas Fourier Transform Infrared spectroscopy (FTIR) has been used to reveal the chemical properties. With the variation in the synthesis temperature and monomer concentration, various morphologies characterized by formation of PANI nanoparticles, nanofibres, nanotubes and nanospheres, are revealed from the SEM analysis. The FTIR analysis reveals the formation of conducting state of PANI under prevailing experimental conditions. The field emission investigation of the conducting PANI nanotubes was performed in all metal UHV system at base pressure of 1x10-8 mbar. The turn on field required to draw emission of 1 nA current was observed to be ˜ 2.2 V/μm and threshold field (corresponding to emission current density of 1 µA/cm2) was found to be 3.2 V/μm. The emission current was observed to be stable for more than three hours at a preset value 1 µA. The simple synthesis route and good field emission characteristics indicate potential of PANI nanofibres as a promising emitter for field emission based micro/nano devices.

  2. Effect of synthesis parameters on morphology of polyaniline (PANI) and field emission investigation of PANI nanotubes

    SciTech Connect

    Bankar, Prashant K.; More, Mahendra A.; Patil, Sandip S.

    2015-06-24

    Polyaniline (PANI) nanostructures have been synthesized by simple chemical oxidation route at different monomer concentration along with variation in synthesis temperature. The effect of variation of synthesis parameters has been revealed using different characterization techniques. The structural and morphological characterization of the synthesized PANI nanostructures was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), whereas Fourier Transform Infrared spectroscopy (FTIR) has been used to reveal the chemical properties. With the variation in the synthesis temperature and monomer concentration, various morphologies characterized by formation of PANI nanoparticles, nanofibres, nanotubes and nanospheres, are revealed from the SEM analysis. The FTIR analysis reveals the formation of conducting state of PANI under prevailing experimental conditions. The field emission investigation of the conducting PANI nanotubes was performed in all metal UHV system at base pressure of 1x10{sup −8} mbar. The turn on field required to draw emission of 1 nA current was observed to be ∼ 2.2 V/μm and threshold field (corresponding to emission current density of 1 µA/cm2) was found to be 3.2 V/μm. The emission current was observed to be stable for more than three hours at a preset value 1 µA. The simple synthesis route and good field emission characteristics indicate potential of PANI nanofibres as a promising emitter for field emission based micro/nano devices.

  3. Enhanced Field-Emission Performance from Carbon Nanotube Emitters on Nickel Foam Cathodes

    NASA Astrophysics Data System (ADS)

    Song, Meng; Xu, Peng; Han, Lijing; Yi, Lan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wang, Xiumin; Wu, Huizhen; Zhao, Pei; Song, Yenan; Wang, Miao

    2016-04-01

    We present a three-dimensionally configured cathode with enhanced field-emission performance formed by combining carbon nanotube (CNT) emitters with a nickel foam (NiF) substrate via a conventional screen-printing technique. The CNT/NiF cathode has low turn-on electric field of 0.53 V μm-1 (with current density of 10 μA cm-2) and threshold electric field of 0.87 V μm-1 (with current density of 0.1 mA cm-2), and a very high field enhancement factor of 1.4 × 104. The porous structure of the NiF substrate can greatly improve the field-emission properties due to its large specific surface area that can accommodate more CNTs and increase the emitter density, as well as its high electrical and thermal conductivities that facilitate current transition and heat dissipation in the cathode. Most importantly, the local electric field was also enhanced by the multistage effect resulting from the rough metal surface, which furthermore leads to a high field enhancement factor. We believe that this improved field-emission performance makes such cathodes promising candidates for use in various field-emission applications.

  4. PISCES field chemical emissions monitoring project: Site 125 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report describes the results of a project to measure certain chemical emissions at the coal-fired electricity generating plant known as EPRI PISCES Site 125. The three units of Site 125 are fired with an Eastern bituminous coal. Unit 1 was the subject of this investigation; like the other two units, Unit 1 operates with a boiler of the cyclone type, and it controls emissions with a cold-side electrostatic precipitator (ESP). Units 1 and 2 also operate with limestone-fed venturi wet scrubbers to control sulfur dioxide emissions. The scrubbers associated with Units 1 and 2 employ forced oxidation to convert calcium sulfite to gypsum. The emission measurements were concerned with the following components of the flue gas: trace metals and acid gases. Water and various solids in process streams (coal, bottom ash, ESP-collected ash, limestone, and scrubber discharge) were also sampled and analyzed for trace metals and the nonmetals that produce the acid gases. Analyses of flue gas streams at the inlet of the ESP and the stack indicate that most of the trace metals are controlled at least to the same degree as the total particulate matter -- about 95%. Two trace metals not controlled to this degree occur to a significant degree in the vapor state; these elements are Hg and Se. A substantial fraction of nearly every metal is discharged with the bottom ash or slag, which represents roughly 70% of the mass of ash in the coal. Again, Hg and Se are exceptions. The acid gases HF, HCl, and SO{sub 2} are effectively removed in the scrubber. A fourth acid gas considered, phosphoric acid, is controlled by virtue of its capture in the bottom ash and fly ash.

  5. Cosmic Rays, Magnetic Fields and Diffuse Emissions: Combining Observations from Radio to Gamma Rays

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    With the advent of WMAP, Planck, and Fermi-LAT telescopes the diffuse emission from the Milky Way has received renewed attention. Observations of the different components of the diffuse emission reveal information on Cosmic Rays (CRs), magnetic fields (B-fields) and the interstellar medium. CRs interact with the interstellar medium and the B-fields in the Milky Way, producing diffuse emission from radio to gamma rays. The fundamental problem is that CRs, B-fields, and the interstellar medium are not precisely known. In fact, despite intensive studies, the B-field intensity and topology, and CR spectra and distribution throughout the Galaxy are still uncertain. As a consequence unequivocally disentangling and describing the diffuse components simultaneously using a single wavelength domain is impossible. Our approach to disentangling and describing the diffuse emission components is to simultaneously consider the diffuse emission in multiple frequency domains. We propose to exploit the entire database of the present radio surveys, microwave observations (WMAP and Planck), X-ray observations (INTEGRAL) and gamma-ray observations (COMPTEL and Fermi-LAT) in order to analyze their diffuse emission in a combined multi-wavelength approach. We will jointly infer information on the spectra and distribution of CRs in the Galaxy, and on Galactic B-fields, with unprecedented accuracy. Finally we will be able to describe the baseline Galactic diffuse emissions and characterize Milky Way structures and their emission mechanisms, which have attracted the attention of the scientific community recently. This project is innovative and essential for maximizing the scientific return from the presently available data in a multidisciplinary view and uses novel approaches. The results will benefit NASA-related science generally and the return from the named missions specifically.

  6. PISCES field chemical emissions monitoring project: Site 119 emissions report. Final report

    SciTech Connect

    1995-12-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 119. Site 119 is a residual oil-fired boiler, with an electrostatic precipitator for particulate control. Site 119 employs close-coupled overfire air and burner modifications for NO{sub x} control. The objective of this report is to transmit the detailed data to the US Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts--as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  7. PISCES field chemical emissions monitoring project: Site 12 emissions report. Final report

    SciTech Connect

    1995-10-01

    This report is one of a series sponsored by the Electric Power Research Institute in the area of trace substance emissions from fossil-fuel power plants. This report presents the results of a sampling and analytical study to characterize trace substances emissions at Site 12. Site 12 is a large, pulverized coal-fired power plant that burns a medium-sulfur bituminous coal. Site 12 employs electrostatic precipitators and a flue gas desulfurization system for particulate and S02 control. Testing at Site 12 was performed in the summer of 1990, with additional retests in August and December of 1992 for volatile organic compounds (VOCs) and mercury, respectively. Sampling and analytical problems during the initial test period necessitated the retests. The objective of this report is to transmit the detailed data to the U.S. Environmental Protection Agency (EPA) to assist the Agency in evaluating utility trace chemical emissions as well as the associated health risk impacts-as mandated in Title III of the 1990 Clean Air Act Amendments. This report does not attempt to compare the results with other sites. An assessment of data from all plants that have been tested is presented in the Electric Utility Trace Substances Synthesis Report (EPRI TR-104614).

  8. Field-electron emission microscopy of carbon-saturated rhenium

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2017-06-01

    The growth of carbon structures on the surface of a rhenium point field emitter has been studied by field electron microscopy (FEM). It is established that graphene formation takes place on close-packed crystal faces of rhenium and leads to decrease in their work function. For rhenium exposed in benzene vapors, the formation of graphene islands requires a much longer time than that for iridium. Heating of carbon-saturated rhenium point field emitter up to temperatures close to its melting point with subsequent cooling does not lead to changes in the work function and FEM image of the emitter surface. The observed phenomena are explained by high solubility of carbon in rhenium.

  9. Electric field distribution and current emission in a miniaturized geometrical diode

    NASA Astrophysics Data System (ADS)

    Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng

    2017-06-01

    We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h <2. The calculations are spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.

  10. Emissions from prescribed burning of agricultural fields in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Holder, A. L.; Gullett, B. K.; Urbanski, S. P.; Elleman, R.; O'Neill, S.; Tabor, D.; Mitchell, W.; Baker, K. R.

    2017-10-01

    Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide a current and comprehensive set of emissions data for air quality models, climate models, and emission inventories. Batch measurements of PM2.5, volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs), and continuous measurements of black carbon (BC), particle mass by size, CO, CO2, CH4, and aerosol characteristics were taken at ground level, on an aerostat-lofted instrument package, and from an airplane. Biomass samples gathered from the field were burned in a laboratory combustion facility for comparison with these ground and aerial field measurements. Emission factors for PM2.5, organic carbon (OC), CH4, and CO measured in the field study platforms were typically higher than those measured in the laboratory combustion facility. Field data for Kentucky bluegrass suggest that biomass residue loading is directly proportional to the PM2.5 emission factor; no such relationship was found with the limited wheat data. CO2 and BC emissions were higher in laboratory burn tests than in the field, reflecting greater carbon oxidation and flaming combustion conditions. These distinctions between field and laboratory results can be explained by measurements of the modified combustion efficiency (MCE). Higher MCEs were recorded in the laboratory burns than from the airplane platform. These MCE/emission factor trends are supported by 1-2 min grab samples from the ground and aerostat platforms. Emission factors measured here are similar to other studies measuring comparable fuels, pollutants, and combustion conditions. The size distribution of refractory BC (rBC) was single modal with a log-normal shape, which was

  11. Field Emission in CEBAF's SRF Cavities and Implications for Future Accelerators

    SciTech Connect

    Jay Benesch

    2006-02-15

    Field emission is one of the key issues in superconducting RF for particle accelerators. When present, it limits operating gradient directly or via induced heat load at 2K. In order to minimize particulate contamination of and thus field emission in the CEBAF SRF cavities during assembly, a cold ceramic RF window was placed very close to the accelerating cavity proper. As an unintended consequence of this, the window is charged by field-emitted electrons, making it possible to monitor and model field emission in the CEBAF cavities since in-tunnel operation began. From January 30, 1995, through February 10, 2003, there were 64 instances of spontaneous onset or change in cavity field emission with a drop in usable gradient averaging 1.4 ({sigma} 0.8) MV/m at each event. Fractional loss averaged 0.18 ({sigma} 0.12) of pre-event gradient. This event count corresponds to 2.4 events per century per cavity, or 8 per year in CEBAF. It is hypothesized that changes in field emission are due to adsorbed gas accumulation. The possible implications of this and other observations for the International Linear Collider (ILC) and other future accelerators will be discussed.

  12. High performance field emission and Nottingham effect observed from carbon nanotube yarn

    NASA Astrophysics Data System (ADS)

    Choi, Young Chul; Kang, Jun-Tae; Park, Sora; Go, Eunsol; Jeon, Hyojin; Kim, Jae-Woo; Jeong, Jin-Woo; Park, Kyung-Ho; Song, Yoon-Ho

    2017-02-01

    Vertically aligned CNTs were synthesized on a four inch wafer, followed by the preparation of a CNT yarn. The yarn emitter was found to have an extremely high field enhancement factor, which was confirmed to have originated from multi-stage effect. In addition to superb field emission characteristics, the energy exchange during field emission, called Nottingham effect, was observed from the CNT yarn emitter. A CNT yarn was attached to the thermistor whose resistance depends on temperature. Then, the change of resistance was monitored during the field emission, which enabled us to calculate the energy exchange. It was found that the observed heating originated from both Nottingham and Joule heating. Nottingham heating was dominant at low current region while Joule heating became larger contribution at high current region. Very large Nottingham region of up to 33.35 mA was obtained, which is due presumably to the high performance field emission characteristics of a CNT yarn. This is believed to be an important observation for developing reliable field emission devices with suppressed Joule heating effect.

  13. Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase

    NASA Astrophysics Data System (ADS)

    Bankar, Prashant K.; Ratha, Satyajit; More, Mahendra A.; Late, Dattatray J.; Rout, Chandra Sekhar

    2017-10-01

    In this paper we report, large scale synthesis of α and β-NiMoO4 by a facile hydrothermal method and we observed that urea plays important role on the growth of β-NiMoO4 nanosheets. We have also carried out field emission (FE) investigations of α and β-NiMoO4 at a base pressure of ∼1 × 10-8 mbar. The obtained turn-on field at emission current density of 1 μA/cm2 for β-NiMoO4 nanosheets and α -NiMoO4 is 1.3 V/μm and 2.2 V/μm respectively were observed. The maximum field emission current density of 1.006 mA/cm2at an applied electric field of 2.7 V/μm was achieved for β-NiMoO4 nanosheets. Furthermore, we found that the β-NiMoO4 nanosheets possess good field emission performance compared to α-NiMoO4. The results indicate that NiMoO4can be used as a promising material in FE applications with possibility of tuning field emission performance by controlling the phase.

  14. [Effects of controlled release fertilizers on N2O emission from paddy field].

    PubMed

    Li, Fangmin; Fan, Xiaolin; Liu, Fang; Wang, Qiang

    2004-11-01

    With close chamber method, this paper studied the effects of controlled release fertilizer (CRF), non-coated compound fertilizer (Com) and conventional urea (CK) on N2O emission from paddy field. The results showed that within 10 days after transplanting, the ammonium and nitrate concentrations in the surface water of the plot treated with CRF were significantly different from those treated with Com. The partial coefficient between N2O emission rates and corresponding nitrate concentrations in the water was significantly high (r = 0.6834). Compared with Com, CRF was able to reduce N2O emission from the paddy field. Within 100 days after basal application, the N2O emission rate of treatment CRF was only 13.45%-21.26% of Corn and 71.17%-112.47% of CK. The N2O emission of Com was mainly concentrated in 1-25 d after basal fertilization and mid-aeration period, but that of CRF was remarkably lower during same period, while the peak of N2O emission of CK was postponed and reduced. It was concluded that both one-time fertilization of CRF and several-time fertilizations of conventional urea were able to reduce N2O emission from the paddy field.

  15. The Effect of Secondary Emission Cathode Parameters on (Near-) Brillouin Flow in Crossed-Field Diodes

    NASA Astrophysics Data System (ADS)

    Fichtl, Christopher

    2005-10-01

    The initial velocity that an electron has from the cathode can change the magnetic field needed to insulate a crossed-field diode. For a secondary emitting cathode the distribution of emitted electron velocities depends on the velocity distribution of electrons returning to the cathode. We have studied the evolution of the Brillouin hub in a crossed-field diode in self-consistent 1d electromagnetic Particle-in-Cell (PIC) code with thermal emission and a secondary emission model by Vaughan. The baseline simulations have thermal emission with 0.1 eV of temperature; this is compared to simulations that have both secondary emission and thermal emission. The fraction of reflected and back scattered primaries is varied to induce perturbations in the Brillouin hub. The temperature of the true secondaries is conveniently set to the thermal emission temperature of 0.1 eV. It is found that relatively few (˜10%) reflected and back scattered primaries allow the Brillouin hub to expand further across the diode as compared to the thermal emission cathode.

  16. [China's rice field greenhouse gas emission under climate change based on DNDC model simulation].

    PubMed

    Tian, Zhan; Niu, Yi-long; Sun, Lai-xiang; Li, Chang-sheng; Liu, Chun-jiang; Fan, Dong-li

    2015-03-01

    In contrast to a large body of literature assessing the impact of agriculture greenhouse gas (GHG) emissions on climate change, there is a lack of research examining the impact of climate change on agricultural GHG emissions. This study employed the DNDC v9.5, a state-of-art biogeochemical model, to simulate greenhouse gas emissions in China' s rice-growing fields during 1971-2010. The results showed that owing to temperature rising (on average 0.49 °C higher in the second 20 years than in the first 20 year) and precipitation increase (11 mm more in the second 20 years than in the first 20 years) during the rice growing season, CH4 and N2O emissions in paddy field increased by 0.25 kg C . hm-2 and 0.25 kg N . hm-2, respectively. The rising temperature accelerated CH4 emission and N2O emission increased with precipitation. These results indicated that climate change exerted impact on the mechanism of GHG emissions in paddy field.

  17. Enhanced electron field emission from carbon nanotubes irradiated by energetic C ions.

    PubMed

    Sun, Peng-Cheng; Deng, Jian-Hua; Cheng, Guo-An; Zheng, Rui-Ting; Ping, Zhao-Xia

    2012-08-01

    The field emission performance and structure of the vertically aligned multi-walled carbon nanotube arrays irradiated by energetic C ion with average energy of 40 keV have been investigated. During energetic C ion irradiation, the curves of emission current density versus the applied field of samples shift firstly to low applied fields when the irradiation doses are less than 9.6 x 10(16) cm(-2), and further increase of dose makes the curves reversing to a high applied field, which shows that high dose irradiation in carbon nanotube arrays makes their field emission performance worse. After energetic ion irradiation with a dose of 9.6 x 1016 cm(-2), the turn-on electric field and the threshold electric field of samples decreased from 0.80 and 1.13 V/microm to 0.67 and 0.98 V/microm respectively. Structural analysis of scanning electron microscopy, transmission electron microscopy and Raman spectroscopy indicates that the amorphous carbon nanowire/carbon nanotube hetero nano-structures have been fabricated in the C ion irradiated carbon nanotubes. The enhancement of electron field emission is due to the formation of amorphous carbon nanowires at the tip of carbon nanotube arrays, which is an electron emitting material with low work function.

  18. Field emission from ZnO whiskers under intervalley electron redistribution

    NASA Astrophysics Data System (ADS)

    Yilmazoglu, O.; Biethan, J.-P.; Evtukh, A.; Semenenko, M.; Pavlidis, D.; Hartnagel, H. L.; Litovchenko, V.

    2012-03-01

    ZnO field-emitter whiskers with nanometer diameter were fabricated by metal-organic chemical vapor deposition (MOCVD) growth on Si substrates. Their electron field emission properties and electron transfer effect between the valleys were investigated in a high vacuum chamber. The Fowler-Nordheim (F-N) plots of the emission current show different slopes for the small and high electric field regions. A model based on the electron-emission from valleys having different specific electron affinities is proposed to explain the experimental results. The paper presents a study of the conduction band of nano-structured ZnO with the help of field emission experiments. The energy difference between the lower and upper valleys was determined to be between 3.02 eV and 3.3 eV. The effective work function from the satellite valley is much lower than from the Γ-valley. These results can explain the usually obtained large discrepancies between extremely high field enhancement factors by fitting using F-N equation with known work function Φ from the Γ-valley and the geometrical estimated field enhancement factors for ZnO emitter. These functional field emitters based on ZnO materials and their ternaries can also be used as ultraviolet photodetector and find new applications for miniaturized photo-field assisted vacuum devices.

  19. PCDD/F EMISSIONS FROM BURNING WHEAT AND RICE FIELD RESIDUE

    EPA Science Inventory

    The paper presents the first known values for emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs) from combustion of agricultural field biomass. Wheat and rice straw stubble collected from two western U.S. states were tested in a field burn simulation to dete...

  20. Use of LEED, Auger emission spectroscopy and field ion microscopy in microstructural studies.

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Buckley, D. H.; Pepper, S. V.; Brainard, W. A.

    1972-01-01

    The studies reported were conducted to gain a fundamental understanding of adhesion and dynamic friction on an atomic or microscopic level. Fundamental aspects of low energy electron diffraction (LEED), Auger emission spectroscopy (AES), and field ion microscopy (FIM) are discussed. Typical results of studies conducted are considered, giving attention to LEED-AES experiments, pin and disk experiments, and field ion microscope investigations.

  1. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    NASA Astrophysics Data System (ADS)

    Cui, Yunkang; Chen, Jing; Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong; Zhang, Zichen

    2017-02-01

    In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  2. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    NASA Astrophysics Data System (ADS)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  3. Suppression of Secondary Emission in a Magnetic Field Using a Sawtooth and Isosceles Triangle Surface

    SciTech Connect

    Wang, L.; Raubenheimer, T.O.; Stupakov, G.; /SLAC

    2006-09-26

    The effect of surface roughness on the secondary electron emission from a sawtooth and isosceles triangle surface in a magnetic field under electron bombardment is investigated using a Monte-Carlo method. Some of the secondary electrons emitted from the surface return to the surface within their first few gyrations, resulting in a low effective secondary electron yield. Both sawtooth and isosceles triangle surface in magnetic field can significantly reduce the secondary emission yield below the multipacting threshold with weak dependence on the size of surface and magnetic field.

  4. Photo field-emission spectroscopy of optical transitions in the band structure of rhenium

    NASA Astrophysics Data System (ADS)

    Radoń, T.; Kleint, Ch.

    1984-09-01

    Photo field-emission (PFE) current-voltage curves of clean and barium covered rhenium have been determined with an argon ion laser and phase sensitive detection. Field strength and work function were obtained from Fowler-Nordheim plots of the field emission currents. According to a two-step PFE model the knees of the PFE characteristics are ascribed to optical transitions in the Brillouin zone near the Fermi level. Most of the observed excitations could be correlated to direct transitions in the rhenium band structure as calculated by Mattheiss including spin-orbit coupling.

  5. Secondary nanotube growth on aligned carbon nanofibre arrays for superior field emission.

    PubMed

    Watts, Paul C P; Lyth, Stephen M; Henley, Simon J; Silva, S Ravi P

    2008-04-01

    We report substantial improvement of the field emission properties from aligned carbon nanotubes grown on aligned carbon nanofibres by a two-stage plasma enhanced chemical vapour deposition (PECVD) process. The threshold field decreased from 15.0 to 3.6 V/microm after the secondary growth. The field enhancement factor increased from 240 to 1480. This technique allows for superior emission of electrons for carbon nanotube/nanofibre arrays grown directly on highly doped silicon for direct integration in large area displays.

  6. Enhancement of field emission of CNTs array by CO2-assisted chemical vapor deposition.

    PubMed

    Wu, Jun; Ma, Yanfeng; Tang, Daiming; Liu, Chang; Huang, Qinwen; Huang, Yi; Cheng, Huiming; Chen, Dapeng; Chen, Yongsheng

    2009-05-01

    We present a new process to get in-situ-growth carbon nanotubes (CNTs) array device with good FE properties by CO2-assisted thermal chemical vapor deposition (CVD). Field Emission measurement shows that introducing CO2 into CNTs growth system leads to a significant enhancement in the emission properties, both the turn-on field and threshold field decrease. Raman, SEM and TEM investigation results showed that in this CO2-assisted thermal CVD, CO2 can remove amorphous carbon during CNTs growth process, and at the same time, it also creates more defects on the CNTs wall. Both can enhance FE properties of the CNTs at suitable CO2 concentrations.

  7. Thunderstorm electric fields probed by extensive air showers through their polarized radio emission

    NASA Astrophysics Data System (ADS)

    Trinh, T. N. G.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Hare, B. M.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; ter Veen, S.; Winchen, T.

    2017-04-01

    We observe a large fraction of circular polarization in radio emission from extensive air showers recorded during thunderstorms, much higher than in the emission from air showers measured during fair-weather circumstances. We show that the circular polarization of the air showers measured during thunderstorms can be explained by the change in the direction of the transverse current as a function of altitude induced by atmospheric electric fields. Thus by using the full set of Stokes parameters for these events, we obtain a good characterization of the electric fields in thunderclouds. We also measure a large horizontal component of the electric fields in the two events that we have analyzed.

