Sample records for ion-selective electrode based

  1. Silver(I) ion-selective membrane based on Schiff base-p-tert-butylcalix[4]arene.

    PubMed

    Mahajan, R K; Kumar, M; Sharma, V; Kaur, I

    2001-04-01

    A PVC membrane electrode for silver(I) ion based on Schiff base-p-tert-butylcalix[4]arene is reported. The electrode works well over a wide range of concentration (1.0 x 10(-5)-1.0 x 10(-1) mol dm-3) with a Nernstian slope of 59.7 mV per decade. The electrode shows a fast response time of 20 s and operates in the pH range 1.0-5.6. The sensor can be used for more than 6 months without any divergence in the potential. The selectivity of the electrode was studied and it was found that the electrode exhibits good selectivity for silver ion over some alkali, alkaline earth and transition metal ions. The silver ion-selective electrode was used as an indicator electrode for the potentiometric titration of silver ion in solution using a standard solution of sodium chloride; a sharp potential change occurs at the end-point. The applicability of the sensor to silver(I) ion measurement in water samples spiked with silver nitrate is illustrated.

  2. Calixarene-based potentiometric ion-selective electrodes for silver.

    PubMed

    O'Connor, K M; Svehla, G; Harris, S J; McKervey, M A

    1992-11-01

    Four lipophilic sulphur and/or nitrogen containing calixarene derivatives have been tested as ionophores in Ag(I)-selective poly (vinyl chloride) membrane electrodes. All gave acceptable linear responses with one giving a response of 50 mV/dec in the Ag(I) ion activity range 10(-4)-10(-1)M and high selectivity towards other transition metals and sodium and potassium ions. This ionophore was also tested as a membrane coated glassy-carbon electrode where the sensitivity and selectivity of the conventional membrane electrode was found to be repeated. The latter electrode was then used in potentiometric titrations of halide ions with silver nitrate.

  3. Ion-Selective Electrodes for Basic Drugs.

    DTIC Science & Technology

    1981-01-01

    coated wire ion selective electrodes for methadone , methylamphetamine, J cocaine, protriptyline i 20. ABSTRACT (Continue on reverse side If neeeeary...end Identify by block number) Coated-wire ion-selective electrodes based on dinonylnaphthalene u-i sulfonic acid (DNNS) are prepared for methadone ...range from 10- 5.5M for cocaine and methylamphetamine electrodes to 10Ś.0M for methadone , and 10-6.5M for DD I 󈨍 1473 EDITION OF I NOV 5 IS OBSOLETE

  4. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    PubMed

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  5. Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite.

    PubMed

    Topcu, Cihan

    2016-12-01

    A novel polyvinyl chloride membrane chlorate (ClO 3 - ) selective electrode based on modified smectite was developed for the direct determination of chlorate ions and the potentiometric performance characteristics of its were examined. The best selectivity and sensitivity for chlorate ions were obtained for the electrode membrane containing ionophore/polyvinylchloride/o-nitrophenyloctylether in composition of 12/28/60 (w/w%). The proposed electrode showed a Nernstian response toward chlorate ions at pH=7 in the concentration range of 1×10 -7 -1×10 -1 M and the limit of detection was calculated as 9×10 -8 M from the constructed response plot. The linear slope of the electrode was -61±1mVdecade -1 for chlorate activity in the mentioned linear working range. The selectivity coefficients were calculated according to both the matched potential method and the separate solution method. The calculated selectivity coefficients showed that the electrode performed excellent selectivity for chlorate ions. The potentiometric response of electrode toward chlorate ions was found to be highly reproducible. The electrode potential was stable between pH=4-10 and it had a dynamic response time of <5s. The potentiometric behavior of the electrode in partial non-aqueous medium was also investigated and the obtained results (up to 5% (v/v) alcohol) were satisfactory. The proposed electrode was used during 15 weeks without any significant change in its potential response. Additionally, the electrode was very useful in water analysis studies such as dam water, river water, tap water, and swimming pool water where the direct determination of chlorate ions was required. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.

    PubMed

    Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier

    2009-12-01

    Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.

