Sample records for ion-pair reversed-phase chromatography

  1. Reversed-phase ion-pair liquid chromatography method for purification of duplex DNA with single base pair resolution

    PubMed Central

    Wysoczynski, Christina L.; Roemer, Sarah C.; Dostal, Vishantie; Barkley, Robert M.; Churchill, Mair E. A.; Malarkey, Christopher S.

    2013-01-01

    Obtaining quantities of highly pure duplex DNA is a bottleneck in the biophysical analysis of protein–DNA complexes. In traditional DNA purification methods, the individual cognate DNA strands are purified separately before annealing to form DNA duplexes. This approach works well for palindromic sequences, in which top and bottom strands are identical and duplex formation is typically complete. However, in cases where the DNA is non-palindromic, excess of single-stranded DNA must be removed through additional purification steps to prevent it from interfering in further experiments. Here we describe and apply a novel reversed-phase ion-pair liquid chromatography purification method for double-stranded DNA ranging in lengths from 17 to 51 bp. Both palindromic and non-palindromic DNA can be readily purified. This method has the unique ability to separate blunt double-stranded DNA from pre-attenuated (n-1, n-2, etc) synthesis products, and from DNA duplexes with single base pair overhangs. Additionally, palindromic DNA sequences with only minor differences in the central spacer sequence of the DNA can be separated, and the purified DNA is suitable for co-crystallization of protein–DNA complexes. Thus, double-stranded ion-pair liquid chromatography is a useful approach for duplex DNA purification for many applications. PMID:24013567

  2. Retention of nucleic acids in ion-pair reversed-phase high-performance liquid chromatography depends not only on base composition but also on base sequence.

    PubMed

    Qiao, Jun-Qin; Liang, Chao; Wei, Lan-Chun; Cao, Zhao-Ming; Lian, Hong-Zhen

    2016-12-01

    The study on nucleic acid retention in ion-pair reversed-phase high-performance liquid chromatography mainly focuses on size-dependence, however, other factors influencing retention behaviors have not been comprehensively clarified up to date. In this present work, the retention behaviors of oligonucleotides and double-stranded DNAs were investigated on silica-based C 18 stationary phase by ion-pair reversed-phase high-performance liquid chromatography. It is found that the retention of oligonucleotides was influenced by base composition and base sequence as well as size, and oligonucleotides prone to self-dimerization have weaker retention than those not prone to self-dimerization but with the same base composition. However, homo-oligonucleotides are suitable for the size-dependent separation as a special case of oligonucleotides. For double-stranded DNAs, the retention is also influenced by base composition and base sequence, as well as size. This may be attributed to the interaction of exposed bases in major or minor grooves with the hydrophobic alky chains of stationary phase. In addition, no specific influence of guanine and cytosine content was confirmed on retention of double-stranded DNAs. Notably, the space effect resulted from the stereostructure of nucleic acids also influences the retention behavior in ion-pair reversed-phase high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reversed-phase ion-pair ultra-high-performance-liquid chromatography-mass spectrometry for fingerprinting low-molecular-weight heparins.

    PubMed

    Langeslay, Derek J; Urso, Elena; Gardini, Cristina; Naggi, Annamaria; Torri, Giangiacomo; Larive, Cynthia K

    2013-05-31

    Heparin is a complex mixture of sulfated linear carbohydrate polymers. It is widely used as an antithrombotic drug, though it has been shown to have a myriad of additional biological activities. Heparin is often partially depolymerized in order to decrease the average molecular weight, as it has been shown that low molecular weight heparins (LMWH) possess more desirable pharmacokinetic and pharmacodynamic properties than unfractionated heparin (UFH). Due to the prevalence of LMWHs in the market and the emerging availability of generic LMWH products, it is important that analytical methods be developed to ensure the drug quality. This work explores the use of tributylamine (TrBA), dibutylamine (DBA), and pentylamine (PTA) as ion-pairing reagents in conjunction with acetonitrile and methanol modified mobile phases for reversed-phase ion-pairing ultraperformance liquid chromatography coupled to mass spectrometry (RPIP-UPLC-MS) for fingerprint analysis of LMWH preparations. RPIP-UPLC-MS fingerprints are presented and compared for tinzaparinand enoxaparin. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Investigation of the retention/pH profile of zwitterionic fluoroquinolones in reversed-phase and ion-interaction high performance liquid chromatography.

    PubMed

    Pistos, C; Tsantili-Kakoulidou, A; Koupparis, M

    2005-09-15

    The retention/pH profiles of three fluoroquinolones, ofloxacin, norfloxacin and ciprofloxacin, was investigated by means of reversed-phase high performance liquid chromatography (RP-HPLC) and reversed-phase ion-interaction chromatography (RP-IIC), using an octadecylsilane stationary phase and acetonitrile as organic modifier. Sodium hexanesulphonate and tetrabutylammonium hydroxide were used as sources of counter ions in ion-interaction chromatography. The retention/pH profiles under in RP-HPLC were compared to the corresponding lipophilicity/pH profiles. Despite the rather hydrophilic nature of the three fluoroquinolones positive retention factors were obtained while there was a shift of the retention maximum towards more acidic pH values. This behavior was attributed mainly to non-hydrophobic silanophilic interactions with the silanized silica gel material of the stationary phase. In ion-interaction chromatography the effect of counter ions over a broad pH range was found to be ruled rather by the ion pair formation in the mobile phase which led to a drastic decrease in retention as a consequence of the disruption of the zwitterionic structure and thereupon the deliberation of a net charge in the molecules. At pH values at which zwitterionic structure was not favored both the ion-exchange and ion pair formation mechanisms were assumed to contribute to the retention.

  5. [Separation of p-aminobenzenearsonic acid and its oxide by ion-pair reversed-phase high performance liquid chromatography].

    PubMed

    Kang, J; Ma, X; Meng, L; Ma, D

    1999-05-01

    To study the separation of p-aminobenzenearsonic acid (PABAA) and its oxide, p-aminophenylarsine oxide (PAPAO), both the absorption spectra were scanned at the wavelengths from 200 nm to 380 nm. PABAA had absorption maximum at 254 nm and PAPAO 258 nm. The effects of salt concentration, column temperature, methanol and ion-pair agent concentrations on the capacity factor were investigated. Compounds of high polarity showed almost no retention on reversed-phase column; as the volume fraction of the methanol decreased from 90% to 10%, the retention time of PABAA gradually increased with broad peak, and partially eluted when methanol volume fraction being below 20%. With temperature rising, the retention time of PABAA was decreased. But PABAA capacity factor can be increased by selecting an appropriate salt concentration for the mobile phase. The cetyltrimethyl and tetrabutyl ammonium ions were separately added as ion-pair agents to the mobile phase containing methanol in phosphate buffer of 10 mmol/L, the changes of retention time were observed. The mechanism of retention based on reversed phase ion-pair model is proposed. Besides, the retention behaviour is also influenced by size exclusion in stationary phase as well as polar interactions with residual silanol group on the silica surface.

  6. Comprehensive hydrophilic interaction and ion-pair reversed-phase liquid chromatography for analysis of di- to deca-oligonucleotides.

    PubMed

    Li, Qin; Lynen, Frédéric; Wang, Jian; Li, Hanlin; Xu, Guowang; Sandra, Pat

    2012-09-14

    A comprehensive two-dimensional HPLC approach with a high degree of orthogonality was developed for analysis of di- to deca-oligonucleotides (ONs). Hydrophilic interaction liquid chromatography (HILIC) was used in the first dimension, and ion-pair reversed-phase liquid chromatography (IP-RPLC) was employed in the second dimension. The two dimensions were connected via a ten-port valve interface equipped with octadecyl silica (ODS) traps to immobilize and focus the ONs eluting from the first dimension prior to IP-RPLC separation. An aqueous make-up flow was used for effective trapping. The comprehensive two-dimensional HPLC system was optimized with a mixture consisting of 27 oligonucleotide standards. An overall chromatographic peak capacity of 500 was obtained. The use of the volatile buffer triethylamine acetate in the second dimension allowed straightforward coupling to electrospray ionization mass spectrometry (ESI-MS) and detection of each ON in the negative ionization mode. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. [Application of reversed-phase ion-pair chromatography for universal estimation of octanol-water partition coefficients of acid, basic and amphoteric drugs].

    PubMed

    Zhu, Hui; Yang, Ri-Fang; Yun, Liu-Hong; Jiang, Yu; Li, Jin

    2009-09-01

    This paper is to establish a reversed-phase ion-pair chromatography (RP-IPC) method for universal estimation of the octanol/water partition coefficients (logP) of a wide range of structurally diverse compounds including acidic, basic, neutral and amphoteric species. The retention factors corresponding to 100% water (logk(w)) were derived from the linear part of the logk'/phi relationship, using at least four isocratic logk' values containing different organic compositions. The logk(w) parameters obtained were close to the corresponding logP values obtained with the standard "shake flask" methods. The mean deviation for test drugs is 0.31. RP-IPC with trifluoroacetic acid as non classic ion-pair agents can be applicable to determine the logP values for a variety of drug-like molecules with increased accuracy.

  8. Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography.

    PubMed

    Pirok, Bob W J; Knip, Jitske; van Bommel, Maarten R; Schoenmakers, Peter J

    2016-03-04

    In the late 19th century, newly invented synthetic dyes rapidly replaced the natural dyes on the market. The characterization of mixtures of these so-called early synthetic dyes is complicated through the occurrence of many impurities and degradation products. Conventional one-dimensional liquid chromatography does not suffice to obtain fingerprints with sufficient resolution and baseline integrity. Comprehensive two-dimensional liquid chromatography (LC×LC) is employed in this study, with ion-exchange chromatography in the first dimension and fast ion-pair liquid chromatography in the second. Retention in the first dimension is largely determined by the number of charges, while the selection of a small ion-pair reagent (tetramethylammonium hydroxide) in the second dimension causes retention to be largely determined by the molecular structure of the dye. As a result, there is a high degree of orthogonality of the two dimensions, similar to the values typically encountered in GC×GC. The proposed LC×LC method shows a theroretical peak capacity of about 2000 in an analysis time of about three hours. Clear, informative fingerprints are obtained that open a way to a more efficient characterization of dyes used in objects of cultural heritage. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Determination of adrenaline, noradrenaline and corticosterone in rodent blood by ion pair reversed phase UHPLC-MS/MS.

    PubMed

    Bergh, Marianne Skov-Skov; Bogen, Inger Lise; Andersen, Jannike Mørch; Øiestad, Åse Marit Leere; Berg, Thomas

    2018-01-01

    A novel ion pair reversed phase ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the stress hormones adrenaline, noradrenaline and corticosterone in rodent blood was developed and fully validated. Separations were performed on an Acquity HSS T3 column (2.1mm i.d.×100mm, 1.8μm) with gradient elution and a runtime of 5.5min. The retention of adrenaline and noradrenaline was substantially increased by employing the ion pair reagent heptafluorobutyric acid (HFBA). Ion pair reagents are usually added to the mobile phase only, but we demonstrate for the first time that including HFBA to the sample reconstitution solvent as well, has a major impact on the chromatography of these compounds. The stability of adrenaline and corticosterone in rodent blood was investigated using the surrogate analytes adrenaline-d 3 and corticosterone-d 8 . The applicability of the described method was demonstrated by measuring the concentration of stress hormones in rodent blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Paired-ion chromatography and high performance liquid chromatography of labetalol in feeds.

    PubMed

    Townley, E R; Ross, B

    1980-11-01

    A high performance liquid chromatographic (HPLC) method using reverse phase paired-ion chromatography and ultraviolet detection at 280 nm has been developed to determine labetalol, an alpha and beta adrenoceptor blocking agent, in Purina No. 5001 rodent chow. The method is simple and rapid, and demonstrates a separation technique applicable to other acidic and basic drugs. It requires only extraction of the drug with methanol--water--acetic acid (66 + 33 + 1) and separation of insoluble material by filtration before HPLC. Labetalol, is chromatographically separated from soluble feed components by means of a microBondapak C18 column and methanol--water--acetic acid (66 + 33 + 1) mobile phase, 0.005M with respect to sodium dioctylsulfosuccinate paired-ion reagent. Average recovery is 98.7% with a relative standard deviation of +/- 2.3% for the equipment described.

  11. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography.

    PubMed

    Bergmann, Marianne L; Sadjadi, Seyed; Schmedes, Anne

    2017-07-01

    The catecholamines, epinephrine (E) and norepinephrine (NE) are small polar, hydrophilic molecules, posing significant challenges to liquid chromatography - tandem mass spectrometry (LC-MS/MS) method development. Specifically, these compounds show little retention on conventional reversed-phase liquid chromatography columns. This work presents development and validation of an LC-MS/MS method for determining catecholamines in urine, based on a new approach to ion-pairing chromatography (IPC), in which the ion-pairing reagent (IPR), 1-Heptane Sulfonic Acid (HSA), is added to the extracted samples instead of the mobile phases. A Hamilton STARlet workstation carried out the solid phase extraction of urine samples. The extracted samples were diluted with 60mmol/L HSA and injected on a Kinetex core-shell biphenyl column with conventional LC-MS/MS suitable mobile phases. Chromatographic separation of E and NE was achieved successfully with very stable retention times (RT). In 484 injections, the RTs were steady with a CV of less than ±4%. Furthermore, HSA was separated from E and NE, allowing HSA to be diverted to waste instead of entering the mass spectrometer ion chamber. The method was validated with good analytical performance, and even though the analysis for urinary catecholamines is increasingly being replaced by plasma free metanephrines in diagnosing pheochromocytomas, this work represents the application of a new analytical technique that can be transferred to other small polar molecules, that are difficult to chromatograph on traditional reversed phase columns. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Application of perfluorinated acids as ion-pairing reagents for reversed-phase chromatography and retention-hydrophobicity relationships studies of selected beta-blockers.

    PubMed

    Flieger, J

    2010-01-22

    The addition of the homologous series of perfluorinated acids-trifluoroacetic acid (TFAA), pentafluoropropionic acid (PFPA), heptafluorobutyric acid (HFBA) to mobile phases for reversed-phase high-performance liquid chromatography (RP-HPLC) of beta-blockers was tested. Acidic modifiers were responsible for acidification of mobile phase (pH 3) ensuring the protonation of the beta-blockers and further ion pairs creation. The effect of the type and concentration of mobile phase additives on retention parameters, the efficiency of the peaks, their symmetry and separation selectivity of the beta-blockers mixture were all studied. It appeared that at increasing acid concentration, the retention factor, for all compounds investigated, increased to varying degrees. It should be stressed that the presence of acids more significantly affected the retention of the most hydrophobic beta-blockers. Differences in hydrophobicity of drugs can be maximized through variation of the hydrophobicity of additives. Thus, the relative increase in the retention depends on either concentration and hydrophobicity of the anionic mobile phase additive or hydrophobicity of analytes. According to QSRR (quantitative structure retention relationship) methodology, chromatographic lipophilicity parameters: isocratic log k and log k(w) values (extrapolated retention to pure water) were correlated with the molecular (log P(o/w)) and apparent (log P(app)) octanol-water partition coefficients obtained experimentally by countercurrent chromatography (CCC) or predicted by Pallas software. The obtained, satisfactory retention-hydrophobicity correlations indicate that, in the case of the basic drugs examined in RP-HPLC systems modified with perfluorinated acids, the retention is mainly governed by their hydrophobicity. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Ion-pairing reversed-phase chromatography coupled to inductively coupled plasma mass spectrometry as a tool to determine mercurial species in freshwater fish.

    PubMed

    Cheng, Heyong; Chen, Xiaopan; Shen, Lihuan; Wang, Yuanchao; Xu, Zigang; Liu, Jinhua

    2018-01-05

    Most of analytical community is focused on reversed phase high performance liquid chromatography (RP-HPLC) for mercury speciation by employing mobile phases comprising of high salts and moderate amounts of organic solvents. This study aims at rapid mercury speciation analysis by ion-pairing RP-HPLC with inductively coupled plasma mass spectrometry (ICP-MS) detection only using low salts for the sake of green analytical chemistry. Two ion-pairing HPLC methods were developed on individual usage of positively and negatively charged ion-pairing reagents (tetrabutylammonium hydroxide -TBAH and sodium dodecylbenzene sulfonate -SDBS), where sodium 3-mercapto-1-propysulfonate (MPS) and l-cysteine (Cys) were individually added in mobile phases to transform mercury species into negative and positive Hg-complexes for good resolution. Addition of phenylalanine was also utilized for rapid baseline separation in combination of short C 18 guard columns. Optimum mobile phases of 2.0mM SDBS+2.0mM Cys+1.0mM Phe (pH 3.0) and 4.0mM TBAH+2.0mM MPS+2.0mM Phe (pH 6.0) both achieved baseline separation of inorganic mercury (Hg 2+ ), methylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) on two consecutive 12.5-mm C 18 columns. The former mobile phase was selected for mercury speciation in freshwater fish because of short separation time (3.0min). Detection limits of 0.015 for Hg 2+ , 0.014 for MeHg, 0.028 for EtHg and 0.042μgL -1 for PhHg were obtained along with satisfactory precisions of peak height and area (1.0-2.8% for 5.0μgL -1 Hg-mixture standard). Good accordance of determined values of MeHg and total mercury in certified reference materials of fish tissue (GBW 10029) and tuna fish (BCR-463) with certified values as well as good recoveries (91-106%) proved good accuracy of the proposed method. An example application to freshwater fish indicated its potential in routine analysis, where MeHg was presented at 3.7-20.3μgkg -1 as the dominate species. Copyright © 2017

  14. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Fang, Yong; Pan, Yushi; Li, Peng; Xue, Mei; Pei, Fei; Yang, Wenjian; Ma, Ning; Hu, Qiuhui

    2016-12-15

    An analytical method using reversed phase chromatography-inductively coupled plasma mass spectrometry for arsenic and mercury speciation analysis was described. The effect of ion-pairing reagent on simultaneous separation of four arsenic (arsenite, arsenate, monomethlyarsonate and dimethylarsinate) and three mercury species (inorganic mercury (Hg(II)), methylmecury and ethylmercury) was investigated. Parameters including concentrations and pH of the mobile phase were optimized. The separation and re-equilibration time was attained within 20min. Meanwhile, a sequential extraction method for arsenic and mercury in rice was tested. Subsequently, 1% HNO3 microwave-assisted extraction was chosen. Calibration curves based on peak area measurements were linear with correlation coefficient greater than 0.9958 for each species in the range studied. The detection limits of the species were in the range of 0.84-2.41μg/L for arsenic and 0.01-0.04μg/L for mercury, respectively. The proposed method was then successfully applied for the simultaneous determination of arsenic and mercury species in rice flour standard material and two kinds of rice from local markets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Determination of antazoline hydrochloride in rat plasma and excreta by reversed-phase ion-pair chromatography and its application to pharmacokinetics.

    PubMed

    Wang, Rui; Chu, Yanle; Li, Xiaotian; Wan, Baoluo; Yu, Tong; Wang, Linxi; Hao, Lianqi; Guo, Maowen

    2013-12-01

    A reversed-phase ion pair chromatography method with liquid-liquid extraction analytical method was developed and validated for the determination of antazoline hydrochloride in plasma and excreta of rat. The aim of our study was to characterize the preclinical pharmacokinetics and excretion profiles of antazoline hydrochloride in rats after intravenous injection at the dose of 10 mg/kg. Plasma and excreta samples were extracted with ethyl acetate, and phenacetin was used as the internal standard. The result showed that the method is suitable for the quantification of antazoline hydrochloride in plasma and excreta samples. Analysis of accuracy (90.89-112.33%), imprecision (<7.1%) and recovery (>82.5%) showed adequate values. After a single intravenous administration at 10 mg/kg to rats, plasma concentration profile showed a relative fast elimination proceeding with a terminal elimination half-life of 3.53 h. Approximately 61.8 and 14.2% of the administered dose were recovered in urine and bile after 72 and 24 h post-dosing respectively; 5.9% of the administered dose was recovered in feces after 72 h post-dosing. The above results show that the major elimination route is urinary excretion. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Fragment profiling of low molecular weight heparins using reversed phase ion pair liquid chromatography-electrospray mass spectrometry.

    PubMed

    Xu, Xiaohui; Li, Daoyuan; Chi, Lequan; Du, Xuzhao; Bai, Xue; Chi, Lianli

    2015-04-30

    Low molecular weight heparins (LMWHs) are linear and highly charged carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. Compared to unfractionated heparin (UFH), LMWHs are prevalently used as clinical anticoagulant drugs due to their lower side effects and better bioavailability. The work presented herein provides a rapid and powerful fragment mapping method for structural characterization of LMWHs. The chain fragments of two types of LMWHs, enoxaparin and nadroparin, were generated by controlled enzymatic digestion with each of heparinase I (Hep I, Enzyme Commission (EC) # 4.2.2.7), heparinase II (Hep II, no EC # assigned) and heparinase III (Hep III, EC # 4.2.2.8). Reversed phase ion pair high performance liquid chromatography (RPIP-HPLC) coupled with electrospray ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) was used to profile the oligosaccharide chains ranging from disaccharides to decasaccharides. A database containing all theoretical structural compositions was established to assist the mass spectra interpretation. The six digests derived by three enzymes from two types of LMWHs exhibited distinguishable fingerprinting patterns. And a total of 94 enoxaparin fragments and 109 nadroparin fragments were detected and identified. Besides the common LMWH oligosaccharides, many components containing characteristic LMWH structures such as saturated L-idopyranosuronic acid, 2,5-anhydro-D-mannitol, 1,6-anhydro-D-aminopyranose, as well as odd number oligosaccharides were also revealed. Quantitative comparison of major components derived from innovator and generic nadroparin products was presented. This approach to profile LMWHs' fragments offers a highly reproducible, high resolution and information-rich tool for evaluating the quality of this category of anticoagulant drugs or comparing structural similarities among samples from various sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mapping of low molecular weight heparins using reversed phase ion pair liquid chromatography-mass spectrometry.

    PubMed

    Li, Daoyuan; Chi, Lequan; Jin, Lan; Xu, Xiaohui; Du, Xuzhao; Ji, Shengli; Chi, Lianli

    2014-01-01

    Low molecular weight heparins (LMWHs) are structurally complex, highly sulfated and negatively charged, linear carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. They are widely used as anticoagulant drugs possessing better bioavailability, longer half-life, and lower side effects than heparin. Comprehensive structure characterization of LMWHs is important for drug quality assurance, generic drug application, and new drug research and development. However, fully characterization of all oligosaccharide chains in LMWHs is not feasible for current available analytical technologies due to their structure complexity and heterogeneity. Fingerprinting profiling is an efficient way for LMWHs' characterization and comparison. In this work, we present a simple, sensitive, and powerful analytical approach for structural characterization of LMWHs. Two different LMWHs, enoxaparin and nadroparin, were analyzed using reversed phase ion pair electrospray ionization mass spectrometry (RPIP-ESI-MS). More than 200 components were identified, including major structures, minor structures, and process related impurities. This approach is robust for high resolution and complementary fingerprinting analysis of LMWHs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Two-step ion-exchange chromatographic purification combined with reversed-phase chromatography to isolate C-peptide for mass spectrometric analysis.

    PubMed

    Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V

    2016-02-01

    A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography.

    PubMed

    Zimmermann, Aleksandra; Greco, Roberto; Walker, Isabel; Horak, Jeannie; Cavazzini, Alberto; Lämmerhofer, Michael

    2014-08-08

    Synthetic oligonucleotides gain increasing importance in new therapeutic concepts and as probes in biological sciences. If pharmaceutical-grade purities are required, chromatographic purification using ion-pair reversed-phase chromatography is commonly carried out. However, separation selectivity for structurally closely related impurities is often insufficient, especially at high sample loads. In this study, a "mixed-mode" reversed-phase/weak anion exchanger stationary phase has been investigated as an alternative tool for chromatographic separation of synthetic oligonucleotides with minor sequence variations. The employed mixed-mode phase shows great flexibility in method development. It has been run in various gradient elution modes, viz. one, two or three parameter (mixed) gradients (altering buffer pH, buffer concentration, and organic modifier) to find optimal elution conditions and gain further insight into retention mechanisms. Compared to ion-pair reversed-phase and mere anion-exchange separation, enhanced selectivities were observed with the mixed-mode phase for 20-23 nucleotide (nt) long oligonucleotides with similar sequences. Oligonucleotides differing by 1, 2 or 3 nucleotides in length could be readily resolved and separation factors for single nucleotide replacements declined in the order Cytosine (C)/Guanine (G)>Adenine (A)/Guanine∼Guanine/Thymine (T)>Adenine/Cytosine∼Cytosine/Thymine>Adenine/Thymine. Selectivities were larger when the modification was at the 3' terminal-end, declined when it was in the middle of the sequence and was smallest when it was located at the 5' terminus. Due to the lower surface area of the 200Å pore size mixed-mode stationary phase compared to the corresponding 100Å material, lower retention times with equal selectivities under milder elution conditions were achievable. Considering high sample loading capacities of the mixed-mode anion-exchanger phase, it should have great potential for chromatographic

  20. Simultaneous determination of cations, zwitterions and neutral compounds using mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography.

    PubMed

    Li, Jingyi; Shao, Shan; Jaworsky, Markian S; Kurtulik, Paul T

    2008-03-28

    A novel mixed-mode reversed-phase and cation-exchange high-performance liquid chromatography (HPLC) method is described to simultaneously determine four related impurities of cations, zwitterions and neutral compounds in developmental Drug A. The commercial column is Primesep 200 containing hydrophobic alkyl chains with embedded acidic groups in H(+) form on a silica support. The mobile phase variables of acid additives, contents of acetonitrile and concentrations of potassium chloride have been thoroughly investigated to optimize the separation. The retention factors as a function of the concentrations of potassium chloride and the percentages of acetonitrile in the mobile phases are investigated to get an insight into the retention and separation mechanisms of each related impurity and Drug A. Furthermore, the elution orders of the related impurities and Drug A in an ion-pair chromatography (IPC) are compared to those in the mixed-mode HPLC to further understand the chromatographic retention behaviors of each related impurity and Drug A. The study found that the positively charged Degradant 1, Degradant 2 and Drug A were retained by both ion-exchange and reversed-phase partitioning mechanisms. RI2, a small ionic compound, was primarily retained by ion-exchange. RI4, a neutral compound, was retained through reversed-phase partitioning without ion-exchange. Moreover, the method performance characteristics of selectivity, sensitivity and accuracy have been demonstrated to be suitable to determine the related impurities in the capsules of Drug A.

  1. Hot-water and solid-phase extraction of fluorescent whitening agents in paper materials and infant clothes followed by unequivocal determination with ion-pair chromatography-tandem mass spectrometry.

    PubMed

    Chen, Hsin-Chang; Ding, Wang-Hsien

    2006-03-10

    A comprehensive method for the determination of four stilbene-type disulfonate and one distyrylbiphenyl-type fluorescent whitening agents (FWAs) in paper materials (napkin and paper tissue) and infant clothes was developed. FWAs were extracted from paper material and cloth samples using a hot-water extraction, and the aqueous extracts were then preconcentrated with the newly developed Oasis WAX (mixed-mode of weak anion exchange and reversed-phase sorbent) solid-phase extraction cartridge. The analytes were unequivocal determined by ion pair chromatography coupled with negative electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS-MS), applying a di-n-hexyl-ammonium acetate (DHAA) as the ion-pairing reagent in mobile phase. Limits of quantitation (LOQ) were established between 0.2 and 0.9 ng/g in 2 g of samples. Recovery of five FWAs in spiked commercial samples was between 42 and 95% and RSD (n = 3) ranging from 2 to 11%. The method was finally applied to commercial samples, showing that two stilbene-type disulfonates were predominant FWAs detected in napkin and infant cloth samples.

  2. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    NASA Technical Reports Server (NTRS)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  3. Comprehensive analysis of pharmaceutical products using simultaneous mixed-mode (ion-exchange/reversed-phase) and hydrophilic interaction liquid chromatography.

    PubMed

    Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett

    2014-08-01

    Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Simultaneous determination of Cr(iii) and Cr(vi) using reversed-phased ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Wolf, R.E.; Morrison, J.M.; Goldhaber, M.B.

    2007-01-01

    A method for the simultaneous determination of Cr(iii) and Cr(vi) species in waters, soil leachates and synthetic bio-fluids is described. The method uses reversed-phase ion-pairing liquid chromatography to separate the chromium species and a dynamic reaction cell (DRC??) equipped ICP-MS for detection of chromium. Separation of the chromium species is carried out in less than 2 min. Cr(iii) is complexed with ethylenediaminetetraacetic acid (EDTA) prior to separation by mixing samples with the mobile phase containing 2.0 mM tetrabutylammonium hydroxide (TBAOH), 0.5 mM EDTA (dipotassium salt), and 5% (vol/vol) methanol, adjusted to pH 7.6. The interfering 40Ar 12C+ background peak at mass 52 was reduced by over four orders of magnitude to less than 200 cps by using 0.65 mL min-1 ammonia as a reaction gas and an RPq setting on the DRC of 0.75. Method detection limits (MDLs) of 0.09 ??g L-1 for Cr(iii) and 0.06 ??g L-1 for Cr(vi) were obtained based on peak areas at mass 52 for 50 ??L injections of low level spikes. Reproducibility at 2 ??g L-1 was 3% RSD for 5 replicate injections. The tolerance of the method to various levels of common cations and anions found in natural waters and to matrix constituents found in soil leachates and simulated gastric and lung fluids was tested by performing spike recovery calculations for a variety of samples. ?? The Royal Society of Chemistry.

  5. Comparison of ion-pair chromatography and capillary zone electrophoresis for the assay of organic acids as markers of abnormal metabolism.

    PubMed

    Wang, Shu-Ping; Liao, Chiou-Shyi

    2004-10-08

    The abnormal organic acids in urine are closely related with physiological metabolism. To determinate the low-molecular-mass metabolites in human biological fluids, although there were some previous reports by both of capillary electrophoresis and ion-exchange high-performance liquid chromatography, but it was rarely found by reverse phase of liquid chromatography using ion pair reagent. The objective of this study was aimed to suggest and compare two methods, an additional chromatographic method-ion-pair chromatography (IPC) and a sharp capillary zone electrophoresis (CZE), to determinate organic acids, acting as the abnormal metabolic markers, namely uric acid, orotic acid, pyruvic acid, alpha-ketoglutaric acid, fumaric acid, and hippuric acid. The proposed method of IPC possessed both the extreme stability for column and the good results of reproducibility, linearity and detection limit. The optimum mobile phase was 22% methanol and 10 mM tetra-n-butyl ammonium hydrogen sulfate (pH 4) by gradient elution. As well as the optimum condition of CZE was 5% acetonitrile and 0.5 mM CTAB in phosphate buffer. From the results, CZE showed better recovery and sharp lucid electropherogram. Finally, the two proposed analytical methods were applied to assay human urine with direct and spiked analysis. CZE showed good potency to overcome the sample-to sample variation with standard deviation less than 10%. By comparison results of urinary spiked analysis between IPC and CZE by statistical paired t-test, the results were evaluated no significant difference under P < 0.05. The quantitative linearity of both methods was fitted in application of clinical biological analysis even with 50-fold dilution.

  6. Analysis of a variety of inorganic and organic additives in food products by ion-pairing liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    Kaufmann, Anton; Widmer, Mirjam; Maden, Kathryn; Butcher, Patrick; Walker, Stephan

    2018-03-05

    A reversed-phase ion-pairing chromatographic method was developed for the detection and quantification of inorganic and organic anionic food additives. A single-stage high-resolution mass spectrometer (orbitrap ion trap, Orbitrap) was used to detect the accurate masses of the unfragmented analyte ions. The developed ion-pairing chromatography method was based on a dibutylamine/hexafluoro-2-propanol buffer. Dibutylamine can be charged to serve as a chromatographic ion-pairing agent. This ensures sufficient retention of inorganic and organic anions. Yet, unlike quaternary amines, it can be de-charged in the electrospray to prevent the formation of neutral analyte ion-pairing agent adducts. This process is significantly facilitated by the added hexafluoro-2-propanol. This approach permits the sensitive detection and quantification of additives like nitrate and mono-, di-, and triphosphate as well as citric acid, a number of artificial sweeteners like cyclamate and aspartame, flavor enhancers like glutamate, and preservatives like sorbic acid. This is a major advantage, since the currently used analytical methods as utilized in food safety laboratories are only capable in monitoring a few compounds or a particular category of food additives. Graphical abstract Deptotonation of ion pair agent in the electrospray interface.

  7. Applications of the solvation parameter model in reversed-phase liquid chromatography.

    PubMed

    Poole, Colin F; Lenca, Nicole

    2017-02-24

    The solvation parameter model is widely used to provide insight into the retention mechanism in reversed-phase liquid chromatography, for column characterization, and in the development of surrogate chromatographic models for biopartitioning processes. The properties of the separation system are described by five system constants representing all possible intermolecular interactions for neutral molecules. The general model can be extended to include ions and enantiomers by adding new descriptors to encode the specific properties of these compounds. System maps provide a comprehensive overview of the separation system as a function of mobile phase composition and/or temperature for method development. The solvation parameter model has been applied to gradient elution separations but here theory and practice suggest a cautious approach since the interpretation of system and compound properties derived from its use are approximate. A growing application of the solvation parameter model in reversed-phase liquid chromatography is the screening of surrogate chromatographic systems for estimating biopartitioning properties. Throughout the discussion of the above topics success as well as known and likely deficiencies of the solvation parameter model are described with an emphasis on the role of the heterogeneous properties of the interphase region on the interpretation and understanding of the general retention mechanism in reversed-phase liquid chromatography for porous chemically bonded sorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics.

    PubMed

    Valeja, Santosh G; Xiu, Lichen; Gregorich, Zachery R; Guner, Huseyin; Jin, Song; Ge, Ying

    2015-01-01

    To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.

  9. Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC.

    PubMed

    Nakajima, Kazuki; Kitazume, Shinobu; Angata, Takashi; Fujinawa, Reiko; Ohtsubo, Kazuaki; Miyoshi, Eiji; Taniguchi, Naoyuki

    2010-07-01

    Nucleotide sugars are important in determining cell surface glycoprotein glycosylation, which can modulate cellular properties such as growth and arrest. We have developed a conventional HPLC method for simultaneous determination of nucleotide sugars. A mixture of nucleotide sugars (CMP-NeuAc, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc, GDP-Man, GDP-Fuc and UDP-GlcUA) and relevant nucleotides were perfectly separated in an optimized ion-pair reversed-phase mode using Inertsil ODS-4 and ODS-3 columns. The newly developed method enabled us to determine the nucleotide sugars in cellular extracts from 1 x 10(6) cells in a single run. We applied this method to characterize nucleotide sugar levels in breast and pancreatic cancer cell lines and revealed that the abundance of UDP-GlcNAc, UDP-GalNAc, UDP-GlcUA and GDP-Fuc were a cell-type-specific feature. To determine the physiological significance of changes in nucleotide sugar levels, we analyzed their changes by glucose deprivation and found that the determination of nucleotide sugar levels provided us with valuable information with respect to studying the overview of cellular glycosylation status.

  10. Instrumentation: Ion Chromatography.

    ERIC Educational Resources Information Center

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  11. Separation of Chloroplast Pigments Using Reverse Phase Chromatography.

    ERIC Educational Resources Information Center

    Reese, R. Neil

    1997-01-01

    Presents a protocol that uses reverse phase chromatography for the separation of chloroplast pigments. Provides a simple and relatively safe procedure for use in teaching laboratories. Discusses pigment extraction, chromatography, results, and advantages of the process. (JRH)

  12. Speciation of As(III) and As(V) in water and sediment using reverse-phase ion-pair high-performance liquid chromatography-neutron activation analysis (HPLC-NAA).

    PubMed

    Tulasi, Delali; Adotey, Dennis; Affum, Andrews; Carboo, Derick; Serfor-Armah, Yaw

    2013-10-01

    Total As content and the As species distribution in water and sediments from the Kwabrafo stream, a major water body draining the Obuasi gold mining community in southwestern Ghana, have been investigated. Total As content was determined by instrumental neutron activation analysis (INAA). Ion-pair reverse phase high-performance liquid chromatography-neutron activation analysis (HPLC-NAA) was used for speciation of As species. Solid phase extraction with phosphate buffer was used to extract soluble As species from lyophilized sediment. The mass balance after phosphate extraction of soluble As species in sediment varied from 89 to 96 %. Compositionally appropriate reference material International Atomic Energy Agency (IAEA)-Lake Sediment (SL)-1 was used to check the validity of INAA method for total As determination. The measured values are in good agreement with the IAEA recommended value and also within the 95 % confidence interval. The accuracy of the measurement in terms of relative deviation from the IAEA recommended value was ±0.83 %. "In-house" prepared As(III) and As(V) standards were used to validate the HPLC-INAA method used for the As species determination. Total As concentration in the water samples ranged from 1.15 to 9.20 mg/L. As(III) species in water varied from 0.13 to 0.7 mg/L, while As(V) species varied from 0.79 to 3.85 mg/L. Total As content in sediment ranged from 2,134 to 3,596 mg/kg dry mass. The levels of As(III) and As(V) species in the sediment ranges from 138 to 506 mg/kg dry mass and 156 to 385 mg/kg dry mass, respectively.

  13. Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction for determining acidic herbicides by gas chromatography/mass spectrometry.

    PubMed

    Wu, Jingming; Lee, Hian Kee

    2006-10-15

    Injection port derivatization following ion-pair hollow fiber-protected liquid-phase microextraction (LPME) for the trace determination of acidic herbicides (2,4-dichlorobenzoic acid, 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy)propionic acid, 3,5-dichlorobenzoic acid, 2-(2,4,5-trichlorophenoxy)propionic acid) in aqueous samples by gas chromatography/mass spectrometry (GC/MS) was developed. Prior to GC injection port derivatization, acidic herbicides were converted into their ion-pair complexes with tetrabutylammonium chloride in aqueous samples and then extracted by 1-octanol impregnated in the hollow fiber. Upon injection, ion pairs of acidic herbicides were quantitatively derivatized to their butyl esters in the GC injection port. Thus, several parameters related to the derivatization process (i.e., injection temperature, purge-off time) were evaluated, and main parameters affecting the hollow fiber-protected LPME procedure such as extraction organic solvent, ion-pair reagent type, pH of aqueous medium, concentration of ion-pair reagent, sodium chloride concentration added to the aqueous medium, stirring speed, and extraction time profile, optimized. At the selected extraction and derivatization conditions, no matrix effects were observed. This method proved good repeatability (RSDs <12.3%, n = 6) and good linearity (r2 > or = 0.9939) for spiked deionized water samples for five analytes. The limits of detection were in the range of 0.51-13.7 ng x L(-1) (S/N =3) under GC/MS selected ion monitoring mode. The results demonstrated that injection port derivatization following ion-pair hollow fiber-protected LPME was a simple, rapid, and accurate method for the determination of trace acidic herbicides from aqueous samples. In addition, this method proved to be environmentally friendly since it completely avoided open derivatization with potentially hazardous reagents.

  14. Retention modeling under organic modifier gradient conditions in ion-pair reversed-phase chromatography. Application to the separation of a set of underivatized amino acids.

    PubMed

    Pappa-Louisi, A; Agrafiotou, P; Papachristos, K

    2010-07-01

    The combined effect of the ion-pairing reagent concentration, C(ipr), and organic modifier content, phi, on the retention under phi-gradient conditions at different constant C(ipr) was treated in this study by using two approaches. In the first approach, the prediction of the retention time of a sample solute is based on a direct fitting procedure of a proper retention model to 3-D phi-gradient retention data obtained under the same phi-linear variation but with different slope and time duration of the initial isocratic part and in the presence of various constant C(ipr) values in the eluent. The second approach is based on a retention model describing the combined effect of C(ipr) and phi on the retention of solutes in isocratic mode and consequently analyzes isocratic data obtained in mobile phases containing different C(ipr) values. The effectiveness of the above approaches was tested in the retention prediction of a mixture of 16 underivatized amino acids using mobile phases containing acetonitrile as organic modifier and sodium dodecyl sulfate as ion-pairing reagent. From these approaches, only the first one gives satisfactory predictions and can be successfully used in optimization of ion-pair chromatographic separations under gradient conditions. The failure of the second approach to predict the retention of solutes in the gradient elution mode in the presence of different C(ipr) values was attributed to slow changes in the distribution equilibrium of ion-pairing reagents caused by phi-variation.

  15. Ion-pair in-tube solid-phase microextraction and capillary liquid chromatography using a titania-based column: application to the specific lauralkonium chloride determination in water.

    PubMed

    Prieto-Blanco, M C; Moliner-Martínez, Y; López-Mahía, P; Campíns-Falcó, P

    2012-07-27

    A quick, miniaturized and on-line method has been developed for the determination in water of the predominant homologue of benzalkonium chloride, dodecyl dimethyl benzyl ammonium chloride or lauralkonium chloride (C(12)-BAK). The method is based on the formation of an ion-pair in both in-tube solid-phase microextraction (IT-SPME) and capillary liquid chromatography. The IT-SPME optimization required the study of the length and nature of the stationary phase of capillary and the processed sample volume. Because to the surfactant character of the analyte both, the extracting and replacing solvents, have played a decisive role in the IT-SPME optimized procedure. Conditioning the capillary with the mobile phase which contains the counter ion (acetate), using an organic additive (tetrabutylammonium chloride) added to the sample and a mixture water/methanol as replacing solvent (processed just before the valve is switched to the inject position), allowed to obtain good precision of the retention time and a narrow peak for C(12)-BAK. A reversed-phase capillary based TiO(2) column and a mobile phase containing ammonium acetate at pH 5.0 for controlling the interactions of cationic surfactant with titania surface were proposed. The optimized procedure provided adequate linearity, accuracy and precision at the concentrations interval of 1.5-300 μg L(-1) .The limit of detection (LOD) was 0.5 μg L(-1) using diode array detection (DAD). The applicability of proposed IT-SPME-capillary LC method has been assessed in several water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Copolymer-grafted silica phase from a cation-anion monomer pair for enhanced separation in reversed-phase liquid chromatography.

    PubMed

    Mallik, Abul K; Qiu, Hongdeng; Takafuji, Makoto; Ihara, Hirotaka

    2014-05-01

    This work reports a new imidazolium and L-alanine derived copolymer-grafted silica stationary phase for ready separation of complex isomers using high-performance liquid chromatography (HPLC). For this purpose, 1-allyl-3-octadecylimidazolium bromide ([AyImC18]Br) and N-acryloyl-L-alanine sodium salt ([AAL]Na) ionic liquids (IL) monomers were synthesized. Subsequently, the bromide counteranion was exchanged with the 2-(acrylamido)propanoate organic counteranion by reacting the [AyImC18]Br with excess [AAL]Na in water. The obtained IL cation-anion monomer pair was then copolymerized on mercaptopropyl-modified silica (Sil-MPS) via a surface-initiated radical chain-transfer reaction. The selective retention behaviors of polycyclic aromatic hydrocarbons (PAHs), including some positional isomers, steroids, and nucleobases were investigated using the newly obtained Sil-poly(ImC18-AAL), and octadecyl silylated silica (ODS) was used as the reference column. Interesting results were obtained for the separation of PAHs, steroids, and nucleobases with the new organic phase. The results showed that the Sil-poly(ImC18-AAL) presented multiple noncovalent interactions, including hydrophobic, π-π, carbonyl-π, and ion-dipole interactions for the separation of PAHs and dipolar compounds. Only pure water was sufficient as the mobile phase for the separation of the nucleobases. Ten nucleosides and bases were separated, using only water as the mobile phase, within a very short time using the Sil-poly(ImC18-AAL), which is otherwise difficult to achieve using conventional hydrophobic columns such as ODS. The combination of electrostatic and hydrophobic interactions are important for the effective separation of such basic compounds without the use of any organic additive as the eluent on the Sil-poly(ImC18-AAL) column.

  17. Purification of flavonoids from licorice using an off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method.

    PubMed

    Fan, Yunpeng; Fu, Yanhui; Fu, Qing; Cai, Jianfeng; Xin, Huaxia; Dai, Mei; Jin, Yu

    2016-07-01

    An orthogonal (71.9%) off-line preparative two-dimensional normal-phase liquid chromatography/reversed-phase liquid chromatography method coupled with effective sample pretreatment was developed for separation and purification of flavonoids from licorice. Most of the nonflavonoids were firstly removed using a self-made Click TE-Cys (60 μm) solid-phase extraction. In the first dimension, an industrial grade preparative chromatography was employed to purify the crude flavonoids. Click TE-Cys (10 μm) was selected as the stationary phase that provided an excellent separation with high reproducibility. Ethyl acetate/ethanol was selected as the mobile phase owing to their excellent solubility for flavonoids. Flavonoids co-eluted in the first dimension were selected for further purification using reversed-phase liquid chromatography. Multiple compounds could be isolated from one normal-phase fraction and some compounds with bad resolution in one-dimensional liquid chromatography could be prepared in this two-dimensional system owing to the orthogonal separation. Moreover, this two-dimensional liquid chromatography method was beneficial for the preparation of relatively trace flavonoid compounds, which were enriched in the first dimension and further purified in the second dimension. Totally, 24 flavonoid compounds with high purity were obtained. The results demonstrated that the off-line two-dimensional liquid chromatography method was effective for the preparative separation and purification of flavonoids from licorice. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. [Rapid determination of trace iodate using monolithic column ion-pair chromatography coupled with direct conductivity detection].

    PubMed

    Liu, Yuzhen; Yu, Hong; Li, Siwen

    2011-10-01

    A method was developed on a monolithic column for the fast determination of trace iodate (IO(3)- ) by ion-pair chromatography with direct conductivity detection. The analytes were separated using a mobile phase of tetrabutylammonium hydroxide (TBA)-phthalic acid-acetonitrile on a reversed-phase silica-based monolithic column. The effects of eluent, flow rate and column temperature on the retention of iodate were investigated. The optimized chromatographic conditions for the determination of the anion were as follows: 0. 25 mmol/L TBA-0. 18 mmol/L phthalic acid-3% acetonitrile (pH 5.5) as mobile phase, a flow rate of 4.0 mL/min and a column temperature of 30 degrees C. Under the optimal conditions, retention time of iodate was less than 0. 5 min and the baseline separation of iodate was achieved without any interference by other anions (Cl-, NO , SO4(2)-, I- ). The detection limit (S/N= 3) was 0.36 mg/L for IO(3)- . Relative standard deviation (RSD, n = 5) of chromatographic peak area and retention time were 0. 35% and 0. 28%, respectively. The proposed method was applied to the determination of trace iodate in iodized medicine. The spiked recovery of iodate was 96. 4%. The method is rapid, simple, accurate, reliable, and practical.

  19. Comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for analysis of toad skin.

    PubMed

    Li, Jia-Fu; Yan, Xia; Wu, Yun-Long; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun

    2017-04-15

    An analytical two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was constructed with a newly developed thermal evaporation assisted adsorption (TEAA) interface. This novel TEAA interface with heating temperature above solvent boiling point allowed fast removal of organic NPLC solvent and successfully solved the solvent incompatibility problem between NPLC and RPLC. The system achieved rapid on-line solvent exchange between the two dimensions within a short modulation time of 190 s and was applied in the analysis of an extract from the skin of Bufo bufo gargarizans. This is the first time to realize the on-line comprehensive analysis of a moderate polar natural product by coupling NPLC with reversed phase ultra-high performance liquid chromatography (UHPLC). To be highlighted, with the TEAA interface, the 2D NPLC × RPLC system provided excellent resolution and orthogonality (75.2%), when compared with that of 2D RPLC × RPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [High-performance liquid-liquid chromatography in beverage analysis].

    PubMed

    Bricout, J; Koziet, Y; de Carpentrie, B

    1978-01-01

    Liquid liquid chromatography was performed with columns packed with stationary phases chemically bonded to silica microparticules. These columns show a high efficiency and are used very easily. Flavouring compounds like aromatic aldehydes which have a low volatility were analyzed in brandy using a polar phase alkylnitrile. Sapid substances like amarogentin in Gentiana lutea or glyryrrhizin in Glycyrrhiza glabra were determined by reversed phase chromatography. Finally ionizable substances like synthetic dyes can be analyzed by paired ion chromatography witha non polar stationary phase.

  1. Polarity-based fractionation in proteomics: hydrophilic interaction vs reversed-phase liquid chromatography.

    PubMed

    Jafari, M; Mirzaie, M; Khodabandeh, M; Rezadoost, H; Ghassempour, A; Aboul-Enein, H Y

    2016-07-01

    During recent decades, hydrophilic interaction liquid chromatography (HILIC) ahs been introduced to fractionate or purify especially polar solutes such as peptides and proteins while reversed-phase liquid chromatography (RPLC) is also a common strategy. RPLC is also a common dimension in multidimensional chromatography. In this study, the potential of HILIC vs RPLC chromatography was compared for proteome mapping of human peripheral blood mononuclear cell extract. In HILIC a silica-based stationary phase and for RPLC a C18 column were applied. Then separated proteins were eluted to an ion trap mass spectrometry system. Our results showed that the HILIC leads to more proteins being identified in comparison to RPLC. Among the total 181 identified proteins, 56 and 38 proteins were fractionated specifically by HILIC and RPLC, respectively. In order to demonstrate this, the physicochemical properties of identified proteins such as polarity and hydrophobicity were considered. This analysis indicated that polarity may play a major role in the HILIC separation of proteins vs RPLC. Using gene ontology enrichment analysis, it was also observed that differences in physicochemical properties conform to the cellular compartment and biological features. Finally, this study highlighted the potential of HILIC and the great orthogonality of RPLC in gel-free proteomic studies. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Quantitative analysis of psilocybin and psilocin in psilocybe baeocystis (Singer and Smith) by high-performance liquid chromatography and by thin-layer chromatography.

    PubMed

    Beug, M W; Bigwood, J

    1981-03-27

    Rapid quantification of psilocybin and psilocin in extracts of wild mushrooms is accomplished by reversed-phase high-performance liquid chromatography with paired-ion reagents. Nine solvent systems and three solid supports are evaluated for their efficiency in separating psilocybin, psilocin and other components of crude mushroom extracts by thin-layer chromatography.

  3. Development of a perfusion reversed-phase high performance liquid chromatography method for the characterisation of maize products using multivariate analysis.

    PubMed

    Rodriguez-Nogales, J M; Garcia, M C; Marina, M L

    2006-02-03

    A perfusion reversed-phase high performance liquid chromatography (RP-HPLC) method has been designed to allow rapid (3.4 min) separations of maize proteins with high resolution. Several factors, such as extraction conditions, temperature, detection wavelength and type and concentration of ion-pairing agent were optimised. A fine optimisation of the gradient elution was also performed by applying experimental design. Commercial maize products for human consumption (flours, precocked flours, fried snacks and extruded snacks) were characterised for the first time by perfusion RP-HPLC and their chromatographic profiles allowed a differentiation among products relating the different technological process used for their preparation. Furthermore, applying discriminant analysis makes it possible to group the samples according with the technological process suffered by maize products, obtaining a good prediction in 92% of the samples.

  4. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors.

    PubMed

    Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E

    2015-11-01

    A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors.

    PubMed

    Zhao, Yong-Gang; Chen, Xiao-Hong; Yao, Shan-Shan; Pan, Sheng-Dong; Li, Xiao-Ping; Jin, Mi-Cong

    2012-01-01

    A reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the simultaneous determination of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in red wine. The effects of ion-suppressors, i.e., trifluoroacetic acid (TFA) and ammonium acetate (AmAc) on retention behavior of nine food additives in RP-HPLC separation were discussed in detail. The relationships between retention factors of solutes and volume percent of ion-suppressors in the mobile-phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, respectively. The results showed that the ion suppressors had not only an ion suppression effect, but also an organic modification effect on the acidic analytes. The baseline separation of nine food additives was completed by a gradient elution with acetonitrile-TFA(0.01%, v/v)-AmAc(2.5 mmol L(-1)) aqueous solution as the mobile phase. The recoveries were between 80.2 - 99.5% for all analytes with RSDs in the range of 1.5 - 8.9%. The linearities were in the range of 0.2 - 100.0 mg L(-1) with determination coefficients (r(2)) higher than 0.9991 for all analytes. The limits of quantification (LOQs) were between 0.53 - 0.99 mg L(-1). The applicability of the proposed method to detect and quantify food additives has been demonstrated in the analysis of 30 real samples.

  6. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase.

    PubMed

    Singer, David; Kuhlmann, Julia; Muschket, Matthias; Hoffmann, Ralf

    2010-08-01

    The separation of isomeric phosphorylated peptides is challenging and often impossible for multiphosphorylated isomers using chromatographic and capillary electrophoretic methods. In this study we investigated the separation of a set of single-, double-, and triple-phosphorylated peptides (corresponding to the human tau protein) by ion-pair reversed-phase chromatography (IP-RPC) and hydrophilic interaction chromatography (HILIC). In HILIC both hydroxyl and aminopropyl stationary phases were tested with aqueous acetonitrile in order to assess their separation efficiency. The hydroxyl phase separated the phosphopeptides very well from the unphosphorylated analogue, while on the aminopropyl phase even isomeric phosphopeptides attained baseline separation. Thus, up to seven phosphorylated versions of a given tau domain were separated. Furthermore, the low concentration of an acidic ammonium formate buffer allowed an online analysis with electrospray ionization tandem mass spectrometry (ESI-MS/MS) to be conducted, enabling peptide sequencing and identification of phosphorylation sites.

  7. Separation of amaranthine-type betacyanins by ion-pair high-speed countercurrent chromatography.

    PubMed

    Jerz, Gerold; Gebers, Nadine; Szot, Dominika; Szaleniec, Maciej; Winterhalter, Peter; Wybraniec, Slawomir

    2014-05-30

    Betacyanins, red-violet plant pigments, were fractionated by ion-pair high-speed countercurrent chromatography (IP-HSCCC) from leaves extract of Iresine lindenii Van Houtte, an ornamental plant of the family Amaranthaceae. An HSCCC solvent system consisting of TBME-1-BuOH-ACN-H2O (1:3:1:5, v/v/v/v) was applied using ion-pair forming heptafluorobutyric acid (HFBA). Significantly different elution profiles of betacyanin diastereomeric pairs (derivatives based on betanidin and isobetanidin) observed in the HSCCC in comparison to HPLC systems indicate a complementarity of both techniques' fractionation capabilities. The numerous diastereomeric pairs can be selectively separated from each other using the HSCCC system simplifying the pigment purification process. Apart from the three well known highly abundant pigments (amaranthine, betanin and iresinin I) together with their isoforms, three new acylated (feruloylated and sinapoylated) betacyanins as well as known pigment hylocerenin (previously isolated from cacti fruits) were characterized in the plant for the first time and they are new for the whole Amaranthaceae family. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Advances in silver ion chromatography for the analysis of fatty acids and triacylglycerols-2001 to 2011.

    PubMed

    Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2012-01-01

    An effort is made to critically present the achievements in silver ion chromatography during the last decade. Novelties in columns, mobile-phase compositions and detectors are described. Recent applications of silver ion chromatography in the analysis of fatty acids and triacylglycerols are presented while stressing novel analytical strategies or new objects. The tendencies in the application of the method in complementary ways with reversed-phase chromatography, chiral chromatography and, especially, mass detection are outlined.

  9. Reversed-phase high-performance liquid chromatography of unsubstituted aminobenzoic acids

    USGS Publications Warehouse

    Abidi, S.L.

    1989-01-01

    High-performance liquid chromatographic (HPLC) characteristics of three position isomers of aminobenzoic acids (potential metabolites of important anesthetic drugs), were delineated with respect to their interactions with various mobile phases and stationary phases. HPLC with five hydrocarbonaceous phase, I?-cyclodextrin silica (CDS), macrophase MP-1 polymer (MP), macroporous polystyrene/divinylbenzene (MPD), octadecylsilica (ODS), and propylphenylsilica (PPS), yielded results explicable in terms of substituent effects derived from the bifunctional amino- and carboxy groups. For cases where mobile phases contained sulfonates or quaternary ammonium salts both having longer chain alkyls, retention of analytes on all but CDS appeared to proceed predominantly via an ion-pairing mechanism. The extent of the corresponding counter-ion effects decreased in the order: MPD > ODS > PPS > MP, while the analyte retention order paralleled thier pH2 values. On the other hand, an inverse relationship between the magnitude of capacity factors (k') and pK1 values of the title compounds was observed in experiments that produced retention data incompatible with ion-pair interaction rationales. The unique HPLC results obtained with the CDS phase are compared with those obtained with other phases.

  10. Separation and purification of hydrolyzable tannin from Geranium wilfordii Maxim by reversed-phase and normal-phase high-speed counter-current chromatography.

    PubMed

    Liu, Dan; Su, Zhiguo; Wang, Changhai; Gu, Ming; Xing, Siliang

    2010-08-01

    Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been separated and purified in one-step by both reversed-phase and normal-phase high-speed counter-current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (1:10:0.2:0.2:20) by reversed-phase high-speed counter-current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n-hexane-ethyl acetate-methanol-acetic acid-water (0.2:10:2:1:5) by normal-phase high-speed counter-current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed-phase and normal-phase high-speed counter-current chromatography to separate high-polarity of low-molecular-weight substances.

  11. Chromatographic retention prediction and octanol-water partition coefficient determination of monobasic weak acidic compounds in ion-suppression reversed-phase liquid chromatography using acids as ion-suppressors.

    PubMed

    Ming, Xin; Han, Shu-ying; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen

    2009-08-15

    Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (K" ow) was proposed to calibrate the octanol-water partition coefficient (K(ow)) of these weak acidic compounds, which resulted in a better linear correlation with log k(w), the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This log K" ow-log k w linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring K(ow) data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.

  12. Purification of lignans from Fructus Arctii using off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography.

    PubMed

    Yang, Bichao; Xin, Huaxia; Wang, Feier; Cai, Jianfeng; Liu, Yanfang; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-01

    As a common traditional Chinese medicine, Fructus Arctii has important clinical medical values. Its main components are lignans, which are difficult to separate and analyze because of the complex composition, similar chemical structures, and close properties. In this study, an off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method, as well as an effective sample pretreatment method based on hydrophilic interaction chromatography material, was developed to enrich the minor lignan fractions and obtain high-purity compounds. In total, 12 high-purity compounds were isolated from Fructus Arctii. Their structures were identified by using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, which showed that all were lignans and that most of them were isomers. The results demonstrated the effective off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method for the purification of lignans from Fructus Arctii. The separation protocol established here will be beneficial for the separation of complex samples from other kinds of natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanomaterials as stationary phases and supports in liquid chromatography.

    PubMed

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation and characterization of a new microwave immobilized poly(2-phenylpropyl)methylsiloxane stationary phase for reversed phase high-performance liquid chromatography.

    PubMed

    Begnini, Fernanda R; Jardim, Isabel C S F

    2013-07-05

    A new reversed phase high-performance liquid chromatography (RP-HPLC) stationary phase was prepared and its chromatographic and physical-chemical properties were evaluated. The new stationary phase was prepared with a silica support and poly(2-phenylpropyl)methylsiloxane (PPPMS), a phenyl type polysiloxane copolymer. Since this is a new copolymer and there is little information in the literature, it was submitted to physical-chemical characterization by infrared spectroscopy and thermogravimetry. The chromatographic phase was prepared through sorption and microwave immobilization of the copolymer onto a silica support. The chromatographic performance was evaluated by employing test procedures suggested by Engelhardt and Jungheim, Tanaka and co-workers, Neue, and Szabó and Csató. These test mixtures provide information about the hydrophobic selectivity, silanophilic activity, ion-exchange capacity, shape selectivity and interaction with polar analytes of the new Si-PPPMS reversed phase. Stability tests were developed using accelerated aging tests under both basic and acidic conditions to provide information about the lifetime of the packed columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Separation of polar betalain pigments from cacti fruits of Hylocereus polyrhizus by ion-pair high-speed countercurrent chromatography.

    PubMed

    Wybraniec, Sławomir; Stalica, Paweł; Jerz, Gerold; Klose, Bettina; Gebers, Nadine; Winterhalter, Peter; Spórna, Aneta; Szaleniec, Maciej; Mizrahi, Yosef

    2009-10-09

    Polar betacyanin pigments together with betaxanthins from ripe cactus fruits of Hylocereus polyrhizus (Cactaceae) were fractionated by means of preparative ion-pair high-speed countercurrent chromatography (IP-HSCCC) also using the elution-extrusion (EE) approach for a complete pigment recovery. HSCCC separations were operated in the classical 'head-to-tail' mode with an aqueous mobile phase. Different CCC solvent systems were evaluated in respect of influence and effectiveness of fractionation capabilities to separate the occurring pigment profile of H. polyrhizus. For that reason, the additions of two different volatile ion-pair forming perfluorinated carboxylic acids (PFCA) were investigated. For a direct comparison, five samples of Hylocereus pigment extract were run on preparative scale (900 mg) in 1-butanol-acetonitrile-aqueous TFA 0.7% (5:1:6, v/v/v) and the modified systems tert.-butyl methyl ether-1-butanol-acetonitrile-aqueous PFCA (2:2:1:5, v/v/v/v) using 0.7% and 1.0% trifluoroacetic acid (TFA) or heptafluorobutyric acid (HFBA) in the aqueous phase, respectively. The chemical affinity to the organic stationary CCC solvent phases and in consequence the retention of these highly polar betalain pigments was significantly increased by the use of the more lipophilic fluorinated ion-pair reagent HFBA instead of TFA. The HFBA additions separated more effectively the typical cacti pigments phyllocactin and hylocerenin from betanin as well as their iso-forms. Unfortunately, similar K(D) ratios and selectivity factors alpha around 1.0-1.1 in all tested solvent systems proved that the corresponding diastereomers, 15S-type pigments cannot be resolved from the 15R-epimers (iso-forms). Surprisingly, additions of the stronger ion-pair reagent (HFBA) resulted in a partial separation of hylocerenin from phyllocactin which were not resolved in the other solvent systems. The pigments were detected by means of HPLC-DAD and HPLC-electrospray ionization-MS using also

  16. Proanthocyanidins in wild sea buckthorn (Hippophaë rhamnoides) berries analyzed by reversed-phase, normal-phase, and hydrophilic interaction liquid chromatography with UV and MS detection.

    PubMed

    Kallio, Heikki; Yang, Wei; Liu, Pengzhan; Yang, Baoru

    2014-08-06

    A rapid and sensitive method for profiling of proanthocyanidins (PAs) of sea buckthorn (Hippophaë rhamnoides) berries was established based on aqueous, acidified acetone extraction. The extract was purified by Sephadex column chromatography and analyzed using reversed-phase, normal-phase, and hydrophilic interaction liquid chromatography (HILIC). Negative ion electrospray ionization mass spectrometry (ESI-MS) in single ion recording (SIR) and full scan modes combined with UV detection were used to define the combinations and ratios of PA oligomer classes. PAs with degree of polymerization from 2 to 11 were detected by HILIC-ESI-MS. Quantification of dimeric, trimeric, and tetrameric PAs was carried out with ESI-MS-SIR, and their molar proportions were 40, 40, and 20%, respectively. Only B-type PAs were found, and (epi)gallocatechins were the main monomeric units. More than 60 combinations of (epi)catechins and (epi)gallocatechins of proanthocyanidin dimers and trimers were found. A majority of the PAs were shown to be higher polymers based on the HILIC-UV analysis.

  17. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY REVERSE PHASE CHROMATOGRAPHY

    EPA Science Inventory

    The method for determination of T-MAZ ethoxylated sorbitan fatty acid esters is described. This work demonstrates that with a less retentive C8 alkyl bonded phase packing, reverse phase chromatography can be used to analyze nonionic polymer mixtures with a molecular weight range ...

  18. Analysis of fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up and ion-pair LC with diode array UV detection

    USDA-ARS?s Scientific Manuscript database

    Fusaric acid is a phytotoxin and mycotoxin occasionally found in maize contaminated with Fusarium fungi. A selective sample clean-up procedure was developed to detect fusaric acid in maize using molecularly imprinted solid phase extraction (MISPE) clean-up coupled with ion-pair liquid chromatography...

  19. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    PubMed

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Simultaneous determination of aliskiren and hydrochlorothiazide in tablets and spiked human urine by ion-pair liquid chromatography.