  8. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, John P.; Friedmann, Thomas A.

    1999-01-01

    A novel field emitter device for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials.

  9. Method of depositing multi-layer carbon-based coatings for field emission

    DOEpatents

    Sullivan, J.P.; Friedmann, T.A.

    1999-08-10

    A novel field emitter device is disclosed for cold cathode field emission applications, comprising a multi-layer resistive carbon film. The multi-layered film of the present invention is comprised of at least two layers of a resistive carbon material, preferably amorphous-tetrahedrally coordinated carbon, such that the resistivities of adjacent layers differ. For electron emission from the surface, the preferred structure comprises a top layer having a lower resistivity than the bottom layer. For edge emitting structures, the preferred structure of the film comprises a plurality of carbon layers, wherein adjacent layers have different resistivities. Through selection of deposition conditions, including the energy of the depositing carbon species, the presence or absence of certain elements such as H, N, inert gases or boron, carbon layers having desired resistivities can be produced. Field emitters made according the present invention display improved electron emission characteristics in comparison to conventional field emitter materials. 8 figs.

  10. Radio Emission from particle cascades in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Mulrey, Katharine

    2015-04-01

    Geomagnetic radiation from air showers is an attractive technique for detecting ultra-high energy cosmic rays. Macroscopic and microscopic models have been developed which qualitatively agreed with field observations. A controlled laboratory experiment at the SLAC National Accelerator Laboratory (SLAC) was designed to test these models. The experiment measures the radio frequency emission from cascades of secondary particles in a dense dielectric medium in the presence of a magnetic field. The cascades were induced by a ~ 4.5 GeV electron beam in a polyethylene target placed in magnetic fields up to +/-1000 G. The radio emission beam pattern was sampled in horizontal and vertical polarizations by multiple antennas with a total frequency band of 30-3000 MHz. The emission was found to be in good agreement with model predictions, including a Cerenkov-like beam pattern and linear scaling with magnetic field. Katharine Mulrey for the T-510 Collaboration.

  11. Field emission from few-layer graphene nanosheets produced by liquid phase exfoliation of graphite.

    PubMed

    Dong, Jianhui; Zeng, Baoqing; Lan, Yucheng; Tian, Shikai; Shan, Yun; Liu, Xingchong; Yang, Zhonghai; Wang, Hui; Ren, Z F

    2010-08-01

    Graphene nanosheets have been synthesized from commercial expandable graphite by heating in a microwave oven and dispersing in ethanol by ultrasonication. Scanning and transmission electron microscopy and electron energy-loss spectroscopy and atomic force microscope showed that the nanosheets were about 2 nm in thickness and 10 microm in diameter. The field emission of the graphene sheets has been investigated. An emission current density of 1 mA/cm2 has been achieved at an electric field of 3.7 V/microm with a turn-on field of 1.7 V/microm at 0.01 mA/cm2. The annealing of the samples at 400 degrees C in vacuum greatly improved the field emission performance.

  12. Methane emission from rice fields in relation to management of irrigation water.

    PubMed

    Khosa, Maninder Kaur; Sidhu, B S; Benbi, D K

    2011-03-01

    A field experiment was conducted for two years to find out best water management practice to mitigate methane emission from the rice-fields. Continuously flooded conditions yielded two major flushes of methane emission and on an average resulted in relatively higher rate of methane emission (2.20 and 1.30 mg m(-2) hr(-1), respectively in 2005 and 2006) during the kharif season. The methane flux was reduced to half (1.02 and 0.47 mg m(-2) hr(-1), respectively in 2005 and 2006) when rice fields were irrigated 2-3 days after infiltration of flood water into the soil. Irrigating the field at 0.15 bar matric potential reduced seasonal methane flux by 60% (0.99 and 0.41 mg m(-2) hr(-1), respectively in 2005 and 2006) as compared to completely flooded conditions, without any decline in grain yield (60 q ha(-1)).

  13. Direct N2O emissions from rice paddy fields: Summary of available data

    NASA Astrophysics Data System (ADS)

    Akiyama, Hiroko; Yagi, Kazuyuki; Yan, Xiaoyuan

    2005-03-01

    Rice cultivation is an important anthropogenic source of atmospheric nitrous oxide (N2O) and methane. We compiled and analyzed data on N2O emissions from rice fields (113 measurements from 17 sites) reported in peer-reviewed journals. Mean N2O emission ± standard deviation and mean fertilizer-induced emission factor during the rice-cropping season were, respectively, 341 ± 474 g N ha-1 season-1 and 0.22 ± 0.24% for fertilized fields continuously flooded, 993 ± 1075 g N ha-1 season-1 and 0.37 ± 0.35% for fertilized fields with midseason drainage, and 667 ± 885 g N ha-1 season-1 and 0.31 ± 0.31% for all water regimes. The estimated whole-year background emission was 1820 g N ha-1 yr-1. A large uncertainty remains, especially for background emission because of limited data availability. Although midseason drainage generally reduces CH4 and increases N2O emissions, it may be an effective option for mitigating the net global warming potential of rice fields.

  14. Magnetic fields in A-type stars associated with X-ray emission

    NASA Astrophysics Data System (ADS)

    Schröder, C.; Hubrig, S.; Schmitt, J. H. M. M.

    2008-06-01

    A common explanation for the observed X-ray emission of A-type stars is the presence of a hidden late-type companion. While this assumption can be shown to be correct in some cases, a number of lines of evidence suggests that low-mass companions cannot be the correct cause for the observed activity in all cases. A model explains the X-ray emission for magnetic Ap/Bp stars, focusing on the A0p star IQ Aur. In this paper we test whether this theoretical model is able to explain the observed X-ray emission. We present the observations of 13 A-type stars that have been associated with X-ray emission detected by ROSAT. To determine the mean longitudinal magnetic field strength we measured the circular polarization in the wings of the Balmer lines using FORS1. Although the emission of those objects that possess magnetic fields fits the prediction of the Babel and Montmerle model, not all X-ray detections are connected to the presence of a magnetic field. Additionally, the measured magnetic fields do not correlate with the X-ray luminosity. Accordingly, the magnetically confined wind shock model cannot explain the X-ray emission from all the presented stars.

  15. Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories?

    NASA Astrophysics Data System (ADS)

    Sintermann, J.; Neftel, A.; Ammann, C.; Häni, C.; Hensen, A.; Loubet, B.; Flechard, C. R.

    2011-10-01

    The EMEP/EEA guidebook 2009 for agricultural emission inventories reports average ammonia (NH3) emission factors (EF) by volatilisation of 55% of the applied total ammoniacal nitrogen (TAN) content for cattle slurry, and 35% losses for pig slurry, irrespective of the type of surface or slurry characteristics such as dry matter content and pH. In this review article, we compiled over 350 measurements of EFs published between 1991 and 2011. The standard slurry application technique during the early years of this period, when a large number of measurements were made, was spreading by splash plate, and as a result reference EFs given in many European inventories are predominantly based on this technique. However, slurry application practices have evolved since then, while there has also been a shift in measurement techniques and investigated plot sizes. We therefore classified the available measurements according to the flux measurement technique, measurement plot size, the year of measurement, and the year of publication. Medium size plots (usually circles between 20 to 50 m radius) generally yielded the highest EFs. The most commonly used measurement setups at this scale were based on the Integrated Horizontal Flux method (IHF or the ZINST method (a simplified IHF method)). Several empirical models were published in the years 1993 to 2003 predicting NH3 EFs as a function of meteorology and slurry characteristics (Menzi et al., 1998; Søgaard et al., 2002). More recent measurements that appeared subsequently show substantially lower EFs, and appear to indicate a need for a revision of the EF in emission inventories.

  16. Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories?

    NASA Astrophysics Data System (ADS)

    Sintermann, J.; Neftel, A.; Ammann, C.; Häni, C.; Hensen, A.; Loubet, B.; Flechard, C. R.

    2012-05-01

    The EMEP/EEA guidebook 2009 for agricultural emission inventories reports an average ammonia (NH3) emission factor (EF) by volatilisation of 55% of the applied total ammoniacal nitrogen (TAN) content for cattle slurry, and 35% losses for pig slurry, irrespective of the type of surface or slurry characteristics such as dry matter content and pH. In this review article, we compiled over 350 measurements of EFs published between 1991 and 2011. The standard slurry application technique during the early years of this period, when a large number of measurements were made, was spreading by splash plate, and as a result reference EFs given in many European inventories are predominantly based on this technique. However, slurry application practices have evolved since then, while there has also been a shift in measurement techniques and investigated plot sizes. We therefore classified the available measurements according to the flux measurement technique or measurement plot size and year of measurement. Medium size plots (usually circles between 20 to 50 m radius) generally yielded the highest EFs. The most commonly used measurement setups at this scale were based on the Integrated Horizontal Flux method (IHF or the ZINST method (a simplified IHF method)). Several empirical models were published in the years 1993 to 2003 predicting NH3 EFs as a function of meteorology and slurry characteristics (Menzi et al., 1998; Søgaard et al., 2002). More recent measurements show substantially lower EFs which calls for new measurement series in order to validate the various measurement approaches against each other and to derive revised inputs for inclusion into emission inventories.

  17. Work function measurements by the field emission retarding potential method.

    NASA Technical Reports Server (NTRS)

    Strayer, R. W.; Mackie, W.; Swanson, L. W.

    1973-01-01

    Description of the theoretical foundation of the field electron retarding potential method, and review of its experimental application to the measurement of single crystal face work functions. The results obtained from several substrates are discussed. An interesting and useful fallout from the experimental approach described is the ability to accurately measure the elastic and inelastic reflection coefficient for impinging electrons to near zero-volt energy.

  18. Greenhouse Gas Emissions from Dairy Manure Management: A Review of Field-based Studies

    NASA Astrophysics Data System (ADS)

    Owen, J. J.; Silver, W. L.

    2013-12-01

    Dairy manure is a large potential source of agriculturally-derived greenhouse gases, but few studies have compared source locations or management strategies, nor evaluated how well emissions factors capture actual emission rates. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 approach. Greenhouse gas emissions varied by several orders of magnitude from all sources due to the heterogeneity of surface conditions and manure composition, the length of sampling, and the measurement technique. Anaerobic lagoons were the largest source of methane (1097 × 591 g hd-1 d-1), over twice that from enteric fermentation (~350 g hd-1 d-1). Corrals and manure piles were the largest sources of nitrous oxide. Methane and nitrous oxide emissions from hardstandings and barn floors were negligible. Predicted methane emissions underestimated measured fluxes for slurry tanks, barns, and whole dairies. Predicted nitrous oxide emissions underestimated anaerobic lagoon fluxes but overestimated emissions from slurry tanks and barn floors. Refining these calculations requires: 1) within-site comparisons of measurement techniques, 2) multiple year data sets, 3) within-site comparisons across measurement scales, and 4) better metadata to constrain greenhouse gas emission models.

  19. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers.

    PubMed

    Chen, YiWen; Miao, Hsin-Yuan; Lin, Ryan Jiyao; Zhang, Mei; Liang, Richard; Zhang, Chuck; Wang, Ben

    2010-12-10

    Carbon nanotube (CNT) emitters on buckypaper were activated by laser treatment and their field emission properties were investigated. The pristine buckypapers and CNT emitters' height, diameter, and spacing were characterized through optical analysis. The emitter spacing directly impacted the emission results when the laser power and treatment times were fixed. The increasing emitter density increased the enhanced field emission current and luminance. However, a continuous and excessive increase of emitter density with spacing reduction generated the screening effect. As a result, the extended screening effect from the smaller spacing eventually crippled the field emission effectiveness. Luminance intensity and uniformity of field emission suggest that the highly effective buckypaper will have a density of 2500 emission spots cm(-2), which presents an effective field enhancement factor of 3721 and a moderated screening effect of 0.005. Proper laser treatment is an effective post-treatment process for optimizing field emission, luminance, and durability performance for buckypaper cold cathodes.

  20. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    SciTech Connect

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao E-mail: miaowang@css.zju.edu.cn; Song, Yenan; Li, Zhenhua; Zhao, Pei E-mail: miaowang@css.zju.edu.cn; Shang, Xuefu

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  1. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    NASA Astrophysics Data System (ADS)

    Song, Meng; Xu, Peng; Song, Yenan; Wang, Xu; Li, Zhenhua; Shang, Xuefu; Wu, Huizhen; Zhao, Pei; Wang, Miao

    2015-09-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm2, and field enhancement factor of ˜1.3 × 104. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  2. Photon-assisted field emission from a Si tip at addition of an AC low voltage

    NASA Astrophysics Data System (ADS)

    Zaporozhchenko, A. V.; Chernov, S. V.; Odnodvorets, L. V.; Stetsenko, B. V.; Nepijko, S. A.; Elmers, H. J.; Schönhense, G.

    2015-07-01

    We investigated the field emission current from a p-type silicon tip with large resistivity of 4 × 103 Ω cm for light illumination with a photon energy of 1.3 eV and tip-anode voltages of 0.7-5.0 kV. Additional AC voltage with amplitude 30-60 V and frequency varying in the range of 10-107 Hz was applied to the tip which resulted in variations of emission current. We investigated the dependence of this phenomenon on the AC signal parameters, light intensity and temperature. The resonant-like frequency dependence of the emission current is because the tip acts as a driven plasmonic resonator. The results represent an important step forward for the development of high-frequency display systems based on electron field emission.

  3. Characteristics of krypton ion emission from a gas field ionization source with a single atom tip

    NASA Astrophysics Data System (ADS)

    Shichi, Hiroyasu; Matsubara, Shinichi; Hashizume, Tomihiro

    2017-06-01

    A scanning ion beam instrument equipped with a gas field ionization source (GFIS) has been commercialized, but only helium and neon are currently available as GFISs. The characteristics of krypton ion emission from a single atom tip (SAT) have not been reported yet. In this study, the characteristics of krypton ion emission were investigated by field ion microscopy. At 65 K, the krypton ion emission current reached approximately 40 pA, which is 1 order of magnitude higher than that at 130 K. As the krypton gas pressure was increased, the krypton ion current increased. At a pressure of 0.3 Pa, the emission current was anticipated to reach 200 pA, which may be high enough for nanofabrication. The variation of the krypton ion current was as low as 5% in one hour. We concluded that a krypton ion beam instrument equipped with a GFIS will be a powerful tool for nanofabrication.

  4. Vacuum ultraviolet field emission lamp consisting of neodymium ion doped lutetium fluoride thin film as phosphor.

    PubMed

    Yanagihara, Masahiro; Tsuji, Takayuki; Yusop, Mohd Zamri; Tanemura, Masaki; Ono, Shingo; Nagami, Tomohito; Fukuda, Kentaro; Suyama, Toshihisa; Yokota, Yuui; Yanagida, Takayuki; Yoshikawa, Akira

    2014-01-01

    A vacuum ultraviolet (VUV) field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd(3+) : LuF3) thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180, 225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd(3+) : LuF3 crystal. Moreover, application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance enhancement of the lamp operating in the VUV region.

  5. Effect of insulating layer on the Field Electron Emission Performance of Nano-Apex Metallic Emitters

    NASA Astrophysics Data System (ADS)

    AL-Qudah, Ala'a. A.; Mousa, Marwan S.; Fischer, A.

    2015-10-01

    This paper deals with the process of electron emission from the surface of metals (before and after coating with controlled layers of dielectric materials) into the vacuum due to an intense applied external electric field. This process is usually called cold field electron emission (CFE). The research work reported here includes the current-voltage (I-V) characteristics presented as Fowler-Nordheim (FN) plots and scanning electron micrographs in addition to the spatial emission current distributions (electron emission images). The process of coating the clean tungsten (W) emitters by layers of dielectric epoxylite resin was easy, and the measurements were performed under UHV ∼ 10-8 mbar. From comparing the results obtained in this work, significant improvement in properties of the emitters after coating are observed.

  6. Vacuum Ultraviolet Field Emission Lamp Consisting of Neodymium Ion Doped Lutetium Fluoride Thin Film as Phosphor

    PubMed Central

    Yanagihara, Masahiro; Tsuji, Takayuki; Yusop, Mohd Zamri; Tanemura, Masaki; Nagami, Tomohito; Fukuda, Kentaro; Suyama, Toshihisa; Yokota, Yuui; Yanagida, Takayuki; Yoshikawa, Akira

    2014-01-01

    A vacuum ultraviolet (VUV) field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd3+ : LuF3) thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180, 225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd3+ : LuF3 crystal. Moreover, application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance enhancement of the lamp operating in the VUV region. PMID:25302320

  7. Field emission from hybrid diamond-like carbon and carbon nanotube composite structures.

    PubMed

    Zanin, H; May, P W; Hamanaka, M H M O; Corat, E J

    2013-12-11

    A thin diamond-like carbon (DLC) film was deposited onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (VACNT). DLC deposition caused the tips of the CNTs to clump together to form a microstructured surface. Field-emission tests of this new composite material show the typical low threshold voltages for carbon nanotube structures (2 V μm(-1)) but with greatly increased emission current, better stability, and longer lifetime.

  8. Electric-field-direction dependent spatial distribution of electron emission along electrically biased carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wei, X. L.; Golberg, D.; Chen, Q.; Bando, Y.; Peng, L.-M.

    2011-11-01

    The spatial distribution of lateral electron emission from individual electrically biased carbon nanotubes (CNTs) along the tube axis is resolved for the first time by combining multiprobe simultaneous emission current collection and electron trajectory simulations. The spatial distribution is found to be asymmetric along the tube axis and depends on the direction of the electric field in CNTs. The average emission density of the half tube with a higher electric potential is higher than that of the other half with a lower electric potential. The electric-field-direction dependent asymmetric spatial distribution of the electron emission is absent in all pre-existing well-established mechanisms but is well explained in terms of the recently proposed phonon-assisted electron emission (PAEE). This, together with a quantitative description of experimentally measured emission currents, provides solid evidence for the validity of the PAEE mechanism. PAEE from CNTs is predicted to take place near room temperature; thus, it opens up a new and promising route for fabricating cold electron emitters with a high emission density and a low working voltage.

  9. Methane emission from a simulated rice field ecosystem as influenced by hydroquinone and dicyandiamide.

    PubMed

    Xu, X; Wang, Y; Zheng, X; Wang, M; Wang, Z; Zhou, L; Van Cleemput, O

    2000-12-18

    A simple apparatus for collecting methane emission from a simulated rice field ecosystem was formed. With no wheat straw powder amended all treatments with inhibitor(s) had so much lower methane emission during rice growth than the treatment with urea alone (control), which was contrary to methane emission from the cut rice-soil system. Especially for treatments with dicyandiamide (DCD) and with DCD plus hydroquinone (HQ), the total amount of methane emission from the soil system and intact rice-soil system was 68.25-46.64% and 46.89-41.78% of the control, respectively. Hence, DCD, especially in combination with HQ, not only increased methane oxidation in the floodwater-soil interface following application of urea, but also significantly enhanced methane oxidation in rice root rhizosphere, particularly from its tillering to booting stage. Wheat straw powder incorporated into flooded surface layer soil significantly weakened the above-mentioned simulating effects. Regression analysis indicated that methane emission from the rice field ecosystem was related to the turnover of ammonium-N in flooded surface layer soil. Diminishing methane emissions from the rice field ecosystem was significantly beneficial to the growth of rice.

  10. Energy Spectra of the Soft X-Ray Diffuse Emission in Fourteen Fields Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Yoshino, Tomotaka; Mitsuda, Kazuhiasa; Yamasaki, Noriko Y.; Takei, Yoh; Hagihara, Toshishige; Masui, Kensuke; Bauer, Michael; McCammon, Dan; Fujimoto, Ryuichi; Wang, Q. Daniel; Yao, Yangsen

    2009-08-01

    The soft diffuse X-ray emission of twelve fields observed with Suzaku are presented together with two additional fields from previous analyses. All have galactic longitudes 65° < l < 295° to avoid contributions from the very bright diffuse source that extends at least 30° from the Galactic center. The surface brightnesses of the Suzaku nine fields for which apparently uncontaminated ROSAT All Sky Survey (RASS) were available were statistically consistent with the RASS values, with an upper limit for differences of 17 × 10-6 c s-1 arcmin-2 in R45-band. The OVII and OVIII intensities are well correlated to each other, and OVII emission shows an intensity floor at ˜2 photons s-1 cm-2 str-1 (LU). The high-latitude O VIII emission shows a tight correlation with excess of O VII emission above the floor, with (O VIII intensity) = 0.5 × [(OVII intensity) - 2LU], suggesting that temperatures averaged over different line-of-sight show a narrow distribution around ˜0.2keV. We consider that the offset intensity of OVII arises from the Heliospheric solar wind charge exchange and perhaps from the local hot bubble, and that the excess OVII (2--7LU) is emission from more distant parts of the Galaxy. The total bolometric luminosity of this galactic emission is estimated to be 4 × 1039erg s-1, and its characteristic temperature may be related to the virial temperature of the Galaxy.

  11. Seasonal Production and Emission of Methane from Rice Fields, Final Report

    SciTech Connect

    Khalil, M. Aslam K.; Rasmussen,Reinhold A.

    2002-12-03

    B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

  12. PPAK wide-field Integral Field Spectroscopy of NGC 628 - II. Emission line abundance analysis

    NASA Astrophysics Data System (ADS)

    Rosales-Ortega, F. F.; Díaz, A. I.; Kennicutt, R. C.; Sánchez, S. F.

    2011-08-01

    In this second paper of the series, we present the two-dimensional (2D) emission line abundance analysis of NGC 628, the largest object within the PPAK Integral Field Spectroscopy (IFS) Nearby Galaxies Survey, PINGS. We introduce the methodology applied to the 2D IFS data in order to extract and deal with large spectral samples, from which a 2D abundance analysis can be later performed. We obtain the most complete and reliable abundance gradient of the galaxy up to date, by using the largest number of spectroscopic points sampled in the galaxy, and by comparing the statistical significance of different strong-line metallicity indicators. We find features not previously reported for this galaxy that imply a multimodality of the abundance gradient consistent with a nearly flat distribution in the innermost regions of the galaxy, a steep negative gradient along the disc and a shallow gradient or nearly constant metallicity beyond the optical edge of the galaxy. The N/O ratio seems to follow the same radial behaviour. We demonstrate that the observed dispersion in metallicity shows no systematic dependence with the spatial position, signal-to-noise ratio or ionization conditions, implying that the scatter in abundance for a given radius is reflecting a true spatial physical variation of the oxygen content. Furthermore, by exploiting the 2D IFS data, we were able to construct the 2D metallicity structure of the galaxy, detecting regions of metal enhancement and showing that they vary depending on the choice of the metallicity estimator. The analysis of axisymmetric variations in the disc of NGC 628 suggest that the physical conditions and the star formation history of different symmetric regions of the galaxy have evolved in a different manner. Based on observations made at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  13. Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode.

    PubMed

    Hwang, Jae Won; Mo, Chan Bin; Jung, Hyun Kyu; Ryu, Seongwoo; Hong, Soon Hyung

    2013-11-01

    Carbon nanotube (CNT) has excellent electrical and thermal conductivity and high aspect ratio for X-ray tube cathode. However, CNT field emission cathode has been shown unstable field emission and short life time due to field evaporation by high current density and detachment by electrostatic force. An alternative approach in this direction is the introduction of CNT yarn, which is a one dimensional assembly of individual carbon nanotubes bonded by the Van der Waals force. Because CNT yarn is composed with many CNTs, CNT yarns are expected to increase current density and life time for X-ray tube applications. In this research, CNT yarn was fabricated by spinning of a super-aligned CNT forest and was characterized for application to an X-ray tube cathode. CNT yarn showed a high field emission current density and a long lifetime of over 450 hours. Applying the CNT yarn field emitter to the X-ray tube cathode, it was possible to obtain micro-scale resolution images. The relationship between the field emission properties and the microstructure evolution was investigated and the unraveling effect of the CNT yarn was discussed.