  7. Preparation of PbS Nanoparticles by Phase-Transfer Method and Application to Pb2+-Selective Electrode Based on PVC Membrane

    PubMed Central

    Song, Weihong; Wu, Chunhui; Yin, Hongzong; Liu, Xiaoyan; Sa, Panpan; Hu, Jinyang

    2008-01-01

    A novel approach to prepare homogeneous PbS nanoparticles by phase-transfer method was developed. The preparatory conditions were studied in detail, and the nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. Then a novel lead ion-selective electrode of polyvinyl chloride (PVC) membrane based on these lead sulfide nanoparticles was prepared, and the optimum ratio of components in the membrane was determined. The results indicated that the sensor exhibited a wide concentration range of 1.0×10−5 to 1.0×10−2 mol.L−1. The response time of the electrode was about 10 s, and the optimal pH in which the electrode could be used was from 3.0 to 7.0. Selectivity coefficients indicated that the electrode was selective to the primary ion over the interfering ion. The electrode can be used for at least 3 months without any divergence in potential. It was successfully applied to directly determine lead ions in solution and used as an indicator electrode in potentiometric titration of lead ions with EDTA. PMID:19112518

  8. Construction of a new Cu2+ coated wire ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylidene amino)phenyl)disufanyl)phenylimino)methyl)-4-methoxyphenol Schiff base.

    PubMed

    Shokrollahi, A; Abbaspour, A; Ghaedi, M; Haghighi, A Naghashian; Kianfar, A H; Ranjbar, M

    2011-03-15

    In this article a new coated platinum Cu(2+) ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L(1)) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10(-7)-1.0 × 10(-1) mol L(-1)) and a low detection limit of 9.8 × 10(-8) mol L(-1)of Cu(NO(3))(2). It has a Nernstian response with slope of 29.54 ± 1.62 mV decade(-1) and it is applicable in the pH range of 4.0-6.0 without any divergence in potential. The coated electrode has a short response time of approximately 9s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu(2+) ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu(2+) ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu(2+) ion with EDTA. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  10. A Liquid Chromatography Detector for Transition and Rare-Earth Metal Ions Based on a Cupric Ion-Selective Electrode

    DTIC Science & Technology

    1981-05-01

    RARE-EARTH METAL IONS BASED ON A CUPRIC ION-SELECTIVE ELECTRODE By - 4 R. CAMERON DOREY TECHNICAL REPORT FJSRL-TR-81-0005 MAY 1981 Approved for public...FORM . REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER FJSRL-TR-81-0005BO CO ENGO 4 . TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD...common anions, including halide ions, is shown, and the advantages and limitations of the system are discussed. II ’ 4 UNCLASSIFIED SECURITY

  11. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    PubMed

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  12. Construction of a new selective coated disk electrode for Ag (I) based on modified polypyrrole-carbon nanotubes composite with new lariat ether.

    PubMed

    Abbaspour, A; Tashkhourian, J; Ahmadpour, S; Mirahmadi, E; Sharghi, H; Khalifeh, R; Shahriyari, M R

    2014-01-01

    A poly (vinyl chloride) (PVC) matrix membrane ion-selective electrode for silver (I) ion is fabricated based on modified polypyrrole - multiwalled carbon nanotubes composite with new lariat ether. This sensor has a Nernstian slope of 59.4±0.5mV/decade over a wide linear concentration range of 1.0×10(-7) to 1.0×10(-1)molL(-1) for silver (I) ion. It has a short response time of about 8.0s and can be used for at least 50days. The detection limit is 9.3×10(-8)molL(-1) for silver (I) ion, and the electrode was applicable in the wide pH range of 1.6 -7.7. The electrode shows good selectivity for silver ion against many cations such as Hg (II), which usually imposes serious interference in the determination of silver ion concentration. The use of multiwalled carbon nanotubes (MWCNTs) in a polymer matrix improves the linear range and sensitivity of the electrode. In addition by coating the solid contact with a layer of the polypyrrole (Ppy) before coating the membrane on it, not only did it reduce the drift in potential, but a shorter response time was also resulted. The proposed electrode was used as an indicator electrode for potentiometric titration of silver ions with chloride anions and in the titration of mixed halides. This electrode was successfully applied for the determination of silver ions in silver sulphadiazine as a burning cream. © 2013.

  13. Cyanex based uranyl sensitive polymeric membrane electrodes.

    PubMed

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods. © 2013 Published by Elsevier B.V.

  14. A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-02-04

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.