    PubMed

    Belal, F; Walash, M; El-Enany, N; Zayed, S

    2013-12-01

    An alternative method for analysis of aliskiren (ALI) and hydrochlorothiazde (HCT) in combined dosage forms by ion-pair reversed phase high performance liquid chromatography was developed and validated. The pharmaceutical preparations were analyzed using a C18 column (250 mm x 4.6 mm, 3 microm) with a mobile phase consisting of 25% methanol, 50% sodium monobasic phosphate aqueous solution containing 6 mM tetrabutylammonium bromide and 25% water at pH 7.2. Isocratic analysis was performed at a flow rate of 1 mL/min and a column temperature of 30 degrees C under direct UV detection at 210 nm. Paracetamol was used as internal standard. The validation was performed according to the ICH guidelines. The proposed method was linear over the concentration range of 0.250 to 60 and 0.1 to 10 microg/mL for ALI and HCT, respectively. The limits of detection and quantitation (LOD and LOQ) were 0.075 and 0.198 microg/mL, respectively, for ALI and 0.04 and 0.062 microg/mL, respectively, for HCT. The method proved to be specific, sensitive, precise and accurate with mean recovery values of 101.1 +/- 0.32% and 100.9 +/- 0.41% for ALI and HCT, respectively. The method robustness was evaluated by means of an experimental design. The proposed method was applied successfully to spiked human urine samples with mean recoveries of 98.8 +/- 0.36% and 98.1 +/- 0.21% for ALI and HCT, respectively.

  1. Highly sensitive and simple liquid chromatography assay with ion-pairing extraction and visible detection for quantification of gold from nanoparticles.

    PubMed

    Pallotta, Arnaud; Philippe, Valentin; Boudier, Ariane; Leroy, Pierre; Clarot, Igor

    2018-03-01

    A simple isocratic HPLC method using visible detection was developed and validated for the quantification of gold in nanoparticles (AuNP). After a first step of oxidation of nanoparticles, an ion-pair between tetrachloroaurate anion and the cationic dye Rhodamine B was formed and extracted from the aqueous media with the help of an organic solvent. The corresponding Rhodamine B was finally quantified by reversed phase liquid chromatography using a Nucleosil C18 (150mm × 4.6mm, 3µm) column and with a mobile phase containing acetonitrile and 0.1% trifluoroacetic acid aqueous solution (25/75, V/V) at 1.0mLmin -1. and at a wavelength of 555nm. The method was validated using methodology described by the International Conference on Harmonization and was shown to be specific, precise (RSD < 11%), accurate and linear in the range of 0.1 - 30.0µM with a lower limit of quantification (LLOQ) of 0.1µM. This method was in a first time applied to AuNP quality control after their synthesis. In a second time, the absence of gold leakage (either as AuNP or gold salt form) from nanostructured multilayered polyelectrolyte films under shear stress was assessed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography.

    PubMed

    Hau Fung Cheung, Rodney; Morrison, Paul D; Small, Darryl M; Marriott, Philip J

    2008-12-05

    A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).

  3. Molecular differences between deuterated and protonated polystyrenes using reversed-phase high-performance liquid chromatography.

    PubMed

    Kayillo, Sindy; Gray, Michael J; Shalliker, R Andrew; Dennis, Gary R

    2005-05-06

    Isotopic substitution is a technique used to highlight particular bonds within a molecule for kinetic, spectroscopic and structure analysis. It is presumed that although some properties such as stretching frequencies will not be the same for substituted analogues, the chemical interactions will not vary appreciably as a function of labelling. Reversed-phase liquid chromatography has been used to demonstrate that there are significant differences between the chromatographic behaviour of a sequence of deuterated and protonated oligomeric polystyrenes. Two-dimensional reversed-phase liquid chromatography was used to show that even the diasteromers of the oligomers (n = 5) have retention mechanisms that are dependent on the subtle changes to the molecular conformation and electronic structure, which are a consequence of deuteration.

  4. Gaz Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs

    NASA Astrophysics Data System (ADS)

    Habka, Sana; Brenner, Valerie; Mons, Michel; Gloaguen, Eric

    2016-06-01

    Cations and anions, in solution, tend to pair up forming ion pairs. They play a crucial role in many fundamental processes in ion-concentrated solutions and living organisms. Despite their importance and vast applications in physics, chemistry and biochemistry, they remain difficult to characterize namely because of the coexistence of several types of pairing in solution. However, an interesting alternative consists in applying highly selective gas phase spectroscopy which can offer new insights on these neutral ion pairs. Our study consists in characterizing contact ion pairs (CIPs) in isolated model systems (M+, Ph-(CH2)n-COO- with M=Li, Na, K, Rb, Cs, and n=1-3), to determine their spectral signatures and compare them to ion pairs in solution. We have used laser desorption to vaporize a solid tablet containing the desired salt. Structural information for each system was obtained by mass-selective, UV and IR laser spectroscopy combined with high level quantum chemistry calculations1. Evidence of the presence of neutral CIPs was found by scanning the π-π* transition of the phenyl ring using resonant two-photon ionization (R2PI). Then, conformational selective IR/UV double resonance spectra were recorded in the CO2- stretch region for each conformation detected. The good agreement between theoretical data obtained at the BSSE-corrected-fullCCSD(T)/dhf-TZVPP//B97-D3/dhf-TZVPP level and experimental IR spectra led us to assign the 3D structure for each ion pair formed. Spectral signatures of (M+, Ph-CH2-COO-) pairs, were assigned to a bidentate CIPs between the alkali cation and the carboxylate group. In the case of (Li+, Ph-(CH2)3-COO-) pairs, the presence of a flexible side chain promotes a cation-π interaction leading to a tridentate O-O-π structure with its unique IR and UV signatures. IR spectra obtained on isolated CIPs were found very much alike the ones published on lithium and sodium acetate in solution2. However, in the case of sodium acetate, solution

  5. Perfluorinated acids as ion-pairing agents in the determination of monoamine transmitters and some prominent metabolites in rat brain by high-performance liquid chromatography with amperometric detection.

    PubMed

    Patthy, M; Gyenge, R

    1988-09-30

    The behaviour of trifluoroacetate and heptafluorobutyrate as pairing ions for the reversed-phase ion-pair separation of monoamine transmitters and related metabolites was studied. The performance of systems with the perfluorinated acids was compared with that of systems containing sodium octyl sulphonate and was found to be better in terms of peak resolution combined with total analysis time, day-to-day reproducibility and the time required for attaining initial chromatographic equilibrium. Rat brain samples were deproteinized in the acidified mobile phase, injected directly on to a high-performance liquid chromatographic column and quantitated using an amperometric detector. Sample run times were 6-8 min, at a relatively low flow-rate. The detection limits achieved are fairly uncommon with conventional bore columns. The two perfluorinated acids studied differ in the dominant mechanisms of ion-pair formation and show selectivity differences as a result.

  6. High Performance Liquid Chromatography of Some Analgesic Compounds: An Instrumental Analysis Experiment.

    ERIC Educational Resources Information Center

    Haddad, Paul; And Others

    1983-01-01

    Background information, procedures, and results are provided for an experiment demonstrating techniques of solvent selection, gradient elution, pH control, and ion-pairing in the analysis of an analgesic mixture using reversed-phase liquid chromatography on an octadecylsilane column. Although developed using sophisticated/expensive equipment, less…

  7. Quantitative analysis of triacylglycerol regioisomers in fats and oils using reversed-phase high-performance liquid chromatography and atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Fauconnot, Laëtitia; Hau, Jörg; Aeschlimann, Jean-Marc; Fay, Laurent-Bernard; Dionisi, Fabiola

    2004-01-01

    Positional distribution of fatty acyl chains of triacylglycerols (TGs) in vegetable oils and fats (palm oil, cocoa butter) and animal fats (beef, pork and chicken fats) was examined by reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to atmospheric pressure chemical ionization using a quadrupole mass spectrometer. Quantification of regioisomers was achieved for TGs containing two different fatty acyl chains (palmitic (P), stearic (S), oleic (O), and/or linoleic (L)). For seven pairs of 'AAB/ABA'-type TGs, namely PPS/PSP, PPO/POP, SSO/SOS, POO/OPO, SOO/OSO, PPL/PLP and LLS/LSL, calibration curves were established on the basis of the difference in relative abundances of the fragment ions produced by preferred losses of the fatty acid from the 1/3-position compared to the 2-position. In practice the positional isomers AAB and ABA yield mass spectra showing a significant difference in relative abundance ratios of the ions AA(+) to AB(+). Statistical analysis of the validation data obtained from analysis of TG standards and spiked oils showed that, under repeatability conditions, least-squares regression can be used to establish calibration curves for all pairs. The regression models show linear behavior that allow the determination of the proportion of each regioisomer in an AAB/ABA pair, within a working range from 10 to 1000 microg/mL and a 95% confidence interval of +/-3% for three replicates. Copyright 2003 John Wiley & Sons, Ltd.

  8. Systematic Comparison of Reverse Phase and Hydrophilic Interaction Liquid Chromatography Platforms for the Analysis of N-linked Glycans

    PubMed Central

    Walker, S. Hunter; Carlisle, Brandon C.; Muddiman, David C.

    2013-01-01

    Due to the hydrophilic nature of glycans, reverse phase chromatography has not been widely used as a glycomic separation technique coupled to mass spectrometry. Other approaches such as hydrophilic interaction chromatography and porous graphitized carbon chromatography are often employed, though these strategies frequently suffer from decreased chromatographic resolution, long equilibration times, indefinite retention, and column bleed. Herein, it is shown that through an efficient hydrazone formation derivatization of N-linked glycans (∼4 hr of additional sample preparation time which is carried out in parallel), numerous experimental and practical advantages are gained when analyzing the glycans by online reverse phase chromatography. These benefits include an increased number of glycans detected, increased peak capacity of the separation, and the ability to analyze glycans on the identical liquid chromatography-mass spectrometry platform commonly used for proteomic analyses. The data presented show that separation of derivatized N-linked glycans by reverse phase chromatography significantly out-performs traditional separation of native or derivatized glycans by hydrophilic interaction chromatography. Furthermore, the movement to a more ubiquitous separation technique will afford numerous research groups the opportunity to analyze both proteomic and glycomic samples on the same platform with minimal time and physical change between experiments, increasing the efficiency of ‘multi-omic’ biological approaches. PMID:22954204

  9. Comparison of high-performance liquid chromatography separation of red wine anthocyanins on a mixed-mode ion-exchange reversed-phase and on a reversed-phase column.

    PubMed

    Vergara, Carola; Mardones, Claudia; Hermosín-Gutiérrez, Isidro; von Baer, Dietrich

    2010-09-03

    Anthocyanins, which confer the characteristic color to red wine, can be used as markers to classify wines according to the grape variety. It is a complex separation that requires very high chromatographic efficiency, especially in the case of aged red wines, due to the formation of pyranoanthocyanins. A coelution between these kinds of compounds can affect the R(ac/coum) ratio of aged wines, and might lead to false results when classifying the wine variety. In 2007, the use of a novel mixed-mode ion-exchange reversed-phase column was reported to separate anthocyanins extracted from grapes of Vitis labrusca with different selectivity than C-18 columns. In the present work, the separation of anthocyanins including pyranoanthocyanins in young and aged Cabernet Sauvignon wines and other varieties is evaluated. The most interesting contributions of this research are the different elution order and selectivity obtained for anthocyanins and pyranoanthocyanins (only formed in wine), compared with those observed in C-18 stationary phases. Also interesting is the separation of the polymeric fraction, which elutes as a clearly separated peak at the chromatogram's end. However, a comparison with a high efficiency C-18 column with the same dimensions and particle size demonstrated that the tested mixed-mode column shows broader peaks with a theoretical plate number below 8000, for malvidin-3-glucoside peak, while it can be up to 10 times higher for a high efficiency C-18 column, depending on the column manufacturer. Under the tested conditions, in mixed-mode phase, the analysis time is almost twice that of a C-18 column with the same dimensions and particle size. A mixed-mode phase with increased efficiency should provide an interesting perspective for separation of anthocyanins in wine, due to its improved selectivity, combined with a useful role in a second-dimension separation in preparative anthocyanin chromatography. 2010 Elsevier B.V. All rights reserved.

  10. APPLICATION OF A SPRAY DEPOSITION METHOD FOR REVERSED PHASE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    Four coal gasification wastewater samples were analyzed for nonvolatile and polar organics by liquid chromatography-mass spectrometry (LC/MS). Samples were separated on a reverse phase liquid chromatographic column using an aqueous solvent as the eluant. A special spray depositio...

  11. On-line comprehensive two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography for preparative isolation of Peucedanum praeruptorum.

    PubMed

    Wang, Xin-Yuan; Li, Jia-Fu; Jian, Ya-Mei; Wu, Zhen; Fang, Mei-Juan; Qiu, Ying-Kun

    2015-03-27

    A new on-line comprehensive preparative two-dimensional normal-phase liquid chromatography × reversed-phase liquid chromatography (2D NPLC × RPLC) system was developed for the separation of complicated natural products. It was based on the use of a silica gel packed medium-pressure column as the first dimension and an ODS preparative HPLC column as the second dimension. The two dimensions were connected with normal-phase (NP) and reversed-phase (RP) enrichment units, involving a newly developed airflow assisted adsorption (AAA) technique. The instrument operation and the performance of this NPLC × RPLC separation method were illustrated by gram-scale isolation of ethanol extract from the roots of Peucedanum praeruptorum. In total, 19 compounds with high purity were obtained via automated multi-step preparative separation in a short period of time using this system, and their structures were comprehensively characterized by ESI-MS, (1)H NMR, and (13)C NMR. Including two new compounds, five isomers in two groups with identical HPLC and TLC retention values were also obtained and identified by 1D NMR and 2D NMR. This is the first report of an NPLC × RPLC system successfully applied in an on-line preparative process. This system not only solved the interfacing problem of mobile-phase immiscibility caused by NP and RP separation, it also exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Feasibility of ion-pair/supercritical fluid extraction of an ionic compound--pseudoephedrine hydrochloride.

    PubMed

    Eckard, P R; Taylor, L T

    1997-02-01

    The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.

  13. ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH PRESSURE LIQUID CHROMATOGRAPHY/UV

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these py...

  14. Microwave-immobilized polybutadiene stationary phase for reversed-phase high-performance liquid chromatography.

    PubMed

    Lopes, Nilva P; Collins, Kenneth E; Jardim, Isabel C S F

    2004-03-19

    Polybutadiene (PBD) has been immobilized on high-performance liquid chromatography (HPLC) silica by microwave radiation at various power levels (52-663 W) and actuation times (3-60 min). Columns prepared from these reversed-phase HPLC materials, as well as from similar non-irradiated materials, were tested with standard sample mixtures and characterized by elemental analysis (%C) and infrared spectroscopy. A microwave irradiation of 20 min at 663 W gives a layer of immobilized PBD that presented good performance. Longer irradiation times give thicker immobilized layers having less favorable chromatographic properties.

  15. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation.

    PubMed

    Liang, Chao; Qiao, Jun-Qin; Lian, Hong-Zhen

    2017-12-15

    Reversed-phase liquid chromatography (RPLC) based octanol-water partition coefficient (logP) or distribution coefficient (logD) determination methods were revisited and assessed comprehensively. Classic isocratic and some gradient RPLC methods were conducted and evaluated for neutral, weak acid and basic compounds. Different lipophilicity indexes in logP or logD determination were discussed in detail, including the retention factor logk w corresponding to neat water as mobile phase extrapolated via linear solvent strength (LSS) model from isocratic runs and calculated with software from gradient runs, the chromatographic hydrophobicity index (CHI), apparent gradient capacity factor (k g ') and gradient retention time (t g ). Among the lipophilicity indexes discussed, logk w from whether isocratic or gradient elution methods best correlated with logP or logD. Therefore logk w is recommended as the preferred lipophilicity index for logP or logD determination. logk w easily calculated from methanol gradient runs might be the main candidate to replace logk w calculated from classic isocratic run as the ideal lipophilicity index. These revisited RPLC methods were not applicable for strongly ionized compounds that are hardly ion-suppressed. A previously reported imperfect ion-pair RPLC method was attempted and further explored for studying distribution coefficients (logD) of sulfonic acids that totally ionized in the mobile phase. Notably, experimental logD values of sulfonic acids were given for the first time. The IP-RPLC method provided a distinct way to explore logD values of ionized compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Micellar liquid chromatography

    NASA Astrophysics Data System (ADS)

    Basova, Elena M.; Ivanov, Vadim M.; Shpigun, Oleg A.

    1999-12-01

    Background and possibilities of practical applications of micellar liquid chromatography (MLC) are considered. Various retention models in MLC, the effects of the nature and concentration of surfactants and organic modifiers, pH, temperature and ionic strength on the MLC efficiency and selectivity are discussed. The advantages and limitations of MLC are demonstrated. The performance of MLC is critically evaluated in relationship to the reversed-phase HPLC and ion-pair chromatography. The potential of application of MLC for the analysis of pharmaceuticals including that in biological fluids and separation of inorganic anions, transition metal cations, metal chelates and heteropoly compounds is described. The bibliography includes 146 references.

  17. Extensive database of liquid phase diffusion coefficients of some frequently used test molecules in reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography.

    PubMed

    Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre

    2016-07-15

    Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Simultaneous determination of ascorbic acid and caffeine in commercial soft drinks using reversed-phase ultraperformance liquid chromatography.

    PubMed

    Turak, Fatma; Güzel, Remziye; Dinç, Erdal

    2017-04-01

    A new reversed-phase ultraperformance liquid chromatography method with a photodiode array detector was developed for the quantification of ascorbic acid (AA) and caffeine (CAF) in 11 different commercial drinks consisting of one energy drink and 10 ice tea drinks. Separation of the analyzed AA and CAF with an internal standard, caffeic acid, was performed on a Waters BEH C 18 column (100 mm × 2.1 mm, 1.7 μm i.d.), using a mobile phase consisting of acetonitrile and 0.2M H 3 PO 4 (11:89, v/v) with a flow rate of 0.25 mL/min and an injection volume of 1.0 μL. Calibration graphs for AA and CAF were computed from the peak area ratio of AA/internal standard and CAF/internal standard detected at 244.0 nm and 273.6 nm, respectively. The developed reversed-phase ultraperformance liquid chromatography method was validated by analyzing standard addition samples. The proposed reversed-phase ultraperformance liquid chromatography method gave us successful results for the quantitative analysis of commercial drinks containing AA and CAF substances. Copyright © 2016. Published by Elsevier B.V.

  19. Application of the zeta potential for stationary phase characterization in ion chromatography.

    PubMed

    Buszewski, Bogusław; Jaćkowska, Magdalena; Bocian, Szymon; Dziubakiewicz, Ewelina

    2013-01-01

    Two series of homemade stationary bonded phases for ion chromatography were investigated according to their zeta potential. One set of dendrimer anion exchanger was synthesized on the polymer support whereas the second material was prepared on the silica gel. The zeta potential data in water environment as well as buffered water solution were obtained. The influence of the length of anion-exchanger chains, the type of the support of the modified surface, and charge distribution on these data was investigated. Additionally, the zeta potential was correlated with retention factor of inorganic ions to describe their influence on the retention mechanism in ion chromatography. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sensitive determination of nitrophenol isomers by reverse-phase high-performance liquid chromatography in conjunction with liquid-liquid extraction

    USDA-ARS?s Scientific Manuscript database

    A method for the highly sensitive determination of 2-, 3- and 4- nitrophenols was developed using reverse-phase high-performance liquid chromatography (RP-HPLC) with a UV photodiode array detector. Using a reverse-phase column and 40% aqueous acetonitrile as an eluent (i.e. isocratic elution), the i...

  1. On-line comprehensive two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography for preparative isolation of toad venom.

    PubMed

    Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun

    2016-07-22

    An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. (PRESENT AT NCCU) ANALYSIS OF SELECTED PYRETHROID PESTICIDES USING REVERSE PHASE HIGH LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    This research was conducted in cooperation with EPA Region 4 in Athens, GA to develop a method to analyze selected pyrethroid pesticides using Reverse Phase-High Pressure Liquid Chromatography (HPLC). This HPLC method will aid researchers in separating and identifying these pyre...

  3. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    PubMed

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Determination of efavirenz in human dried blood spots by reversed-phase high-performance liquid chromatography with UV detection.

    PubMed

    Hoffman, Justin T; Rossi, Steven S; Espina-Quinto, Rowena; Letendre, Scott; Capparelli, Edmund V

    2013-04-01

    Previously published methods for determination of efavirenz (EFV) in human dried blood spots (DBS) use costly and complex liquid chromatography/mass spectrometry. We describe the validation and evaluation of a simple and inexpensive high-performance liquid chromatography method for EFV quantification in human DBS and dried plasma spots (DPS), using ultraviolet detection appropriate for resource-limited settings. One hundred microliters of heparinized whole blood or plasma were spotted onto blood collection cards, dried, punched, and eluted. Eluates are injected onto a C-18 reversed phase high-performance liquid chromatography column. EFV is separated isocratically using a potassium phosphate and acetonitrile mobile phase. Ultraviolet detection is at 245 nm. Quantitation is by use of external calibration standards. Following validation, the method was evaluated using whole blood and plasma from HIV-positive patients undergoing EFV therapy. Mean recovery of drug from DBS is 91.5%. The method is linear over the validated concentration range of 0.3125-20.0 μg/mL. A good correlation (Spearman r = 0.96) between paired plasma and DBS EFV concentrations from the clinical samples was observed, and hematocrit level was not found to be a significant determinant of the EFV DBS level. The mean observed C DBS/C plasma ratio was 0.68. A good correlation (Spearman r = 0.96) between paired plasma and DPS EFV concentrations from the clinical samples was observed. The mean percent deviation of DPS samples from plasma samples is 1.68%. Dried whole blood spot or dried plasma spot sampling is well suited for monitoring EFV therapy in resource-limited settings, particularly when high sensitivity is not essential.

  5. Using reversed phase high performance liquid chromatography to study the complexation of anthocyanins with β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Lapshova, M. S.; Deineka, L. A.

    2014-06-01

    It is shown by means of reversed phase high performance liquid chromatography (RP HPLC) with mobile phases containing additions of β-cyclodextrin that 5-glucosides of cyanidin and pelargonidin form stronger inclusion complexes than 3-glucosides; this is explained by the steric interference of the glucoside radical.

  6. Analysis of quaternary ammonium and phosphonium ionic liquids by reversed-phase high-performance liquid chromatography with charged aerosol detection and unified calibration.

    PubMed

    Stojanovic, Anja; Lämmerhofer, Michael; Kogelnig, Daniel; Schiesel, Simone; Sturm, Martin; Galanski, Markus; Krachler, Regina; Keppler, Bernhard K; Lindner, Wolfgang

    2008-10-31

    Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.

  7. Preparation, characterization and application of a reversed phase liquid chromatography/hydrophilic interaction chromatography mixed-mode C18-DTT stationary phase.

    PubMed

    Wang, Qing; Long, Yao; Yao, Lin; Xu, Li; Shi, Zhi-Guo; Xu, Lanying

    2016-01-01

    A mixed-mode chromatographic stationary phase, C18-DTT (dithiothreitol) silica (SiO2) was prepared through "thiol-ene" click chemistry. The obtained material was characterized by fourier transform infrared spectroscope, nitrogen adsorption analysis and contact angle analysis. Chromatographic performance of the C18-DTT was systemically evaluated by studying the effect of acetonitrile content, pH, buffer concentration of the mobile phase and column temperature. It was demonstrated that the novel stationary phase possessed reversed phase liquid chromatography (RPLC)/hydrophilic interaction liquid chromatography (HILIC) mixed-mode property. The stop-flow test revealed that C18-DTT exhibited excellent compatibility with 100% aqueous mobile phase. Additionally, the stability and column-to-column reproducibility of the C18-DTT material were satisfactory, with relative standard deviations of retention factor of the tested analytes (verapamil, fenbufen, guanine, tetrandrine and nicotinic acid) in the range of 1.82-3.72% and 0.85-1.93%, respectively. Finally, the application of C18-DTT column was demonstrated in the separation of non-steroidal anti-inflammatory drugs, aromatic carboxylic acids, alkaloids, nucleo-analytes and polycyclic aromatic hydrocarbons. It had great resolving power in the analysis of various compounds in HILIC and RPLC chromatographic conditions and was a promising RPLC/HILIC mixed-mode stationary phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Fast non-aqueous reversed-phase liquid chromatography separation of triacylglycerol regioisomers with isocratic mobile phase. Application to different oils and fats.

    PubMed

    Tamba Sompila, Arnaud W G; Héron, Sylvie; Hmida, Dorra; Tchapla, Alain

    2017-01-15

    The distribution of fatty acid species at the sn-1/3 position or the sn-2 position of triacylglycerols (TAGs) in natural fats and oils affects their physical and nutritional properties. In fats and oils, determining the presence of one or two regioisomers and the identification of structure, where they do have one, as well as their separation, became a problem of fundamental importance to solve. A variety of instrumental technics has been proposed, such as MS, chromatography-MS or pure chromatography. A number of studies deal with the optimization of the separation, but very often, they are expensive in time. In the present study, in order to decrease the analysis time while maintaining good chromatographic separation, we tested different monomeric and polymeric stationary phases and different chromatographic conditions (mobile phase composition and analysis temperature) using Non-Aqueous Reversed Phase Liquid Chromatography (NARP-LC). It was demonstrated that mixed polymeric stationary bonded silica with accessible terminal hydroxyl groups leads to very good separation for the pairs of TAGs regioisomers constituted by two saturated and one unsaturated fatty acid (with double bond number: from 1 to 6). A Nucleodur C18 ISIS percolated by isocratic mobile phase (acetonitrile/2-propanol) at 18°C leads to their separations in less than 15min. The difference of retention times between two regioisomers XYX and XXY are large enough to confirm, as application, the presence of POP, SOP, SOS and PLP and no PPO, SPO, SSO and PPL in Theobroma cacao butter. In the same way, this study respectively shows the presence of SOS, SOP and no SSO, PSO in Butyrospermum parkii butter, POP, SOP, SOS and no PPO, PSO and SSO in Carapa oil and finally POP and no PPO in Pistacia Lentiscus oil. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Development and validation of a reversed-phase ion-pair high-performance liquid chromatographic method for the determination of risedronate in pharmaceutical preparations.

    PubMed

    Kyriakides, Demetra; Panderi, Irene

    2007-02-12

    A stability indicating, reversed-phase ion-pair high-performance liquid chromatographic method was developed and validated for the determination of risedronate in pharmaceutical dosage forms. The determination was performed on a BDS C(18) analytical column (250 mm x 4.6 mm i.d., 5 microm particle size); the mobile phase consisted of 0.005 M tetrabutylammonium hydroxide and 0.005 M pyrophosphate sodium (pH 7.0) mixed with acetonitrile in a ratio (78:22, v/v) and pumped at a flow rate 1.00 mL min(-1). The ultraviolet (UV) detector was operated at 262 nm. The retention times of magnesium ascorbyl phosphate, which was used as internal standard and risedronate were 4.94 and 5.95 min, respectively. The calibration graph was ranged from 2.50 to 20.00 microg mL(-1), while detection and quantitation limits were found to be 0.48 and 1.61 microg mL(-1), respectively. The intra- and inter-day percentage relative standard deviations, %R.S.D., were less than 5.9%, while the relative percentage error, %E(r), was less than 0.4%. The method was applied to the quality control of commercial tablets and content uniformity test and proved to be suitable for rapid and reliable quality control.

  10. Improving methodological aspects of the analysis of five regulated haloacetic acids in water samples by solid-phase extraction, ion-pair liquid chromatography and electrospray tandem mass spectrometry.

    PubMed

    Prieto-Blanco, M C; Alpendurada, M F; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D; Machado, S; Gonçalves, C

    2012-05-30

    Haloacetic acids (HAAs) are organic pollutants originated from the drinking water disinfection process, which ought to be controlled and minimized. In this work a method for monitoring haloacetic acids (HAAs) in water samples is proposed, which can be used in quality control laboratories using the techniques most frequently available. Among its main advantages we may highlight its automated character, including minimal steps of sample preparation, and above all, its improved selectivity and sensitivity in the analysis of real samples. Five haloacetic acids (HAA5) were analyzed using solid-phase extraction (SPE) combined with ion-pair liquid chromatography and tandem mass spectrometry. For the optimization of the chromatographic separation, two amines (triethylamine, TEA and dibutylamine, DBA) as ion pair reagents were compared, and a better selectivity and sensitivity was obtained using DBA, especially for monohaloacetic acids. SPE conditions were optimized using different polymeric adsorbents. The electrospray source parameters were studied for maximum precursor ion accumulation, while the collision cell energy of the triple quadrupole mass spectrometer was adjusted for optimum fragmentation. Precursor ions detected were deprotonated, dimeric and decarboxylated ions. The major product ions formed were: ionized halogen atom (chloride and bromide) and decarboxylated ions. After enrichment of the HAAs in Lichrolut EN adsorbent, the limits of detection obtained by LC-MS/MS analysis (between 0.04 and 0.3 ng mL(-1)) were comparable to those obtained by GC-MS after derivatization. Linearity with good correlation coefficients was obtained over two orders of magnitude irrespective of the compound. Adequate recoveries were achieved (60-102%), and the repeatability and intermediate precision were in the range of 2.4-6.6% and 3.8-14.8%, respectively. In order to demonstrate the usefulness of the method for routine HAAs monitoring, different types of water samples were

  11. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides.

    PubMed

    Eeltink, Sebastiaan; Wouters, Sam; Dores-Sousa, José Luís; Svec, Frantisek

    2017-05-19

    This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Cyclohexylamine additives for enhanced peptide separations in reversed phase liquid chromatography.

    PubMed

    Cole, S R; Dorsey, J G

    1997-01-01

    While the choice of stationary phase, organic modifier, and gradient strength can have significant effects on biomolecule separations, mobile phase additives can also have a significant effect on the chromatographic selectivity, recovery, efficiency and resolution. Given the importance of stationary phase coverage, the beneficial, silanol-masking properties of amines, and the potential for selectivity modification through ion-pair interactions, cyclohexylamine was examined as a mobile phase additive and compared with triethylamine and trifluoroacetic acid. Greatly improved separation was possible when cyclohexylamine was used as compared with phosphate buffer, and cyclohexylamine did not require purification before use, while triethylamine required distillation before 'clean' chromatograms were obtained.

  13. Reversed-phase high-performance liquid chromatography of sulfur mustard in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghuveeran, C.D.; Malhotra, R.C.; Dangi, R.S.

    1993-01-01

    A reversed-phase high-performance liquid chromatography method for the detection and quantitation of sulfur mustard (HD) in water is described with detection at 200 nm. The detection based on the solubility of HD in water revealed that extremely low quantities of HD (4 to 5 mg/L) only are soluble. Experience shows that water is still the medium of choice for the analysis of HD in water and aqueous effluents in spite of the minor handicap of its half-life of ca. 4 minutes, which only calls for speedy analysis.

  14. Poly(1-allylimidazole)-grafted silica, a new specific stationary phase for reversed-phase and anion-exchange liquid chromatography.

    PubMed

    Sun, Min; Qiu, Hongdeng; Wang, Licheng; Liu, Xia; Jiang, Shengxiang

    2009-05-01

    A new specific stationary phase based on poly(1-allylimidazole)-grafted silica has been synthesized and characterized, by infrared spectra, elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. The results of test showed that poly(1-allylimidazole) can effectively mask the residual silanol groups and reduce the adverse effect of residual silanol. Using this stationary phase, phenol compounds, aniline compounds, and polycyclic aromatic hydrocarbons were successfully separated with symmetric peak shapes in the reversed-phase chromatography. Inorganic anions (IO(3)(-), BrO(3)(-), Br(-), NO(3)(-), I(-), SCN(-)) were also separated completely in the anion-exchange chromatography using sodium chloride solution as the mobile phase. The effects of pH and the concentration of eluent on the separation of inorganic anions were studied. The separation mechanism appears to involve the mixed interactions of hydrogen bonding, hydrophobic, pi-pi, electrostatic, and anion-exchange interactions.

  15. Aniline-modified porous graphitic carbon for hydrophilic interaction and attenuated reverse phase liquid chromatography.

    PubMed

    Iverson, Chad D; Lucy, Charles A

    2014-12-19

    Most stationary phases for hydrophilic interaction liquid chromatography (HILIC) and reversed phase liquid chromatography (RPLC) are based on silica. Porous graphitic carbon (PGC) is an attractive alternative to silica-based phases due to its chemical and thermal stability, and unique selectivity. However, native PGC is strongly hydrophobic and in some instances excessively retentive. PGC particles with covalently attached aniline groups (Dimethylaniline-PGC and Aniline-PGC) were synthesized to alter the surface polarity of PGC. First, the diazonium salt of N,N-dimethyl-p-phenylenediamine or 4-nitroaniline was adsorbed onto the PGC surface. The adsorbed salt was reduced with sodium borohydride and (Aniline-PGC only) the nitro group was further reduced with iron powder to the aniline. X-ray photoelectron spectroscopy confirmed the surface functionalities and that these moieties were introduced to the surface at concentrations of 0.9 and 2.1molecules/nm(2), respectively. These modified PGC phases (especially Aniline-PGC) were evaluated as HILIC and reversed phases. The Dimethylaniline-PGC phase displayed only weak HILIC retention of phenolic solutes. In contrast, the Aniline-PGC phase displayed up to nearly a 7-fold increase in HILIC retention vs. an aniline-silica phase and selectivity that differed from 10 other HILIC phases. Introduction of aniline groups to the PGC surface reduced the RPLC retentivity of PGC up to more than 5-fold and improved the separation efficiency up to 6-fold. The chromatographic performance of Aniline-PGC is demonstrated by separations of nucleotides, nucleosides, carboxylic acids, basic pharmaceuticals, and other compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A float mechanism of retention in reversed-phase chromatography

    NASA Astrophysics Data System (ADS)

    Deineka, V. I.; Deineka, L. A.; Saenko, I. I.; Chulkov, A. N.

    2015-07-01

    A float mechanism of retention in reversed-phase HPLC is proposed as an alternative to the known mechanisms of the distribution and hydrophobic expulsion of sorbate to the surface of a sorbent. Experimental data that the sorption of a flavylium structure is poorly sensitive to the position of OH groups, and that the retention of anthocyanins depends on the length of bonded alkyl radicals of reversed phase, form the basis of the proposed hypothesis. It is noted that the retention of anthocyanins depends on the orientation of hydroxyl groups in carbohydrate radicals, due to which the chromatographic behavior of anthocyanins is different for glucosides and galactosides, for arabinosides and xylosides, and so on. In other words, retention is a reliable indicator of the composition of a carbohydrate fragment. It is concluded that carbohydrate radicals serve as unique floats, while flat flavilic ions penetrate into the bonded phase. The existence of floats is the main reason for the lower efficiency (of the number of theoretical plates) of the peaks of anthocyanins. It is shown that if two carbohydrate radicals are present at different sites of aglycone (a two-float sorbate), the peaks of the substance are characterized by substantial additional broadening.

  17. Methylammonium formate as a mobile phase modifier for reversed-phase liquid chromatography

    PubMed Central

    Grossman, Shau; Danielson, Neil D.

    2009-01-01

    Although alkylammonium ionic liquids such as ethylammonium nitrate and ethylammonium formate have been used as mobile phase “solvents” for liquid chromatography (LC), we have shown that methylammonium formate (MAF), in part because of its lower viscosity, can be an effective replacement for methanol (MeOH) in reversed-phase LC. Plots of log retention factor versus the fraction of MeOH and MAF in the mobile phase indicate quite comparable solvent strength slope values of 2.50 and 2.05, respectively. Using a polar endcapped C18 column, furazolidone and nitrofurantoin using 20% MAF-80% water could be separated in 22 min but no baseline separation was possible using MeOH as the modifier, even down to 10%. Suppression of silanol peak broadening effects by MAF is important permitting a baseline separation of pyridoxine, thiamine, and nicotinamide using 5% MAF-95% water at 0.7 mL/min. Using 5% MeOH-95% water, severe peak broadening for thiamine is evident. The compatibility of MAF as a mobile phase modifer for LC with mass spectrometry detection of water soluble vitamins is also shown. PMID:18849044

  18. Normal and Reversed-Phase Thin Layer Chromatography of Green Leaf Extracts

    ERIC Educational Resources Information Center

    Sjursnes, Birte Johanne; Kvittingen, Lise; Schmid, Rudolf

    2015-01-01

    Introductory experiments of chromatography are often conducted by separating colored samples, such as inks, dyes, and plant extracts, using filter paper, chalk, or thin layer chromatography (TLC) plates with various solvent systems. Many simple experiments have been reported. The relationship between normal chromatography and reversed-phase…

  19. Signal enhancement for gradient reverse-phase high-performance liquid chromatography-electrospray ionization mass spectrometry analysis with trifluoroacetic and other strong acid modifiers by postcolumn addition of propionic acid and isopropanol.

    PubMed

    Kuhlmann, F E; Apffel, A; Fischer, S M; Goldberg, G; Goodley, P C

    1995-12-01

    Trifluoroacetic acid (TFA) and other volatile strong acids, used as modifiers in reverse-phase high-performance liquid chromatography, cause signal suppression for basic compounds when analyzed by electrospray ionization mass spectrometry (ESI-MS). Evidence is presented that signal suppression is caused by strong ion pairing between the TFA anion and the protonated sample cation of basic sample molecules. The ion-pairing process "masks" the protonated sample cations from the ESI-MS electric fields by rendering them "neutral. " Weakly basic molecules are not suppressed by this process. The TFA signal suppression effect is independent from the well-known spray problem that electrospray has with highly aqueous solutions that contain TFA. This previously reported spray problem is caused by the high conductivity and surface tension of aqueous TFA solutions. A practical method to enhance the signal for most basic analytes in the presence of signal-suppressing volatile strong acids has been developed. The method employs postcolumn addition of a solution of 75% propionic acid and 25% isopropanol in a ratio 1:2 to the column flow. Signal enhancement is typically 10-50 times for peptides and other small basic molecules. Thus, peptide maps that use ESI-MS for detection can be performed at lower levels, with conventional columns, without the need to use capillary chromatography or reduced mass spectral resolution to achieve satisfactory sensitivity. The method may be used with similar results for heptafluorobutyric acid and hydrochloric acid. A mechanism for TFA signal suppression and signal enhancement by the foregoing method, is proposed.

  20. Determination of tylosin and tilmicosin residues in animal tissues by reversed-phase liquid chromatography.

    PubMed

    Chan, W; Gerhardt, G C; Salisbury, C D

    1994-01-01

    A method for the simultaneous determination of tylosin and tilmicosin residues in animal tissues is reported. Solid-phase extraction columns are used to isolate the drugs from tissue extracts. Determination is accomplished by reversed-phase liquid chromatography with UV detection at 287 nm. Mean recoveries from spiked tissues were 79.9% (coefficient of variation [CV], 8.1%) for tylosin and 92.6% (CV, 8.7%) for tilmicosin. Detection limits for tylosin and tilmicosin were 0.020 and 0.010 ppm, respectively.

  1. Effect of first dimension phase selectivity in online comprehensive two dimensional liquid chromatography (LC × LC)

    PubMed Central

    Gu, Haiwei; Huang, Yuan; Filgueira, Marcelo; Carr, Peter W.

    2012-01-01

    In this study, we examined the effect of first dimension column selectivity in reversed phase (RP) online comprehensive two dimensional liquid chromatography (LC × LC). The second dimension was always a carbon clad metal oxide reversed phase material. The hydrophobic subtraction model (HSM) and the related phase selective triangles were used to guide the selection of six different RP first dimension columns. Various kinds of samples were investigated and thus two different elution conditions were needed to cause full elution from the first dimension columns. We compared LC × LC chromatograms, contours plots, and fcoverage plots by measuring peak capacities, peak numbers, relative spatial coverage, correlation values, etc. The major finding of this study is that the carbon phase due to its rather different selectivity from other reversed phases is reasonably orthogonal to a variety of common types of bonded reversed phases. Thus quite surprisingly the six different first dimension stationary phases all showed generally similar separation patterns when paired to the second dimension carbon phase. This result greatly simplifies the task of choosing the correct pair of phases for RP × RP. PMID:21840009

  2. Leukotriene B4 catabolism: quantitation of leukotriene B4 and its omega-oxidation products by reversed-phase high-performance liquid chromatography.

    PubMed

    Shak, S

    1987-01-01

    LTB4 and its omega-oxidation products may be rapidly, sensitively, and specifically quantitated by the methods of solid-phase extraction and reversed-phase high-performance liquid chromatography (HPLC), which are described in this chapter. Although other techniques, such as radioimmunoassay or gas chromatography-mass spectrometry, may be utilized for quantitative analysis of the lipoxygenase products of arachidonic acid, only the technique of reversed-phase HPLC can quantitate as many as 10 metabolites in a single analysis, without prior derivatization. In this chapter, we also reviewed the chromatographic theory which we utilized in order to optimize reversed-phase HPLC analysis of LTB4 and its omega-oxidation products. With this information and a gradient HPLC system, it is possible for any investigator to develop a powerful assay for the potent inflammatory mediator, LTB4, or for any other lipoxygenase product of arachidonic acid.

  3. Determination of Efavirenz in Human Dried Blood Spots by Reversed-Phase High Performance Liquid Chromatography with UV Detection

    PubMed Central

    Hoffman, Justin T; Rossi, Steven S; Espina-Quinto, Rowena; Letendre, Scott; Capparelli, Edmund V

    2013-01-01

    Background Previously published methods for determination of efavirenz (EFV) in human dried blood spots (DBS) employ costly and complex liquid chromatography/mass spectrometry. We describe the validation and evaluation of a simple and inexpensive high-performance liquid chromatography (HPLC) method for EFV quantification in human DBS and dried plasma spots (DPS), using ultraviolet (UV) detection appropriate for resource-limited settings. Methods 100μl of heparinized whole blood or plasma were spotted onto blood collection cards, dried, punched, and eluted. Eluates are injected onto a C-18 reversed phase HPLC column. EFV is separated isocratically using a potassium phosphate and ACN mobile phase. UV detection is at 245nm. Quantitation is by use of external calibration standards. Following validation, the method was evaluated using whole blood and plasma from HIV-positive patients undergoing EFV therapy. Results Mean recovery of drug from dried blood spots is 91.5%. The method is linear over the validated concentration range of 0.3125 – 20.0μg/mL. A good correlation (Spearman r=0.96) between paired plasma and DBS EFV concentrations from the clinical samples was observed, and hematocrit level was not found to be a significant determinant of the EFV DBS level. The mean observed CDBS/Cplasma ratio was 0.68. A good correlation (Spearman r=0.96) between paired plasma and DPS EFV concentrations from the clinical samples was observed. The mean percent deviation of DPS samples from plasma samples is 1.68%. Conclusions Dried whole blood spot or dried plasma spot sampling is well suited for monitoring EFV therapy in resource limited settings, particularly when high sensitivity is not essential. PMID:23503446

  4. [Separation and purification of the components in Trachelospermum jasminoides by two dimensional hydrophilic interaction liquid chromatography- reversed-phase liquid chromatography].

    PubMed

    Jia, Youmei; Cai, Jianfeng; Xin, Huaxia; Feng, Jiatao; Fu, Yanhui; Fu, Qing; Jin, Yu

    2017-06-08

    A preparative two dimensional hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography (Pre-2D-HILIC/RPLC) method was established to separate and purify the components in Trachelospermum jasminoides . The pigments and strongly polar components were removed from the crude extract after the active carbon decolorization and solid phase extraction processes. A Click XIon column (250 mm×20 mm, 10 μm) was selected as stationary phase and water-acetonitrile as mobile phases in the first dimensional HILIC. Finally, 15 fractions were collected under UV-triggered mode. In the second dimensional RPLC, a C18 column (250 mm×20 mm, 5 μm) was selected and water-acetonitrile was used as mobile phases. As a result, 14 compounds with high purity were obtained, which were further identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). Finally, 11 lignan compounds and three flavonoid compounds were obtained. The method has a good orthogonality, and can improve the resolution and the peak capacity. It is significant for the separation of complex components from Trachelospermum jasminoides .

  5. An efficient separation and method development for the quantifying of two basic impurities of Nicergoline by reversed-phase high performance liquid chromatography using ion-pairing counter ions.

    PubMed

    Yalçin, Güler; Yüktaş, Nüray

    2006-10-11

    A quantification method was developed for the two basic impurities, one of which is also a metabolite, of Nicergoline (NIC), by using reversed-phase high performance liquid chromatography (RP-HPLC) and diode array detector (DAD). One of these compounds,10-methoxy-6-methylergoline-8beta-methanol-5-bromo-3-pyridinecarboxylate (1-DN) is the metabolite as well as the impurity whereas, the other 10-methoxy-1,6-dimethylergoline-8beta-methanol-5-chloro-3-pyridinecarboxylate (5-CN) is only an impurity. The chromatographic column was Phenomenex, Luna, 5 microm, C18 (2), 250 mm x 4.6 mm. Mobile phase was 0.1 M ammonium acetate (NH4Ac) solution containing 4 mM 1-octanesulfonicacid sodium salt (OSASS) and 6 mM tetrabutylammonium hydrogen sulphate (TBAHS) (pH: 5.9)/acetonitrile (ACN) (62:38) for 1-DN and (64:36) for 5-CN. Flow rate was 1.0 mL min-1. The diode array detector was operated at 285 nm, band width: 4 nm. Linearity was obtained in the concentration range of 0.032 x 10-5 to 3.828 x 10-5 M, y = 116.88x + 0.2773 (r2 = 0.99989); the limit of detection (LOD) and limit of quantification (LOQ) were determined as 0.012 x 10-5 and 0.041 x 10-5 M for 1-DN, respectively. Linearity was obtained in the concentration range of 0.034 x 10-5 to 4.092 x 10-5 M, y = 104.24x + 0.7486 (r2 = 0.99996); (LOD) and (LOQ) were determined as 0.014 x 10-5 and 0.046 x 10-5 M for 5-CN, respectively. The recovery was 100.65% for 1-DN and 100.32% for 5-CN. The amount of 1-DN in 30 mg NIC was found as 209.65 microg (0.70%) and the amount of 5-CN in 30 mg NIC was found as 27.62 microg (0.09%).

  6. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  7. Quantitative determination of acidic hydrolysis products of Chemical Weapons Convention related chemicals from aqueous and soil samples using ion-pair solid-phase extraction and in situ butylation.

    PubMed

    Pal Anagoni, Suresh; Kauser, Asma; Maity, Gopal; Upadhyayula, Vijayasarathi V R

    2018-02-01

    Chemical warfare agents such as organophosphorus nerve agents, mustard agents, and psychotomimetic agent like 3-quinuclidinylbenzilate degrade in the environment and form acidic degradation products, the analysis of which is difficult under normal analytical conditions. In the present work, a simultaneous extraction and derivatization method in which the analytes are butylated followed by gas chromatography and mass spectrometric identification of the analytes from aqueous and soil samples was carried out. The extraction was carried out using ion-pair solid-phase extraction with tetrabutylammonium hydroxide followed by gas chromatography with mass spectrometry in the electron ionization mode. Various parameters such as optimum concentration of the ion-pair reagent, pH of the sample, extraction solvent, and type of ion-pair reagent were optimized. The method was validated for various parameters such as linearity, accuracy, precision, and limit of detection and quantification. The method was observed to be linear from 1 to 1000 ng/mL range in selected ion monitoring mode. The extraction recoveries were in the range of 85-110% from the matrixes with the limit of quantification for alkyl phosphonic acids at 1 ng/mL, thiodiglycolic acid at 20 ng/mL, and benzilic acid at 50 ng/mL with intra- and interday precisions below 15%. The developed method was applied for the samples prepared in the scenario of challenging inspection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simultaneous determination of azathioprine and 6-mercaptopurine in serum by reversed-phase high-performance liquid chromatography.

    PubMed

    Tsutsumi, K; Otsuki, Y; Kinoshita, T

    1982-09-10

    The simultaneous determination of azathioprine and its metabolite 6-mercaptopurine in serum by reversed-phase high-performance liquid chromatography is described. 6-Mercaptopurine was converted to a derivative, 6-mercaptopurine-N-ethylmaleimide, which is stable against autoxidation, on reaction with N-ethylmaleimide. Since the N-ethylmaleimide derivative was more hydrophobic than the parent compound, it could be extracted into ethyl acetate together with azathioprine and the derivative was retained on the reversed-phase column better than 6-mercaptopurine. In addition, 6-mercaptopurine-N-ethylmaleimide absorbed at the same wavelength (280 nm) as azathioprine. Consequently, this derivatization procedure enabled the simultaneous extraction, separation, and detection of these compounds.

  9. Separation and analysis of phenolic acids from Salvia miltiorrhiza and its related preparations by off-line two-dimensional hydrophilic interaction chromatography×reversed-phase liquid chromatography coupled with ion trap time-of-flight mass spectrometry.

    PubMed

    Sun, Wanyang; Tong, Ling; Miao, Jingzhuo; Huang, Jingyi; Li, Dongxiang; Li, Yunfei; Xiao, Hongting; Sun, Henry; Bi, Kaishun

    2016-01-29

    Salvia miltiorrhiza (SM) is one of the most widely used Traditional Chinese Medicine. Active constituents of SM mainly contain hydrophilic phenolic acids (PAs) and lipophilic tanshinones. However, due to the existing of multiple ester bonds and unsaturated bonds in the structures, PAs have numerous chemical conversion products. Many of them are so low-abundant that hard to be separated using conventional methods. In this study, an off-line two-dimensional liquid chromatography (2D-LC) method was developed to separate PAs in SM and its related preparations. In the first dimension, samples were fractionated by hydrophilic interaction chromatography (HILIC) (Acchrom×Amide, 4.6×250mm, 5μm) mainly based on the hydrogen bonding effects. The fractions were then separated on reversed-phase liquid chromatography (RP-LC) (Acquity HSS T3, 2.1×50mm, 1.7μm) according to hydrophobicity. For the selective identification of PAs, diode array detector (DAD) and electrospray ionization tandem ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) were employed. Practical and effective peak capacities of all the samples were greater than 2046 and 1130, respectively, with the orthogonalities ranged from 69.7% to 92.8%, which indicated the high efficiency and versatility of this method. By utilizing the data post-processing techniques, including mass defect filter, neutral loss filter and product ion filter, a total of 265 compounds comprising 196 potentially new PAs were tentatively characterized. Twelve kinds of derivatives, mainly including glycosylated compounds, O-alkylated compounds, condensed compounds and hydrolyzed compounds, constituted the novelty of the newly identified PAs. The HILIC×RP-LC/TOF-MS system expanded our understanding on PAs of S. miltiorrhiza and its related preparations, which could also benefit the separation and characterization of polar constituents in complicated herbal extracts. Copyright © 2016. Published by Elsevier B.V.

  10. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.

    PubMed

    Jandera, Pavel; Hájek, Tomáš

    2018-01-01

    Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Determination of heavy polycyclic aromatic hydrocarbons by non-aqueous reversed phase liquid chromatography: Application and limitation in refining streams.

    PubMed

    Panda, Saroj K; Muller, Hendrik; Al-Qunaysi, Thunayyan A; Koseoglu, Omer R

    2018-01-19

    The heavy polycyclic aromatic hydrocarbons (HPAHs) cause detrimental effects to hydrocracker operations by deactivating the catalysts and depositing in the downstream of the reactor/ exchangers. Therefore, it is essential to continuously monitor the accumulation of HPAHs in a hydrocracker unit. To accurately measure the concentration of HPAHs, the development of a fast and reliable analytical method is inevitable. In this work, an analytical method based on non-aqueous reversed phase chromatography in combination with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was developed. As a first step, five different types of stationary phases were evaluated for the separation of HPAHs in non-aqueous mode and the best suited phase was further used for the fractionation of HPAHs in a fractionator bottom sample obtained from a refinery hydrocracker unit. The eight major fractions or peaks obtained from the separation were further characterized by UV spectroscopy and FT-ICR MS and the compounds in the fractions were tentatively confirmed as benzoperylene, coronene, methylcoronene, naphthenocoronene, benzocoronene, dibenzoperylene, naphthocoronene and ovalene. The developed liquid chromatography method can be easily adapted in a refinery laboratory for the quantitation of HPAHs in hydrocracking products. The method was further tested to check the interference of sulfur aromatics and/or large alkylated aromatic hydrocarbons on the determination of HPAHs in hydrocracking products. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Simultaneous quantification of amino acids and Amadori products in foods through ion-pairing liquid chromatography-high-resolution mass spectrometry.

    PubMed

    Troise, Antonio Dario; Fiore, Alberto; Roviello, Giovanni; Monti, Simona Maria; Fogliano, Vincenzo

    2015-01-01

    The formation of the Amadori products (APs) is the first key step of Maillard reaction. Only few papers have dealt with simultaneous quantitation of amino acids and corresponding APs (1-amino-1-deoxy-2-ketose). Chromatographic separation of APs is affected by several drawbacks mainly related to their poor retention in conventional reversed phase separation. In this paper, a method for the simultaneous quantification of amino acids and their respective APs was developed combining high-resolution mass spectrometry with ion-pairing liquid chromatography. The limit of detection was 0.1 ng/mL for tryptophan, valine and arginine, while the limit of quantification ranged from 2 to 5 ng/mL according to the specific sensitivity of each analyte. The relative standard deviation % was lower than 10 % and the coefficient of correlation was higher than 0.99 for each calibration curve. The method was applied to milk, milk-based products, raw and processed tomato. Among the analyzed products, the most abundant amino acid was glutamic acid (16,646.89 ± 1,385.40 µg/g) and the most abundant AP was fructosyl-arginine in tomato puree (774.82 ± 10.01 µg/g). The easiness of sample preparation coupled to the analytical performances of the proposed method introduced the possibility to use the pattern of free amino acids and corresponding APs in the evaluation of the quality of raw food as well as the extent of thermal treatments in different food products.

  13. Isolation and recovery of selected polybrominated diphenyl ethers from human serum and sheep serum: coupling reversed-phase solid-phase disk extraction and liquid-liquid extraction techniques with a capillary gas chromatographic electron capture negative ion mass spectrometric determinative technique.

    PubMed

    Loconto, Paul R; Isenga, David; O'Keefe, Michael; Knottnerus, Mark

    2008-01-01

    Polybrominated diphenyl ethers (PBDEs) are isolated and recovered with acceptable percent recoveries from human serum via liquid-liquid extraction and column chromatographic cleanup and fractionation with quantitation using capillary gas chromatography-mass spectrometry with electron capture negative ion and selected ion monitoring. PBDEs are found in unspiked serum. An alternative sample preparation approach is developed using sheep serum that utilizes a formic acid pre-treatment followed by reversed-phase solid-phase disk extraction and normal-phase solid-phase cleanup using acidified silica gel that yields>50% recoveries. When these percent recoveries are combined with a minimized phase ratio for human serum and very low instrument detection limits, method detection limits below 500 parts-per-trillion are realized.

  14. The differences in matrix effect between supercritical fluid chromatography and reversed phase liquid chromatography coupled to ESI/MS.

    PubMed

    Svan, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Pettersson, Curt E

    2018-02-13

    For many sample matrices, matrix effects are a troublesome phenomenon using the electrospray ionization source. The increasing use of supercritical fluid chromatography with CO 2 in combination with the electrospray ionization source for MS detection is therefore raising questions: is the matrix effect behaving differently using SFC in comparison with reversed phase LC? This was investigated using urine, plasma, influent- and effluent-wastewater as sample matrices. The matrix effect was evaluated using the post-extraction addition method and through post-column infusions. Matrix effect profiles generated from the post-column infusions in combination with time of flight-MS detection provided the most valuable information for the study. The combination of both qualitative and semi-quantitative information with the ability to use HRMS-data for identifying interfering compounds from the same experiment was very useful, and has to the authors' knowledge not been used this way before. The results showed that both LC and SFC are affected by matrix effects, however differently depending on sample matrix. Generally, both suppressions and enhancements were seen, with a higher amount of enhancements for LC, where 65% of all compounds and all sample matrices were enhanced, compared to only 7% for SFC. Several interferences were tentatively identified, with phospholipids, creatinine, and metal ion clusters as examples of important interferences, with different impact depending on chromatographic technique. SFC needs a different strategy for limiting matrix interferences, owing to its almost reverse retention order compared to RPLC. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Simultaneous determination of the HIV nucleoside analogue reverse transcriptase inhibitors lamivudine, didanosine, stavudine, zidovudine and abacavir in human plasma by reversed phase high performance liquid chromatography.

    PubMed

    Verweij-van Wissen, C P W G M; Aarnoutse, R E; Burger, D M

    2005-02-25

    A reversed phase high performance liquid chromatography method was developed for the simultaneous quantitative determination of the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine, didanosine, stavudine, zidovudine and abacavir in plasma. The method involved solid-phase extraction with Oasis MAX cartridges from plasma, followed by high performance liquid chromatography with a SymmetryShield RP 18 column and ultraviolet detection set at a wavelength of 260 nm. The assay was validated over the concentration range of 0.015-5 mg/l for all five NRTIs. The average accuracies for the assay were 92-102%, inter- and intra-day coefficients of variation (CV) were <2.5% and extraction recoveries were higher than 97%. This method proved to be simple, accurate and precise, and is currently in use in our laboratory for the quantitative analysis of NRTIs in plasma.

  16. Preparation and application of reversed phase chromatorotor for the isolation of natural products by centrifugal preparative chromatography

    USDA-ARS?s Scientific Manuscript database

    A method of preparation of Chromatorotor or plates with a reversed phase (RP) solid silica gel sorbent layer has been developed for preparative centrifugal chromatography. The RP-rotor plates consist of binder free RP solid SiO2 sorbent layers of different thicknesses paked between two supported cir...

  17. Target-guided separation of Bougainvillea glabra betacyanins by direct coupling of preparative ion-pair high-speed countercurrent chromatography and electrospray ionization mass-spectrometry.

    PubMed

    Jerz, Gerold; Wybraniec, Sławomir; Gebers, Nadine; Winterhalter, Peter

    2010-07-02

    In this study, preparative ion-pair high-speed countercurrent chromatography was directly coupled to an electrospray ionization mass-spectrometry device (IP-HSCCC/ESI-MS-MS) for target-guided fractionation of high molecular weight acyl-oligosaccharide linked betacyanins from purple bracts of Bougainvillea glabra (Nyctaginaceae). The direct identification of six principal acyl-oligosaccharide linked betacyanins in the mass range between m/z 859 and m/z 1359 was achieved by positive ESI-MS ionization and gave access to the genuine pigment profile already during the proceeding of the preparative separation. Inclusively, all MS/MS-fragmentation data were provided during the chromatographic run for a complete analysis of substitution pattern. On-line purity evaluation of the recovered fractions is of high value in target-guided screening procedures and for immediate decisions about suitable fractions used for further structural analysis. The applied preparative hyphenation was shown to be a versatile screening method for on-line monitoring of countercurrent chromatographic separations of polar crude pigment extracts and also traced some minor concentrated compounds. For the separation of 760mg crude pigment extract the biphasic solvent system tert.-butylmethylether/n-butanol/acetonitrile/water 2:2:1:5 (v/v/v/v) was used with addition of ion-pair forming reagent trifluoroacetic acid. The preparative HSCCC-eluate had to be modified by post-column addition of a make-up solvent stream containing formic acid to reduce ion-suppression caused by trifluoroacetic acid and later significantly maximized response of ESI-MS/MS detection of target substances. A variable low-pressure split-unit guided a micro-eluate to the ESI-MS-interface for sensitive and direct on-line detection, and the major volume of the effluent stream was directed to the fraction collector for preparative sample recovery. The applied make-up solvent mixture significantly improved smoothness of the continuously

  18. Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry

    USGS Publications Warehouse

    Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan

    2014-01-01

    A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.

  19. Development of anion-exchange/reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry methods for the speciation of bio-available iodine and bromine from edible seaweed.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2012-05-04

    Anion exchange high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry has been novelly applied to assess inorganic (iodide and iodate) and organic (3-iodotyrosine - MIT, and 3,5-diiodotyrosine - DIT) iodine species in a single chromatographic run. The optimized operating conditions (Dionex IonPac AS7, gradient elution with 175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase and flow rates within the 0.5-1.5 mL min(-1) range) have also been used to perform inorganic bromine speciation analysis (bromide and bromate). The developed method has been applied for determining the bio-available contents of iodine and bromine species in dialyzates from edible seaweed. Reverse phase high performance liquid chromatography (Zorbax Eclipse XDB-C8, gradient elution with 0.2% (m/m) acetic acid, and 0.2% (m/m) acetic acid in methanol, as mobile phases, and a constant flow rate of 0.75 mL min(-1)) also hyphenated with inductively coupled plasma-mass spectrometry was used to confirm the presence of organic iodine species (MIT and DIT) in the dialyzates. The verification of the presence of iodinated amino acids (MIT and DIT) in the extracts was also performed by reverse phase high performance liquid chromatography-electrospray ionization-mass spectrometry (LTQ Orbitrap). The developed methods have provided good repeatability (RSD values lower than 10% for both anion exchange and reverse phase separations) and analytical recoveries within the 90-105% range for all cases. The in vitro bio-availability method consisted of a simulated gastric and an intestinal digestion/dialysis (10 kDa molecular weight cut-off - MWCO) two-stage procedure. Iodide and MIT were the main bio-available species quantified, whereas bromide was the major bromine species found in the extracts. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic liquids

    NASA Astrophysics Data System (ADS)

    Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan

    2016-12-01

    An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.

  1. Ion pairing and phase behaviour of an asymmetric restricted primitive model of ionic liquids.

    PubMed

    Lu, Hongduo; Li, Bin; Nordholm, Sture; Woodward, Clifford E; Forsman, Jan

    2016-12-21

    An asymmetric restricted primitive model (ARPM) of electrolytes is proposed as a simple three parameter (charge q, diameter d, and charge displacement b) model of ionic liquids and solutions. Charge displacement allows electrostatic and steric interactions to operate between different centres, so that orientational correlations arise in ion-ion interactions. In this way the ionic system may have partly the character of a simple ionic fluid/solid and of a polar fluid formed from ion pairs. The present exploration of the system focuses on the ion pair formation mechanism, the relative concentration of paired and free ions and the consequences for the cohesive energy, and the tendency to form fluid or solid phase. In contrast to studies of similar (though not identical) models in the past, we focus on behaviours at room temperature. By MC and MD simulations of such systems composed of monovalent ions of hard-sphere (or essentially hard-sphere) diameter equal to 5 Å and a charge displacement ranging from 0 to 2 Å from the hard-sphere origin, we find that ion pairing dominates for b larger than 1 Å. When b exceeds about 1.5 Å, the system is essentially a liquid of dipolar ion pairs with a small presence of free ions. We also investigate dielectric behaviours of corresponding liquids, composed of purely dipolar species. Many basic features of ionic liquids appear to be remarkably consistent with those of our ARPM at ambient conditions, when b is around 1 Å. However, the rate of self-diffusion and, to a lesser extent, conductivity is overestimated, presumably due to the simple spherical shape of our ions in the ARPM. The relative simplicity of our ARPM in relation to the rich variety of new mechanisms and properties it introduces, and to the numerical simplicity of its exploration by theory or simulation, makes it an essential step on the way towards representation of the full complexity of ionic liquids.

  2. [Determination of glycyrrhizinic acid in biotransformation system by reversed-phase high performance liquid chromatography].

    PubMed

    Li, Hui; Lu, Dingqiang; Liu, Weimin

    2004-05-01

    A method for determining glycyrrhizinic acid in the biotransformation system by reversed-phase high performance liquid chromatography (RP-HPLC) was developed. The HPLC conditions were as follows: Hypersil C18 column (4.6 mm i.d. x 250 mm, 5 microm) with a mixture of methanol-water-acetic acid (70:30:1, v/v) as the mobile phase; flow rate at 1.0 mL/min; and UV detection at 254 nm. The linear range of glycyrrhizinic acid was 0.2-20 microg. The recoveries were 98%-103% with relative standard deviations between 0.16% and 1.58% (n = 3). The method is simple, rapid and accurate for determining glycyrrhizinic acid.

  3. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis.