  14. Near-field effects in radio-frequency emission from particle showers in a dense medium

    NASA Astrophysics Data System (ADS)

    Hyneman, Rachel; Wissel, Stephanie; Belov, Konstantin; Vahle, Patricia; Salzberg, David; Romero-Wolf, Andres; SLAC T-510 Collaboration

    2015-04-01

    Two mechanisms are expected to produce radio-frequency emission in ultra-high energy cosmic ray air showers. Askaryan emission, generated by an overall charge excess, has been studied in beam experiments previously. The emission due to Earth's magnetic field has been inferred from observations by cosmic-ray observatories, but not yet studied in a controlled laboratory environment. The SLAC T-510 experiment recently studied the effects of a magnetic field upon the radio-frequency emission from particle showers in high-density polyethylene as a way to model cosmic ray air showers. Ultra-High Frequency (UHF) and Very High Frequency (VHF) antennas were used to measure the signal from particle showers in the target at different positions. For an overview, see the talk by K. Mulrey in this conference. Several near-field runs were performed with the UHF antenna array closer to the target than in the majority of the data taking. Signal from the two mechanisms, Askaryan and Magnetic, were separated into orthogonal polarizations by the geometry of the system. We report on studies of the electric field for several positions in the near field. Initial results indicate that the electric field as a function of angle behaves consistently as the antennas are moved further from the target.

  15. Enhanced field emission properties from surface-modified 2D Cd(OH)2 nanocoins

    NASA Astrophysics Data System (ADS)

    Bagal, Vivekanand S.; Patil, Girish P.; Deore, Amol B.; Baviskar, Prashant K.; Shirale, Dhammanand J.; Chavan, Padmakar G.

    2017-02-01

    Low turn-on field of 2.1 V/µm was found for the emission current density of 10 µA/cm2 and high current density of 403 µA/cm2 was drawn at an applied field of 3.6 V/µm from Au/Cd(OH)2 nanocoins/Cd(OH)2 microsheets (Au/Cd(OH)2NC/Cd(OH)2MS). The observed low turn-on field was found superior to other gold (Au) nanoparticle decorated semiconducting nanostructures reported in the literature. Also the field emission current stability for the preset value of 1 μA over the period of 3 h is found to be good. The Cd(OH)2 nanocoins were grown on Cadmium (Cd) substrate by simple chemical bath deposition technique. Au nanoparticles with average diameter 11 nm were decorated on surface of the Cd(OH)2 nanocoins by sputtering method. Detail characterization such as structural and morphological analysis of Au/Cd(OH)2NC/Cd(OH)2MS has been carried out using X-ray Diffraction, Field Emission Scanning Electron Microscope and Transmission Electron Microscope. To the best of our knowledge, this is the first report on the synthesis and field emission studies of Au/Cd(OH)2NC/Cd(OH)2MS.

  16. Field emission, morphological and mechanical properties of variety of diamond-like carbon thin films

    NASA Astrophysics Data System (ADS)

    Dwivedi, Neeraj; Kumar, Sushil; Tripathi, R. K.; Malik, H. K.; Panwar, O. S.

    2011-11-01

    The effect of nitrogen incorporation and sandwich titanium and copper layers, on field emission, morphological and mechanical properties of diamond-like carbon (DLC) thin films is explored. The introduction of foreign element (N2) and sandwich Cu and Ti layers changed the amorphous morphology to nanostructured, reduced the stress, enhanced the hardness (except N2 incorporated DLC film) and improved the field emission (except Ti/DLC bilayer) of modified DLC films. The associated versatile electrical and mechanical properties of modified DLC film made it a material of great utility in the development of field emission display panels and also lead to its application as a hard and protective coating on cutting tools, automobile parts etc. It is important to mention that DLC-based electronic materials may replace currently used soft electronic materials (such as Si) due to their enhanced stability under high energy radiation.

  17. Structural origination of charge transfer complex nanostructures: Excellent candidate for field emission

    SciTech Connect

    Pal, Shreyasi; Chattopadhyay, Kalyan Kumar

    2016-05-23

    Worldwide strategies for amalgamating rationally controlled one-dimensional organic nanowires are of fundamental importance for their applications in flexible, cheaper and lighter electronics. In this work we have fabricated large-area, ordered CuTCNQ (copper-7,7,8,8-tetracyanoquinodimethane) nano architecture arrays over flexible conducting substrate and discussed the rational growth and integration of nanostructures. Here we adopted the organic solid phase reaction (VLS) technique for the growth of organic hierarchies and investigated how field emission properties changes by tuning the nanostructures morphology i.e., by varying length, diameter, alignment and orientation over flexible substrate. The CuTCNQ nanowires with optimized geometry exhibit excellent high field emission performance with low turn-on and threshold field values. The result strongly indicate that CuTCNQ nanowires on flexible carbon cloth substrate are promising candidates for constructing cold cathode based emission display devices, vacuum nanoelectronics, and etc.

  18. Electrospun MgO-loaded carbon nanofibers: Enhanced field electron emission from the fibers in vacuum

    NASA Astrophysics Data System (ADS)

    Aykut, Yakup

    2013-02-01

    MgO-loaded electrospun carbon nanofibers (MgO/CNFs) were prepared by electrospinning a magnesium acetate containing polyacrylonitrile composite followed by stabilization under an air atmosphere at 280 °C and carbonization under a nitrogen atmosphere at 800 °C. In addition to investigating the morphological and material features of the nanofibers, the field emission (FE) characteristics of the carbonized NFs (CNFs), performed in an ultra-high vacuum chamber utilizing scanning electron microscopy (SEM), were determined. The results of the investigation show that the MgO/CNFs (195.5% enhancement) display enhanced field electron emission as compared to that of pure CNFs as a result of the existence of a MgO phase. Consequently, it appears that the graphitic structures of CNFs can be tuned, a finding that has significance in studies aimed at developing new field electron emission devices.

  19. Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission

    NASA Astrophysics Data System (ADS)

    Dan, Cai; Lie, Liu; Jin-Chuan, Ju; Xue-Long, Zhao; Hong-Yu, Zhou; Xiao, Wang

    2016-04-01

    The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).

  20. Carbon nanotube growth for field-emission cathodes from graphite paste using Ar-ion bombardment

    SciTech Connect

    Hunt, Charles E.; Glembocki, Orest J.; Wang Yu; Prokes, Sharka M.

    2005-04-18

    Multiwall carbon nanotubes (MW-CNT) have been synthesized from solid-phase graphite. The graphite is deposited as a thick-film paste and irradiated with a 1.2 keV flood Ar-ion beam, transforming the graphite surface to a composite of MW-CNT embedded in the graphite matrix. Micro-Raman measurements have verified that the nanotubes are metallic in nature. The technique was used to make printed field-emission cathodes. Emission from these cathodes demonstrates Fowler-Nordheim tunneling characteristics. The irradiated film emits at an extraction field of 5.0 V/{mu}m, which is less than one-sixth of the minimum extraction field of the nonirradiated graphite film, and exhibit lower noise and greater emission uniformity.

  1. Field studies of isoprene emissions from vegetation in the Northwest Mediterranean region

    NASA Astrophysics Data System (ADS)

    Owen, Susan M.; Boissard, C.; Hagenlocher, B.; Hewitt, C. Nicholas

    1998-10-01

    During the Biogenic Emissions in the Mediterranean Area (BEMA) project field campaigns (1993-1997), 40 native Mediterranean plant species were screened for emissions of isoprene and monoterpenes using a branch enclosure sampling method with subsequent gas chromatographic-flame ionization detector (GC-FID) and GC-mass selective detector (MS) analysis. Thirteen species emitted more than 0.5 μg (C) g-1 dw h-1 isoprene at 30°C and 1000 μmol m-2 s-1 photosynthetically active radiation (PAR), of which nine species emitted more than 20 μg (C) g-1 dw h-1. Emissions of isoprene were strongly correlated with temperature and PAR, and were reasonably well predicted by existing algorithms. There was little intraspecies and day to day variation in base emission rates. In general, median base emission rates were higher in summer compared to autumn for most species. Significant difference in aggregated habitat base emission rates was found between dunes, garrigue, woodland, and riverside sample sites. Although considerable unexplained variability in base emission rates remains to be explored, first estimates of base emission rates for Mediterranean shrublands are presented here.

  2. Ammonia emissions from a grazed field estimated by miniDOAS measurements and inverse dispersion modelling

    NASA Astrophysics Data System (ADS)

    Bell, Michael; Flechard, Chris; Fauvel, Yannick; Häni, Christoph; Sintermann, Jörg; Jocher, Markus; Menzi, Harald; Hensen, Arjan; Neftel, Albrecht

    2017-05-01

    Ammonia (NH3) fluxes were estimated from a field being grazed by dairy cattle during spring by applying a backward Lagrangian stochastic model (bLS) model combined with horizontal concentration gradients measured across the field. Continuous concentration measurements at field boundaries were made by open-path miniDOAS (differential optical absorption spectroscopy) instruments while the cattle were present and for 6 subsequent days. The deposition of emitted NH3 to clean patches on the field was also simulated, allowing both net and gross emission estimates, where the dry deposition velocity (vd) was predicted by a canopy resistance (Rc) model developed from local NH3 flux and meteorological measurements. Estimated emissions peaked during grazing and decreased after the cattle had left the field, while control on emissions was observed from covariance with temperature, wind speed and humidity and wetness measurements made on the field, revealing a diurnal emission profile. Large concentration differences were observed between downwind receptors, due to spatially heterogeneous emission patterns. This was likely caused by uneven cattle distribution and a low grazing density, where hotspots of emissions would arise as the cattle grouped in certain areas, such as around the water trough. The spatial complexity was accounted for by separating the model source area into sub-sections and optimising individual source area coefficients to measured concentrations. The background concentration was the greatest source of uncertainty, and based on a sensitivity/uncertainty analysis the overall uncertainty associated with derived emission factors from this study is at least 30-40 %.Emission factors can be expressed as 6 ± 2 g NH3 cow-1 day-1, or 9 ± 3 % of excreted urine-N emitted as NH3, when deposition is not simulated and 7 ± 2 g NH3 cow-1 day-1, or 10 ± 3 % of excreted urine-N emitted as NH3, when deposition is included in the gross emission

  3. Optical and field emission properties of layer-structure GaN nanowires

    SciTech Connect

    Cui, Zhen; Li, Enling; Shi, Wei; Ma, Deming

    2014-08-15

    Highlights: • The layer-structure GaN nanowires with hexagonal-shaped cross-sections are produced via a process based on the CVD method. • The diameter of the layer-structure GaN nanowire gradually decreases from ∼500 nm to ∼200 nm along the wire axis. • The layer-structure GaN nanowire film possesses good field emission property. - Abstract: A layer-structure gallium nitride (GaN) nanowires, grown on Pt-coated n-type Si (1 1 1) substrate, have been synthesized using chemical vapor deposition (CVD). The results show: (1) SEM indicates that the geometry structure is layer-structure. HRTEM indicates that GaN nanowire’s preferential growth direction is along [0 0 1] direction. (2) The room temperature PL emission spectrum of the layer-structure GaN nanowires has a peak at 375 nm, which proves that GaN nanowires have potential application in light-emitting nano-devices. (3) Field-emission measurements show that the layer-structure GaN nanowires film has a low turn-on field of 4.39 V/μm (at room temperature), which is sufficient for electron emission devices, field emission displays and vacuum nano-electronic devices. The growth mechanism for GaN nanowires has also been discussed briefly.

  4. Field emission studies of CNTs/ZnO nanostructured thin films for display devices

    NASA Astrophysics Data System (ADS)

    Alvi, M. A.; Al-Ghamdi, A. A.; Husain, M.

    2017-09-01

    Zinc oxide (ZnO) nanoparticles were coated on the surface of multi walled carbon nanotubes (MWCNTs) to improve the field emission characteristic of MWCNTs. The synthesis of MWCNTs was made by chemical vapor deposition (CVD). RF sputtering was used to prepare MWCNTs/ZnO nanocomposite. The as-prepared nanocomposites were identified by electron microscopes (transmission and scanning), Raman spectroscopy and X-Ray diffractometer (HRXRD) to establish the linking of ZnO nanoparticles on MWCNTs. The field emission studies of MWCNTs/ZnO nanocomposites show that the current density is increased remarkably. After attachment of ZnO nanoparticles, it is observed that the turn-on field of MWCNTs decreases. These results have been shown in terms of enhanced current density and field enhancement factor after surface modification of MWCNTs field emitters.

  5. Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    PubMed Central

    2012-01-01

    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800

  6. Spontaneous emission from the atom stabilized by a strong high-frequency laser field

    NASA Astrophysics Data System (ADS)

    Bogatskaya, A. V.; Volkova, E. A.; Popov, A. M.

    2017-09-01

    The spontaneous emission of a quantum system driven by a high-intensity, high-frequency classical laser field is analyzed. The study is based on the accurate consideration of the quantum system interacting with vacuum-quantized field modes in the first order of perturbation theory, while the intense laser field is considered classically beyond this theory. It is demonstrated that the spectrum of the spontaneous emission can be used for analyzing the strong-field dynamics and the structure of the energy spectrum of an atomic system. In particular, it is found that in high-frequency fields (where the energy of the laser quanta is greater than the ionization potential) atoms manifest the features of the Kramers-Henneberger atom. It is also found that in the stabilization regime, the atom emits both odd and even laser radiation harmonics.

  7. Estimation of methane and nitrous oxide emissions from rice field with rice straw management in Cambodia.

    PubMed

    Vibol, S; Towprayoon, S

    2010-02-01

    To estimate the greenhouse gas emissions from paddy fields of Cambodia, the methodology of the Intergovernmental Panel on Climate Change (IPCC) guidelines, IPCC coefficients, and emission factors from the experiment in Thailand and another country were used. Total area under rice cultivation during the years 2005-2006 was 2,048,360 ha in the first crop season and 298,529 ha in the second crop season. The emission of methane from stubble incorporation with manure plus fertilizer application areas in the first crop season was estimated to be 192,783.74 ton higher than stubble with manure, stubble with fertilizer, and stubble without fertilizer areas. The fields with stubble burning emitted the highest emission of methane (75,771.29 ton) followed by stubble burning with manure (22,251.08 ton), stubble burning with fertilizer (13,213.27 ton), and stubble burning with fertilizer application areas (3,222.22 ton). The total emission of methane from rice field in Cambodia for the years 2005-2006 was approximately 342,649.26 ton (342.65 Gg) in the first crop season and 36,838.88 ton (36.84 Gg) in the second crop season. During the first crop season in the years 2005-2006, Battambang province emitted the highest amount of CH(4) (38,764.48 ton) and, in the second crop season during the years 2005-2006, the highest emission (8,262.34 ton) was found in Takeo province (8,262.34 ton). Nitrous oxide emission was between 2.70 and 1,047.92 ton in the first crop season and it ranged from 0 to 244.90 ton in the second crop season. Total nitrous oxide emission from paddy rice field was estimated to be 9,026.28 ton in the first crop season and 1,091.93 ton in the second crop season. Larger area under cultivation is responsible for higher emission of methane and nitrous oxide. Total emission of nitrous oxide by using IPCC default emission coefficient was approximately 2,328.85 ton. The total global warming potential of Cambodian paddy rice soil is 11,723,217.03 ton (11,723 Gg

  8. Synthesis and field emission property of VO 2 nanorods with a body-centered-cubic structure

    NASA Astrophysics Data System (ADS)

    Wang, Yuquan; Zhang, Zhengjun

    2009-02-01

    Films consisting of vertically aligned VO 2 nanorods were prepared on planar silicon substrate by thermally heating a sheet of vanadium in a rough vacuum. These nanorods were found to be of a body-centered-cubic (BCC) structure with a lattice constant of 0.94 nm, which was not observed before for VO 2. Due to their sharp tip of the nanometer scale, the BCC VO 2 nanorods exhibited excellent field emission properties, which make them possible candidate materials for applications in field emission devices.

  9. Terahertz emission from collapsing field domains during switching of a gallium arsenide bipolar transistor.

    PubMed

    Vainshtein, Sergey; Kostamovaara, Juha; Yuferev, Valentin; Knap, Wojciech; Fatimy, Abdel; Diakonova, Nina

    2007-10-26

    Broadband pulsed THz emission with peak power in the sub-mW range has been observed experimentally during avalanche switching in a gallium arsenide bipolar junction transistor at room temperature, while significantly higher total generated power is predicted in simulations. The emission is attributed to very fast oscillations in the conductivity current across the switching channels, which appear as a result of temporal evolution of the field domains generated in highly dense electron-hole plasma. This plasma is formed in turn by powerful impact ionization in multiple field domains of ultrahigh amplitude.

  10. Field-emission microscopy of the surface of an Ir-C-Cs point emitter

    NASA Astrophysics Data System (ADS)

    Bernatskii, D. P.; Pavlov, V. G.

    2013-12-01

    The emissive properties of an iridium-based point emitter with various forms of carbon (chemisorbed species, two-dimensional graphite structures) and cesium atoms adsorbed on the surface has been studied by the field-electron emission microscopy (FEM) and field-desorption microscopy (FDM) techniques. The FEE and FDM images of the emitter surface corresponding to various phase states of carbon have been obtained. It is established that two-dimensional graphite structures grow predominantly in the regions of (100) and (111) faces of iridium.

  11. Electron field emission enhancement of carbon nanowalls by plasma surface nitridation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Wakana; Kondo, Hiroki; Obayashi, Tomomi; Hiramatsu, Mineo; Hori, Masaru

    2011-03-01

    Carbon nanowalls (CNWs) are two-dimensional carbon nanostructures consisting of stacked graphene sheets standing vertically on the substrate. The sharp edges of CNWs provide us with opportunities for applications as electron field emitter arrays. The effects of nitrogen plasma (NP) treatment on the surface of CNWs have been investigated in order to improve the electron field emission properties. The electron emission current from the edges of CNWs was drastically increased by the NP treatment. Morphological and chemical changes in the CNWs after the NP treatment were characterized using scanning electron microscopy, Raman spectroscopy, and x-ray photoelectron spectroscopy.

  12. Field electron and ion emission from charged surfaces: a strategic historical review of theoretical concepts.

    PubMed

    Forbes, Richard G

    2003-01-01

    The field-electron (FE) and field-ion techniques directly observe and measure atomic-level surface processes that occur in very high electric fields. In theoretical terms, the high fields put large additional terms into Hamiltonians and free energies, and significantly modify many aspects of the surface physics and chemistry, as compared with the field-free situation. This paper presents a strategic review of the fundamental science of some of these high-field surface effects and processes, as developed in the context of the field electron and ion emission techniques. It outlines the main theoretical concepts developed, notes some twists of scientific history, and suggests useful contributions made to mainstream science. Topics covered are basic aspects of FE emission, surface field ionisation, localised field adsorption, charged surfaces theory, field-ion image contrast theory and associated imaging-gas kinetics, field evaporation, and aspects of the thermodynamics of charged surfaces. Despite many years of effort, important aspects of the theory remain incomplete. Some theoretical challenges are noted.

  13. Effect of inorganic fertilizers (N, P, K) on methane emission from tropical rice field of India

    NASA Astrophysics Data System (ADS)

    Datta, A.; Santra, S. C.; Adhya, T. K.

    2013-02-01

    In the tropical experimental rice field of Central Rice Research Institute, Odisha, India, an experiment was conducted during the dry season (January-April) and wet season (July-November) of rice cultivation to study the effect of nitrogen (N), phosphorus (P) and potassium (K) fertilizer application on grain yield and methane (CH4) emission. The experiment was carried out with five treatments (No fertilizer (control), N-fertilizer, P-fertilizer, K-fertilizer and N + P + K fertilizer) with three replicates of each under a completely randomized block design. Significantly higher CH4 emission was recorded from all plots during wet season. Among fertilizer applied plots, significantly higher CH4 emission was recorded from N-fertilizer applied plots (dry season: 80.27 kg ha-1; wet season: 451.27 kg ha-1), while significantly lower CH4 emission was recorded from N + P + K applied plots (dry season: 34.60 kg ha-1; wet season: 233.66 kg ha-1). Low cumulative CH4 emission to grain yield ratio was recorded from N + P + K applied plots during both seasons (83.57 kg Mg-1 grain yield during dry season and 77.14 kg Mg-1 grain yield during wet season). CH4 emission from different treatment was positively correlated with microbial biomass carbon (r = 0.516), readily mineralizable carbon (r = 0.621) and sugar (r = 0.340) content of the soil. Negative CH4 emission was recorded during the fallow period which may be attributed to higher methanotrophic bacterial population. Study suggests that the effects of P and K-fertilizer on CH4 emission from rice field along with the CH4 emission during the fallow period need to be considered to reduce the uncertainty in upscaling process.

  14. A simplified sampling procedure for the estimation of methane emission in rice fields.

    PubMed

    Khokhar, Nadar Hussain; Park, Jae-Woo

    2017-08-24

    Manual closed chamber methods are widely used for CH4 measurement from rice paddies. Despite diurnal and seasonal variations in CH4 emissions, fixed sampling times, usually during the day, are used. Here, we monitored CH4 emission from rice paddies for one complete rice-growing season. Daytime CH4 emission increased from 0800 h, and maximal emission was observed at 1200 h. Daily averaged CH4 flux increased during plant growth or fertilizer application and decreased upon drainage of plants. CH4 measurement results were linearly interpolated and matched with the daily averaged CH4 emission calculated from the measured results. The time when daily averaged emission and the interpolated CH4 curve coincided during the daytime was largely invariant within each of the five distinctive periods. One-hourly sampling during each of these five periods was utilized to estimate the emission during each period, and we found that five one-hourly samples during the season accurately reflected the CH4 emission calculated based on all 136 hourly samples. This new sampling scheme is simple and more efficient than current sampling practices. Previously reported sampling schemes yielded estimates 9 to 32% higher than the measured CH4 emission, while our suggested scheme yielded an estimate that was only 5% different from that based on all 136-h samples. The sampling scheme proposed in this study can be used in rice paddy fields in Korea and extended worldwide to countries that use similar farming practices. This sampling scheme will help in producing more accurate global methane budget from rice paddy fields.

  15. A model to relate wind tunnel measurements to open field odorant emissions from liquid area sources

    NASA Astrophysics Data System (ADS)

    Lucernoni, F.; Capelli, L.; Busini, V.; Sironi, S.

    2017-05-01

    Waste Water Treatment Plants are known to have significant emissions of several pollutants and odorants causing nuisance to the near-living population. One of the purposes of the present work is to study a suitable model to evaluate odour emissions from liquid passive area sources. First, the models describing volatilization under a forced convection regime inside a wind tunnel device, which is the sampling device that typically used for sampling on liquid area sources, were investigated. In order to relate the fluid dynamic conditions inside the hood to the open field and inside the hood a thorough study of the models capable of describing the volatilization phenomena of the odorous compounds from liquid pools was performed and several different models were evaluated for the open field emission. By means of experimental tests involving pure liquid acetone and pure liquid butanone, it was verified that the model more suitable to describe precisely the volatilization inside the sampling hood is the model for the emission from a single flat plate in forced convection and laminar regime, with a fluid dynamic boundary layer fully developed and a mass transfer boundary layer not fully developed. The proportionality coefficient for the model was re-evaluated in order to account for the specific characteristics of the adopted wind tunnel device, and then the model was related with the selected model for the open field thereby computing the wind speed at 10 m that would cause the same emission that is estimated from the wind tunnel measurement furthermore, the field of application of the proposed model was clearly defined for the considered models during the project, discussing the two different kinds of compounds commonly found in emissive liquid pools or liquid spills, i.e. gas phase controlled and liquid phase controlled compounds. Lastly, a discussion is presented comparing the presented approach for emission rates recalculation in the field, with other approaches

  16. Indirect measurement of field emission electron current from the main superconducting cavities of compact ERL at KEK

    NASA Astrophysics Data System (ADS)

    Matsumura, Hiroshi; Nakamura, Hajime; Toyoda, Akihiro; Hozumi, Ken-ichi; Sakai, Hiroshi; Enami, Kazuhiro; Furuya, Takaaki; Shinoe, Kenji; Umemori, Kensei; Haga, Kaiichi; Sakanaka, Shogo; Sawamura, Masaru; Cenni, Enrico

    2017-09-01

    The field emission electron currents from the main superconducting cavities (Cavities #3 and #4) of compact ERL at KEK, Japan, were estimated indirectly from photon dose rates measured around the cavities and on the roof of the compact ERL room. The field emission electron currents estimated from the photon dose rates measured around the cavities are in good agreement with those on the roof of the compact ERL room. The field emission electron currents increased steeply with the applied voltage. The field emission electron currents corresponding to the applied voltages were different between Cavity #3 and Cavity #4. We found that the field emission electron current exceeded 1 μA at 13.5 MV for Cavity #3 and at 15.5 MV for Cavity #4. This result was used in considering unexpected loss of field emission electrons.