  15. A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus

    2013-01-01

    In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412

  16. Study directed at development of an implantable biotelemetry ion detector

    NASA Technical Reports Server (NTRS)

    Hanley, L. D.; Kress, D.

    1971-01-01

    A literature search was conducted to currently update known information in the field of ion-selective electrodes. The review attempts to identify present trends in cation and anions selective electrodes pertinent to the area of bioimplantable units. An electronic circuit was designed to provide the high impedance interface between the ion-selective sensors and signal-processing equipment. The resulting design emphasized the need for low power and miniaturization. Many of the circuits were constructed and used to evaluate the ion-selective electrodes. A cuvette capable of holding the ion-selective and the reference electrodes was designed and constructed. This equipment was used to evaluate commercially available ion-selective electrodes and the electrodes designed and constructed in the study. The results of the electrode tests are included.

  17. Compact ion chamber based neutron detector

    DOEpatents

    Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.

    2015-10-27

    A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.

  18. Coated-Wire Ion Selective Electrodes and Their Application to the Teaching Laboratory.

    ERIC Educational Resources Information Center

    Martin, Charles R.; Freiser, Henry

    1980-01-01

    Describes the procedures for construction of a nitrate coated-wire ion selective electrode and suggests experiments for evaluation of electrode response and illustration of typical analytical applications of ion selective electrodes. (CS)

  19. Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane.

    PubMed

    Kim, Yushin; Amemiya, Shigeru

    2008-08-01

    A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.

  20. Development of a ceramic membrane from a lithian spinel, Li1+xMyMn2-yO4 (M=trivalent or tetravalent cations) for a Li ion-selective electrode

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Venugopal, N.; Rim, T.; Yang, B.; Chung, K.; Ko, T.

    2010-12-01

    Recently a few lithium containing ceramics are reported as promising cathodes for application in lithium batteries. Among them, a spinel-type lithium manganate (LM) exhibits an exceptionally high ion selectivity at room temperature. Thus, LM could have a great potential as an ion selective membrane material for screening interfering ions from lithium ion for the determination of lithium ion in salt solution. In this study, we developed an ion-selective electrode based on LM as a membrane material and investigated its lithium ion selectivity by varying the content of M in composition. A sol-gel process was successfully applied for preparing LM films without resorting to calcination at a high temperature. The LM thin film-type membranes exhibit a high selectivity for Li ion over other cations, a wide operation detection range of 10-5 ~ 10-2 M, and a fast response time less than 60 s. Furthermore, our result demonstrates a linear potentiometric response over a wide range of lithium concentration, which is compared to that of a lithium ion-selective electrode based on an ionophore. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).

  1. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ionmore » storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.« less

  2. Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes.

    PubMed

    Numnuam, Apon; Chumbimuni-Torres, Karin Y; Xiang, Yun; Bash, Ralph; Thavarungkul, Panote; Kanatharana, Proespichaya; Pretsch, Ernö; Wang, Joseph; Bakker, Eric

    2008-02-01

    We here report on the first example of an aptamer-based potentiometric sandwich assay of proteins. The measurements are based on CdS quantum dot labels of the secondary aptamer, which were determined with a novel solid-contact Cd2+-selective polymer membrane electrode after dissolution with hydrogen peroxide. The electrode exhibited cadmium ion detection limits of 100 pM in 100 mL samples and of 1 nM in 200 microL microwells, using a calcium-selective electrode as a pseudoreference electrode. As a prototype example, thrombin was measured in 200 microL samples with a lower detection limit of 0.14 nM corresponding to 28 fmol of analyte. The results show great promise for the potentiometric determination of proteins at very low concentrations in microliter samples.

  3. Synthesis and Characterization of Organic-Inorganic Nanocomposite Poly-o-anisidine Sn(IV) Arsenophosphate: Its Analytical Applications as Pb(II) Ion-Selective Membrane Electrode

    PubMed Central

    Khan, Asif Ali; Habiba, Umme; Khan, Anish

    2009-01-01

    Poly-o-anisidine Sn(IV) arsenophosphate is a newly synthesized nanocomposite material and has been characterized on the basis of its chemical composition, ion exchange capacity, TGA-DTA, FTIR, X-RAY, SEM, and TEM studies. On the basis of distribution studies, the exchanger was found to be highly selective for lead that is an environmental pollutant. For the detection of lead in water a heterogeneous precipitate based ion-selective membrane electrode was developed by means of this composite cation exchanger as electroactive material. The membrane electrode is mechanically stable, with a quick response time, and can be operated over a wide pH range. The selectivity coefficients were determined by mixed solution method and revealed that the electrode is sensitive for Pb(II) in presence of interfering cations. The practical utility of this membrane electrode has been established by employing it as an indicator electrode in the potentiometric titration of Pb(II). PMID:20140082