    PubMed

    Zhang, Qian; Yang, Feng-Qing; Ge, Liya; Hu, Yuan-Jia; Xia, Zhi-Ning

    2017-01-01

    Hydrophilic interaction liquid chromatography, an alternative liquid chromatography mode, is of particular interest in separating hydrophilic and polar ionic compounds. Compared with traditional liquid chromatography techniques, hydrophilic interaction liquid chromatography offers specific advantages mainly including: (1) relatively green and water-soluble mobile phase composition, which enhances the solubility of hydrophilic and polar ionic compounds; (2) no need for ion-pairing reagents and high content of organic solvent, which benefits mass spectrometry detection; (3) high orthogonality to reverse-phase liquid chromatography, well adapted to two-dimensional liquid chromatography for complicated samples. Therefore, hydrophilic interaction liquid chromatography has been rapidly developed in many areas over the past decades. This review summarizes the recent progress (from 2012 to July 2016) of hydrophilic interaction liquid chromatography in pharmaceutical analysis, with the focus on detecting chemical drugs in various matrices, charactering active compounds of natural products and assessing biotherapeutics through typical structure unit. Moreover, the retention mechanism and behavior of analytes in hydrophilic interaction liquid chromatography as well as some novel hydrophilic interaction liquid chromatography columns used for pharmaceutical analysis are also described. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Separation and characterisation of five polar herbicides using countercurrent chromatography with detection by negative ion electrospray ionisation mass spectrometry.

    PubMed

    Kidwell, H; Jones, J J; Games, D E

    2001-01-01

    Five polar herbicides were separated and characterised using high-speed analytical countercurrent chromatography (HSACCC) in conjunction with online electrospray mass spectrometry (ESI-MS). The countercurrent chromatography used a standard isocratic biphasic solvent system of hexane/ethyl acetate/methanol/water in reverse phase to effect the separation of these five environmentally important compounds. The chromatograph was coupled to a triple quadrupole mass spectrometer via a standard electrospray liquid chromatography interface that was able to give mass spectra in negative ion mode of each compound. Limits of detection are reported for this series of compounds along with representative negative ion ESI-MS data and calibrations for the separation. Copyright 2001 John Wiley & Sons, Ltd.

  5. Preparation of stationary phases for reversed-phase high-performance liquid chromatography using thermal treatments at high temperature.

    PubMed

    Vigna, Camila R M; Bottoli, Carla B G; Collins, Kenneth E; Collins, Carol H

    2007-07-13

    Batches of poly(methyloctylsiloxane) (PMOS)-loaded silica were prepared by deposition from a solution of PMOS into the pores of HPLC silica. Portions of PMOS-loaded silica were subjected to a thermal treatment at 100 degrees C for 24h (condition 1) in a tube furnace under a nitrogen atmosphere. After that, the material was heated for 4h at higher temperatures (150-400 degrees C) (condition 2). Heating at higher temperatures produces polymer bilayers. Non-immobilized and thermally treated stationary phases were characterized by percent carbon, (29)Si cross-polarization magic angle spinning nuclear magnetic resonance spectroscopy and reversed-phase chromatographic performance. The results show that thermal treatment between 150 and 300 degrees C accelerates the immobilization process, possibly due to some bond breaking of the polysiloxane, with formation of strong linkages to the surface of the support, resulting in more complete coverage of the silica. The chromatographic results show an improvement of efficiency with the increase of the temperature of condition 2 up to 300 degrees C and an increase in the resolution of the components, mainly for the phase heated at 300 degrees C. Such results demonstrate that a two-step thermal treatment (100 degrees C then 150-300 degrees C) produces stationary phases with good properties for use in reversed-phase high-performance liquid chromatography.

  6. Mixed-bed ion exchange chromatography employing a salt-free pH gradient for improved sensitivity and compatibility in MudPIT.

    PubMed

    Mommen, Geert P M; Meiring, Hugo D; Heck, Albert J R; de Jong, Ad P J M

    2013-07-16

    In proteomics, comprehensive analysis of peptides mixtures necessitates multiple dimensions of separation prior to mass spectrometry analysis to reduce sample complexity and increase the dynamic range of analysis. The main goal of this work was to improve the performance of (online) multidimensional protein identification technology (MudPIT) in terms of sensitivity, compatibility and recovery. The method employs weak anion and strong cation mixed-bed ion exchange chromatography (ACE) in the first separation dimension and reversed phase chromatography (RP) in the second separation dimension (Motoyama et.al. Anal. Chem 2007, 79, 3623-34.). We demonstrated that the chromatographic behavior of peptides in ACE chromatography depends on both the WAX/SCX mixing ratio as the ionic strength of the mobile phase system. This property allowed us to replace the conventional salt gradient by a (discontinuous) salt-free, pH gradient. First dimensional separation of peptides was accomplished with mixtures of aqueous formic acid and dimethylsulfoxide with increasing concentrations. The overall performance of this mobile phase system was found comparable to ammonium acetate buffers in application to ACE chromatography, but clearly outperformed strong cation exchange for use in first dimensional peptide separation. The dramatically improved compatibility between (salt-free) ion exchange chromatography and reversed phase chromatography-mass spectrometry allowed us to downscale the dimensions of the RP analytical column down to 25 μm i.d. for an additional 2- to 3-fold improvement in performance compared to current technology. The achieved levels of sensitivity, orthogonality, and compatibility demonstrates the potential of salt-free ACE MudPIT for the ultrasensitive, multidimensional analysis of very modest amounts of sample material.

  7. Use of absorbent materials in on-line coupled reversed-phase liquid chromatography-gas chromatography via the through oven transfer adsorption desorption interface.

    PubMed

    Flores, Gema; Díaz-Plaza, Eva María; Cortés, Jose Manuel; Villén, Jesús; Herraiz, Marta

    2008-11-21

    The use of absorbents as retaining materials in the through oven transfer adsorption desorption interface (TOTAD) of an on-line coupled reversed-phase liquid chromatography-gas chromatography system (RPLC-GC) is proposed for the first time. A comparative study of an adsorbent (Tenax TA) and two absorbents, namely polydimethylsiloxane and poly(50% phenyl/50% methylsiloxane) is performed to establish the best experimental conditions for the automated and simultaneous determination of 15 organophosphorus and organochlorine pesticide residues in olive oil. The proposed method provides satisfactory repeatability (RSDs lower, in general, than 8.5%) and sensitivity (limits of detection ranging from 0.6 to 81.9 microg/L) for the investigated compounds.

  8. Application of ion chromatography in clinical studies and pharmaceutical industry.

    PubMed

    Michalski, Rajmund

    2014-01-01

    Ion chromatography is a well-established regulatory method for analyzing anions and cations in environmental, food and many other samples. It offers an enormous range of possibilities for selecting stationary and mobile phases. Additionally, it usually helps to solve various separation problems, particularly when it is combined with different detection techniques. Ion chromatography can also be used to determine many ions and substances in clinical and pharmaceutical samples. It provides: availability of high capacity stationary phases and sensitive detectors; simple sample preparation; avoidance of hazardous chemicals; decreased sample volumes; flexible reaction options on a changing sample matrix to be analyzed; or the option to operate a fully-automated system. This paper provides a short review of the ion chromatography applications for determining different inorganic and organic substances in clinical and pharmaceutical samples.

  9. Single column comprehensive analysis of pharmaceutical preparations using dual-injection mixed-mode (ion-exchange and reversed-phase) and hydrophilic interaction liquid chromatography.

    PubMed

    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett

    2013-12-01

    The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Formation of ion-pairs in aqueous solutions of diclofenac salts.

    PubMed

    Fini, A; Fazio, G; Gonzalez-Rodriguez, M; Cavallari, C; Passerini, N; Rodriguez, L

    1999-10-05

    In this work we studied the ability of the diclofenac anion to form ion-pairs in aqueous solution in the presence of organic and inorganic cations: ion-pairs have a polarity and hydrophobicity more suitable to the partition than each ion considered separately and can be extracted by a lipid phase. The cations considered were those of the organic bases diethylamine, diethanolamine, pyrrolidine, N-(2-hydroxyethyl) pyrrolidine and N-(2-hydroxyethyl) piperidine; the inorganic cations studied were Li(+), Na(+), K(+), Rb(+), Cs(+). Related to each cation we determined the equilibrium constant (K(XD)) for the ion-pair formation with the diclofenac anion in aqueous solution and the water/n-octanol partition coefficient (P(XD)) for each type of ion-pair formed. Among the alkali metal cations, only Li(+) shows some interaction with the diclofenac anion, in agreement with its physiological behaviour of increasing clearance during the administration of diclofenac. The influence of the ionic radius and desolvation enthalpy of the alkali metal cations on the ion-pair formation and partition was briefly discussed. Organic cations promote the formation of ion-pairs with the diclofenac anion better than the inorganic ones, and improve the partition of the ion-pair according to their hydrophobicity. The values of the equilibrium parameters for the formation and partition of ion-pairs are not high enough to allow the direct detection of their presence in the aqueous solution. Their formation can be appreciated in the presence of a lipid phase that continuously extracts the ion-pair. Extraction constants (E(XD)=P(XD) times K(XD)) increase passing from inorga to organic cations. This study could help to clarify the mechanism of the percutaneous absorption of diclofenac in the form of a salt, a route where the formation of ion-pairs appears to play an important role.

  11. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography.

    PubMed

    Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik

    2016-02-01

    A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Characterization of singly and multiply PEGylated insulin isomers by reversed-phase ultra-performance liquid chromatography interfaced with ion mobility mass spectrometry.

    PubMed

    Gerislioglu, Selim; Adams, Scott R; Wesdemiotis, Chrys

    2018-04-03

    Conjugation of poly(ethylene glycol) (PEG) to protein drugs (PEGylation) is increasingly utilized in the biotherapeutics field because it improves significantly the drugs' circulatory half-life, solubility, and shelf-life. The activity of a PEGylated drug depends on the number, size, and location of the attached PEG chain(s). This study introduces a 2D separation approach, including reversed-phase ultra-performance liquid chromatography (RP-UPLC) and ion mobility mass spectrometry (IM-MS), in order to determine the structural properties of the conjugates, as demonstrated for a PEGylated insulin sample that was prepared by random amine PEGylation. The UPLC dimension allowed separation based on polarity. Electrospray ionization (ESI) of the eluates followed by in-source dissociation (ISD) truncated the PEG chains and created insulin fragments that provided site-specific information based on whether they contained a marker at the potential conjugation sites. Separation of the latter fragments by size and charge in the orthogonal IM dimension (pseudo-4D UPLC-ISD-IM-MS approach) enabled clear detection and identification of the positional isomers formed upon PEGylation. The results showed a highly heterogeneous mixture of singly and multiply conjugated isomers plus unconjugated material. PEGylation was observed on all three possible attachment sites (ε-NH 2 of LysB29, A- and B-chain N-termini). Each PEGylation site was validated by analysis of the same product after disulfide bond cleavage, so that the PEGylated A- and B- chain could be individually characterized with the same pseudo-4D UPLC-ISD-IM-MS method. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Peak distortion effects in analytical ion chromatography.

    PubMed

    Wahab, M Farooq; Anderson, Jordan K; Abdelrady, Mohamed; Lucy, Charles A

    2014-01-07

    The elution profile of chromatographic peaks provides fundamental understanding of the processes that occur in the mobile phase and the stationary phase. Major advances have been made in the column chemistry and suppressor technology in ion chromatography (IC) to handle a variety of sample matrices and ions. However, if the samples contain high concentrations of matrix ions, the overloaded peak elution profile is distorted. Consequently, the trace peaks shift their positions in the chromatogram in a manner that depends on the peak shape of the overloading analyte. In this work, the peak shapes in IC are examined from a fundamental perspective. Three commercial IC columns AS16, AS18, and AS23 were studied with borate, hydroxide and carbonate as suppressible eluents. Monovalent ions (chloride, bromide, and nitrate) are used as model analytes under analytical (0.1 mM) to overload conditions (10-500 mM). Both peak fronting and tailing are observed. On the basis of competitive Langmuir isotherms, if the eluent anion is more strongly retained than the analyte ion on an ion exchanger, the analyte peak is fronting. If the eluent is more weakly retained on the stationary phase, the analyte peak always tails under overload conditions regardless of the stationary phase capacity. If the charge of the analyte and eluent anions are different (e.g., Br(-) vs CO3(2-)), the analyte peak shapes depend on the eluent concentration in a more complex pattern. It was shown that there are interesting similarities with peak distortions due to strongly retained mobile phase components in other modes of liquid chromatography.

  14. Separation of alkylphenols by normal-phase and reversed-phase high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schabron, J.F.; Hurtubise, R.J.; Silver, H.F.

    1978-11-01

    Empirical correlation factors were developed which relate log k' values for alkylphenols, the naphthols, and two phenylphenols to structural features. Both normal-phase and reversed-phase chromatographic systems were studied. The stationary phases employed in the normal-phase work were ..mu..-Bondapak CN, ..mu..-Bondapak NH/sub 2/, and ..mu..-Porasil. The structural features which affect retention in the normal-phase chromatographic systems are the number of ortho substituents, the number of aliphatic carbons, and the number of aromatic rings. The stationary phases employed in the reversed-phase work were ..mu..-Bondapak C/sub 18/ and ..mu..-Bondapak CN. The structural features which affect retention in the reversed-phase chromatographic systems are themore » number of aliphatic carbons and the number of aromatic double bonds. On ..mu..-Bondapak C/sub 18/, the presence or absence of a nonaromatic ring is of added importance.« less

  15. Self-assembled cyclodextrin-modified gold nanoparticles on silica beads as stationary phase for chiral liquid chromatography and hydrophilic interaction chromatography.

    PubMed

    Li, Yuanyuan; Wei, Manman; Chen, Tong; Zhu, Nan; Ma, Yulong

    2016-11-01

    A facile strategy based on self-assembly of Au nanoparticles (AuNPs) (60±10nm in size) on the surfaces of amino-functionalized porous silica spheres under mild conditions was proposed. The resulting material possessed a core-shell structure in which AuNPs were the shell and silica spheres were the core. Then, thiolated-β-cyclodextrin (SH-β-CD) was covalently attached onto the AuNPs as chiral selector for the enantioseparation. The resultant packing material was evaluated by high-performance liquid chromatography (HPLC). The separations of nine pairs of enantiomers were achieved by using the new chiral stationary phase (CSP) in the reversed-phase liquid chromatography (RPLC) mode, respectively. The results showed the new CSP have more sufficient interaction with the analytes due to the existence of AuNPs on silica surfaces, resulting in faster mass transfer rate, compared with β-CD modified silica column. The result shed light on potential usage of chemical modified NPs as chiral selector for enantioseparation based on HPLC. In addition, the new phase was also used in hydrophilic interaction liquid chromatography (HILIC) to separate polar compounds and highly hydrophilic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase separations: Two-dimensional liquid chromatography-mass spectrometry vs. liquid chromatography-trapped-ion-mobility-mass spectrometry.

    PubMed

    Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J

    2017-12-29

    Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ion-pairing HPLC methods to determine EDTA and DTPA in small molecule and biological pharmaceutical formulations.

    PubMed

    Wang, George; Tomasella, Frank P

    2016-06-01

    Ion-pairing high-performance liquid chromatography-ultraviolet (HPLC-UV) methods were developed to determine two commonly used chelating agents, ethylenediaminetetraacetic acid (EDTA) in Abilify® (a small molecule drug with aripiprazole as the active pharmaceutical ingredient) oral solution and diethylenetriaminepentaacetic acid (DTPA) in Yervoy® (a monoclonal antibody drug with ipilimumab as the active pharmaceutical ingredient) intravenous formulation. Since the analytes, EDTA and DTPA, do not contain chromophores, transition metal ions (Cu 2+ , Fe 3+ ) which generate highly stable metallocomplexes with the chelating agents were added into the sample preparation to enhance UV detection. The use of metallocomplexes with ion-pairing chromatography provides the ability to achieve the desired sensitivity and selectivity in the development of the method. Specifically, the sample preparation involving metallocomplex formation allowed sensitive UV detection. Copper was utilized for the determination of EDTA and iron was utilized for the determination of DTPA. In the case of EDTA, a gradient mobile phase separated the components of the formulation from the analyte. In the method for DTPA, the active drug substance, ipilimumab, was eluted in the void. In addition, the optimization of the concentration of the ion-pairing reagent was discussed as a means of enhancing the retention of the aminopolycarboxylic acids (APCAs) including EDTA and DTPA and the specificity of the method. The analytical method development was designed based on the chromatographic properties of the analytes, the nature of the sample matrix and the intended purpose of the method. Validation data were presented for the two methods. Finally, both methods were successfully utilized in determining the fate of the chelates.

  18. Ion-pair cloud-point extraction: a new method for the determination of water-soluble vitamins in plasma and urine.

    PubMed

    Heydari, Rouhollah; Elyasi, Najmeh S

    2014-10-01

    A novel, simple, and effective ion-pair cloud-point extraction coupled with a gradient high-performance liquid chromatography method was developed for determination of thiamine (vitamin B1 ), niacinamide (vitamin B3 ), pyridoxine (vitamin B6 ), and riboflavin (vitamin B2 ) in plasma and urine samples. The extraction and separation of vitamins were achieved based on an ion-pair formation approach between these ionizable analytes and 1-heptanesulfonic acid sodium salt as an ion-pairing agent. Influential variables on the ion-pair cloud-point extraction efficiency, such as the ion-pairing agent concentration, ionic strength, pH, volume of Triton X-100, extraction temperature, and incubation time have been fully evaluated and optimized. Water-soluble vitamins were successfully extracted by 1-heptanesulfonic acid sodium salt (0.2% w/v) as ion-pairing agent with Triton X-100 (4% w/v) as surfactant phase at 50°C for 10 min. The calibration curves showed good linearity (r(2) > 0.9916) and precision in the concentration ranges of 1-50 μg/mL for thiamine and niacinamide, 5-100 μg/mL for pyridoxine, and 0.5-20 μg/mL for riboflavin. The recoveries were in the range of 78.0-88.0% with relative standard deviations ranging from 6.2 to 8.2%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Topological phases in a Kitaev chain with imbalanced pairing

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhang, X. Z.; Zhang, G.; Song, Z.

    2018-03-01

    We systematically study a Kitaev chain with imbalanced pair creation and annihilation, which is introduced by non-Hermitian pairing terms. An exact phase diagram shows that the topological phase is still robust under the influence of the conditional imbalance. The gapped phases are characterized by a topological invariant, the extended Zak phase, which is defined by the biorthonormal inner product. Such phases are destroyed at the points where the coalescence of ground states occurs, associated with the time-reversal symmetry breaking. We find that the Majorana edge modes also exist in an open chain in the time-reversal symmetry-unbroken region, demonstrating the bulk-edge correspondence in such a non-Hermitian system.

  20. Simultaneous concentration and purification through gradient deformation chromatography

    NASA Technical Reports Server (NTRS)

    Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.

  1. Facile preparation of an alternating copolymer-based high molecular shape-selective organic phase for reversed-phase liquid chromatography.

    PubMed

    Mallik, Abul K; Noguchi, Hiroki; Rahman, Mohammed Mizanur; Takafuji, Makoto; Ihara, Hirotaka

    2018-06-22

    The synthesis of a new alternating copolymer-grafted silica phase is described for the separation of shape-constrained isomers of polycyclic aromatic hydrocarbons (PAHs) and tocopherols in reversed-phase high-performance liquid chromatography (RP-HPLC). Telomerization of the monomers (octadecyl acrylate and N-methylmaleimide) was carried out with a silane coupling agent; 3-mercaptopropyltrimethoxysilane (MPS), and the telomer (T) was grafted onto porous silica surface to prepare the alternating copolymer-grafted silica phase (Sil-alt-T). The new hybrid material was characterized by elemental analyses, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and solid-state 13 C and 29 Si cross-polarization magic-angle spinning (CP/MAS) NMR spectroscopy. The results of 13 C CP/MAS NMR demonstrated that the alkyl chains of the grafted polymers in Sil-alt-T remained disordered, amorphous, and mobile represented by gauche conformational form. Separation abilities and molecular-shape selectivities of the prepared organic phase were evaluated by the separation of PAHs isomers and Standard Reference Material 869b, Column Selectivity Test Mixture for Liquid Chromatography, respectively and compared with commercially available octadecylsilylated silica (ODS) and C 30 columns as well as previously reported alternating copolymer-based column. The effectiveness of this phase is also demonstrated by the separation of tocopherol isomers. Oriented functional groups along the polymer main chains and cavity formations are investigated to be the driving force for better separation with multiple-interactions with the solutes. One of the advantages of the Sil-alt-T phase to that of the previously reported phase is the synthesis of the telomer first and then immobilized onto silica surface. In this case, the telomer was characterized easily with simple spectroscopic techniques and the molecular mass and polydispersity index of the telomer were determined by size exclusion

  2. Ion pair particles at the air–water interface

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Francisco, Joseph S.

    2017-11-01

    Although the role of methanesulfonic acid (HMSA) in particle formation in the gas phase has been extensively studied, the details of the HMSA-induced ion pair particle formation at the air–water interface are yet to be examined. In this work, we have performed Born–Oppenheimer molecular dynamics simulations and density functional theory calculations to investigate the ion pair particle formation from HMSA and (R1)(R2)NH (for NH3, R1 = R2 = H; for CH3NH2, R1 = H and R2 = CH3; and for CH3NH2, R1 = R2 = CH3) at the air–water interface. The results show that, at the air–water interface, HMSA deprotonates within a few picoseconds and results in the formation of methanesulfonate ion (MSA‑)ṡṡH3O+ ion pair. However, this ion pair decomposes immediately, explaining why HMSA and water alone are not sufficient for forming stable particles in atmosphere. Interestingly, the particle formation from the gas-phase hydrogen-bonded complexes of HMSA with (R1)(R2)NH on the water droplet is observed with a few femtoseconds, suggesting a mechanism for the gas to particle conversion in aqueous environments. The reaction involves a direct proton transfer between HMSA and (R1)(R2)NH, and the resulting MSA‑ṡṡ(R1)(R2)NH2+ complex is bound by one to four interfacial water molecules. The mechanistic insights gained from this study may serve as useful leads for understanding about the ion pair particle formation from other precursors in forested and polluted urban environments.

  3. Photo-Responsive Soft Ionic Crystals: Ion-Pairing Assemblies of Azobenzene Carboxylates.

    PubMed

    Yamakado, Ryohei; Hara, Mitsuo; Nagano, Shusaku; Seki, Takahiro; Maeda, Hiromitsu

    2017-07-12

    This report delineates the design and synthesis of negatively charged azobenzene derivatives that form photo-responsive ion-pairing assemblies. The azobenzene carboxylates possessing aliphatic chains were prepared as photo-responsive anions that promote the formation of ion-pairing dimension-controlled assemblies, including mesophases, when used in conjunction with a tetrabutylammonium (TBA) cation. The photo-responsive properties of the ion pairs and the precursory carboxylic acids in the bulk state were examined by polarized optical microscopy (POM) and X-ray diffraction (XRD), demonstrating that liquid crystal (LC)-liquid and crystal-liquid phase transitions occurred, depending on the number and lengths of the aliphatic chains of each assembly. An ion pair exhibited photo-induced crystal-crystal phase transitions upon switching between two irradiation wavelengths (365/436 nm). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SEPARATION OF SOME RARE EARTHS BY REVERSED-PHASE PARTITION CHROMATOGRAPHY. Report No. 129/V; Rozdzielenie Niektorych Ziem Rzadkich za Pomoca Chromatografii Podzialowej z Odwroconymi Fazami

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siekierski, S.; Fidelis, I.

    1960-01-01

    The reversed phase partition chromatography was applied to the separation of small amounts of some rare earths. As a stationary phase TBP was used. and the elution was carried out with concentrated HNO/sub 3/. (auth)

  5. Pyrrolo-dC Metal-Mediated Base Pairs in the Reverse Watson-Crick Double Helix: Enhanced Stability of Parallel DNA and Impact of 6-Pyridinyl Residues on Fluorescence and Silver-Ion Binding.

    PubMed

    Yang, Haozhe; Mei, Hui; Seela, Frank

    2015-07-06

    Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ion chromatographic determination of hydroxide ion on monolithic reversed-phase silica gel columns coated with nonionic and cationic surfactants.

    PubMed

    Xu, Qun; Mori, Masanobu; Tanaka, Kazuhiko; Ikedo, Mikaru; Hu, Wenzhi; Haddad, Paul R

    2004-07-02

    The determination of hydroxide by ion chromatography (IC) is demonstrated using a monolithic octadecylsilyl (ODS)-silica gel column coated first with a nonionic surfactant (polyoxyethylene (POE)) and then with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)). This stationary phase, when used in conjunction with a 10 mmol/l sodium sulfate eluent at pH 8.2, was found to be suitable for the rapid and efficient separation of hydroxide from some other anions, based on a conventional ion-exchange mechanism. The peak directions and detection responses for these ions were in agreement with their known limiting equivalent ionic conductance values. Under these conditions, a linear calibration plot was obtained for hydroxide ion over the range 16 micromol/l to 15 mmol/l, and the detection limit determined at a signal-to-noise ratio of 3 was 6.4 micromol/l. The double-coated stationary phase described above was shown to be superior to a single coating of cetyltrimethylammonium bromide alone, in terms of separation efficiency and stability of the stationary phase. A range of samples comprising solutions of some strong and weak bases was analyzed by the proposed method and the results obtained were in good agreement with those obtained by conventional potentiometric pH measurement.

  7. Enhancing Sensitivity of Liquid Chromatography-Mass Spectrometry of Peptides and Proteins Using Supercharging Agents.

    PubMed

    Nshanian, Michael; Lakshmanan, Rajeswari; Chen, Hao; Ogorzalek Loo, Rachel R; Loo, Joseph A

    2018-04-01

    Trifluoroacetic acid (TFA) is often used as a mobile phase modifier to enhance reversed phase chromatographic performance. TFA adjusts solution pH and is an ion-pairing agent, but it is not typically suitable for electrospray ionization-mass spectrometry (ESI-MS) and liquid chromatography/MS (LC/MS) because of its significant signal suppression. Supercharging agents elevate peptide and protein charge states in ESI, increasing tandem MS (MS/MS) efficiency. Here, LC/MS protein supercharging was effected by adding agents to LC mobile phase solvents. Significantly, the ionization suppression generally observed with TFA was, for the most part, rescued by supercharging agents, with improved separation efficiency (higher number of theoretical plates) and lowered detection limits.

  8. Reverse-phase liquid chromatography with electrospray ionization/mass spectrometry for the quantification of pseudoephedrine in human plasma and application to a bioequivalence study.

    PubMed

    Kim, Jin-Ki; Jee, Jun-Pil; Park, Jeong-Sook; Kim, Hyung Tae; Kim, Chong-Kook

    2011-01-01

    A sensitive and selective reverse-phase liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated to quantify pseudoephedrine (CAS 90-82-4) in human plasma. Phenacetin was used as the internal standard (I.S.). Sample preparation was performed with a deproteinization step using acetonitrile. Pseudoephedrine and I.S. were successfully separated using gradient elution with 0.5% trifluoroacetic acid (TFA) in water and 0.5% TFA in methanol at a flow-rate of 0.2 mL/min. Detection was performed on a single quadrupole mass spectrometer by a selected ion monitoring (SIM) mode via electrospray ionization (ESI) source. The ESI source was set at positive ionization mode. The ion signals of m/z 166.3 and 180.2 were measured for the protonated molecular ions of pseudoephedrine and I.S., respectively. The lower limit of quantification (LLOQ) of pseudoephedrine in human plasma was 10 ng/mL and good linearity was observed in the range of concentrations 10-500 ng/mL (R2 = 1). The intra-day accuracy of the drug containing plasma samples was more than 97.60% with a precision of 3.99-11.82%. The inter-day accuracy was 99.36% or more, with a precision of 7.65-18.42%. By using this analytical method, the bioequivalence study of the pseudoephedrine preparation was performed and evaluated by statistical analysis of the log transformed mean ratios of pharmacokinetic parameters. All the results fulfilled the standard criteria of bioequivalence, being within the 80-125% range which is required by the Korea FDA, US FDA, and EMEA to conclude bioequivalence. Consequently, the developed reverse-phase LC-ESI-MS method was successfully applied to bioequivalence studies of pseudoephedrine in healthy male volunteers.

  9. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    PubMed

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Separation of betacyanins from purple flowers of Gomphrena globosa L. by ion-pair high-speed counter-current chromatography.

    PubMed

    Spórna-Kucab, Aneta; Jagodzińska, Joanna; Wybraniec, Sławomir

    2017-03-17

    Betacyanins, known as antioxidants and chemopreventive natural compounds with colourful properties, were extracted from purple flowers of Gomphrena globosa L. belonging to the Amaranthaceae family and separated for the first time by ion-pair high-speed counter-current chromatography (HSCCC). The pigments were detected by LC-DAD-ESI-MS/MS technique. Separation of betacyanins (300mg) by HSCCC was accomplished in four solvent systems: tert-butyl methyl ether - butanol - acetonitrile - water (0.7% and 1.0% HFBA - heptafluorobutyric acid - system I and III) and tert-butyl methyl ether - butanol - methanol - water (0.7% and 1.0% HFBA - system II and IV) (2:2:1:5, v/v/v/v) in the head-to-tail mode. The mobile phase (aqueous phase) was run at 2.0ml/min and the column rotation speed was 860rpm. The applied systems enabled to study the influence of HFBA concentration as well as systems polarity on betacyanins separation. Comparison of the systems containing 0.7% HFBA (systems I-II) demonstrates that the replacement of acetonitrile by methanol increases the resolution (R s ) between all betacyanins and does not influence the retention of the stationary phase (S f =76%). Higher concentration of the acid in systems III-IV slightly decreases S f to 71% in the systems with 1.0% HFBA. Comparison of the resolution values for betacyanins in the systems with 0.7% and 1.0% HFBA demonstrates that higher concentration of the acid improves the separation effectiveness for all betacyanins as a result of increasing of the chemical affinity of the pigments to the organic stationary phase in HSCCC. The systems III-IV with 1% HFBA are the most effective for the separation of all the studied betacyanins. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterization of retentivity of reversed phase liquid chromatography columns.

    PubMed

    Ying, P T; Dorsey, J G

    1991-03-01

    There are dozens of commercially available reversed phase columns, most marketed as C-8 or C-18 materials, but with no useful way of classifying their retentivity. A useful way of ranking these columns in terms of column "strength" or retentivity is presented. The method utilizes a value for ln k'(w), the estimated retention of a solute from a mobile phase of 100% water, and the slope of the plot of ln k' vsE(T)(30), the solvent polarity. The method is validated with 26 solutes varying in ln k'(w) from about 2 to over 20, on 14 different reversed phase columns. In agreement with previous work, it is found that the phase volume ratio of the column is the most important parameter in determining retentivity. It is strongly suggested that manufacturers adopt a uniform method of calculating this value and that it be made available in advertising, rather than the uninterpretable "% carbon".

  12. Formation of iron complexs from trifluoroacetic acid based liquid chromatography mobile phases as interference ions in liquid chromatography/electrospray ionization mass spectrometric analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil K.; Zhang, Rui; Orton, Daniel J.

    Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization-mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are not due to any contamination from solvents and chemicals used for mobile and stationary phases or from the laboratory atmospheric environment. Instead these ions are clusters of trifluoroacetic acid formed in association with acetonitrile, water and iron from the stainless steel union used to connect the column with the electrospray tip and to applymore » high voltage; the molecular formulae are Fe+((OH)(H2O)2)9(CF3COOH)5 and Fe+((OH)(H2O)2)6 (CF3COOH)5.« less

  13. Thermodynamic and kinetic characterization of polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography.

    PubMed

    Howerton, Samuel B; McGuffin, Victoria L

    2003-07-15

    The retention of six polycyclic aromatic hydrocarbons (PAHs) was characterized by reversed-phase liquid chromatography. The PAHs were detected by laser-induced fluorescence at four points along an optically transparent capillary column. The profiles were characterized in space and time using an exponentially modified Gaussian equation. The resulting parameters were used to calculate the retention factors, as well as the concomitant changes in molar enthalpy and molar volume, for each PAH on monomeric (2.7 micromol/m2) and polymeric (5.4 micromol/m2) octadecylsilica. The changes in molar enthalpy become more exothermic as ring number increases and as annelation structure becomes less condensed. The changes in molar volume become more negative as ring number increases for the planar PAHs, but are positive for the nonplanar solutes. In addition, the rate constants, as well as the concomitant activation enthalpy and activation volume, are calculated for the first time. The kinetic data demonstrate that many of the PAHs exhibit very fast transitions between the mobile and stationary phases. The transition state is very high in energy, and the activation enthalpies and volumes become greater as ring number increases and as annelation structure becomes less condensed. The changes in thermodynamic and kinetic behavior are much more pronounced for the polymeric phase than for the monomeric phase.

  14. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  15. A method for determining regioisomer abundances of polyunsaturated triacylglycerols in omega-3 enriched fish oils using reversed-phase liquid chromatography and triple-stage mass spectrometry.

    PubMed

    Cubero Herrera, Lisandra; Ramaley, Louis; Potvin, Michael A; Melanson, Jeremy E

    2013-08-15

    Reversed-phase high performance liquid chromatography (RP-HPLC), followed by post-column addition of lithium salts and electrospray ionisation triple-stage mass spectrometry (ESI-MS(3)) of lithiated TAG adducts, is shown to provide a useful method for the positional analysis of triacylglycerols (TAGs) in fish oils containing eicosapentaenoic (EPA, 20:5) and docosahexaenoic acids (DHA, 22:6). One prominent fragmentation pathway in the ESI-MS(3) of these adduct ions involves the loss of a fatty acid from the sn-1/3 position in the first step followed by the loss of an α,β-unsaturated fatty acid from the sn-2 position in the second. Regioisomeric TAGs of the type ABA and AAB produced abundant product ions - [ABA+Li-RACOOH-R'BCHCHCOOH](+) and [AAB+Li-RACOOH-R'ACHCHCOOH](+) - the relative intensities of which were dependent on the position of acyl substituents. Standard solutions of TAGs containing different ratios of the regioisomeric pairs MME/MEM, PPE/PEP, PPD/PDP, EEP/EPE and DDP/DPD (M=14:0, P=16:0, E=20:5, D=22:6) were analysed by ESI-MS(3) with a quadrupole linear ion trap instrument. Methodology developed on the standards was applied to quantifying the relative isomeric abundances of EPA and DHA in several fish oil samples. DHA was preferentially located at the sn-2 position in both DHA-containing TAGs studied, while EPA was either observed at near equal levels in all positions, or predominantly at the sn-1 and -3 positions in some cases. The analysis protocol allows for quantification of the designated regioisomers in one simple, rapid chromatographic procedure using a single column and has the advantage of specificity over other methods for the positional analysis of TAGs, since it eliminates interferences associated with co-eluting TAGs of the same molecular weight that yield isobaric diacylglycerol-like product ions. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. High-performance liquid chromatography analysis methods developed for quantifying enzymatic esterification of flavonoids in ionic liquids.

    PubMed

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2008-07-11

    Methods using reversed-phase high-performance liquid chromatography (RP-HPLC) with ELSD were investigated to quantify enzymatic reactions of flavonoids with fatty acids in the presence of diverse room temperature ionic liquids (RTILs). A buffered salt (preferably triethylamine-acetate) was found essential for separation of flavonoids from strongly polar RTILs, whereby RTILs were generally visible as two major peaks identified based on an ion-pairing/exchanging hypothesis. C8 and C12 stationary phases were optimal while mobile phase pH (3-7) had only a minor influence on separation. The method developed was successfully applied for primary screening of RTILs (>20), with in depth evaluation of substrates in 10 RTILs, for their evaluation as reaction media.

  17. Preparation and evaluation of diblock copolymer-grafted silica by sequential surface initiated-atom transfer radical polymerization for reverse-phase/ion-exchange mixed-mode chromatography.

    PubMed

    Bo, Chun Miao; Wang, Chaozhan; Wei, Yin Mao

    2017-12-01

    A novel approach that involved the grafting of diblock copolymer with two types of monomer onto substrate by sequential surface initiated-atom transfer radical polymerization was proposed to prepare a mixed-mode chromatographic stationary phase. The distinguishing feature of this method is that it can be applied in the preparation of various mixed-mode stationary phases. In this study, a new reverse-phase/ion-exchange stationary phase was prepared by grafting hydrophobic styrene and cationic sodium 4-styrenesulfonate by the proposed approach onto silica surface. The chromatographic properties of the prepared stationary phase were evaluated by the separation of benzene derivatives, anilines, and β-agonists, and by the effect of pH values and acetonitrile content on the retention. Compared with typical RP columns, the prepared stationary phase achieved the better resolution and higher selectivity at a shorter separation time and lower organic content. Moreover, the application of the prepared column was proved by separating widely distributed polar and charged compounds simultaneously. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rapid Quantitative Analysis of Naringenin in the Fruit Bodies of Inonotus vaninii by Two-phase Acid Hydrolysis Followed by Reversed Phase-high Performance Liquid Chromatography-ultra Violet.

    PubMed

    Guohua, Xia; Pan, Ruirong; Bao, Rui; Ge, Yanru; Zhou, Cunshan; Shen, Yuping

    2017-01-01

    Sanghuang is one of mystical traditional Chinese medicines recorded earliest 2000 years ago, that included various fungi of Inonotus genus and was well-known for antitumor effect in modern medicine. Inonotus vaninii is grown in natural forest of Northeastern China merely and used as Sanghuang commercially, but it has no quality control specification until now. This study was to establish a rapid method of two-phase acid hydrolysis followed by reversed phase-high performance liquid chromatography-ultra violet (RP-HPLC-UV) to quantify naringenin in the fruit body of I. vaninii . Sample solution was prepared by pretreatment of raw material in two-phase acid hydrolysis and the hydrolysis technology was optimized. After reconstitution, analysis was performed using RP-HPLC-UV. The method validation was investigated and the naringenin content of sample and comparison were determined. The naringenin was obtained by two-phase acid hydrolysis method, namely, 10.0 g of raw material was hydrolyzed in 200 mL of 1% sulfuric acid aqueous solution (v/v) and 400 mL of chloroform in oil bath at 110°C for 2 h. Good linearity ( r = 0.9992) was achieved between concentration of analyte and peak area. The relative standard deviation (RSD) of precision was 2.47% and the RSD of naringenin contents for repeatability was 3.13%. The accuracy was supported with recoveries at 96.37%, 97.30%, and 99.31%. The sample solution prepared using the proposed method contained higher content of naringenin than conventional method and was stable for 8 h. Due to the high efficiency of sample preparation and high reliability of the HPLC method, it is feasible to use this method for routine analysis of naringenin in the fungus. A convenient two-phase acid hydrolysis was employed to produce naringenin from raw material, and then an efficient and reliable reversed phase-high performance liquid chromatography-ultra violet method was established to monitor naringenin in the fruit bodies of Inonotus vaninii

  19. Ion-pair hollow-fiber liquid-phase microextraction of the quaternary ammonium surfactant dicocodimethylammonium chloride.

    PubMed

    Hultgren, Sofie; Larsson, Niklas; Nilsson, Bo F; Jönsson, Jan Ake

    2009-02-01

    A two-phase hollow-fiber (HF) liquid-phase microextraction (LPME) method was developed for determination of a quaternary ammonium compound surfactant, dicocodimethylammonium chloride, in aqueous samples. The porous HF was fixed on a metal rod support and was impregnated with approximately 6.6 microL of organic extractant, which was immobilized in the HF pores. Surfactant extraction was facilitated by addition of carboxylic acid to the sample forming neutral ion pairs with the quaternary ammonium compound. After extraction, the analyte was transferred from the organic extractant in the fiber pores by dissolving the 1-octanol into 100 microL methanol. The methanol extract was analyzed by liquid chromatography-mass spectrometry. The method was optimized (with optimized parameters in brackets) with regard to type of organic extractant (1-octanol), fiber length (2 cm), choice and concentration of anionic carrier (600 microg L(-1) octanoate), procedure of transfer to methanol (15-min sonication), sample volume (250 mL), extraction time (17 h), pH (10), and ionic strength (50 mM carbonate). Aspects influencing repeatability in LPME of (quaternary ammonium) surfactants are discussed. The enrichment factor achieved in 250-mL carbonate buffer was around 400. Due to matrix effects, the enrichment factors achieved when industrial process water was analyzed were 120 or about 30% of that in carbonate buffer. Detection limits of 0.3 microg L(-1) in carbonate buffer and 0.9 microg L(-1) in industrial process water were obtained. If the studied compound is seen as a model substance representing quaternary dialkylated dimethylated ammonium surfactants in general, the developed method may be applied to other quaternary ammonium surfactants.

  20. Application of a cholesterol stationary phase in the analysis of phosphorothioate oligonucleotides by means of ion pair chromatography coupled with tandem mass spectrometry.

    PubMed

    Studzińska, Sylwia; Krzemińska, Katarzyna; Szumski, Michał; Buszewski, Bogusław

    2016-07-01

    The main aim of this study was the investigation of the influence of several ion pair reagents towards both the retention and the mass spectrometry sensitivity of phosphorothioate oligonucleotides. A cholesterol stationary phase was applied for the first time in the analysis of this group of compounds. The mobile phase composition was modified by changing the concentration and the type of amines and acetates or 1,1,1,3,3,3-hexafluoroisopropanol. It has been shown that the increase of amines concentration results in the retention factor increase for each oligonucleotide, on each adsorbent. The only exception was the mobile phase composed of triethylamine and 1,1,1,3,3,3-hexafluoroisopropanol. This is a consequence of interactions taking place between a cholesterol molecule and an alcohol. This effect was convenient when the mass spectrometry detection was applied, since it allowed an increase in the sensitivity. Moreover, optimization of the mobile phase composition and its impact on the efficiency of ionization process and on the sensitivity in mass spectrometry were also presented. The optimization of this new method, based on cholesterol stationary phase coupled with mass spectrometry detection, was finally applied for the determination of phosphorothioate oligonucleotides impurity in a real sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Study of Separation and Identification of the Active Ingredients in Gardenia jasminoides Ellis Based on a Two-Dimensional Liquid Chromatography by Coupling Reversed Phase Liquid Chromatography and Hydrophilic Interaction Liquid Chromatography.

    PubMed

    Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai

    2017-01-01

    In this paper, by coupling reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), a two-dimensional liquid chromatography system was developed for separation and identification of the active ingredients in Gardenia jasminoides Ellis (GJE). By applying the semi-preparative C18 column as the first dimension and the core-shell column as the second dimension, a total of 896 peaks of GJE were separated. Among the 896 peaks, 16 active ingredients including geniposide, gardenoside, gardoside, etc. were identified by mass spectrometry analysis. The results indicated that the proposed two-dimensional RPLC/HILIC system was an effective method for the analysis of GJE and might hold a high potential to become a useful tool for analysis of other complex mixtures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Marcus Theory of Ion-Pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.

    We present a theory for ion pair dissociation and association, motivated by the concepts of the Marcus theory of electron transfer. Despite the extensive research on ion-pairing in many chemical and biological processes, much can be learned from the exploration of collective reaction coordinates. To this end, we explore two reaction coordinates, ion pair distance and coordination number. The study of the correlation between these reaction coordinates provides a new insight into the mechanism and kinetics of ion pair dissociation and association in water. The potential of mean force on these 2D-surfaces computed from molecular dynamics simulations of different monovalentmore » ion pairs reveal a Marcus-like mechanism for ion-pairing: Water molecules rearrange forming an activated coordination state prior to ion pair dissociation or association, followed by relaxation of the coordination state due to further water rearrangement. Like Marcus theory, we find the existence of an inverted region where the transition rates are slower with increasing exergonicity. This study provides a new perspective for the future investigations of ion-pairing and transport. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). The research was performed using PNNL Institutional Computing. PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.« less

  3. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    PubMed

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Highly Reversible Zinc-ion Intercalation with Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yingwen; Luo, Langli; Zhong, Li

    We demonstrate the application of the Chevrel phase Mo6S8 nanocubes as the anode material for rechargeable Zn-ion batteries. Mo6S8 can host Zn2+ ions reversibility both in aqueous and nonaqueous electrolytes with specific capacities around 90 mAh/g and exhibited remarkable intercalation kinetics as well as stability. Furthermore, we assembled full cells by integrating Mo6S8 anode with zinc-polyiodide (I-/I3-) based catholytes, and demonstrated that such fuel cells was also able to deliver outstanding rate performance and cyclic stability. This first demonstration of zinc intercalating anode could inspire the design of advanced Zn ion batteries.

  5. Determination of methylglyoxal-bis(guanylhydrazone) in body fluids by ion-pair chromatography.

    PubMed

    Roboz, J; Wu, K T; Hart, R D

    1980-01-01

    Methylglyoxal-bis(guanylhydrazone), Methyl-G, is a potent antineoplastic agent currently undergoing Phase l clinical trials. Serum, ascitic and pleural fluids, and urine are deproteinized with methanol, supernatant is evaporated, residue is redissolved in the eluent, lipids are removed with carbon tetrachloride, and an aliquot of the aqueous layer injected into the chromatograph. Ethylglyoxal-bis(guanylhydrazone) (Ethyl-G) is the internal standard. The mobile phase is a mixture of an aqueous buffer (containing 0.004 M heptane and pentane sulfonic acid, 90%:10%, buffered to pH 3.5) and methanol (68%:32%). The ion-pair complex is retained on a micro Bondapak C18 column, eluted with a flow of 2.0 mL/min. Absorbance is measured at 280 nm. Detectability: 30 ng/mL (0.11 micro M) in serum, ascitic and pleural fluids, 300 ng/mL (1.1 micro M) in urine. Calibration curves (peak height ratios of Methyl-G/Ethyl-G plotted against known drug concentrations) were linear in the 0.1-30 microg/mL range. Correlation coefficinets were 0.999; coefficients of variation for reproducibility were less than 5%. Residual blood levels of Methyl-G persist for several days. Methyl-G was found to pass into ascitic fluid.

  6. Systematic evaluation of matrix effects in hydrophilic interaction chromatography versus reversed phase liquid chromatography coupled to mass spectrometry.

    PubMed

    Periat, Aurélie; Kohler, Isabelle; Thomas, Aurélien; Nicoli, Raul; Boccard, Julien; Veuthey, Jean-Luc; Schappler, Julie; Guillarme, Davy

    2016-03-25

    Reversed phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the gold standard technique in bioanalysis. However, hydrophilic interaction chromatography (HILIC) could represent a viable alternative to RPLC for the analysis of polar and/or ionizable compounds, as it often provides higher MS sensitivity and alternative selectivity. Nevertheless, this technique can be also prone to matrix effects (ME). ME are one of the major issues in quantitative LC-MS bioanalysis. To ensure acceptable method performance (i.e., trueness and precision), a careful evaluation and minimization of ME is required. In the present study, the incidence of ME in HILIC-MS/MS and RPLC-MS/MS was compared for plasma and urine samples using two representative sets of 38 pharmaceutical compounds and 40 doping agents, respectively. The optimal generic chromatographic conditions in terms of selectivity with respect to interfering compounds were established in both chromatographic modes by testing three different stationary phases in each mode with different mobile phase pH. A second step involved the assessment of ME in RPLC and HILIC under the best generic conditions, using the post-extraction addition method. Biological samples were prepared using two different sample pre-treatments, i.e., a non-selective sample clean-up procedure (protein precipitation and simple dilution for plasma and urine samples, respectively) and a selective sample preparation, i.e., solid phase extraction for both matrices. The non-selective pretreatments led to significantly less ME in RPLC vs. HILIC conditions regardless of the matrix. On the contrary, HILIC appeared as a valuable alternative to RPLC for plasma and urine samples treated by a selective sample preparation. Indeed, in the case of selective sample preparation, the compounds influenced by ME were different in HILIC and RPLC, and lower and similar ME occurrence was generally observed in RPLC vs. HILIC for urine and plasma samples

  7. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry for peptide de novo amino acid sequencing for a seven-protein mixture by paired single-residue transposed Lys-N and Lys-C digestion.

    PubMed

    Guan, Xiaoyan; Brownstein, Naomi C; Young, Nicolas L; Marshall, Alan G

    2017-01-30

    Bottom-up tandem mass spectrometry (MS/MS) is regularly used in proteomics to identify proteins from a sequence database. De novo sequencing is also available for sequencing peptides with relatively short sequence lengths. We recently showed that paired Lys-C and Lys-N proteases produce peptides of identical mass and similar retention time, but different tandem mass spectra. Such parallel experiments provide complementary information, and allow for up to 100% MS/MS sequence coverage. Here, we report digestion by paired Lys-C and Lys-N proteases of a seven-protein mixture: human hemoglobin alpha, bovine carbonic anhydrase 2, horse skeletal muscle myoglobin, hen egg white lysozyme, bovine pancreatic ribonuclease, bovine rhodanese, and bovine serum albumin, followed by reversed-phase nanoflow liquid chromatography, collision-induced dissociation, and 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. Matched pairs of product peptide ions of equal precursor mass and similar retention times from each digestion are compared, leveraging single-residue transposed information with independent interferences to confidently identify fragment ion types, residues, and peptides. Selected pairs of product ion mass spectra for de novo sequenced protein segments from each member of the mixture are presented. Pairs of the transposed product ions as well as complementary information from the parallel experiments allow for both high MS/MS coverage for long peptide sequences and high confidence in the amino acid identification. Moreover, the parallel experiments in the de novo sequencing reduce false-positive matches of product ions from the single-residue transposed peptides from the same segment, and thereby further improve the confidence in protein identification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Determination of perchlorate in drinking water by ion chromatography using macrocycle-based concentration and separation methods.

    PubMed

    Lamb, John D; Simpson, David; Jensen, Bryce D; Gardner, Joseph S; Peterson, Quinn P

    2006-06-16

    Macrocycle-based ion chromatography provides a convenient, reliable method for the determination of perchlorate ion, which is currently of great interest to the environmental community. This study shows that effective perchlorate determinations can be made using standard conductimetric detection by combining an 18-crown-6-based mobile phase with an underivatized reversed-phase mobile phase ion chromatography (MPIC) column. One unique feature of this method is the flexibility in column capacity that is achieved through simple variations in eluent concentrations of 18-crown-6 and KOH, facilitating the separation of target analyte anions such as perchlorate. Using a standard anion exchange column as concentrator makes possible the determination of perchlorate as low as 0.2 ug/L in low ionic strength matrices. Determination of perchlorate at the sub-ug/L level in pure water and in spiked local city hard water samples with high background ion concentrations can be achieved this way. However, like other IC techniques, this method is challenged to achieve analyses at the ug/L level in the demanding high ionic strength matrix described by the United States Environmental Protection Agency (EPA) (1,000 mg/L chloride, sulfate and carbonate). We approached this challenge by use of the Cryptand C1 concentrator column, provided by Dionex Corporation, to effectively preconcentrate perchlorate while reducing background ion concentrations in the high ionic strength matrix. The retention characteristics of the concentrator column were studied in order to maximize its effectiveness for perchlorate determinations. The method makes possible the determination of perchlorate at the 5 ug/L level in the highest ionic strength matrix described by the EPA.

  9. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography.

    PubMed

    Rey, M A

    2001-06-22

    One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.

  10. Online combination of reversed-phase/reversed-phase and porous graphitic carbon liquid chromatography for multicomponent separation of proteomics and glycoproteomics samples.

    PubMed

    Lam, Maggie P Y; Lau, Edward; Siu, S O; Ng, Dominic C M; Kong, Ricky P W; Chiu, Philip C N; Yeung, William S B; Lo, Clive; Chu, Ivan K

    2011-11-01

    In this paper, we describe an online combination of reversed-phase/reversed-phase (RP-RP) and porous graphitic carbon (PGC) liquid chromatography (LC) for multicomponent analysis of proteomics and glycoproteomics samples. The online RP-RP portion of this system provides comprehensive 2-D peptide separation based on sequence hydrophobicity at pH 2 and 10. Hydrophilic components (e.g. glycans, glycopeptides) that are not retained by RP are automatically diverted downstream to a PGC column for further trapping and separation. Furthermore, the RP-RP/PGC system can provide simultaneous extension of the hydropathy range and peak capacity for analysis. Using an 11-protein mixture, we found that the system could efficiently separate native peptides and released N-glycans from a single sample. We evaluated the applicability of the system to the analysis of complex biological samples using 25 μg of the lysate of a human choriocarcinoma cell line (BeWo), confidently identifying a total of 1449 proteins from a single experiment and up to 1909 distinct proteins from technical triplicates. The PGC fraction increased the sequence coverage through the inclusion of additional hydrophilic sequences that accounted for up to 6.9% of the total identified peptides from the BeWo lysate, with apparent preference for the detection of hydrophilic motifs and proteins. In addition, RP-RP/PGC is applicable to the analysis of complex glycomics samples, as demonstrated by our analysis of a concanavalin A-extracted glycoproteome from human serum; in total, 134 potentially N-glycosylated serum proteins, 151 possible N-glycosylation sites, and more than 40 possible N-glycan structures recognized by concanavalin A were simultaneously detected. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    PubMed

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography.

    PubMed

    Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin

    2018-04-01

    The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.

  13. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, R. E.

    1987-10-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. IC provides results on ions not expected in the production solutions. Thus, solution contamination and breakdown products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet blasting to roughen up the surface, 20 mu in. of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 in. of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for total fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  14. Purification of an Immunoadjuvant Saponin Fraction from Quillaja brasiliensis Leaves by Reversed-Phase Silica Gel Chromatography.

    PubMed

    Yendo, Anna C A; de Costa, Fernanda; Kauffmann, Carla; Fleck, Juliane D; Gosmann, Grace; Fett-Neto, Arthur G

    2017-01-01

    Saponins include a large variety of molecules that find several applications in pharmacology. The use of Quillaja saponaria saponins as immunological adjuvants in vaccines is of interest due to their capacity to stimulate both humoral and cellular responses. The congener species Q. brasiliensis has saponins with chemical similarities and adjuvant activity comparable to that of Q. saponaria fraction Quil-A ® , with additional advantages of showing lower toxicity and reduced hemolytic activity. Here we describe in detail the methods for preparing the aqueous extract from Q. brasiliensis leaves, as well as the purification of the bioactive saponin fraction QB-90 using silica reversed-phase chromatography.

  15. A strategy for identification and structural characterization of compounds from Gardenia jasminoides by integrating macroporous resin column chromatography and liquid chromatography-tandem mass spectrometry combined with ion-mobility spectrometry.

    PubMed

    Wang, Lu; Liu, Shu; Zhang, Xueju; Xing, Junpeng; Liu, Zhiqiang; Song, Fengrui

    2016-06-24

    In this paper, an analysis strategy integrating macroporous resin (AB-8) column chromatography and high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) combined with ion mobility spectrometry (IMS) was proposed and applied for identification and structural characterization of compounds from the fruits of Gardenia jasminoides. The extracts of G. jasminoides were separated by AB-8 resin column chromatography combined with reversed phase liquid chromatography (C18 column) and detected by electrospray ionization tandem mass spectrometry. Additionally, ion mobility spectrometry (IMS) was employed as a supplementary separation technique to discover previously undetected isomers from the fruits of G. jasminoides. A total of 71 compounds, including iridoids, flavonoids, triterpenes, monoterpenoids, carotenoids and phenolic acids were identified by the characteristic high resolution mass spectrometry and the ESI-MS/MS fragmentations. In conclusion, the IMS-MS technique achieved the separation of isomers in crocin-3 and crocin-4 according to their acquired mobility drift times differing from classical analysis by mass spectrometry. The proposed strategy can be used as a highly sensitive and efficient procedure for identification and separation isomeric components in extracts of herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Assessment of intra-particle diffusion in hydrophilic interaction liquid chromatography and reversed-phase liquid chromatography under conditions of identical packing structure.

    PubMed

    Song, Huiying; Desmet, Gert; Cabooter, Deirdre

    2017-11-10

    A recently developed stripping protocol to completely remove the stationary phase of reversed-phase liquid chromatography (RPLC) columns and turn them into hydrophilic interaction liquid chromatography (HILIC) columns with identical packing characteristics is used to study the underlying mechanisms of intra-particle diffusion in RPLC and HILIC. The protocol is applied to a column with a large geometrical volume (250×4.6mm, 5μm) to avoid extra-column effects and for compounds with a broad range in retention factors (k" from ∼0.6 to 8). Three types of behavior for the intra-particle diffusion (D part /D m ) in RPLC versus HILIC can be distinguished: for nearly unretained compounds (k"<0.6), intra-particle diffusion in HILIC is larger than in RPLC; for compounds with intermediate retention behavior (k"∼0.9-1.2), intra-particle diffusion in HILIC and RPLC are similar; and for well retained compounds (k">1.8), intra-particle diffusion in RPLC is larger than in HILIC. To explain these observations, diffusion in the stationary phase (γ s D s ) and in the stagnant mobile phase in the mesopore zone (γ mp D m ) are deduced from experimentally determined values of the intra-particle diffusion, using models derived from the Effective Medium Theory. It is demonstrated that the larger intra-particle diffusion obtained for slightly retained compounds under HILIC conditions is caused by the higher mesopore diffusion in HILIC (γ mp =0.474 for HILIC versus 0.435 for RPLC), while the larger intra-particle diffusion obtained for strongly retained compounds under RPLC conditions can be related to the much higher stationary phase diffusion in RPLC (γ s D s /D m =0.200 for RPLC versus 0.113 for HILIC). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics.

    PubMed

    Kahsay, Getu; Song, Huiying; Van Schepdael, Ann; Cabooter, Deirdre; Adams, Erwin

    2014-01-01

    This paper presents a general overview of the application of hydrophilic interaction chromatography (HILIC) in the analysis of antibiotics in different sample matrices including pharmaceutical, plasma, serum, fermentation broths, environmental water, animal origin, plant origin, etc. Specific applications of HILIC for analysis of aminoglycosides, β-lactams, tetracyclines and other antibiotics are reviewed. HILIC can be used as a valuable alternative LC mode for separating small polar compounds. Polar samples usually show good solubility in the mobile phase containing some water used in HILIC, which overcomes the drawbacks of the poor solubility often encountered in normal phase LC. HILIC is suitable for analyzing compounds in complex systems that elute near the void in reversed-phase chromatography. Ion-pair reagents are not required in HILIC which makes it convenient to couple with MS hence its increased popularity in recent years. In this review, the retention mechanism in HILIC is briefly discussed and a list of important applications is provided including main experimental conditions and a brief summary of the results. The references provide a comprehensive overview and insight into the application of HILIC in antibiotics analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Deproteinizing methods evaluated for determination of uric acid in serum by reversed-phase liquid chromatography with ultraviolet detection.

    PubMed

    Sakuma, R; Nishina, T; Kitamura, M

    1987-08-01

    We evaluated six deproteinizing methods for determination of uric acid in serum by "high-performance" liquid chromatography with ultraviolet detection: those involving zinc hydroxide, sodium tungstate, trichloroacetic acid, perchloric acid, acetonitrile, and centrifugal ultrafiltration (with Amicon MPS-1 devices). We used a Toyosoda ODS-120A reversed-phase column. The mobile phase was sodium phosphate buffer (40 mmol/L, pH 2.2) containing 20 mL of methanol per liter. Absorbance of the eluate was monitored at 284 nm. The precipitation method with perchloric acid gave high recoveries of uric acid and good precision, and results agreed with those by the uricase-catalase method of Kageyama (Clin Chim Acta 1971;31:421-6).

  19. Heteroditopic receptors for ion-pair recognition.

    PubMed

    McConnell, Anna J; Beer, Paul D

    2012-05-21

    Ion-pair recognition is a new field of research emerging from cation and anion coordination chemistry. Specific types of heteroditopic receptor designs for ion pairs and the complexity of ion-pair binding are discussed to illustrate key concepts such as cooperativity. The importance of this area of research is reflected by the wide variety of potential applications of ion-pair receptors, including applications as membrane transport and salt solubilization agents and sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The influence of addition of ion-pairing acid and organic modifier of the mobile phase on retention and migration of peptides in pressurized planar electrochromatography system with octadecyl silica-based adsorbent.

    PubMed

    Gwarda, Radosław Ł; Dzido, Tadeusz H

    2018-07-13

    In our previous papers we have investigated the influence of the mobile phase composition on mechanism of retention, selectivity and efficiency of peptide separation in various high-performance thin-layer chromatography (HPTLC) systems with commercially available silica-based adsorbents. We have also investigated the influence of pH of the mobile phase buffer on migration and separation of peptides in pressurized planar electrochromatography (PPEC). Here we investigate the influence of concentration of ion-pairing additive, and concentration and type of organic modifier of the mobile phase on migration of peptides in PPEC system with octadecyl silica-based adsorbent, and with the same set of the solutes as before. We compare our current results with the results obtained before for similar HPTLC and PPEC systems, and discuss the influence of particular variables on retention, electrophoretic mobility of solutes and electroosmotic flow of the mobile phase. We show, that the final selectivity of peptide separation results from co-influence of all the three factors mentioned. Concentration of organic modifier of the mobile phase, as well as concentration of ion-pairing additive, affect the retention, the electrophoretic mobility, and the electroosmotic flow simultaneously. This makes independent optimization of these factors rather difficult. Anyway PPEC offers much faster separation of peptides with quite different selectivity, in comparison to HPTLC, with similar adsorbents and similar mobile phase composition. However, we also present and discuss the issue of extensive tailing of peptide zones in the PPEC in comparison to similar HPTLC systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Considerations on comprehensive and off-line supercritical fluid chromatography x reversed-phase liquid chromatography for the analysis of triacylglycerols in fish oil.

    PubMed

    François, Isabelle; Pereira, Alberto dos Santos; Sandra, Pat

    2010-06-01

    The separation of the triacylglycerols in fish oil was performed by comprehensive and off-line supercritical fluid chromatography combined with RP-LC. The first dimension consisted of two serially coupled silver-ion (SI)-loaded columns operated with a supercritical mobile phase (supercritical fluid chromatography, SFC) in both the cases, whereas the second dimension was performed in non-aqueous RP mode (NARP-LC) on a 10-cm monolithic octadecyl silica (ODS) or a 45-cm long ODS column packed with 1.8 microm particles for the comprehensive and off-line separations, respectively. Despite the outstanding performance of the SI-SFC x NARP-LC interface, the high complexity of the sample rendered the online separation far from complete. The off-line approach gave much better separation mainly because of the higher peak capacity of the second-dimension column, but even in this case, the use of MS was mandatory to elucidate the different triacylglycerols in fish oil. The disadvantage of the off-line procedure was the long analysis time.

  2. Comparative study of solvation parameter models accounting the effects of mobile phase composition in reversed-phase liquid chromatography.

    PubMed

    Torres-Lapasió, J R; Ruiz-Angel, M J; García-Alvarez-Coque, M C

    2007-09-28

    Solvation parameter models relate linearly compound properties with five fundamental solute descriptors (excess molar refraction, dipolarity/polarizability, effective hydrogen-bond acidity and basicity, and McGowan volume). These models are widely used, due to the availability of protocols to obtain the descriptors, good performance, and general applicability. Several approaches to predict retention in reversed-phase liquid chromatography (RPLC) as a function of these descriptors and mobile phase composition are compared, assaying the performance with a set of 146 organic compounds of diverse nature, eluted with acetonitrile and methanol. The approaches are classified in two groups: those that only allow predictions of retention for the mobile phases used to build the models, and those valid at any other mobile phase composition. The first group includes the use of ratios between the regressed coefficients of the solvation models that are assumed to be characteristic for a column/solvent system, and the application of offsets to transfer the retention from a reference mobile phase to any other. Maximal accuracy in predictions corresponded, however, to the approaches in the second group, which were based on models that describe the retention as a function of mobile phase composition (expressed as the solvent volume fraction or a normalised polarity measurement), where the coefficients were made dependent on the solvent descriptors. The study revealed the properties that influence the retention and distinguish the particular behaviour of acetonitrile and methanol in RPLC.

  3. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  4. Analysis of urinary metanephrines by reversed-phase high-performance liquid chromatography and electrochemical detection.

    PubMed

    Bertani-Dziedzic, L M; Krstulovic, A M; Dziedzic, S W; Gitlow, S E; Cerqueira, S

    1981-02-19

    A sensitive and specific direct analysis of urinary normetanephrine (NMN) and metanephrine (MN) was achieved utilizing reversed-phase high performance liquid chromatography and electrochemical detection. Individual specimens from "control" subjects and those with pheochromocytoma were hydrolyzed and the metanephrines separated from other urinary constituents by elution with ammonia from a Dowex CG-50 resin. Chromatographic peaks were identified by retention behavior, co-chromatography with reference compounds, ratio of responses at various oxidation potentials and stopped-flow UV spectra of the collected fractions. The NMN and MN content for the control subjects was between 0.086 and 0.21 (mean - 0.14) microgram/mg creatinine and 0.012 and 0.092 (mean = 0.039) microgram/mg creatinine, respectively. The values for subjects with pheochromocytoma varied from 1.5 to 27.5 (mean = 9.9) microgram/mg creatinine for NMN and 0.10 to 1.60 (mean = 0.86) microgram/mg creatine for MN. The patient with ganglioneuroma had an NMN of 4.1 and an MN of 0.80 microgram/mg creatinine. While this method permits discrimination between those patients with pheochromocytoma and the overwhelming majority of hypertensive patients, it may ultimately be further extended to separate normal subjects from those with more subtle derangements in catecholamine metabolism.