  17. Apparatus comprising a tunable nanomechanical near-field grating and method for controlling far-field emission

    DOEpatents

    Carr, Dustin Wade; Bogart, Gregory Robert

    2007-02-06

    A tunable nanomechanical near-field grating is disclosed which is capable of varying the intensity of a diffraction mode of an optical output signal. The tunable nanomechanical near-field grating includes two sub-gratings each having line-elements with width and thickness less than the operating wavelength of light with which the grating interacts. Lateral apertures in the two sub-gratings are formed from the space between one line-element of the first sub-grating and at least one line-element of the second sub-grating. One of the sub-gratings is capable of motion such that at least one of aperture width and aperture depth changes, causing a perturbation to the near-field intensity distribution of the tunable nanomechanical near-field grating and a corresponding change to the far-field emission of thereof.

  18. Mitigating nitrous oxide emissions from tea field soil using bioaugmentation with a Trichoderma viride biofertilizer.

    PubMed

    Xu, Shengjun; Fu, Xiaoqing; Ma, Shuanglong; Bai, Zhihui; Xiao, Runlin; Li, Yong; Zhuang, Guoqiang

    2014-01-01

    Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O) emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha(-1) yr(-1) fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha(-1) and 58.7 kg N ha(-1). Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha(-1) yr(-1) significantly reduced N2O emissions by 33.3%-71.8% and increased the tea yield by 16.2%-62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields.

  19. Mitigating Nitrous Oxide Emissions from Tea Field Soil Using Bioaugmentation with a Trichoderma viride Biofertilizer

    PubMed Central

    Xu, Shengjun; Fu, Xiaoqing; Ma, Shuanglong; Xiao, Runlin; Li, Yong; Zhuang, Guoqiang

    2014-01-01

    Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O) emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha−1 yr−1 fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha−1 and 58.7 kg N ha−1. Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha−1 yr−1 significantly reduced N2O emissions by 33.3%–71.8% and increased the tea yield by 16.2%–62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields. PMID:24955418

  20. Characterisation of carbon nanotube pastes for field emission using their sheet resistances

    NASA Astrophysics Data System (ADS)

    Floweri, Octia; Kim, Jihan; Seo, Yongho; Park, Jun-Young; Lee, Naesung

    2015-10-01

    Carbon nanotube (CNT) pastes for field emitters were fabricated by varying the milling speed, CNT amount and glass frit (GF) powder size. The CNTs remained agglomerated at lower milling speeds while they were damaged and shortened at higher speeds. Increasing the amount of CNTs improved the field emission properties, but excessive CNTs led to increased removal of the CNT paste with surface activation because of lower cohesion strength. Small GF particles were incorporated to provide a flat surface to the CNT paste, which improved its field emission uniformity and lifespan. The dispersion, density and milling damage characteristics of CNTs in the pastes were assessed by their sheet resistances under the assumption of equal printed thicknesses. Tape activation reduced the thickness of the CNT pastes by different amounts that depended on the cohesion strength of the paste. This reduction caused the sheet resistance to increase. For all cases in this study, the field emission properties of the CNT pastes were closely related to their sheet resistances, suggesting that sheet resistance could be used as a figure-of-merit for the evaluation of CNT pastes for field emission applications.

  1. Novel borothermal route for the synthesis of lanthanum cerium hexaborides and their field emission properties

    SciTech Connect

    Menaka; Patra, Rajkumar; Ghosh, Santanu; Ganguli, Ashok K.

    2012-10-15

    The present study describes the development of a simple approach to stabilize polycrystalline lanthanum cerium hexaborides without using any flux and at ambient pressure. The nanostructured lanthanum-cerium borides were synthesized using hydroxide precursors. These precursors (La{sub 1-x}Ce{sub x}(OH){sub 3}, x=0.1, 0.2, 0.3 and 0.5) were synthesized via hydrothermal route in the presence of Tergitol (surfactant, nonylphenol ethoxylate) as a capping agent. The precursors on heating with boron at 1300 Degree-Sign C lead to the formation of nanostructures (cubes, rods and pyramids) of lanthanum cerium hexaboride. We have investigated the field emission behaviour of the hexaboride films fabricated by spin coating. It was observed that the pyramidal shaped nanostructures of La{sub 0.5}Ce{sub 0.5}B{sub 6} shows excellent field emission characteristics with high field enhancement factor of 4502. - Graphical abstract: Nanostructured lanthanum cerium hexaboride with efficient field emission have fabricated by low temperature hydroxide precursor mediated route. Highlights: Black-Right-Pointing-Pointer New methodology to prepare lanthanum cerium hexaboride at 1300 Degree-Sign C via borothermal route. Black-Right-Pointing-Pointer Nanostructured lanthanum cerium hexaboride film by spin coating process. Black-Right-Pointing-Pointer Nanopyramids based lanthanum cerium hexaboride shows excellent field emission.

  2. Nanoparticle-density-dependent field emission of surface-decorated SiC nanowires

    SciTech Connect

    Dong, Qizheng; Chen, Shanliang; Chen, Qiang; Gao, Fengmei; Wang, Lin; Yang, Weiyou E-mail: weiyouyang@tsinghua.org.cn; Xie, Zhipeng E-mail: weiyouyang@tsinghua.org.cn

    2016-08-22

    Increasing the electron emission site density of nanostructured emitters with limited field screening effects is one of the key issues for improving the field emission (FE) properties. In this work, we reported the Au-nanoparticles-density-dependent field emission behaviors of surface-decorated SiC nanowires. The Au nanoparticles (AuNPs) decorated around the surface of the SiC nanowires were achieved via an ion sputtering technique, by which the densities of the isolated AuNPs could be adjusted by controlling the fixed sputtering times. The measured FE characteristics demonstrated that the turn-on fields of the SiC nanowires were tuned to be of 2.06, 1.14, and 3.35 V/μm with the increase of the decorated AuNPs densities, suggesting that a suitable decorated AuNPs density could render the SiC nanowires with totally excellent FE performances by increasing the emission sites and limiting the field screening effects.

  3. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  4. Silicon multi-branch nanostructures for decent field emission and excellent electrical transport

    NASA Astrophysics Data System (ADS)

    Sun, Min; Gao, Yihua; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri

    2011-04-01

    We report on the synthesis, field electron emission and electric transport properties of a novel nanomaterial: ordered arrays of crystallized silicon multi-branch nanostructures. A decent field electron emission with relatively low turn-on field of 3.16 V µm - 1 and high field-enhancement factor of 1252 was received for the silicon nanobranches. The relevancies between field-emission current-voltage characteristic, turn-on field, threshold field and sample-anode distance have been thoroughly analyzed. In addition, electrical transport measurements revealed a small electrical resistance of 0.51 MΩ for as-prepared silicon nanobranches. In contrast, by improving the silicon nanobranch-electrode contact, vacuum annealing dramatically reduced the electrical resistance, by a factor approaching two, while thermal oxidation resulted in a much higher resistance due to the amorphous oxide coating of the silicon nanobranches, both of the current versus voltage curves became more linear and symmetrical, and the transport stability was obviously improved.

  5. Modeling and computation of mean field equilibria in producers' game with emission permits trading

    NASA Astrophysics Data System (ADS)

    Zhang, Shuhua; Wang, Xinyu; Shanain, Aleksandr

    2016-08-01

    In this paper, we present a mean field game to model the production behaviors of a very large number of producers, whose carbon emissions are regulated by government. Especially, an emission permits trading scheme is considered in our model, in which each enterprise can trade its own permits flexibly. By means of the mean field equilibrium, we obtain a Hamilton-Jacobi-Bellman (HJB) equation coupled with a Kolmogorov equation, which are satisfied by the adjoint state and the density of producers (agents), respectively. Then, we propose a so-called fitted finite volume method to solve the HJB equation and the Kolmogorov equation. The efficiency and the usefulness of this method are illustrated by the numerical experiments. Under different conditions, the equilibrium states as well as the effects of the emission permits price are examined, which demonstrates that the emission permits trading scheme influences the producers' behaviors, that is, more populations would like to choose a lower rather than a higher emission level when the emission permits are expensive.

  6. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler.

    PubMed

    Sun, Yuning; Yun, Ki Nam; Leti, Guillaume; Lee, Sang Heon; Song, Yoon-Ho; Lee, Cheol Jin

    2017-02-10

    Carbon nanotube (CNT) paste emitters were fabricated using graphite nanopowder filler. The CNT paste emitters consist of CNTs as the emitting material, graphite nanopowder as the filler and a graphite rod as the cathode. Rather than metal or inorganic materials, graphite nanopowder was adapted as a filler material to make the CNT paste emitters. After fabricating the emitters, sandpaper treatment was applied to increase the density of emission sites. The CNT paste emitters showed a high field emission performance, for example a high emission current of 8.5 mA from a cylindrical emitter with a diameter of 0.7 mm (corresponding to a current density of 2.2 A cm(-2)) and an extremely stable emission current at 1 mA (260 mA cm(-2) for 20 h). Interestingly, after a number of electrical arcing events, the emitters still showed a high emission current of 5-8 mA (higher than 1 A cm(-2)). In addition to the sound electrical and thermal properties of the graphite filler, effective mechanical adhesion of the CNTs onto the graphite cathode induced by the use of the graphite nanopowder filler contributed the excellent field emission properties of the CNT paste emitters.

  7. High-performance field emission of carbon nanotube paste emitters fabricated using graphite nanopowder filler

    NASA Astrophysics Data System (ADS)

    Sun, Yuning; Yun, Ki Nam; Leti, Guillaume; Lee, Sang Heon; Song, Yoon-Ho; Lee, Cheol Jin

    2017-02-01

    Carbon nanotube (CNT) paste emitters were fabricated using graphite nanopowder filler. The CNT paste emitters consist of CNTs as the emitting material, graphite nanopowder as the filler and a graphite rod as the cathode. Rather than metal or inorganic materials, graphite nanopowder was adapted as a filler material to make the CNT paste emitters. After fabricating the emitters, sandpaper treatment was applied to increase the density of emission sites. The CNT paste emitters showed a high field emission performance, for example a high emission current of 8.5 mA from a cylindrical emitter with a diameter of 0.7 mm (corresponding to a current density of 2.2 A cm-2) and an extremely stable emission current at 1 mA (260 mA cm-2 for 20 h). Interestingly, after a number of electrical arcing events, the emitters still showed a high emission current of 5-8 mA (higher than 1 A cm-2). In addition to the sound electrical and thermal properties of the graphite filler, effective mechanical adhesion of the CNTs onto the graphite cathode induced by the use of the graphite nanopowder filler contributed the excellent field emission properties of the CNT paste emitters.

  8. Characteristics and Evolution of the Magnetic Field and Chromospheric Emission in an Active Region Core Observed by Hinode

    DTIC Science & Technology

    2010-06-30

    ar X iv :1 00 6. 57 76 v1 [ as tr o- ph .S R ] 3 0 Ju n 20 10 CHARACTERISTICS AND EVOLUTION OF THE MAGNETIC FIELD AND CHROMOSPHERIC EMISSION IN...describe the characteristics and evolution of the magnetic field and chromospheric emission in an active region core observed by the Solar Optical Telescope...extends to significant coronal heights. The magnetic flux, field vector, and chromospheric emission in the moss also appear highly dynamic, but actually

  9. Emission of terahertz radiation from GaN/AlGaN heterostructure under electron heating in lateral electric field

    NASA Astrophysics Data System (ADS)

    Shalygin, V. A.; Vorobjev, L. E.; Firsov, D. A.; Sofronov, A. N.; Melentyev, G. A.; Lundin, W. V.; Sakharov, A. V.; Tsatsulnikov, A. F.

    2013-12-01

    Spontaneous emission of terahertz radiation from modulation-doped AlGaN/GaN heterostructure under conditions of heating of a two-dimensional electron gas in the lateral electric field has been studied. The experimental data on the field dependence of the integral intensity of THz emission is compared with the theoretical simulation of blackbody-like emission from hot 2D electrons. Complementary transport measurements have been carried out to determine the dependence of effective electron temperature on electric field.

  10. Synthesis and field emission properties of nanocrystalline diamond/carbon nanowall composite films

    SciTech Connect

    Teii, Kungen; Nakashima, Masahiro

    2010-01-11

    Nanostructured composite films consisting of almost vertically aligned graphene layers, so-called 'carbon nanowalls' (CNWs), and nanocrystalline diamond films are prepared by plasma-enhanced chemical vapor deposition. The space between the walls for the composite films is widened compared to simple CNWs by interception of in-plane continuity of the wall structures. The nucleation density of diamond is responsible for the spacing and arrangement of the walls. Field emission measurements show that the composite films have lower turn-on fields (approx1 V/mum) and larger field enhancement factors (approx4000) than simple CNWs. The results indicate that electric field screening between neighboring walls is well suppressed.

  11. Green house gas emissions from open field burning of agricultural residues in India.

    PubMed

    Murali, S; Shrivastava, Rajnish; Saxena, Mohini

    2010-10-01

    In India, about 435.98 MMT of agro-residues are produced every year, out of which 313.62 MMT are surplus. These residues are either partially utilized or un-utilised due to various constraints. To pave the way for subsequent season for agriculture activity, the excess crop residues are burnt openly in the fields, unmindful of their ill effects on the environment. The present study has been undertaken to evaluate the severity of air pollution through emission of green house gases (GHGs) due to open field burning of agro-residues in India. Open field burning of surplus agro-residues in India results in the emission of GHG. Emissions of CH4 and N2O in 1997-98 and 2006-07 have been 3.73 and 4.06 MMT CO2 equivalent, which is an increase of 8.88% over a decade. About three-fourths of GHG emissions from agro-residues burning were CH4 and the remaining one-fourth were N2O. Burning of wheat and paddy straws alone contributes to about 42% of GHGs. These GHG emissions can be avoided once the agro-residues are employed for sustainable, cost-effective and environment- friendly options like power generation.

  12. On the problems of stability and durability of field-emission current sources for electrovacuum devices

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Akchurin, Garif G.; Akchurin, Georgy G.; Avetisyan, Yuri A.

    2016-03-01

    The results of the practical implementation of the concept of field-emission current source with high average current density of 0.1-0.3 A-cm-2 are shown. The durability of cathode samples at a level of 6000 hours is achieved under conditions of technical vacuum. A phenomenological model is suggested that describes the tunneling of both equilibrium and nonequilibrium electrons in a vacuum from the zone of concentration of electrostatic field. Conditions are discussed as the resulting increase in the emission current due to the connection mechanism of the photoelectric effect is thermodynamically favorable, that is not accompanied by an undesirable increase in the temperature of the local emission zone. It is shown that to ensure stability and durability of the cathode is also important to limit the concentration of equilibrium carriers using composite structures «DLC film on Mo substrate." This helps to reduce the criticality of the CVC. A possible alternative is to use a restrictive resistance in the cathode. However, this increases the heat losses and thus decreases assembly efficiency. The results of experimental studies of the structure showing the saturation of photoemission current component with an increase in operating voltage. This fact suggests the existence of an effective mechanism for control of emission at constant operating voltage. This is fundamentally important for the stabilization of field emission cathode, providing a reliability and durability. The single-photon processes and the small thickness DLC films (15-20 nm) provide high-speed process of control.

  13. Finite field of view effects on inversion of limb thermal emission observations. [balloon sounding of stratosphere

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Guo, J.; Conrath, B. J.; Kunde, V. G.; Maguire, W. C.

    1985-01-01

    It is pointed out that the technique of thermal emission spectroscopy provides an effective means for remote sounding of stratospheric temperature structure and constituent distributions. One procedure for measuring the stratospheric infrared spectrum involves the conduction of observations along ray paths tangent to the stratospheric limb. Thermal emission limb tangent observations have certain advantages compared to other types of observations. The techniques for determining temperature and trace gas distributions from limb thermal emission radiances are based on the assumption that the bulk of opacity lies near the tangent point. Ideally, the field of view (FOV) of the observing instrument should be very small. The effect of a finite FOV is to reduce the spatial resolution of the retrieved temperature and constituent profiles. The present investigation is concerned with the effects of the FOV on the inversion of infrared thermal emission measurements for balloon platforms. Attention is given to a convenient method for determining the weighting functions.

  14. In-field measurements of PCDD/F emissions from domestic heating appliances for solid fuels.

    PubMed

    Hübner, C; Boos, R; Prey, T

    2005-01-01

    Within this project the emissions into the atmosphere of polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) of 30 domestic heating appliances in Austrian households were tested. The appliances were single stoves (kitchen stove, continuous burning stove and tiled stove) and central heating boilers for solid fuels up to a nominal heat input of 50 kW. A main objective of this survey was to determine the PCDD/F emissions of domestic heating units under routine conditions. Therefore, the habitual combustion conditions used by the operators were not influenced. The original fuels and lightning supports were used and the operation of the units was carried out by the householders according to their usual practice. The data obtained were used to calculate in-field PCDD/F-emission factors. Most of the appliances have shown PCDD/F emissions within a concentration range of 0.01-0.3 ng TEQ/MJ. Modern fan-assisted wood heating boilers with afterburning and units for continuously burning of wood chips and wood pellets had the lowest emissions. High emissions were caused by unsuitable heating habits such as combustion of wastes and inappropriate operation of the appliances. There were only small differences between single stoves and central heating boilers or between wood and coal-fired appliances. The emission factors calculated are higher than those cited in literature, which are mainly derived from trials on test stands under laboratory conditions.

  15. SURFACE FILMS TO SUPPRESS FIELD EMISSION IN HIGH-POWER MICROWAVE COMPONENTS

    SciTech Connect

    Hirshfield, Jay l

    2014-02-07

    Results are reported on attempts to reduce the RF breakdown probability on copper accelerator structures by applying thin surface films that could suppress field emission of electrons. Techniques for application and testing of copper samples with films of metals with work functions higher than copper are described, principally for application of platinum films, since platinum has the second highest work function of any metal. Techniques for application of insulating films are also described, since these can suppress field emission and damage on account of dielectric shielding of fields at the copper surface, and on account of the greater hardness of insulating films, as compared with copper. In particular, application of zirconium oxide films on high-field portions of a 11.424 GHz SLAC cavity structure for breakdown tests are described.

  16. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    PubMed

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  17. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    SciTech Connect

    Cahay, M.; Zhu, W.; Fairchild, S.; Murray, P. T.; Back, T. C.; Gruen, G. J.

    2016-01-18

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred  °C.

  18. Multiscale model of heat dissipation mechanisms during field emission from carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Cahay, M.; Zhu, W.; Fairchild, S.; Murray, P. T.; Back, T. C.; Gruen, G. J.

    2016-01-01

    A multiscale model of field emission (FE) from carbon nanotube fibers (CNFs) is developed, which takes into account Joule heating within the fiber and radiative cooling and the Nottingham effect at the tip of the individual carbon nanotubes (CNTs) in the array located at the fiber tip. The model predicts the fraction of CNTs being destroyed as a function of the applied external electric field and reproduces many experimental features observed in some recently investigated CNFs, such as order of magnitude of the emission current (mA range), low turn on electric field (fraction of V/μm), deviation from pure Fowler-Nordheim behavior at large applied electric field, hysteresis of the FE characteristics, and a spatial variation of the temperature along the CNF axis with a maximum close to its tip of a few hundred °C.

  19. Field electron emission of layered Bi2Se3 nanosheets with atom-thick sharp edges

    NASA Astrophysics Data System (ADS)

    Huang, Huihui; Li, Yuan; Li, Qi; Li, Borui; Song, Zengcai; Huang, Wenxiao; Zhao, Chujun; Zhang, Han; Wen, Shuangchun; Carroll, David; Fang, Guojia

    2014-06-01

    Field electron emission properties of solution processed few-layer Bi2Se3 nanosheets are studied for the first time, which exhibit a low turn-on field of 2.3 V μm-1, a high field enhancement factor of up to 6860 and good field emission stability. This performance is better than that of the as reported layered MoS2f sheets and is comparable to that of single layer graphene films. The efficient field emission behaviours are found to be not only attributed to their lower work function but also related to their numerous sharp edges or protrusion decorated structure based on our simulation results. Besides, the contribution of possible two-dimensional electron gas surface states of atom-thick layered Bi2Se3 nanosheets is discussed in this paper. We anticipate that these solution processed layered Bi2Se3 nanosheets have great potential as robust high-performance vertical structure electron emitters for future light weight and highly flexible vacuum micro/nano-electronic device applications.Field electron emission properties of solution processed few-layer Bi2Se3 nanosheets are studied for the first time, which exhibit a low turn-on field of 2.3 V μm-1, a high field enhancement factor of up to 6860 and good field emission stability. This performance is better than that of the as reported layered MoS2f sheets and is comparable to that of single layer graphene films. The efficient field emission behaviours are found to be not only attributed to their lower work function but also related to their numerous sharp edges or protrusion decorated structure based on our simulation results. Besides, the contribution of possible two-dimensional electron gas surface states of atom-thick layered Bi2Se3 nanosheets is discussed in this paper. We anticipate that these solution processed layered Bi2Se3 nanosheets have great potential as robust high-performance vertical structure electron emitters for future light weight and highly flexible vacuum micro/nano-electronic device applications

  20. Observation of enhanced field emission properties of Au/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Patil, Girish P.; Bagal, Vivekanand S.; Suryawanshi, Sachin R.; Late, Dattatray J.; More, Mahendra A.; Chavan, Padmakar G.

    2016-05-01

    Simple and low-cost method of thermal annealing was used to decorate Gold (Au) nanoparticles on aligned TiO2 nanotubes. The aligned TiO2 nanotubes were decorated by Au nanoparticles with an average diameter of 9, 18 and 28 nm (aligned TiO2 nanotubes referred as specimen A and TiO2 nanotubes decorated by Au nanoparticles with average diameter of 9, 18 and 28 nm are referred as specimen B, C and D, respectively). The detailed characterization such as structural, morphological and elemental analysis of TiO2 and Au/TiO2 nanocomposite have been carried out using X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy and Raman spectroscopy. Furthermore, the meticulous comparative field emission characteristics of the aligned TiO2 nanotubes and Au/TiO2 nanocomposite have been performed. The turn-on field defined for the current density of 10 μA/cm2 has been found to be 3.9, 2.8, 3.2 and 3.7 V/μm for specimen A, B, C and D, respectively. The observed low turn-on field of specimen B has been found to be superior than the other semiconducting nanocomposites reported in the literature. The emission current stability over a period of 3 h is found to be better for all the specimens. To the best of our knowledge, a systematic field emission study of Au/TiO2 nanocomposite has not been explored. The observed superior field emission study of Au/TiO2 nanocomposite indicates their possible use in micro/nanoelectronic devices.