  4. Miniaturizable Ion-Selective Arrays Based on Highly Stable Polymer Membranes for Biomedical Applications

    PubMed Central

    Mir, Mònica; Lugo, Roberto; Tahirbegi, Islam Bogachan; Samitier, Josep

    2014-01-01

    Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors. PMID:24999717

  5. Highly selective potentiometric and colorimetric determinations of cobalt (II) ion using thiazole based ligands.

    PubMed

    Singhal, Divya; Singh, Ashok Kumar; Upadhyay, Anjali

    2014-12-01

    New PVC-membrane electrodes were prepared by using 2-((thiazol-2-ylimino)methyl)phenol (L1) and 2-((thiazol-2-ylamino)methyl)phenol (L2) and explored as Co(II) selective electrodes. The effect of various plasticizers and anion excluder was studied in detail and improved performance was observed. It was found that the electrode based on L1 shows better response characteristics in comparison to L2. Optimum performance was observed for the membrane electrode having a composition of L1:NaTPB:DBP:PVC≡2:8:78:62 (w/w, mg). The performance of PME based on L1 was compared with that of CGE. The electrodes exhibit Nernstian slope for Co(II) ions with a limit of detection of 6.91×10(-7) mol L(-1) for PME and 7.94×10(-8) mol L(-1) for CGE. The response time for PME and CGE was found to be 15s and 12 s respectively. The potentiometric responses are independent in the pH range 3.0-9.0 for CGE. The CGE could be used for a period of 90 days. The CGE was used as an indicator electrode in potentiometric titration of EDTA with Co(2+) ion. Further the selectivity of the L1 and L2 was also confirmed by the UV-vis and colorimetric studies and found that L1 is more selective for Co(II) ion. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Potentiometric Response Characteristics of Membrane-Based Cs + -Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres

    DOE PAGES

    Peper, Shane; Gonczy, Chad

    2011-01-01

    Csmore » + -selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between 1 × 10 − 3 and 1 × 10 − 4  M + , a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE. Additionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10 -1 –10 -5  M + , a conventional lower detection limit of 8.1 × 10 − 6  M + , and a response slope of 57.7 mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 3–12, with only slight proton interference observed below pH 3.« less

  7. A voltammetric method for Fe(iii) in blood serum using a screen-printed electrode modified with a Schiff base ionophore.

    PubMed

    Mittal, Susheel K; Rana, Sonia; Kaur, Navneet; Banks, Craig E

    2018-05-23

    Herein, a potent electrochemical ionophore (SMS-2) based on a Schiff base has been used for the modification of a screen-printed electrode (SPE). The modified disposable electrode can selectively detect ferric ions in an aqueous medium. Redox behavior of the proposed strip was characterized using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Incorporation of the ligand in the ink of the SPE enhanced the analytical performance of the electrode, and its surface modification was confirmed by SEM and EDX analysis. Shifting/quenching of the cathodic peak potential of the ionophore after binding with Fe(iii) ions was used to detect and measure the ferric ion concentration. This sensor can identify Fe(iii) in the detection range from 0.625 μM to 7.5 μM. The modified SPE can selectively detect ferric ions in the presence of many other interfering ions and has been successfully used to determine the Fe(iii) content in blood serum samples. The metal-ionophore complex structure was optimized using DFT calculations to study the energetics of the metal-ionophore interactions.