  5. Ion chromatography in the manufacture of multilayer circuit boards

    NASA Astrophysics Data System (ADS)

    Smith, Robert E.

    1990-01-01

    Ion chromatography (IC) has proven useful in analyzing chemical solutions used in the manufacture of multilayer circuit boards. Unlike other chemical quantification techniques, IC provides results on ions not expected in the production solutions. Thus, solution contamination and break-down products can be monitored in every phase of the circuit board manufacturing. During the first phase, epoxy laminates experience an etchback, first in chromic acid, which can be analyzed for trace chloride and sulfate, then in ammonium bifluoride/HCl, which can be analyzed for fluoride and chloride. Following a wet-blasting to roughen up the surface, 20 microinches of copper are deposited using an electroless bath. Again, IC is applicable for monitoring formate, tartarate, and sulfate levels. Next, an acid copper bath is used to electroplate the through holes with 0.001 inches of ductile copper. This bath is analyzed for trace chloride. Photoimaging is then performed, and the organic solvents used can be assayed for trace ionic chloride. Finally, a fluoroboric acid-based tin-lead bath is used to deposit a solderable alloy. This bath is analyzed for fluoroborate, tin, and lead. In addition, mobile phase ion chromatography (MPIC) is used to monitor the nonionic organic brighteners in the baths.

  6. Investigating the Retention Mechanisms of Liquid Chromatography Using Solid-Phase Extraction Cartridges

    ERIC Educational Resources Information Center

    O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep

    2009-01-01

    Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…

  7. Simultaneous determination of chloroquine and its three metabolites in human plasma, whole blood and urine by ion-pair high-performance liquid chromatography.

    PubMed

    Houzé, P; de Reynies, A; Baud, F J; Benatar, M F; Pays, M

    1992-02-14

    A method was developed for the separation and measurement of chloroquine and three metabolites (desethylchloroquine, bisdesethylchloroquine and 4-amino-7-chloroquinoline) in biological samples by ion-pair high-performance liquid chromatography with UV detection. The method uses 2,3-diaminoaphthalene as an internal standard and provides a limit of detection between 1 and 2 ng/ml for chloroquine and its metabolites. The assay was linear in the range 12.5-250 ng/ml and the analytical recovery and reproducibility were sufficient. The assay was applied to the analysis of biological samples from a patient undergoing chloroquine chemoprophylaxis and a patient who had ingested chloroquine in a suicide attempt.

  8. Ultra-trace level determination of diquat and paraquat residues in surface and drinking water using ion-pair liquid chromatography with tandem mass spectrometry: a comparison of direct injection and solid-phase extraction methods.

    PubMed

    Oh, Jin-Aa; Lee, Jun-Bae; Lee, Soo-Hyung; Shin, Ho-Sang

    2014-10-01

    Direct injection and solid-phase extraction methods for the determination of diquat and paraquat in surface and drinking water were developed using liquid chromatography with tandem mass spectrometry. The signal intensities of analytes based on six ion-pairing reagents were compared with each other, and 12.5 mM nonafluoropentanoic acid was selected as the best suited amongst them. A clean-up method was developed using Oasis hydrophilic-lipophilic balance; this was compared to the direct injection method, with respect to limits of detection, interference, precision, and accuracy. Limits of quantification of diquat and paraquat were 0.03 and 0.01 μg/L using the direct injection method, and 0.002 and 0.001 μg/L using the hydrophilic-lipophilic balance method. When the hydrophilic-lipophilic balance method was used to analyze target compounds in 114 surface water and 30 drinking water samples, paraquat and diquat were detected within a concentration range of 0.001-0.12 and 0.002-0.038 μg/L in surface water, respectively. When the direct injection method was used to analyze target compounds in the same samples, the detected concentrations of paraquat and diquat were within 25% in samples being >0.015 μg/L using the hydrophilic-lipophilic balance method. The liquid chromatography with tandem mass spectrometry method using direct injection can thus be used for routine monitoring of paraquat and diquat in surface and drinking water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simultaneous liquid chromatography/mass spectrometry determination of both polar and "multiresidue" pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach.

    PubMed

    Robles-Molina, José; Gilbert-López, Bienvenida; García-Reyes, Juan F; Molina-Díaz, Antonio

    2017-09-29

    Pesticide testing of foodstuffs is usually accomplished with generic wide-scope multi-residue methods based on liquid chromatography tandem mass spectrometry (LC-MS/MS). However, this approach does not cover some special pesticides, the so called "single-residue method" compounds, that are hardly compatible with standard reversed-phase (RP) separations due to their specific properties. In this article, we propose a comprehensive strategy for the integration of single residue method compounds and standard multiresidue pesticides within a single run. It is based on the use of a parallel LC column assembly with two different LC gradients performing orthogonal hydrophilic interaction chromatography (HILIC) and reversed-phase (RPLC) chromatography within one analytical run. Two sample aliquots were simultaneously injected on each column, using different gradients, being the eluents merged post-column prior to mass spectrometry detection. The approach was tested with 41 multiclass pesticides covering a wide range of physicochemical properties across several orders of log K ow (from -4 to +5.5). With this assembly, distinct separation from the void was attained for all the pesticides studied, keeping similar performance in terms of sensitivity, peak area reproducibility (<6 RSD% in most cases) and retention time stability of standard single column approaches (better than±0.1min). The application of the proposed approach using parallel HILIC/RPLC and RPLC/aqueous normal phase (Obelisc) were assessed in leek using LC-MS/MS. For this purpose, a hybrid QuEChERS (Quick, easy, cheap, effective, rugged and safe)/QuPPe (quick method for polar pesticides) method was evaluated based on solvent extraction with MeOH and acetonitrile followed by dispersive solid-phase extraction, delivering appropriate recoveries for most of the pesticides included in the study within the log K ow in the range from -4 to +5.5. The proposed strategy may be extended to other fields such as sport drug

  10. High performance liquid chromatography for the simultaneous analysis of penicillin residues in beef and milk using ion-paired extraction and binary water-acetonitrile mixture.

    PubMed

    Kukusamude, Chunyapuk; Burakham, Rodjana; Chailapakul, Orawon; Srijaranai, Supalax

    2012-04-15

    An ion-paired extraction (IPE) has been developed for the analysis of penicillin antibiotics (penicillin G, oxacillin and cloxacillin) in beef and milk samples using tetrabutylammonium bromide (TBABr) as ion-pairing agent and binary water-acetonitrile as extractant. The factors affecting the IPE efficiency were optimized including solution pH, volume of acetonitrile (ACN), concentration of TBABr and electrolyte salt (NH(4))(2)SO(4). The optimum IPE conditions were 10 mmol L(-1) phosphate buffer pH 8, 2 mL of ACN, 6 mmol L(-1) of TBABr and 2.5 mL of saturated ammonium sulfate. Under the HPLC condition: an Xbridge™ C18 reversed-phase column, isocratic elution of 5 mmol L(-1) phosphate buffer (pH 6.6) and acetonitrile (75:25, v/v) and a flow rate of 1 mL min(-1), with UV detection at 215 nm, the separation of three penicillins was achieved within 10 min. Under the selected optimum conditions, the enhancement of 21-53 folds compared to that without preconcentration and limits of detection (LODs) of 1-2 ng mL(-1) were obtained. Good reproducibility was achieved with RSD<2% for retention time and <5% for slope of calibration curves. The average recoveries higher than 85% were obtained. The proposed IPE-HPLC method has shown to be high efficient preconcentration and analysis method for penicillin residues in beef and milk with LOD lower than the maximum residue limits. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Gradient Scouting in Reversed-Phase HPLC Revisited

    ERIC Educational Resources Information Center

    Alcazar, A.; Jurado, J. M.; Gonzalez, A. G.

    2011-01-01

    Gradient scouting is the best way to decide the most suitable elution mode in reversed-phase high-performance liquid chromatography (RP-HPLC). A simple rule for this decision involves the evaluation of the ratio [delta]t/t[subscript G] (where [delta]t is the difference in the retention time between the last and the first peak and t[subscript G] is…

  12. Affinity-reversed-phase liquid chromatography assay to quantitate recombinant antibodies and antibody fragments in fermentation broth.

    PubMed

    Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M

    2001-08-24

    An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.

  13. Lipophilicity Assessment of Ruthenium(II)-Arene Complexes by the Means of Reversed-Phase Thin-Layer Chromatography and DFT Calculations

    PubMed Central

    Shweshein, Khalil Salem A. M.; Andrić, Filip; Radoičić, Aleksandra; Gruden-Pavlović, Maja; Tešić, Živoslav; Milojković-Opsenica, Dušanka

    2014-01-01

    The lipophilicity of ten ruthenium(II)-arene complexes was assessed by reversed-phase thin-layer chromatography (RP-TLC) on octadecyl silica stationary phase. The binary solvent systems composed of water and acetonitrile were used as mobile phase in order to determine chromatographic descriptors for lipophilicity estimation. Octanol-water partition coefficient, logK OW, of tested complexes was experimentally determined using twenty-eight standard solutes which were analyzed under the same chromatographic conditions as target substances. In addition, ab initio density functional theory (DFT) computational approach was employed to calculate logK OW values from the differences in Gibbs' free solvation energies of the solute transfer from n-octanol to water. A good overall agreement between DFT calculated and experimentally determined logK OW values was established (R 2 = 0.8024–0.9658). PMID:24587761

  14. [Simultaneous determination of canthaxanthin and astaxanthin in feedstuffs using solid phase extraction-reversed-phase high performance liquid chromatography].

    PubMed

    Zhang, Hua; Yang, Xin; Ma, Ying; Dong, Aijun; Zhang, Yingchun

    2008-05-01

    A method was developed for the simultaneous determination of canthaxanthin and astaxanthin in feedstuffs using reversed-phase high performance liquid chromatography (RP-HPLC). The sample was extracted by acetonitrile, and cleaned up by an LC-NH2 column. An Agilent ZORBAX Eclipse XDB-C18 analytical column (150 mm x 4.6 mm, 5 microm) was used and kept at 25 degrees C. Acetonitrile-methanol (95 : 5, v/v) was used as the mobile phase at a flow rate of 1.0 mL/min. The detection was performed by a diode array detector at 474 nm. The quantitive analysis of external standard calibration curves was used. The linear ranges of the method for canthaxanthin and astaxanthin were 1.0 - 30.0 mg/L (r = 0.999 0) and 1.0 - 20.0 mg/L (r = 0.999 1), respectively. The average recoveries were 90% - 101% with the relative standard deviations of 0.62% - 3.68%. The detection limits were 0.84 and 0.60 mg/L for canthaxanthin and astaxanthin, respectively. The method is simple, precise, sensitive and reproductive. It can be used to determine the contents of canthaxanthin and astaxanthin in feedstuffs.

  15. Liquid chromatography of hydrocarbonaeous quaternary amines on cyclodextrin bonded silica

    USGS Publications Warehouse

    Abidi, S.L.

    1986-01-01

    Mixtures of n-alkylbenzyldimethylammonium chloride (ABDAC) were resolved into homologous components by high-performance liquid chromatography (HPLC) with a cyclodextrin-bonded silica stationary phase. With a few exceptions, results from this study are similar to those obtained from traditional reversed-phase HPLC. It was found that the presence of electrolytes in aqueous mobile phases is not a critical factor in determining the success of HPLC separation. Under normal HPLC conditions, a mobile phase consisting of either methanol–water (50:50) or acetonitrile–water (30:70) was employed for obtaining adequate resolution of the quaternary ammonium mixtures. Although the percent organic modifier–water profiles were similar to those in previous studies with these compounds, resolution (R) and selectivity (α) parameters were found to be quite susceptible to changes in the mobile phase solvent composition. The retention behavior of the cationic analytes in the homologous series is consistent with the hydrophobic-interaction concept proposed for the retention mechanism via dominant inclusion complex formation. Several electrolytes were chosen for a study of the counter ion effect on the chromatographic characteristics of ABDAC components. Among the electrolytes examined, the perchlorate ion was found most likely to act as an ion-pairing counter ion for ammonium cations in the HPLC system studied. A correlation study established linear relationships between the chain length of ABDAC and the logarithmic capacity factor (k2). The analytical utility of the HPLC method was demonstrated by the analysis of various unknown mixtures.

  16. Analysis of iodinated haloacetic acids in drinking water by reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry with large volume direct aqueous injection.

    PubMed

    Li, Yongtao; Whitaker, Joshua S; McCarty, Christina L

    2012-07-06

    A large volume direct aqueous injection method was developed for the analysis of iodinated haloacetic acids in drinking water by using reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry in the negative ion mode. Both the external and internal standard calibration methods were studied for the analysis of monoiodoacetic acid, chloroiodoacetic acid, bromoiodoacetic acid, and diiodoacetic acid in drinking water. The use of a divert valve technique for the mobile phase solvent delay, along with isotopically labeled analogs used as internal standards, effectively reduced and compensated for the ionization suppression typically caused by coexisting common inorganic anions. Under the optimized method conditions, the mean absolute and relative recoveries resulting from the replicate fortified deionized water and chlorinated drinking water analyses were 83-107% with a relative standard deviation of 0.7-11.7% and 84-111% with a relative standard deviation of 0.8-12.1%, respectively. The method detection limits resulting from the external and internal standard calibrations, based on seven fortified deionized water replicates, were 0.7-2.3 ng/L and 0.5-1.9 ng/L, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Rapid determination of minoxidil in human plasma using ion-pair HPLC.

    PubMed

    Zarghi, A; Shafaati, A; Foroutan, S M; Khoddam, A

    2004-10-29

    A rapid, simple and sensitive ion-pair high-performance liquid chromatography (HPLC) method has been developed for quantification of minoxidil in plasma. The assay enables the measurement of minoxidil for therapeutic drug monitoring with a minimum detectable limit of 0.5 ng ml(-1). The method involves simple, one-step extraction procedure and analytical recovery was complete. The separation was performed on an analytical 150 x 4.6 mm i.d. microbondapak C18 column. The wavelength was set at 281 nm. The mobile phase was a mixture of 0.01 M sodium dihydrogen phosphate buffer and acetonitrile (60:40, v/v) containing 2.5 mM sodium dodecyl sulphate adjusted to pH 3.5 at a flow rate of 1 ml/min. The column temperature was set at 50 degrees C. The calibration curve was linear over the concentration range 2-100 ng ml(-1). The coefficients of variation for inter-day and intra-day assay were found to be less than 8%.

  18. Versatile ligands for high-performance liquid chromatography: An overview of ionic liquid-functionalized stationary phases.

    PubMed

    Zhang, Mingliang; Mallik, Abul K; Takafuji, Makoto; Ihara, Hirotaka; Qiu, Hongdeng

    2015-08-05

    Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines. IL-modified silica, transforming the merits of ILs into chromatographic advantages, has endowed the development of high-performance liquid chromatography (HPLC) stationary phase with considerable vitality. In the last decade, IL-functionalized silica stationary phases have evolved into a series of branches to accommodate to different HPLC modes. An up-to-date overview of IL-immobilized stationary phases is presented in this review, and divided into five parts according to application mode, i.e., ion-exchange, normal-phase, reversed-phase, hydrophilic interaction and chiral recognition. Specific attention is channeled to synthetic strategies, chromatographic behavior and separation performance of IL-functionalized silica stationary phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 1. Separation behavior of aromatic carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt has been investigated. The retention mechanism of aromatic carboxylic acids was discussed on the basis of both ion-pair partition model and ion-exchange model. The retention behavior of aromatic carboxylic acids possessing one (or two) carboxylic acid group(s) followed the ion-pair partition model, where linear free energy relationship was observed between the capacity factor and the extraction equilibrium constants of benzoic acid and naphthalene carboxylic acid.more » Besides, the retention behavior followed ion-exchange model with increasing the number of carboxylic acids, where the capacity factor of benzene polycarboxylic acids is proportional to the association constants between aromatic acids and quaternary ammonium ions calculated on the basis of an electrostatic interaction model.« less

  20. Gaining insight in the behaviour of imidazolium-based ionic liquids as additives in reversed-phase liquid chromatography for the analysis of basic compounds.

    PubMed

    Ubeda-Torres, M T; Ortiz-Bolsico, C; García-Alvarez-Coque, M C; Ruiz-Angel, M J

    2015-02-06

    In reversed-phase liquid chromatography in the absence of additives, cationic basic compounds give rise to broad and asymmetrical peaks as a result of ionic interactions with residual free silanols on silica-based stationary phases. Ionic liquids (ILs), added to the mobile phase, have been suggested as alternatives to amines to block the activity of silanols. However, the dual character of ILs should be considered: both cation and anion may be adsorbed on the stationary phase, thereby creating a double asymmetrical layer positively or negatively charged, depending on the relative adsorption of both ions. In this work, a study of the performance of six imidazolium-based ILs (the chlorides and tetrafluoroborates of 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium) as modifiers of the chromatographic behaviour of a group of 10 β-blockers is performed, and compared with triethylamine and dimethyloctylamine. In order to gain more insight in the behaviour of ILs in RPLC, the changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on retention and peak shape modelling. The multiple interactions that amines and ILs experience inside the chromatographic system suggest that the suppressing potency should be measured based on the shape of chromatographic peaks and not on the changes in retention. The ILs 1-hexyl-3-methyl-imidazolium chloride and tetrafluoroborate offered the most interesting features for the separation of the basic drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ion pair-based dispersive liquid-liquid microextraction followed by high performance liquid chromatography as a new method for determining five folate derivatives in foodstuffs.

    PubMed

    Nojavan, Yones; Kamankesh, Marzieh; Shahraz, Farzaneh; Hashemi, Maryam; Mohammadi, Abdorreza

    2015-05-01

    A novel technique for simultaneous determination of five folate derivatives in various food matrices was developed by ion pair-based dispersive liquid-liquid microextraction (IP-DLLME) combined with high-performance liquid chromatography (HPLC). In the proposed method, N-methyl-N,N-dioctyloctan-1-ammonium chloride (aliquat-336) was used as an ion-pair reagent. Effective variables of microextraction process were optimized. Under optimum conditions, the method yielded a linear calibration curve ranging from 1-200 ng g(-1) with correlation coefficients (r(2)) higher than 0.98. The relative standard deviation for the seven analyses was 5.2-7.4%. Enrichment factors for the five folates ranged between 108-135. Limits of detection were 2-4.1 ng g(-1). A comparison of this method with other methods described that the new proposed method is rapid and accurate, and gives very good enrichment factors and detection limits for determining five folate derivatives. The newly developed method was successfully applied for the determination of five folate derivatives in wheat flour, egg yolk and orange juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Analytical method development and validation of simultaneous estimation of rabeprazole, pantoprazole, and itopride by reverse-phase high-performance liquid chromatography.

    PubMed

    Perumal, Senthamil Selvan; Ekambaram, Sanmuga Priya; Raja, Samundeswari

    2014-12-01

    A simple, selective, rapid, and precise reverse-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous estimation of rabeprazole (RP), pantoprazole (PP), and itopride (IP) has been developed. The compounds were well separated on a Phenomenex C 18 (Luna) column (250 mm × 4.6 mm, dp = 5 μm) with C 18 guard column (4 mm × 3 mm × 5 μm) with a mobile phase consisting of buffer containing 10 mM potassium dihydrogen orthophosphate (adjusted to pH 6.8): acetonitrile (70:30 v/v) at a flow rate of 1.0 mL/min and ultraviolet detection at 288 nm. The retention time of RP, PP, and IP were 5.35, 7.92, and 11.16 minutes, respectively. Validation of the proposed method was carried out according to International Conference on Harmonisation (ICH) guidelines. Linearity range was obtained for RP, PP, and IP over the concentration range of 2.5-25, 1-30, and 3-35 μg/mL and the r 2 values were 0.994, 0.978, and 0.991, respectively. The calculated limit of detection (LOD) values were 1, 0.3, and 1 μg/mL and limit of quantitation (LOQ) values were 2.5, 1, and 3 μg/mL for RP, PP, and IP correspondingly. Thus, the current study showed that the developed reverse-phase liquid chromatography method is sensitive and selective for the estimation of RP, PP, and IP in combined dosage form. Copyright © 2014. Published by Elsevier B.V.

  4. Characterization of Isomeric Glycans by Reversed Phase Liquid Chromatography-Electronic Excitation Dissociation Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Wei, Juan; Costello, Catherine E.; Lin, Cheng

    2018-04-01

    The occurrence of numerous structural isomers in glycans from biological sources presents a severe challenge for structural glycomics. The subtle differences among isomeric structures demand analytical methods that can provide structural details while working efficiently with on-line glycan separation methods. Although liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful tool for mixture analysis, the commonly utilized collision-induced dissociation (CID) method often does not generate a sufficient number of fragments at the MS2 level for comprehensive structural characterization. Here, we studied the electronic excitation dissociation (EED) behaviors of metal-adducted, permethylated glycans, and identified key spectral features that could facilitate both topology and linkage determinations. We developed an EED-based, nanoscale, reversed phase (RP)LC-MS/MS platform, and demonstrated its ability to achieve complete structural elucidation of up to five structural isomers in a single LC-MS/MS analysis. [Figure not available: see fulltext.

  5. Speciation of chromium using reversed phase-high performance liquid chromatography coupled to different spectrometric detection methods

    NASA Astrophysics Data System (ADS)

    Andrle, C. M.; Jakubowski, N.; Broekaert, J. A. C.

    1997-02-01

    Speciation of Cr(III) and Cr(VI) based on the formation of different complexes with ammonium-pyrrolidinedithioate (APDC) in a continuous flow technique and their preconcentration using solid phase extraction (SPE) have been elaborated and applied to the analysis of waste waters from the galvanic industry. The Cr complexes were separated and determined using reversed phase-high performance liquid chromatography (RP-HPLC) coupled to different detection methods, namely UV-detection, graphite furnace-atomic absorption spectrometry (GF-AAS) and inductively coupled plasma mass spectrometry with hydraulic high pressure nebulization (HHPN/ICP-MS). After optimization the detection limits for Cr(III) and Cr(VI) of all methods are at the μg 1 -1 level and the precision in terms of RSD is 5% ( cCr = 100 μg 1 -1, N = 10). The procedure was applied to the determination of Cr(III) and Cr(VI) at the μg 1 -1 level in galvanic waste waters, and its accuracy was approved by comparing the results with those of independent methods.

  6. Novel Validated RP-HPLC Method for Bendamustine Hydrochloride Based on Ion-pair Chromatography: Application in Determining Infusion Stability and Pharmacokinetics.

    PubMed

    Singh, Yuvraj; Chandrashekar, Anumandla; Pawar, Vivek K; Saravanakumar, Veeramuthu; Meher, Jayagopal; Raval, Kavit; Singh, Pankaj; Kumar, R Dinesh; Chourasia, Manish K

    2017-01-01

    Ion pair chromatography was used for quantifying bendamustine hydrochloride (BH) in its marketed vial. The permissive objective was to investigate time duration for which highly susceptible drug content of the marketed vial remained stable after reconstitution. However, the method could also be used to measure extremely low levels of drug in rat plasma and a pharmacokinetic study was accordingly conducted to further showcase method's applicability. Optimized separation was achieved on C-18 Purospher ® STAR (250 mm × 4.6 mm, 5 μm particle size) column. Mobile phase flowing at 1.5 mL/min consisted of 5 mM sodium salt of octane sulfonic acid dissolved in methanol, water and glacial acetic acid (55:45:0.075) maintained at pH 6. Detection was carried out at 233 nm with BH eluting after 7.8 min. Validation parameters were determined as per ICH guidelines. Limit of detection and limit of quantification were found to be 0.1 µg/mL and 0.33 µg/mL, respectively. The recoveries were 98-102% in bulk and 85-91% in plasma. The developed method was specific for BH, and utilized for assessing its short-term stability in physiologic solvents and forced degradation products in acid, base, oxidative, light and temperature induced stress environments. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Purification of α-glucosidase from mouse intestine by countercurrent chromatography coupled with a reverse micelle solvent system.

    PubMed

    He, Kai; Zou, Zongyao; Hu, Yinran; Yang, Yong; Xiao, Yubo; Gao, Pincao; Li, Xuegang; Ye, Xiaoli

    2016-02-01

    Countercurrent chromatography coupled with a reverse micelle solvent was applied to separate α-glucosidase, which is stable at pH 6.0-8.8, 15-50°C. The separation conditions are as follows: stationary phase: pH 4.0 Tris-HCl buffer phase containing 50 mM Tris-HCl and 50 mM KCl; mobile phase A: isooctane containing 50 mM anionic surfactant sodium di(2-ethylhexyl)sulfosuccinate; mobile phase B: 50 mM Tris-HCl buffer containing 500 mM KCl (pH 8.0); In total, 25 mL (23.9 mg) crude enzyme was injected through the injection valve, the enzymatic reaction and sodium dodecylsulfate polyacrylamide gel electrophoresis results imply that the activity of purified α-glucosidase is 6.63-fold higher than that of the crude enzyme. Therefore, countercurrent chromatography coupled with a reverse micelle solvent is capable for protein separation and enrichment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Intracellular nucleotide and nucleotide sugar contents of cultured CHO cells determined by a fast, sensitive, and high-resolution ion-pair RP-HPLC.

    PubMed

    Kochanowski, N; Blanchard, F; Cacan, R; Chirat, F; Guedon, E; Marc, A; Goergen, J-L

    2006-01-15

    Analysis of intracellular nucleotide and nucleotide sugar contents is essential in studying protein glycosylation of mammalian cells. Nucleotides and nucleotide sugars are the donor substrates of glycosyltransferases, and nucleotides are involved in cellular energy metabolism and its regulation. A sensitive and reproducible ion-pair reverse-phase high-performance liquid chromatography (RP-HPLC) method has been developed, allowing the direct and simultaneous detection and quantification of some essential nucleotides and nucleotide sugars. After a perchloric acid extraction, 13 molecules (8 nucleotides and 5 nucleotide sugars) were separated, including activated sugars such as UDP-glucose, UDP-galactose, GDP-mannose, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine. To validate the analytical parameters, the reproducibility, linearity of calibration curves, detection limits, and recovery were evaluated for standard mixtures and cell extracts. The developed method is capable of resolving picomolar quantities of nucleotides and nucleotide sugars in a single chromatographic run. The HPLC method was then applied to quantify intracellular levels of nucleotides and nucleotide sugars of Chinese hamster ovary (CHO) cells cultivated in a bioreactor batch process. Evolutions of the titers of nucleotides and nucleotide sugars during the batch process are discussed.

  9. Phosphopeptide Enrichment by Covalent Chromatography after Derivatization of Protein Digests Immobilized on Reversed-Phase Supports

    PubMed Central

    Nika, Heinz; Nieves, Edward; Hawke, David H.; Angeletti, Ruth Hogue

    2013-01-01

    A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O

  10. Hierarchical CaCO3 chromatography: a stationary phase based on biominerals.

    PubMed

    Sato, Kosuke; Oaki, Yuya; Takahashi, Daisuke; Toshima, Kazunobu; Imai, Hiroaki

    2015-03-23

    In biomineralization, acidic macromolecules play important roles for the growth control of crystals through a specific interaction. Inspired by this interaction, we report on an application of the hierarchical structures in CaCO3 biominerals to a stationary phase of chromatography. The separation and purification of acidic small organic molecules are achieved by thin-layer chromatography and flash chromatography using the powder of biominerals as the stationary phase. The unit nanocrystals and their oriented assembly, the hierarchical structure, are suitable for the adsorption site of the target organic molecules and the flow path of the elution solvents, respectively. The separation mode is ascribed to the specific adsorption of the acidic molecules on the crystal face and the coordination of the functional groups to the calcium ions. The results imply that a new family of stationary phase of chromatography can be developed by the fine tuning of hierarchical structures in CaCO3 materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The History of Ion Chromatography: The Engineering Perspective

    ERIC Educational Resources Information Center

    Evans, Barton

    2004-01-01

    The development of ion chromatography from an engineering perspective is presented. As ion chromatography became more widely accepted, researchers developed dozens of standard applications that enabled the creation of many low-end instruments.

  12. Ultrasound-assisted analyte extraction for the determination of sulfate and elemental sulfur in zinc sulfide by different liquid chromatography techniques.

    PubMed

    Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J

    2005-04-01

    The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.

  13. Quality assessment of Herba Leonuri based on the analysis of multiple components using normal- and reversed-phase chromatographic methods.

    PubMed

    Dong, Shuya; He, Jiao; Hou, Huiping; Shuai, Yaping; Wang, Qi; Yang, Wenling; Sun, Zheng; Li, Qing; Bi, Kaishun; Liu, Ran

    2017-12-01

    A novel, improved, and comprehensive method for quality evaluation and discrimination of Herba Leonuri has been developed and validated based on normal- and reversed-phase chromatographic methods. To identify Herba Leonuri, normal- and reversed-phase high-performance thin-layer chromatography fingerprints were obtained by comparing the colors and R f values of the bands, and reversed-phase high-performance liquid chromatography fingerprints were obtained by using an Agilent Poroshell 120 SB-C18 within 28 min. By similarity analysis and hierarchical clustering analysis, we show that there are similar chromatographic patterns in Herba Leonuri samples, but significant differences in counterfeits and variants. To quantify the bio-active components of Herba Leonuri, reversed-phase high-performance liquid chromatography was performed to analyze syringate, leonurine, quercetin-3-O-robiniaglycoside, hyperoside, rutin, isoquercitrin, wogonin, and genkwanin simultaneously by single standard to determine multi-components method with rutin as internal standard. Meanwhile, normal-phase high-performance liquid chromatography was performed by using an Agilent ZORBAX HILIC Plus within 6 min to determine trigonelline and stachydrine using trigonelline as internal standard. Innovatively, among these compounds, bio-active components of quercetin-3-O-robiniaglycoside and trigonelline were first determined in Herba Leonuri. In general, the method integrating multi-chromatographic analyses offered an efficient way for the standardization and identification of Herba Leonuri. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography.

    PubMed

    Poole, Colin F

    2018-06-07

    Major obstacles to formulating a simple retention mechanism for reversed-phase liquid chromatography have a direct impact on the development of experimental methods for column characterization as they limit our capability to understand observed differences in retention at a system level. These problems arise from the heterogeneous composition of the stationary phase, the difficulty of providing a working definition for the phase ratio, and uncertainty as to whether the distribution mechanism for varied compounds is a partition, adsorption or mixed (combination) of these models. Retention factor and separation factor measurements offer little guidance as they represent an average of various and variable contributing factors that can only be interpreted by assuming a specific model. Column characterization methods have tended to ignore these difficulties by inventing a series of terms to describe column properties, such as hydrophobicity, hydrophilicity, silanol activity, steric resistance, etc., without proper definition. This has allowed multiple scales to be proposed for the same property which generally are only weakly correlated. Against this background we review the major approaches for the characterization of alkylsiloxane-bonded silica stationary phases employing prototypical compounds, the hydrophobic-subtraction model and the solvation parameter model. Those methods using prototypical compounds are limited by the lack of compounds with a singular dominant interaction. The multivariate approaches that extract column characteristic properties from the retention of varied compounds are more hopeful but it is important to be more precise in defining the characteristic column properties and cognizant that general interpretation of these properties for varied columns cannot escape the problem of a poor understanding of the distribution mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Gas chromatographic-mass spectrometric determination of alkylphosphonic acids from aqueous samples by ion-pair solid-phase extraction on activated charcoal and methylation.

    PubMed

    Vijaya Saradhi, U V R; Prabhakar, S; Jagadeshwar Reddy, T; Murty, M R V S

    2007-07-20

    In the present paper, we report an improved ion-pair solid-phase extraction (IP-SPE) method for the analysis of alkylphosphonic acids, namely, methyl, ethyl and propylphosphonic acids, present in the aqueous sample. The aqueous sample was mixed with an ion-pair reagent, phenyltrimethylammonium hydroxide (PTMAH) and passed through activated charcoal SPE cartridge. The retained chemicals in the cartridge were extracted with methanol and analysed by gas chromatography-mass spectrometry (GC-MS) under the electron impact ionization (EI) mode. The analytes were converted to their methyl esters by pyrolytic methylation in the hot GC injection port. The recoveries of alkylphosphonic acids were above 95% and the minimum detection limits were as low as 10 ng/mL. The recovery of the test chemicals was tested with solvents, dichloromethane, n-hexane, ethyl acetate, acetone, acetonitrile and methanol. The chemicals could be efficiently extracted by the hydrophilic solvents. The method did not work at the highly acidic pH (when acidified with dilute HCl) but worked well from pH 4.0 to 14.0. The present method was also tested with other tetra-(methyl, ethyl, propyl and n-butyl)ammonium hydroxides. The test chemicals were not converted to their methyl and ethyl esters with tetramethyl and tetraethylammonium hydroxides, whereas they were converted to their corresponding propyl and n-butyl esters with tetrapropyl and tetra(n-butyl)ammonium hydroxides. The method was also applied to two highly cross-linked polymeric sorbents DSC-6S and Oasis HLB. The recovery of the chemicals on these sorbents was observed to be poor. Methylation using phenyltrimethylammonium hydroxide is non-hazardous and advantageous over methylation using diazomethane. The method was applied to the analysis of aqueous samples given in one of the official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons and all the spiked chemicals were identified as methyl esters.

  16. Unifying expression scale for peptide hydrophobicity in proteomic reversed phase high-pressure liquid chromatography experiments.

    PubMed

    Grigoryan, Marine; Shamshurin, Dmitry; Spicer, Victor; Krokhin, Oleg V

    2013-11-19

    As an initial step in our efforts to unify the expression of peptide retention times in proteomic liquid chromatography-mass spectrometry (LC-MS) experiments, we aligned the chromatographic properties of a number of peptide retention standards against a collection of peptides commonly observed in proteomic experiments. The standard peptide mixtures and tryptic digests of samples of different origins were separated under the identical chromatographic condition most commonly employed in proteomics: 100 Å C18 sorbent with 0.1% formic acid as an ion-pairing modifier. Following our original approach (Krokhin, O. V.; Spicer, V. Anal. Chem. 2009, 81, 9522-9530) the retention characteristics of these standards and collection of tryptic peptides were mapped into hydrophobicity index (HI) or acetonitrile percentage units. This scale allows for direct visualization of the chromatographic outcome of LC-MS acquisitions, monitors the performance of the gradient LC system, and simplifies method development and interlaboratory data alignment. Wide adoption of this approach would significantly aid understanding the basic principles of gradient peptide RP-HPLC and solidify our collective efforts in acquiring confident peptide retention libraries, a key component in the development of targeted proteomic approaches.

  17. Premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions: deprotonation of dye in ion pair micelles.

    PubMed

    Gohain, Biren; Dutta, Robin K

    2008-07-15

    The premicellar and micelle formation behavior of dye surfactant ion pairs in aqueous solutions monitored by surface tension and spectroscopic measurements has been described. The measurements have been made for three anionic sulfonephthalein dyes and cationic surfactants of different chain lengths, head groups, and counterions. The observations have been attributed to the formation of closely packed dye surfactant ion pairs which is similar to nonionic surfactants in very dilute concentrations of the surfactant. These ion pairs dominate in the monolayer at the air-water interface of the aqueous dye surfactant solutions below the CMC of the pure surfactant. It has been shown that the dye in the ion pair deprotonates on micelle formation by the ion pair surfactants at near CMC but submicellar surfactant concentrations. The results of an equilibrium study at varying pH agree with the model of deprotonated 1:1 dye-surfactant ion pair formation in the near CMC submicellar solutions. At concentrations above the CMC of the cationic surfactant the dye is solubilized in normal micelles and the monolayer at the air-water interface consists of the cationic surfactant alone even in the presence of the dyes.

  18. Reversed-phase thin-layer chromatography of homologs of Antimycin-A and related derivatives

    USGS Publications Warehouse

    Abidi, Sharon L.

    1989-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  19. Applying Chromatography.

    ERIC Educational Resources Information Center

    Klein, Jessie W.; Patev, Paul

    1998-01-01

    Presents three experiments to introduce students to different kinds of chromatography: (1) paper chromatography; (2) gel filtration chromatography; and (3) reverse-phase liquid chromatography. Written in the form of a laboratory manual, explanations of each of the techniques, materials needed, procedures, and a glossary are included. (PVD)

  20. Relationship between ion pair geometries and electrostatic strengths in proteins.

    PubMed Central

    Kumar, Sandeep; Nussinov, Ruth

    2002-01-01

    The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in

  1. Ion Pair Formation between Tertiary Aliphatic Amines and Perchlorate in the Biphasic Water/Dichloromethane System.

    PubMed

    Badocco, Denis; Di Marco, Valerio; Venzo, Alfonso; Frasconi, Marco; Frezzato, Diego; Pastore, Paolo

    2017-10-12

    The ability of aliphatic amines (AAs), namely, tripropylamine (TPrA), trisobutylamine (TisoBuA), and tributylamine (TBuA), to form ion pairs with perchlorate anion (ClO 4 - ) in biphasic aqueous/dichloromethane (CH 2 Cl 2 ) mixtures containing ClO 4 - 0.1 M has been demonstrated by GC with flame ionization (FID) and mass detectors (MS) and by NMR measurements. The extraction efficiency of the AAs to the organic phase was modeled by equations that were used to fit the experimental GC data, allowing us to determine values for K P (partition constant of the free AA), K IP (formation constant of the ion pair), and K P IP (partition constant of the ion pair) for TPrA, TisoBuA, and TBuA at 25 °C. Ion pairs were shown to form in CH 2 Cl 2 also when ClO 4 - is replaced by other inorganic anions, like NO 3 - , ClO 3 - , Cl - , H 2 PO 4 - , and IO 3 - . No ion pairs formed when CH 2 Cl 2 was replaced by n-hexane, suggesting that aliphatic amine ion pairs can form in polar organic solvents but not in nonpolar ones.

  2. The determination and quantification of photosynthetic pigments by reverse phase high-performance liquid chromatography, thin-layer chromatography, and spectrophotometry.

    PubMed

    Pocock, Tessa; Król, Marianna; Huner, Norman P A

    2004-01-01

    Chorophylls and carotenoids are functionally important pigment molecules in photosynthetic organisms. Methods for the determination of chlorophylls a and b, beta-carotene, neoxanthin, and the pigments that are involved in photoprotective cycles such as the xanthophylls are discussed. These cycles involve the reversible de-epoxidation of violaxanthin into antheraxanthin and zeaxanthin, as well as the reversible de-epoxidation of lutein-5,6-epoxide into lutein. This chapter describes pigment extraction procedures from higher plants and green algae. Methods for the determination and quantification using high-performance liquid chromatograpy (HPLC) are described as well as methods for the separation and purification of pigments for use as standards using thin-layer chromatography (TLC). In addition, several spectrophotometric methods for the quantification of chlorophylls a and b are described.

  3. Influence of storage conditions on the stability of monomeric anthocyanins studied by reversed-phase high-performance liquid chromatography.

    PubMed

    Morais, Helena; Ramos, Cristina; Forgács, Esther; Cserháti, Tibor; Oliviera, José

    2002-04-25

    The effect of light, storage time and temperature on the decomposition rate of monomeric anthocyanin pigments extracted from skins of grape (Vitis vinifera var. Red globe) was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The impact of various storage conditions on the pigment stability was assessed by stepwise regression analysis. RP-HPLC separated well the five anthocyanins identified and proved the presence of other unidentified pigments at lower concentrations. Stepwise regression analysis confirmed that the overall decomposition rate of monomeric anthocyanins, peonidin-3-glucoside and malvidin-3-glucoside significantly depended on the time and temperature of storage, the effect of storage time being the most important. The presence or absence of light exerted a negligible impact on the decomposition rate.

  4. Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics.

    PubMed

    Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya

    2008-03-01

    Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.

  5. Determination of δ-[L-α-aminoadipyl]-L-cysteinyl-D-valine in cell extracts of Penicillium chrysogenum using ion pair-RP-UPLC-MS/MS.

    PubMed

    Seifar, Reza Maleki; Deshmukh, Amit T; Heijnen, Joseph J; van Gulik, Walter M

    2012-01-01

    δ-[L-α-Aminoadipyl]-L-cysteinyl-D-valine (ACV) is a key intermediate in the biosynthesis pathway of penicillins and cephalosporins. Therefore, the accurate quantification of ACV is relevant, e.g. for kinetic studies on the production of these β-lactam antibiotics. However, accurate quantification of ACV is a challenge, because it is an active thiol compound which, upon exposure to air, can easily react with other thiol compounds to form oxidized disulfides. We have found that, during exposure to air, the oxidation of ACV occurs both in aqueous standard solutions as well as in biological samples. Qualitative and quantitative determinations of ACV and the oxidized dimer bis-δ-[L-α-aminoadipyl]-L-cysteinyl-D-valine have been carried out using ion pair reversed-phase ultra high-performance liquid chromatography, hyphenated with tandem mass spectrometry (IP-RP-UPLC-MS/MS) as the analytical platform. We show that by application of tris(2-carboxy-ethyl)phosphine hydrochloride (TCEP) as the reducing reagent, the total amount of ACV can be determined, while using maleimide as derivatizing reagent enables to quantify the free reduced form only. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluation of a new polymeric stationary phase with reversed-phase properties for high temperature liquid chromatography.

    PubMed

    Vanhoenacker, Gerd; Dos Santos Pereira, Alberto; Kotsuka, Takashi; Cabooter, Deirdre; Desmet, Gert; Sandra, Pat

    2010-05-07

    The performance of a polymeric stationary phase with reversed-phase properties (ET-RP1) was evaluated for LC separations at elevated temperature. The most significant observation was that the reduced plate height (h) decreased from 3.4 at 25 degrees C (optimal flow 0.5 mL/min) to 2.4 at 150 degrees C (optimal flow 2.5 mL/min) which is comparable to the efficiency obtained with silica-based reversed-phase columns of 4.6mm ID operated at 0.8 mL/min. The phase showed no deterioration after long use at 150 degrees C within the pH range 1-9. Catalytic activity originating from the stationary phase material, e.g. as experienced on zirconium columns operated at elevated temperature, was absent. The performance of ET-RP1 is illustrated with the analysis of some pharmaceutical samples by LC and LC-MS. Operation at elevated temperature also allows to reduce the amount of organic modifier or to replace acetonitrile and methanol by the biodegradable ethanol. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. Multiple reaction monitoring-ion pair finder: a systematic approach to transform nontargeted mode to pseudotargeted mode for metabolomics study based on liquid chromatography-mass spectrometry.

    PubMed

    Luo, Ping; Dai, Weidong; Yin, Peiyuan; Zeng, Zhongda; Kong, Hongwei; Zhou, Lina; Wang, Xiaolin; Chen, Shili; Lu, Xin; Xu, Guowang

    2015-01-01

    Pseudotargeted metabolic profiling is a novel strategy combining the advantages of both targeted and untargeted methods. The strategy obtains metabolites and their product ions from quadrupole time-of-flight (Q-TOF) MS by information-dependent acquisition (IDA) and then picks targeted ion pairs and measures them on a triple-quadrupole MS by multiple reaction monitoring (MRM). The picking of ion pairs from thousands of candidates is the most time-consuming step of the pseudotargeted strategy. Herein, a systematic and automated approach and software (MRM-Ion Pair Finder) were developed to acquire characteristic MRM ion pairs by precursor ions alignment, MS(2) spectrum extraction and reduction, characteristic product ion selection, and ion fusion. To test the reliability of the approach, a mixture of 15 metabolite standards was first analyzed; the representative ion pairs were correctly picked out. Then, pooled serum samples were further studied, and the results were confirmed by the manual selection. Finally, a comparison with a commercial peak alignment software was performed, and a good characteristic ion coverage of metabolites was obtained. As a proof of concept, the proposed approach was applied to a metabolomics study of liver cancer; 854 metabolite ion pairs were defined in the positive ion mode from serum. Our approach provides a high throughput method which is reliable to acquire MRM ion pairs for pseudotargeted metabolomics with improved metabolite coverage and facilitate more reliable biomarkers discoveries.

  8. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  9. Simultaneous separation by reversed-phase high-performance liquid chromatography and mass spectral identification of anthocyanins and flavonols in Shiraz grape skin.

    PubMed

    Downey, Mark O; Rochfort, Simone

    2008-08-01

    A limitation of large-scale viticultural trials is the time and cost of comprehensive compositional analysis of the fruit by high-performance liquid chromatography (HPLC). In addition, separate methods have generally been required to identify and quantify different classes of metabolites. To address these shortcomings a reversed-phase HPLC method was developed to simultaneously separate the anthocyanins and flavonols present in grape skins. The method employs a methanol and water gradient acidified with 10% formic acid with a run-time of 48 min including re-equilibration. Identity of anthocyanins and flavonols in Shiraz (Vitis vinifera L.) skin was confirmed by mass spectral analysis.

  10. Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.

    PubMed

    Borges, Endler M

    2015-04-01

    Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability. For these reasons, we began this review describing new silica and hybrid silica stationary phases, which have reduced and/or shielded silanols. At present, in liquid chromatography for the majority of analyses, reversed-phase liquid chromatography is the separation mode of choice. However, the needs for increased selectivity and increased retention of hydrophilic bases have substantially increased the interest in hydrophilic interaction chromatography (HILIC). Therefore, stationary phases and this mode of separation are discussed. Then, non-silica stationary phases (i.e., zirconium oxide, titanium oxide, alumina and porous graphitized carbon), which afford increased thermal and chemical stability and also selectivity different from those obtained with silica and hybrid silica, are discussed. In addition, the use of these materials in HILIC is also reviewed. © Crown copyright 2014.

  11. Chromatographic Techniques for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  12. Effects of Ethanol and Cholesterol on Thermotropic Phase Behavior of Ion-Pair Amphiphile Bilayers.

    PubMed

    Wen, Chih-Fang; Hsieh, Yu-Ling; Wang, Chun-Wei; Yang, Tzung-Ying; Chang, Chien-Hsiang; Yang, Yu-Min

    2018-03-01

    Ion-pair amphiphiles (IPAs, also known as catanionic surfactants) are lipid-like double-chained molecules potentially used for fabricating liposome-like vesicular drug and gene carriers. Frequently ethanol and cholesterol are added to modulate the properties of their bilayer membranes. Effects of ethanol and cholesterol on the fundamental properties of IPA bilayers such as thermotropic phase behavior, however, is not known. In this work, the bilayer phase transition behavior of two IPAs (decyltrimethylammonium-tetradecyl sulfate, DeTMA-TS, and dodecyltrimethylammonium-dodecyl sulfate, DTMA-DS) in tris buffer with various amounts of ethanol was studied by using differential scanning calorimetry (DSC). Effect of cholesterol (CHOL) addition on bilayer phase transition of IPAs with 20 vol% ethanol was thereafter systematically investigated. The experimental results showed that the main phase transition temperature (T m ) was monotonously decreased with the increase of ethanol concentration up to 30 vol%. The degree of T m depression by ethanol is essentially the same for the two IPAs regardless of different symmetry in the hydrocarbon chains. Further addition of CHOL, however, caused a slight decrease in T m on the one hand and a significant decrease in the enthalpy of phase transition on the other hand. When the added CHOL exceeded a specific amount, the phase transition disappeared. More hasty disappearance of phase transition was found for IPA with asymmetric structure than the symmetric one. Possible mechanisms of ethanol effect based on binding in the headgroup region of the bilayers and CHOL effect based on opposite (condensing and disordering) interactions with IPA molecules in bilayers, respectively, were proposed.

  13. Rapid determination of human globin chains using reversed-phase high-performance liquid chromatography.

    PubMed

    Wan, Jun-Hui; Tian, Pei-Ling; Luo, Wei-Hao; Wu, Bing-Yi; Xiong, Fu; Zhou, Wan-Jun; Wei, Xiang-Cai; Xu, Xiang-Min

    2012-07-15

    Reversed-phase high-performance liquid chromatography (RP-HPLC) of human globin chains is an important tool for detecting thalassemias and hemoglobin variants. The challenges of this method that limit its clinical application are a long analytical time and complex sample preparation. The aim of this study was to establish a simple, rapid and high-resolution RP-HPLC method for the separation of globin chains in human blood. Red blood cells from newborns and adults were diluted in deionized water and injected directly onto a micro-jupiter C18 reversed-phase column (250 mm × 4.6 mm) with UV detection at 280 nm. Under the conditions of varying pH or the HPLC gradient, the globin chains (pre-β, β, δ, α, (G)γ and (A)γ) were denatured and separated from the heme groups in 12 min with a retention time coefficient of variation (CV) ranging from 0.11 to 1.29% and a peak area CV between 0.32% and 4.86%. Significant differences (P<0.05) among three groups (normal, Hb H and β thalassemia) were found in the area ratio of α/pre-β+β applying the rapid elution procedure, while P≥0.05 was obtained between the normal and α thalassemia silent/trait group. Based on the ANOVA results, receiver operating characteristic (ROC) curve analysis of the δ/β and α/pre-β+β area ratios showed a sensitivity of 100.0%, and a specificity of 100.0% for indicating β thalassemia carriers, and a sensitivity of 96.6% and a specificity of 89.6% for the prediction of hemoglobin H (Hb H) disease. The proposed cut-off was 0.026 of δ/β for β thalassemia carriers and 0.626 of α/pre-β+β for Hb H disease. In addition, abnormal hemoglobin hemoglobin E (Hb E) and Hb Westmead (Hb WS) were successfully identified using this RP-HPLC method. Our experience in developing this RP-HPLC method for the rapid separation of human globin chains could be of use for similar work. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Highly sensitive reversed-phase high-performance liquid chromatography assay for the detection of Tamm-Horsfall protein in human urine.

    PubMed

    Akimoto, Masaru; Hokazono, Eisaku; Ota, Eri; Tateishi, Takiko; Kayamori, Yuzo

    2016-01-01

    Tamm-Horsfall protein (also known as uromodulin) is the most abundant urinary protein in healthy individuals. Since initially characterized by Tamm and Horsfall, the amount of urinary excretion and structural mutations of Tamm-Horsfall protein is associated with kidney diseases. However, currently available assays for Tamm-Horsfall protein, which are mainly enzyme-linked immunosorbent assay-based, suffer from poor reproducibility and might give false negative results. We developed a novel, quantitative assay for Tamm-Horsfall protein using reversed-phase high-performance liquid chromatography. A precipitation pretreatment avoided urine matrix interference and excessive sample dilution. High-performance liquid chromatography optimization based on polarity allowed excellent separation of Tamm-Horsfall protein from other major urine components. Our method exhibited high precision (based on the relative standard deviations of intraday [≤2.77%] and interday [≤5.35%] repetitions). The Tamm-Horsfall protein recovery rate was 100.0-104.2%. The mean Tamm-Horsfall protein concentration in 25 healthy individuals was 31.6 ± 18.8 mg/g creatinine. There was a strong correlation between data obtained by high-performance liquid chromatography and enzyme-linked immunosorbent assay (r = 0.906), but enzyme-linked immunosorbent assay values tended to be lower than high-performance liquid chromatography values at low Tamm-Horsfall protein concentrations. The high sensitivity and reproducibility of our Tamm-Horsfall protein assay will reduce the number of false negative results of the sample compared with enzyme-linked immunosorbent assay. Moreover, our method is superior to other high-performance liquid chromatography methods, and a simple protocol will facilitate further research on the physiological role of Tamm-Horsfall protein. © The Author(s) 2015.

  15. [Determination of canthaxanthin and astaxanthin in egg yolks by reversed phase high performance liquid chromatography with diode array detection].

    PubMed

    He, Kang-Hao; Zou, Xiao-Li; Liu, Xiang; Zeng, Hong-Yan

    2012-01-01

    A method using reversed phase high performance liquid chromatography (RP-HPLC) coupled with diode array detector (DAD) was developed for the simultaneous determination of canthaxanthin and astaxanthin in egg yolks. Samples were extracted with acetonitrile in ultrasonic bath for 20 minutes and then purified by freezing-lipid filtration and solid phase extraction (SPE). After being vaporized to dryness by nitrogen blowing and made up to volume with methanol, the extract solution was chromatographically separated in C18 column with a unitary mobile phase consisting of acetonitrile. The proposed method was validated in terms of linearity, precision, accuracy, and limit of detection (LOD). Regression analysis revealed a good linearity between peak area of each analyte and its concentration (r > or = 0.998). The intra- and inter-day relative standard deviations (RSDs) were less than 3.6% and 5.2%, respectively. LODs of canthaxanthin and astaxanthin were 0.035 and 0.027 microg/mL (S/N = 3). The average recoveries of canthaxanthin and astaxanthin were 91.5% and 88.7%. The proposed method is simple, fast and easy to apply.

  16. Ion pair-based liquid-phase microextraction combined with cuvetteless UV-vis micro-spectrophotometry as a miniaturized assay for monitoring ammonia in waters.

    PubMed

    Senra-Ferreiro, Sonia; Pena-Pereira, Francisco; Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos

    2011-09-15

    A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L(-1) ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n=7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    PubMed

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  18. Comparison of various types of stationary phases in non-aqueous reversed-phase high-performance liquid chromatography-mass spectrometry of glycerolipids in blackcurrant oil and its enzymatic hydrolysis mixture.

    PubMed

    Lísa, Miroslav; Holcapek, Michal; Sovová, Helena

    2009-11-20

    The selection of column packing during the development of high-performance liquid chromatography method is a crucial step to achieve sufficient chromatographic resolution of analyzed species in complex mixtures. Various stationary phases are tested in this paper for the analysis of complex mixture of triacylglycerols (TGs) in blackcurrant oil using non-aqueous reversed-phase (NARP) system with acetonitrile-2-propanol mobile phase. Conventional C(18) column in the total length of 45 cm is used for the separation of TGs according to their equivalent carbon number, the number and positions of double bonds and acyl chain lengths. The separation of TGs and their more polar hydrolysis products after the partial enzymatic hydrolysis of blackcurrant oil in one chromatographic run is achieved using conventional C(18) column. Retention times of TGs are reduced almost 10 times without the loss of the chromatographic resolution using ultra high-performance liquid chromatography with 1.7 microm C(18) particles. The separation in NARP system on C(30) column shows an unusual phenomenon, because the retention order of TGs changes depending on the column temperature, which is reported for the first time. The commercial monolithic column modified with C(18) is used for the fast analysis of TGs to increase the sample throughput but at cost of low resolution.

  19. Determination of tropane alkaloids by heart cutting reversed phase - Strong cation exchange two dimensional liquid chromatography.

    PubMed

    Long, Zhen; Zhang, Yanhai; Gamache, Paul; Guo, Zhimou; Steiner, Frank; Du, Nana; Liu, Xiaoda; Jin, Yan; Liu, Xingguo; Liu, Lvye

    2018-01-01

    Current Chinese Pharmacopoeia (ChP) standards apply liquid extraction combined with one dimensional liquid chromatography (1DLC) method for determining alkaloids in herbal medicines. The complex pretreatments lead to a low analytical efficiency and possible component loss. In this study, a heart cutting reversed phase - strong cation exchange two dimensional liquid chromatography (RP - SCX 2DLC) approach was optimized for simultaneously quantifying tropane alkaloids (anisodine, scopolamine and hyoscyamine) in herbal medicines and herbal medicine tablets without further treatment of the filtered extract. The chromatographic conditions were systematically optimized in terms of column type, mobile phase composition and flow rate. To improve peak capacity and obtain symmetric peak shape of alkaloids, a polar group embedded C18 column combined with chaotropic salts was used in the first dimension. To remove the disturbance of non-alkaloids, achieve unique selectivity and acquire symmetric peak shape of alkaloids, an SCX column combined with phosphate buffer was used in the second dimension. Method validation was performed in terms of linearity, precision (0.54-0.82%), recovery (94.1-105.2%), limit of detection (LOD) and limit of quantification (LOQ) of the three analytes varied between 0.067-0.115mgL -1 and 0.195-0.268mgL -1 , respectively. The method demonstrated superiority over 1DLC method in respect of resolution (less alkaloid co-eluted), sample preparation (no pretreatment procedure) and transfer rate (minimum component loss). The optimized RP - SCX 2DLC approach was subsequently applied to quantify target alkaloids in five herbal medicines and herbal medicine tablets from three different manufactures. The results demonstrated that the developed heart cutting RP - SCX 2DLC approach represented a new, strategically significant methodology for the quality evaluation of tropane alkaloid in related herbal medicines that involve complex chemical matrix. Copyright

  20. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure.

    PubMed

    Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2016-06-10

    Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. Copyright © 2016. Published by Elsevier B.V.

  1. Determination of the molecular weight of poly(ethylene glycol) in biological samples by reversed-phase LC-MS with in-source fragmentation.

    PubMed

    Warrack, Bethanne M; Redding, Brian P; Chen, Guodong; Bolgar, Mark S

    2013-05-01

    PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography-mass spectrometry (LC-MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.

  2. Effect of injection matrix concentration on peak shape and separation efficiency in ion chromatography.

    PubMed

    Zhang, Ya; Lucy, Charles A

    2014-12-05

    In HPLC, injection of solvents that differ from the eluent can result in peak broadening due to solvent strength mismatch or viscous fingering. Broadened, distorted or even split analyte peaks may result. Past studies of this injection-induced peak distortion in reversed phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography have led to the conclusion that the sample should be injected in the eluent or a weaker solvent. However, there have been no studies of injection-induced peak distortion in ion chromatography (IC). To address this, injection-induced effects were studied for six inorganic anions (F-, Cl-, NO2-, Br-, NO3- and SO4(2-)) on a Dionex AS23 IC column using a HCO3-/CO3(2-) eluent. The VanMiddlesworth-Dorsey injection sensitivity parameter (s) showed that IC of anions has much greater tolerance to the injection matrix (HCO3-/CO3(2-) herein) mismatch than RPLC or HILIC. Even when the injection contained a ten-fold greater concentration of HCO3-/CO3(2-) than the eluent, the peak shapes and separation efficiencies of six analyte ions did not change significantly. At more than ten-fold greater matrix concentrations, analyte anions that elute near the system peak of the matrix were distorted, and in the extreme cases exhibited a small secondary peak on the analyte peak front. These studies better guide the degree of dilution needed prior to IC analysis of anions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Rapid amino acid quantitation with pre-column derivatization; ultra-performance reverse phase liquid chromatography and single quadrupole mass spectrometry.

    PubMed

    Pretorius, Carel J; McWhinney, Brett C; Sipinkoski, Bilyana; Wilce, Alice; Cox, David; McWhinney, Avis; Ungerer, Jacobus P J

    2018-03-01

    We optimized a quantitative amino acid method with pre-column derivatization, norvaline (nva) internal standard and reverse phase ultra-performance liquid chromatography by replacing the ultraviolet detector with a single quadrupole mass spectrometer (MS nva ). We used 13 C 15 N isotopically labeled amino acid internal standards and a C18 column with 1.6μm particles to optimize the chromatography and to confirm separation of isobaric compounds (MS lis ). We compared the analytical performance of MS nva with MS lis and the original method (UV nva ) with clinical samples. The chromatography time per sample of MS nva was 8min, detection capabilities were <1μmol/L for most components, intermediate imprecisions at low concentrations were <10% and there was negligible carryover. MS nva was linear up to a total amino acid concentration in a sample of approximately 9500μmol/L. The agreements between most individual amino acids were satisfactory compared to UV nva with the latter prone to outliers and suboptimal quantitation of urinary arginine, aspartate, glutamate and methionine. MS nva reliably detected argnininosuccinate, β-alanine, citrulline and cysteine-s-sulfate. MS nva resulted in a more than fivefold increase in operational efficiency with accurate detection of amino acids and metabolic intermediates in clinical samples. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models.

    PubMed

    Flores-Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly; Vrecko, Darko; Tait, Stephan; Batstone, Damien J; Jeppsson, Ulf; Gernaey, Krist V

    2015-11-15

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method to increase the robustness of the solver making the system not so dependent of the initial conditions. Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions. The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some

  5. Rapid Determination of Bile Acids in Bile from Various Mammals by Reversed-Phase Ultra-Fast Liquid Chromatography.

    PubMed

    Si, Gu Leng Ri; Yao, Peng; Shi, Luwen

    2015-08-01

    A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. © Crown copyright 2014.

  6. Anomalous surface behavior of hydrated guanidinium ions due to ion pairing

    NASA Astrophysics Data System (ADS)

    Ekholm, Victor; Vazdar, Mario; Mason, Philip E.; Bialik, Erik; Walz, Marie-Madeleine; Öhrwall, Gunnar; Werner, Josephina; Rubensson, Jan-Erik; Jungwirth, Pavel; Björneholm, Olle

    2018-04-01

    Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (Na2SO4). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots. The surface affinities of both TPA+ and Gdm+ increase upon adding NaCl to the solution. With the addition of Na2SO4, the surface affinity of TPA+ increases, while that of Gdm+ decreases. From the results of MD simulations it is seen that Gdm+ and SO4 2 - ions form pairs. This finding can be used to explain the decreased surface affinity of Gdm+ when co-dissolved with SO4 2 - ions. Since SO4 2 - ions avoid the surface due to the double charge and strong water interaction, the Gdm+-SO4 2 - ion pair resides deeper in the solutions' bulk than the Gdm+ ions. Since TPA+ does not form ion pairs with SO4 2 -, the TPA+ ions are instead enriched at the surface.

  7. Highly crosslinked polymeric monoliths for reversed-phase capillary liquid chromatography of small molecules.

    PubMed

    Liu, Kun; Tolley, H Dennis; Lee, Milton L

    2012-03-02

    Seven crosslinking monomers, i.e., 1,3-butanediol dimethacrylate (1,3-BDDMA), 1,4-butanediol dimethacrylate (1,4-BDDMA), neopentyl glycol dimethacrylate (NPGDMA), 1,5-pentanediol dimethacrylate (1,5-PDDMA), 1,6-hexanediol dimethacrylate (1,6-HDDMA), 1,10-decanediol dimethacrylate (1,10-DDDMA), and 1,12-dodecanediol dimethacrylate (1,12-DoDDMA), were used to synthesize highly cross-linked monolithic capillary columns for reversed-phase liquid chromatography (RPLC) of small molecules. Dodecanol and methanol were chosen as "good" and "poor" porogenic solvents, respectively, for these monoliths, and were investigated in detail to provide insight into the selection of porogen concentration using 1,12-DoDDMA. Isocratic elution of alkylbenzenes at a flow rate of 300 nL/min was conducted for all of the monoliths. Gradient elution of alkylbenzenes and alkylparabens provided high resolution separations. Optimized monoliths synthesized from all seven crosslinking monomers showed high permeability. Several of the monoliths demonstrated column efficiencies in excess of 50,000 plates/m. Monoliths with longer alkyl-bridging chains showed very little shrinking or swelling in solvents of different polarities. Column preparation was highly reproducible; the relative standard deviation (RSD) values (n=3) for run-to-run and column-to-column were less than 0.25% and 1.20%, respectively, based on retention times of alkylbenzenes. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    PubMed

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Patrick Allen

    2005-12-17

    Quantification in liquid chromatography (LC) is becoming very important as more researchers are using LC, not as an analytical tool itself, but as a sample introduction system for other analytical instruments. The ability of LC instrumentation to quickly separate a wide variety of compounds makes it ideal for analysis of complex mixtures. For elemental speciation, LC is joined with inductively coupled plasma mass spectrometry (ICP-MS) to separate and detect metal-containing, organic compounds in complex mixtures, such as biological samples. Often, the solvent gradients required to perform complex separations will cause matrix effects within the plasma. This limits the sensitivity ofmore » the ICP-MS and the quantification methods available for use in such analyses. Traditionally, isotope dilution has been the method of choice for LC-ICP-MS quantification. The use of naturally abundant isotopes of a single element in quantification corrects for most of the effects that LC solvent gradients produce within the plasma. However, not all elements of interest in speciation studies have multiple naturally occurring isotopes; and polyatomic interferences for a given isotope can develop within the plasma, depending on the solvent matrix. This is the case for reverse phase LC separations, where increasing amounts of organic solvent are required. For such separations, an alternative to isotope dilution for quantification would be is needed. To this end, a new method was developed using the Apex-Q desolvation system (ESI, Omaha, NE) to couple LC instrumentation with an ICP-MS device. The desolvation power of the system allowed greater concentrations of methanol to be introduced to the plasma prior to destabilization than with direct methanol injection into the plasma. Studies were performed, using simulated and actual linear methanol gradients, to find analyte-internal standard (AIS) pairs whose ratio remains consistent (deviations {+-} 10%) over methanol concentration ranges

  10. A unified classification of stationary phases for packed column supercritical fluid chromatography.

    PubMed

    West, C; Lesellier, E

    2008-05-16

    The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.