  1. Electron emission properties of gated silicon field emitter arrays driven by laser pulses

    NASA Astrophysics Data System (ADS)

    Shimawaki, Hidetaka; Nagao, Masayoshi; Neo, Yoichiro; Mimura, Hidenori; Wakaya, Fujio; Takai, Mikio

    2016-10-01

    We report optically modulated electron emission from gated p-type silicon field emitter arrays (Si-FEAs). The device's "volcano" structure is designed to control the photoexcitation of electrons by transmitting light through the small gate aperture, thereby minimizing the photogeneration of slow diffusion carriers outside the depletion region in the tip. Compared to that in the dark, the emission current was enhanced by more than three orders of magnitude in the high field region when irradiated with blue laser pulses. Results from the time-resolved measurements of photoassisted electron emission showed that these possess the same response as the laser pulse with no discernible delay. These results indicate that the volcano device structure is effective at eliminating the generation of diffusion carriers and that a fully optimized FEA is promising as a photocathode for producing high-speed modulated electron beams.

  2. Radio Emission from an Electron Shower in a Dielectric in the Presence of a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wissel, Stephanie; Belov, Konstantin

    2014-03-01

    Several new experiments employ the radio technique to detect ultra-high-energy cosmic rays. The dominant component of the radio-frequency radiation arises from synchrotron emission due to the interaction of the cosmic ray's air shower particles with the Earth's magnetic field. Secondary, but non-negligible, radiation arises from the build up of a charge asymmetry in the shower. We present measurements from the SLAC T-510 experiment in which we bombard a polyethylene target (n = 1.5) in a magnetic field (up to a few kiloGauss) with a few GeV electron beam. Antennas in bands ranging between 30-300 MHz and 300-1200 MHz map out the radio emission in bands relevant for ground arrays and balloon-borne experiments such as ANITA. The data presented here serve to calibrate models of radio emission, ZHAires and CoREAS, by providing a suite of controlled, accelerator-based measurements.

  3. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.

    PubMed

    Agarwal, Sanjay; Yamini Sarada, B; Kar, Kamal K

    2010-02-10

    Tungsten substrates were coated with an Ni or Ni-Co catalyst by the electroless dip coating technique. Various carbon nanotubes were synthesized by the catalytic chemical vapor deposition (CVD) method under different growth conditions. It was observed that Ni-and Ni-Co-coated tungsten substrates give very good growth of carbon nanotubes (CNT) in terms of yield, uniformity and alignment at a growth temperature of 600 degrees C. We fabricated a field-emission-based luminescent light bulb where a tungsten wire coated with carbon nanotubes served as a cathode. Results show lower threshold voltage, better emission stability and higher luminescence for CNT cathodes in comparison with uncoated tungsten cathodes. We found that aligned-coiled carbon nanotubes are superior to straight CNTs in terms of field emission characteristics and luminescence properties.

  4. Field emission from aCa nanotip grown on aMo⟨110⟩ microtip

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Outlaw, R. A.; Champion, R. L.; Wang, J. J.; Manos, D. M.; Holloway, B. C.

    2004-08-01

    We have observed field emission with an energy distribution of 68meV full width at half maximum (FWHM) from a thermally cleaned Mo⟨110⟩ single tip. The emission spectra are taken with the emitting surface at 295K, using a double-pass cylindrical mirror analyzer in ultrahigh vacuum. This narrow energy distribution is attributed to a nanotip spontaneously formed on the ˜75nm radius Mo tip from in situ buildup by field-induced surface diffusion. Auger electron spectroscopy showed that residual surface Ca segregated from the bulk during thermal cleaning and is likely the source of mobile atoms that formed the nanotip. The emission spectra show a discernible doublet that is attributed to a variation in the localized density of states of the nanotip. Sub-Langmuir oxygen exposure of the Mo tip immediately increased the energy distribution to a FWHM of >1eV.

  5. Temporal patterns of methane emissions from wetland rice fields treated by different modes of N application

    NASA Astrophysics Data System (ADS)

    Wassmann, R.; Neue, H. U.; Lantin, R. S.; Aduna, J. B.; Alberto, M. C. R.; Andales, M. J.; Tan, M. J.; van der Gon, H. A. C. Denier; Hoffmann, H.; Papen, H.; Rennenberg, H.; Seiler, W.

    1994-08-01

    Methane emission rates from wetland rice fields were determined in Los Baños (Philippines) using an automatic system that allows continuous measurements over time. Methane emission was monitored in an irrigated Aquandic Epiaqualf planted to rice cultivar IR72. Urea fertilizer was applied using four modes: (1) broadcast 10 days after transplanting, (2) broadcast at transplanting, (3) broadcast and incorporated at final harrowing, and (4) deep placement as sulfur-coated granules. The treatments were laid out in a randomized complete block design with four replicates. Measurements were done in the 1991 wet season, 1992 dry season (four treatments), and the 1992 wet season (only treatment 3). Methane emission rates from the experimental plots showed pronounced seasonal and diel variations. The diel pattern of methane emission rates followed a consistent pattern, with highest rates observed in the early afternoon and lowest rates in the early morning. Methane emission rate was generally highest at the ripening stage. The average methane emission rate during the 1992 dry season (190 mg CH4 m-2 d-1) exceeded the average flux rates of the 1992 wet season (79 mg CH4 m-2 d-1) by a factor of 2.4. The total methane emitted from these flooded rice fields amounted to 19 g CH4 m-2 in the dry season with rice yields of 5.2-6.3 t ha-1 and 7 g CH4 m-2 in the wet season with rice yields of 2.4-3.3 t ha-1 regardless of the mode of N application. Significant amounts corresponding to 20% of the methane released under waterlogged conditions were released when the soil was drained after harvest. Emission rates increased sharply when the floodwater receded and macropores started to drain. Emission of methane stopped only when the soil became fully aerated.

  6. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  7. Design and fabrication of carbon nanotube field-emission cathode with coaxial gate and ballast resistor.

    PubMed

    Sun, Yonghai; Yeow, John T W; Jaffray, David A

    2013-10-25

    A low density vertically aligned carbon nanotube-based field-emission cathode with a ballast resistor and coaxial gate is designed and fabricated. The ballast resistor can overcome the non-uniformity of the local field-enhancement factor at the emitter apex. The self-aligned fabrication process of the coaxial gate can avoid the effects of emitter tip misalignment and height non-uniformity. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Hexagonal Boron Nitride Coated Carbon Nanotubes: Interlayer Polarization Improved Field Emission.

    PubMed

    Chang, Han-Chen; Tsai, Hsin-Jung; Lin, Wen-Yi; Chu, Yung-Chi; Hsu, Wen-Kuang

    2015-07-08

    Coating of h-BN onto carbon nanotubes induces polarization at interfaces, and charges become localized at N and C atoms. Field emission of coated tubes is found to be highly stable, and current density fluctuates within 4%. Study further reveals that the electric field established between coatings and tubes facilitates charge transfer across interfaces and electrons are emitted through occupied and unoccupied bands of N and B atoms.

  9. Effects of the Thickness of Niobium Surface Oxide Layers on Field Emission

    SciTech Connect

    A.T. Wu, S. Jin, J.D. Mammosser, R.A. Rimmer, X.Y. Lu, K. Zhao

    2011-09-01

    Field emission on the inner surfaces of niobium superconducting radio frequency cavities is still one of the major obstacles for reaching high accelerating gradients for SRF community. Our previous experimental results* seemed to imply that the threshold of field emission was related to the thickness of Nb surface oxide layers. In this contribution, a more detailed study on the influences of the surface oxide layers on the field emission on Nb surfaces will be reported. By anodization technique, the thickness of the surface pentoxide layer was artificially fabricated from 3 nm up to 460 nm. A home-made scanning field emission microscope was employed to perform the scans on the surfaces. Emitters were characterized using a scanning electron microscope together with an energy dispersive x-ray analyzer. The SFEM experimental results were analyzed in terms of surface morphology and oxide thickness of Nb samples and chemical composition and geographic shape of the emitters. A model based on the classic electromagnetic theory was developed trying to understand the experimental results. Possibly implications for Nb SRF cavity applications from this study will be discussed.

  10. Nanowire-density-dependent field emission of n-type 3C-SiC nanoarrays

    SciTech Connect

    Wang, Lin; Gao, Fengmei; Chen, Shanliang; Yang, Weiyou; Li, Chengming

    2015-09-21

    The density of the nanowires is one of the key issues for their field emission (FE) properties of the nanoarrays, since it plays an important role on the electron emission sites and field screening effect. Here, we reported the nanowire-density-dependent FE properties of the n-type 3C-SiC nanoarrays. The highly oriented and large-scale SiC nanoarrays were grown on the 6H-SiC wafer via pyrolysis of polyureasilazane by adjusting the thicknesses of Au films used as the catalysts. The densities of the nanoarrays were tunable to be ∼2.9 × 10{sup 7}, ∼4.0 × 10{sup 7}, and ∼5.7 × 10{sup 7} nanowires/cm{sup 2} by controlling the Au film thicknesses of 50, 70, and 90 nm, respectively. The measured FE characteristics disclosed that the turn-on fields of the samples could be tailored to be of ∼1.79, 1.57, and 1.95 V/μm with the increase of the densities, suggesting that a suitable nanowire density could favor the enhanced electron emission from the SiC nanoarrays with improved emission sites and limited field screening effects.

  11. Enhanced field electron emission of graphene sheets by CsI coating after electrophoretic deposition.

    PubMed

    Liu, Jianlong; Zeng, Baoqing; Wu, Zhe; Sun, Hao

    2012-03-01

    Because of the large quantities of edges, graphene can serve as an efficient edge emitter for field emission (FE). Cesium iodide (CsI) coating was promising to enhance the electron emission and utilized in FE applications. In this work, FE of graphene sheets after electrophoretic deposition (ED) was studied. Electron emission property of GS was obviously improved by coating with CsI. The turn-on field of GS decreased from 4.4 to 2.5 V/ μm; and threshold field decreased from 9 to 5.8 V/μm, respectively. This FE improvement must due to a higher effective density of emission site generated around the GS surface after coating. Scanning electron microscopy (SEM) and computation were taken to reveal the influence after coating. Investigations of CsI coated MWCNTs were also compared in order to better understand the origin of the low turn-on electric field obtained by GS. © 2012 American Chemical Society

  12. Estimating GHG Emissions from the Manufacturing of Field-Applied Biochar Pellets

    Treesearch

    Richard D. Bergman; Hanwen Zhang; Karl Englund; Keith Windell; Hongmei Gu

    2016-01-01

    Biochar application to forest soils can provide direct and indirect benefits, including carbon sequestration. Biochar, the result of thermochemical conversion of biomass, can have positive environmental climate benefits and can be more stable when field-applied to forest soils than wood itself. Categorizing greenhouse gas (GHG) emissions and carbon sequestration...

  13. Evidence for Adsorbate-Enhanced Field Emission from Carbon Nanotube Fibers (Postprint)

    DTIC Science & Technology

    2013-07-31

    microscopy from single wall nanotube ( SWNT ) caps,9 and by current satura- tion measurements10 from adsorbate-covered SWNTs , were consistent with this...assertion. Comparison of the FE electron energy distributions acquired from clean and adsorbate- covered SWNTs led11 to the conclusion that enhancement...Residual Gas Analysis FE Field Emission CNT Carbon Nanotube SWNT Single Wall Nanotube CSA Chlorosulfonic Acid

  14. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.

    PubMed

    Zhang, Liang; Balzano, Leandro; Resasco, Daniel E

    2005-08-04

    Field emission studies were conducted on as-produced CoMoCAT single-walled carbon nanotube/silica composites with controlled nanotube diameter and bundle size. It has been observed that the as-produced nanotube material does not need to be separated from the high-surface area catalyst to be an effective electron emitter. By adjusting the catalytic synthesis conditions, single-walled carbon nanotubes (SWNT) of different diameters and bundle sizes were synthesized. A detailed characterization involving Raman spectroscopy, optical absorption (vis-NIR), SEM, and TEM was conducted to identify the nanotube species present in the different samples. The synthesis reaction temperature was found to affect the nanotube diameter and bundle size in opposite ways; that is, as the synthesis temperature increased the nanotube average diameter became larger, but the bundle size became smaller. A gradual and consistent reduction in the emission onset field was observed as the synthesis temperature increased. It is suggested that the bundle size, more than the nanotube diameter or chirality, determines the field emission characteristics of these composites. This is a clear demonstration that field emission characteristics of SWNT can be controlled by the nanotube synthesis conditions.

  15. A field wind tunnel study of fine dust emissions in sandy soils

    USDA-ARS?s Scientific Manuscript database

    A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study, we report on the effect of ...

  16. Field emission characteristics of nano-structured carbon films deposited on differently pretreated Mo films

    NASA Astrophysics Data System (ADS)

    Wang, Longyang; Wang, Xiaoping; Wang, Lijun; Zhang, Lei

    2008-12-01

    Nano-structured carbon films (NCFs) were grown on Mo layers by microwave plasma chemical vapor deposition (MPCVD) system. The Mo layers were deposited on ceramic substrates by electron beam deposition method and were pretreated by different techniques, which include ultrasonically scratching and laser-grooving technology (10 line/mm). NCFs were characterized by a field emission type scanning electron microscope (FE-SEM), Raman spectra and field emission (FE) I- V measurements. Effects of process parameters on morphologies, structures and FE properties of NCFs were examined. The experimental results show that two kinds of NCFs deposited at the same parameters employed for the MPCVD process were respectively composed of carbon nano-balls and reticular carbon nano-tubes inlayed by carbon nano-balls with dissimilar disorder structures, both NCFs showed each merits and exhibited good field emission properties, especially shown in the uniformity of FE, the uniform field emission images with areas of 4 cm 2 were obtained. Growth mechanism influenced by different pretreated method was discussed and the possible FE mechanisms of the NCFs were also investigated. Finally, the process characteristics of laser-grooving technology were analyzed, and its potential applications were predicted.

  17. Nitrogen Source Effects on Nitrous Oxide Emissions from a Strip-Tilled Corn Field

    USDA-ARS?s Scientific Manuscript database

    The effects of N source on nitrous oxide (N2O) emissions from a strip-till, irrigated continuous corn field was evaluated near Fort Collins, CO. Six N fertilizer sources (urea, ESN, SuperU, UAN, UAN+AgrotainPlus, UAN+Nfusion) were surface band applied at 202 kg N/ha near the corn row at corn emerge...

  18. Field emission characteristics of a small number of carbon fiber emitters

    NASA Astrophysics Data System (ADS)

    Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim

    2016-09-01

    This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

  19. Shock-associated low-energy ion enhancements observed by Voyagers 1 and 2

    NASA Astrophysics Data System (ADS)

    Decker, R. B.; Pesses, M. E.; Krimigis, S. M.

    1981-09-01

    Observations of shock-associated ion enhancements at energies of not less than 30 keV are presented from data gathered by Voyagers 1 and 2. Observations include examples of energetic storm particle events associated with flare-produced shocks and examples of corotating particle events (CPE) associated with forward and reverse shocks that bound corotating interaction regions in the outer heliosphere. Most of the CPE have recurrent double-peaked intensity enhancements showing little or no velocity dispersion at peak intensities, time durations of several days, and soft energy spectra extending up to 5 MeV/nucleon. The lowest energy ion enhancements are confined mainly downstream of the corotating interaction regions with the magnitude and duration of the upstream enhancements increasing with increasing ion energy. The observations are consistent with the dynamical and kinematical effects expected when low energy ions are accelerated at quasi-perpendicular shocks.

  20. A field-validated model for landfill methane emissions inclusive of seasonal methane oxidation

    NASA Astrophysics Data System (ADS)

    Bogner, J. E.; Spokas, K.; Chanton, J.

    2010-12-01

    In addition to natural wetlands, atmospheric methane (CH4) has multiple anthropogenic sources with high uncertainties, including rice production, ruminant animals, natural gas leakages, biomass burning, and landfills. For an improved IPCC Tier III methodology for landfill CH4 emissions in California, we have developed a new science-based, field-validated inventory model which decouples emissions from a historical reliance on a theoretical first order kinetic model for CH4 generation potential. The model (CALMIM, CAlifornia Landfill Methane Inventory Model) is a freely-available JAVA tool which estimates net CH4 emissions to the atmosphere for any landfill cover soil over a typical annual cycle, including (1) the effect of engineered gas extraction; (2) the physical effects of daily, intermediate, and final cover materials to retard emissions; and (3) seasonal soil moisture and temperature effects on both gaseous transport and methanotrophic CH4 oxidation. Linking site-specific data with existing globally-validated USDA models for annual climate and soil microclimate (Global TempSim; Global RainSim; Solarcalc; STM2), this model relies on 1-D diffusion as the major driver for emissions. Importantly, unlike current inventory methods based on modeled generation, the driving force for emissions (e.g., the CH4 concentration gradient) can be directly compared to field data. Methane oxidation is scaled to maximum rates over the full range of moisture and temperature conditions based on extensive supporting laboratory studies using California landfill cover soils. Field validation included meteorological data, soil moisture/temperature measurements, and seasonal (wet/dry) CH4 emissions & oxidation measurements for daily, intermediate, and final cover soils over two annual cycles at a northern (Monterey County) and southern California (Los Angeles County) landfill. The model accurately predicted soil temperature and moisture trends for individual cover materials with

  1. Influence of biochar amendment on greenhouse gases emission and rice production in paddy field, China

    NASA Astrophysics Data System (ADS)

    Liu, X.; Pan, G. X.; Li, L. Q.; Zhou, T.

    2012-04-01

    Biochar incorporating into agricultural soils as a strategy to increase soil carbon content and mitigate climate change received great attention. We present a field study about biochar amendment into paddy field in Sichuan province 2010, China. The objective was to evaluate the impacts of biochar incorporation on rice production and greenhouse gas emissions. Biochar used in this study was produced from wheat straw at temperature 350-550°C. Biochar incorporated into paddy field before rice transplanting. Methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) fluxes were measured in situ using closed chamber method during whole rice growing season. Flux of greenhouse gases was monitored at about 7 day's interval. Two rates of N fertilizer (0 and 240 kg N/ha) were applied as urea in combination with 3 biochar rates (0, 20 and 40 t/ha). Amendment of biochar had no influence on rice yield even at the hightest rate of 40 t/ha. However, rice production was greatly relying on chemical N fertilization input. No interact effect was detected between biochar and N fertilizer. Amendment of biochar suppressed N2O emission. During the whole rice growing season, the total N2O emission from chemical fertilizer was reduce by 29% and 53% under biochar amendment rates of 20t/ha and 40t/ha respectively. Total amounts of CO2 and CH4 emitted from paddy fields during whole rice growing season were not greatly increased despite of much carbon brought into soil with biochar. However, biochar amendment slightly increased CO2 emission in the absence of N fertilizer. Our results showed that biochar amendment into paddy field did not increase the global warming potential (GPW) and greenhouse gases emission intensity (GHGI).

  2. Photoluminescence and field emission of 1D ZnO nanorods fabricated by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Wang, B.; Jin, X.; Ouyang, Z. B.; Xu, P.

    2012-07-01

    Four kinds of new one-dimensional nanostructures, celery-shaped nanorods, needle-shaped nanorods, twist fold-shaped nanorods, and awl-shaped nanorods of ZnO, have been grown on single silicon substrates by an Au catalyst assisted thermal evaporation of ZnO and active carbon powders. The morphology and structure of the prepared nanorods are determined on the basis of field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The photoluminescence spectra (PL) analysis noted that UV emission band is the band-to-band emission peak and the emission bands in the visible range are attributed to the oxygen vacancies, Zn interstitials, or impurities. The field-emission properties of four kinds of ZnO nanorods have been invested and the awl-shaped nanorods of ZnO have preferable characteristics due to the smallest emitter radius on the nanoscale in the tip in comparison with other nanorods. The growth mechanism of the ZnO nanorods can be explained on the basis of the vapor-liquid-solid (VLS) processes.

  3. Bright and durable field-emission source derived from frozen refractory-metal Taylor cones

    DOE PAGES

    Hirsch, Gregory

    2017-02-22

    A novel method for creating conical field-emission structures possessing unusual and desirable physical characteristics is described. This process is accomplished by solidification of electrostatically formed high-temperature Taylor cones created on the ends of laser melted refractory-metal wires. Extremely rapid freezing ensures that the resultant solid structures preserve the shape and surface smoothness of the flawless liquid Taylor-cones to a very high degree. The method also enables in situ and rapid restoration of the frozen cones to their initial pristine state after undergoing physical degradation during use. This permits maximum current to be delivered without excessive concern for any associated reductionmore » in field-emitter lifetime resulting from operation near or even above the damage threshold. In addition to the production of field emitters using polycrystalline wires as a substrate, the feasibility of producing monocrystalline frozen Taylor-cones having reproducible crystal orientation by growth on single-crystal wires was demonstrated. Finally, the development of the basic field-emission technology, progress to incorporate it into a pulsed electron gun employing laser-assisted field emission for ultrafast experiments, and some additional advances and opportunities are discussed.« less

  4. Enhanced electron field emission from NiCo2O4 nanosheet arrays

    NASA Astrophysics Data System (ADS)

    Naik, Kusha Kumar; Khare, Ruchita T.; Gelamo, Rogerio V.; More, Mahendra A.; Thapa, Ranjit; Late, Dattatray J.; Sekhar Rout, Chandra

    2015-09-01

    Electron emission properties of electrodeposited spinel NiCo2O4 nanosheet arrays grown on Ni foam have been studied. The work function of NiCo2O4 was calculated by density functional theory using the plane-wave basis set and used to estimate the field enhancement factor. The NiCo2O4 nanosheet arrays exhibited a low turn-on field of 1.86 V μm-1 at 1 μA cm-2 and current density of 686 μA cm-2 at 3.2 V μm-1, with field enhancement factor β = 1460 and good field emission current stability. The field emission properties of the NiCo2O4 nanosheet arrays showed enhanced performance compared to chemically prepared NiCo2O4 nanosheets. Hence, the nanosheet arrays have great potential as robust high performance vertical structure electron emitters for future flat panel displays and vacuum electronic device applications.

  5. Hot electron field emission via individually transistor-ballasted carbon nanotube arrays.

    PubMed

    Li, Chi; Zhang, Yan; Cole, Matthew T; Shivareddy, Sai G; Barnard, Jon S; Lei, Wei; Wang, Baoping; Pribat, Didier; Amaratunga, Gehan A J; Milne, William I

    2012-04-24

    We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.

  6. Elementary framework for cold field emission: Incorporation of quantum-confinement effects

    SciTech Connect

    Patterson, A. A. Akinwande, A. I.

    2013-12-21

    Although the Fowler-Nordheim (FN) equation serves as the foundation of cold field emission theory, it may not be suitable for predicting the emitted current density (ECD) from emitters with a quantum-confined electron supply. This work presents an analytical framework for treating cold field emission from metals that includes the effects of a quantum-confined electron supply. Within the framework, quantum confinement in emitters is classified into transverse and normal quantum confinement based on the orientation of the confinement relative to the emission direction. The framework is used to generate equations predicting the ECD from rectangular and cylindrical emitter geometries comprised of electron supplies of reduced dimensionality. Transverse quantum confinement of the electron supply leads to a reduction in the total ECD as transverse emitter dimensions decrease and normal quantum confinement results in an oscillatory ECD as a function of the normal quantum well width. Incorporating a geometry-dependent field enhancement factor into the model reveals an optimal transverse well width for which quantum confinement of the electron supply and field enhancement equally affect the ECD and a maximum total ECD for the emitter geometry at a given applied field is obtained. As a result, the FN equation over-predicts the ECD from emitters with transverse dimensions under approximately 5 nm, and in those cases, geometry-specific ECD equations incorporating quantum-confinement effects should be employed instead.

  7. Surface morphology correlated with field emission properties of laser irradiated nickel

    NASA Astrophysics Data System (ADS)

    Jalil, S. A.; Bashir, S.; Akram, M.; Ahmed, Q. S.; Haq, F. U.