  11. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger.

    PubMed

    Wolrab, Denise; Frühauf, Peter; Gerner, Christopher; Kohout, Michal; Lindner, Wolfgang

    2017-09-29

    Major differences in the chromatographic performance of a zwitterion ion-exchange type (ZWIX) chiral stationary phase (CSP) in supercritical fluid chromatography (SFC) and high-performance liquid chromatography (HPLC) have been observed. To explain these differences, transition from HPLC to SFC conditions has been performed. The amount of a protic organic modifier in supercritical carbon dioxide (scCO 2 ) was stepwise increased and the effect of this change studied using acidic, basic and ampholytic analytes. At the same time, the effect of various basic additives to the mobile phase and transient acidic buffer species, formed by the reaction of scCO 2 with the organic modifier and additives, was assessed. Evidence is provided that a transient acid together with the intrinsic counter-ions present in the ZWIX selector structure drive the elution of analytes even when no buffer is employed. We show that the tested analytes can be enantioseparated under both SFC and HPLC conditions; the best conditions for the resolution of ampholytes are in the so-called enhanced-fluidity mobile phase region. As a consequence, subcritical fluid and enhanced-fluidity mobile phase regions seem to be chromatographic modes with a high potential for operating ZWIX CSPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation.

    PubMed

    Chen, Beibei; He, Man; Mao, Xiangju; Cui, Ran; Pang, Daiwen; Hu, Bin

    2011-01-15

    Room-temperature ionic liquids (RTILs) improved reversed-phase high performance liquid chromatography (RP-HPLC) on-line combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for selenium speciation. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 0.4% (v/v) 1-butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF(4)) and 99.2% (v/v) water has effectively improved the peak profile and six target selenium species including Na(2)SeO(3) (Se(IV)), Na(2)SeO(4) (Se(VI)), L-selenocystine (SeCys(2)), D,L-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MeSeCys), seleno-D,L-ethionine (SeEt) were separated in 8 min. In order to validate the accuracy of the method, a Certified Reference Material of SELM-1 yeast sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys(2) in living yeast cells could be transformed into SeMet. Compared with other ion-pair RP-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Simultaneous determination of nicotine and cotinine in serum using high-performance liquid chromatography with fluorometric detection and postcolumn UV-photoirradiation system.

    PubMed

    Yasuda, Makoto; Ota, Tatsuhiro; Morikawa, Atsushi; Mawatari, Ken-ichi; Fukuuchi, Tomoko; Yamaoka, Noriko; Kaneko, Kiyoko; Nakagomi, Kazuya

    2013-09-01

    A simple and rapid method for the simultaneous determination of serum nicotine and cotinine using high-performance liquid chromatography (HPLC)-fluorometric detection with a postcolumn ultraviolet-photoirradiation system was developed. Analytes were extracted from alkalinized human serum via liquid-liquid extraction using chloroform. The organic phase was back-extracted with the acidified aqueous phase, and the analytes were directly injected into an ion-pair reversed-phase HPLC system. 6-Aminoquinoline was used as an internal standard. Nicotine, cotinine, and 6-aminoquinoline were separated within 14min. The extraction efficiency of nicotine and cotinine was greater than 91%. The linear range was 0.30-1000ng for nicotine and 0.06-1000ng for cotinine. In serum samples from smokers, the concentrations of nicotine and cotinine were 8-15ng/mL and 156-372ng/mL, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography.

    PubMed

    Pesek, Joseph J; Matyska, Maria T

    2015-07-03

    The use of ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography with silica hydride-based stationary phases and mass spectrometry detection is evaluated. Retention times, peak shape, efficiency and peak intensity are compared to the more standard additives formic acid and ammonium formate. The test solutes were NAD, 3-hydroxyglutaric acid, α-ketoglutaric acid, p-aminohippuric acid, AMP, ATP, aconitic acid, threonine, N-acetyl carnitine, and 3-methyladipic acid. The column parameters are assessed in both the positive and negative ion detection modes. Ammonium fluoride is potentially an aggressive mobile phase additive that could have detrimental effects on column lifetime. Column reproducibility is measured and the effects of switching between different additives are also tested. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Paired emitter-detector diode detection with dual wavelength monitoring for enhanced sensitivity to transition metals in ion chromatography with post-column reaction.

    PubMed

    O' Toole, Martina; Barron, Leon; Shepherd, Roderick; Paull, Brett; Nesterenko, Pavel; Diamond, Dermot

    2009-01-01

    The combination of post-column derivatisation and visible detection are regularly employed in ion chromatography (IC) to detect poorly absorbing species. Although this mode is often highly sensitive, one disadvantage is the increase in repeating baseline artifacts associated with out-of-sync pumping systems. The work presented here will demonstrate the use of a second generation design paired emitter-detector diode (PEDD-II) detection mode offering enhanced sensitivity to transition metals in IC by markedly reducing this problem and also by improving signal noise. First generation designs demonstrated the use of a single integrated PEDD detector cell as a simple, small (15 x 5 mm), highly sensitive, low cost photometric detector for the detection of metals in IC. The basic principle of this detection mode lies in the employment of two linear light emitting diodes (LEDs), one operating in normal mode as a light source and the other in reverse bias serving as a light detector. The second generation PEDD-II design showed increased sensitivity for Mn(II)- and Co(II)-2-(pyridylazo)resorcinol (PAR) complexes as a result of two simultaneously acquiring detection cells--one analytical PEDD cell and one reference PEDD cell. Therefore, the PEDD-II employs two wavelengths whereby one monitors the analyte reaction product and the second monitors a wavelength close to the isosbestic point. The optimum LED wavelength to be used for the analytical cell was investigated to maximise peak response. The fabrication process for both the analytical and reference PEDD cells was validated by determining the reproducibility of detectors within a batch. The reproducibility and sensitivity of the PEDD-II detector was then investigated using signals obtained from both intra- and inter-day chromatograms.

  16. Multidimensional profiling of plasma lipoproteins by size exclusion chromatography followed by reverse-phase protein arrays

    PubMed Central

    Dernick, Gregor; Obermüller, Stefan; Mangold, Cyrill; Magg, Christine; Matile, Hugues; Gutmann, Oliver; von der Mark, Elisabeth; Handschin, Corinne; Maugeais, Cyrille; Niesor, Eric J.

    2011-01-01

    The composition of lipoproteins and the association of proteins with various particles are of much interest in the context of cardiovascular disease. Here, we describe a technique for the multidimensional analysis of lipoproteins and their associated apolipoproteins. Plasma is separated by size exclusion chromatography (SEC), and fractions are analyzed by reverse-phase arrays. SEC fractions are spotted on nitrocellulose slides and incubated with different antibodies against individual apolipoproteins or antibodies against various apolipoproteins. In this way, tens of analytes can be measured simultaneously in 100 μl of plasma from a single SEC separation. This methodology is particularly suited to simultaneous analysis of multiple proteins that may change their distribution to lipoproteins or alter their conformation, depending on factors that influence circulating lipoprotein size or composition. We observed changes in the distribution of exchangeable apolipoproteins following addition of recombinant apolipoproteins or interaction with exogenous compounds. While the cholesteryl ester transfer protein (CETP)-dependent formation of pre-β-HDL was inhibited by the CETP inhibitors torcetrapib and anacetrapib, it was not reduced by the CETP modulator dalcetrapib. This finding was elucidated using this technique. PMID:21971713

  17. Retention behavior of lipids in reversed-phase ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Ovčačíková, Magdaléna; Lísa, Miroslav; Cífková, Eva; Holčapek, Michal

    2016-06-10

    Reversed-phase ultrahigh-performance liquid chromatography (RP-UHPLC) method using two 15cm sub-2μm particles octadecylsilica gel columns is developed with the goal to separate and unambiguously identify a large number of lipid species in biological samples. The identification is performed by the coupling with high-resolution tandem mass spectrometry (MS/MS) using quadrupole - time-of-flight (QTOF) instrument. Electrospray ionization (ESI) full scan and tandem mass spectra are measured in both polarity modes with the mass accuracy better than 5ppm, which provides a high confidence of lipid identification. Over 400 lipid species covering 14 polar and nonpolar lipid classes from 5 lipid categories are identified in total lipid extracts of human plasma, human urine and porcine brain. The general dependences of relative retention times on relative carbon number or relative double bond number are constructed and fit with the second degree polynomial regression. The regular retention patterns in homologous lipid series provide additional identification point for UHPLC/MS lipidomic analysis, which increases the confidence of lipid identification. The reprocessing of previously published data by our and other groups measured in the RP mode and ultrahigh-performance supercritical fluid chromatography on the silica column shows more generic applicability of the polynomial regression for the description of retention behavior and the prediction of retention times. The novelty of this work is the characterization of general trends in the retention behavior of lipids within logical series with constant fatty acyl length or double bond number, which may be used as an additional criterion to increase the confidence of lipid identification. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A serially coupled stationary phase method for the determination of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine by liquid chromatography ion trap tandem mass spectrometry☆

    PubMed Central

    Rota, Cristina; Cristoni, Simone; Trenti, Tommaso; Cariani, Elisabetta

    2013-01-01

    Oxidative attack to DNA is of particular interest since DNA modifications can lead to heritable mutations. The most studied product of DNA oxidation is 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG). While 8-oxodG determination in blood and tissue cells is prone to artifacts, its measurement in urine employing liquid chromatography tandem mass spectrometry (LC-MS/MS) has gained more and more interest for increased reliability. LC-MS/MS can be affected by matrix effects and this is particularly true when ion trap is used as MS analyzer, due to ion accumulation in the trap and related space charge effect. In the present work, we have developed a LC-MS/MS method where the combination of cation exchange and reverse phase solid phases resulted in LC separation optimization. This together with the employment of an isotopically labeled internal standard, allowed the usage of ion trap LC-MS/MS, typically not employed for quantitative measurement in biological samples, for the measurement of 8-oxodG in urine samples from control populations. Four different urine matrices were employed for method validation. Limit of quantitation was set at least at 0.5 ng/ml. While analyzing urine samples from healthy volunteers, 8-oxodG levels reported as ng/ml were statistically different comparing males with females (p<0.05, Mann Whitney test); while comparing results normalized for creatinine no statistical significant difference was found. Mean urinary 8-oxodG level found in healthy volunteers was 1.16±0.46 nmol/mmol creatinine. The present method by enhancing at best the chromatographic performances allows the usage of ion trap LC-MS/MS for the measurement of 8-oxodG in urine samples from control populations. PMID:24251117

  19. Anion dependent ion pairing in concentrated ytterbium halide solutions

    NASA Astrophysics Data System (ADS)

    Klinkhammer, Christina; Böhm, Fabian; Sharma, Vinay; Schwaab, Gerhard; Seitz, Michael; Havenith, Martina

    2018-06-01

    We have studied ion pairing of ytterbium halide solutions. THz spectra (30-400 cm-1) of aqueous YbCl3 and YbBr3 solutions reveal fundamental differences in the hydration structures of YbCl3 and YbBr3 at high salt concentrations: While for YbBr3 no indications for a changing local hydration environment of the ions were experimentally observed within the measured concentration range, the spectra of YbCl3 pointed towards formation of weak contact ion pairs. The proposed anion specificity for ion pairing was confirmed by supplementary Raman measurements.

  20. 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography.

    PubMed

    Gupta, Vipul; Talebi, Mohammad; Deverell, Jeremy; Sandron, Sara; Nesterenko, Pavel N; Heery, Brendan; Thompson, Fletcher; Beirne, Stephen; Wallace, Gordon G; Paull, Brett

    2016-03-03

    The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti-6Al-4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69-76 (for 6-8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73-77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Magnetosonic shock wave in collisional pair-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Khan, Manoranjan, E-mail: mkhan.ju@gmail.com; Sikdar, Arnab, E-mail: arnabs.ju@gmail.com

    2016-06-15

    Nonlinear propagation of magnetosonic shock wave has been studied in collisional magnetized pair-ion plasma. The masses of both ions are same but the temperatures are slightly different. Two fluid model has been taken to describe the model. Two different modes of the magnetosonic wave have been obtained. The dynamics of the nonlinear magnetosonic wave is governed by the Korteweg-de Vries Burgers' equation. It has been shown that the ion-ion collision is the source of dissipation that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The numerical investigations reveal that the magnetosonic wavemore » exhibits both oscillatory and monotonic shock structures depending on the strength of the dissipation. The nonlinear wave exhibited the oscillatory shock wave for strong magnetic field (weak dissipation) and monotonic shock wave for weak magnetic field (strong dissipation). The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  2. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography.

    PubMed

    Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang

    2017-04-07

    Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Adsorption of ion pairs onto graphene flakes and impacts of counterions during the adsorption processes

    NASA Astrophysics Data System (ADS)

    Zhu, Chang; Yun, Jiena; Wang, Qian; Yang, Gang

    2018-03-01

    Although cations and anions are two integral constituents for all electrolytes, adsorption of ion pairs onto carbonaceous materials gains obviously less attention than adsorption of only cations or anions. Here DFT calculations are employed finding that four adsorption configurations emerge for KI onto graphene flakes (GF) instead of three for the other ion pairs. Reservation of ionic bonds is critical to their stabilities, and the bilateral configurations, where GFs couple with both cations and anions, are disfavored due to rupture of ionic bonds. Relative stabilities of two vertical configurations can be regulated and even reversed through edge-functionalization. Surprisingly, the horizontal adsorption configurations, which are global energy minima as long as present, are non-existent for a majority of ion pairs, and their existence or not is determined by the adsorption differences between halide ions and alkali ions (△Ead). Counterions effects for both cations and anions increase with the atomic electronegativities and cations correspond to stronger counterion effects; e.g., Li+ added on the other side of GFs promotes the adsorption of F- more pronouncedly than edge-functionalization. Mechanisms of electron transfers are also discussed, and three alteration patterns by counterions are observed for each type of adsorption configurations. Furthermore, addition of counterions causes band gaps to vary within a wider range that may be useful to design electronic devices.

  4. Resolution and identification of the protein components of the photosystem II antenna system of higher plants by reversed-phase liquid chromatography with electrospray-mass spectrometric detection.

    PubMed

    Corradini, D; Huber, C G; Timperio, A M; Zolla, L

    2000-07-21

    Reversed-phase liquid chromatography (RPLC) was interfaced to mass spectrometry (MS) with an electrospray ion (ESI) source for the separation and accurate molecular mass determination of the individual intrinsic membrane proteins that comprise the photosystem II (PS II) major light-harvesting complex (LHC II) and minor (CP24, CP26 and CP29) antenna system, whose molecular masses range between 22,000 and 29,000. PS II is a supramolecular complex intrinsic of the thylacoid membrane, which plays the important role in photosynthesis of capturing solar energy, and transferring it to photochemical reaction centers where energy conversion occurs. The protein components of the PS II major and minor antenna systems were extracted from spinach thylacoid membranes and separated using a butyl-silica column eluted by an acetonitrile gradient in 0.05% (v/v) aqueous trifluoroacetic acid. On-line electrospray MS allowed accurate molecular mass determination and identification of the protein components of PS II major and minor antenna system. The proposed RPLC-ESI-MS method holds several advantages over sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the conventional technique for studying membrane proteins, including a better protein separation, mass accuracy, speed and efficiency.

  5. Procyanidins (Condensed Tannins) in Green Cell Suspension Cultures of Douglas Fir Compared with Those in Strawberry and Avocado Leaves by Means of C18-Reversed-phase Chromatography 1

    PubMed Central

    Stafford, Helen A.; Lester, Hope H.

    1980-01-01

    The procyanidins (the most common type of proanthocyanidin or condensed tannin) from cell suspension cultures derived from cotyledons of Douglas Fir have been compared with those isolated from leaves of strawberry and avocado. Seventy per cent methanol (v/v) extracts from 100 milligrams fresh weight samples were analyzed by a combination of C18-reversed-phase columns with high-performance liquid chromatography, and normal phase paper chromatography. (−)-Epicatechin and its oligomers were generally retarded longer on C18 columns than the corresponding units made of (+)-catechin when eluted with solvents made up of 5% acetic acid alone or mixed with methanol up to 15% (v/v). Douglas fir preparations contained the most complex set of procyanidins and consisted of oligomers of catechin and epicatechin, whereas strawberry and avocado contained mainly (+)-catechin and (−)-epicatechin derivatives, respectively. PMID:16661581

  6. A quantitative liquid chromatography tandem mass spectrometry method for metabolomic analysis of Plasmodium falciparum lipid related metabolites.

    PubMed

    Vo Duy, S; Besteiro, S; Berry, L; Perigaud, C; Bressolle, F; Vial, H J; Lefebvre-Tournier, I

    2012-08-20

    Plasmodium falciparum is the causative agent of malaria, a deadly infectious disease for which treatments are scarce and drug-resistant parasites are now increasingly found. A comprehensive method of identifying and quantifying metabolites of this intracellular parasite could expand the arsenal of tools to understand its biology, and be used to develop new treatments against the disease. Here, we present two methods based on liquid chromatography tandem mass spectrometry for reliable measurement of water-soluble metabolites involved in phospholipid biosynthesis, as well as several other metabolites that reflect the metabolic status of the parasite including amino acids, carboxylic acids, energy-related carbohydrates, and nucleotides. A total of 35 compounds was quantified. In the first method, polar compounds were retained by hydrophilic interaction chromatography (amino column) and detected in negative mode using succinic acid-(13)C(4) and fluorovaline as internal standards. In the second method, separations were carried out using reverse phase (C18) ion-pair liquid chromatography, with heptafluorobutyric acid as a volatile ion pairing reagent in positive detection mode, using d(9)-choline and 4-aminobutanol as internal standards. Standard curves were performed in P. falciparum-infected and uninfected red blood cells using standard addition method (r(2)>0.99). The intra- and inter-day accuracy and precision as well as the extraction recovery of each compound were determined. The lower limit of quantitation varied from 50pmol to 100fmol/3×10(7)cells. These methods were validated and successfully applied to determine intracellular concentrations of metabolites from uninfected host RBCs and isolated Plasmodium parasites. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Application of ion chromatography to the study of hydrolysis of some halogenated hydrocarbons at ambient temperatures

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.

    1978-01-01

    The application of ion chromatography to the study of very slow rates of hydrolysis of some halogenated hydrocarbons was investigated. The halide concentrations in the aqueous phase of mixtures of a carbonate buffer (pH = 10.3) and either chloroform (CHC13) or fluorotrichloromethane (CFC13) after aging for various lengths of time at room temperature, were determined by ion chromatography. Hydrolysis of CHC13 caused the C1(-) concentration to increase by about 1500 ppb per day. On the other hand neither the F(-) or C1(-) concentration in the CFC13 mixture increased by as much as 1 ppb per day. The magnitude of errors in the determination of halides prevented any firm conclusions regarding hydrolysis in this mixture. However, these results were used to show how ion chromatography could expedite identification of the hydrolyzing substance as well as investigations of hydrolysis mechanisms.

  8. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].

    PubMed

    Shan, Yi-chu; Zhang, Yu-kui; Zhao, Rui-huan

    2002-07-01

    In high performance liquid chromatography, it is necessary to apply multi-composition gradient elution for the separation of complex samples such as environmental and biological samples. Multivariate stepwise gradient elution is one of the most efficient elution modes, because it combines the high selectivity of multi-composition mobile phase and shorter analysis time of gradient elution. In practical separations, the separation selectivity of samples can be effectively adjusted by using ternary mobile phase. For the optimization of these parameters, the retention equation of samples must be obtained at first. Traditionally, several isocratic experiments are used to get the retention equation of solute. However, it is time consuming especially for the separation of complex samples with a wide range of polarity. A new method for the fast optimization of ternary stepwise gradient elution was proposed based on the migration rule of solute in column. First, the coefficients of retention equation of solute are obtained by running several linear gradient experiments, then the optimal separation conditions are searched according to the hierarchical chromatography response function which acts as the optimization criterion. For each kind of organic modifier, two initial linear gradient experiments are used to obtain the primary coefficients of retention equation of each solute. For ternary mobile phase, only four linear gradient runs are needed to get the coefficients of retention equation. Then the retention times of solutes under arbitrary mobile phase composition can be predicted. The initial optimal mobile phase composition is obtained by resolution mapping for all of the solutes. A hierarchical chromatography response function is used to evaluate the separation efficiencies and search the optimal elution conditions. In subsequent optimization, the migrating distance of solute in the column is considered to decide the mobile phase composition and sustaining time of the

  9. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    EPA Science Inventory

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  10. Steroids in porcine follicular fluid: analysis by HPLC, capillary CG and capillary CG/MS after purification on SEP-PAK C18 and ion exchange chromatography.

    PubMed

    Khalil, M W; Lawson, V

    1983-04-01

    Steroids in porcine follicular fluid have been concentrated by reverse phase chromatography in SEP-PAK C18 and purified further on the cation exchanger SP-Sephadex C-25. Fractionation into unconjugated neutral and phenolic steroids, glucuronides and sulfates was carried out on triethylaminohydroxypropyl Sephadex LH-20 (TEAP-LH-20). The unconjugated neutral fraction was analysed by high pressure liquid chromatography (HPLC) on a C18 radial cartridge 5 mm I.D.; 10 mu, or on a C18 5 mu RESOLVE column, and by capillary gas chromatography (GC) on a 12 M OV-1 cross linked fused silica column. Testosterone, progesterone and androstenedione were the major steroids detected by HPLC monitored at 254 nm, although 17- hydroxy-, 20 alpha-dihydro- and 20 beta-dihydroprogesterone were also present. Pregnenolone, pregnanediol, dehydroepiandrosterone, 17-hydroxypregnenolone and androsterone were detected by capillary CG as their 0-methyloxime trimethylsilyether derivatives. Further confirmation of structure was provided by complete mass spectral data or by selective ion monitoring (SIM).

  11. Calix[4]pyrrole: A New Ion-Pair Receptor As Demonstrated by Liquid-Liquid Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintergerst, Mr. Matthieu; Levitskaia, Tatiana G.; Moyer, Bruce A

    Solvent extraction studies provide confirming evidence that meso-octamethylcalix[4]pyrrole acts as an ion-pair receptor for cesium chloride and cesium bromide in nitrobenzene solution. The stoichiometry of the interaction under extraction conditions from water to nitrobenzene was determined from plots of the cesium distribution ratios vs. cesium salt and receptor concentration, indicating the formation of an ion-paired 1:1:1 cesium:calix[4]pyrrole:halide complex. The extraction results were modeled to evaluate the equilibria inherent to the solvent extraction system, either with chloride or bromide. The binding energy between the halide anion and the calix[4]pyrrole was found to be about 7 kJ/mol larger for cesium chloride thanmore » for the cesium bromide. The ion-pairing free energies between the calix[4]pyrrole-halide complex and the cesium cation are nearly the same within experimental uncertainty for either halide, consistent with a structural model in which the Cs+ cation resides in the calix bowl. These results are unexpected since nitrobenzene is a very polar solvent that generally leads to dissociated complexes in the organic phase when used as a diluent in extraction studies of univalent ions. Control studies involving nitrate revealed no evidence of ion-pairing for CsNO3 under conditions identical to those where it is observed for CsCl and CsBr.« less

  12. Determination of trace labile copper in environmental waters by magnetic nanoparticle solid phase extraction and high-performance chelation ion chromatography.

    PubMed

    Wei, Z; Sandron, S; Townsend, A T; Nesterenko, P N; Paull, B

    2015-04-01

    Cobalt magnetic nanoparticles surface functionalised with iminodiacetic acid were evaluated as a nano-particulate solid phase extraction absorbent for copper ions (Cu(2+)) from environmental water samples. Using an external magnetic field, the collector nanoparticles could be separated from the aqueous phase, and adsorbed ions simply decomplexed using dilute HNO3. Effects of pH, buffer concentration, sample and sorbent volume, extraction equilibrium time, and interfering ion concentration on extraction efficiency were investigated. Optimal conditions were then applied to the extraction of Cu(2+) ions from natural water samples, prior to their quantitation using high-performance chelation ion chromatography. The limits of detection (LOD) of the combined extraction and chromatographic method were ~0.1 ng ml(-1), based upon a 100-fold preconcentration factor (chromatographic performance; LOD=9.2 ng ml(-1) Cu(2+)), analytical linear range from 20 to 5000 ng mL(-1), and relative standard deviations=4.9% (c=1000 ng ml(-1), n=7). Accuracy and precision of the combined approach was verified using a certified reference standard estuarine water sample (SLEW-2) and comparison of sample determinations with sector field inductively coupled plasma mass spectrometry. Recoveries from the addition of Cu(2+) to impacted estuarine and rain water samples were 103.5% and 108.5%, respectively. Coastal seawater samples, both with and without prior UV irradiation and dissolved organic matter removal were also investigated using the new methodology. The effect of DOM concentration on copper availability was demonstrated. Copyright © 2015. Published by Elsevier B.V.

  13. Determination of Picloram in Soil and Water by Reversed-Phase Liquid Chromatography

    Treesearch

    M.J.M. Wells; J.L. Michael; D.G. Neary

    1984-01-01

    A reversed-phase liquid chromatographic method is presneted for the determination of picloram in the parts per billion (ppb) range in soil, soil solution, and stream samples. Quanitification is effected by UV absorpation at 254 nm. Derivatization is not necessary. The method permits 92% ± 7.1 recovery from water samples and 61.8% ± 11.1 recovery from soil samples....

  14. Electrostatic wave modulation in collisional pair-ion plasmas

    NASA Astrophysics Data System (ADS)

    Sikdar, Arnab; Adak, Ashish; Ghosh, Samiran; Khan, Manoranjan

    2018-05-01

    The effects of ion-neutral collision on the electrostatic wave packets in the absence of the magnetic field in a pair-ion plasma have been investigated. Considering a two-fluid plasma model with the help of the standard perturbation technique, two distinct electrostatic modes have been observed, namely, a low-frequency ion acoustic mode and a high-frequency ion plasma mode. The dynamics of the modulated wave is governed by a damped nonlinear Schrödinger equation. Damping of the soliton occurs due to the ion-neutral collision. The analytical and numerical investigation reveals that the ion acoustic mode is both stable and unstable, which propagates in the form of dark solitons and bright solitons, respectively, whereas the ion plasma mode is unstable, propagating in the form of a bright soliton. Results are discussed in the context of the fullerene pair-ion plasma experiments.

  15. Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome.

    PubMed

    Naser, Fuad J; Mahieu, Nathaniel G; Wang, Lingjue; Spalding, Jonathan L; Johnson, Stephen L; Patti, Gary J

    2018-02-01

    Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C 8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C 8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics. Graphical abstract Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more

  16. Liquid Chromatography in 1982.

    ERIC Educational Resources Information Center

    Freeman, David H.

    1982-01-01

    Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)

  17. Ion-pair vortex assisted liquid-liquid microextraction with back extraction coupled with high performance liquid chromatography-UV for the determination of metformin in plasma.

    PubMed

    Alshishani, Anas; Makahleh, Ahmad; Yap, Hui Fang; Gubartallah, Elbaleeq Adam; Salhimi, Salizawati Muhamad; Saad, Bahruddin

    2016-12-01

    A new sample preparation method, ion-pair vortex assisted liquid-liquid microextraction (VALLME-BE), for the determination of a highly polar anti-diabetic drug (metformin) in plasma sample was developed. The VALLME-BE was performed by diluting the plasma in borate buffer and extracted to 150µL 1-octanol containing 0.2M di-(2-ethylhexyl)phosphoric acid as intermediate phase. The drug was next back-extracted into 20µL of 0.075M HCl solution. The effects of pH, ion-pair concentration, type of organic solvent, volume of extraction phases, ionic strength, vortexing and centrifugation times on the extraction efficiency were investigated. The optimum conditions were at pH 9.3, 60s vortexing and 2min centrifugation. The microextract, contained metformin and buformin (internal standard), was directly injected into a HPLC unit using C1 column (250mm×4.6mm×10µm) and detected at 235nm. The method was validated and calibration curve was linear with r 2 >0.99 over the range of 20-2000µgL -1 . The limits of detection and quantitation were 1.4 and 4.1µgL -1 , respectively. The accuracy was within 94.8-108% of the nominal concentration. The relative standard deviation for inter- and intra-day precision was less than 10.8%. The method was conveniently applied for the determination of metformin in plasma samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Expanded separation technique for chlorophyll metabolites in Oriental tobacco leaf using non aqueous reversed phase chromatography.

    PubMed

    Ishida, Naoyuki

    2011-08-26

    An improved separation method for chlorophyll metabolites in Oriental tobacco leaf was developed. While Oriental leaf still gives the green color even after the curing process, little attention has been paid to the detailed composition of the remaining green pigments. This study aimed to identify the green pigments using non aqueous reversed phase chromatography (NARPC). To this end, liquid chromatograph (LC) equipped with a photo diode array detector (DAD) and an atmospheric pressure chemical ionization/mass spectrometer (APCI/MSD) was selected, because it is useful for detecting low polar non-volatile compounds giving green color such as pheophytin a. Identification was based on the wavelength spectrum, mass spectrum and retention time, comparing the analytes in Oriental leaf with the commercially available and synthesized components. Consequently, several chlorophyll metabolites such as hydroxypheophytin a, solanesyl pheophorbide a and solanesyl hydroxypheophorbide a were newly identified, in addition to typical green pigments such as chlorophyll a and pheophytin a. Chlorophyll metabolites bound to solanesol were considered the tobacco specific components. NARPC expanded the number of detectable low polar chlorophyll metabolites in Oriental tobacco leaf. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Profiling of polar metabolites in biological extracts using diamond hydride-based aqueous normal phase chromatography.

    PubMed

    Callahan, Damien L; De Souza, David; Bacic, Antony; Roessner, Ute

    2009-07-01

    Highly polar metabolites, such as sugars and most amino acids are not retained by conventional RP LC columns. Without sufficient retention low concentration compounds are not detected due ion suppression and structural isomers are not resolved. In contrast, hydrophilic interaction chromatography (HILIC) and aqueous normal phase chromatography (ANP) retain compounds based on their hydrophilicity and therefore provides a means of separating highly polar compounds. Here, an ANP method based on the diamond hydride stationary phase is presented for profiling biological small molecules by LC. A rapid separation system based upon a fast gradient that delivers reproducible chromatography is presented. Approximately 1000 compounds were reproducibly detected in human urine samples and clear differences between these samples were identified. This chromatography was also applied to xylem fluid from soyabean (Glycine max) plants to which 400 compounds were detected. This method greatly increases the metabolite coverage over RP-only metabolite profiling in biological samples. We show that both forms of chromatography are necessary for untargeted comprehensive metabolite profiling and that the diamond hydride stationary phase provides a good option for polar metabolite analysis.

  20. Quantitative determination of p-aminosalicylic acid and its degradation product m-aminophenol in pellets by ion-pair high-performance liquid chromatography applying the monolithic Chromolith Speedrod RP-18e column.

    PubMed

    Vasbinder, E; Van der Weken, G; Vander Heyden, Y; Baeyens, W R G; Debunne, A; Remon, J P; García-Campaña, A M

    2004-01-01

    An ion-pair high performance liquid chromatographic method was developed for the simultaneous determination of p-aminosalicylic acid (PAS) and its degradation product m-aminophenol (MAP) in a newly developed multiparticular drug delivery system. Owing to the concentration differences of PAS and MAP, acetanilide and sulfanilic acid were used as internal standards, respectively. The separation was performed on a Chromolith SpeedROD RP-18e column, a new packing material consisting of monolithic rods of highly porous silica. The mobile phase composition was of 20 mm phosphate buffer, 20 mm tetrabutylammonium hydrogen sulphate and 16% (v/v) methanol adjusted to pH 6.8, at a flow-rate of 1.0 mL/min, resulting in a run-time of about 6 min. Detection was by UV at 233 nm. The method was validated and proved to be useful for stability testing of the new dosage form. Separation efficiency was compared between the new packing material Chromolith SpeedROD RP-18e and the conventional reversed-phase cartridge LiChroCART 125-4 (5 microm). A robustness test was carried out on both columns and different separation parameters (retention, resolution, run time, temperature) were determined. Copyright 2004 John Wiley & Sons, Ltd.

  1. Identification of Ion-Pair Structures in Solution by Vibrational Stark Effects.

    PubMed

    Hack, John; Grills, David C; Miller, John R; Mani, Tomoyasu

    2016-02-18

    Ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N) infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.

  2. Identification of ion-pair structures in solution by vibrational stark effects

    DOE PAGES

    Hack, John; Mani, Tomoyasu; Grills, David C.; ...

    2016-01-25

    Here, ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N)more » infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.« less

  3. Identification of ion-pair structures in solution by vibrational stark effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, John; Mani, Tomoyasu; Grills, David C.

    Here, ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N)more » infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.« less

  4. Sample displacement chromatography as a method for purification of proteins and peptides from complex mixtures

    PubMed Central

    Gajdosik, Martina Srajer; Clifton, James; Josic, Djuro

    2012-01-01

    Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately twenty years ago. This method takes advantage of relative binding affinities of components in a sample mixture. During loading, there is a competition among different sample components for the sorption on the surface of the stationary phase. SDC was first used for the preparative purification of proteins. Later, it was demonstrated that this kind of chromatography can also be performed in ion-exchange, affinity and hydrophobic-interaction mode. It has also been shown that SDC can be performed on monoliths and membrane-based supports in both analytical and preparative scale. Recently, SDC in ion-exchange and hydrophobic interaction mode was also employed successfully for the removal of trace proteins from monoclonal antibody preparations and for the enrichment of low abundance proteins from human plasma. In this review, the principals of SDC are introduced, and the potential for separation of proteins and peptides in micro-analytical, analytical and preparative scale is discussed. PMID:22520159

  5. [[Chiral separation of five arylpropionic acid drugs and determination of their enantiomers in pharmaceutical preparations by reversed-phase high performance liquid chromatography with cellulose-tris-(4-methylbenzoate) stationary phase

    PubMed

    Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan

    2014-09-01

    Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.

  6. Quantitative determination of reserpine, ajmaline, and ajmalicine in Rauvolfia serpentina by reversed-phase high-performance liquid chromatography.

    PubMed

    Srivastava, A; Tripathi, A K; Pandey, R; Verma, R K; Gupta, M M

    2006-10-01

    A sensitive and reproducible reversed-phase high-performance liquid chromatography (HPLC) method using photodiode array detection is established for the simultaneous quantitation of important root alkaloids of Rauvolfia serpentina, namely, reserpine, ajmaline, and ajmalicine. A Chromolith Performance RP-18e column (100 x 4.6-mm i.d.) and a binary gradient mobile phase composed of 0.01 M (pH 3.5) phosphate buffer (NaH(2)PO(4)) containing 0.5% glacial acetic acid and acetonitrile are used. Analysis is run at a flow rate of 1.0 mL/min with the detector operated at a wavelength of 254 nm. The calibration curves are linear over a concentration range of 1-20 microg/mL (r = 1.000) for all the alkaloids. The various other aspects of analysis (i.e., peak purity, similarity, recovery, and repeatability) are also validated. For the three components, the recoveries are found to be 98.27%, 97.03%, and 98.38%, respectively. The limits of detection are 6, 4, and 8 microg/mL for ajmaline, ajmalicine, and reserpine, respectively, and the limits of quantitation are 19, 12, and 23 microg/mL for ajmaline, ajmalicine, and reserpine, respectively. The developed method is simple, reproducible, and easy to operate. It is useful for the evaluation of R. serpentina.

  7. [Chiral separation of five beta-blockers using di-n-hexyl L-tartrate-boric acid complex as mobile phase additive by reversed-phase liquid chromatography].

    PubMed

    Yang, Juan; Wang, Lijuan; Guo, Qiaoling; Yang, Gengliang

    2012-03-01

    A reversed-phase high performance liquid chromatographic (HPLC) method using the di-n-hexyl L-tartrate-boric acid complex as a chiral mobile phase additive was developed for the enantioseparation of five beta-blockers including propranolol, esmolol, metoprolol, bisoprolol and sotalol. In order to obtain a better enantioseparation, the influences of concentrations of di-n-butyl L-tartrate and boric acid, the type, concentration and pH of the buffer, methanol content as well as the molecular structure of analytes were extensively investigated. The separation of the analytes was performed on a Venusil MP-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 15 mmol/L ammonium acetate-methanol containing 60 mmol/L boric acid, 70 mmol/L di-n-hexyl L-tartrate (pH 6.00). The volume ratios of 15 mmol/L ammonium acetate to methanol were 20: 80 for propranolol, esmolol, metoprolol, bisoprolol and 30: 70 for sotalol. The flow rate was 0.5 mL/min and the detection wavelength was set at 214 nm. Under the optimized conditions, baseline enantioseparation was obtained separately for the five pairs of analytes.

  8. Rapid and Sensitive Reverse-phase High-performance Liquid Chromatography Method for Estimation of Ketorolac in Pharmaceuticals Using Weighted Regression

    PubMed Central

    Dubey, S. K.; Duddelly, S.; Jangala, H.; Saha, R. N.

    2013-01-01

    A reliable, rapid and sensitive isocratic reverse phase high-performance liquid chromatography method has been developed and validated for assay of ketorolac tromethamine in tablets and ophthalmic dosage forms using diclofenac sodium as an internal standard. An isocratic separation of ketorolac tromethamine was achieved on Oyster BDS (150×4.6 mm i.d., 5 μm particle size) column using mobile phase of methanol:acetonitrile:sodium dihydrogen phosphate (20 mM; pH 5.5) (50:10:40, %v/v) at a flow rate of 1.0 ml/min. The eluents were monitored at 322 nm for ketorolac and at 282 nm for diclofenac sodium with a photodiode array detector. The retention times of ketorolac and diclofenac sodium were found to be 1.9 min and 4.6 min, respectively. Response was a linear function of drug concentration in the range of 0.01-15 μg/ml (R2=0.994; linear regression model using weighing factor 1/x2) with a limit of detection and quantification of 0.002 μg/ml and 0.007 μg/ml, respectively. The % recovery and % relative standard deviation values indicated the method was accurate and precise. PMID:23901166

  9. Non-enzymatic synthesis of the coenzymes, uridine diphosphate glucose and cytidine diphosphate choline, and other phosphorylated metabolic intermediates

    NASA Technical Reports Server (NTRS)

    Mar, A.; Dworkin, J.; Oro, J.

    1987-01-01

    Using urea and cyanamide, the two condensing agents considered to have been present on the primitive earth, uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP-choline), glucose-1-phosphate (G1P), and glucose-6-phosphate (G6P) were synthesized under simulated prebiotic conditions. The reaction products were separated and identified using paper chromatography, thin layer chromatography, enzymatic analyses, and ion-pair reverse-phase high performance liquid chromatography. The possibility of nonenzymatic synthesis of metabolic intermediates on the primitive earth from simple precursors was thus demonstrated.

  10. Separation of polyethylene glycols and amino-terminated polyethylene glycols by high-performance liquid chromatography under near critical conditions.

    PubMed

    Wei, Y-Z; Zhuo, R-X; Jiang, X-L

    2016-05-20

    The separation and characterization of polyethylene glycols (PEGs) and amino-substituted derivatives on common silica-based reversed-phase packing columns using isocratic elution is described. This separation is achieved by liquid chromatography under the near critical conditions (LCCC), based on the number of amino functional end groups without obvious effect of molar mass for PEGs. The mobile phase is acetonitrile in water with an optimal ammonium acetate buffer. The separation mechanism of PEG and amino-substituted PEG under the near LCCC on silica-based packing columns is confirmed to be ion-exchange interaction. Under the LCCC of PEG backbone, with fine tune of buffer concentration, the retention factor ratios for benzylamine and phenol in buffered mobile phases, α(benzylamine/phenol)-values, were used to assess the ion-exchange capacity on silica-based reversed-phase packing columns. To the best of our knowledge, this is the first report on separation of amino-functional PEGs independent of the molar mass by isocratic elution using common C18 or phenyl reversed-phase packing columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry.

    PubMed

    Ji, Shuai; He, Dan-Dan; Wang, Tian-Yun; Han, Jie; Li, Zheng; Du, Yan; Zou, Jia-Hui; Guo, Meng-Zhe; Tang, Dao-Quan

    2017-11-30

    Ginkgo biloba extract (GBE), derived from the leaves of Ginkgo biloba L., is one of the most widely used traditional Chinese medicines worldwide. Due to high structural diversity and low abundance of chemical constituents in GBE, conventional reversed-phase liquid chromatography has limited power to meet the needs of its quality control. In this study, an off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography (HILIC×RP 2D-LC) system coupled with diode array detection (DAD) and quadrupole time-of-flight mass spectrometry (qTOF-MS) was established to comprehensively analyze the chemical constituents of GBE. After optimizing the chromatographic columns and mobile phase of 2D-LC, a Waters XBridge Amide column using acetonitrile/water/formic acid as the mobile phase was selected as the first dimension to fractionate GBE, and the obtained fractions were further separated on an Agilent Zorbax XDB-C18 column with methanol/water/formic acid as the mobile phase. As a result, a total of 125 compounds were detected in GBE. The orthogonality of the 2D-LC system was 69.5%, and the practical peak capacity was 3864 and 2994, respectively, calculated by two different methods. The structures of 104 compounds were tentatively characterized by qTOF-MS analysis, and 21 of them were further confirmed by comparing with reference standards. This established HILIC×RP 2D-LC-qTOF/MS system can greatly improve the separation and characterization of natural products in GBE or other complicated herbal extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Molecular-level comparison of alkylsilane and polar-embedded reversed-phase liquid chromatography systems.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2008-08-15

    Stationary phases with embedded polar groups possess several advantages over conventional alkylsilane phases, such as reduced peak tailing, enhanced selectivity for specific functional groups, and the ability to use a highly aqueous mobile phase. To gain a deeper understanding of the retentive properties of these reversed-phase packings, molecular simulations were carried out for three different stationary phases in contact with mobile phases of various water/methanol ratios. Two polar-embedded phases were modeled, namely, amide and ether containing, and compared to a conventional octadecylsilane phase. The simulations show that, due to specific hydrogen bond interactions, the polar-embedded phases take up significantly more solvent and are more ordered than their alkyl counterparts. Alkane and alcohol probe solutes indicate that the polar-embedded phases are less retentive than alkyl phases for nonpolar species, whereas polar species are more retained by them due to hydrogen bonding with the embedded groups and the increased amount of solvent within the stationary phase. This leads to a significant reduction of the free-energy barrier for the transfer of polar species from the mobile phase to residual silanols, and this reduced barrier provides a possible explanation for reduced peak tailing.

  13. In vivo biosynthesis of L-(/sup 35/S)Cys-arginine vasopressin, -oxytocin, and -somatostatin: rapid estimation using reversed phase high pressure liquid chromatography. [Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Bourland, R.E.; Fernstrom, J.D.

    1981-01-01

    L(/sup 35/S)Cys-arginine vasopressin, -oxytocin, and -somatostatin were purified from hypothalami and neurohypophyses 4 h after rats received L(/sup 35/S)Cys via the third ventricle. After acetic acid extraction, Sephadex G-25 filtration, and chemoadsorption to C18-silica (Sep-Pak cartridges), the labeled peptides were rapidly separated by gradient elution, reversed phase, high pressure liquid chromatography (HPLC). The identity and isotopic purity of the labeled peptides were determined by several reversed phase HPLC procedures in conjunction with chemical modification. The labeled peptide fractions were at least 50% radiochemically pure. Using this HPLC isolation procedure, incorporation of L-(/sup 35/S)Cys into each peptide was determined in hydratedmore » and dehydrated rats. Label incorporation into arginine vasopressin and oxytocin in the hypothalamus and the neurohypophysis of dehydrated rats was 2-3 times greater than that in hydrated rats. Incorporation of label into hypothalamic and neurohypophyseal somatostatin was unaffected by the hydration state of the animal. This procedure thus provides a very rapid, but sensitive, set of techniques for studying the control of small peptide biosynthesis in the brain.« less

  14. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.

    PubMed

    Kluters, Simon; Wittkopp, Felix; Jöhnck, Matthias; Frech, Christian

    2016-02-01

    The mobile phase pH is a key parameter of every ion exchange chromatography process. However, mechanistic insights into the pH influence on the ion exchange chromatography equilibrium are rare. This work describes a mechanistic model capturing salt and pH influence in ion exchange chromatography. The pH dependence of the characteristic protein charge and the equilibrium constant is introduced to the steric mass action model based on a protein net charge model considering the number of amino acids interacting with the stationary phase. This allows the description of the adsorption equilibrium of the chromatographed proteins as a function of pH. The model parameters were determined for a monoclonal antibody monomer, dimer, and a higher aggregated species based on a manageable set of pH gradient experiments. Without further modification of the model parameters the transfer to salt gradient elution at fixed pH is demonstrated. A lumped rate model was used to predict the separation of the monoclonal antibody monomer/aggregate mixture in pH gradient elution and for a pH step elution procedure-also at increased protein loadings up to 48 g/L packed resin. The presented model combines both salt and pH influence and may be useful for the development and deeper understanding of an ion exchange chromatography separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Determination of dapsone in serum and saliva using reversed-phase high-performance liquid chromatography with ultraviolet or electrochemical detection.

    PubMed

    Moncrieff, J

    1994-03-18

    A simple, extractionless method for the determination of dapsone in serum and saliva is described. Reversed-phase high-performance liquid chromatography is used with UV detection at 295 nm or electrochemical detection at 0.7 V. Diazoxide in buffer is the internal standard for UV detection and practolol for electrochemical detection. Sample preparation is minimal with protein precipitation of serum samples whilst saliva samples are simply diluted with addition of an internal standard. Low-level serum and saliva samples are front-cut on-line with a 3 cm laboratory-made precolumn in the loop position on a standard Valco injection valve. Isocratic separation is achieved on a 250 mm x 4.6 mm I.D. stainless-steel Spherisorb S5 ODS-1 column. The mobile phase for high levels of dapsone is acetonitrile-elution buffer (12:88, v/v) at 2 ml/min and a column temperature of 40 degrees C for both serum and saliva separations. For the low-level assays using electrochemical detection and solid-phase clean-up, the mobile phase is acetonitrile-methanol-elution buffer (9:4:87, v/v/v). The UV and electrochemical detection limits are 25 ng/ml and 200 pg/ml, respectively, in both serum and saliva. This simple method is applicable to the routine monitoring of dapsone levels in serum from leprotic patients and electrochemical detection gives a simple, reliable method for the monitoring of trough values in subjects on anti-malarial prophylaxis.

  16. Determination of γ-hydroxybutyrate in human urine samples by ion exclusion and ion exchange two-dimensional chromatography system.

    PubMed

    Liu, Junwei; Deng, Zhifen; Zhu, Zuoyi; Wang, Yong; Wang, Guoqing; Sun, Yu-An; Zhu, Yan

    2017-12-15

    A two-dimensional ion chromatography system was developed for the determination of γ-hydroxybutyrate (GHB) in human urine samples. Ion exclusion chromatography was used in the first dimensional separation for elimination of urine matrices and detection of GHB above 10mgL -1 , ion exchange chromatography was used in the second dimensional separation via column-switching technique for detection of GHB above 0.08mgL -1 . Under the optimized chromatographic conditions, the ion exclusion and ion exchange chromatography separation system exhibited satisfactory repeatability (RSD<3.1%, n=6) and good linearity in the range of 50-1000mgL -1 and 0.5-100mgL -1 , respectively. By this method, concentrations of GHB in the selected human urine samples were detected in the range of 0-1.57mgL -1 . The urine sample containing 0.89mgL -1 GHB was selected to evaluate the accuracy; the spiked recoveries of GHB were 95.9-102.8%. The results showed that the two-dimensional ion chromatography system was convenient and practical for the determination of GHB in human urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Liquid chromatography-mass spectrometry (LC-MS): a powerful combination for selenium speciation in garlic (Allium sativum).

    PubMed

    Dumont, Emmie; Ogra, Yasumitsu; Vanhaecke, Frank; Suzuki, Kazuo T; Cornelis, Rita

    2006-03-01

    Liquid chromatography (LC) hyphenated with both elemental and molecular mass spectrometry has been used for Se speciation in Se-enriched garlic. Different species were separated by ion-pair liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) after hot-water extraction. They were identified by on-line reversed-phase liquid chromatography-electrospray ionization tandem mass spectrometry (RPLC-ESI-MS-MS). Se-methionine and Se-methylselenocysteine were determined by monitoring their product ions. Another compound, gamma-glutamyl-Se-methylselenocysteine, shown to be the most abundant form of Se in the garlic, was determined without any additional sample pre-treatment after extraction and without the need for a synthesized standard. Product ions for this dipeptide were detected by LC-ESI-MS-MS for three isotopes of Se-78 Se, 80Se: and 82Se. The method was extended to the species extracted during in-vitro gastrointestinal digestion. Because both Se-methylselenocysteine and gamma-glutamyl-Se-methylselenocysteine have anticarcinogenic properties, their extractability and stability during human digestion are very important. Garlic was also treated with saliva, to enable detection and analysis of species extracted during mastication. Detailed information on the extractability of selenium species by both simulated gastric and intestinal fluid are given, and variation of the distribution of Se among the different species with time is discussed. Although the main species in garlic is the dipeptide gamma-glutamyl-Se-methylselenocysteine, Se-methylselenocysteine is the main compound present in the extracts after treatment with gastrointestinal fluids. Two more, so far unknown compounds were observed in the chromatogram. The extracted species and their transformations were analysed by combining LC-ICP-MS and LC-ESI-MS-MS. In both the simulated gastric and intestinal digests, Se-methionine, Se-methylselenocysteine, and gamma

  18. Novel and sensitive reversed-phase high-pressure liquid chromatography method with electrochemical detection for the simultaneous and fast determination of eight biogenic amines and metabolites in human brain tissue.

    PubMed

    Van Dam, Debby; Vermeiren, Yannick; Aerts, Tony; De Deyn, Peter Paul

    2014-08-01

    A fast and simple RP-HPLC method with electrochemical detection (ECD) and ion pair chromatography was developed, optimized and validated in order to simultaneously determine eight different biogenic amines and metabolites in post-mortem human brain tissue in a single-run analytical approach. The compounds of interest are the indolamine serotonin (5-hydroxytryptamine, 5-HT), the catecholamines dopamine (DA) and (nor)epinephrine ((N)E), as well as their respective metabolites, i.e. 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), 5-hydroxy-3-indoleacetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG). A two-level fractional factorial experimental design was applied to study the effect of five experimental factors (i.e. the ion-pair counter concentration, the level of organic modifier, the pH of the mobile phase, the temperature of the column, and the voltage setting of the detector) on the chromatographic behaviour. The cross effect between the five quantitative factors and the capacity and separation factors of the analytes were then analysed using a Standard Least Squares model. The optimized method was fully validated according to the requirements of SFSTP (Société Française des Sciences et Techniques Pharmaceutiques). Our human brain tissue sample preparation procedure is straightforward and relatively short, which allows samples to be loaded onto the HPLC system within approximately 4h. Additionally, a high sample throughput was achieved after optimization due to a total runtime of maximally 40min per sample. The conditions and settings of the HPLC system were found to be accurate with high intra and inter-assay repeatability, recovery and accuracy rates. The robust analytical method results in very low detection limits and good separation for all of the eight biogenic amines and metabolites in this complex mixture of biological analytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Reversed phase liquid chromatography with UV absorbance and flame ionization detection using a water mobile phase and a cyano propyl stationary phase Analysis of alcohols and chlorinated hydrocarbons.

    PubMed

    Quigley, W W; Ecker, S T; Vahey, P G; Synovec, R E

    1999-10-01

    The development of liquid chromatography with a commercially available cyano propyl stationary phase and a 100% water mobile phase is reported. Separations were performed at ambient temperature, simplifying instrumental requirements. Excellent separation efficiency using a water mobile phase was achieved, for example N=18 800, or 75 200 m(-1), was obtained for resorcinol, at a retention factor of k'=4.88 (retention time of 9.55 min at 1 ml min(-1) for a 25 cmx4.6 mm i.d. column, packed with 5 mum diameter particles with the cyano propyl stationary phase). A separation via reversed phase liquid chromatography (RP-LC) with a 100% water mobile phase of six phenols and related compounds was compared to a separation of the same compounds by traditional RP-LC, using octadecylsilane (ODS), i.e. C18, bound to silica and an aqueous mobile phase modified with acetonitrile. Nearly identical analysis time was achieved for the separation of six phenols and related compounds using the cyano propyl stationary phase with a 100% water mobile phase, as compared to traditional RP-LC requiring a relatively large fraction of organic solvent modifier in the mobile phase (25% acetonitrile:75% water). Additional understanding of the retention mechanism with the 100% water mobile phase was obtained by relating measured retention factors of aliphatic alcohols, phenols and related compounds, and chlorinated hydrocarbons to their octanol:water partition coefficients. The retention mechanism is found to be consistent with a RP-LC mechanism coupled with an additional retention effect due to residual hydroxyl groups on the cyano propyl stationary phase. Advantages due to a 100% water mobile phase for the chemical analysis of alcohol mixtures and chlorinated hydrocarbons are reported. By placing an absorbance detector in-series and preceding a novel drop interface to a flame ionization detector (FID), selective detection of a separated mixture of phenols and related compounds and aliphatic

  20. New longitudinal mode and compression of pair ions in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehsan, Zahida; Imran, Muhammad, E-mail: imransindhu@hotmail.com; Tsintsadze, N. L.

    Positive and negative ions forming the so-called pair plasma differing in sign of their charge but asymmetric in mass and temperature support a new acoustic-like mode. The condition for the excitation of ion sound wave through electron beam induced Cherenkov instability is also investigated. This beam can generate a perturbation in the pair ion plasmas in the presence of electrons when there is number density, temperature, and mass difference in the two species of ions. Basic emphasis is on the focusing of ion sound waves, and we show how, in the area of localization of wave energy, the density ofmore » pair particles increases while electrons are pushed away from that region. Further, this localization of wave is dependent on the shape of the pulse. Considering the example of pancake and bullet shaped pulses, we find that only the former leads to compression of pair ions in the supersonic regime of the focusing region. Here, possible existence of regions where pure pair particles can exist may also be speculated which is not only useful from academic point of view but also to mimic the situation of plasma (electron positron asymmetric and symmetric) observed in astrophysical environment.« less

  1. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica.

    PubMed

    Naveen, P; Lingaraju, H B; Prasad, K Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography-mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International

  2. Preparation of a polybutadiene stationary phase immobilized by gamma radiation for reversed-phase high-performance liquid chromatography.

    PubMed

    Lopes, Nilva P; Collins, Kenneth E; Jardim, Isabel C S F

    2003-02-14

    Polybutadiene (PBD) has been immobilized on HPLC silica by gamma radiation doses in the range from 5 to 180 kGy. Columns prepared from these reversed-phase materials, as well as from similar non-irradiated materials, were tested with standard sample mixtures and characterized by elemental analysis (% C) and infrared spectroscopy. A low dose of 5 kGy is sufficient to produce a layer of immobilized PBD which functions as an efficient and stable stationary phase. Higher doses give thicker immobilized layers having less favorable chromatographic properties.

  3. Ion acoustic waves in pair-ion plasma: Linear and nonlinear analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeed, R.; Mushtaq, A.

    2009-03-15

    Linear and nonlinear properties of low frequency ion acoustic wave (IAW) in pair-ion plasma in the presence of electrons are investigated. The dispersion relation and Kadomtsev-Petviashvili equation for linear/nonlinear IAW are derived from sets of hydrodynamic equations where the ion pairs are inertial while electrons are Boltzmannian. The dispersion curves for various concentrations of electrons are discussed and compared with experimental results. The predicted linear IAW propagates at the same frequencies as those of the experimentally observed IAW if n{sub e0}{approx}10{sup 4} cm{sup -3}. It is found that nonlinear profile of the ion acoustic solitary waves is significantly affected bymore » the percentage ratio of electron number density and temperature. It is also determined that rarefactive solitary waves can propagate in this system. It is hoped that the results presented in this study would be helpful in understanding the salient features of the finite amplitude localized ion acoustic solitary pulses in a laboratory fullerene plasma.« less

  4. Profiling analysis of low molecular weight heparins by multiple heart-cutting two dimensional chromatography with quadruple time-of-flight mass spectrometry.

    PubMed

    Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing

    2015-09-01

    Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.

  5. Short communication: separation and quantification of caseins and casein macropeptide using ion-exchange chromatography.

    PubMed

    Holland, B; Rahimi Yazdi, S; Ion Titapiccolo, G; Corredig, M

    2010-03-01

    The aim of this work was to improve an existing method to separate and quantify the 4 major caseins from milk samples (i.e., containing whey proteins) using ion-exchange chromatography. The separation process was carried out using a mini-preparative cation exchange column (1 or 5mL of column volume), using urea acetate as elution buffer at pH 3.5 with a NaCl gradient. All 4 major caseins were separated, and the purity of each peak was assessed using sodium dodecyl sulfate-PAGE. Purified casein fractions were also added to raw milk to confirm their elution volumes. The quantification was carried out using purified caseins in buffer as well as added directly to fresh skim milk. This method can also be employed to determine the decrease in kappa-casein and the release of the casein-macropeptide during enzymatic hydrolysis using rennet. In this case, the main advantage of using this method is the lack of organic solvents compared with the conventional method for separation of macropeptide (using reversed phase HPLC).

  6. Recent development in liquid chromatography stationary phases for separation of Traditional Chinese Medicine components.

    PubMed

    Jin, Hongli; Liu, Yanfang; Guo, Zhimou; Wang, Jixia; Zhang, Xiuli; Wang, Chaoran; Liang, Xinmiao

    2016-10-25

    Traditional Chinese Medicine (TCM) is an ancient medical practice which has been used to prevent and cure diseases for thousands of years. TCMs are frequently multi-component systems with mainly unidentified constituents. The study of the chemical compositions of TCMs remains a hotspot of research. Different strategies have been developed to manage the significant complexity of TCMs, in an attempt to determine their constituents. Reversed-phase liquid chromatography (RPLC) is still the method of choice for the separation of TCMs, but has many problems related to limited selectivity. Recently, enormous efforts have been concentrated on the development of efficient liquid chromatography (LC) methods for TCMs, based on selective stationary phases. This can improve the resolution and peak capacity considerably. In addition, high-efficiency stationary phases have been applied in the analysis of TCMs since the invention of ultra high-performance liquid chromatography (UHPLC). This review describes the advances in LC methods in TCM research from 2010 to date, and focuses on novel stationary phases. Their potential in the separation of TCMs using relevant applications is also demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Offline solid-phase extraction for preconcentration of pharmaceuticals and personal care products in environmental water and their simultaneous determination using the reversed phase high-performance liquid chromatography method.

    PubMed

    G Archana; Dhodapkar, Rita; Kumar, Anupama

    2016-09-01

    The present study reports a precise and simple offline solid-phase extraction (SPE) coupled with reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of five representative and commonly present pharmaceuticals and personal care products (PPCPs), a new class of emerging pollutants in the aquatic environment. The target list of analytes including ciprofloxacin, acetaminophen, caffeine benzophenone and irgasan were separated by a simple HPLC method. The column used was a reversed-phase C18 column, and the mobile phase was 1 % acetic acid and methanol (20:80 v/v) under isocratic conditions, at a flow rate of 1 mL min(-1). The analytes were separated and detected within 15 min using the photodiode array detector (PDA). The linearity of the calibration curves were obtained with correlation coefficients 0.98-0.99.The limit of detection (LOD), limit of quantification (LOQ), precision, accuracy and ruggedness demonstrated the reproducibility, specificity and sensitivity of the developed method. Prior to the analysis, the SPE was performed using a C18 cartridge to preconcentrate the targeted analytes from the environmental water samples. The developed method was applied to evaluate and fingerprint PPCPs in sewage collected from a residential engineering college campus, polluted water bodies such as Nag river and Pili river and the influent and effluent samples from a sewage treatment plant (STP) situated at Nagpur city, in the peak summer season. This method is useful for estimation of pollutants present in microquantities in the surface water bodies and treated sewage as compared to nanolevel pollutants detected by mass spectrometry (MS) detectors.

  8. Measurement of bromate in bread by liquid chromatography with post-column flow reactor detection.

    PubMed

    Himata, K; Noda, M; Ando, S; Yamada, Y

    2000-01-01

    This method is suitable for the determination of bromate residues in a variety of baked goods. The peer-verified method trial was performed on white bread, multigrain bread, and coffee cake spiked with known levels of potassium bromate. The analytical portion is extracted with deionized water to remove bromate from the bulk of the baked product. The aqueous extract is carried through a series of steps to remove co-extractives that would interfere with the liquid chromatography (LC) in the determinative step or hasten the deterioration of the LC column. The extract is filtered before passing it through a reversed-phase solid-phase extraction (SPE) column and a cation-exchange column in the silver form to remove lipids and chloride, respectively. Ultrafiltration is then used to remove proteins with molecular weights of >30,000 daltons. Finally, a cation-exchange column in the sodium form is used to remove silver ions from the extract. The determinative step uses LC with a reversed-phase column and an ion-pairing agent in the mobile phase. Detection is based on the post-column reaction of bromate with o-dianisidine to form an oxidation product that is quantitated spectrophotometrically at 450 nm. Overall agreement between the submitting and peer laboratories was quite good. For bromate levels of 10-52 ppb, overall mean recoveries were 76.9 and 78.8% for the submitting and peer laboratories, respectively. The standard deviations were higher for the results of the peer laboratory, probably because of the generally higher level of baseline noise present in the chromatograms. The results demonstrate that the method provides adequate accuracy with low-fat as well as high-fat foods. Bromate at levels as low as 5 ppb (ng/g) can be detected with the method.

  9. Determination of β-Carotene in Supplements and Raw Materials by Reversed-Phase High Pressure Liquid Chromatography

    PubMed Central

    Szpylka, John; DeVries, Jonathan W.; Bhandari, S.; Bui, M.H.; Ji, D.; Konings, E.; Lewis, R.; Maas, P.; Parish, H.; Post, B.; Schierle, J.; Sullivan, D.; Taylor, A.; Wang, J.; Ware, G.; Woollard, D.; Wu, T.

    2008-01-01

    Twelve laboratories representing 4 countries participated in an interlaboratory study conducted to determine all-trans-β-carotene and total β-carotene in dietary supplements and raw materials. Thirteen samples were sent as blind duplicates to the collaborators. Results obtained from 11 laboratories are reported. For products composed as softgels and tablets that were analyzed for total β-carotene, the reproducibility relative standard deviation (RSDR) ranged from 3.35 to 23.09% and the HorRat values ranged from 1.06 to 3.72. For these products analyzed for trans β-carotene, the reproducibility relative standard deviation (RSDR) ranged from 4.28 to 22.76% and the HorRat values ranged from 0.92 to 3.37. The RSDr and HorRat values in the analysis of a beadlet raw material were substantial and it is believed that the variability within the material itself introduced significant variation in subsampling. The method uses high pressure liquid chromatography (LC) in the reversed-phase mode with visible light absorbance for detection and quantitation. If high levels of α-carotenes are present, a second LC system is used for additional separation and quantitation of the carotene species. It is recommended that the method be adopted as an AOAC Official Method. PMID:16385976

  10. Multiply Reduced Oligofluorenes: Their Nature and Pairing with THF-Solvated Sodium Ions

    DOE PAGES

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet; ...

    2016-07-01

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  11. Asymmetric Ion-Pairing Catalysis

    PubMed Central

    Brak, Katrien

    2014-01-01

    Charged intermediates and reagents are ubiquitous in organic transformations. The interaction of these ionic species with chiral neutral, anionic, or cationic small molecules has emerged as a powerful strategy for catalytic, enantioselective synthesis. This review describes developments in the burgeoning field of asymmetric ion-pairing catalysis with an emphasis on the insights that have been gleaned into the structural and mechanistic features that contribute to high asymmetric induction. PMID:23192886

  12. Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; National Centre for Physics; Rizvi, H.

    2011-09-15

    Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the smallmore » amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.« less

  13. Determination of synthetic food dyes in commercial soft drinks by TLC and ion-pair HPLC.

    PubMed

    de Andrade, Francisca Ivani; Florindo Guedes, Maria Izabel; Pinto Vieira, Ícaro Gusmão; Pereira Mendes, Francisca Noélia; Salmito Rodrigues, Paula Alves; Costa Maia, Carla Soraya; Marques Ávila, Maria Marlene; de Matos Ribeiro, Luzara

    2014-08-15

    Synthetic food colourings were analyzed on commercial carbonated orange and grape soft drinks produced in Ceará State, Brazil. Tartrazine (E102), Amaranth (E123), Sunset Yellow (E110) and Brilliant Blue (E133) were extracted from soft drinks using C18 SPE and identified by thin layer chromatography (TLC), this method was used to confirm the composition of food colouring in soft drinks stated on label. The concentration of food colouring in soft drink was determined by ion-pair high performance liquid chromatography with photodiode array detection. The results obtained with the samples confirm that the identification and quantification methods are recommended for quality control of the synthetic colours in soft drinks, as well as to determine whether the levels and lables complies with the recommendations of food dyes legislation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Simultaneous determination of bifonazole and tinctures of calendula flower in pharmaceutical creams by reversed-phase liquid chromatography.

    PubMed

    Ferreyra, Carola F; Ortiz, Cristina S

    2005-01-01

    The aim of this research was to develop and validate a sensitive, rapid, easy, and precise reversed-phase liquid chromatography (LC) method for stability studies of bifonazole (I) formulated with tinctures of calendula flower (II). The method was especially developed for the analysis and quantitative determination of I and II in pure and combined forms in cream pharmaceutical formulations without using gradient elution and at room temperature. The influence on the stability of compound I of temperature, artificial radiation, and drug II used for the new pharmaceutical design was evaluated. The LC separation was carried out using a Supelcosil LC-18 column (25 cm x 4.6 mm id, 5 microm particle size); the mobile phase was composed of methanol-0.1 M ammonium acetate buffer (85 + 15, v/v) pumped isocratically at a flow rate of 1 mL/min; and ultraviolet detection was at 254 nm. The analysis time was less than 10 min. Calibration graphs were found to be linear in the 0.125-0.375 mg/mL (rI = 0.9991) and 0.639-1.916 mg/mL (rII = 0.9995) ranges for I and II, respectively. The linearity, precision, recovery, and limits of detection and quantification were satisfactory for I and II. The results obtained suggested that the developed LC method is selective and specific for the analysis of I and II in pharmaceutical products, and that it can be applied to stability studies.

  15. Persistent Ion Pairing in Aqueous Hydrochloric Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that themore » Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.« less

  16. Separation of metalloporphyrins from metallation reactions by liquid chromatography and electrophoresis.

    PubMed

    Duff, G A; Yeager, S A; Singhal, A K; Pestel, B C; Ressner, J M; Foster, N

    1987-04-24

    The analytical separation of the indium and manganese complexes of three synthetic, meso-substituted, water-soluble porphyrins from their respective free bases in metallation reaction mixtures is described. The ligands tetra-3N-methylpyridyl porphyrin, tetra-4N-methylpyridyl porphyrin and tetra-N,N,N-trimethylanilinium porphyrin are complexed with In (III) and Mn (III) and are separated from residual free base by high-performance liquid chromatography (HPLC) in acidic conditions with gradient elution on ODS bonded stationary phase. Electrophoretic separation is achieved on both cellulose polyacetate strips and polyacrylamide tube gels under basic conditions. Although analytical separations can be achieved by both HPLC and electrophoresis, only HPLC is suitable for the development of preparative scale separations. Column chromatography, ion-pairing and ion-suppression HPLC techniques fail to separate such highly charged and closely related aromatic compounds.

  17. Determination of sulphite in wines using suppressed ion chromatography.

    PubMed

    Yoshikawa, Kenji; Uekusa, Yuki; Sakuragawa, Akio

    2015-05-01

    Suppressed ion chromatography with the use of a conductivity detector was developed for the determination of sulphite ions in wine samples. When a mixed solution of sodium carbonate, sodium bicarbonate, and acetone was used as the mobile phase, simultaneous determination of eight inorganic anions (i.e., fluoride, chloride, nitrite, nitrate, sulphite, phosphate, sulphate, and thiosulphate) was completed in approximately 25 min. Linearity, reproducibility, and detection limits were determined for the proposed method. In the case of sulphite detection, a linear calibration curve with a good correlation coefficient of 0.9992 was obtained from the peak height of sulphite with a relative standard deviation (n = 6) 1.48%. In addition, the detection limit of sulphite was 0.27 mg/L at a signal-to-noise ratio of 3. Further, the developed method was applied for the determination of sulphite contained in several wine samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. An automated method for the analysis of phenolic acids in plasma based on ion-pairing micro-extraction coupled on-line to gas chromatography/mass spectrometry with in-liner derivatisation.

    PubMed

    Peters, Sonja; Kaal, Erwin; Horsting, Iwan; Janssen, Hans-Gerd

    2012-02-24

    A new method is presented for the analysis of phenolic acids in plasma based on ion-pairing 'Micro-extraction in packed sorbent' (MEPS) coupled on-line to in-liner derivatisation-gas chromatography-mass spectrometry (GC-MS). The ion-pairing reagent served a dual purpose. It was used both to improve extraction yields of the more polar analytes and as the methyl donor in the automated in-liner derivatisation method. In this way, a fully automated procedure for the extraction, derivatisation and injection of a wide range of phenolic acids in plasma samples has been obtained. An extensive optimisation of the extraction and derivatisation procedure has been performed. The entire method showed excellent repeatabilities of under 10% and linearities of 0.99 or better for all phenolic acids. The limits of detection of the optimised method for the majority of phenolic acids were 10ng/mL or lower with three phenolic acids having less-favourable detection limits of around 100 ng/mL. Finally, the newly developed method has been applied in a human intervention trial in which the bioavailability of polyphenols from wine and tea was studied. Forty plasma samples could be analysed within 24h in a fully automated method including sample extraction, derivatisation and gas chromatographic analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Confirming Indicators of Qualitative Results by Chromatography-mass Spectrometry in Biological Samples].

    PubMed

    Liu, S D; Zhang, D M; Zhang, W; Zhang, W F

    2017-04-01

    Because of the exist of complex matrix, the confirming indicators of qualitative results for toxic substances in biological samples by chromatography-mass spectrometry are different from that in non-biological samples. Even in biological samples, the confirming indicators are different in various application areas. This paper reviews the similarities and differences of confirming indicators for the analyte in biological samples by chromatography-mass spectrometry in the field of forensic toxicological analysis and other application areas. These confirming indicators include retention time (RT), relative retention time (RRT), signal to noise (S/N), characteristic ions, relative abundance of characteristic ions, parent ion-daughter ion pair and abundance ratio of ion pair, etc. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  1. A novel ultra performance liquid chromatography-tandem mass spectrometry method for the determination of sucrose octasulfate in dog plasma.

    PubMed

    Ke, Yuyong; Li, Steve Lianghong; Chang, Linda Dongxia; Kapanadze, Theo

    2015-01-26

    A novel, specific and sensitive bioanalytical method has been developed for the determination of sucrose octasulfate (SOS) in dog plasma and urine using ion-pair reversed-phase ultraperformance liquid chromatography coupled with electrospray triple quadruple mass spectrometry (IPRP-UPLC ESI MS/MS). (13)C-labeled sucrose octasulfate-(13)C12 sodium salt is used as the internal standard. 200 μL of plasma or serum sample is extracted using weak anion exchange solid phase cartridge. In this method, a polar amide column is employed for the liquid chromatograph (LC) separation while the diethylamine and formic acid buffer is used as the ion-pairing reagent. The low limitation of quantitation of sucrose octasulfate is 0.20 ng on the column with a signal to noise ratio larger than 50. Parameters such as linearity, accuracy and precision have been validated in full compliance with the FDA guidelines for the bioanalytical method development and validation. A linear regression model fit the calibration curve very well with R>0.99. The bias and coefficient of variation of all levels of QCs are within the range of 15%. The selectivity, matrix effect and stabilities of analytes in solution and matrix have also been evaluated and the results met the acceptance criteria according to the guidelines. Based on these results, the method has qualified to analyze sucrose octasulfate in dog plasma for clinic research. This method has been applied to 1000 preclinical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Development and validation of reverse phase high performance liquid chromatography for citral analysis from essential oils.

    PubMed

    Gaonkar, Roopa; Yallappa, S; Dhananjaya, B L; Hegde, Gurumurthy

    2016-11-15

    Citral is a widely used monoterpene aldehyde in aromatherapy, food and pesticide industries. A new validated reverse phase high performance liquid chromatography (RP - HPLC) procedure for the detection and quantification of cis-trans isomers of citral was developed. The RP-HPLC analysis was carried out using Enable C - 18G column (250×4.6mm, 5μ), with acetonitrile and water (70: 30) mobile phase in isocratic mode at 1mL/min flow. A photodiode array (PDA) detector was set at 233nm for the detection of citral. The method showed linearity, selectivity and accuracy for citral in the range of 3-100μg/mL. In order to compare the new RP-HPLC method with the available methods, one of the commercially available essential oil from Cymbopogon flexuosus was analyzed using new RP-HPLC method and the same was analyzed using GC-MS for the comparison of the method for the detection of citral. The GC-MS analysis was done using mass selective detector (MSD) showed citral content to be of 72.76%; wherein the new method showed to contain that same at 74.98%. To prove the application of the new method, essential oils were extracted from lemongrass, lemon leaves and mosambi peels by steam distillation. The citral content present in the essential and also in the condensate was analyzed. The method was found to be suitable for the analysis of citral in essential oils and water based citral formulations with a very good resolution of its components geranial and neral. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A novel reverse phase high-performance liquid chromatography method for standardization of Orthosiphon stamineus leaf extracts.

    PubMed

    Saidan, Noor Hafizoh; Aisha, Abdalrahim F A; Hamil, Mohd Shahrul Ridzuan; Majid, Amin Malik Shah Abdul; Ismail, Zhari

    2015-01-01

    Orthosiphon stamineus Benth. (Lamiaceae) is a traditional medicinal plant which has been used in treating various ailments such as kidney diseases, bladder inflammation, arthritis and diabetes. The leaves contain high concentration of phenolic compounds, thus, rosmarinic acid (RA), 3'-hydroxy-5, 6, 7, 4'-tetramethoxyflavone (TMF), sinensetin (SIN) and eupatorin (EUP) were chosen as a marker compounds for standardization of various O. stamineus leaf extracts. The aim was to develop and validate a new high-performance liquid chromatography (HPLC) method for quantification of 4 marker compounds (RA, TMF, SIN, EUP) in various O. stamineus leaf extracts. The method was developed and validated using RP-HPLC-diode-array detection at 320 nm for accuracy, precision and limits of detection and was applied for quantification of it markers in five different extracts prepared in solvents with increasing polarity, using a gradient mobile phase 0.1% formic acid: Acetonitrile at a flow rate of 1 ml/min on reverse phase acclaim polar advantage II C18 column (3 μm, 3 × 150 mm) with 18 min separation time. The developed method provided satisfactory precision, and the accuracy of this method was in the range of 90.2% to 105.5%. All of 4 compounds showed good linearity at R2 > 0.999. The developed method is a simple, cost effective with shorter run time (18 min) in comparison to previous methods (30 min) and utilization of environmental-friendly solvents system. Therefore, this method has the potential to replace currently used methods in the routine standardization work of O. stamineus extracts, raw materials and its commercial products.

  4. A novel reverse phase high-performance liquid chromatography method for standardization of Orthosiphon stamineus leaf extracts

    PubMed Central

    Saidan, Noor Hafizoh; Aisha, Abdalrahim F.A.; Hamil, Mohd Shahrul Ridzuan; Majid, Amin Malik Shah Abdul; Ismail, Zhari

    2015-01-01

    Background: Orthosiphon stamineus Benth. (Lamiaceae) is a traditional medicinal plant which has been used in treating various ailments such as kidney diseases, bladder inflammation, arthritis and diabetes. The leaves contain high concentration of phenolic compounds, thus, rosmarinic acid (RA), 3’-hydroxy-5, 6, 7, 4’-tetramethoxyflavone (TMF), sinensetin (SIN) and eupatorin (EUP) were chosen as a marker compounds for standardization of various O. stamineus leaf extracts. Objective: The aim was to develop and validate a new high-performance liquid chromatography (HPLC) method for quantification of 4 marker compounds (RA, TMF, SIN, EUP) in various O. stamineus leaf extracts. Materials and Methods: The method was developed and validated using RP-HPLC-diode-array detection at 320 nm for accuracy, precision and limits of detection and was applied for quantification of it markers in five different extracts prepared in solvents with increasing polarity, using a gradient mobile phase 0.1% formic acid: Acetonitrile at a flow rate of 1 ml/min on reverse phase acclaim polar advantage II C18 column (3 μm, 3 × 150 mm) with 18 min separation time. Results: The developed method provided satisfactory precision, and the accuracy of this method was in the range of 90.2% to 105.5%. All of 4 compounds showed good linearity at R2 > 0.999. Conclusion: The developed method is a simple, cost effective with shorter run time (18 min) in comparison to previous methods (30 min) and utilization of environmental-friendly solvents system. Therefore, this method has the potential to replace currently used methods in the routine standardization work of O. stamineus extracts, raw materials and its commercial products. PMID:25598631

  5. Application of Statistical Thermodynamics To Predict the Adsorption Properties of Polypeptides in Reversed-Phase HPLC.

    PubMed

    Tarasova, Irina A; Goloborodko, Anton A; Perlova, Tatyana Y; Pridatchenko, Marina L; Gorshkov, Alexander V; Evreinov, Victor V; Ivanov, Alexander R; Gorshkov, Mikhail V

    2015-07-07

    The theory of critical chromatography for biomacromolecules (BioLCCC) describes polypeptide retention in reversed-phase HPLC using the basic principles of statistical thermodynamics. However, whether this theory correctly depicts a variety of empirical observations and laws introduced for peptide chromatography over the last decades remains to be determined. In this study, by comparing theoretical results with experimental data, we demonstrate that the BioLCCC: (1) fits the empirical dependence of the polypeptide retention on the amino acid sequence length with R(2) > 0.99 and allows in silico determination of the linear regression coefficients of the log-length correction in the additive model for arbitrary sequences and lengths and (2) predicts the distribution coefficients of polypeptides with an accuracy from 0.98 to 0.99 R(2). The latter enables direct calculation of the retention factors for given solvent compositions and modeling of the migration dynamics of polypeptides separated under isocratic or gradient conditions. The obtained results demonstrate that the suggested theory correctly relates the main aspects of polypeptide separation in reversed-phase HPLC.

  6. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones.

    PubMed

    Aral, Hayriye; Aral, Tarık; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep

    2013-11-15

    A novel amide-bonded silica stationary phase was prepared starting from N-Boc-phenylalanine, cyclohexylamine and spherical silica gel (4 µm, 60 Å). The amide ligand was synthesised with high yield. The resulting amide bonded stationary phase was characterised by SEM, IR and elemental analysis. The resulting selector bearing a polar amide group is used for the reversed-phase chromatography separation of different classes of thirteen phytohormones (plant hormones). The chromatographic behaviours of these analytes on the amide-silica stationary phase were compared with those of RP-C18 column under same conditions. The effects of different separation conditions, such as mobile phase, pH value, flow rate and temperature, on the separation and retention behaviours of the 13 phytohormones in this system were studied. The optimum separation was achieved using reversed-phase HPLC gradient elution with an aqueous mobile phase containing pH=6.85 potassium phosphate buffer (20 mM) and acetonitrile with a 22 °C column temperature. Under these experimental conditions, the 12 phytohormones could be separated and detected at 230 or 270 nm within 26 min. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    NASA Astrophysics Data System (ADS)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  8. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    ERIC Educational Resources Information Center

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  9. Simultaneous Determination of Formoterol Fumarate and Budesonide Epimers in Metered Dose Inhaler Using Ion-Pair Chromatography.

    PubMed

    Salem, Y A; Shaldam, M A; El-Sherbiny, D T; El-Wasseef, D R; El-Ashry, S M

    2017-11-01

    A simple, accurate and valid ion-pairing chromatographic method was developed for the simultaneous determination of formoterol fumarate (FF) and budesonide (BUD) epimers in metered dose inhaler. The separation was performed on C-18 column using mobile phase consisting of acetonitrile:0.05 M sodium acetate buffer (40:60% v/v) containing 0.03% sodium dodecyl sulfate adjusted to pH 3.1 using increasing volumes of either TEA or orthophosphoric acid isocratically eluted at 1.0 mL/min. Quantitation was achieved with UV detection at 214 nm. The retention times were 3.22, 6.41 and 6.91 min for formoterol fumarate, budesonide epimers B and A, respectively. The linearity range was 0.05-5.0 μg/mL for formoterol fumarate and 0.5-50.0 μg/mL for budesonide. The method was validated for, linearity; lower limit of quantification, lower limit of detection accuracy and precision. The proposed method is rapid (7 min), reproducible (RSD < 2.0%) and achieves satisfactory resolution between FF and BUD B (resolution factor = 12.07). The mean recoveries of the analytes in metered dose inhaler (99.97 and 99.83% for FF and BUD, respectively) were satisfactory. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Reverse Phase-ultra Flow Liquid Chromatography-diode Array Detector Quantification of Anticancerous and Antidiabetic Drug Mangiferin from 11 Species of Swertia from India.

    PubMed

    Kshirsagar, Parthraj R; Gaikwad, Nikhil B; Panda, Subhasis; Hegde, Harsha V; Pai, Sandeep R

    2016-01-01

    Genus Swertia is valued for its great medicinal potential, mainly Swertia chirayita (Roxb. ex Fleming) H. Karst. is used in traditional medicine for a wide range of diseases. Mangiferin one of xanthoids is referred with enormous pharmacological potentials. The aim of the study was to quantify and compare the anticancerous and antidiabetic drug mangiferin from 11 Swertia species from India. The study also evaluates hierarchical relationships between the species based on mangiferin content using multivariate analysis. The reverse phase-ultra flow liquid chromatography-diode array detector analyses was performed and chromatographic separation was achieved on a Lichrospher 100, C18e (5 μm) column (250-4.6 mm). Mobile phase consisting of 0.2% triethylamine (pH-4 with O-phosphoric acid) and acetonitrile (85:15) was used for separation with injection volume 20 μL and detection wave length at 257 nm. Results indicated that concentration of mangiferin has been found to vary largely between Swertia species collected from different regions. Content of mangiferin was found to be highest in Swertia minor compared to other Swertia species studied herein from the Western Ghats and Himalayan region also. The same was also evident in the multivariate analysis, wherein S. chirayita, S. minor and Swertia paniculata made a separate clade. Conclusively, the work herein provides insights of mangiferin content from 11 Swertia species of India and also presents their hierarchical relationships. To best of the knowledge this is the first report of higher content of mangiferin from any Swertia species. The present study quantifies and compares mangiferin in 11 species of Swertia from India. The study also evaluates hierarchical relationships between the species based on mangiferin content using multivariate analysis. The mangiferin content was highest in S. minor compared to the studied Swertia species. To the best of our knowledge this is the first report of higher content of mangiferin

  11. Reversible Phase Transition with Ultralarge Dielectric Relaxation Behaviors in Succinimide Lithium(I) Hybrids.

    PubMed

    Tang, Yun-Zhi; Wang, Bin; Zhou, Hai-Tao; Chen, Shao-Peng; Tan, Yu-Hui; Wang, Chang-Feng; Yang, Chang-Shan; Wen, He-Rui

    2018-02-05

    Dielectric relaxations have widely applied on high permittivity capacitors, dielectric switches, ferroelectrics, pyroelectrics, and electrical insulating materials. However, few investigations of large dielectric relaxation behaviors on organic-inorganic hybrid materials have been documented before. Here we present a novel two-dimensional succinimide lithium(I) hybrid compound, [Li(PDD) 2 ClO 4 ] n , 1, (PDD = 2,5-pyrrolidinedione = succinimide) which shows reversible phase transition behavior in the vicinity of 228 K accompanied by an unusual symmetry breaking from I4 1 /amd to C2/c. X-ray single crystal diffractions analysis indicates the twist motion of pyrrolidine heterocycles, and order-disorder motion of ClO 4 - anions triggered the reversible phase transition. By means of an intuitive crystallographic model (rattling ion model), we further illustrated the mechanism of the interesting reversible phase transition. Particularly, 1 shows ultralarge dielectric relaxation behavior in the vicinity of the phase transition by its dielectric constant dependence on temperatures and frequencies as well as its Cole-Cole relation.

  12. A not-stop-flow online normal-/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry method for comprehensive lipid profiling of human plasma from atherosclerosis patients.

    PubMed

    Li, Min; Tong, Xunliang; Lv, Pu; Feng, Baosheng; Yang, Li; Wu, Zheng; Cui, Xinge; Bai, Yu; Huang, Yining; Liu, Huwei

    2014-11-03

    A not-stop-flow online two-dimensional (2D) liquid chromatography (LC) method was developed for comprehensive lipid profiling by coupling normal- and reversed-phase LC with quadrupole time-of-flight mass spectrometry (QToF-MS), which was then applied to separate and identify the lipid species in plasma, making its merits in quality and quantity of the detection of lipids. Total 540 endogenous lipid species from 17 classes were determined in human plasma, and the differences in lipid metabolism products in human plasma between atherosclerosis patients and control subjects were explored in detail. The limit of detections (LODs) of 19 validation standards could all reach ng/mL magnitude, and the RSDs of peak area and retention time ranged 0.4-8.0% and 0.010-0.47%, respectively. In addition, a pair of isomers, galactosylceramides (GalC) and glucosylceramides (GluC), was successfully separated, showing that only the levels of GalC in atherosclerosis patients were significantly increasing, rather than GluC, compared with the controls (controls vs. patients: the ratio was 1.5-2.8-fold increasing). It would be helpful to the further research of the atherosclerosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Rapid method for the determination of coumarin, vanillin, and ethyl vanillin in vanilla extract by reversed-phase liquid chromatography with ultraviolet detection.

    PubMed

    Ali, Laila; Perfetti, Gracia; Diachenko, Gregory

    2008-01-01

    A method is described for determining coumarin, vanillin, and ethyl vanillin in vanilla extract products. A product is diluted one-thousand-fold and then analyzed by reversed-phase liquid chromatography using a C18 column and a mobile phase consisting of 55% acetonitrile-45% aqueous acetic acid (1%) solution at a flow rate of 1.0 mL/min. Peaks are detected with a UV detector set at 275 nm. Vanilla extracts were spiked with 250, 500, and 1000 microg/g each of coumarin, vanillin, and ethyl vanillin. Recoveries averaged 97.4, 97.8, and 99.8% for coumarin, vanillin, and ethyl vanillin, respectively, with coefficient of variation values of 1.8, 1.3, and 1.3%, respectively. No significant difference was observed among the 3 spiking levels. A survey of 23 domestic and imported vanilla extract products was conducted using the method. None of the samples contained coumarin. The surveyed samples contained between 0.4 to 13.1 and 0.4 to 2.2 mg/g vanillin and ethyl vanillin, respectively.

  14. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    PubMed

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  15. Methods of analysis by the U. S. Geological Survey National Water Quality Laboratory - determination of organonitrogen herbicides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring

    USGS Publications Warehouse

    Sandstrom, Mark W.; Wydoski, Duane S.; Schroeder, Michael P.; Zamboni, Jana L.; Foreman, William T.

    1992-01-01

    A method for the isolation of organonitrogen herbicides from natural water samples using solid-phase extraction and analysis by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction cartridges containing octadecyl-bonded porous silica to remove the herbicides. The cartridges are dried using carbon dioxide, and adsorbed herbicides are removed from the cartridges by elution with 1.8 milliliters of hexaneisopropanol (3:1). Extracts of the eluants are analyzed by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of at least three characteristic ions. The method detection limits are dependent on sample matrix and each particular herbicide. The method detection limits, based on a 100-milliliter sample size, range from 0.02 to 0.25 microgram per liter. Recoveries averaged 80 to 115 percent for the 23 herbicides and 2 metabolites in 1 reagent-water and 2 natural-water samples fortified at levels of 0.2 and 2.0 micrograms per liter.

  16. Increasing positive ion number densities below the peak of ion-electron pair production in Titan's ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigren, E.; Galand, M.; Shebanits, O.

    2014-05-01

    We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anionmore » neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.« less

  17. Calix[4]pyrrole: A New Ion-Pair Receptor As Demonstrated by Liquid-Liquid Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintergerst, Mr. Matthieu; Levitskaia, Tatiana G.; Moyer, Bruce A

    Solvent-extraction studies provide confirming evidence that meso-octamethylcalix[4]pyrrole acts as an ion-pair receptor for cesium chloride and cesium bromide in nitrobenzene solution. The stoichiometry of the interaction under extraction conditions from water to nitrobenzene was determined from plots of the cesium distribution ratios vs cesium salt and receptor concentration, indicating the formation of an ionpaired 1:1:1 cesium:calix[4]pyrrole:halide complex. The extraction results were modeled to evaluate the equilibria inherent to the solvent-extraction system, with either chloride or bromide. The binding energy between the halide anion and the calix[4]pyrrole was found to be about 7 kJ/mol larger for cesium chloride than for themore » cesium bromide. The ion-pairing free energies between the calix[4]pyrrole-halide complex and the cesium cation are nearly the same within experimental uncertainty for either halide, consistent with a structural model in which the Cs+ cation resides in the calix bowl. These results are unexpected since nitrobenzene is a polar solvent that generally leads to dissociated complexes in the organic phase when used as a diluent in extraction studies of univalent ions. Control studies involving nitrate revealed no evidence of ion pairing for CsNO3 under conditions identical to those where it is observed for CsCl and CsBr.« less

  18. Recent development of ionic liquid stationary phases for liquid chromatography.

    PubMed

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Time-Resolved Magnetic Field Effects Distinguish Loose Ion Pairs from Exciplexes

    PubMed Central

    2013-01-01

    We describe the experimental investigation of time-resolved magnetic field effects in exciplex-forming organic donor–acceptor systems. In these systems, the photoexcited acceptor state is predominantly deactivated by bimolecular electron transfer reactions (yielding radical ion pairs) or by direct exciplex formation. The delayed fluorescence emitted by the exciplex is magnetosensitive if the reaction pathway involves loose radical ion pair states. This magnetic field effect results from the coherent interconversion between the electronic singlet and triplet radical ion pair states as described by the radical pair mechanism. By monitoring the changes in the exciplex luminescence intensity when applying external magnetic fields, details of the reaction mechanism can be elucidated. In this work we present results obtained with the fluorophore-quencher pair 9,10-dimethylanthracene/N,N-dimethylaniline (DMA) in solvents of systematically varied permittivity. A simple theoretical model is introduced that allows discriminating the initial state of quenching, viz., the loose ion pair and the exciplex, based on the time-resolved magnetic field effect. The approach is validated by applying it to the isotopologous fluorophore-quencher pairs pyrene/DMA and pyrene-d10/DMA. We detect that both the exciplex and the radical ion pair are formed during the initial quenching stage. Upon increasing the solvent polarity, the relative importance of the distant electron transfer quenching increases. However, even in comparably polar media, the exciplex pathway remains remarkably significant. We discuss our results in relation to recent findings on the involvement of exciplexes in photoinduced electron transfer reactions. PMID:24041160

  20. Simultaneous determination of thiamphenicol, florfenicol and florfenicol amine in eggs by reversed-phase high-performance liquid chromatography with fluorescence detection.

    PubMed

    Xie, Kaizhou; Jia, Longfei; Yao, Yilin; Xu, Dong; Chen, Shuqing; Xie, Xing; Pei, Yan; Bao, Wenbin; Dai, Guojun; Wang, Jinyu; Liu, Zongping

    2011-08-01

    A specific, sensitive and widely applicable reversed-phase high-performance liquid chromatography with fluorescence detection (RP-HPLC-FLD) method was developed for the simultaneous determination of thiamphenicol (TAP), florfenicol (FF) and florfenicol amine (FFA) in eggs. Samples were extracted with ethyl acetate-acetonitrile-ammonium hydroxide (49:49:2, v/v), defatted with hexane, followed by RP-HPLC-FLD determination. Liquid chromatography was performed on a 5 μm LiChrospher C(18) column using a mobile phase composed of acetonitrile (A), 0.01 M sodium dihydrogen phosphate containing 0.005 M sodium dodecyl sulfate and 0.1% triethylamine, adjusted to pH 4.8 by 85% phosphoric acid (B) (A:B, 35:65 v/v), at a flow rate of 1.0 mL/min. The fluorescence detector of HPLC was set at 224 nm for excitation wavelength and 290 nm for emission wavelength. Limits of detection (LODs) were 1.5 μg/kg for TAP and FF, 0.5 μg/kg for FFA in eggs; limits of quantitation (LOQs) were 5 μg/kg for TAP and FF, 2 μg/kg for FFA in eggs. Linear calibration curves were obtained over concentration ranges of 0.025-5.0 μg/mL for TAP with determination coefficients of 0.9997, 0.01-10.0 μg/mL for FF with determination coefficients of 0.9997 and 0.0025-2.50 μg/mL for FFA with determination coefficients of 0.9998, respectively. The recovery values ranged from 86.4% to 93.8% for TAP, 87.4% to 92.3% for FF and from 89.0% to 95.2% for FFA. The corresponding intra-day and inter-day variation (relative standard deviation, R.S.D.) found to be less than 6.7% and 10.8%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Inhibiting Polysulfide Shuttle in Lithium-Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent.

    PubMed

    Shyamsunder, Abhinandan; Beichel, Witali; Klose, Petra; Pang, Quan; Scherer, Harald; Hoffmann, Anke; Murphy, Graham K; Krossing, Ingo; Nazar, Linda F

    2017-05-22

    The step-change in gravimetric energy density needed for electrochemical energy storage devices to power unmanned autonomous vehicles, electric vehicles, and enable low-cost clean grid storage is unlikely to be provided by conventional lithium ion batteries. Lithium-sulfur batteries comprising lightweight elements provide a promising alternative, but the associated polysulfide shuttle in typical ether-based electrolytes generates loss in capacity and low coulombic efficiency. The first new electrolyte based on a unique combination of a relatively hydrophobic sulfonamide solvent and a low ion-pairing salt, which inhibits the polysulfide shuttle, is presented. This system behaves as a sparingly solvating electrolyte at slightly elevated temperatures, where it sustains reversible capacities as high as 1200-1500 mAh g -1 over a wide range of current density (2C-C/5, respectively) when paired with a lithium metal anode, with a coulombic efficiency of >99.7 % in the absence of LiNO 3 additive. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ion-pair partition of quarternary ammonium drugs: the influence of counter ions of different lipophilicity, size, and flexibility.

    PubMed

    Takács-Novák, K; Szász, G

    1999-10-01

    The ion-pair partition of quaternary ammonium (QA) pharmacons with organic counter ions of different lipophilicity, size, shape and flexibility was studied to elucidate relationships between ion-pair formation and chemical structure. The apparent partition coefficient (P') of 4 QAs was measured in octanol/pH 7.4 phosphate buffer system by the shake-flask method as a function of molar excess of ten counter ions (Y), namely: mesylate (MES), acetate (AC), pyruvate (PYRU), nicotinate (NIC), hydrogenfumarate (HFUM), hydrogenmaleate (HMAL), p-toluenesulfonate (PTS), caproate (CPR), deoxycholate (DOC) and prostaglandin E1 anion (PGE1). Based on 118 of highly precise logP' values (SD< 0.05), the intrinsic lipophilicity (without external counter ions) and the ion-pair partition of QAs (with different counter ions) were characterized. Linear correlation was found between the logP' of ion-pairs and the size of the counter ions described by the solvent accessible surface area (SASA). The lipophilicity increasing effect of the counter ions were quantified and the following order was established: DOC approximate to PGE1 > CPR approximate to PTS > NIC approximate to HMAL > PYRU approximate to AC approximate to MES approximate to HFUM. Analyzing the lipophilicity/molar ratio (QA:Y) profile, the differences in the ion-pair formation were shown and attributed to the differences in the flexibility/rigidity and size both of QA and Y. Since the largest (in average, 300 X) lipophilicity enhancement was found by the influence of DOC and PGE1 and considerable (on average 40 X) increase was observed by CPR and PTS, it was concluded that bile acids and prostaglandin anions may play a significant role in the ion-pair transport of quaternary ammonium drugs and caproic acid and p-toluenesulfonic acid may be useful salt forming agents to improve the pharmacokinetics of hydrophilic drugs.

  3. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    NASA Technical Reports Server (NTRS)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  4. Lipidomic analysis of plasma in patients with lacunar infarction using normal-phase/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    Yang, Li; Lv, Pu; Ai, Wanpeng; Li, Linnan; Shen, Sensen; Nie, Honggang; Shan, Yabing; Bai, Yu; Huang, Yining; Liu, Huwei

    2017-05-01

    Stroke is a major cause of mortality and long-term disability worldwide. The study of biomarkers and pathogenesis is vital for early diagnosis and treatment of stroke. In the present study, a continuous-flow normal-phase/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry (NP/RP 2D LC-QToF/MS) method was employed to measure lipid species in human plasma, including healthy controls and lacunar infarction (LI) patients. As a result, 13 lipid species were demonstrated with significant difference between the two groups, and a "plasma biomarker model" including glucosylceramide (38:2), phosphatidylethanolamine (35:2), free fatty acid (16:1), and triacylglycerol (56:5) was finally established. This model was evaluated as an effective tool in that area under the receiver operating characteristic curve reached 1.000 in the discovery set and 0.947 in the validation set for diagnosing LI patients from healthy controls. Besides, the sensitivity and specificity of disease diagnosis in validation set were 93.3% and 96.6% at the best cutoff value, respectively. This study demonstrates the promising potential of NP/RP 2D LC-QToF/MS-based lipidomics approach in finding bio-markers for disease diagnosis and providing special insights into the metabolism of stroke induced by small vessel disease. Graphical abstract Flow-chart of the plasma biomarker model establishment through biomarker screening and validation.

  5. Comprehensive Two-Dimensional Hydrophilic Interaction Chromatography (HILIC) × Reversed-Phase Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (RP-LC-UV-MS) Analysis of Anthocyanins and Derived Pigments in Red Wine.

    PubMed

    Willemse, Chandré M; Stander, Maria A; Vestner, Jochen; Tredoux, Andreas G J; de Villiers, André

    2015-12-15

    Changes in anthocyanin chemistry represent some of the most important transformations involved in red wine aging. However, accurate analysis of the derived pigments, as required to study the evolution of anthocyanins and tannins during aging, is hampered by their extreme structural diversity, low levels, and the fact that many of these compounds have identical mass spectral characteristics. In this context, chromatographic separation is critical. In this contribution, the application of online hydrophilic interaction chromatography (HILIC) × reversed-phase liquid chromatography (RP-LC) separation coupled to high-resolution mass spectrometry (MS) is described for the detailed characterization of anthocyanins and their derived pigments in aged red wine. A systematic approach was followed for the optimization of HILIC × RP-LC separation parameters using a capillary liquid chromatography (LC) system in the first dimension and an ultrahigh-pressure LC system in the second dimension to ensure maximum sensitivity and performance. Ninety four (94) anthocyanin-derived pigments were tentatively identified in one- and six-year-old Pinotage wines using accurate mass and fragmentation information obtained using quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). Online HILIC × RP-LC-MS was found to offer high-resolution separation, because of the combination of two different separation modes, while the structured elution order observed improved the certainty in compound identification. Therefore, this approach shows promise for the detailed elucidation of the chemical alteration of anthocyanins during wine aging.

  6. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  7. Ion Propulsion Thruster Including a Plurality of Ion Optic Electrode Pairs

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2016-01-01

    Ion optics for use in a conventional or annular or other shaped ion thruster are disclosed including a plurality of planar, spaced apart ion optic electrode pairs sized to include a diameter smaller than the diameter of thruster exhaust and retained in, on or otherwise associated with a frame across the thruster exhaust. An electrical connection may be provided for establishing electrical connectivity among a set of first upstream electrodes and an electrical connection may be provided for establishing electrical connectivity among the second downstream electrodes.

  8. Quantitation of polyamines in cultured cells and tissue homogenates by reversed-phase high-performance liquid chromatography of their benzoyl derivatives.

    PubMed

    Verkoelen, C F; Romijn, J C; Schroeder, F H; van Schalkwijk, W P; Splinter, T A

    1988-04-08

    A rapid and simple method, originally described by Redmond and Tseng [J. Chromatogr., 170 (1979) 479] was applied to the analysis of di- and polyamines in cultured human tumour cells and human tumour xenografts. Optimization of the procedures and evaluation of the characteristic features of the assay are described. The (modified) procedure employs precolumn derivatization with benzoyl chloride, extraction of the derivatives by chloroform, separation by reversed-phase high-performance liquid chromatography under isocratic conditions and detection by ultraviolet absorbance measurement at 229 nm. The complete analysis was accomplished within 10 min per sample. The detection limit was ca. 1 pmol. The intra- and inter-assay coefficients of variation were 2.5-4.4% and 3.4-13.1%, respectively. The presence of well known inhibitors of polyamine biosynthesis, such as DL-alpha-difluoromethylornithine and methylglyoxal bis(guanylhydrazone), did not interfere with the assay, and disturbance by cyclohexylamine could be avoided by changing the polarity of the mobile phase. The method proved to be very suitable because it is rapid, simple, requires a minimum of sample pretreatment, and still provides sufficient sensitivity to quantitate polyamines in relatively small amounts of cells (10(5) cells) or tumour tissues (less than 1 mg), even after treatment with inhibitors of polyamine biosynthesis.

  9. Superconducting materials with electron pairs localized on lattice ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moizhes, B.Y.; Drabkin, I.A.

    1983-07-01

    We propose the following classification scheme for superconductors, depending on the probable type of electron--electron interaction: A) Semiconductors containing impurities with negative Hubbard energy in which pairs exist in r-space when T>T/sub c/: Pb/sub 1-x/Tl/sub x/Te, Ba(Pb/sub 1-x/Bi/sub x/)O/sub 3/xxx. In this case the superconducting phase transition must compete with the ordering of ions having different charges: Pb/sub 1-x/In/sub x/Te. B) Metals near the metal--insulator transition with virtual two-electron levels near the Fermi level: Na/sub x/WO/sub 3/. C) Metals containing ''active'' atoms (ions) with an odd number of electrons and a small Hubbard energy. We suggest that the contribution ofmore » diamagnetic polar configurations to the total energy of the metal can increase when coherent states are formed: Nb, La/sub 3/S/sub 4/, Nb/sub 1-x/Ti/sub x/xxx.« less

  10. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry.

    PubMed

    Hauff, Simone; Vetter, Walter

    2010-12-24

    Vernix caseosa is a greasy biofilm formed on the skin of the human fetus in the last period of pregnancy. This matrix is known to contain a range of uncommon branched chain fatty acids. In this study, we studied the fatty acid composition of vernix caseosa by non-aqueous reversed phase high performance liquid chromatography (RP-HPLC) fractionation followed by gas chromatography-electron ionization mass spectrometry (GC/EI-MS) of the fractions. For this purpose the fatty acids from vernix caseosa were converted into the corresponding methyl esters. These were fractionated by non-aqueous RP-HPLC using three serially connected C(18)-columns and pure methanol as the eluent. Aliquots of the HPLC fractions were directly analyzed by GC/EI-MS in the selected ion monitoring mode. Data analysis and visualization were performed by the creation of a two dimensional (2D) contour plot, in which GC retention times were plotted against the HPLC fractions. Inspection of the plot resulted in the detection of 133 different fatty acids but only 16 of them contributed more than 1% to the total fatty acids detected. Identification was based on HPLC and GC retention data, GC/MS-SIM and full scan data, as well as plotting the logarithmic retention times against the longest straight carbon chain. In selected cases, aliquots of the HPLC fractions were hydrogenated or studied by means of the picolinyl esters. Using these techniques, the number of double bonds could be unequivocally assigned to all fatty acids. Moreover, the number of methyl branches, and in many cases the positions of methyl branches could be determined. The enantioselective analysis of chiral anteiso-fatty acids resulted in the dominance of the S-enantiomers. However, high proportions of R-a13:0, R-a15:0, and R-a17:1 were also detected while a17:0 was virtually S-enantiopure. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Reshaping and linking of molecules in ion-pair traps

    NASA Astrophysics Data System (ADS)

    Cochrane, Bryce; Naumkin, Fedor Y.

    2016-01-01

    A series of insertion complexes of small molecules trapped between alkali-halide counter-ions are investigated ab initio. The molecular shape is altered inside the complexes and varies in corresponding anions. Stabilities and charge distributions are investigated. Strong charge-transfer in the alkali-halide component effectively through the almost neutral molecule results in very large dipole moments. The most stable species is used to construct a dimer significantly bound via dipole-dipole interaction. Another complex with two alkali-halide diatoms trapping the molecule represents a unit of corresponding longer oligomer. This completes the array of systems with the molecule effectively in ion-pair, ion-dipole, dipole-pair electric fields.

  12. Visual colorimetry for trace antimony(V) by ion-pair solid-phase extraction with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) on a PTFE type membrane filter.

    PubMed

    Mizuguchi, Hitoshi; Matsuda, Yuki; Mori, Takehito; Uehara, Atsushi; Ishikawa, Yuta; Endo, Masatoshi; Shida, Junichi

    2008-02-01

    A new visual colorimetry for trace antimony(V) based on ion-pair solid-phase extraction to a PTFE-type membrane filter with bis[2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]cobalt(III) ion ([Co(5-Cl-PADAP)(2)](+)) has been developed. Experiments showed that hexachloroantimonate(V) ion (SbCl(6)(-)) was adsorbed with [Co(5-Cl-PADAP)(2)](+) to the front surface of the PTFE filter. The adsorption of antimony(V) ion was promoted by the addition of lithium chloride as a source of chloride ion. The excess reagent of [Co(5-Cl-PADAP)(2)](+) was eluted by rinsing with a 10 wt% methanol aqueous solution. In this case, the slow rate of the hydrolysis reaction of SbCl(6)(-) and the difference of the hydrophobicity of the ion pairs were important for adsorption and separation with a PTFE-type membrane filter. The antimony(V) concentration was determined through a visual comparison with a standard series. The visual detection limit was 0.10 microg. The calibration curve assessed with the reflection spectrometric responses at 580 nm was linear in the concentration range of 0.10 - 1.2 microg (r = 0.996). The proposed method has been applied to the determination of sub-microgram levels of antimony(V) ion in water samples.

  13. Hydrophilic interaction liquid chromatography-solid phase extraction directly combined with protein precipitation for the determination of triptorelin in plasma.

    PubMed

    Wang, Jixia; Kong, Song; Yan, Jingyu; Jin, Gaowa; Guo, Zhimou; Shen, Aijin; Xu, Junyan; Zhang, Xiuli; Zou, Lijuan; Liang, Xinmiao

    2014-06-01

    Peptide drugs play a critical role in therapeutic treatment. However, as the complexity of plasma, determination of peptide drugs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a daunting task. To solve this problem, hydrophilic interaction liquid chromatography-solid phase extraction (HILIC-SPE) directly combined with protein precipitation (PPT) was developed for the selective extraction of triptorelin from plasma. The extracts were analyzed by reversed-phase liquid chromatography (RPLC). Proteins, phospholipids and highly polar interferences could be removed from plasma by the efficient combination of PPT, HILIC-SPE and RPLC-MS/MS. This method was evaluated by matrix effect, recovery and process efficiency at different concentration levels (50, 500 and 5,000 ng/mL) of triptorelin. Furthermore, the performance of HILIC-SPE was compared with that of reversed-phase C18 SPE and hydrophilic lipophilic balance (Oasis HLB) SPE. Among them, HILIC-SPE provided the minimum matrix effect (ranging from 96.02% to 103.41%), the maximum recovery (ranging from 80.68% to 90.54%) and the satisfactory process efficiency (ranging from 82.83% to 92.95%). The validated method was successfully applied to determine triptorelin in rat plasma. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Capturing the radical ion-pair intermediate in DNA guanine oxidation

    PubMed Central

    Jie, Jialong; Liu, Kunhui; Wu, Lidan; Zhao, Hongmei; Song, Di; Su, Hongmei

    2017-01-01

    Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl− in the chlorine radical–initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl− is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA. PMID:28630924

  15. Effects of electrolytes on redox potentials through ion pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas

    Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less

  16. Effects of electrolytes on redox potentials through ion pairing

    DOE PAGES

    Bird, Matthew J.; Iyoda, Tomokazu; Bonura, Nicholas; ...

    2017-09-21

    Here, reduction potentials have been determined for two molecules, benzophenone (BzPh) and perylene (Per), effectively in the complete absence of electrolyte as well as in the presence of three different supporting electrolytes in the moderately polar solvent THF. A description of how this can be so, and qualifications, are described in the discussion section. The primary tool in this work, pulse radiolysis, measures electron transfer (ET) equilibria in solution to obtain differences in redox potentials. Voltammetry measures redox potentials by establishing ET equilibria at electrodes, but electrolytes are needed for current flow. Results here show that without electrolyte the redoxmore » potentials were 100–451 mV more negative than those with 100 mM electrolyte. These changes depended both on the molecule and the electrolyte. In THF the dominant contributor to stabilization of radical anions by electrolyte was ion pairing. An equation was derived to give changes in redox potentials when electrolyte is added in terms of ion pair dissociation constants and activity coefficients. Definite values were determined for energetics, ΔG d°, of ion pairing. Values of ΔG d° for pairs with TBA + give some doubt that it is a “weakly-coordinating cation.” Computations with DFT methods were moderately successful at describing the ion paring energies.« less

  17. A reversible phase transition for sodium insertion in anatase TiO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Fukunishi, Mika; Morgan, Benjamin J.

    Anatase TiO 2 is a potential negative electrode for sodium-ion batteries. The sodium storage mechanism is, however, still under debate, yet its comprehension is required to optimize the electrochemical properties. To clarify the sodium storage mechanism occurring in anatase, we have used both electrochemical and chemical routes from which we obtained similar trends. During the first discharge, an irreversible plateau region is observed which corresponds to the insertion of Na+ within the interstitial sites of anatase and is accompanied by a drastic loss of the long-range order as revealed by X-ray diffraction, high resolution of high angle annular dark-field scanningmore » transmission electron microscope (HAADF-STEM), and pair distribution function (PDF) analysis. Further structural analysis of the total scattering data indicates that the sodiated phase displays a layered-like rhombohedral R3m structure built from the stacking of Ti and Na slabs. Because of the initial 3D network of anatase, the reduced phase shows strong disorder due to cationic intermixing between the Ti and Na slabs and the refined chemical formula is (Na 0.43Ti 0.57) 3a 0.22Na 0.39Ti 0.39) 3bO 2, where refers to vacancy. The presence of high valence Ti ions in the Na layers induces a contraction of the c-parameter as compared to the ordered phase. Upon desodiation, the structure further amorphized and the local structure probed by PDF is shown to be similar to the anatase TiO 2, suggesting that the 3D network is recovered. The reversible sodium insertion/deinsertion is thus attributed to the rhombohedral active phase formed during the first discharge, and an oxidized phase featuring the local structure of anatase. Due to the amorphous nature of the two phases, the potential-composition curves are characterized by a sloping curve. Lastly, a comparison between the intercalation of lithium and sodium into anatase TiO 2 performed by DFT calculations confirmed that, for the sodiated phase, the

  18. A reversible phase transition for sodium insertion in anatase TiO 2

    DOE PAGES

    Li, Wei; Fukunishi, Mika; Morgan, Benjamin J.; ...

    2017-02-07

    Anatase TiO 2 is a potential negative electrode for sodium-ion batteries. The sodium storage mechanism is, however, still under debate, yet its comprehension is required to optimize the electrochemical properties. To clarify the sodium storage mechanism occurring in anatase, we have used both electrochemical and chemical routes from which we obtained similar trends. During the first discharge, an irreversible plateau region is observed which corresponds to the insertion of Na+ within the interstitial sites of anatase and is accompanied by a drastic loss of the long-range order as revealed by X-ray diffraction, high resolution of high angle annular dark-field scanningmore » transmission electron microscope (HAADF-STEM), and pair distribution function (PDF) analysis. Further structural analysis of the total scattering data indicates that the sodiated phase displays a layered-like rhombohedral R3m structure built from the stacking of Ti and Na slabs. Because of the initial 3D network of anatase, the reduced phase shows strong disorder due to cationic intermixing between the Ti and Na slabs and the refined chemical formula is (Na 0.43Ti 0.57) 3a 0.22Na 0.39Ti 0.39) 3bO 2, where refers to vacancy. The presence of high valence Ti ions in the Na layers induces a contraction of the c-parameter as compared to the ordered phase. Upon desodiation, the structure further amorphized and the local structure probed by PDF is shown to be similar to the anatase TiO 2, suggesting that the 3D network is recovered. The reversible sodium insertion/deinsertion is thus attributed to the rhombohedral active phase formed during the first discharge, and an oxidized phase featuring the local structure of anatase. Due to the amorphous nature of the two phases, the potential-composition curves are characterized by a sloping curve. Lastly, a comparison between the intercalation of lithium and sodium into anatase TiO 2 performed by DFT calculations confirmed that, for the sodiated phase, the

  19. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.

    PubMed

    Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi

    2007-08-24

    We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.

  20. Electrostatic shocks and solitons in pair-ion plasmas in a two-dimensional geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Mahmood, S.; Imtiaz, N.

    2009-12-15

    Nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion plasmas in the presence of weak transverse perturbations. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions in plasmas. The Kadomtsev-Petviashvili-Burger equation is derived using the small amplitude expansion method. The Kadomtsev-Petviashvili equation for pair-ion plasmas is also presented by ignoring the dissipative effects. Both compressive and rarefactive shocks and solitary waves are found to exist in pair-ion plasmas. The dependence of compression and rarefaction on the temperature ratios between the ion species is numerically shown. The present study maymore » have relevance to the understanding of the formation of electrostatic shocks and solitons in laboratory produced pair-ion plasmas.« less

  1. Simple column-switching ion chromatography method for determining eight monosaccharides and oligosaccharides in honeydew and nectar.

    PubMed

    Ni, Chengzhu; Zhu, Binhe; Wang, Nani; Wang, Muhua; Chen, Suqing; Zhang, Jiajie; Zhu, Yan

    2016-03-01

    Honeydew is excreted by aphids as a sweet waste and nectar is floral honey. Honeydew and nectar are complicated samples which consist of various sugars and amino acids. In this work, a simple ion chromatography with column-switching method was developed for the simultaneous analysis of 8 monosaccharides and oligosaccharides in honeydew and nectar. A reversed-phase column was used as a pretreatment column to eliminate organics on-line and sugars were eluted from a collection loop to analytical column by using column-switching technique. This method showed good linearity (r⩾0.9994) and afforded low limits of detection ranging from 1.55 to 10.17μgL(-1) for all the analytes. Recoveries ranged from 95% to 105% and repeatability results were acceptable with relative standard deviation of less than 3.21% (n=6). This method was successfully applied to quantification of these sugars in honeydew and nectar. These results showed honeydew had much more oligosaccharides than nectar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of synthetic phenolic antioxidants in edible oils.

    PubMed

    Chen, Miao; Xia, Qinghai; Liu, Mousheng; Yang, Yaling

    2011-01-01

    A cloud-point extraction (CPE) method using Triton X-114 (TX-114) nonionic surfactant was developed for the extraction and preconcentration of propyl gallate (PG), tertiary butyl hydroquinone (TBHQ), butylated hydroxyanisole (BHA), and butylated hydroxytoluene (BHT) from edible oils. The optimum conditions of CPE were 2.5% (v/v) TX-114, 0.5% (w/v) NaCl and 40 min equilibration time at 50 °C. The surfactant-rich phase was then analyzed by reversed-phase high-performance liquid chromatography with ultraviolet detection at 280 nm, using a gradient mobile phase consisting of methanol and 1.5% (v/v) acetic acid. Under the studied conditions, 4 synthetic phenolic antioxidants (SPAs) were successfully separated within 24 min. The limits of detection (LOD) were 1.9 ng mL(-1) for PG, 11 ng mL(-1) for TBHQ, 2.3 ng mL(-1) for BHA, and 5.9 ng mL(-1) for BHT. Recoveries of the SPAs spiked into edible oil were in the range 81% to 88%. The CPE method was shown to be potentially useful for the preconcentration of the target analytes, with a preconcentration factor of 14. Moreover, the method is simple, has high sensitivity, consumes much less solvent than traditional methods, and is environment-friendly. Practical Application: The method established in this article uses less organic solvent to extract SPAs from edible oils; it is simple, highly sensitive and results in no pollution to the environment.

  3. Monolithic metal-organic framework MIL-53(Al)-polymethacrylate composite column for the reversed-phase capillary liquid chromatography separation of small aromatics.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2016-03-01

    A monolithic capillary column containing a composite of metal-organic framework MIL-53(Al) incorporated into hexyl methacrylate-co-ethylene dimethacrylate was prepared to enhance the separation of mixtures of small aromatic compounds by using capillary liquid chromatography. The addition of 10 mg/mL MIL-53(Al) microparticles increased the micropore content in the monolithic matrix and increased the Brunauer-Emmett-Teller surface area from 26.92 to 85.12 m(2) /g. The presence of 1,4-benzenedicarboxylate moieties within the structure of MIL-53(Al) as an organic linker greatly influenced the separation of aromatic mixtures through π-π interactions. High-resolution separation was obtained for a series of alkylbenzenes (with resolution factors in the range 0.96-1.75) in less than 8 min, with 14 710 plates/m efficiency for propylbenzene, using a binary polar mobile phase of water/acetonitrile in isocratic mode. A reversed-phase separation mechanism was indicated by the increased retention factor and resolution as the water percentage in the mobile phase increased. A stability study on the composite column showed excellent mechanical stability under various conditions. The higher resolution and faster separation observed at increased temperature indicated an exothermic separation, whereas the negative values for the free energy change of transfer indicated a spontaneous process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solvent-coordinate free-energy landscape view of water-mediated ion-pair dissociation

    NASA Astrophysics Data System (ADS)

    Yonetani, Yoshiteru

    2017-12-01

    Water-mediated ion-pair dissociation is studied by molecular dynamics simulations of NaCl in water. Multidimensional free-energy analysis clarifies the relation between two essential solvent coordinates: the water coordination number and water-bridge formation. These two are related in a complex way. Both are necessary to describe ion-pair dissociation. The mechanism constructed with both solvent variables clearly shows the individual roles. The water coordination number is critical for starting ion-pair dissociation. Water-bridge formation is also important because it increases the likelihood of ion-pair dissociation by reducing the dissociation free-energy barrier. Additional Ca-Cl and NH4-Cl calculations show that these conclusions are unaffected by changes in the ion charge and shape. The present results will contribute to future explorations of many other molecular events such as surface water exchange and protein-ligand dissociation because the same mechanism is involved in such events.

  5. A reversed phase high performance liquid chromatography method for the determination of fumonisins B1 and B2 in food and feed using monolithic column and positive confirmation by liquid chromatography/tandem mass spectrometry.

    PubMed

    Khayoon, Wejdan Shakir; Saad, Bahruddin; Salleh, Baharuddin; Ismail, Nor Azliza; Abdul Manaf, Normaliza Hj; Abdul Latiff, Aishah

    2010-10-29

    The development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B(1) and fumonisin B(2) by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C(18) solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith(®) RP-18e column (100 mm × 4.6 mm) at 30 °C and eluted with a mobile phase of a mixture of methanol and phosphate buffer pH 3.35 (78:22, v/v) at a flow rate of 1.0 mL min(-1). The fumonisins separation was achieved in about 4 min, compared to approximately 20 min by using a C(18) particle-packed column. The fluorescence excitation and emission were at 335 nm and 440 nm, respectively. The limits of detections were 0.01-0.04 μg g(-1) fumonisin B(1) and fumonisin B(2), respectively. Good recoveries were found for spiked samples (0.1, 0.5, 1.5 μg g(-1) fumonisins B(1) and B(2)), ranging from 84.0 to 106.0% for fumonisin B(1) and from 81.0 to 103.0% for fumonisin B(2). Fifty-three samples were analyzed including 39 food and feeds and 14 inoculated corn and rice. Results show that 12.8% of the food and feed samples were contaminated with fumonisin B(1) (range, 0.01-0.51 μg g(-1)) and fumonisin B(2) (0.05 μg g(-1)). The total fumonisins in these samples however, do not exceed the legal limits established by the European Union of 0.8 μg g(-1). Of the 14 inoculated samples, 57.1% contained fumonisin B(1) (0.16-41.0 μg g(-1)) and fumonisin B(2) (range, 0.22-50.0 μg g(-1)). Positive confirmation of selected samples was carried out using

  6. Ion Chromatography: An Account of Its Conception and Early Development

    ERIC Educational Resources Information Center

    Small, Hamish

    2004-01-01

    The conception of ion chromatography and its development into a technique ready for commercialization is described. The pioneering development pointed the way to make ion exclusion an important member of the repertoire of IC methods.

  7. Analysis of Cocoa Proanthocyanidins Using Reversed Phase High-Performance Liquid Chromatography and Electrochemical Detection: Application to Studies on the Effect of Alkaline Processing.

    PubMed

    Stanley, Todd H; Smithson, Andrew T; Neilson, Andrew P; Anantheswaran, Ramaswamy C; Lambert, Joshua D

    2015-07-01

    Flavan-3-ols and proanthocyanidins play a key role in the health beneficial effects of cocoa. Here, we developed a new reversed phased high-performance liquid chromatography-electrochemical detection (HPLC-ECD) method for the analysis of flavan-3-ols and proanthocyanidins of degree of polymerization (DP) 2-7. We used this method to examine the effect of alkalization on polyphenol composition of cocoa powder. Treatment of cocoa powder with NaOH (final pH 8.0) at 92 °C for up to 1 h increased catechin content by 40%, but reduced epicatechin and proanthocyanidins by 23-66%. Proanthocyanidin loss could be modeled using a two-phase exponential decay model (R(2) > 0.7 for epicatchin and proanthocyanidins of odd DP). Alkalization resulted in a significant color change and 20% loss of total polyphenols. The present work demonstrates the first use of HPLC-ECD for the detection of proanthocyanidins up to DP 7 and provides an initial predictive model for the effect of alkali treatment on cocoa polyphenols.

  8. Ion-exchange chromatography for the characterization of biopharmaceuticals.

    PubMed

    Fekete, Szabolcs; Beck, Alain; Veuthey, Jean-Luc; Guillarme, Davy

    2015-09-10

    Ion-exchange chromatography (IEX) is a historical technique widely used for the detailed characterization of therapeutic proteins and can be considered as a reference and powerful technique for the qualitative and quantitative evaluation of charge heterogeneity. The goal of this review is to provide an overview of theoretical and practical aspects of modern IEX applied for the characterization of therapeutic proteins including monoclonal antibodies (Mabs) and antibody drug conjugates (ADCs). The section on method development describes how to select a suitable stationary phase chemistry and dimensions, the mobile phase conditions (pH, nature and concentration of salt), as well as the temperature and flow rate, considering proteins isoelectric point (pI). In addition, both salt-gradient and pH-gradient approaches were critically reviewed and benefits as well as limitations of these two strategies were provided. Finally, several applications, mostly from pharmaceutical industries, illustrate the potential of IEX for the characterization of charge variants of various types of biopharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Pareto-optimal reversed-phase chromatography separation of three insulin variants with a solubility constraint.

    PubMed

    Arkell, Karolina; Knutson, Hans-Kristian; Frederiksen, Søren S; Breil, Martin P; Nilsson, Bernt

    2018-01-12

    With the shift of focus of the regulatory bodies, from fixed process conditions towards flexible ones based on process understanding, model-based optimization is becoming an important tool for process development within the biopharmaceutical industry. In this paper, a multi-objective optimization study of separation of three insulin variants by reversed-phase chromatography (RPC) is presented. The decision variables were the load factor, the concentrations of ethanol and KCl in the eluent, and the cut points for the product pooling. In addition to the purity constraints, a solubility constraint on the total insulin concentration was applied. The insulin solubility is a function of the ethanol concentration in the mobile phase, and the main aim was to investigate the effect of this constraint on the maximal productivity. Multi-objective optimization was performed with and without the solubility constraint, and visualized as Pareto fronts, showing the optimal combinations of the two objectives productivity and yield for each case. Comparison of the constrained and unconstrained Pareto fronts showed that the former diverges when the constraint becomes active, because the increase in productivity with decreasing yield is almost halted. Consequently, we suggest the operating point at which the total outlet concentration of insulin reaches the solubility limit as the most suitable one. According to the results from the constrained optimizations, the maximal productivity on the C 4 adsorbent (0.41 kg/(m 3  column h)) is less than half of that on the C 18 adsorbent (0.87 kg/(m 3  column h)). This is partly caused by the higher selectivity between the insulin variants on the C 18 adsorbent, but the main reason is the difference in how the solubility constraint affects the processes. Since the optimal ethanol concentration for elution on the C 18 adsorbent is higher than for the C 4 one, the insulin solubility is also higher, allowing a higher pool concentration

  10. Using ion chromatography to monitor haloacetic acids in drinking water: a review of current technologies.

    PubMed

    Paull, Brett; Barron, Leon

    2004-08-13

    A review of the application of ion chromatography to the determination of haloacetic acids in drinking water is given. As it requires no sample derivatisation, ion chromatography in its various modes, such as ion-exchange, ion-interaction and ion-exclusion chromatography, is increasingly being investigated as a simpler alternative to gas chromatographic methods for the determination of polar disinfection by-products (DBPs) in drinking waters. Detection limits quoted for the regulated haloacetic acids (HAA5), are commonly in the mid to low microg/L range, however, in most cases analyte preconcentration is still necessary for detection at concentrations commonly found in actual drinking water samples. The coupling of ion chromatography to electrospray mass spectrometry provides a potential future direction, with improved sensitivity and selectivity compared to conductivity based detection, however associated cost and complexity for routine analysis is currently relatively high.

  11. Characterization of selenium species in biological extracts by enhanced ion-pair liquid chromatography with inductively coupled plasma-mass spectrometry and by referenced electrospray ionization-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kotrebai, Mihály; Bird, Susan M.; Tyson, Julian F.; Block, Eric; Uden, Peter C.

    1999-11-01

    Selenium is an essential nutrient for humans; selenium compounds catalyze intermediate metabolism reactions and inhibit the toxic effects of heavy metals such as arsenic, cadmium and mercury. Some extracts of selenium-enriched biological materials show cancer preventive effects, tentatively attributable to the biological functions of selenoamino acids. An improved ion pair chromatographic method with methodological enhancements for the separation, qualitative and quantitative determination of non-volatile selenium compounds extracted from different samples has been developed using ICP-MS as an element-selective detector. Separation power early in the chromatogram was increased to baseline separation in the standard mixture as a result of decreasing spray chamber size from 97 to 14 ml, and increasing trifluoracetic acid (TFA) concentration in the mobile phase from 0.1 to 0.6%. The former pH was restored by the addition of ammonia to the mobile phase, which also served to increase the column recovery of inorganic anions. Calibration curves for different selenoamino acids showed statistically different behavior. Biological sample extracts were characterized using HPLC-ICP-MS. Mass spectral behavior of selenoamino acids, using electrospray and ion trap technology with direct infusion and liquid chromatographic sample introduction, is also reported.

  12. A rapid monitoring method for inorganic arsenic in rice flour using reversed phase-high performance liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Narukawa, Tomohiro; Chiba, Koichi; Sinaviwat, Savarin; Feldmann, Jörg

    2017-01-06

    A new rapid monitoring method by means of high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) following the heat-assisted extraction was developed for measurement of total inorganic arsenic species in rice flour. As(III) and As(V) eluted at the same retention time and completely separated from organoarsenic species by an isocratic elution program on a reversed phase column. Therefore, neither ambiguous oxidation of arsenite to arsenate nor the integration of two peaks were necessary to determine directly the target analyte inorganic arsenic. Rapid injection allowed measuring 3 replicates within 6min and this combined with a quantitative extraction of all arsenic species from rice flour by a 15min HNO 3 -H 2 O 2 extraction makes this the fastest laboratory based method for inorganic arsenic in rice flour. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A single step reversed-phase high performance liquid chromatography separation of polar and non-polar lipids.

    PubMed

    Olsson, Petter; Holmbäck, Jan; Herslöf, Bengt

    2014-11-21

    This paper reports a simple chromatographic system to separate lipids classes as well as their molecular species. By the use of phenyl coated silica as stationary phase in combination with a simple mobile phase consisting of methanol and water, all tested lipid classes elute within 30 min. Furthermore, a method to accurately predict retention times of specific lipid components for this type of chromatography is presented. Common detection systems were used, namely evaporative light scattering detection (ELSD), charged aerosol detection (CAD), electrospray mass spectrometry (ESI-MS), and UV detection. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    PubMed

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Determination of vigabatrin in plasma by reversed-phase high-performance liquid chromatography.