    2017-08-01

    The effect of laser fluence on the surface morphology and field emission properties of nickel (Ni) has been investigated. Circular shaped Ni targets are irradiated with Nd:YAG laser (1064 nm, 10 Hz, 10 ns) at various fluences ranging from 5.2 to 26 J/cm2 in air. For low fluence ranging from 5.2 to 10.4 J/cm2, SEM analysis reveals the growth of unorganized channels, grains, droplets, and ridges. Whereas, at moderate fluence of 15.6 J/cm2, the formation of ridges and cones along with few number of holes are observed. However, at high fluence regime ranging from 20 to 26 J/cm2, a sharp transition in morphology from ridges to holes has been observed. The laser structured Ni targets are also investigated for field emission properties by recording their I-V characteristics and Fowler-Nordheim (F-N) plots. The enhancement in field emission factor (β) and the reduction in turn on field are found to be dependent upon the laser fluence and morphology of the grown structures. For samples treated at low and moderate fluences, the growth of cones, channels and ridges is responsible for enhancement of β factor ranging from 121 to 178. Whereas, for samples treated at high fluence region, the formation of pores and holes is responsible for significant field convergence and consequently resulting in substantial enhancement in β factor to 276.

  8. Surface morphology correlated with field emission properties of laser irradiated nickel

    NASA Astrophysics Data System (ADS)

    Jalil, S. A.; Bashir, S.; Akram, M.; Ahmed, Q. S.; Haq, F. U.

    2017-03-01

    The effect of laser fluence on the surface morphology and field emission properties of nickel (Ni) has been investigated. Circular shaped Ni targets are irradiated with Nd:YAG laser (1064 nm, 10 Hz, 10 ns) at various fluences ranging from 5.2 to 26 J/cm2 in air. For low fluence ranging from 5.2 to 10.4 J/cm2, SEM analysis reveals the growth of unorganized channels, grains, droplets, and ridges. Whereas, at moderate fluence of 15.6 J/cm2, the formation of ridges and cones along with few number of holes are observed. However, at high fluence regime ranging from 20 to 26 J/cm2, a sharp transition in morphology from ridges to holes has been observed. The laser structured Ni targets are also investigated for field emission properties by recording their I-V characteristics and Fowler-Nordheim (F-N) plots. The enhancement in field emission factor (β) and the reduction in turn on field are found to be dependent upon the laser fluence and morphology of the grown structures. For samples treated at low and moderate fluences, the growth of cones, channels and ridges is responsible for enhancement of β factor ranging from 121 to 178. Whereas, for samples treated at high fluence region, the formation of pores and holes is responsible for significant field convergence and consequently resulting in substantial enhancement in β factor to 276.

  9. Field emission from a single carbon nanofiber at sub 100 nm gap

    NASA Astrophysics Data System (ADS)

    Sim, H. S.; Lau, S. P.; Ang, L. K.; You, G. F.; Tanemura, M.; Yamaguchi, K.; Zamri, M.; Yusop, M.

    2008-07-01

    The authors report the electron field emission from a single carbon nanofiber (CNF) over a range of anode to CNF tip separations of 20-5500nm. Our results show that the field enhancement factor γ is associated with the electrode separation (S). The modified Miller equation is a reasonable empirical model to describe the behavior of γ, which varies with S over a large range of values. The γ approaches to an asymptotic value of 415 or 1 when S is very large or very small as compared to the length of the CNF, respectively. The maximum field emission current sustained by the single CNF without causing damage was estimated to be as high as 15μA.

  10. Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Qin, Shengchun; Bai, Shuai; Yue, Hongwei; Li, Yali; Chen, Qiang; Li, Junshuai; He, Deyan

    2016-09-01

    In this paper, we explored synthesis of vertical graphene nanosheets (VGNs) by thermal chemical vapor deposition (CVD). Through optimizing the experimental condition, growth of well aligned VGNs with uniform morphologies on nickel-coated stainless steel (SS) was realized for the first time by thermal CVD. In the meantime, influence of growth parameters on the VGN morphology was understood based on the balancing between the concentration and kinetic energy of carbon-containing radicals. Structural characterizations demonstrate that the achieved VGNs are normally composed of several graphene layers and less corrugated compared to the ones synthesized by other approaches, e.g. plasma enhanced (PE) CVD. The field emission measurement indicates that the VGNs exhibit relatively stable field emission and a field enhancement factor of about 1470, which is comparable to the values of VGNs prepared by PECVD can be achieved.

  11. Electrical and field-emission properties of chemically anchored single-walled carbon nanotube patterns

    NASA Astrophysics Data System (ADS)

    Jung, Myung-Sup; Ko, Young Koan; Jung, Dae-Hwan; Choi, Do Hwan; Jung, Hee-Tae; Heo, Jung Na; Sohn, Byung Hee; Jin, Yong Wan; Kim, Jongmin

    2005-07-01

    Well-defined and high-density single-walled carbon nanotube (SWNT) patterns were fabricated using a combination of photolithographic and chemical assembling processes. Unlike the patterned SWNT arrays reported thus far, these SWNT patterned layers have high-density multilayer structures and excellent surface adhesion due to their direct chemical bonding to their substrates, which results in high electrical conductivity. We found that the high-density multilayer SWNT patterns emit electrons under an applied electrical field. The electrical resistivities of the SWNT layers were found to be 5-10Ωcm, with a turn-on electric field of about 3V/μm at an emission current density of 10μA/cm2. This technique for fabricating SWNT patterns can be used in the production of field-emission displays and in future device integration requiring carbon nanotubes (CNTs), because it provides large-area patterning of SWNTs with high stability and uniformity.

  12. Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors

    SciTech Connect

    Mihalcea, Daniel; Faillace, Luigi; Panuganti, Harsha; Thangaraj, Jayakar C.T.; Piot, Philippe

    2015-06-01

    Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with the time-dependent Particle In Cell (PIC) code WARP.

  13. Quantitative field measurement of soot emission from a large gas flare using sky-LOSA.

    PubMed

    Johnson, Matthew R; Devillers, Robin W; Thomson, Kevin A

    2011-01-01

    Particulate matter emissions from unconfined sources such as gas flares are extremely difficult to quantify, yet there is a significant need for this measurement capability due to the prevalence and magnitude of gas flaring worldwide. Current estimates for soot emissions from flares are rarely, if ever, based on any form of direct data. A newly developed method to quantify the mass emission rate of soot from flares is demonstrated on a large-scale flare at a gas plant in Uzbekistan, in what is believed to be the first in situ quantitative measurement of soot emission rate from a gas flare under field conditions. The technique, named sky-LOSA, is based on line-of-sight attenuation of skylight through a flare plume coupled with image correlation velocimetry. Monochromatic plume transmissivities were measured using a thermoelectrically cooled scientific-grade CCD camera. Plume velocities were separately calculated using image correlation velocimetry on high-speed movie data. For the flare considered, the mean soot emission rate was determined to be 2.0 g/s at a calculated uncertainty of 33%. This emission rate is approximately equivalent to that of 500 buses driving continuously and equates to approximately 275 trillion particles per second. The environmental impact of large, visibly sooting flares can be quite significant.

  14. Wide-Field Emission-Line Imaging of Galactic Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Winkler, P. Frank; Smith, R. Chris

    2001-02-01

    We propose to complete narrow-band emission-line imaging of all the southern supernova remnants (SNRs) for which optical emission has been reported. The great majority of these have never been systematically studied using CCDs. Images in Hα, S II, and O III will enable us to distinguish shock-heated SNR filaments from photo-ionized nebulosity and to search for rare, ejecta-dominated filaments. With matched continuum images we will subtract the stars to give pure emission-line images and reveal faint diffuse features. The results will be used in conjunction with X-ray and radio images for multi-wavelength studies of SNRs and the ISM. We plan to assemble an emission-line atlas of SNRs, to be available in both published form and on-line as digital images. This study requires the unique wide field and fast beam of the Schmidt, so we request sufficient time to complete it in the last semester of this instrument's availability. In addition, we plan deep, broad-band imaging of the SN 1006 remnant in attempt at the first measurement of optical synchrotron emission behind an SNR shock. Detection at the level expected from extrapolation of radio and X-ray power-law spectra would support the picture that Fermi acceleration of electrons to TeV energies produces both X-ray emission and cosmic rays, while significant upper limits would raise questions about this picture.

  15. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils.

    PubMed

    Liou, Rey-May; Huang, Shan-Ney; Lin, Chin-Wei

    2003-01-01

    Flooded rice fields are one of the major biogenic methane sources. In this study, methane emission rates were measured after transplanting in paddy fields with application of two kinds of nitrogen fertilizers (ammonium sulfate, NH4+-N and potassium nitrate, NO3(-)-N) and with two kinds of rice varieties (Japonica and Indica). The experiment was conducted in fields located at Tainan District Agricultural Improvement Station in Chia-Yi county (23 degrees 25'08"N, 120 degrees 16'26"E) of southern Taiwan throughout the first and the second crop seasons in 1999. The seasonal methane flux in the first crop season with NH4+-N and NO3(-)-N ranged from 2.48 to 2.78 and from 8.65 to 9.22 g CH4 m(-2); and the values ranged 24.6-34.2 and 36.4-52.6 g CH4 m(-2) in the second crop season, respectively. In the first crop season, there were significantly increased 3.1-3.7-fold in methane emission fluxes due to plantation of Indica rice. In comparison of two rice varieties, the Indica rice variety showed a tendency for larger methane emission than the Japonica rice variety in the second crop season. Moreover, ammonium sulfate treatment significantly reduced CH4 emissions by 37-85% emissions compared to potassium nitrate plots. It was concluded that the CH4 emission was markedly dependent on the type of nitrogen fertilizer and rice variety in Taiwan paddy soils.

  16. Freestanding vertically aligned arrays of individual carbon nanotubes on metallic substrates for field emission cathodes

    NASA Astrophysics Data System (ADS)

    Mauger, M.; Binh, Vu Thien; Levesque, A.; Guillot, D.

    2004-07-01

    Direct growth of individual and vertically aligned carbon nanotubes (CNTs) onto a metallic tip apex using a two-chamber radio-frequency plasma-enhanced chemical vapor deposition is reported. Individual Ni nanocatalysts, obtained by a sol-gel combustion technique, were dots for the nucleation of individual CNTs that were freestanding, clean, and vertically aligned by the presence of a controlled applied field. The arrays of CNTs obtained, having a low-density spatial distribution to avoid mutual electrostatic field screening, gave uniform stable overall field emission patterns after a conditioning process. Effective total current densities up to 1A /cm2 can be extracted.

  17. Template free synthesis of mesoporous CuO nano architects for field emission applications.

    PubMed

    Das, Swati; Maiti, Soumen; Saha, Subhajit; Das, Nirmalya Sankar; Chattopadhyay, Kalyan Kumar

    2013-04-01

    Cupric oxide mesospheres composed of its nanoparticles have been synthesized by a simple template free chemical route at different temperatures. Thermal aging followed by higher temperature (350 degrees C, 6 hours) annealing on these architects transformed them into hollow mesospheres consisting of sharp needle like structures with high aspect ratio (- 10(3)). A detailed analysis of field emission scanning electron microscopy confirmed a uniform registry of the prepared nanostructures. High resolution transmission electron microscopy showed that the as-grown mesospheres have hollow inner cavity with a thin outer shell. X-ray photoelectron spectroscopic analysis showed no obvious changes in the chemical composition of the nanostructures after annealing, confirming that the elements in the final products were in the proper oxidation states. Electron emission under electric field was investigated from these interesting structures. It was found that both of these nanostructures showed electron emission, but emission performance of the hollow mesospheres consisting of nanoneedles exhibited excellent performance with turn-on field as low as 2.8 V/microm and high enhancement factor (beta) - 5537.

  18. Methane emission from fields with three various rice straw treatments in Taiwan paddy soils.

    PubMed

    Liou, Rey-May; Huang, Shan-Ney; Lin, Chin-Wei; Chen, Shin-Hsiung

    2003-07-01

    Flooded rice fields are one of the major biogenic methane sources. In this study, the effects of straw residual treatments on methane emission from paddy fields were discussed. The experimental field was located at Tainan District Agricultural Improvement Station in Chia-Yi county (23 degrees 25'08''N, 120degrees16'26''E) of southern Taiwan throughout the first and the second crop seasons in 2000. The seasonal methane fluxes in the first crop season with rice stubble removed, rice straw burned and rice straw incorporated were 4.41, 3.78 and 5.27 g CH4 m(-2), and the values were 32.8, 38.9 and 75.1 g CH4 m(-2) in the second crop season, respectively. In comparison of three management methods of rice straw residue, the incorporation of rice straw residue should show a significant tendency for enhancing methane emission in the second crop season. Moreover, stubble removed and straw burned treatments significantly reduced CH4 emissions by 28 approximately 56% emissions compared to straw incorporated plot. Concerning for air quality had led to legislation restricting rice straw burning, removing of rice stubble might be an appropriate methane mitigation strategy in Taiwan paddy soils.

  19. Effect of cubic phase evolution on field emission properties of boron nitride island films

    SciTech Connect

    Teii, Kungen; Yamao, Ryota; Matsumoto, Seiichiro

    2009-12-01

    Field emission performance of boron nitride (BN) island films is studied in terms of cubic phase evolution in plasma-enhanced chemical vapor deposition. Fine-grained island films with large surface roughness can be grown for initial sp{sup 2}-bonded BN and subsequent cubic BN (cBN) phases by using low-energy (approx20 eV) ion bombardment. Ultraviolet photoelectron spectroscopy reveals that the electron affinity is as low as 0.3 eV for both sp{sup 2}-bonded BN and cBN phases. The evolution of cBN islands reduces the turn-on field down to around 9 V/mum and increases the current density up to 10{sup -4} A/cm{sup 2}. The emission is facilitated by the larger field enhancement due to the larger roughness and the higher conduction of cBN islands. The potential barrier height is estimated to be about 3.4 eV for emission from the Fermi level, while it is only about 0.3 eV for 'conduction band emission'.

  20. Field-emission stability of hydrothermally synthesized aluminum-doped zinc oxide nanostructures.

    PubMed

    Hsieh, Tsang-Yen; Wang, Jyh-Liang; Yang, Po-Yu; Hwang, Chuan-Chou; Shye, Der-Chi

    2012-07-01

    The Al-doped ZnO (AZO) nanostructures field-emission arrays (FEAs) were hydrothermally synthesized on AZO/glass substrate. The samples with Al-dosage of 3 at.% show the morphology as nanowires vertically grown on the substrates and a structure of c-axis elongated single-crystalline wurtzite. The good field-emission (i.e., the large anode current and low fluctuation of 15.9%) can be found by AZO nanostructure FEAs with well-designed Al-dosage (i.e., 3 at.%) because of the vertical nanowires with the less structural defects and superior crystallinity. Moreover, the Full width at half maximum (FWHM) of near band-edge emission (NBE) decreased as the increase of annealing temperature, representing the compensated structural defects during oxygen ambient annealing. After the oxygen annealing at 500 degrees C, the hydrothermal AZO nanostructure FEAs revealed the excellent electrical characteristics (i.e., the larger anode current and uniform distribution of induced fluorescence) and enhanced field-emission stability (i.e., the lowest current fluctuation of 5.97%).

  1. A study on characteristics of Methane emission from a periodically irrigated paddy field in Japan

    NASA Astrophysics Data System (ADS)

    Wakikuromaru, N.; Iwata, T.; Yagi, K.

    2014-12-01

    Methane (CH4) is generated by organic matter decomposition in the anaerobic soil. Paddy field is one of the most important eco-system in monsoon Asia. It is said that about 10% of CH4sources is paddy fields (IPCC AR4, 2007). In this study, methane emission from a single-rice crop field was estimated by long-term micrometeorological measurements. Methane emission was calculated by the aerodynamic gradient technique from January 2011 to August 2014. Intermittent water management was carried out during cultivation period at the observational site, HCH, located in Okayama, Japan. 3-days flood and 4-days drained condition were regularly repeated from late-June to early October. Seasonal variations of CH4flux for irrigation term from 2011 to 2013 were shown in Fig.1. Remarkably large fluxes were shown at early stage of irrigation term in 2011.It seemed to be caused by the relatively longer flooded condition that the first flooded period was 20 days. Flux in 2012 was smaller than in other year through the entire irrigation period. Rapid rise in flux for early August and gradual decrease between late August and September were shown in 2013. Fluxes under drained condition showed larger emission than under flooded condition. Cumulative CH4 emissions during cultivated period from 2011 to 2013 were estimated 15.7, 8.6, and 12.9 gC/m2, respectively.

  2. Chemical Ionization Mass Spectrometry Using Carbon Nanotube Field Emission Electron Sources

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Keil, Adam D.; Wells, Mitch; Amsden, Jason J.; Piascik, Jeffrey R.; Parker, Charles B.; Stoner, Brian R.; Glass, Jeffrey T.

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities.

  3. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources.

    PubMed

    Radauscher, Erich J; Keil, Adam D; Wells, Mitch; Amsden, Jason J; Piascik, Jeffrey R; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities. Graphical Abstract ᅟ.

  4. Enhanced Field Emission from a Carbon Nanotube Array Coated with a Hexagonal Boron Nitride Thin Film.

    PubMed

    Yang, Xiaoxia; Li, Zhenjun; He, Feng; Liu, Mingju; Bai, Bing; Liu, Wei; Qiu, Xiaohui; Zhou, Hang; Li, Chi; Dai, Qing

    2015-08-12

    A high-quality field emission electron source made of a highly ordered array of carbon nanotubes (CNTs) coated with a thin film of hexagonal boron nitride (h-BN) is fabricated using a simple and scalable method. This method offers the benefit of reproducibility, as well as the simplicity, safety, and low cost inherent in using B(2)O(3) as the boron precursor. Results measured using h-BN-coated CNT arrays are compared with uncoated control arrays. The optimal thickness of the h-BN film is found to be 3 nm. As a result of the incorporation of h-BN, the turn-on field is found to decrease from 4.11 to 1.36 V μm(-1), which can be explained by the significantly lower emission barrier that is achieved due to the negative electron affinity of h-BN. Meanwhile, the total emission current is observed to increase from 1.6 to 3.7 mA, due to a mechanism that limits the self-current of any individual emitting tip. This phenomenon also leads to improved emission stability and uniformity. In addition, the lifetime of the arrays is improved as well. The h-BN-coated CNT array-based field emitters proposed in this work may open new paths for the development of future high-performance vacuum electronic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission.

    PubMed

    Sanchez, Jaime A; Mengüç, M Pinar

    2008-02-20

    In this paper we present an analysis to simulate heating within an isolated carbon nanotube (CNT) attached to an etched tungsten tip during field emission of an electron beam. The length, radius, wall thickness and shape of the tip (closed with a hemispherical shape or open and flat) of the CNT and its separation distance from the flat surface are considered as variables. Using a finite element method, we predict the field enhancement, emission current and temperature of the CNT as a function of these parameters. The electrostatic and transient thermal analyses are integrated with the field-emission models based on the Fowler-Nordheim approximation and heating/cooling due to emitting energetic electrons (the Nottingham effect). These simulations suggest that the main mechanism responsible for heating of the CNT is Joule heating, which is significantly larger than the Nottingham effect. Results also indicate that the electrostatic characteristics of CNTs are very sensitive to the considered parameters whereas the transient thermal response is only a function of the CNT radius and wall thickness. Further, the thermal response of the CNT is independent of its geometry, meaning that, as long as a given set of geometrical conditions are present that result in a given emission current, the maximum temperature a CNT attains will be the same.

  6. A continuous emissions monitor for metals: Field demonstration of a prototype probe

    SciTech Connect

    Flower, W.; Peng, L.; Woods, C.

    1995-05-01

    Sandia National Laboratories conducted field tests of a prototype continuous emissions monitor for metals at Clemson University, August 5-11, 1994, in cooperation with the joule-melter vitrification project at Clemson and Savannah River. The monitor is based on Laser Spark Spectroscopy, an established laboratory diagnostic technique that has been adapted for monitoring metal emissions from thermal waste treatment facilities. In the field tests described in this report, emissions were measured from a joule melter that was processing a surrogate waste-water treatment sludge from Oak Ridge. Data from this test provides the first insight into how emissions change (in real time) as operating parameters such as waste feed rate are changed. We detected all metals that were present above the estimated minimum detectability limits (in the parts-per-billion range for Clean Air Act metals), in addition to glass-making species such as calcium, boron, and silicon. This report summarizes the Clemson field tests, including design of the prototype probe, preparations leading up to the tests, the tests themselves, and analysis of results.

  7. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    PubMed

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  8. Pulsed-laser deposited transition-metal carbides for field-emission cathode coatings.

    PubMed

    Back, Tyson; Fairchild, Steven B; Averett, Kent; Maruyama, Benji; Pierce, Neal; Cahay, Marc; Murray, P Terrence

    2013-09-25

    Thin films of transition-metal carbides ZrC, HfC, and TiC were deposited by pulsed-laser deposition under vacuum. The surface chemistry of the films was characterized with ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy in situ. X-ray diffraction was used to characterize the film structure. TiC was shown to be nearly stoichiometric and polycrystalline. The TiC was applied to a vertically aligned carbon nanotube sample and characterized by field emission. Field-emission results showed enhanced current and current density at a film thickness, 5 nm, not previously reported in the literature. Emission from TiC films was also shown to be less affected by adsorbates during field emission. Pulsed-laser deposition of TiC offers a distinct advantage over other techniques in that high-quality films can be obtained under ultrahigh vacuum conditions without the use of a reactive background gas or excessively high annealing temperatures. The application of TiC by pulsed-laser deposition as a cathode coating shows potential for integration into a fabrication process.

  9. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    SciTech Connect

    Chen, Xiangyu E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei E-mail: ouyangwei@phy.ecnu.edu.cn

    2015-09-14

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  10. Enhanced Field Emission from Vertically Oriented Graphene by Thin Solid Film Coatings

    NASA Astrophysics Data System (ADS)

    Bagge-Hansen, Michael

    Recent progress and a coordinated national research program have brought considerable effort to bear on the synthesis and application of carbon nanostructures for field emission. At the College of William and Mary, we have developed field emission arrays of vertically oriented graphene (carbon nanosheets, CNS) that have demonstrated promising cathode performance, delivering emission current densities up to 2 mA/mm2 and cathode lifetime >800 hours. The work function (φ) of CNS and other carbonaceous cathode materials has been reported to be φ˜4.5-5.1 eV. The application of low work function thin films can achieve several orders of magnitude enhancement of field emission. Initially, the intrinsic CNS field emission was studied. The mean height of the CNS was observed to decrease as a function of operating time at a rate of ˜0.05 nm/h (I 1˜40 muA/mm2). The erosion mechanism was studied using a unique UHV diode design which allowed line-of-site assessment from the field emission region in the diode to the ion source of a mass spectrometer. The erosion of CNS was found to occur by impingement of hyperthermal H and O neutrals and ions generated at the surface oxide complex of the Cu anode by electron stimulated desorption. Techniques for minimizing this erosion are presented. The Mo2C (φ˜3.7 eV) beading on CNS at previously reported carbide formation temperatures of ˜800°C was circumvented by physical vapor deposition of Mo and vacuum annealing at ˜300°C which resulted in a conformal Mo2C coating and stable field emission of 1˜50 muA/mm2. For a given applied field, the emission current was >102 greater than uncoated CNS. ThO2 thin film coatings were presumed to be even more promising because of a reported work function of φ ˜2.6 eV. The fundamental behavior of the initial oxidation of polycrystalline Th was studied in UHV (p<1x10-11 Torr), followed by studies of thin film coatings on Ir and thermionic emission characteristics. Although a work function of 3

  11. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-09-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm2, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  12. Impact of gypsum application on the methane emission from a wetland rice field

    SciTech Connect

    Denier van der Gon, H.A.C. ); Neue, H.U. )

    1994-06-01

    Methane is an important greenhouse gas, accounting for about 17% of the greenhouse effect during the 1980's, and playing an important role in atmospheric chemistry. Studies on the atmospheric methane cycle have stressed the need for identification of individual methane sources and their source strength. A next step is to look for possibilities to stabilize or even reduce atmospheric methane mixing rations. This study looks at the impact of sulfur-containing fertizers, specifically gypsum, on methane emissions of rice fields. In hibition studies have demonstrated that sulfate reducers, in the presence of sulfate can outcompete methanogens for substrates. Field experiments with gypsum applications were carried out in a Philippine rice paddy. The importance of different substrate levels was studied with and without organic manure. The results indicate that adding gypsum to a flooded rice field reduced methane emissions by 55-70%. Most likely the reduced emission was due to suppression of methanogens by sulfate-reducing bacteria. However, in hibition of methanogenesis was incomplete and appreciable methane emission still occured. 39 refs., 3 figs., 4 tabs.