    PubMed

    Tsanaclis, L M; Wicks, J; Williams, J; Richens, A

    1991-05-01

    A method is described for the determination of vigabatrin in 50 microliters of plasma by isocratic high-performance liquid chromatography using fluorescence detection. The procedure involves protein precipitation with methanol followed by precolumn derivatisation with o-phthaldialdehyde reagent. Separation of the derivatised vigabatrin was achieved on a Microsorb C18 column using a mobile phase of 10 mM orthophosphoric acid:acetonitrile:methanol (6:3:1) at a flow rate of 2.0 ml/min. Assay time is 15 min and chromatograms show no interference from commonly coadministered anticonvulsant drugs. The total analytical error within the range of 0.85-85 micrograms/ml was found to be 7.6% with the within-replicates error of 2.76%. The minimum detection limit was 0.08 micrograms/ml and the minimum quantitation limit was 0.54 micrograms/ml.

  16. Water-separated ion pairs cause the slow dielectric mode of magnesium sulfate solutions

    NASA Astrophysics Data System (ADS)

    Mamatkulov, Shavkat I.; Rinne, Klaus F.; Buchner, Richard; Netz, Roland R.; Bonthuis, Douwe Jan

    2018-06-01

    We compare the dielectric spectra of aqueous MgSO4 and Na2SO4 solutions calculated from classical molecular dynamics simulations with experimental data, using an optimized thermodynamically consistent sulfate force field. Both the concentration-dependent shift of the static dielectric constant and the spectral shape match the experimental results very well for Na2SO4 solutions. For MgSO4 solutions, the simulations qualitatively reproduce the experimental observation of a slow mode, the origin of which we trace back to the ion-pair relaxation contribution via spectral decomposition. The radial distribution functions show that Mg2+ and SO42 - ions form extensive water-separated—and thus strongly dipolar—ion pairs, the orientational relaxation of which provides a simple physical explanation for the prominent slow dielectric mode in MgSO4 solutions. Remarkably, the Mg2+-SO42 - ion-pair relaxation extends all the way into the THz range, which we rationalize by the vibrational relaxation of tightly bound water-separated ion pairs. Thus, the relaxation of divalent ion pairs can give rise to widely separated orientational and vibrational spectroscopic features.

  17. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry.

    PubMed

    t'Kindt, Ruben; Jorge, Lucie; Dumont, Emmie; Couturon, Pauline; David, Frank; Sandra, Pat; Sandra, Koen

    2012-01-03

    An LC-MS based method for the profiling and characterization of ceramide species in the upper layer of human skin is described. Ceramide samples, collected by tape stripping of human skin, were analyzed by reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry operated in both positive and negative electrospray ionization mode. All known classes of ceramides could be measured in a repeatable manner. Furthermore, the data set showed several undiscovered ceramides, including a class with four hydroxyl functionalities in its sphingoid base. High-resolution MS/MS fragmentation spectra revealed that each identified ceramide species is composed of several skeletal isomers due to variation in carbon length of the respective sphingoid bases and fatty acyl building blocks. The resulting variety in skeletal isomers has not been previously demonstrated. It is estimated that over 1000 unique ceramide structures could be elucidated in human stratum corneum. Ceramide species with an even and odd number of carbon atoms in both chains were detected in all ceramide classes. Acid hydrolysis of the ceramides, followed by LC-MS analysis of the end-products, confirmed the observed distribution of both sphingoid bases and fatty acyl groups in skin ceramides. The study resulted in an accurate mass retention time library for targeted profiling of skin ceramides. It is furthermore demonstrated that targeted data processing results in an improved repeatability versus untargeted data processing (72.92% versus 62.12% of species display an RSD < 15%). © 2011 American Chemical Society

  18. Matrix influences on the determination of common ions by using ion chromatography part 1--determination of inorganic anions.

    PubMed

    Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona

    2012-07-01

    Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.

  19. Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection.

    PubMed

    Novak, Ivana; Janeiro, Patricia; Seruga, Marijan; Oliveira-Brett, Ana Maria

    2008-12-23

    Several flavonoids present in red grape skins from four varieties of Portuguese grapes were determined by reverse-phase high-performance liquid chromatography (RP-HPLC) with electrochemical detection (ECD). Extraction of flavonoids from red grape skins was performed by ultrasonication, and hydrochloric acid in methanol was used as extraction solvent. The developed RP-HPLC method used combined isocratic and gradient elution with amperometric detection with a glassy carbon-working electrode. Good peak resolution was obtained following direct injection of a sample of red grape extract in a pH 2.20 mobile phase. Eleven different flavonoids: cyanidin-3-O-glucoside (kuromanin), delphinidin-3-O-glucoside (myrtillin), petunidin-3-O-glucoside, peonidin-3-O-glucoside, malvidin-3-O-glucoside (oenin), (+)-catechin, rutin, fisetin, myricetin, morin and quercetin, can be separated in a single run by direct injection of sample solution. The limit of detection obtained for these compounds by ECD was 20-90 pg/L, 1000 times lower when compared with photodiode array (PDA) limit of detection of 12-55 ng/L. RP-HPLC-ECD was characterized by an excellent sensitivity and selectivity, and appropriate for the simultaneous determination of these electroactive phenolic compounds present in red grape skins.

  20. Electric-field control of tri-state phase transformation with a selective dual-ion switch

    NASA Astrophysics Data System (ADS)

    Lu, Nianpeng; Zhang, Pengfei; Zhang, Qinghua; Qiao, Ruimin; He, Qing; Li, Hao-Bo; Wang, Yujia; Guo, Jingwen; Zhang, Ding; Duan, Zheng; Li, Zhuolu; Wang, Meng; Yang, Shuzhen; Yan, Mingzhe; Arenholz, Elke; Zhou, Shuyun; Yang, Wanli; Gu, Lin; Nan, Ce-Wen; Wu, Jian; Tokura, Yoshinori; Yu, Pu

    2017-06-01

    Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.

  1. Thermodynamics of the sorption of water-soluble vitamins in reverse-phase high performance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Chirkin, V. A.; Karpov, S. I.; Selemenev, V. F.

    2012-12-01

    The thermodynamics of the sorption of certain water-soluble vitamins on a C18 reverse phase from water-acetonitrile solutions of different compositions is studied. The thermodynamic characteristics of the investigated chromatographic systems are calculated. The dependences of standard molar enthalpy and changes in entropy when the sorbate transfers from the bulk solution to the surface layer on the concentration of the organic component in the mobile phase are analyzed. The boundaries for applying the main retention models describing the sorption of the investigated compounds are discussed.

  2. Interferon-alpha 2b quantification in inclusion bodies using reversed phase-ultra performance liquid chromatography (RP-UPLC).

    PubMed

    Cueto-Rojas, H F; Pérez, N O; Pérez-Sánchez, G; Ocampo-Juárez, I; Medina-Rivero, E

    2010-04-15

    Interferon-alpha 2b (IFN-alpha 2b) is a recombinant therapeutic cytokine produced as inclusion bodies using a strain of Escherichia coli as expression system. After fermentation and recovery, it is necessary to know the amount of recombinant IFN-alpha 2b, in order to determine the yield and the load for solubilization, and chromatographic protein purification steps. The present work details the validation of a new short run-time and fast sample-preparation method to quantify IFN-alpha 2b in inclusion bodies using Reversed Phase-Ultra Performance Liquid Chromatography (RP-UPLC). The developed method demonstrated an accuracy of 100.28%; the relative standard deviations for method precision, repeatability and inter-day precision tests were found to be 0.57%, 1.54% and 1.83%, respectively. Linearity of the method was assessed in the range of concentrations from 0.05 mg/mL to 0.5 mg/mL, the curve obtained had a determination coefficient (r(2)) of 0.9989. Detection and quantification limits were found to be 0.008 mg/mL and 0.025 mg/mL, respectively. The method also demonstrated robustness for changes in column temperature, and specificity against host proteins and other recombinant protein expressed in the same E. coli strain. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry

    NASA Astrophysics Data System (ADS)

    Ghatak, Ananya; Das, Tanmoy

    2018-01-01

    Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.

  4. Prediction of the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions.

    PubMed

    D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio

    2014-08-01

    In this paper, a multilayer artificial neural network is used to model simultaneously the effect of solute structure and eluent concentration profile on the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient elution. The retention data of 24 triazines, including common herbicides and their metabolites, are collected under 13 different elution modes, covering the following experimental domain: starting acetonitrile volume fraction ranging between 40 and 60% and gradient slope ranging between 0 and 1% acetonitrile/min. The gradient parameters together with five selected molecular descriptors, identified by quantitative structure-retention relationship modelling applied to individual separation conditions, are the network inputs. Predictive performance of this model is evaluated on six external triazines and four unseen separation conditions. For comparison, retention of triazines is modelled by both quantitative structure-retention relationships and response surface methodology, which describe separately the effect of molecular structure and gradient parameters on the retention. Although applied to a wider variable domain, the network provides a performance comparable to that of the above "local" models and retention times of triazines are modelled with accuracy generally better than 7%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. [Studies on determination of p-aminophenol and its related compounds prepared with catalytic hydrogenation by reversed-phase high performance liquid chromatography].

    PubMed

    Li, S; Gu, H; Zheng, M; Zhan, Y

    1997-07-01

    Catalytic hydrogenation of nitrobenzene with supported palladium catalyst is a new method to produce p-aminophenol. p-Aminophenol, aniline and 4,4'-diaminodiphenyl ether obtained from this method were determined by reversed phase high performance liquid chromatography. The factors, e.g., concentration of methanol, pH and ionic strength which could affect separation efficiency were studied. UV spectra of p-aminophenol, aniline and 4,4'-diaminodiphenyl ether were recorded. Good separation was performed by using a 100 mm x 4.6 mm column with 5 microm Hypersil ODS, a mixture of 60% aqueous 8.0 mmol/L KH2PO4 buffered to 6.5 with 4.0 mmol/L Na2HPO4 and 40% methanol as mobile phase at a flow rate of 1.0 mL/min, and UV spectrophotometric detector at 232 nm wavelength. The calibration curves of p-aminophenol, aniline and 4,4'-diaminodiphenyl ether have good linearity over concentration range of 5-250, 5-150 and 0.2-120 mg/L, respectively. Minimum detectable limits at a signal-to-noise ratio of 2 were 0.1, 0.6 and 0.6 ng. This method has been applied to analysis of the reaction products of ultrasonic catalytic hydrogenation and industrial samples with good results and reproducibility.

  6. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    PubMed

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Determination of artificial sweeteners in water samples by solid-phase extraction and liquid chromatography-tandem mass spectrometry.

    PubMed

    Ordóñez, Edgar Y; Quintana, José Benito; Rodil, Rosario; Cela, Rafael

    2012-09-21

    The development and performance evaluation of an analytical method for the determination of six artificial sweeteners in environmental waters using solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry are presented. To this end, different SPE alternatives have been evaluated: polymeric reversed-phase (Oasis HLB, Env+, Plexa and Strata X), and mixed-mode with either weak (Oasis WAX) or strong anionic-exchange (Oasis MAX and Plexa PAX) sorbents. Among them, reversed-phase sorbents, particularly Oasis HLB and Strata X, showed the best performance. Oasis HLB provided good trueness (recoveries: 73-112%), precision (RSD<10%) and limits of quantification (LOQ: 0.01-0.5 μg/L). Moreover, two LC separation mechanisms were evaluated: reversed-phase (RPLC) and hydrophilic interaction (HILIC), with RPLC providing better performance than HILIC. The final application of the method showed the presence of acesulfame, cyclamate, saccharin and sucralose in the wastewater and surface water samples analyzed at concentrations up to 54 μg/L. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. [Influences of ion-suppressors on retention behaviors of nine food additives in reversed-phase high performance liquid chromatographic separation].

    PubMed

    Zhao, Yonggang; Chen, Xiaohong; Li, Xiaoping; Yao, Shanshan; Jin, Micong

    2011-10-01

    The influences of ion-suppressors on retention behaviors of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in reversed-phase high performance liquid chromatographic (RP-HPLC) separation were investigated. The organic modification effects of acids, i. e. , trifluoroacetic acid (TFA) and buffer salts, i. e. , TFA-ammonium acetate (AmAc) were studied emphatically. The relationships between retention factors of solutes and volume percentages of ion-suppressors in the mobile phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, separately. The separation of nine food additives was completed by a gradient elution with acetonitrile-TFA (0.01%, v/v)-AmAc (2. 5 mmol/L) aqueous solution as the mobile phases. An RP-HPLC method was established for the simultaneous determination of nine food additives in red wine. In the range of 10. 0 - 100. 0 mg/L, nine food additives showed good linearity with the correlation coefficients ( r2 ) larger than 0. 999 1. The limits of detection (LODs) were in the range of 0. 33 - 2. 36 mg/L and the limits of quantification (LOQs) were in the range of 1. 11 - 7. 80 mg/L. The spiked recoveries were between 87. 61% and 108. 4% with the relative standard deviations (RSDs) of 2. 2% -9. 4%. These results are of referential significance for the rapid establishment and accu- rate optimization of RP-HPLC separation for the simultaneous determination of food additives in other foods.

  9. Analysis of metallic nanoparticles and their ionic counterparts in complex matrix by reversed-phase liquid chromatography coupled to ICP-MS.

    PubMed

    Yang, Yuan; Luo, Li; Li, Hai-Pu; Wang, Qiang; Yang, Zhao-Guang; Qu, Zhi-Peng; Ding, Ru

    2018-05-15

    Developing quantification and characterization methodology for metallic nanoparticles (MNPs) and their ionic component in complex matrix are crucial for the evaluation of their environmental behavior and health risks to humans. In this study, reversed phase high performance liquid chromatography combined ICP-MS was established for the characterization of MNPs in complex matrix. The ionic component could be separated from NPs with the optimized parameters of aqueous mobile phase. Good linear relationship between average diameter and retention time of NPs was obtained using HPLC-ICP-MS and the size smaller than 40 nm could be determined with this method, the detected results were in accordance with TEM results. The low detection limit of AuNPs and Au(Ⅲ) (both in sub-μg/L level) showed that this method was promising for the characterization of AuNPs and Au(Ⅲ) in environmental water. The mass concentration of ionic Au(Ⅲ) in environmental water could be detected using the proposed HPLC-ICP-MS and the concentration of AuNPs was obtained by subtracting the Au(Ⅲ) concentration from the total Au (The concentration of total Au was detected by ICP-MS after microwave digestion). Furthermore this proposed HPLC-ICP-MS method and single particle-ICPMS (SP-ICP-MS) was used for the analysis of the Ag speciation in commercial antibacterial products. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A novel multidimensional protein identification technology approach combining protein size exclusion prefractionation, peptide zwitterion-ion hydrophilic interaction chromatography, and nano-ultraperformance RP chromatography/nESI-MS2 for the in-depth analysis of the serum proteome and phosphoproteome: application to clinical sera derived from humans with benign prostate hyperplasia.

    PubMed

    Garbis, Spiros D; Roumeliotis, Theodoros I; Tyritzis, Stavros I; Zorpas, Kostas M; Pavlakis, Kitty; Constantinides, Constantinos A

    2011-02-01

    The current proof-of-principle study was aimed toward development of a novel multidimensional protein identification technology (MudPIT) approach for the in-depth proteome analysis of human serum derived from patients with benign prostate hyperplasia (BPH) using rational chromatographic design principles. This study constituted an extension of our published work relating to the identification and relative quantification of potential clinical biomarkers in BPH and prostate cancer (PCa) tissue specimens. The proposed MudPIT approach encompassed the use of three distinct yet complementary liquid chromatographic chemistries. High-pressure size-exclusion chromatography (SEC) was used for the prefractionation of serum proteins followed by their dialysis exchange and solution phase trypsin proteolysis. The tryptic peptides were then subjected to offline zwitterion-ion hydrophilic interaction chromatography (ZIC-HILIC) fractionation followed by their online analysis with reversed-phase nano-ultraperformance chromatography (RP-nUPLC) hyphenated to nanoelectrospray ionization-tandem mass spectrometry using an ion trap mass analyzer. For the spectral processing, the sequential use of the SpectrumMill, Scaffold, and InsPecT software tools was applied for the tryptic peptide product ion MS(2) spectral processing, false discovery rate (FDR) assessment, validation, and protein identification. This milestone serum analysis study allowed the confident identification of over 1955 proteins (p ≤ 0.05; FDR ≤ 5%) with a broad spectrum of biological and physicochemical properties including secreted, tissue-specific proteins spanning approximately 12 orders of magnitude as they occur in their native abundance levels in the serum matrix. Also encompassed in this proteome was the confident identification of 375 phosphoproteins (p ≤ 0.05; FDR ≤ 5%) with potential importance to cancer biology. To demonstrate the performance characteristics of this novel MudPIT approach, a comparison

  11. Effects of large volume injection of aliphatic alcohols as sample diluents on the retention of low hydrophobic solutes in reversed-phase liquid chromatography.

    PubMed

    David, Victor; Galaon, Toma; Aboul-Enein, Hassan Y

    2014-01-03

    Recent studies showed that injection of large volume of hydrophobic solvents used as sample diluents could be applied in reversed-phase liquid chromatography (RP-LC). This study reports a systematic research focused on the influence of a series of aliphatic alcohols (from methanol to 1-octanol) on the retention process in RP-LC, when large volumes of sample are injected on the column. Several model analytes with low hydrophobic character were studied by RP-LC process, for mobile phases containing methanol or acetonitrile as organic modifiers in different proportions with aqueous component. It was found that starting with 1-butanol, the aliphatic alcohols can be used as sample solvents and they can be injected in high volumes, but they may influence the retention factor and peak shape of the dissolved solutes. The dependence of the retention factor of the studied analytes on the injection volume of these alcohols is linear, with a decrease of its value as the sample volume is increased. The retention process in case of injecting up to 200μL of upper alcohols is dependent also on the content of the organic modifier (methanol or acetonitrile) in mobile phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Dependence of the rate of LiF ion pairing on the description of molecular interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluharova, Eva; Baer, Marcel D.; Schenter, Gregory K.

    2016-03-03

    We present an analysis of the dynamics of ion-pairing of Lithium Fluoride (LiF) in aqueous solvent using both detailed molecular simulation as well as reduced models within a Gener- alized Langevin Equation (GLE) framework. We explored the sensitivity of the ion-pairing phenomena to the details of descriptions of molecular interaction, comparing two empirical potentials to explicit quantum based density functional theory. We find quantitative differences in the potentials of mean force for ion-pairing as well as time dependent frictions that lead to variations in the rate constant and reactive flux correlation functions. These details reflect differences in solvent response tomore » ion-pairing between different representations of molecular interaction and influence anharmonicity of the dynamic response. We find that the short time anharmonic response is recovered with a GLE parameterization. Recovery of the details of long time response may require extensions to the reduced model. We show that the utility of using a reduced model leads to a straight forward application of variational transition state the- ory concepts to the condensed phase system. The significance of this is reflected in the analysis of committor distributions and the variation of planar hypersurfaces, leading to an improved understanding of factors that determine the rate of LiF ion-pairing. CJM and GKS are supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest Na- tional Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is grateful for the support of Laboratory Directed Research and Development funding under the auspices of PNNL’s Laboratory Initiative Materials Synthesis and Simulation across Scales (MS3). Additional computing resources were generously allocated by PNNL’s Institutional Computing program. EP acknowledges support from PNNL’s Alternate

  13. Integration of magnetic solid phase fishing and off-line two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry for screening and identification of human serum albumin binders from Radix Astragali.

    PubMed

    Zhang, Yuping; Nie, Mingkun; Shi, Shuyun; You, Qingping; Guo, Junfang; Liu, Liangliang

    2014-03-01

    Radix Astragali is one of the most popular traditional medicinal herb and healthy dietary supplement. Isoflavonoids and astragalosides are the main bioactive ingredients. However, the systematic bioactive component analysis is inadequate so far. Then a facile method based on Fe3O4@SiO2-human serum albumin (Fe3O4@SiO2-HSA) magnetic solid phase fishing integrated with two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry (2D HPLC-DAD-MS(n)) was developed to fish out and identify HSA binders from Radix Astragali. The immobilized HSA displayed a high stability with 96.2% retained after ten consecutive cycles. 2D HPLC system (size exclusion chromatography×reversed phase chromatography, SEC×RP) were developed and optimised. Forty-seven bioactive compounds including thirty-four isoflavonoids and thirteen astragalosides were screened and identified or tentatively deduced based on their retention time, ultraviolet (UV), accurate molecular weight and diagnostic fragment ions. The results indicated that the integrated method could be widely applied for systematical fishing and identification of bioactive compounds, especially for low-abundance and overlapped compounds, from complex mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Determination of the four major surfactant classes in cleaning products by reversed-phase liquid chromatography using serially connected UV and evaporative light-scattering detection.

    PubMed

    Escrig-Doménech, Aarón; Simó-Alfonso, Ernesto F; Ramis-Ramos, Guillermo

    2016-08-17

    A method for the simultaneous determination of the most frequently used surfactant families -linear alkyl benzenesulphonates (LAS), alkyl ether sulphates (AES), fatty alcohol ethoxylates (FAE) and oleins (soaps, fatty acid salts) - in cleaning products, has been developed. The common reversed phase octyl (C8), pentafluorophenyl and biphenyl columns were not capable of separating the anionic LAS and AES classes; however, since only LAS absorbs in the UV, these two classes were independently quantified using a C8 column and serially connected UV and ELSD detection. The best compromise to resolve the four surfactant classes and the oligomers within the classes was achieved with a C8 column and an ACN/water gradient. To enhance retention of the anionic surfactants, ammonium acetate, as an ion-pairing agent compatible with ELSD detection, was used. Also, to shift the olein peaks with respect to that of the FAE oligomers, acetic acid was used. In the optimized method, modulation of the mobile phase, using ammonium acetate during elution of LAS and AES, and acetic acid after elution of LAS and AES, was provided. Quantitation of the overlapped LAS and AES classes was achieved by using the UV detector to quantitate LAS and the ELSD to determine AES by difference. Accuracy in the determination of AES was achieved by using a quadratic model, and by correcting the predicted AES concentration according to the LAS concentration previously established using the UV chromatogram. Another approach also leading to accurate predictions of the AES concentration was to increase the AES concentrations in the samples by adding a standard solution. In the samples reinforced with AES, correction of the predicted AES concentration was not required. FAE and olein were quantified using also quadratic calibration. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Critical contribution of nonlinear chromatography to the understanding of retention mechanism in reversed-phase liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritti, Fabrice; Guiochon, Georges A

    2005-11-01

    The retention of most compounds in RPLC proceeds through a combination of several independent mechanisms. We review a series of recent studies made on the behavior of several commercial C{sub 18}-bonded stationary phases and of the complex, mixed retention mechanisms that were observed in RPLC. These studies are essentially based on the acquisition of adsorption isotherm data, on the modeling, and on the interpretation of these data. Because linear chromatography deals only with the initial slope of the global, overall, or apparent isotherm, it is unable fully to describe the complete adsorption mechanism. It cannot even afford clues as tomore » the existence of several overlaid retention mechanisms. More specifically, it cannot account for the consequences of the surface heterogeneity of the packing material. The acquisition of equilibrium data in a wide concentration range is required for this purpose. Frontal analysis (FA) of selected probes gives data that can be modeled into equilibrium isotherms of these probes and that can also be used to calculate their adsorption or affinity energy distribution (AED). The combination of these data, the detailed study of the best constants of the isotherm model, the determination of the influence of experimental parameters (e.g., buffer pH and pI, temperature) on the isotherm constants provide important clues regarding the heterogeneity of the adsorbent surface and the main properties of the adsorption mechanisms. The comparison of similar data obtained for the adsorption of neutral and ionizable compounds, treated with the same approach, and the investigation of the influence on the thermodynamics of phase equilibrium of the experimental conditions (temperature, average pressure, mobile phase composition, nature of the organic modifier, and, for ionizable compounds, of the ionic strength, the nature, the concentration of the buffer, and its pH) brings further information. This review provides original conclusions

  16. Rapid Development and Validation of Improved Reversed-Phase High-performance Liquid Chromatography Method for the Quantification of Mangiferin, a Polyphenol Xanthone Glycoside in Mangifera indica

    PubMed Central

    Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam

    2017-01-01

    Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography–mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International

  17. Ion-Exchange Chromatography: Basic Principles and Application.

    PubMed

    Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F

    2017-01-01

    Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.

  18. Simultaneous determination of secondary metabolites from Vinca rosea plant extractives by reverse phase high performance liquid chromatography

    PubMed Central

    Siddiqui, Mohammad Jamshed Ahmad; Ismail, Zhari; Saidan, Noor Hafizoh

    2011-01-01

    Background: Vinca rosea (Apocynaceae) is one of the most important and high value medicinal plants known for its anticancer alkaloids. It is the iota of the isolated secondary metabolites used in chemotherapy to treat diverse cancers. Several high performance liquid chromatography (HPLC) methods have been developed to quantify the active alkaloids in the plant. However, this method may serve the purpose in quantification of V. rosea plant extracts in totality. Objective: To develop and validate the reverse phase (RP)-HPLC method for simultaneous determination of secondary metabolites, namely alkaloids from V. rosea plant extracts. Materials and Methods: The quantitative determination was conducted by RP-HPLC equipped with ultraviolet detector. Optimal separation was achieved by isocratic elution with mobile phase consisting of methanol:acetonitrile:ammonium acetate buffer (25 mM) with 0.1% triethylamine (15:45:40 v/v) on a column (Zorbax Eclipse plus C18, 250 mm % 4.6 mm; 5 μm). The standard markers (vindoline, vincristine, catharanthine, and vinblastine) were identified by retention time and co-injected with reference standard and quantified by external standard method at 297 nm. Results: The precision of the method was confirmed by the relative standard deviation (R.S.D.), which was lower than 2.68%. The recoveries were in the range of 98.09%-108%. The limits of detection (LOD) for each marker alkaloids were lower than 0.20 μg. Different parts of the V. rosea extracts shows different concentrations of markers, flower samples were high in vinblastine content, while methanol extract from the leaves contains all the four alkaloids in good yield, and there is no significant presence of markers in water extracts. Conclusion: HPLC method established is appropriate for the standardization and quality assurance of V. rosea plant extracts. PMID:21716929

  19. An analysis of dissolved organic matter from freshwater Karelian Lakes using reversed-phase high-performance liquid chromatography with online absorbance and fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Khundzhua, D. A.; Patsaeva, S. V.; Trubetskoj, O. A.; Trubetskaya, O. E.

    2017-01-01

    The spectral and optical properties of the fractionated components of dissolved organic matter (DOM) of three freshwater lakes in Karelia were studied using reversed-phase high-performance liquid chromatography (RP-HPLC) with online detection of fluorescence and absorption spectra. It is shown that the DOM fractions are qualitatively similar, but differ quantitatively in the ratio of components and consist of at least three types of fluorophores: (1) hydrophilic "humic-like" fluorophore(s) with the emission maximum in the region of 420 nm and an absorption band at 260-270 nm; (2) hydrophobic "humic-like" fluorophore(s) with the emission maximum at approximately 450 nm that has no characteristic absorption maxima in the region from 220 to 400 nm; and (3) a "protein-like" fluorophore with the emission maximum in the region of 340-350 nm, which is typical of proteins and peptides containing tryptophan.

  20. A criterion for pure pair-ion plasmas and the role of quasineutrality in nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Saleem, H.

    2007-01-01

    A criterion is presented to decide whether a produced plasma can be called a pure pair-ion plasma or not. The theory is discussed in the light of recent experiments which claim that a pure pair-ion fullerene (C60±) plasma has been produced. It is also shown that the ion acoustic wave is replaced by the pair ion convective cell (PPCC) mode as the electron density becomes vanishingly small in a magnetized plasma comprised of positive and negative ions. The nonlinear dynamics of pure pair plasmas is described by two coupled equations which have no analog in electron-ion plasmas. In a stationary frame, it becomes similar to the Hasegawa-Mima equation but does not contain drift waves and ion acoustic waves.

  1. Hydration and ion pair formation in aqueous Y(3+)-salt solutions.

    PubMed

    Rudolph, Wolfram W; Irmer, Gert

    2015-11-14

    Raman spectra of aqueous yttrium perchlorate, triflate (trifluoromethanesulfonate), chloride and nitrate solutions were measured over a broad concentration range (0.198-3.252 mol L(-1)). The spectra range from low wavenumbers to 4200 cm(-1). A very weak mode at 384 cm(-1) with a full width at half height at 50 cm(-1) in the isotropic spectrum suggests that the Y(3+)- octa-aqua ion is thermodynamically stable in dilute perchlorate solutions (∼0.5 mol L(-1)) while in concentrated perchlorate solutions outer-sphere ion pairs and contact ion pairs are formed. The octa-hydrate, [Y(OH2)8](3+) was also detected in a 1.10 mol L(-1) aqueous Y(CF3SO3)3 solution. Furthermore, very weak and broad depolarized modes could be detected which are assigned to [Y(OH2)8](3+)(aq) at 100, 166, 234 and 320 cm(-1) confirming that a hexa-hydrate is not compatible with the hydrated species in solution. In yttrium chloride solutions contact ion pair formation was detected over the measured concentration range from 0.479-3.212 mol L(-1). The contact ion pairs in YCl3(aq) are fairly weak and disappear with dilution. At a concentration <0.2 mol L(-1) almost all complexes have disappeared. In YCl3 solutions, with additional HCl, chloro-complexes of the type [Y(OH2)8-nCln](+3-n) (n = 1,2) are formed. The Y(NO3)3(aq) spectra were compared with a spectrum of a dilute NaNO3 solution and it was concluded that in Y(NO3)3(aq) over the concentration range from 2.035-0.198 mol L(-1) nitrato-complexes [Y(OH2)8-n(NO3)ln](+3-n) (n = 1,2) are formed. The nitrato-complexes are weak and disappear with dilution <0.1 mol L(-1). DFT geometry optimizations and frequency calculations are reported for both the yttrium-water cluster in the gas phase and the cluster within a polarizable continuum model in order to implicitly describe the presence of the bulk solvent. The bond distance and angle for the square antiprismatic cluster geometry of [Y(OH2)8](3+) with the polarizable dielectric continuum is in good

  2. Tailored liquid chromatography-mass spectrometry analysis improves the coverage of the intracellular metabolome of HepaRG cells.

    PubMed

    Cuykx, Matthias; Negreira, Noelia; Beirnaert, Charlie; Van den Eede, Nele; Rodrigues, Robim; Vanhaecke, Tamara; Laukens, Kris; Covaci, Adrian

    2017-03-03

    Metabolomics protocols are often combined with Liquid Chromatography-Mass Spectrometry (LC-MS) using mostly reversed phase chromatography coupled to accurate mass spectrometry, e.g. quadrupole time-of-flight (QTOF) mass spectrometers to measure as many metabolites as possible. In this study, we optimised the LC-MS separation of cell extracts after fractionation in polar and non-polar fractions. Both phases were analysed separately in a tailored approach in four different runs (two for the non-polar and two for the polar-fraction), each of them specifically adapted to improve the separation of the metabolites present in the extract. This approach improves the coverage of a broad range of the metabolome of the HepaRG cells and the separation of intra-class metabolites. The non-polar fraction was analysed using a C18-column with end-capping, mobile phase compositions were specifically adapted for each ionisation mode using different co-solvents and buffers. The polar extracts were analysed with a mixed mode Hydrophilic Interaction Liquid Chromatography (HILIC) system. Acidic metabolites from glycolysis and the Krebs cycle, together with phosphorylated compounds, were best detected with a method using ion pairing (IP) with tributylamine and separation on a phenyl-hexyl column. Accurate mass detection was performed with the QTOF in MS-mode only using an extended dynamic range to improve the quality of the dataset. Parameters with the greatest impact on the detection were the balance between mass accuracy and linear range, the fragmentor voltage, the capillary voltage, the nozzle voltage, and the nebuliser pressure. By using a tailored approach for the intracellular HepaRG metabolome, consisting of three different LC techniques, over 2200 metabolites can be measured with a high precision and acceptable linear range. The developed method is suited for qualitative untargeted LC-MS metabolomics studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Chiral ligand exchange high-speed countercurrent chromatography: mechanism, application and comparison with conventional liquid chromatography in enantioseparation of aromatic α-hydroxyl acids

    PubMed Central

    Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742

  4. Separation techniques: Chromatography

    PubMed Central

    Coskun, Ozlem

    2016-01-01

    Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406

  5. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.

    PubMed

    Rafferty, Jake L; Siepmann, J Ilja; Schure, Mark R

    2009-03-20

    Particle-based simulations using the configurational-bias and Gibbs ensemble Monte Carlo techniques are carried out to probe the effects of various chromatographic parameters on bonded-phase chain conformation, solvent penetration, and retention in reversed-phase liquid chromatography (RPLC). Specifically, we investigate the effects due to the length of the bonded-phase chains (C(18), C(8), and C(1)), the inclusion of embedded polar groups (amide and ether) near the base of the bonded-phase chains, the column pressure (1, 400, and 1000 atm), and the pore shape (planar slit pore versus cylindrical pore with a 60A diameter). These simulations utilize a bonded-phase coverage of 2.9 micromol/m(2)and a mobile phase containing methanol at a molfraction of 33% (about 50% by volume). The simulations show that chain length, embedded polar groups, and pore shape significantly alter structural and retentive properties of the model RPLC system, whereas the column pressure has a relatively small effect. The simulation results are extensively compared to retention measurements. A molecular view of the RPLC retention mechanism emerges that is more complex than can be inferred from thermodynamic measurements.

  6. Determination of chloride in brazilian crude oils by ion chromatography after extraction induced by emulsion breaking.

    PubMed

    Robaina, Nicolle F; Feiteira, Fernanda N; Cassella, Alessandra R; Cassella, Ricardo J

    2016-08-05

    The present paper reports on the development of a novel extraction induced by emulsion breaking (EIEB) method for the determination of chloride in crude oils. The proposed method was based on the formation and breaking of oil-in-water emulsions with the samples and the consequential transference of the highly water-soluble chloride to the aqueous phase during emulsion breaking, which was achieved by centrifugation. The determination of chloride in the extracts was performed by ion chromatography (IC) with conductivity detection. Several parameters (oil phase:aqueous phase ratio, crude oil:mineral oil ratio, shaking time and type and concentration of surfactant) that could affect the performance of the method were evaluated. Total extraction of chloride from samples could be achieved when 1.0g of oil phase (0.5g of sample+0.5g of mineral oil) was emulsified in 5mL of a 2.5% (m/v) solution of Triton X-114. The obtained emulsion was shaken for 60min and broken by centrifugation for 5min at 5000rpm. The separated aqueous phase was collected, filtered and diluted before analysis by IC. Under these conditions, the limit of detection was 0.5μgg(-1) NaCl and the limit of quantification was 1.6μgg(-1) NaCl. We applied the method to the determination of chloride in six Brazilian crude oils and the results did not differ statistically from those obtained by the ASTM D6470 method when the paired Student-t-test, at 95% confidence level, was applied. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Simultaneous determination of gatifloxacin and ambroxol hydrochloride from tablet dosage form using reversed-phase high performance liquid chromatography.

    PubMed

    Shahed, Mirza; Nanda, Rabindra; Dehghan, Muhammad Hassan; Nasreen, Huda; Feroz, Shaikh

    2008-05-01

    A reversed-phase high performance liquid chromatography (HPLC) method was developed, validated, and used for the quantitative determination of gatifloxacin (GA) and ambroxol hydrochloride (AM), from its tablet dosage form. Chromatographic separation was performed on a HiQ Sil C18 column (250 mm x 4.6 mm, 5 microm), with a mobile phase comprising of a mixture of 0.01 mol/L potassium dihydrogen orthophosphate buffer and acetonitrile (70 : 30, v/v), and pH adjusted to 3 with orthophosphoric acid, at a flow rate of 1 mL/min, with detection at 247 nm. Separation was completed in less than 10 min. As per International Conference on Harmonisation (ICH) guidelines the method was validated for linearity, accuracy, precision, limit of quantitation, limit of detection, and robustness. Linearity of GA was found to be in the range of 10 -60 microg/mL and that for AM was found to be 5 - 30 microg/mL. The correlation coefficients were 0.999 6 and 0.999 3 for GA and AM respectively. The results of the tablet analysis (n = 5) were found to be 99.94% with +/- 0.25% standard deviation (SD) and 99.98% with +/- 0.36% SD for GA and AM respectively. Percent recovery of GA was found to be 99.92% - 100.02% and that of AM was 99.86% - 100.16%. The assay experiment shows that the method is free from interference of excipients. This demonstrates that the developed HPLC method is simple, linear, precise, and accurate, and can be conveniently adopted for the routine quality control analysis of the tablet.

  8. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    PubMed

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Metal cation detection in positive ion mode electrospray ionization mass spectrometry using a tetracationic salt as a gas-phase ion-pairing agent: evaluation of the effect of chelating agents on detection sensitivity.

    PubMed

    Xu, Chengdong; Dodbiba, Edra; Padivitage, Nilusha L T; Breitbach, Zachary S; Armstrong, Daniel W

    2012-12-30

    The detection of metal cations continues to be essential in many scientific and industrial areas of interest. The most common electrospray ionization mass spectrometry (ESI-MS) approach involves chelating the metal ions and detecting the organometallic complex in the negative ion mode. However, it is well known that negative ion mode ESI-MS is generally less sensitive than the positive ion mode. To achieve greater sensitivity, it is necessary to examine the feasibility of detecting the chelated metal cations in positive ion mode ESI-MS. Since highly solvated native metal cations have relatively low ionization efficiency in ESI-MS, and can be difficult to detect in the positive ion mode, a tetracationic ion-pairing agent was added to form a complex with the negatively charged metal chelate. The use of the ion-pairing agent leads to the generation of an overall positively charged complex, which can be detected at higher m/z values in the positive ion mode by electrospray ionization linear quadrupole ion trap mass spectrometry. Thirteen chelating agents with diverse structures were evaluated in this study. The nature of the chelating agent played as important a role as was previously determined for cationic pairing agents. The detection limits of six metal cations reached sub-picogram levels and significant improvements were observed when compared to negative ion mode detection where the metal-chelates were monitored without adding the ion-pairing reagent (IPR). Also, selective reaction monitoring (SRM) analyses were performed on the ternary complexes, which improved detection limits by one to three orders of magnitude. With this method it was possible to analyze the metal cations in the positive ion mode ESI-MS with the advantage of speed, sensitivity and selectivity. The optimum solution pH for this type of analysis is 5-7. Tandem mass spectrometry (MS/MS) further increases the sensitivity. Speciation is straightforward making this a broadly useful approach for the

  10. Systematical Optimization of Reverse-phase Chromatography for Shotgun Proteomics

    PubMed Central

    Xu, Ping; Duong, Duc M.; Peng, Junmin

    2009-01-01

    Summary We report the optimization of a common LC/MS/MS platform to maximize the number of proteins identified from a complex biological sample. The platform uses digested yeast lysate on a 75 μm internal diameter × 12 cm reverse-phase column that is combined with an LTQ-Orbitrap mass spectrometer. We first generated a yeast peptide mix that was quantified by multiple methods including the strategy of stable isotope labeling with amino acids in cell culture (SILAC). The peptide mix was analyzed on a highly reproducible, automated nanoLC/MS/MS system with systematic adjustment of loading amount, flow rate, elution gradient range and length. Interestingly, the column was found to be almost saturated by loading ~1 μg of the sample. Whereas the optimal flow rate (~0.2 μl/min) and elution buffer range (13–32% of acetonitrile) appeared to be independent of the loading amount, the best gradient length varied according to the amount of samples: 160 min for 1 μg of the peptide mix, but 40 min for 10 ng of the same sample. The effect of these parameters on elution peptide peak width is evaluated. After full optimization, 1,012 proteins (clustered in 806 groups) with an estimated protein false discovery rate of ~3% were identified in 1 μg of yeast lysate in a single 160-min LC/MS/MS run. PMID:19566079

  11. Ionic liquid stationary phases for gas chromatography.

    PubMed

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Arginine "Magic": Guanidinium Like-Charge Ion Pairing from Aqueous Salts to Cell Penetrating Peptides.

    PubMed

    Vazdar, Mario; Heyda, Jan; Mason, Philip E; Tesei, Giulio; Allolio, Christoph; Lund, Mikael; Jungwirth, Pavel

    2018-06-19

    It is a textbook knowledge that charges of the same polarity repel each other. For two monovalent ions in the gas phase at a close contact this repulsive interaction amounts to hundreds of kilojoules per mole. In aqueous solutions, however, this Coulomb repulsion is strongly attenuated by a factor equal to the dielectric constant of the medium. The residual repulsion, which now amounts only to units of kilojoules per mole, may be in principle offset by attractive interactions. Probably the smallest cationic pair, where a combination of dispersion and cavitation forces overwhelms the Coulomb repulsion, consists of two guanidinium ions in water. Indeed, by a combination of molecular dynamics with electronic structure calculations and electrophoretic, as well as spectroscopic, experiments, we have demonstrated that aqueous guanidinium cations form (weakly) thermodynamically stable like-charge ion pairs. The importance of pairing of guanidinium cations in aqueous solutions goes beyond a mere physical curiosity, since it has significant biochemical implications. Guanidinium chloride is known to be an efficient and flexible protein denaturant. This is due to the ability of the orientationally amphiphilic guanidinium cations to disrupt various secondary structural motifs of proteins by pairing promiscuously with both hydrophobic and hydrophilic groups, including guanidinium-containing side chains of arginines. The fact that the cationic guanidinium moiety forms the dominant part of the arginine side chain implies that the like-charge ion pairing may also play a role for interactions between peptides and proteins. Indeed, arginine-arginine pairing has been frequently found in structural protein databases. In particular, when strengthened by a presence of negatively charged glutamate, aspartate, or C-terminal carboxylic groups, this binding motif helps to stabilize peptide or protein dimers and is also found in or near active sites of several enzymes. The like

  13. Determination of the n-octanol/water partition coefficients of weakly ionizable basic compounds by reversed-phase high-performance liquid chromatography with neutral model compounds.

    PubMed

    Liang, Chao; Han, Shu-ying; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin

    2014-11-01

    A strategy to utilize neutral model compounds for lipophilicity measurement of ionizable basic compounds by reversed-phase high-performance liquid chromatography is proposed in this paper. The applicability of the novel protocol was justified by theoretical derivation. Meanwhile, the linear relationships between logarithm of apparent n-octanol/water partition coefficients (logKow '') and logarithm of retention factors corresponding to the 100% aqueous fraction of mobile phase (logkw ) were established for a basic training set, a neutral training set and a mixed training set of these two. As proved in theory, the good linearity and external validation results indicated that the logKow ''-logkw relationships obtained from a neutral model training set were always reliable regardless of mobile phase pH. Afterwards, the above relationships were adopted to determine the logKow of harmaline, a weakly dissociable alkaloid. As far as we know, this is the first report on experimental logKow data for harmaline (logKow = 2.28 ± 0.08). Introducing neutral compounds into a basic model training set or using neutral model compounds alone is recommended to measure the lipophilicity of weakly ionizable basic compounds especially those with high hydrophobicity for the advantages of more suitable model compound choices and convenient mobile phase pH control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Simultaneous determination of four 5-hydroxy polymethoxyflavones by reversed-phase high performance liquid chromatography with electrochemical detection.

    PubMed

    Dong, Ping; Qiu, Peiju; Zhu, Yi; Li, Shiming; Ho, Chi-Tang; McClements, David Julian; Xiao, Hang

    2010-01-29

    Accumulating evidence has suggested the potential health-promoting effects of 5-hydroxy polymethoxyflavones (5-OH-PMFs) naturally existing in citrus genus. However, research efforts are hampered by the lack of reliable and sensitive methods for their determination in plant materials and biological samples. Using reversed-phase high performance liquid chromatography (HPLC) equipped with electrochemical (EC) detection, we have developed a fast and highly sensitive method for quantification of four 5-OH-PMFs, namely 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone, 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone, 5-hydroxy-6,7,4'-trimethoxyflavone, and 5-hydroxy-6,7,8,4'-tetramethoxyflavone. The method was fully validated in terms of linearity, accuracy and precision. The limit of detection (LOD) was determined as being between 0.65 and 1.8ng/mL (ppb), demonstrating an over 160 times higher sensitivity in comparison with the previously reported method using UV detection. The recovery rate of the method was between 96.17% and 110.82%, and the precision for the retention times and peak areas was all below 13%. The method was successfully used to quantify 5-OH-PMFs with a wide range of abundance in the citrus products and preparations, such as orange juice, citrus peel, and dried tangerine peel. The quantification method for 5-OH-PMFs developed herein could be useful for the nutritional and pharmacological studies of these compounds in future. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. Simultaneous determination of 16 purine derivatives in urinary calculi by gradient reversed-phase high-performance liquid chromatography with UV detection.

    PubMed

    Safranow, Krzysztof; Machoy, Zygmunt

    2005-05-25

    A reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection has been developed for the analysis of purines in urinary calculi. The method using gradient of methanol concentration and pH was able to separate 16 compounds: uric acid, 2,8-dihydroxyadenine, xanthine, hypoxanthine, allopurinol and oxypurinol as well as 10 methyl derivatives of uric acid or xanthine (1-, 3-, 7- and 9-methyluric acid, 1,3-, 1,7- and 3,7-dimethyluric acid, 1-, 3- and 7-methylxanthine). Limits of detection for individual compounds ranged from 0.006 to 0.035 mg purine/g of the stone weight and precision (CV%) was 0.5-2.4%. The method enabled us to detect in human uric acid stones admixtures of nine other purine derivatives: natural metabolites (hypoxanthine, xanthine, 2,8-dihydroxyadenine) and methylated purines (1-, 3- and 7-methyluric acid, 1,3-dimethyluric acid, 3- and 7-methylxanthine) originating from the metabolism of methylxanthines (caffeine, theophylline and theobromine). The method allows simultaneous quantitation of all known purine constituents of urinary stones, including methylated purines, and may be used as a reference one for diagnosing disorders of purine metabolism and research on the pathogenesis of urolithiasis.

  16. CHEMICAL ANALYSIS OF WET SCRUBBERS UTILIZING ION CHROMATOGRAPHY

    EPA Science Inventory

    The report describes the key elements required to develop a sampling and analysis program for a wet scrubber using ion chromatography as the main analytical technique. The first part of the report describes a sampling program for two different types of wet scrubbers: the venturi/...

  17. Distinct dissociation kinetics between ion pairs: Solvent-coordinate free-energy landscape analysis.

    PubMed

    Yonetani, Yoshiteru

    2015-07-28

    Different ion pairs exhibit different dissociation kinetics; however, while the nature of this process is vital for understanding various molecular systems, the underlying mechanism remains unclear. In this study, to examine the origin of different kinetic rate constants for this process, molecular dynamics simulations were conducted for LiCl, NaCl, KCl, and CsCl in water. The results showed substantial differences in dissociation rate constant, following the trend kLiCl < kNaCl < kKCl < kCsCl. Analysis of the free-energy landscape with a solvent reaction coordinate and subsequent rate component analysis showed that the differences in these rate constants arose predominantly from the variation in solvent-state distribution between the ion pairs. The formation of a water-bridging configuration, in which the water molecule binds to an anion and a cation simultaneously, was identified as a key step in this process: water-bridge formation lowers the related dissociation free-energy barrier, thereby increasing the probability of ion-pair dissociation. Consequently, a higher probability of water-bridge formation leads to a higher ion-pair dissociation rate.

  18. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAhg -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAhg -1 can be retained for 2000 cycles, demonstratingmore » excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na +. The reversible redox chemistry between azo compound and Na ions offer opportunities for developing longcycle-life and high-rate SSIBs.« less

  19. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries

    DOE PAGES

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao; ...

    2018-01-29

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAhg -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAhg -1 can be retained for 2000 cycles, demonstratingmore » excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na +. The reversible redox chemistry between azo compound and Na ions offer opportunities for developing longcycle-life and high-rate SSIBs.« less

  20. Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiang; Department of Chemistry, Bohai University, Jinzhou 121000; Zhang, Ruiting

    2014-05-14

    We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significantmore » deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.« less

  1. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    NASA Astrophysics Data System (ADS)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 < C a (NO3) 2 < S r (NO3) 2, and it follows the trend given by experimental activity coefficients. It is found that proper modeling of these solutions requires the inclusion of electronic polarization of the ions which is achieved in the current study through electronic continuum correction force fields. A detailed analysis of the effects of ion-pairs on the structure and dynamics of water around the hydrated ions is done through classification of water into different subspecies based on their locations around the cations or anions only or bridged between them. We have looked at the diffusion coefficients, relaxation of orientational correlation functions, and also the residence times of different subspecies of water to explore the dynamics of water in different structural environments in the solutions. The current results show that the water molecules are incorporated into fairly well-structured hydration shells of the ions, thus decreasing the single-particle diffusivities and increasing the orientational relaxation times of water with an increase in salt concentration. The different structural

  2. A simple, sensitive and rapid isocratic reversed-phase high-performance liquid chromatography method for determination and stability study of curcumin in pharmaceutical samples

    PubMed Central

    Amanolahi, Farjad; Mohammadi, Ali; Kazemi Oskuee, Reza; Nassirli, Hooriyeh; Malaekeh-Nikouei, Bizhan

    2017-01-01

    Objective: This study was designed to develop and validate a new reversed-phase high-performance liquid chromatography (RP-HPLC) method based on Q2 (R1) International Conference on Harmonization (ICH) guideline for determination of curcumin in pharmaceutical samples. Materials and Methods: The HPLC instrument method was optimized with isocratic elution with acetonitrile: ammonium acetate (45:55, v/v, pH 3.5), C18 column (150 mm×4.6 mm×5 µm particle size) and a flow rate of 1 ml/min in ambient condition and total retention time of 17 min. The volume of injection was set at 20 µl and detection was recorded at 425 nm. The robustness of the method was examined by changing the mobile phase composition, mobile phase pH, and flow rate. Results: The method was validated with respect to precision, accuracy and linearity in a concentration range of 2-100 µg/ml. The limit of detection (LOD) and limit of quantification (LOQ) were 0.25 and 0.5 µg/ml, respectively. The percentage of recovery was 98.9 to 100.5 with relative standard deviation (RSD) < 0.638%. Conclusion: The method was found to be simple, sensitive and rapid for determination of curcumin in pharmaceutical samples and had enough sensitivity to detect degradation product of curcumin produced under photolysis and hydrolysis stress condition. PMID:29062806

  3. Enantiomeric separation of triazole fungicides with 3-μm and 5-μml particle chiral columns by reverse-phase high-performance liquid chromatography.

    PubMed

    Qiu, Jing; Dai, Shouhui; Zheng, Chuangmu; Yang, Shuming; Chai, Tingting; Bie, Mei

    2011-07-01

    This study used chiral columns packed with 3-μm and 5-μm particles to comparatively separate enantiomers of 9 triazole fungicides, and Lux Cellulose-1 columns with chiral stationary phase of cellulose-tris-(3,5-dimethylphenylcarbamate) were used on reverse-phase high-performance liquid chromatography with flow rates of 0.3 and 1.0 mL min(-1) for 3-μm and 5-μm columns, respectively. The (+)-enantiomers of hexaconazole (1), tetraconazole (4), myclobutanil (7), fenbuconazole (8) and the (-)-enantiomers of flutriafol (2), diniconazole (3), epoxiconazole (5), penconazole (6), triadimefon (9) were firstly eluted from both columns, the elution orders identified with an optical rotation detector didn't change with variety of column particles and mobile phases (acetronitrile/water and methanol/water). The plots of natural logarithms of the selectivity factors (ln α) for all fungicides except penconazole (6) versus the inverse of temperature (1/T) were linear in range of 5-40°C. The thermodynamic parameters (ΔH°, ΔS°, ΔΔH° and ΔΔS°) were calculated using Van't Hoff equations to understand the thermosynamic driving forces for enantioseparation. This work will be very helpful to obtain good enantiomeric separation and establish more efficient analytical method for triazole fungicides. Chirality, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  4. Carboxylate modified porous graphitic carbon: a new class of hydrophilic interaction liquid chromatography phases.

    PubMed

    Wahab, M Farooq; Ibrahim, Mohammed E A; Lucy, Charles A

    2013-06-18

    Stationary phases for hydrophilic interaction liquid chromatography (HILIC) are predominantly based on silica and polymer supports. We present porous graphitic carbon particles with covalently attached carboxylic acid groups (carboxylate-PGC) as a new HILIC stationary phase. PGC particles were modified by adsorbing the diazonium salt of 4-aminobenzoic acid onto the PGC, followed by reduction of the adsorbed salt with sodium borohydride. The newly developed carboxylate-PGC phase exhibits different selectivity than that of 35 HPLC columns, including bare silica, zwitterionic, amine, reversed, and unmodified PGC phases. Carboxylate-PGC is stable from pH 2.0 to 12.6, yielding reproducible retention even at pH 12.6. Characterization of the new phase is presented by X-ray photoelectron spectroscopy, thermogravimetry, zeta potentials, and elemental analysis. The chromatographic performance of carboxylate-PGC as a HILIC phase is illustrated by separations of carboxylic acids, nucleotides, phenols, and amino acids.

  5. Improved quality-by-design compliant methodology for method development in reversed-phase liquid chromatography.

    PubMed

    Debrus, Benjamin; Guillarme, Davy; Rudaz, Serge

    2013-10-01

    A complete strategy dedicated to quality-by-design (QbD) compliant method development using design of experiments (DOE), multiple linear regressions responses modelling and Monte Carlo simulations for error propagation was evaluated for liquid chromatography (LC). The proposed approach includes four main steps: (i) the initial screening of column chemistry, mobile phase pH and organic modifier, (ii) the selectivity optimization through changes in gradient time and mobile phase temperature, (iii) the adaptation of column geometry to reach sufficient resolution, and (iv) the robust resolution optimization and identification of the method design space. This procedure was employed to obtain a complex chromatographic separation of 15 antipsychotic basic drugs, widely prescribed. To fully automate and expedite the QbD method development procedure, short columns packed with sub-2 μm particles were employed, together with a UHPLC system possessing columns and solvents selection valves. Through this example, the possibilities of the proposed QbD method development workflow were exposed and the different steps of the automated strategy were critically discussed. A baseline separation of the mixture of antipsychotic drugs was achieved with an analysis time of less than 15 min and the robustness of the method was demonstrated simultaneously with the method development phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Reversed-Phase High-Performance Liquid Chromatography for the Quantification and Optimization for Extracting 10 Kinds of Carotenoids in Pepper (Capsicum annuum L.) Leaves.

    PubMed

    Li, Jing; Xie, Jianming; Yu, Jihua; Lv, Jian; Zhang, Junfeng; Wang, Xiaolong; Wang, Cheng; Tang, Chaonan; Zhang, Yingchun; Dawuda, Mohammed Mujitaba; Zhu, Daiqiang; Ma, Guoli

    2017-09-27

    Carotenoids are considered to be crucial elements in many fields and, furthermore, the significant factor in pepper leaves under low light and chilling temperature. However, little literature focused on the method to determinate and extract the contents of carotenoid compositions in pepper leaves. Therefore, a time-saving and highly sensitive reversed-phase high-performance liquid chromatography method for separation and quantification of 10 carotenoids was developed, and an optimized technological process for carotenoid composition extraction in pepper leaves was established for the first time. Our final method concluded that six xanthophylls eluted after about 9-26 min. In contrast, four carotenes showed higher retention times after nearly 28-40 min, which significantly shortened time and improved efficiency. Meanwhile, we suggested that 8 mL of 20% KOH-methanol solution should be added to perform saponification at 60 °C for 30 min. The ratio of solid-liquid was 1:8, and the ultrasound-assisted extraction time was 40 min.

  7. Complexation-induced supramolecular assembly drives metal-ion extraction.

    PubMed

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Direct pair production in heavy-ion--atom collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anholt, R.; Jakubassa-Amundsen, D.H.; Amundsen, P.A.

    1983-02-01

    Direct pair production in approx.5-MeV/amu heavy-ion--atom collisions with uranium target atoms is calculated with the plane-wave Born approximation and the semiclassical approximation. Briggs's approximation is used to obtain the electron and positron wave functions. Since pair production involves high momentum transfer q from the moving projectile to the vacuum, use is made of a high-q approximation to greatly simplify the numerical computations. Coulomb deflection of the projectile, the effect of finite nuclear size on the elec- tronic wave functions, and the energy loss by the projectile exciting the pair are all taken into account in these calculations.

  9. Analytical Method Development and Validation for the Simultaneous Estimation of Abacavir and Lamivudine by Reversed-phase High-performance Liquid Chromatography in Bulk and Tablet Dosage Forms.

    PubMed

    Raees Ahmad, Sufiyan Ahmad; Patil, Lalit; Mohammed Usman, Mohammed Rageeb; Imran, Mohammad; Akhtar, Rashid

    2018-01-01

    A simple rapid, accurate, precise, and reproducible validated reverse phase high performance liquid chromatography (HPLC) method was developed for the determination of Abacavir (ABAC) and Lamivudine (LAMI) in bulk and tablet dosage forms. The quantification was carried out using Symmetry Premsil C18 (250 mm × 4.6 mm, 5 μm) column run in isocratic way using mobile phase comprising methanol: water (0.05% orthophosphoric acid with pH 3) 83:17 v/v and a detection wavelength of 245 nm and injection volume of 20 μl, with a flow rate of 1 ml/min. In the developed method, the retention times of ABAC and LAMI were found to be 3.5 min and 7.4 min, respectively. The method was validated in terms of linearity, precision, accuracy, limits of detection, limits of quantitation, and robustness in accordance with the International Conference on Harmonization guidelines. The assay of the proposed method was found to be 99% - 101%. The recovery studies were also carried out and mean % recovery was found to be 99% - 101%. The % relative standard deviation from reproducibility was found to be <2%. The proposed method was statistically evaluated and can be applied for routine quality control analysis of ABAC and LAMI in bulk and in tablet dosage form. Attempts were made to develop RP-HPLC method for simultaneous estimation of Abacavir and Lamivudine for the RP-HPLC method. The developed method was validated according to the ICH guidelines. The linearity, precision, range, robustness were within the limits as specified by the ICH guidelines. Hence the method was found to be simple, accurate, precise, economic and reproducible. So the proposed methods can be used for the routine quality control analysis of Abacavir and Lamivudine in bulk drug as well as in formulations. Abbreviations Used: HPLC: High-performance liquid chromatography, UV: Ultraviolet, ICH: International Conference on Harmonization, ABAC: Abacavir, LAMI: Lamivudine, HIV: Human immunodeficiency virus, AIDS: Acquired

  10. Purification of dirucotide, a synthetic 17-aminoacid peptide, by ion exchange centrifugal partition chromatography.

    PubMed

    Boudesocque, Leslie; Forni, Luciano; Martinez, Agathe; Nuzillard, Jean-Marc; Giraud, Matthieu; Renault, Jean-Hugues

    2017-09-01

    Dirucotide is a synthetic drug candidate for the treatment of multiple sclerosis. This 17-aminoacid peptide was successfully purified by ion exchange centrifugal partition chromatography. The optimized conditions involved the biphasic methyl tert-butyl ether/acetonitrile/n-butanol/water (2:1:2:5, v/v) solvent system in the descending mode, the di(2-ethylhexyl)phosphoric acid cation-exchanger with an exchanger (di(2-ethylhexyl)phosphoric acid)/dirucotide mole ratio of 100 and Ca 2+ ions in aqueous solution as displacer. Critical impurities were efficiently eliminated and dirucotide was recovered in high yield and purity (69% and 98%, respectively) and with a productivity of 2.29g per liter of stationary phase per hour. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Determination of acetone in saliva by reversed-phase liquid chromatography with fluorescence detection and the monitoring of diabetes mellitus patients with ketoacidosis.

    PubMed

    Fujii, Shinya; Maeda, Toshio; Noge, Ichiro; Kitagawa, Yutaka; Todoroki, Kenichiro; Inoue, Koichi; Min, Jun Zhe; Toyo'oka, Toshimasa

    2014-03-20

    In diabetes mellitus (DM) patients with ketoacidosis, ketone bodies, i.e., acetone, acetoacetic acid (AA) and β-hydroxybutyric acid (HA), are increased in the blood and urine. Acetone is also excreted by breathing due to the spontaneous decomposition of AA. Thus, the increase in acetone has been considered as one of the biomarkers for the diagnosis of DM. However, the determination of acetone in one's breath is not recommended because of the sample handling difficulty. We measured acetone in saliva by reversed-phase liquid chromatography (LC) with fluorescence (FL) detection. The proposed method was applied to the determination of acetone in the saliva of healthy volunteers and DM patients with and without ketoacidosis. 3-Pentanone (I.S.) and DBD-H in acetonitrile were added to freshly collected saliva and reacted at room temperature for 20 min in the presence of trifluoroacetic acid. After the reaction, the solution was centrifuged at 10,000 × g and 4 °C for 5 min. The supernatant was separated by reversed-phase LC and the FL detected at 550 nm (excitation at 460 nm). The concentrations of acetone in the DM patients with ketoacidosis were significantly higher than those of the normal subjects and DM patients without ketoacidosis. Furthermore, the total contents of the ketone bodies in the blood correlated with acetone in the saliva of the DM patients. The concentrations of acetone in the saliva of an emergency patient also correlated with the ketone bodies in the blood at each sampling time. The proposed method using LC-FL seems to be useful for the determination of acetone in the saliva of DM patients with ketoacidosis. The method offers a new option for the diagnosis and monitoring of DM patients with ketoacidosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kono, M.; Vranjes, J.; Departamento de Astrofisica, Universidad de La Laguna, Tenerife E38205

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kineticmore » derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.« less

  13. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    NASA Astrophysics Data System (ADS)

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio

    2014-10-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV-VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag+) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg- 1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.

  14. The use of dihexyldithiocarbamate in reverse-phase HPLC of metal chelates

    NASA Astrophysics Data System (ADS)

    Fatimah, S. S.; Bahti, H. H.; Hastiawan, I.; Permanasari, A.

    2018-05-01

    Dialkyldithiocarbamates have long been used as chelating agents in reverse-phase HPLC of transition metals. In the previous study, an alkyl homolog of this type of ligand, namely dihexyldithiocarbamate (DHDTC), was synthesized and characterized. The use of this particular ligand in the revese-phase HPLC of some selected transition metal ions is now reported for the first time. The mobile phase comprising of the flow rate and of the detection, in the separation of the metal chelates of Cd (II), Fe (III), Cu (II), and Co (III), were investigated on a C-18 column. The results showed that dihexylditiocarbamate could be used for separating Cd (II), Fe(III), Cu(II), and Co(III). Therefore, it could be used in simultaneous analysis.

  15. Orbitally limited pair-density-wave phase of multilayer superconductors

    NASA Astrophysics Data System (ADS)

    Möckli, David; Yanase, Youichi; Sigrist, Manfred

    2018-04-01

    We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .

  16. Dressed soliton in quantum dusty pair-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Prasanta; Muniandy, S. V.; Wong, C. S.

    Nonlinear propagation of a quantum ion-acoustic dressed soliton is studied in a dusty pair-ion plasma. The Korteweg-de Vries (KdV) equation is derived using reductive perturbation technique. A higher order inhomogeneous differential equation is obtained for the higher order correction. The expression for a dressed soliton is calculated using a renormalization method. The expressions for higher order correction are determined using a series solution technique developed by Chatterjee et al. [Phys. Plasmas 16, 072102 (2009)].

  17. DETERMINATION OF CARBENDAZIM IN WATER BY HIGH-PERFORMANCE IMMUNOAFFINITY CHROMATOGRAPHY ON-LINE WITH HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY WITH DIODE-ARRAY OR MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    An automated method for the determination of carbendazim in water that combines high-performance immunoaffinity chromatography (HPIAC), high-performance liquid chromatography (HPLC) in the reversed-phase mode, and detection by either UV-Vis diode array detector (DAD) spectroscopy...

  18. Simultaneous analysis of aminoglycosides with many other classes of drug residues in bovine tissues by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an ion-pairing reagent added to final extracts.

    PubMed

    Lehotay, Steven J; Lightfield, Alan R

    2018-01-01

    The way to maximize scope of analysis, sample throughput, and laboratory efficiency in the monitoring of veterinary drug residues in food animals is to determine as many analytes as possible as fast as possible in as few methods as possible. Capital and overhead expenses are also reduced by using fewer instruments in the overall monitoring scheme. Traditionally, the highly polar aminoglycoside antibiotics require different chromatographic conditions from other classes of drugs, but in this work, we demonstrate that an ion-pairing reagent (sodium 1-heptanesulfonate) added to the combined final extracts from two sample preparation methods attains good separation of 174 targeted drugs, including 9 aminoglycosides, in the same 10.5-min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The full method was validated in bovine kidney, liver, and muscle tissues according to US regulatory protocols, and 137-146 (79-84%) of the drugs gave between 70 and 120% average recoveries with ≤ 25% RSDs in the different types of tissues spiked at 0.5, 1, and 2 times the regulatory levels of interest (10-1000 ng/g depending on the drug). This method increases sample throughput and the possible number of drugs monitored in the US National Residue Program, and requires only one UHPLC-MS/MS method and instrument for analysis rather than two by the previous scheme. Graphical abstract Outline of the streamlined approach to monitor 174 veterinary drugs, including aminoglycosides, in bovine tissues by combining two extracts of the same sample with an ion-pairing reagent for analysis by UHPLC-MS/MS.

  19. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm.

    PubMed

    De Beer, Maarten; Lynen, Fréderic; Chen, Kai; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-03-01

    Stationary-phase optimized selectivity liquid chromatography (SOS-LC) is a tool in reversed-phase LC (RP-LC) to optimize the selectivity for a given separation by combining stationary phases in a multisegment column. The presently (commercially) available SOS-LC optimization procedure and algorithm are only applicable to isocratic analyses. Step gradient SOS-LC has been developed, but this is still not very elegant for the analysis of complex mixtures composed of components covering a broad hydrophobicity range. A linear gradient prediction algorithm has been developed allowing one to apply SOS-LC as a generic RP-LC optimization method. The algorithm allows operation in isocratic, stepwise, and linear gradient run modes. The features of SOS-LC in the linear gradient mode are demonstrated by means of a mixture of 13 steroids, whereby baseline separation is predicted and experimentally demonstrated.

  20. Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts

    NASA Astrophysics Data System (ADS)

    Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel

    2017-10-01

    We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.

  1. Separation and determination of synthetic impurities of difloxacin by reversed-phase high-performance liquid chromatography.

    PubMed

    Rao, R Nageswara; Nagaraju, V

    2004-11-19

    A simple and rapid reversed-phase high-performance liquid chromatographic method for separation and determination of process-related impurities of difloxacin (DFL) was developed. The separation was achieved on a reversed-phase C(18) column using methanol-water-acetic acid (78:21.9:0.1, v/v/v) as a mobile solvent at a flow rate of 1.0 ml/min at 28 degrees C using UV detection at 230 nm. It was linear over a range of 0.03 x 10(-6) to 1.60 x 10(-6)g for process related impurities and 0.05 x 10(-6) to 2.40 x 10(-6)g for difloxacin. The detection limits were 0.009 x 10(-6) to 0.024 x 10(-6)g for all the compounds examined. The recoveries were found to be in the range of 97.6-102.0% for impurities as well as difloxacin. The precision and robustness of the method were evaluated. It was used for not only quality assurance, but also monitoring the synthetic reactions involved in the process development work of difloxacin. The method was found to be specific, precise and reliable for the determination of unreacted levels of raw materials, intermediates in the reaction mixtures and the finished products of difloxacin.

  2. Assessing the Interplay between the Physicochemical Parameters of Ion-Pairing Reagents and the Analyte Sequence on the Electrospray Desorption Process for Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Basiri, Babak; Murph, Mandi M.; Bartlett, Michael G.

    2017-08-01

    Alkylamines are widely used as ion-pairing agents during LC-MS of oligonucleotides. In addition to a better chromatographic separation, they also assist with the desorption of oligonucleotide ions into the gas phase, cause charge state reduction, and decrease cation adduction. However, the choice of such ion-pairing agents has considerable influence on the MS signal intensity of oligonucleotides as they can also cause significant ion suppression. Interestingly, optimal ion-pairing agents should be selected on a case by case basis as their choice is strongly influenced by the sequence of the oligonucleotide under investigation. Despite imposing major practical difficulties to analytical method development, such a highly variable system that responds very strongly to the nuances of the electrospray composition provides an excellent opportunity for a fundamental study of the electrospray ionization process. Our investigations using this system quantitatively revealed the major factors that influenced the ESI ionization efficiency of oligonucleotides. Parameters such as boiling point, proton affinity, partition coefficient, water solubility, and Henry's law constants for the ion-pairing reagents and the hydrophobic thymine content of the oligonucleotides were found to be the most significant contributors. Identification of these parameters also allowed for the development of a statistical predictive algorithm that can assist with the choice of an optimum IP agent for each particular oligonucleotide sequence. We believe that research in the field of oligonucleotide bioanalysis will significantly benefit from this algorithm (included in Supplementary Material) as it advocates for the use of lesser-known but more suitable ion-pair alternatives to TEA for many oligonucleotide sequences.

  3. Elution-extrusion counter-current chromatography for the separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix.

    PubMed

    Chu, Chu; Zhang, Shidi; Tong, Shengqiang; Li, Xingnuo; Li, Qingyong; Yan, Jizhong

    2015-09-01

    In this work, a simple and efficient protocol for the rapid separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix was developed by combining macroporous resin and elution-extrusion counter-current chromatography. The crude extract was firstly subjected to a D101 macroporous resin column eluted with water and a series of different concentrations of ethanol. Then, effluents of 30 and 95% ethanol were collected as sample 1 and sample 2 for further counter-current chromatography purification. Finally, a pair of isomers, 96 mg of compound 1 and 48 mg of compound 2 with purities of 91.1 and 96.2%, respectively, was isolated from 200 mg of sample 1. The other pair of isomers, 14 mg of compound 3 and 8 mg of compound 4 with purities of 93.6 and 88.9%, respectively, was isolated from 48 mg of sample 2. Their purities were analyzed by high-performance liquid chromatography, and their chemical structures were identified by mass spectrometry and (1) H NMR spectroscopy. Compared to a normal counter-current chromatography separation, the separation time and solvent consumption of elution-extrusion counter-current chromatography were reduced while the resolutions were still good. The established protocol is promising for the separation of natural products with great disparity of content in herbal medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Poltash, Michael L.; McCabe, Jacob W.; Patrick, John W.; Laganowsky, Arthur; Russell, David H.

    2018-05-01

    As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase.

  5. Development and Evaluation of a Reverse-Entry Ion Source Orbitrap Mass Spectrometer.

    PubMed

    Poltash, Michael L; McCabe, Jacob W; Patrick, John W; Laganowsky, Arthur; Russell, David H

    2018-05-23

    As a step towards development of a high-resolution ion mobility mass spectrometer using the orbitrap mass analyzer platform, we describe herein a novel reverse-entry ion source (REIS) coupled to the higher-energy C-trap dissociation (HCD) cell of an orbitrap mass spectrometer with extended mass range. Development of the REIS is a first step in the development of a drift tube ion mobility-orbitrap MS. The REIS approach retains the functionality of the commercial instrument ion source which permits the uninterrupted use of the instrument during development as well as performance comparisons between the two ion sources. Ubiquitin (8.5 kDa) and lipid binding to the ammonia transport channel (AmtB, 126 kDa) protein complex were used as model soluble and membrane proteins, respectively, to evaluate the performance of the REIS instrument. Mass resolution obtained with the REIS is comparable to that obtained using the commercial ion source. The charge state distributions for ubiquitin and AmtB obtained on the REIS are in agreement with previous studies which suggests that the REIS-orbitrap EMR retains native structure in the gas phase. Graphical Abstract ᅟ.

  6. Nonlinear structure formation in ion-temperature-gradient driven drift waves in pair-ion plasma with nonthermal electron distribution

    NASA Astrophysics Data System (ADS)

    Razzaq, Javaria; Haque, Q.; Khan, Majid; Bhatti, Adnan Mehmood; Kamran, M.; Mirza, Arshad M.

    2018-02-01

    Nonlinear structure formation in ion-temperature-gradient (ITG) driven waves is investigated in pair-ion plasma comprising ions and nonthermal electrons (kappa, Cairns). By using the transport equations of the Braginskii model, a new set of nonlinear equations are derived. A linear dispersion relation is obtained and discussed analytically as well as numerically. It is shown that the nonthermal population of electrons affects both the linear and nonlinear characteristics of the ITG mode in pair-ion plasma. This work will be useful in tokamaks and stellarators where non-Maxwellian population of electrons may exist due to resonant frequency heating, electron cyclotron heating, runaway electrons, etc.

  7. Preparative isolation of flavonoid glycosides from Sphaerophysa salsula using hydrophilic interaction solid-phase extraction coupled with two-dimensional preparative liquid chromatography.

    PubMed

    Jiao, Lijin; Tao, Yanduo; Wang, Weidong; Shao, Yun; Mei, Lijuan; Wang, Qilan; Dang, Jun

    2017-10-01

    An offline preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography coupled with hydrophilic interaction solid-phase extraction method was developed for the preparative isolation of flavonoid glycosides from a crude sample of Sphaerophysa salsula. First, the non-flavonoids were removed using an XAmide solid-phase extraction cartridge. Based on the separation results of three different chromatographic stationary phases, the first-dimensional preparation was performed on an XAqua C18 prep column, and 15 fractions were obtained from the 5.2 g target sample. Then, three representative fractions were selected for additional purification on an XAmide preparative column to further isolate the flavonoid glycosides. In all, eight flavonoid glycosides were isolated in purities over 97%. The results demonstrated that the two-dimensional liquid chromatography method used in this study was effective for the preparative separation of flavonoid glycosides from Sphaerophysa salsula. Additionally, this method showed great potential for the separation of flavonoid glycosides from other plant materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-performance liquid chromatography-mass spectrometry for mapping and sequencing glycosaminoglycan-derived oligosaccharides

    PubMed Central

    Volpi, Nicola; Linhardt, Robert J

    2012-01-01

    Glycosaminoglycans (GAGs) have proven to be very difficult to analyze and characterize because of their high negative charge density, polydispersity and sequence heterogeneity. As the specificity of the interactions between GAGs and proteins results from the structure of these polysaccharides, an understanding of GAG structure is essential for developing a structure–activity relationship. Electrospray ionization (ESI) mass spectrometry (MS) is particularly promising for the analysis of oligosaccharides chemically or enzymatically generated by GAGs because of its relatively soft ionization capacity. Furthermore, on-line high-performance liquid chromatography (HPLC)-MS greatly enhances the characterization of complex mixtures of GAG-derived oligosaccharides, providing important structural information and affording their disaccharide composition. A detailed protocol for producing oligosaccharides from various GAGs, using controlled, specific enzymatic or chemical depolymerization, is presented, together with their HPLC separation, using volatile reversed-phase ion-pairing reagents and on-line ESI-MS structural identification. This analysis provides an oligosaccharide map together with sequence information from a reading frame beginning at the nonreducing end of the GAG chains. The preparation of oligosaccharides can be carried out in 10 h, with subsequent HPLC analysis in 1–2 h and HPLC-MS analysis taking another 2 h. PMID:20448545

  9. [Separation and determination of eight plant hormones by reversed-phase high performance liquid chromatography].

    PubMed

    Fang, N; Hou, S; Shao, X; He, Y; Zhao, G

    1998-09-01

    In this paper, reversed-phase high performance liquid chromatographic technique was used for the separation and determination of eight plant hormones. Methanol-water-acetic acid system was chosen as the mobile phase. The effects of different separation conditions, such as the methanol and acetic acid concentrations in mobile phase, on the retention behaviours of eight plant hormones in this system were studied. The general trends in retention behaviours could be correlated to the methanol concentration in mobile phase. The experimental results showed that the optimum separation was achieved with following gradient elution condition: 0-3 minutes, 70% (water percentage in mobile phase), 3-13 minutes, 70%-20%, 13-48 minutes, 20%. Benzene was added to be as the internal standard. Under this experimental condition, the eight plant hormones could be separated completely and detected quantitatively at 260 nm within 16 minutes. The calibration curves for the eight compounds gave linearity over a wide range. The correlation coefficients of each components were r(ZT) = 0.9971, r(GAs) = 0.9999, r(K) = 0.9997, r(BA) = 0.9995, r(IAA) = 0.9998, r(IPA) = 0.9982, r(IBA) = 0.9995 and r(NAA) = 0.9995. The method is rapid, simple and efficient. It is a suitable method for the accurate determination of gibberellic acid (GA) and alpha-naphthaleneacetic acid (alpha-NAA) in products for agricultural use.

  10. Vibrational stark effects to identify ion pairing and determine reduction potentials in electrolyte-free environments

    DOE PAGES

    Mani, Tomoyasu; Grills, David C.; Miller, John R.

    2015-01-02

    A recently-developed instrument for time-resolved infrared detection following pulse radiolysis has been used to measure the ν(C≡N) IR band of the radical anion of a CN-substituted fluorene in tetrahydrofuran. Specific vibrational frequencies can exhibit distinct frequency shifts due to ion-pairing, which can be explained in the framework of the vibrational Stark effect. Measurements of the ratio of free ions and ion-pairs in different electrolyte concentrations allowed us to obtain an association constant and free energy change for ion-pairing. As a result, this new method has the potential to probe the geometry of ion-pairing and allows the reduction potentials of moleculesmore » to be determined in the absence of electrolyte in an environment of low dielectric constant.« less

  11. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries.

    PubMed

    Luo, Chao; Xu, Gui-Liang; Ji, Xiao; Hou, Singyuk; Chen, Long; Wang, Fei; Jiang, Jianjun; Chen, Zonghai; Ren, Yang; Amine, Khalil; Wang, Chunsheng

    2018-03-05

    Sustainable sodium-ion batteries (SSIBs) using renewable organic electrodes are promising alternatives to lithium-ion batteries for the large-scale renewable energy storage. However, the lack of high-performance anode material impedes the development of SSIBs. Herein, we report a new type of organic anode material based on azo group for SSIBs. Azobenzene-4,4'-dicarboxylic acid sodium salt is used as a model to investigate the electrochemical behaviors and reaction mechanism of azo compound. It exhibits a reversible capacity of 170 mAh g -1 at 0.2C. When current density is increased to 20C, the reversible capacities of 98 mAh g -1 can be retained for 2000 cycles, demonstrating excellent cycling stability and high rate capability. The detailed characterizations reveal that azo group acts as an electrochemical active site to reversibly bond with Na + . The reversible redox chemistry between azo compound and Na ions offer opportunities for developing long-cycle-life and high-rate SSIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A novel octadecylsilane functionalized graphene oxide/silica composite stationary phase for high performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Wang, Shuai; Liu, Shujuan; Liu, Xia; Jiang, Shengxiang

    2012-08-01

    An octadecylsilane functionalized graphene oxide/silica stationary phase was fabricated by assembling graphene oxide onto the silica particles through an amide bond and subsequent immobilization of octadecylsilane. The chromatographic properties of the stationary phase were investigated by reversed-phase chromatography with alkylbenzenes, polycyclic aromatic hydrocarbons, amines, and phenolic compounds as the analytes. All the compounds achieved good separation on the column. The comparison between a C18 commercial column and the new stationary phase indicated that the existence of π-electron system of graphene oxide allows π-π interaction between analyte and octadecylsilane functionalized graphene oxide/silica stationary phase except for hydrophobic interaction, while only hydrophobic interaction presented between analyte and C18 commercial column. This suggests that some analytes can be better separated on the octadecylsilane functionalized graphene oxide/silica column. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Direct aqueous determination of glyphosate and related compounds by liquid chromatography/tandem mass spectrometry using reversed-phase and weak anion-exchange mixed-mode column.

    PubMed

    Hao, Chunyan; Morse, David; Morra, Franca; Zhao, Xiaoming; Yang, Paul; Nunn, Brian

    2011-08-19

    Analysis of the broad-spectrum herbicide glyphosate and its related compounds is quite challenging. Tedious and time-consuming derivatization is often required for these substances due to their high polarity, high water solubility, low volatility and molecular structure which lacks either a chromophore or fluorophore. A novel liquid chromatography/tandem mass spectrometry (LC/MS-MS) method has been developed for the determination of glyphosate, aminomethylphosphonic acid (AMPA) and glufosinate using a reversed-phase and weak anion-exchange mixed-mode Acclaim® WAX-1 column. Aqueous environmental samples are directly injected and analyzed in 12 min with no sample concentration or derivatization steps. Two multiple reaction monitoring (MRM) channels are monitored in the method for each target compound to achieve true positive identification, and ¹³C, ¹⁵N-glyphosate is used as an internal standard to carry out isotope dilution mass spectrometric (IDMS) measurement for glyphosate. The instrument detection limits (IDLs) for glyphosate, AMPA and glufosinate are 1, 2 and 0.9 μg/L, respectively. Linearity of the detector response with a minimum coefficient of determination (R² value (R² > 0.995) was demonstrated in the range of ∼10 to 10³ μg/L for each analytes. Spiked drinking water, surface water and groundwater samples were analyzed using this method and the average recoveries of analytes in three matrices ranged from 77.0 to 102%, 62.1 to 101%, 66.1 to 93.7% while relative standard deviation ranged from 6.3 to 10.2%, 2.7 to 14.8%, 2.9 to 10.7%, respectively. Factors that may affect method performance, such as metal ions, sample preservation, and storage time, are also discussed. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. © 2014 Elsevier Inc. All rights reserved.

  15. Physicochemical and thermodynamic characterization of the encapsulation of methyl jasmonate by natural and modified cyclodextrins using reversed-phase high-pressure liquid chromatography.

    PubMed

    López-Nicolás, José Manuel; Escorial Camps, Marta; Pérez-Sánchez, Horacio; García-Carmona, Francisco

    2013-11-27

    Although the combinations of methyl jasmonate (MeJA) and cyclodextrins (CDs) have been used by different authors to stimulate the production of several metabolites, no study has been published about the possible formation of MeJA-CD complexes when these two molecules are added together to the reaction medium as elicitors. For this reason and because knowledge of the possible complexation process of MeJA with CD under different physicochemical conditions is essential if these two molecules are to be used in cell cultures, this paper looks at the complexation of MeJA with natural and modified CDs using a reversed-phase high-pressure liquid chromatography (RP-HPLC) system. The interaction of MeJA with β-CD was more efficient than with α- and γ-CDs. However, a modified CD, HP-β-CD, was the most effective of all of the CDs tested. Moreover, MeJA formed complexes with CD with a 1:1 stoichiometry, and the formation constants of these complexes were strongly dependent upon the temperature of the mobile phase used but not the pH. To obtain information about the mechanism of the affinity of MeJA for CD, the thermodynamic parameters ΔG°, ΔH°, and ΔS° were calculated. Finally, molecular modeling studies were carried out to propose which molecular interactions are established in the complexation process.

  16. Simultaneous flame ionization and absorbance detection of volatile and nonvolatile compounds by reversed-phase liquid chromatography with a water mobile phase.

    PubMed

    Bruckner, C A; Ecker, S T; Synovec, R E

    1997-09-01

    A flame ionization detector (FID) is used to detect volatile organic compounds that have been separated by water-only reversed-phase liquid chromatography (WRP-LC). The mobile phase is 100% water at room temperature, without use of organic solvent modifiers. An interface between the LC and detector is presented, whereby a helium stream samples the vapor of volatile components from individual drops of the LC eluent, and the vapor-enriched gas stream is sent to the FID. The design of the drop headspace cell is simple because the water-only nature of the LC separation obviates the need to do any organic solvent removal prior to gas phase detection. Despite the absence of organic modifier, hydrophobic compounds can be separated in a reasonable time due to the low phase volume ratio of the WRP-LC columns. The drop headspace interface easily handles LC flows of 1 mL/min, and, in fact, compound detection limits are improved at faster liquid flow rates. The transfer efficiency of the headspace interface was estimated at 10% for toluene in water at 1 mL/min but varies depending on the volatility of each analyte. The detection system is linear over more than 5 orders of 1-butanol concentration in water and is able to detect sub-ppb amounts of o-xylene and other aromatic compounds in water. In order to analyze volatile and nonvolatile analytes simultaneously, the FID is coupled in series to a WRP-LC system with UV absorbance detection. WRP-LC improves UV absorbance detection limits because the absence of organic modifier allows the detector to be operated in the short-wavelength UV region, where analytes generally have significantly larger molar absorptivities. The selectivity the headspace interface provides for flame ionization detection of volatiles is demonstrated with a separation of 1-butanol, 1,1,2-trichloroethane (TCE), and chlorobenzene in a mixture of benzoic acid in water. Despite coelution of butanol and TCE with the benzoate anion, the nonvolatile benzoate anion

  17. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    PubMed

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Synthesis and evaluation of a maltose-bonded silica gel stationary phase for hydrophilic interaction chromatography and its application in Ginkgo Biloba extract separation in two-dimensional systems.

    PubMed

    Sheng, Qianying; Yang, Kaiya; Ke, Yanxiong; Liang, Xinmiao; Lan, Minbo

    2016-09-01

    Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross-linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two-dimensional hydrophilic interaction liquid chromatography× reversed-phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two-dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Low pressure ion chromatography with a low cost paired emitter-detector diode based detector for the determination of alkaline earth metals in water samples.

    PubMed

    Barron, Leon; Nesterenko, Pavel N; Diamond, Dermot; O'Toole, Martina; Lau, King Tong; Paull, Brett

    2006-09-01

    The use of a low pressure ion chromatograph based upon short (25 mm x 4.6 mm) surfactant coated monolithic columns and a low cost paired emitter-detector diode (PEDD) based detector, for the determination of alkaline earth metals in aqueous matrices is presented. The system was applied to the separation of magnesium, calcium, strontium and barium in less than 7min using a 0.15M KCl mobile phase at pH 3, with post-column reaction detection at 570 nm using o-cresolphthalein complexone. A comparison of the performance of the PEDD detector with a standard laboratory absorbance detector is shown, with limits of detection for magnesium and calcium using the low cost PEDD detector equal to 0.16 and 0.23 mg L(-1), respectively. Finally, the developed system was used for the determination of calcium and magnesium in a commercial spring water sample.

  20. Descriptors for ions and ion-pairs for use in linear free energy relationships.

    PubMed

    Abraham, Michael H; Acree, William E

    2016-01-22

    The determination of Abraham descriptors for single ions is reviewed, and equations are given for the partition of single ions from water to a number of solvents. These ions include permanent anions and cations and ionic species such as carboxylic acid anions, phenoxide anions and protonated base cations. Descriptors for a large number of ions and ionic species are listed, and equations for the prediction of Abraham descriptors for ionic species are given. The application of descriptors for ions and ionic species to physicochemical processes is given; these are to water-solvent partitions, HPLC retention data, immobilised artificial membranes, the Finkelstein reaction and diffusion in water. Applications to biological processes include brain permeation, microsomal degradation of drugs, skin permeation and human intestinal absorption. The review concludes with a section on the determination of descriptors for ion-pairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Direct Detection of the Ion Pair to Free Ions Transformation upon Complexation with an Ion Receptor in Non-Polar Solvents by using Conductometry.

    PubMed

    Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki

    2018-03-01

    In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.

  2. Effect-directed analysis via hyphenated high-performance thin-layer chromatography for bioanalytical profiling of sunflower leaves.

    PubMed

    Móricz, Ágnes M; Ott, Péter G; Yüce, Imanuel; Darcsi, András; Béni, Szabolcs; Morlock, Gertrud E

    2018-01-19

    High-performance thin-layer chromatography (HPTLC) coupled with effect-directed analysis was used for non-targeted screening of sunflower leaf extract for components exhibiting antioxidant, antibacterial and/or cholinesterase enzyme inhibitory effects. The active compounds were characterized by HPTLC-electrospray ionization-high resolution mass spectrometry (ESI-HRMS) and HPTLC-Direct Analysis in Real Time (DART)-MS/MS. The latter ambient ionization technique (less soft than ESI) resulted in oxidation and fragmentation products and characteristic fragment ions. NMR spectroscopy after targeted isolation via preparative normal phase flash chromatography and semi-preparative reversed phase high-performance liquid chromatography supported the identification of two diterpenes to be (-)-kaur-16-en-19-oic acid and 15-α-angeloyloxy-ent-kaur-16-en-19-oic acid. Both compounds found to be multi-potent as they inhibited acetylcholinesterase and butyrylcholinesterase and showed antibacterial effects against Gram-positive Bacillus subtilis and Gram-negative Aliivibrio fischeri bacteria. Kaurenoic acid was also active against the Gram-negative pepper pathogenic Xanthomonas euvesicatoria bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Aliphatic long chain quaternary ammonium compounds analysis by ion-pair chromatography coupled with suppressed conductivity and UV detection in lysing reagents for blood cell analysers.

    PubMed

    Giovannelli, D; Abballe, F

    2005-08-26

    A method has been developed which allows simultaneous determination of three linear alkyl trimethylammonium salts. Dodecyltrimethylammonium chloride, tetradecyltrimethylammonium bromide and hexadecyltrimethylammonium chloride are widely used as main active ingredients of lysing reagents for blood cell analyzers which perform white blood cells differential determination into two or more sub-populations by impedance analysis. The ion-pair on styrene-divinyl benzene chromatographic phase looks like a suitable, reliable and long term stable tool for separation of such quaternary compounds. The detection based on suppressed conductivity was chosen because of the lack of significance chromophores. A micromembrane suppressor device compatible with high solvent concentration (up to 80%) was used in order to minimize the conductivity background before the detection. In the present work we show how the chemical post column derivatization makes the alkyl chain detectable also by UV direct detection at 210 nm.

  4. Simultaneous determination of cadmium, lead and mercury ions at trace level by magnetic solid phase extraction with Fe@Ag@Dimercaptobenzene coupled to high performance liquid chromatography.

    PubMed

    Zhou, Qingxiang; Lei, Man; Liu, Yongli; Wu, Yalin; Yuan, Yongyong

    2017-12-01

    Pollution resulted from heavy metal ions have absorbed much attention, and it is of great importance to develop sensitive and simultaneous determination method for them with common technologies without highly sensitive instruments. We prepared a new and functional core-shell magnetic nano-material, Fe@Ag@dimercaptobenzene (Fe@Ag@DMB), by a one-step method with sodium borohydride as the reducing agent and transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) were used for characterisation. The mercapto functional groups on the newly synthesised magnetic nanoparticles could interact with Cd 2+ , Pb 2+ , and Hg 2+ ions in water samples and then efficient extraction for Cd 2+ , Pb 2+ , and Hg 2+ ions was achieved. DDTC-Na solution was a good elutent for elution of these ions from Fe@Ag@DMB nanoparticles. Based on these, a sensitive method was developed for simultaneous preconcentration and determination of the aforementioned ions using magnetic Fe@Ag@DMB nanoparticles as the magnetic solid phase extraction adsorbent prior to high performance liquid chromatography coupled with variable wavelength detection. Under the optimal conditions, the detection limits of the three metal ions were in the range of 0.011-0.031μgL -1 , and precisions were below 2.37% (n=6). The proposed method was evaluated with real water samples, and excellent spiked recoveries achieved indicated that the developed method would be a promising tool for monitoring these heavy metal ions in water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Determination of molindone enantiomers in human plasma by high-performance liquid chromatography-tandem mass spectrometry using macrocyclic antibiotic chiral stationary phases.

    PubMed

    Jiang, Hongliang; Li, Yinghe; Pelzer, Mary; Cannon, Michelle J; Randlett, Christopher; Junga, Heiko; Jiang, Xiangyu; Ji, Qin C

    2008-05-30

    A sensitive and selective bioanalytical assay was developed and validated for the determination of enantiomeric molindone in human plasma using high-performance liquid chromatography-tandem mass spectrometry along with supported liquid extraction procedures. The chiral separation was evaluated and optimized on macrocyclic antibiotic type chiral stationary phases (CSPs) based on teicoplanin aglycone (Chirobiotic TAG) in polar organic, polar ionic, and reversed-phase mode chromatography, respectively. Complete baseline separation was achieved on a Chirobiotic TAG column under isocratic condition in reversed-phase chromatography. The method validation was conducted using a Chirobiotic TAG column (100 mm x 2.1 mm) over the curve range 0.100-100 ng/ml for each molindone enantiomer using 0.0500 ml of plasma sample. The flow rate was 0.8 ml/min and the total run time was 9 min. Supported liquid extraction in a 96-well plate format was used for sample preparation. Parameters including recovery, matrix effect, linearity, sensitivity, specificity, carryover, precision, accuracy, dilution integrity, and stability were evaluated. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels were RSD

  6. Dispersive solid-phase extraction followed by high-performance liquid chromatography/tandem mass spectrometry for the determination of ricinine in cooking oil.

    PubMed

    Cai, Meiqiang; Chen, Xiaohong; Wei, Xiaoqing; Pan, Shengdong; Zhao, Yonggang; Jin, Micong

    2014-09-01

    A rapid and accurate method by liquid chromatography/tandem mass spectrometry (LC-MS/MS) using positive electrospray was established for the determination of ricinine in cooking oils. The homogenized samples, spiked with (13)C6-labelled ricinine as an internal standard, were extracted using ethanol/water (20:80, v/v) and purified by dispersive solid-phase extraction (dSPE) using primary-secondary amine (PSA) and C18 as adsorbents. The extract was separated in a short C18 reversed-phase column using methanol/water (25:75, v/v) as the mobile phase and detected in multiple reaction monitoring (MRM) mode with the absolute matrix effect of 93.2-102.2%. The alkali-metal adduct ions were discussed and the mass/mass fragmentation pathway was explained. Ricinine showed good linearity in the range of 0.5-50.0 μg/kg with the limit of quantitation 0.5 μg/kg. The recoveries were between 86.0% and 98.3% with the intra- and inter-day RSDs of 2.6-7.0%, 5.5-10.8%, respectively. This method could be applied to the rapid quantification of ricinine in cooking oils. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. Mineral Separation in a CELSS by Ion-exchange Chromatography

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  8. Linear modeling of the soil-water partition coefficient normalized to organic carbon content by reversed-phase thin-layer chromatography.

    PubMed

    Andrić, Filip; Šegan, Sandra; Dramićanin, Aleksandra; Majstorović, Helena; Milojković-Opsenica, Dušanka

    2016-08-05

    Soil-water partition coefficient normalized to the organic carbon content (KOC) is one of the crucial properties influencing the fate of organic compounds in the environment. Chromatographic methods are well established alternative for direct sorption techniques used for KOC determination. The present work proposes reversed-phase thin-layer chromatography (RP-TLC) as a simpler, yet equally accurate method as officially recommended HPLC technique. Several TLC systems were studied including octadecyl-(RP18) and cyano-(CN) modified silica layers in combination with methanol-water and acetonitrile-water mixtures as mobile phases. In total 50 compounds of different molecular shape, size, and various ability to establish specific interactions were selected (phenols, beznodiazepines, triazine herbicides, and polyaromatic hydrocarbons). Calibration set of 29 compounds with known logKOC values determined by sorption experiments was used to build simple univariate calibrations, Principal Component Regression (PCR) and Partial Least Squares (PLS) models between logKOC and TLC retention parameters. Models exhibit good statistical performance, indicating that CN-layers contribute better to logKOC modeling than RP18-silica. The most promising TLC methods, officially recommended HPLC method, and four in silico estimation approaches have been compared by non-parametric Sum of Ranking Differences approach (SRD). The best estimations of logKOC values were achieved by simple univariate calibration of TLC retention data involving CN-silica layers and moderate content of methanol (40-50%v/v). They were ranked far well compared to the officially recommended HPLC method which was ranked in the middle. The worst estimates have been obtained from in silico computations based on octanol-water partition coefficient. Linear Solvation Energy Relationship study revealed that increased polarity of CN-layers over RP18 in combination with methanol-water mixtures is the key to better modeling of

  9. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions.

    PubMed

    Xue, Fei; MacDonald, A H

    2018-05-04

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  10. Time-Reversal Symmetry-Breaking Nematic Insulators near Quantum Spin Hall Phase Transitions

    NASA Astrophysics Data System (ADS)

    Xue, Fei; MacDonald, A. H.

    2018-05-01

    We study the phase diagram of a model quantum spin Hall system as a function of band inversion and band-coupling strength, demonstrating that when band hybridization is weak, an interaction-induced nematic insulator state emerges over a wide range of band inversion. This property is a consequence of the long-range Coulomb interaction, which favors interband phase coherence that is weakly dependent on momentum and therefore frustrated by the single-particle Hamiltonian at the band inversion point. For weak band hybridization, interactions convert the continuous gap closing topological phase transition at inversion into a pair of continuous phase transitions bounding a state with broken time-reversal and rotational symmetries. At intermediate band hybridization, the topological phase transition proceeds instead via a quantum anomalous Hall insulator state, whereas at strong hybridization interactions play no role. We comment on the implications of our findings for InAs/GaSb and HgTe/CdTe quantum spin Hall systems.

  11. Ionic force field optimization based on single-ion and ion-pair solvation properties: Going beyond standard mixing rules

    NASA Astrophysics Data System (ADS)

    Fyta, Maria; Netz, Roland R.

    2012-03-01

    Using molecular dynamics (MD) simulations in conjunction with the SPC/E water model, we optimize ionic force-field parameters for seven different halide and alkali ions, considering a total of eight ion-pairs. Our strategy is based on simultaneous optimizing single-ion and ion-pair properties, i.e., we first fix ion-water parameters based on single-ion solvation free energies, and in a second step determine the cation-anion interaction parameters (traditionally given by mixing or combination rules) based on the Kirkwood-Buff theory without modification of the ion-water interaction parameters. In doing so, we have introduced scaling factors for the cation-anion Lennard-Jones (LJ) interaction that quantify deviations from the standard mixing rules. For the rather size-symmetric salt solutions involving bromide and chloride ions, the standard mixing rules work fine. On the other hand, for the iodide and fluoride solutions, corresponding to the largest and smallest anion considered in this work, a rescaling of the mixing rules was necessary. For iodide, the experimental activities suggest more tightly bound ion pairing than given by the standard mixing rules, which is achieved in simulations by reducing the scaling factor of the cation-anion LJ energy. For fluoride, the situation is different and the simulations show too large attraction between fluoride and cations when compared with experimental data. For NaF, the situation can be rectified by increasing the cation-anion LJ energy. For KF, it proves necessary to increase the effective cation-anion Lennard-Jones diameter. The optimization strategy outlined in this work can be easily adapted to different kinds of ions.

  12. Determination of imidacloprid, metalaxyl, myclobutanil, propham, and thiabendazole in fruits and vegetables by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Pous, X; Ruíz, M J; Picó, Y; Font, G

    2001-09-01

    Imidacloprid, metalaxyl, myclobutanil, propham, and thiabendazole have been simultaneously determined in strawberries, oranges, potatoes, pears, and melons by matrix solid-phase dispersion (MSPD) followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) in positive-ion mode. The samples were homogenized with C8 bonded silica as MSPD sorbent, placed in a glass column, and eluted with dichloromethane. Chromatographic separation of the compounds was achieved on a reversed-phase LC column using a methanol-ammonium formate (50 mmol L(-1)) gradient as a mobile phase. Samples were screened by monitoring the protonated molecular ion at m/z 256 for imidacloprid, 280 for metalaxyl, 289 for myclobutanil, and 202 for thiabendazole, and the main fragment at m/z 138 for propham. Positive samples were confirmed by multiple-ion monitoring. The repeatability (<20%) and recovery (>57%) of the method were good, and limits of detection (<0.05 mg kg(-1)) were adequate.

  13. Freeze drying for gas chromatography stationary phase deposition

    DOEpatents

    Sylwester, Alan P [Livermore, CA

    2007-01-02

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  14. Pairing versus phase coherence of doped holes in distinct quantum spin backgrounds

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Sheng, D. N.; Weng, Zheng-Yu

    2018-03-01

    We examine the pairing structure of holes injected into two distinct spin backgrounds: a short-range antiferromagnetic phase versus a symmetry protected topological phase. Based on density matrix renormalization group (DMRG) simulation, we find that although there is a strong binding between two holes in both phases, phase fluctuations can significantly influence the pair-pair correlation depending on the spin-spin correlation in the background. Here the phase fluctuation is identified as an intrinsic string operator nonlocally controlled by the spins. We show that while the pairing amplitude is generally large, the coherent Cooper pairing can be substantially weakened by the phase fluctuation in the symmetry-protected topological phase, in contrast to the short-range antiferromagnetic phase. It provides an example of a non-BCS mechanism for pairing, in which the paring phase coherence is determined by the underlying spin state self-consistently, bearing an interesting resemblance to the pseudogap physics in the cuprate.

  15. Adiabatic model of field reversal by fast ions in an axisymmetric open trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsidulko, Yu. A., E-mail: tsidulko@mail.ru

    2016-06-15

    A model of field reversal by fast ions has been developed under the assumption of preservation of fast-ion adiabatic invariants. Analytical solutions obtained in the approximation of a narrow fast-ion layer and numerical solutions to the evolutionary problem are presented. The solutions demonstrate the process of formation of a field reversed configuration with parameters close to those of the planned experiment.

  16. Profiling of ornithine lipids in bacterial extracts of Rhodobacter sphaeroides by reversed-phase liquid chromatography with electrospray ionization and multistage mass spectrometry (RPLC-ESI-MS(n)).

    PubMed

    Granafei, Sara; Losito, Ilario; Trotta, Massimo; Italiano, Francesca; de Leo, Vincenzo; Agostiano, Angela; Palmisano, Francesco; Cataldi, Tommaso R I

    2016-01-15

    Ornithine lipids (OLs), a sub-group of the large (and of emerging interest) family of lipoamino acids of bacterial origin, contain a 3-hydroxy fatty acyl chain linked via an amide bond to the α-amino group of ornithine and via an ester bond to a second fatty acyl chain. OLs in extracts of Rhodobacter sphaeroides (R. sphaeroides) were investigated by high-performance reversed phase liquid chromatography (RPLC) with electrospray ionization mass spectrometry (ESI-MS) in negative ion mode using a linear ion trap (LIT). The presence of OLs bearing both saturated (i.e, 16:0, 17:0, 18:0, 19:0 and 20:0) and unsaturated chains (i.e., 18:1, 19:1, 19:2 and 20:1) was ascertained and their identification, even for isomeric, low abundance and partially co-eluting species, was achieved by low-energy collision induced dissociation (CID) multistage mass spectrometry (MS(n), n = 2-4). OLs signatures found in two R. sphaeroides strains, i.e., wild type 2.4.1 and mutant R26, were examined and up to 16 and 17 different OL species were successfully identified, respectively. OLs in both bacterial strains were characterized by several combinations of fatty chains on ester-linked and amide-linked 3-OH fatty acids. Multistage MS spectra of monoenoic amide-linked 3-OH acyl chains, allowed the identification of positional isomer of OL containing 18:1 (i.e. 9-octadecenoic) and 20:1 (i.e. 11-eicosenoic) fatty acids. The most abundant OL ([M-H](-) at m/z 717.5) in R. sphaeroides R26 was identified as OL 3-OH 20:1/19:1 (i.e., 3-OH-eicosenoic acid amide-linked to ornithine and esterified to a nonadecenoic chain containing a cyclopropane ring). An unusual OL (m/z 689.5 for the [M-H](-) ion), most likely containing a cyclopropene ester-linked acyl chain (i.e., OL 3-OH 18:0/19:2), was retrieved only in the carotenoidless mutant strain R26. Based on the biosynthetic pathways already known for cyclopropa(e)ne ring-including acyl chains, a plausible explanation was invoked for the enzymatic

  17. Extraction and analysis of intact glucosinolates--a validated pressurized liquid extraction/liquid chromatography-mass spectrometry protocol for Isatis tinctoria, and qualitative analysis of other cruciferous plants.

    PubMed

    Mohn, Tobias; Cutting, Brian; Ernst, Beat; Hamburger, Matthias

    2007-09-28

    Glucosinolates have attracted significant interest due to the chemopreventive properties of some of their transformation products. Numerous protocols for the extraction and analysis of glucosinolates have been published, but limited effort has been devoted to optimize and validate crucial extraction parameters and sample preparation steps. We carried out a systematic optimization and validation of a quantitative assay for the direct analysis of intact glucosinolates in Isatis tinctoria leaves (woad, Brassicaceae). Various parameters such as solvent composition, particle size, temperature, and number of required extraction steps were optimized using pressurized liquid extraction (PLE). We observed thermal degradation of glucosinolates at temperatures above 50 degrees C, and loss of >60% within 10min at 100 degrees C, but no enzymatic degradation in the leaf samples at ambient temperature. Excellent peak shape and resolution was obtained by reversed-phase chromatography on a Phenomenex Aqua column using 10mM ammonium formate as ion-pair reagent. Detection was carried out by electrospray ionisation mass spectrometry in the negative ion mode. Analysis of cruciferous vegetables and spices such as broccoli (Brassica oleracea L. var. italica), garden cress (Lepidium sativum L.) and black mustard (Sinapis nigra L.) demonstrated the general applicability of the method.

  18. Application of a hybrid ordered mesoporous silica as sorbent for solid-phase multi-residue extraction of veterinary drugs in meat by ultra-high-performance liquid chromatography coupled to ion-trap tandem mass spectrometry.

    PubMed

    Casado, Natalia; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Sierra, Isabel

    2016-08-12

    A quick, sensitive and selective analytical reversed-phase multi-residue method using ultra-high performance liquid chromatography coupled to an ion-trap mass spectrometry detector (UHPLC-IT-MS/MS) operating in both positive and negative ion mode was developed for the simultaneous determination of 23 veterinary drug residues (β-blockers, β-agonists and Non-Steroidal Anti-inflammatory Drugs (NSAIDs)) in meat samples. The sample treatment involved a liquid-solid extraction followed by a solid-phase extraction (SPE) procedure. SBA-15 type mesoporous silica was synthetized and modified with octadecylsilane, and the resulting hybrid material (denoted as SBA-15-C18) was applied and evaluated as SPE sorbent in the purification of samples. The materials were comprehensively characterized, and they showed a high surface area, high pore volume and a homogeneous distribution of the pores. Chromatographic conditions and extraction procedure were optimized, and the method was validated according to the Commission Decision 2002/657/EC. The method detection limits (MDLs) and the method quantification limits (MQLs) were determined for all the analytes in meat samples and found to range between 0.01-18.75μg/kg and 0.02-62.50μg/kg, respectively. Recoveries for 15 of the target analytes ranged from 71 to 98%. In addition, for comparative purpose SBA-15-C18 was evaluated towards commercial C18 amorphous silica. Results revealed that SBA-15-C18 was clearly more successful in the multi-residue extraction of the 23 mentioned analytes with higher recovery values. The method was successfully tested to analyze prepacked preparations of mince bovine meat. Traces of propranolol, ketoprofen and diclofenac were detected in some samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The Reciprocal Principle of Selectand-Selector-Systems in Supramolecular Chromatography †.

    PubMed

    Schurig, Volker

    2016-11-15

    In selective chromatography and electromigration methods, supramolecular recognition of selectands and selectors is due to the fast and reversible formation of association complexes governed by thermodynamics. Whereas the selectand molecules to be separated are always present in the mobile phase, the selector employed for the separation of the selectands is either part of the stationary phase or is added to the mobile phase. By the reciprocal principle, the roles of selector and selectand can be reversed. In this contribution in honor of Professor Stig Allenmark, the evolution of the reciprocal principle in chromatography is reviewed and its advantages and limitations are outlined. Various reciprocal scenarios, including library approaches, are discussed in efforts to optimize selectivity in separation science.

  20. Preparation of a silica stationary phase co-functionalized with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography.

    PubMed

    Li, Hengye; Zhang, Xuemeng; Zhang, Lin; Wang, Xiaojin; Kong, Fenying; Fan, Dahe; Li, Lei; Wang, Wei

    2017-04-15

    A silica stationary phase was designed and synthesized through the co-functionalization of silica with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography applications. The as-synthesized stationary phase was characterized by elemental analysis and Fourier Transform-InfraRed Spectroscopy (FT-IR). Retention mechanisms, including boronate affinity (BA), reversed-phase (RP) and anion-exchange (AE), were involved. Retention mechanism switching was easily realized by adjustment of the mobile phase constitution. Cis-diol compounds could be selectively captured under neutral conditions in BA mode and off-line separated in RP mode. Neutral, basic, acidic and amphiprotic compounds were chromatographed on the column in RP chromatography, while inorganic anions were chromatographed in AE chromatography to characterize the mixed-mode nature of the prepared stationary phase. In addition, the RP performance was compared with an octadecyl silica column in terms of column efficiency (N/m), asymmetry factor (A f ), retention factor (k) and resolution (Rs). The prepared stationary phase offered multiple interactions with analytes in addition to hydrophobic interactions under RP elution conditions. Based on the mixed-mode properties, off-line 2D-LC, for selective capture and separation of urinary nucleosides, was successfully realized on a single column, demonstrating its powerful application potential for complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ion-exchange chromatography purification of extracellular vesicles.

    PubMed

    Kosanović, Maja; Milutinović, Bojana; Goč, Sanja; Mitić, Ninoslav; Janković, Miroslava

    2017-08-01

    Despite numerous studies, isolating pure preparations of extracellular vesicles (EVs) has proven challenging. Here, we compared ion-exchange chromatography (IEC) to the widely used sucrose density gradient (SDG) centrifugation method for the purification of EVs. EVs in bulk were isolated from pooled normal human amniotic fluid (AF) by differential centrifugation followed by IEC or sucrose density gradient separation. The purity of the isolated EVs was evaluated by electrophoresis and lectin blotting/immuno blotting to monitor the distribution of total proteins, different EVs markers, and selected N-glycans. Our data showed efficient separation of negatively charged EVs from other differently charged molecules, while comparative profiling of EVs using SDG centrifugation confirmed anion-exchange chromatography is advantageous for EV purification. Finally, although this IEC-based method was validated using AF, the approach should be readily applicable to isolation of EVs from other sources as well.

  2. Selectivity optimization in green chromatography by gradient stationary phase optimized selectivity liquid chromatography.

    PubMed

    Chen, Kai; Lynen, Frédéric; De Beer, Maarten; Hitzel, Laure; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-11-12

    Stationary phase optimized selectivity liquid chromatography (SOSLC) is a promising technique to optimize the selectivity of a given separation by using a combination of different stationary phases. Previous work has shown that SOSLC offers excellent possibilities for method development, especially after the recent modification towards linear gradient SOSLC. The present work is aimed at developing and extending the SOSLC approach towards selectivity optimization and method development for green chromatography. Contrary to current LC practices, a green mobile phase (water/ethanol/formic acid) is hereby preselected and the composition of the stationary phase is optimized under a given gradient profile to obtain baseline resolution of all target solutes in the shortest possible analysis time. With the algorithm adapted to the high viscosity property of ethanol, the principle is illustrated with a fast, full baseline resolution for a randomly selected mixture composed of sulphonamides, xanthine alkaloids and steroids. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.

    PubMed

    Miller, Jonathan M; Dahan, Arik; Gupta, Deepak; Varghese, Sheeba; Amidon, Gordon L

    2009-07-01

    The aim of this research was to gain a mechanistic understanding of ion-pair mediated membrane transport of low-permeability drugs. Quasi-equilibrium mass transport analyses were developed to describe the ion-pair mediated octanol-buffer partitioning and hydrophobic membrane permeation of the model basic drug phenformin. Three lipophilic counterions were employed: p-toluenesulfonic acid, 2-naphthalenesulfonic acid, and 1-hydroxy-2-naphthoic acid (HNAP). Association constants and intrinsic octanol-buffer partition coefficients (Log P(AB)) of the ion-pairs were obtained by fitting a transport model to double reciprocal plots of apparent octanol-buffer distribution coefficients versus counterion concentration. All three counterions enhanced the lipophilicity of phenformin, with HNAP providing the greatest increase in Log P(AB), 3.7 units over phenformin alone. HNAP also enhanced the apparent membrane permeability of phenformin, 27-fold in the PAMPA model, and 4.9-fold across Caco-2 cell monolayers. As predicted from a quasi-equilibrium analysis of ion-pair mediated membrane transport, an order of magnitude increase in phenformin flux was observed per log increase in counterion concentration, such that log-log plots of phenformin flux versus HNAP concentration gave linear relationships. These results provide increased understanding of the underlying mechanisms of ion-pair mediated membrane transport, emphasizing the potential of this approach to enable oral delivery of low-permeability drugs.

  4. Phase conjugation and time reversal in acoustics

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2000-07-01

    This paper compares the different approaches used in acoustics to time reverse or to phase conjugate a wavefield. The basic principle of a time reversal mirror is an extension for broadband pulsed waves to the optical phase conjugated mirror designed for monochromatic waves. However, this equivalence is only valid mathematically and there are some fundamental differences between these two techniques that will be described in this paper.

  5. Unravelling the effects of mobile phase additives in supercritical fluid chromatography. Part I: Polarity and acidity of the mobile phase.

    PubMed

    West, Caroline; Melin, Jodie; Ansouri, Hassna; Mengue Metogo, Maïly

    2017-04-07

    The mobile phases employed in current supercritical fluid chromatography (SFC) are usually composed of a mixture of pressurized carbon dioxide and a co-solvent. The co-solvent is most often an alcohol and may contain a third component in small proportions, called an additive (acid, base or salt). The polarity of such mobile phase compositions is here re-evaluated with a solvatochromic dye (Nile Red), particularly to assess the contribution of additives. It appears that additives, when employed in usual concentration range (0.1% or 20mM) do not modify the polarity in the immediate environment of the probe. In addition, the combination of carbon dioxide and an alcohol is known to form alkoxylcarbonic acid, supposedly conferring some acidic character to SFC mobile phases. Direct measurements of the apparent pH are impossible, but colour indicators of pH can be used to define the range of apparent pH provided by carbon dioxide-alcohol mixtures, with or without additives. Five colour indicators (Thymol Blue, Bromocresol Green, Methyl Red, Bromocresol Purple, and Bromothymol Blue) were selected to provide a wide range of aqueous pK a values (from 1.7 to 8.9). UV-vis absorption spectra measured in liquid phases of controlled pH were compared to those measured with a diode-array detector employed in SFC, with the help of chemometric methods. Based on these observations, it is concluded that the apparent pH range in carbon dioxide-methanol mobile phases is close to 5. Increasing the proportion of methanol (in the course of a gradient elution for instance) causes decreasing apparent pH. Strong acids can further decrease the apparent pH below 1.7; strong bases have little influence on the apparent pH, probably because, in this range of concentrations, they are titrated by alkoxylcarbonic acid or form ion pairs with alkoxycarbonate. However, bases and salts could stabilize the acidity in the course of gradient runs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Thermodynamics and kinetics of Na+/K+-formate ion pairs association in polarizable water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuong T. M.; Nguyen, Van T.; Annapureddy, Harsha V. R.; Dang, Liem X.; Do, D. D.

    2012-12-01

    To enhance our understanding of ion specific activity in biological systems, the potential of mean force approach was utilized to study solvent effects on the interactions between two alkali cations (Na+ and K+) with a formate anion in water. A very complex free energy landscape was observed, much more so than alkali-halide ion pairs. Furthermore, a stronger binding between the Na+-formate pair was found in comparison to the K+-formate pair in water, which is in agreement with experimental and theoretical studies [1-4]. The kinetics of ion-pair inter-conversions was studied using the transition rate theory, along with a number of theoretical approaches such as the Kramers and Grote-Hynes theories. These kinetic results were used to predict solvent effects on dynamical features of ion-pair association, in which we have found that the dynamics of K+-formate pairs is faster than Na+-formate pairs.

  7. [Simultaneous determination of principal components and related substances of raw material drug of ammonium glycyrrhizinate by reversed-phase high performance liquid chromatography].

    PubMed

    Zhao, Yanyan; Liu, Liyan; Han, Yuanyuan; Li, Yueqiu; Wang, Yan; Shi, Minjian

    2013-09-01

    An analytical method for the simultaneous determination of 18alpha-glycyrrhizic acid, 18beta-glycyrrhizinic acid, related substances A and B and drug quality standard by reversed-phase high performance liquid chromatography (RP-HPLC) was established. The assay was carried out on a Durashell-C18 column (250 mm x 4.6 mm, 5 microm) with 10 mmol/L ammonium perchlorate (the pH value was adjusted to 8.20 with ammonia)-methanol (48:52, v/v) as mobile phase at a flow rate of 0.80 mL/min, and the detection wavelength was set at 254 nm. The column temperature was 50 degrees C and the injection volume was 10 microL. Under the separation conditions, the calibration curves of the analytes showed good linearities within the mass concentrations of 0.50 -100 mg/L (r > 0.999 9). The detection limits for 18alpha-glycyrrhizic acid, 18beta-glycyrrhizinic acid, related substances A and B were 0.15, 0.10, 0.10, 0.15 mg/L, respectively. The average recoveries were between 97.32% and 99.33% (n = 3) with the relative standard deviations (RSDs) between 0.05% and 1.06%. The method is sensitive, reproducible, and the results are accurate and reliable. The method can be used for the determination of principal components and related substances of ammonium glycyrrhizinate for the quality control of raw material drug of ammonium glycyrrhizinate.

  8. Simultaneous determination of triple therapy for Helicobacter pylori in human plasma by reversed phase chromatography with online wavelength switching

    NASA Astrophysics Data System (ADS)

    Ahmed, Sameh; Atia, Noha N.

    2015-02-01

    The infection of gastric mucosa by Helicobacter pylori (HP) is an essential cofactor in the aetiology of gastroduodenal ulcer and gastric carcinoma. Because of the bacterial resistance, combination therapy containing omeprazole (OME), tinidazole (TNZ) and clarithromycin (CLA) is commonly used for eradication of HP. However, the simultaneous determination of the triple therapy in human plasma was not reported. A simple, reproducible, and selective HPLC method was developed for the simultaneous determination of the triple therapy mixture used for management of HP infections in human plasma. An HPLC procedure based on a liquid-liquid extraction, enrichment of the analytes and subsequent reversed-phase chromatography with UV detection was used. To enable sensitive and selective detection, the method involved the use of online wavelength switching detection, with two different detection wavelengths; 280 nm for detection of OME and TNZ and 210 nm for detection of CLA. Separations were performed on C18 analytical column with acetonitrile-10 mM phosphate buffer of pH = 3.0 at flow rate of 1.0 mL min-1. The linear ranges in human plasma were 0.05-10 μg mL-1 with correlation coefficients >0.9990. The detection limits in human plasma were 0.02-0.07 μg mL-1. Validation parameters were assessed in compliance with US-FDA guidelines. The method proved to be valuable for the therapeutic drug monitoring after oral administration of triple therapy tablets.

  9. Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide.

    PubMed

    Dang, Liem X; Schenter, Gregory K

    2018-06-14

    Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.

  10. Rate theory of ion pairing at the water liquid-vapor interface: A case of sodium iodide

    NASA Astrophysics Data System (ADS)

    Dang, Liem X.; Schenter, Gregory K.

    2018-06-01

    Studies on ion pairing at interfaces have been intensified recently because of their importance in many chemical reactive phenomena, such as ion-ion interactions that are affected by interfaces and their influence on kinetic processes. In this study, we performed simulations to examine the thermodynamics and kinetics of small polarizable sodium iodide ions in the bulk and near the water liquid-vapor interface. Using classical transition state theory, we calculated the dissociation rates and corrected them with transmission coefficients obtained from the reactive flux formalism and Grote-Hynes theory. Our results show that in addition to affecting the free energy of ions in solution, the interfacial environments significantly influence the kinetics of ion pairing. The results on the relaxation time obtained using the reactive flux formalism and Grote-Hynes theory present an unequivocal picture that the interface suppresses ion dissociation. The effects of the use of molecular models on the ion interactions as well as the ion-pair configurations at the interface are also quantified and discussed.

  11. Determination of aminophenols and phenol in hair colorants by ultrasound-assisted solid-phase dispersion extraction coupled with ion chromatography.

    PubMed

    Zhong, Zhixiong; Li, Gongke; Wu, Rong; Zhu, Binghui; Luo, Zhibin

    2014-08-01

    A simple and reliable ultrasound-assisted solid-phase dispersion extraction coupled with ion chromatography was developed for the determination of aminophenols and phenol. The highly viscous hair colorant was dispersed in solvents using anhydrous sodium sulfite having dual functions of dispersant and antioxidant. The use of anhydrous sodium sulfite did not change the sample volume because it could completely dissolve in solution after matrix dispersion. The extraction and cleanup were combined in one single step for simplifying operation. The extraction process could be rapidly accomplished within 9 min with high sample throughput under the synergistic effects of vibration, ultrasound, and heating. Satisfactory linearity was observed with correlation coefficients higher than 0.9992, and the limits of detection varied from 0.02 to 0.09 mg/L. The applicability of the proposed method was demonstrated by measuring the concentrations of aminophenols and phenol in 32 different commercial hair color products. The recoveries ranged from 86.4-101.2% with the relative standard deviations in the range of 0.52-4.3%. The method offers an attractive alternative for the analysis of trace phenols in complex matrices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring

    USGS Publications Warehouse

    Zaugg, Steven D.; Sandstrom, Mark W.; Smith, Steven G.; Fehlberg, Kevin M.

    1995-01-01

    A method for the isolation of 41 pesticides and pesticide metabolites in natural-water samples using C-18 solid-phase extraction and determination by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction columns containing octadecyl-bonded porous silica to extract the pesticides. The columns are dried using carbon dioxide or nitrogen gas, and adsorbed pesticides are removed from the columns by elution with 3.0 milliliters of hexane-isopropanol (3:1). Extracted pesticides are determined by capillary- column gas chromatography/mass spectrometry with selected-ion monitoring of three characteristic ions. The upper concentration limit is 4 micrograms per liter (g/L) for most pesticides, with the exception of widely used corn herbicides--atrazine, alachlor, cyanazine, and metolachlor--which have upper concentration limits of 20 g/L. Single- operator method detection limits in reagent-water samples range from 0.001 to 0.018 g/L. Average short-term single-operator precision in reagent- water samples is 7 percent at the 0.1- and 1.0-g/L levels and 8 percent at the 0.01-g/L level. Mean recoveries in reagent-water samples are 73 percent at the 0.1- and 1.0-g/L levels and 83 percent at the 0.01-g/L level. The estimated holding time for pesticides after extraction on the solid-phase extraction columns was 7 days. An optional on-site extraction procedure allows for samples to be collected and processed at remote sites where it is difficult to ship samples to the laboratory within the recommended pre-extraction holding time.

  13. SEPARATION AND QUANTITATION OF NITROBENZENES AND THEIR REDUCTION PRODUCTS NITROANILINES AND PHENYLENEDIAMINES BY REVERSED=PHASE HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

    EPA Science Inventory

    A reversed-phase high-performance liquid chromatographic method for the separation and quantitation of a mixture consisting of nitrobenzene, dinitrobenzene isomers, 1,3,5-trinitrobenzene and their reduction products: aniline, nitroanilines and phenylenediamines has been developed...

  14. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    NASA Astrophysics Data System (ADS)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  15. Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion.

    PubMed

    Solon, Kimberly; Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Volcke, Eveline I P; Tait, Stephan; Batstone, Damien; Gernaey, Krist V; Jeppsson, Ulf

    2015-03-01

    Plant-wide models of wastewater treatment (such as the Benchmark Simulation Model No. 2 or BSM2) are gaining popularity for use in holistic virtual studies of treatment plant control and operations. The objective of this study is to show the influence of ionic strength (as activity corrections) and ion pairing on modelling of anaerobic digestion processes in such plant-wide models of wastewater treatment. Using the BSM2 as a case study with a number of model variants and cationic load scenarios, this paper presents the effects of an improved physico-chemical description on model predictions and overall plant performance indicators, namely effluent quality index (EQI) and operational cost index (OCI). The acid-base equilibria implemented in the Anaerobic Digestion Model No. 1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects for ionic strength via the Davies approach to consider chemical activities instead of molar concentrations. A speciation sub-routine based on a multi-dimensional Newton-Raphson (NR) iteration method is developed to address algebraic interdependencies. The model also includes ion pairs that play an important role in wastewater treatment. The paper describes: 1) how the anaerobic digester performance is affected by physico-chemical corrections; 2) the effect on pH and the anaerobic digestion products (CO2, CH4 and H2); and, 3) how these variations are propagated from the sludge treatment to the water line. Results at high ionic strength demonstrate that corrections to account for non-ideal conditions lead to significant differences in predicted process performance (up to 18% for effluent quality and 7% for operational cost) but that for pH prediction, activity corrections are more important than ion pairing effects. Both are likely to be required when precipitation is to be modelled. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Ion pair reinforced semi-interpenetrating polymer network for direct methanol fuel cell applications.

    PubMed

    Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang

    2012-06-07

    This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.

  17. Gas-liquid chromatography with a volatile "stationary" liquid phase.

    PubMed

    Wells, P S; Zhou, S; Parcher, J F

    2002-05-01

    A unique type of gas-liquid chromatography is described in which both mobile and "stationary" phases are composed of synthetic mixtures of helium and carbon dioxide. At temperatures below the critical point of the binary mixture and pressures above the vapor pressure of pure liquid carbon dioxide, helium and carbon dioxide can form two immiscible phases over extended composition ranges. A binary vapor phase enriched in helium can act as the mobile phase for chromatographic separations, whereas a CO2-rich liquid in equilibrium with the vapor phase, but condensed on the column wall, can act as a pseudostationary phase. Several examples of chromatographic separations obtained in "empty" capillary columns with no ordinary stationary liquid phase illustrate the range of conditions that produce such separations. In addition, several experiments are reported that confirm the proposed two-phase hypothesis. The possible consequences of the observed chromatographic phenomenon in the field of supercritical fluid chromatography with helium headspace carbon dioxide are discussed.

  18. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction

    PubMed Central

    Yoshimatsu, K.; Niwa, M.; Mashiko, H.; Oshima, T.; Ohtomo, A.

    2015-01-01

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li+ ions. PMID:26541508

  19. Reversible superconductor-insulator transition in LiTi2O4 induced by Li-ion electrochemical reaction.

    PubMed

    Yoshimatsu, K; Niwa, M; Mashiko, H; Oshima, T; Ohtomo, A

    2015-11-06

    Transition metal oxides display various electronic and magnetic phases such as high-temperature superconductivity. Controlling such exotic properties by applying an external field is one of the biggest continuous challenges in condensed matter physics. Here, we demonstrate clear superconductor-insulator transition of LiTi2O4 films induced by Li-ion electrochemical reaction. A compact electrochemical cell of pseudo-Li-ion battery structure is formed with a superconducting LiTi2O4 film as an anode. Li content in the film is controlled by applying a constant redox voltage. An insulating state is achieved by Li-ion intercalation to the superconducting film by applying reduction potential. In contrast, the superconducting state is reproduced by applying oxidation potential to the Li-ion intercalated film. Moreover, superconducting transition temperature is also recovered after a number of cycles of Li-ion electrochemical reactions. This complete reversible transition originates in difference in potentials required for deintercalation of initially contained and electrochemically intercalated Li(+) ions.

  20. Liquid chromatography-electrospray mass spectrometry of beta-carotene and xanthophylls. Validation of the analytical method.

    PubMed

    Careri, M; Elviri, L; Mangia, A

    1999-08-27

    The investigation of beta-carotene and the xanthophylls beta-cryptoxanthin, lutein, zeaxanthin, canthaxanthin and astaxanthin using reversed-phase liquid chromatography-electrospray mass spectrometry interfaced with TurboIonspray (LC-TurboISP-MS) is described. Two narrow-bore C18 columns connected in series and an isocratic solvent system containing acetonitrile-methanol (0.1 M ammonium acetate)-dichloromethane at a flow-rate of 300 microl/min (without splitting) were used. Operating in the positive-ion mode over m/z 500-650, the effects on the formation of the molecular ion species or adduct ions and the MS detector response were investigated for carotenoids, varying the orifice plate voltage, the ring voltage and the ISP voltage. Both conventional ISP and TurboISP were performed; using the TurboISP-MS system, ionization efficiency increased with respect to ISP-MS, particularly at the highest temperature (500 degrees C). Good results were particularly obtained for beta-carotene, which was detectable at the low ng level, without the use of solution-phase oxidants. Using LC columns and acquiring in single-ion monitoring mode, detection limits were estimated to be in the 0.1-1 ng range; dynamic range was established between one- and two-orders of magnitude. Better sensitivity under positive-ion than negative-ion conditions was demonstrated.