  13. Oil palm and the emission of greenhouse gasses- from field measurements in Indonesia

    NASA Astrophysics Data System (ADS)

    Rahman, Niharika; Bruun, Thilde Bech; Giller, Ken E.; Magid, Jakob; van de Ven, Gerrie; de Neergaard, Andreas

    2017-04-01

    Palm oil from the oil palm (Elaeis guianensis) has in recent years become the world's most important vegetable oil. The increasing demand for palm oil has led to expansion of oil palm plantations, which has caused environmental controversies associated with carbon losses and the use of large amounts of mineral fertilizers. Efforts to increase sustainability of oil palm cultivation, include recycling of oil-mill residues and pruning's, but with this comes increased potential for methane emission from the plantations. Until now no field-based data on greenhouse gas emissions from oil palm plantations have been reported. Here for the first time we present data from a long term (360 days) field trial in Bah Lias Research Station, North Sumatra, Indonesia on greenhouse gas emissions from an oil palm plantation with various treatments of recycled oil palm waste products, fertilizers and simulated rainfall. The first experiment was conducted over a full year (dry + wet season) with mineral fertilizer treatments including urea and ammonium sulphate, and organic fertilizer treatments constituting: empty fruit bunches (EFB), enriched mulch (EFB + palm oil mill effluent (POME) ) and pruned oil palm fronds (OPF). Treatment doses represent the current management in Indonesian plantations and the higher doses that are expected in the imminent future. For the organic treatments several methods of application (applied in inter-rows, piles, patches or bands) were evaluated. The second experiment investigated effects of soil water saturation on GHG emissions through adding 25 mm simulated rainfall per day for 21 days. Each palm tree received 1 kg of N fertilizer as urea or ammonium sulphate and enriched mulch. The gas fluxes in the fields was measured by a large static-chamber (1.8 m x 1.2 m) method and CH4 and N2O concentrations were determined using gas chromatographs. We found that emissions were significantly affected by the type and dose of mineral fertilizers. Application of

  14. Field enhancement factors and self-focus functions manifesting in field emission resonances in scanning tunneling microscopy.

    PubMed

    Su, Wei-Bin; Lin, Chun-Liang; Chan, Wen-Yuan; Lu, Shin-Ming; Chang, Chia-Seng

    2016-04-29

    Field emission (FE) resonance (or Gundlach oscillation) in scanning tunneling microscopy (STM) is a phenomenon in which the FE electrons emitted from the microscope tip couple into the quantized standing-wave states within the STM tunneling gap. Although the occurrence of FE resonance peaks can be semi-quantitatively described using the triangular potential well model, it cannot explain the experimental observation that the number of resonance peaks may change under the same emission current. This study demonstrates that the aforementioned variation can be adequately explained by introducing a field enhancement factor that is related to the local electric field at the tip apex. The peak number of FE resonances increases with the field enhancement factor. The peak intensity of the FE resonance on the reconstructed Au(111) surface varies in the face-center cubic, hexagonal-close-packed, and ridge regions, thus providing the contrast in the mapping through FE resonances. The mapping contrast is demonstrated to be nearly independent of the tip-sample distance, implying that the FE electron beam is not divergent because of a self-focus function intrinsically involved in the STM configuration.

  15. Transition from Fowler-Nordheim field emission to space charge limited current density

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Verboncoeur, J. P.

    2006-07-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β >10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response.

  16. Transition from Fowler-Nordheim field emission to space charge limited current density

    SciTech Connect

    Feng, Y.; Verboncoeur, J. P.

    2006-07-15

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement {beta}>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response.

  17. Enhanced field emission from compound emitters of carbon nanotubes and ZnO tetrapods by electron beam bombardment.

    PubMed

    Wei, Lei; Zhang, Xiaobing; Lou, Chaogang; Zhao, Zhiwei; Jing, Chen; Wang, Baoping

    2011-06-01

    The enhancement of field emission from compound emitters of carbon nanotubes and ZnO tetrapods by the electron beam bombardment is reported. After 20 minutes electron bombardment with 6 keV energy, a few bird-nest micro structures are formed in the compound emitters array. As the simulation results shown, the electric field and field emission current density at the tip of ZnO tetrapod are increased due to the influences of these bird-nest micro structures. From the measurement of the field emission performance, it can be seen that the turn-on electric field and threshold electric field of the field emitter array decrease to 0.4 V/microm and 2.4 V/microm respectively. They have decreased 62% and 15% after the electron bombardment. After the electron bombardment, the emission sites density is increased. The field emission images show that the uniformity of field emission has been improved obviously after the proper electron bombardment. The methodology proposed in this paper has a promising application in the field emission devices.

  18. Field Emission and Particle Sensing Devices Based on Arrayed Carbon Nanotubes and Related Nanostructures for Defense Applications

    DTIC Science & Technology

    2007-04-01

    Field Emission and Particle Sensing Devices Based on Arrayed Carbon Nanotubes and Related Nanostructures for Defense Applications...DATES COVERED 4. TITLE AND SUBTITLE Field Emission and Particle Sensing Devices Based on Arrayed Carbon Nanotubes and Related Nanostructures...using carbon nanotubes (CNTs), and SiC capped Si nanotips (SiNTs) arrays. Additional studies focused on tungsten nanotips. The report covers successes

  19. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and

  20. Dust emissions of organic soils observed in the field and laboratory

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.

    2011-12-01

    According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third

  1. Fabrication, characterization and integration of carbon nanotube cathodes for field emission X-ray source

    NASA Astrophysics Data System (ADS)

    Calderon-Colon, Xiomara

    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. Our laboratory pioneer in the development of CNT based field emission X-ray source technology, which has the potential to fundamentally change how X-ray radiation is generated and utilized. Applications of the CNT field emission X-ray source technology in a wide range of applications including biomedical imaging, radiation therapy, and homeland security are being actively pursued. However, problems with the performance of the CNT cathodes for X-ray generation including short lifetime at high current density, instability under high voltage, poor emission uniformity, and cathode-to-cathode inconsistency are still major obstacles for device applications. The goal of this thesis work is the development and optimization of an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The CNT cathode fabrication process consist in a combination of photolithography and electrophoretic deposition (EPD) method where parameters such as SU-8 photoresist thickness, deposition time, and deposition voltage were varied to fabricate CNT cathodes with the required properties for X-ray generation. Also the development of CNT alcohol-based suspensions in context of the EPD method requirements with excellent long term stability has been accomplished. The CNT cathodes fabricated by EPD have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. Also these CNT cathodes compared to others reported previously show significant improved field emission properties with small cathode-to-cathode variation. The integration, characterization, and evaluation of these CNT cathodes into a micro focus field emission X-ray source has been achieved with excellent X-ray source characteristics and performance including X-ray flux and stability at the

  2. Large Enhancement of Field Emission from ZnO Nanocone Arrays via Patterning Process

    NASA Astrophysics Data System (ADS)

    Le Shim, Ee; Bae, Joonho; Yoo, Eunji; Kang, Chijung; Choi, Young Jin

    2010-11-01

    We report on the direct observation of enhanced field emissions from patterned ZnO nanocones compared with the plain geometry of ZnO nanocones. For the unambiguous comparison of field emissions from patterned nanocones and plain(nonpatterned) nanocones, periodic arrays of ZnO nanowires were fabricated on Si by photolithography, RCA-1(aq) solution etching, and the hydrothermal growth method. The conelike morphology formation was achieved by anisotropic etching on the different crystal planes of ZnO nanowires in an aqueous solution of acetic acid [CH3COOH(aq)]. As the control sample of plane ZnO nanocones, the ZnO nanowires with a plain geometry were synthesized under the same conditions as the patterned sample. The field emission measurements on the plain ZnO nanocones and patterned ZnO nanocones reveal that the turn-on field decreases from 6.0 V/µm (plane nanocone arrays) to 3.8 V/µm (patterned nanocone arrays).

  3. Large Enhancement of Field Emission from ZnO Nanocone Arrays via Patterning Process

    NASA Astrophysics Data System (ADS)

    Shim, Ee Le; Bae, Joonho; Yoo, Eunji; Kang, Chijung; Choi, Young Jin

    2010-11-01

    We report on the direct observation of enhanced field emissions from patterned ZnO nanocones compared with the plain geometry of ZnO nanocones. For the unambiguous comparison of field emissions from patterned nanocones and plain(nonpatterned) nanocones, periodic arrays of ZnO nanowires were fabricated on Si by photolithography, RCA-1(aq) solution etching, and the hydrothermal growth method. The conelike morphology formation was achieved by anisotropic etching on the different crystal planes of ZnO nanowires in an aqueous solution of acetic acid [CH3COOH(aq)]. As the control sample of plane ZnO nanocones, the ZnO nanowires with a plain geometry were synthesized under the same conditions as the patterned sample. The field emission measurements on the plain ZnO nanocones and patterned ZnO nanocones reveal that the turn-on field decreases from 6.0 V/μm (plane nanocone arrays) to 3.8 V/μm (patterned nanocone arrays).

  4. Uncertainty of oil field GHG emissions resulting from information gaps: a Monte Carlo approach.

    PubMed

    Vafi, Kourosh; Brandt, Adam R

    2014-09-02

    Regulations on greenhouse gas (GHG) emissions from liquid fuel production generally work with incomplete data about oil production operations. We study the effect of incomplete information on estimates of GHG emissions from oil production operations. Data from California oil fields are used to generate probability distributions for eight oil field parameters previously found to affect GHG emissions. We use Monte Carlo (MC) analysis on three example oil fields to assess the change in uncertainty associated with learning of information. Single factor uncertainties are most sensitive to ignorance about water-oil ratio (WOR) and steam-oil ratio (SOR), resulting in distributions with coefficients of variation (CV) of 0.1-0.9 and 0.5, respectively. Using a combinatorial uncertainty analysis, we find that only a small number of variables need to be learned to greatly improve on the accuracy of MC mean. At most, three pieces of data are required to reduce bias in MC mean to less than 5% (absolute). However, the parameters of key importance in reducing uncertainty depend on oil field characteristics and on the metric of uncertainty applied. Bias in MC mean can remain after multiple pieces of information are learned, if key pieces of information are left unknown.

  5. Emission Factors of Nitrous Oxide by Organic Manure Fertilizers in Japanese Upland Fields

    NASA Astrophysics Data System (ADS)

    Sudo, S.

    2011-12-01

    Preliminary data of field experiments which were conducted to estimate emission factors of nitrous oxide by organic manure fertilizers in 10 Japan-wide experiment sites, 2010 was reported. We compared nitrous oxide emission from urea as chemical fertilizers and cow manure as organic applications, in 1o Japanese prefectures of Yamagata, Fukushima, Ibaraki, Aichi, Shiga, Tokushima, Nagasaki, Kumamoto and Kagoshima. Same amounts of nitrogen were applied in organic and inorganic fertilizers in each field. In each site, 3 replication plots were organized in randomized block design with zero-nitrogen application plots. N2O gas fluxes were measured every one week or more during cultivation seasons. We also measured several soil physical and chemical parameters of inorganic nitrogen species, soil moisture contents or WFPS (Water Filled Pore Space), soil temperatures, bulk densities etc. Gas fluxes ware measured by automated Shimadzu GC-2014 ECD gas chromatograph. Soil moistures were measured by Camplel's Hydrosense in each site. Vegetation of conducting fields were cabbage in 7 fields, wheat in 1, pear orchard and onion in 1. Microorganisms' abundance was also considered to clarify N2O emission processes by the PCR-DGGE method.

  6. Highly enhanced and temporally stable field emission from MWCNTs grown on aluminum coated silicon substrate

    SciTech Connect

    Sreekanth, M.; Ghosh, S. Patra, R.; Srivastava, P.

    2015-06-15

    In this work, a detailed field emission study of multi-walled carbon nanotubes (MWCNTs) grown on Si and Al coated Si substrates is reported. Morphological and microstructural studies of the films show higher entanglement of CNTs in the case of CNT/Si film as compared to CNT/Al/Si film. Raman studies show that the defect mediated peak (D) is substantially suppressed as compared to graphitic peak (G) resulting in significant reduction in I{sub D}/I{sub G} value in CNT/Al/Si film. Field emission (FE) current density of CNT/Al/Si film (∼25 mA/cm{sup 2}) is significantly higher as compared to that of CNT/Si film (∼1.6 mA/cm{sup 2}). A substantial improvement in temporal stability is also observed in CNT/Al/Si film. This enhancement in field emission current is attributed to strong adhesion between substrate and CNTs, low work function, high local field enhancement factor at the CNT tips and less entanglement of CNTs grown on Al/Si. The temporally stable CNT/Al/Si cold cathode can be a potential candidate to replace conventional electron sources in prototype devices.

  7. Investigating of the Field Emission Performance on Nano-Apex Carbon Fiber and Tungsten Tips

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Alnawasreh, Shadi; Madanat, Mazen A.; Al-Rabadi, Anas N.

    2015-10-01

    Field electron emission measurements have been performed on carbon-based and tungsten microemitters. Several samples of both types of emitters with different apex radii have been obtained employing electrolytic etching techniques using sodium hydroxide (NaOH) solution with different molarities depending on the material used. A suitable, home-built, field electron microscope (FEM) with 10 mm tip to screen separation distance was used to electrically characterize the electron emitters. Measurements were carried out under ultra high vacuum (UHV) conditions with base pressure of 10-9 mbar. The current-voltage characteristics (I-V) presented as Fowler-Nordheim (FN) type plots, and field electron emission images have been recorded. In this work, initial comparison of the field electron emission performance of these micro and nanoemitters has been carried out, with the aim of obtaining a reliable, stable and long life powerful electron source. We compare the apex radii measured from the micrographs obtained from the SEM images to those extracted from the FN-type _I-V_plots for carbon fibers and tungsten tips.

  8. Electron field emission from wide bandgap semiconductors under intervalley carrier redistribution

    NASA Astrophysics Data System (ADS)

    Litovchenko, V.; Grygoriev, A.; Evtukh, A.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2009-11-01

    Electron field emission phenomena from semiconductors (and, in particular, wide band gap materials) are analyzed theoretically for the general case, i.e., by taking into consideration aspects that have not been considered earlier such as two (or more) valleys of the energy band structure, nondegenerated statistics for the free electrons, heating of conduction band electrons, intervalley carrier redistribution under applied electrical fields, size quantization of electron band spectra, and change in the field emission characteristics. Comparisons with experiments performed on the highly structured (micro- and nano) surfaces of the GaN wide bandgap semiconductor have been made. The influence of the above factors on the current-voltage Fowler-Nordheim characteristics was demonstrated by theory and experiment. From theoretical and experimental results the intervalley energy difference (ΔE) for GaN quantum-sized cathodes was estimated to be 0.8 eV, which is considerably less than that predicted for bulk semiconductor (ΔE =1.2-1.5 eV). Furthermore the field emission currents were several orders higher than for bulk material. This is in good agreement with the prediction of the proposed theoretical model.

  9. Study of the electron field emission and microstructure correlation in nanocrystalline carbon thin films

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Weiss, B. L.; Weiner, B. R.; Morell, G.

    2001-05-01

    Nanocrystalline carbon thin films were deposited by hot-filament chemical vapor deposition using a 2% concentration of methane in hydrogen. The films were deposited on molybdenum substrates under various substrate biasing conditions. A positive bias produced a continuous flow of electrons from the filament onto the substrate, while a negative bias caused the substrate to be bombarded with positive ions. Films were also grown under no bias, for comparison. Differences in the electron field emission properties (turn-on fields and emitted currents) of these films were characterized. Correspondingly, microstructural differences were also studied, as characterized with atomic force microscopy and Raman spectroscopy. Films grown under electron bombardment showed lower turn-on fields, smoother surfaces, and smaller grains than those grown under ion bombardment or no bias. A correlation between the enhanced emission properties and the nanocrystalline carbon material produced by the low-energy particle bombardment was found through the parameters obtained using spectroscopic ellipsometry modeling. The results confirm the significant role of defects on the electron field emission mechanism.

  10. High-temperature annealing effects on multiwalled carbon nanotubes: electronic structure, field emission and magnetic behaviors.

    PubMed

    Ray, Sekhar Chandra; Pao, Chih-Wen; Tsai, Huang-Ming; Chen, Huang-Chin; Chen, Yu-Shin; Wu, Shang-Lun; Ling, Dah-Chin; Lin, I-Nan; Pong, Way-Faung; Gupta, Sanju; Giorcelli, Mauro; Bianco, Stefano; Musso, Simone; Tagliaferro, Alberto

    2009-12-01

    This work elucidates the effects of high-temperature annealing on the microscopic and electronic structure of multiwalled carbon nanotubes (MWCNTs) using high-resolution transmission electron microscopy, micro-Raman spectroscopy, X-ray diffraction, X-ray absorption near-edge structure (XANES) and valence-band photoemission spectroscopy (VBPES), respectively. The field emission and magnetization behaviors are also presented. The results of annealing are as follows: (1) MWCNTs tend to align in the form of small fringes along their length, promote graphitization and be stable in air, (2) XANES indicates an enhancement in oxygen content on the sample, implying that it can be adopted for sensing and storing oxygen gas, (3) the electron field emission current density (J) is enhanced and the turn-on electric field (E(TOE)) reduced, suggesting potential use in field emission displays and as electron sources in microwave tube amplifiers and (4) as-grown MWCNTs with embedded iron nanoparticles exhibits significantly higher coercivity approximately 750 Oe than its bulk counterpart (Fe(bulk) approximately 0.9 Oe), suggesting its potential use as low-dimensional high-density magnetic recording media.

  11. Spectroscopic Properties of Selected Narrow Emission Line Galaxies from the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Colon, Amy M.; Carroll, P.; Roberts, R.; Wong, N.; Liu, C.

    2007-12-01

    We present properties of seven blue narrow emission line galaxies (NELGs) in the redshift range 0.25 < z < 0.73, initially selected as QSO candidates in the COSMOS 2-degree survey field. These galaxies have been selected for the high signal-to-noise of their spectra, as indicated by the presence of the emission line [NeIII] 3869 Angstroms. Emission line diagnostics are used to measure metallicities and star formation rates, and to test the presence of AGN. Hubble ACS images are used to measure their surface brightness distributions and quantitative morphologies. Preliminary results indicate that these objects are forming stars at a rate of 4 to 20 solar masses per year; and their metallicity appears not to vary with the galaxy's concentration index which ranges 0.42 to 0.63.

  12. Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide

    NASA Technical Reports Server (NTRS)

    Anderson, Iris Cofman; Levine, Joel S.

    1987-01-01

    Seasonal and diurnal emissions of NO and N2O from agricultural sites in Jamestown, Virginia and Boulder, Colorado are estimated in terms of soil temperature; percent moisture; and exchangeable nitrate, nitrite, and ammonium concentrations. The techniques and procedures used to analyze the soil parameters are described. The spatial and temporal variability of the NO and N2O emissions is studied. A correlation between NO fluxes in the Virginia sample and nitrate concentration, temperature, and percent moisture is detected, and NO fluxes for the Colorado site correspond with temperature and moisture. It is observed that the N2O emissions are only present when percent moisture approaches or exceeds the field capacity of the soil. The data suggest that NO is produced primarily by nitrification in aerobic soils, and N2O is formed by denitrification in anaerobic soils.

  13. SLAC T-510: Radio emission from particle cascades in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Mulrey, Katharine

    2017-03-01

    Cosmic ray induced particle cascades radiate in radio frequencies in the Earth's atmosphere. Geomagnetic and Askaryan emission provide an effective way to detect ultra-high energy cosmic rays. The SLAC T-510 experiment was the first to measure magnetically induced radiation from particle cascades in a controlled laboratory setting. An electron beam incident upon a dense dielectric target produced a particle cascade in the presence of a variable magnetic field. Antennas covering a band of 30-3000 MHz sampled RF emission in vertical and horizontal polarizations. Results from T-510 are compared to particle-level RF-emission simulations which are critical for reconstructing the energy and composition of detected ultra-high energy cosmic ray air showers. We discuss the experimental set up, the data processing, the systematic errors and the main results of the experiment, which we found in a good agreement with the simulations.

  14. sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields

    SciTech Connect

    2014-10-06

    The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The software can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field being estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.

  15. Field measurement of greenhouse gas emission rates and development of emission factors for wastewater treatment. Final report, September 1994-March 1997

    SciTech Connect

    Eklund, B.; LaCosse, J.

    1997-09-01

    The report gives results of field testing to develop more reliable greenhouse gas (GHG) emission estimates for Wastewater treatment (WWT) lagoons. Field tests of emissions were conducted for WWT lagoons that use anaerobic processes to treat large volumes of wastewater with large biological oxygen demand (BOD) loadings. Air emissions and wastewater were measured at anaerobic lagoons at three meat processing plants and two publicly owned treatment works. The overall emission rates of CH4, carbon dioxide, carbon monoxide, nitrous oxide, ammonia (NH3), and chlorofluorocarbons were measured from each source using an open-path monitoring approach. The emitted compounds were identified and quantified by Fourier-Transform Infrared spectroscopy. Emission factors were developed for CH4 and NH3 as a function of the plant production rate, wastewater parameters (e.g., influent BOD and chemical oxygen demand (COD) loadings), and WWT system performance (e.g., BOD and COD removal rates).

  16. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) and fitting.more » Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO2 (ffCO2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO2 emissions and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also

  17. Field Emission Characteristics of the Structure of Vertically Aligned Carbon Nanotube Bundles.

    PubMed

    Lin, Pao-Hung; Sie, Cong-Lin; Chen, Ching-An; Chang, Hsuan-Chen; Shih, Yi-Ting; Chang, Hsin-Yueh; Su, Wei-Jhih; Lee, Kuei-Yi

    2015-12-01

    In this study, we performed thermal chemical vapor deposition for growing vertically aligned carbon nanotube (VACNT) bundles for a field emitter and applied photolithography for defining the arrangement pattern to simultaneously compare square and hexagonal arrangements by using two ratios of the interbundle distance to the bundle height (R) of field emitters. The hexagon arrangement with R = 2 had the lowest turn-on electric field (E to) and highest enhancement factor, whereas the square arrangement with R = 3 had the most stable field emission (FE) characteristic. The number density can reveal the correlation to the lowest E to and highest enhancement factor more effectively than can the R or L. The fluorescent images of the synthesized VACNT bundles manifested the uniformity of FE currents. The results of our study indicate the feasibility of applying the VACNT field emitter arrangement to achieve optimal FE performance.

  18. Field Emission Characteristics of the Structure of Vertically Aligned Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Pao-Hung; Sie, Cong-Lin; Chen, Ching-An; Chang, Hsuan-Chen; Shih, Yi-Ting; Chang, Hsin-Yueh; Su, Wei-Jhih; Lee, Kuei-Yi

    2015-07-01

    In this study, we performed thermal chemical vapor deposition for growing vertically aligned carbon nanotube (VACNT) bundles for a field emitter and applied photolithography for defining the arrangement pattern to simultaneously compare square and hexagonal arrangements by using two ratios of the interbundle distance to the bundle height ( R) of field emitters. The hexagon arrangement with R = 2 had the lowest turn-on electric field ( E to) and highest enhancement factor, whereas the square arrangement with R = 3 had the most stable field emission (FE) characteristic. The number density can reveal the correlation to the lowest E to and highest enhancement factor more effectively than can the R or L. The fluorescent images of the synthesized VACNT bundles manifested the uniformity of FE currents. The results of our study indicate the feasibility of applying the VACNT field emitter arrangement to achieve optimal FE performance.

  19. Reducing CH4 emission from rice paddy fields by altering water management

    NASA Astrophysics Data System (ADS)

    Sudo, S.; Itoh, M.

    2010-12-01

    Percentage of atmospheric methane emitted form rice paddy is estimated at 60Tg/yr (20 - 100Tg/yr) which is near 10% of total global methane emission of 535Tg/yr (410 - 660Tg) (IPCC(1995), and which is near 30% of anthropogenic CH4 emission. Thus, mitigation of CH4 emission is urgently required. CH4 in paddy soil is emanated by the activities of anaerobic bacteria which is called methane producer through reduction of CO2 or decomposition of acetic acid, and it is transported to atmosphere through soil or paddy water surface. It is effective to control methane emission from rice paddy that period is extended on intermittent drainage, composted rice straw is incorporated as fertilizer instead of flesh one, or other. However, empirical approach of these kinds of experiments had not been sufficient because such a kind of experiment required significant times and efforts. In this study, we conducted demonstrative experiments to verify the effects of water management method differences in order to reduce CH4 emission from rice paddy at 9 experimental sites in 8 prefectures. In this, we used new gas analyzer which can measure CH4, CO2 and N2O at once developed by National Institute for Agro-Environmental Sciences (NIAES), Japan. In this report, we show the results in two years of this study. 'Nakaboshi' (mid-season-drainage) is one of cultivation methods in rice paddy that surface water in paddy field is once drained for about 10 days and the field is maintained like upland field to give adequate stress to rice plant for better harvest qualities and yields. Our targeted evaluation was dependencies of Nakaboshi periods lengths and Nakaboshi periods to CH4 emission reduction amounts for total cultivation periods within harvest yield maintained. The longer length of Nakaboshi period was extended, the lesser CH4 emitted even after when Nakaboshi period lasted, as a whole. In some cases, for example in Kagoshima, exceptional phenomena of that significant high emission were

  20. Transport in organic semiconductors in large electric fields: From thermal activation to field emission

    NASA Astrophysics Data System (ADS)

    Worne, J. H.; Anthony, J. E.; Natelson, D.

    2010-02-01

    Understanding charge transport in organic semiconductors in large electric fields is relevant to many applications. We present transport measurements in organic field-effect transistors based on poly(3-hexylthiophene) and 6,13-bis(triisopropyl-silylethynyl) (TIPS) pentacene with short channels, from room temperature down to 4.2 K. Near 300 K transport in both systems is well described by thermally assisted hopping with Poole-Frenkel-type enhancement of the mobility. At low temperatures and large gate voltages, transport in both materials becomes nearly temperature independent, crossing over into field-driven tunneling. These data, particularly in TIPS-pentacene, show that great caution must be exercised when considering more exotic (e.g., Tomonaga-Luttinger liquid) interpretations of transport.

  1. X-ray emission from star-forming galaxies - signatures of cosmic rays and magnetic fields

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2015-01-01

    The evolution of magnetic fields in galaxies is still an open problem in astrophysics. In nearby galaxies the far-infrared-radio correlation indicates the coupling between magnetic fields and star formation. The correlation arises from the synchrotron emission of cosmic ray electrons travelling through the interstellar magnetic fields. However, with an increase of the interstellar radiation field (ISRF), inverse Compton scattering becomes the dominant energy loss mechanism of cosmic ray electrons with a typical emission frequency in the X-ray regime. The ISRF depends on the one hand on the star formation rate and becomes stronger in starburst galaxies, and on the other hand increases with redshift due to the higher temperature of the cosmic microwave background. With a model for the star formation rate of galaxies, the ISRF, and the cosmic ray spectrum, we can calculate the expected X-ray luminosity resulting from the inverse Compton emission. Except for galaxies with an active galactic nucleus the main additional contribution to the X-ray luminosity comes from X-ray binaries. We estimate this contribution with an analytical model as well as with an observational relation, and compare it to the pure inverse Compton luminosity. Using data from the Chandra Deep Field Survey and far-infrared observations from Atacama Large Millimeter/Submillimeter Array, we then determine upper limits for the cosmic ray energy. Assuming that the magnetic energy in a galaxy is in equipartition with the energy density of the cosmic rays, we obtain upper limits for the magnetic field strength. Our results suggest that the mean magnetic energy of young galaxies is similar to the one in local galaxies. This points towards an early generation of galactic magnetic fields, which is in agreement with current dynamo evolution models.

  2. Evaluation of fumigation and surface seal methods on fumigant emissions in an orchard replant field.

    PubMed

    Gao, Suduan; Trout, Thomas J; Schneider, Sally

    2008-01-01

    Soil fumigation is an important management practice for controlling soil pests and enabling successful replanting of orchards. Reducing emissions is required to minimize the possible worker and bystander risk and the contribution of fumigants to the atmosphere as volatile organic compounds that lead to the formation of ground-level ozone. A field trial was conducted in a peach orchard replant field to investigate the effects of fumigation method (shank-injection vs. subsurface drip-application treatments) and surface treatments (water applications and plastic tarps) on emissions of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) from shank-injection of Telone C-35 and drip application of InLine. Treatments included control (no water or soil surface treatment); standard high-density polyethylene (HDPE) tarp, virtually impermeable film (VIF) tarp, and pre-irrigation, all over shank injection; and HDPE tarp over and irrigation with micro-sprinklers before and after the drip application. The highest 1,3-D and CP emission losses over a 2-wk monitoring period were from the control (36% 1,3-D and 30% CP) and HDPE tarp (43% 1,3-D and 17% CP) over shank injection. The pre-irrigation 4 d before fumigation and VIF tarp over shank injection had similar total emission losses (19% 1,3-D and 8-9% CP). The HDPE tarp and irrigations over subsurface drip-application treatments resulted in similar and the lowest emission losses (12-13% 1,3-D, and 2-3% CP). Lower fumigant concentrations in the soil-gas phase were observed with drip-application than in the shank-injection treatments; however, all treatments provided 100% kill to citrus nematodes in bags buried from 30 to 90 cm depth. Pre-irrigation and drip application seem to be effective to minimize emissions of 1,3-D and CP.

  3. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    SciTech Connect

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  4. Effects of exomoon’s magnetic field on generation of radio emissions

    NASA Astrophysics Data System (ADS)

    Griffith, John; Noyola, Joaquin; Satyal, Suman; Musielak, Zdzislaw E.

    2017-01-01

    In the recent work by Noyola et al. (2014, 2016), a novel technique of detection of exomoons through the radio emissions produced by the magnetic field interactions between exoplanet-exomoon pair is emulated based upon the processes occurring in the Jupiter-Io system. Their calculations have shown that the radio signal from the distant extra-solar planetary systems is detectable by current technology provided that the systems emanating the radio waves are relatively closer, have some form of atmosphere, and have larger exomoons. In this work, we explore the effect of exomoon’s magnetic field on the radio emission processes by considering a hypothetical magnetic exomoon and re-calculating the resulting radio flux. Then, a limit to the exomoon’s magnetic field is proposed based on the signal amplification versus the dampening effect the magnetic field induces on the secondary conditions such as the containment of ions within the exomoon’s magnetic field and the effect of the plasma torus density that co-orbits with the moon. The energy from the exomoon’s magnetic field is expected to amplify the radio signal, hence increasing the probability of detection of the first exomoons.

  5. Synthesis and field emission properties of different ZnO nanostructure arrays

    PubMed Central

    2012-01-01

    In this article, zinc oxide (ZnO) nanostructures of different shapes were fabricated on silicon substrate. Well-aligned and long ZnO nanowire (NW) arrays, as well as leaf-like ZnO nanostructures (which consist of modulated and single-phase structures), were fabricated by a chemical vapor deposition (CVD) method without the assistance of a catalyst. On the other hand, needle-like ZnO NW arrays were first fabricated with the CVD process followed by chemical etching of the NW arrays. The use of chemical etching provides a low-cost and convenient method of obtaining the needle-like arrays. In addition, the field emission properties of the different ZnO NW arrays were also investigated where some differences in the turn-on field and the field-enhancement factors were observed for the ZnO nanostructures of different lengths and shapes. It was experimentally observed that the leaf-like ZnO nanostructure is most suitable for field emission due to its lowest turn-on and threshold field as well as its high field-enhancement factor among the different synthesized nanostructures. PMID:22444723

  6. Incorporating denitrification-decomposition method to estimate field emissions for Life Cycle Assessment.

    PubMed

    Deng, Yelin; Paraskevas, Dimos; Cao, Shi-Jie

    2017-03-22

    This study focuses on a detailed Life Cycle Assessment (LCA) for flax cultivation in Northern France. Nitrogen related field emissions are derived both from a process-oriented DeNitrification-DeComposition (DNDC) method and the generic Intergovernmental Panel on Climate Change (IPCC) method. Since the IPCC method is synthesised from field measurements at sites with various soil types, climate conditions, and crops, it contains significant uncertainties. In contrast, the outputs from the DNDC method are considered as more site specific as it is built according to complex models of soil science. As it is demonstrated in this paper the emission factors from the DNDC method and the recommended values from the IPCC method exhibit significant variations for the case of flax cultivation. The DNDC based emission factor for direct N2O emission, which is a strong greenhouse gas, is 0.25-0.5%, significantly lower than the recommend 1% level derived from the IPCC method. The DNDC method leads to a reduction of 17% in the impact category of climate change per kg retted flax straw production from the level obtained from the IPCC method. Much higher reductions are recorded for particulate matter formation, terrestrial acidification, and marine eutrophication impact categories. Meanwhile, based on the DNDC and IPCC methods, a comparative LCA per kg flax straw is presented. For both methods sensitivity analysis as well as comparison of uncertainties parameterisation of the N2O estimates via Monte-Carlo analysis are performed. The DNDC method incorporates more relevant field emissions from the agricultural life cycle phase, which can also improve the quality of the Life Cycle Inventory as well as allow more precise uncertainty calibration in the LCA inventory.

  7. Enhanced field-emission from a mixture of carbon nanotubes, ZnO tetrapods and conductive particles.

    PubMed

    Wei, Lei; Xiaobing, Zhang; Zhiwei, Zhao; Jing, Chen; Yiping, Cui; Baoping, Wang

    2012-08-01

    We report the enhancement of field-emission current from a mixture of carbon nanotubes, ZnO tetrapod-like nano structures, and conductive particles. Carbon nanotubes are deposited on the electrode as the field emitters. A MgO layer is printed around the cathode electrode, and ZnO tetrapod-like nano structures are deposited on this layer for the generation of secondary emission electrons. A few conductive particles are also distributed on the MgO layer by spraying or screen-printing. These conductive particles enhance the transverse electric field around the cathode electrode. Consequently, more primary electrons emitted from the carbon nanotubes bombard on the ZnO tetrapods, and secondary emission electrons and scattered electrons are yielded. Finally, the field-emission current is enhanced obviously. As experimental results shown, a high field-emission current about 32 mA in a direct current emission mode has been obtained from a 0.5 cm2 emission site when an electric field of 9 V/microm is applied between cathode and anode. Compared with a conventional carbon nanotube cathode, the field-emission current has been improved about 80%.

  8. Field test of available methods to measure remotely SO2 and NOx emissions from ships

    NASA Astrophysics Data System (ADS)

    Balzani Lööv, J. M.; Alfoldy, B.; Beecken, J.; Berg, N.; Berkhout, A. J. C.; Duyzer, J.; Gast, L. F. L.; Hjorth, J.; Jalkanen, J.-P.; Lagler, F.; Mellqvist, J.; Prata, F.; van der Hoff, G. R.; Westrate, H.; Swart, D. P. J.; Borowiak, A.

    2013-11-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors from remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, DOAS, UV camera), combined with model based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat, and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the landbased ones because they allow to optimize the sampling conditions and to sample from ships on the open sea. Although optical methods can provide reliable results, it was found that at the state of the art, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  9. Field test of available methods to measure remotely SOx and NOx emissions from ships

    NASA Astrophysics Data System (ADS)

    Balzani Lööv, J. M.; Alfoldy, B.; Gast, L. F. L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D. P. J.; Berkhout, A. J. C.; Jalkanen, J.-P.; Prata, A. J.; van der Hoff, G. R.; Borowiak, A.

    2014-08-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, Differential Optical Absorption Spectroscopy (DOAS), UV camera), combined with model-based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the land-based ones because they allow optimizing the sampling conditions and sampling from ships on the open sea. Although optical methods can provide reliable results it was found that at the state of the art level, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  10. Redshifts of Emission-Line Objects in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Xu, Chun; Pirzkal, Norbert; Malhotra, Sangeeta; Rhoads, James E.; Mobasher, Bahram; Daddi, Emanuele; Gronwall, Caryl; Hathi, Nimish P.; Panagia, Nino; Ferguson, Henry C.; Koekemoer, Anton M.; Kümmel, Martin; Moustakas, Leonidas A.; Pasquali, Anna; di Serego Alighieri, Sperello; Vernet, Joel; Walsh, Jeremy R.; Windhorst, Rogier; Yan, Haojing

    2007-07-01

    We present redshifts for 115 emission-line objects in the Hubble Ultra Deep Field identified through the Grism ACS Program for Extragalactic Science (GRAPES) project using the slitless grism spectroscopy mode of the Advanced Camera for Surveys on the Hubble Space Telescope (HST). The sample was selected by an emission-line search on all extracted one-dimensional GRAPES spectra. We identify the emission lines using line wavelength ratios where multiple lines are detected in the grism wavelength range (5800 Å<~λ<~9600 Å), and using photometric redshift information where multiple lines are unavailable. We then derive redshifts using the identified lines. Our redshifts are accurate to δz~0.009, based on both statistical uncertainty estimates and comparison with published ground-based spectra. Over 40% of our sample is fainter than typical magnitude limits for ground-based spectroscopy (with iAB>25 mag). Such emission lines would likely remain undiscovered without our deep survey. The emission-line objects fall into three categories: (1) most are low- to moderate-redshift galaxies (0<=z<=2), including many actively star-forming galaxies with strong H II regions; (2) nine are high-redshift (4<=z<=7) Lyα emitters; and (3) at least three are candidate active galactic nuclei.

  11. Fabrication, characterization, cathodoluminescence, and field-emission properties of silica (SiO{sub 2}) nanostructures

    SciTech Connect

    Xu, J.Q.; Onodera, H.; Sekiguchi, T.; Golberg, D.; Bando, Y.; Mori, T.

    2012-11-15

    High-quality one dimensional amorphous SiO{sub 2} nanostructures with different morphologies (nanowires and starfish-like nanostructures) are synthesized through a simple catalysis-free approach and effective thermal evaporation process. The morphologies, microstructures, and compositions of the products are investigated by X-ray powder diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A promising optical property (cathodoluminescence (CL) in a strong ultraviolet (UV) emission and a weak blue emission at room temperature) was detected in the as-synthesized nanostructures. Field-emission measurements show that the SiO{sub 2} nanostructures may also be a promising FE emitter candidate if we can improve the conductivity and decrease the density of the nanostructures. - Highlights: Black-Right-Pointing-Pointer A simple catalysis-free approach and effective thermal evaporation process Black-Right-Pointing-Pointer High-quality one dimensional amorphous SiO{sub 2} nanostructures Black-Right-Pointing-Pointer A strong ultraviolet (UV) emission and a weak blue emission at room temperature Black-Right-Pointing-Pointer A promising FE emitter's candidate.

  12. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared

    NASA Technical Reports Server (NTRS)

    Evans, D. R.

    1994-01-01

    The magnetic field geometries of Uranus and Neptune are superficially similar, and are similarly unlike those of other planets: the field strengths are similar, and they contain extraordinarily large non-dipolar components. As a corollary, the best dipolar field models of each of the two planets comprises a dipole that is considerably offset from the planetary center and tilted away from the rotational axis. However, in other respects the best field models of the two planets are quite different. Uranus has a quadrupole model in which all the terms are well determined and in which none of the higher order terms is determined. To represent the magnetometer data acquired during Voyager's Neptune encounter requires a model of order 8 (instead of Uranus' order 2), yet many of the coefficients are poorly determined. A second model, an octupole model comprising the terms up to order three of the order 8 model, has been suggested by the magnetometer team as being useful; its use, however, is limited only to the region outside of about 2R(exp N), whereas planetary radio emissions have their sources well inside this surface. Computer code has been written that permits an analysis of the detailed motion of low energy charged particles moving in general planetary magnetic fields. At Uranus, this code reveals the existence of an isolated region of the inner magnetosphere above the day side in which particles may be trapped, separate from the more general magnetospheric trapping. An examination of the so-call ordinary mode uranian radio emissions leads us to believe that these emissions are in fact extraordinary mode emissions coming from particles trapped in this isolated region. A similar attempt to discover trapping regions at Neptune has proved, unfortunately, to be impossible. This arises from three factors: (1) the computation needed to track particles in an eighth order field is more than an order of magnitude greater than that needed to perform a similar calculation in a

  13. EMISSION PATTERNS AND LIGHT CURVES OF GAMMA RAYS IN THE PULSAR MAGNETOSPHERE WITH A CURRENT-INDUCED MAGNETIC FIELD

    SciTech Connect

    Li, X.; Zhang, L.

    2011-12-20

    We study the emission patterns and light curves of gamma rays in the pulsar magnetosphere with a current-induced magnetic field perturbation. Based on the solution of a static dipole with the magnetic field induced by some currents (perturbation field), we derive the solutions of a static as well as a retarded dipole with the perturbation field in the Cartesian coordinates. The static (retarded) magnetic field can be expressed as the sum of the pure static (retarded) dipolar magnetic field and the static (retarded) perturbation field. We use the solution of the retarded magnetic field to investigate the influence of the perturbation field on the emission patterns and light curves, and apply the perturbed solutions to calculate the gamma-ray light curves for the case of the Vela pulsar. We find that the perturbation field induced by the currents will change the emission patterns and then the light curves of gamma rays, especially for a larger perturbation field. Our results indicate that the perturbation field created by the outward-flowing (inward-flowing) electrons (positrons) can decrease the rotation effect on the magnetosphere and makes emission pattern appear to be smoother relative to that of the pure retarded dipole, but the perturbation field created by the outward-flowing (inward-flowing) positrons (electrons) can make the emission pattern less smooth.

  14. Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Küttel, Olivier M.; Groening, Oliver; Emmenegger, Christoph; Schlapbach, Louis

    1998-10-01

    Phase pure nanotube films were grown on silicon substrates by a microwave plasma under conditions which normally are used for the growth of chemical vapor deposited diamond films. However, instead of using any pretreatment leading to diamond nucleation we deposited metal clusters on the silicon substrate. The resulting films contain only nanotubes and also onion-like structures. However, no other carbon allotropes like graphite or amorphous clustered material could be found. The nanotubes adhere very well to the substrates and do not need any further purification step. Electron field emission was observed at fields above 1.5 V/μm and we observed an emission site density up to 104/cm2 at 3 V/μm. Alternatively, we have grown nanotube films by the hot filament technique, which allows to uniformly cover a two inch wafer.

  15. Modified NEGF method for atomistic modeling of field emission from carbon nanotube

    NASA Astrophysics Data System (ADS)

    Monshipouri, Mahta; Behrooz, Milad; Abdi, Yaser

    2017-09-01

    A model to simulate the atomistic properties of the field emission (FE) from a zigzag-single walled carbon nanotube (Z-SWCNT) is presented. By a modification of the self-energy in non-equilibrium Green's function (NEGF) method, we simulated the field emission current, considering the quantum transport of electrons within the CNT. The paper involves investigation on the effect of the n index of the (n , 0) Z-SWCNT and the number of carbon dimers in the length direction as well as the anode-cathode separation on the FE current. Effect of additional gate voltage and substitutional impurities on the FE current is also studied. A comparison between the experimental data and simulation results are also included in the paper. The model can be used to consider different quantum effects of the atomistic emitter structure on the FE current.

  16. Light emission from a dielectric subjected to a rapidly alternating electric field

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. V.

    1983-12-01

    Experiments are reported in which light emission was observed in liquid and solid dielectrics which were in contact with a ferroelectric during the polarization reversal (switching) of the ferroelectric domains. In the experiments, samples of an optically nontransparent ferroelectric ceramic, barium titanate, in the form of 10-mm-diameter, 2-mm-thick disk were used, with a 50-Hz sinusoidal switching voltage applied to the disks through deposited electrodes. In experiments with liquid electrodes, the sample was immersed in a glass cell holding the liquid. The solid dielectrics studied were reactively sputtered silicon dioxide and an anodic aluminum oxide produced by electrochemical oxidation through a vacuum-deposited film of pure aluminum. Results indicate there is a threshold field above which the light emission is observed. The existence of this threshold and its level are in agreement with data in the literature on the critical field for the switching of domains in ferroelectrics.

  17. Fluxon induced surface resistance and field emission in niobium films at 1.5 GHz

    NASA Astrophysics Data System (ADS)

    Benvenuti, C.; Calatroni, S.; Darriulat, P.; Peck, M. A.; Valente, A.-M.; Van't Hof, C. A.

    2001-08-01

    The surface resistance of superconducting niobium films induced by the presence of trapped magnetic flux, presumably in the form of a pinned fluxon lattice, is shown to be modified by the presence of a field emitting impurity or defect. The modification takes the form of an additional surface resistance proportional to the density of the fluxon lattice and increasing linearly with the amplitude of the microwave above a threshold significantly lower than the field emission threshold. Such an effect, precursor of electron emission, is observed here for the first time in a study using radiofrequency cavities operated at their fundamental 1.5 GHz frequency. The measured properties of the additional surface resistance severely constrain possible explanations of the observed effect.

  18. Field emission current fluctuations due to lithium adsorbed on the W(111) region

    NASA Astrophysics Data System (ADS)

    Biernat, T.; Kleint, Ch.; Mȩclewski, R.

    1991-04-01

    Field emission current fluctuations for lithium adsorbed on the tungsten (111) region were investigated by a probe-hole field emission microscope. The coverage dependence of the noise power as well as spectral density functions W(ƒ) at different temperatures were obtained. The spectral density functions have been analysed in terms of the Timm and van der Ziel concentration fluctuation model. Using Comer's method the surface diffusion energies and prefactors have been determined for submonolayer coverages of lithium. They are strongly coverage dependent. The activation energy varies non-monotonically between 0.41 and 0.53 eV and the prefactor between 2.4 × 10 -4 and 1.3 × 10 -2 cm 2/s in the Li surface concentration interval (0.5-3.7) × 10 14 cm -2. The results are compared with those obtained for the W(111)/K system.

  19. Broadband antireflection and field emission properties of TiN-coated Si-nanopillars

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Ming; Ravipati, Srikanth; Kao, Pin-Hsu; Shieh, Jiann; Ko, Fu-Hsiang; Juang, Jenh-Yih

    2014-07-01

    Broadband antireflection and field emission characteristics of silicon nanopillars (Si-NPs) fabricated by self-masking dry etching in hydrogen-containing plasma were systematically investigated. In particular, the effects of ultrathin (5-20 nm) titanium nitride (TiN) films deposited on Si-NPs by atomic layer deposition (ALD) on the optoelectronic properties were explored. The results showed that by coating the Si-NPs with a thin layer of TiN the antireflection capability of pristine Si-NPs can be significantly improved, especially in the wavelength range of 1000-1500 nm. The enhanced field emission characteristics of these TiN/Si-NP heterostructures suggest that, in addition to the reflectance suppression in the long wavelength range arising from the strong wavelength-dependent refractive index of TiN, the TiN-coating may have also significantly modified the effective work function at the TiN/Si interface as well.

  20. Secondary electron emission from a charged dielectric in the presence of normal and oblique electric fields

    NASA Astrophysics Data System (ADS)

    Javidi, B.

    1982-02-01

    The secondary electron emission coefficient was obtained for a FEP-Teflon dielectric charged with monoenergetic electrons normally incident upon the surface of the specimen. Measurements of secondary emission coefficient were done for normal and oblique incidence with different primary beam energies in the presence of normal and oblique electric fields. A collimated probing beam was directed to different points on the surface of the specimen and the released or accumulated charge was monitored using an electrometer. The measured data for different probing beam energies, different impact points and different angles of incidence were plotted vs. impact energy and impact point. Data analyzed by computer simulations to find the potential distribution on the surface of the specimen and the electric field around it, is presented and discussed.