  8. Influence of Inner Transducer Properties on EMF Response and Stability of Solid-Contact Anion Selective Membrane Electrodes Based on Metalloporphyrin Ionophores

    PubMed Central

    Górski, Łukasz; Matusevich, Alexey; Pietrzak, Mariusz; Wang, Lin; Meyerhoff, Mark E.; Malinowska, Elżbieta

    2010-01-01

    The performance of solid-contact/coated wire type electrodes with plasticized PVC membranes containing metalloporphyrins as anion selective ionophores is reported. The membranes are deposited on transducers based on graphite pastes and graphite rods. The hydrophobicity of the underlying conductive transducer surface is found to be a key factor that influences the formation of an aqueous layer beneath the polymer film. Elimination of this ill-defined water layer greatly improves the electrochemical properties of the ion-sensors, such as EMF stability and life-time. Only highly lipophilic electrode substrates, namely graphite paste with mineral oil, were shown to prevent the formation of aqueous layer underneath the ion-sensing membrane. The possibility of employing Co(III)-tetraphenylporphyrin both as NO2− selective ionophore and as electron/ion conducting species to ensure ion-to-electron translation was also discussed based on the results of preliminary experiments. PMID:20357903

  9. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to generate a moderate electric field. Positive ions leaving the membrane holes would be accelerated in this electric field. The resulting flux of ions away from the ionization membrane would create a partial vacuum that would draw more of the gas medium through the membrane. The figure depicts a filter electrode and detector electrodes located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a transverse AC electric field superimposed on a ramped DC electric field. The AC field would effect differential transverse dispersal of ions. At a given instant of time, the trajectories of most of the ions would be bent toward the electrodes, causing most of the ions to collide with the electrodes and thereby become neutralized. The DC field would partly counteract the dispersive effect of the AC field, straightening the trajectories of a selected species of ions; the selection would vary with the magnitude of the applied DC field. The straightening of the trajectories of the selected ions would enable them to pass into the region between the detector electrodes. Depending on the polarity of the voltage applied to the detector electrodes, the electric field between the detector electrodes would draw the selected ions to one of these electrodes. Hence, the current collected by one of the detector electrodes would be a measure of the abundance of ions of the selected species. The ramping of the filter- electrode DC voltage would sweep the selection of ions through the spectrum of ionic species.

  10. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    PubMed Central

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  11. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    PubMed Central

    Ghosh, Tanushree; Rieger, Jana

    2017-01-01

    Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN) was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h) for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode. PMID:29099804

  12. An Easily Constructed Salicylate-Ion-Selective Electrode for Use in the Instructional Laboratory.

    ERIC Educational Resources Information Center

    Creager, Stephen E.; And Others

    1995-01-01

    Describes an electrode, selective for the salicylate ion, that can be prepared and used by undergraduate students. Discusses the preparation of the electrode, typical response characteristics obtained, and results of a limited study using the electrode to estimate the selectivity coefficient for an interfering ion and to determine the amount of…

  13. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    NASA Astrophysics Data System (ADS)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  14. Ion Exchange Polymeric Coatings for Selective Capacitive Deionization

    NASA Astrophysics Data System (ADS)

    Jain, Amit; Kim, Jun; Li, Qilin; Verduzco, Rafael

    Capacitive deionization (CDI) is an energy-efficient technology for adsorbing and removing scalants and foulants from water by utilizing electric potential between porous carbon electrodes. Currently, industrial application of CDI is limited to low salinity waters due to the limited absorption capacities of carbon electrodes. However, CDI can potentially be used as a low-cost approach to selectively remove divalent ions from high salinity water. Divalent ions such as sulfonates and carbonates cause scaling and thus performance deterioration of membrane-based desalination systems. In this work, we investigated ion-exchange polymer coatings for use in a membrane capacitive deionization (MCDI) process for selective removal of divalent ions. Poly-Vinyl Alcohol (PVA) base polymer was crosslinked and charged using sulfo-succinic acid (SSA) to give a cation exchange layer. 50 um thick standalone polymer films had a permeability of 4.25*10-7 cm2/s for 10mM NaCl feed. Experiments on electrodes with as low as 10 υm thick coating of cation exchange polymer are under progress and will be evaluated on the basis of their selective salt removal efficiency and charge efficiency, and in future we will extend this work to sulfonated block copolymers and anion exchange polymers.

  15. Kinetic Studies with Ion Selective Electrodes: Determination of Creatinine in Urine with a Picrate Ion Selective Electrode: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Diamandis, E. P.; And Others

    1983-01-01

    The kinetic of the Jaffe reaction with picrate ion selective electrode (ISE) and a kinetic method for determining creatinine in urine is presented. The experiment could be used to familarize students with the application of ISE in kinetic studies and chemical analysis. (Author/JN)

  16. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    PubMed

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  17. Synthesis and characterization of bis nitrato[4-hydroxyacetophenonesemicarbazone) nickel(II) complex as ionophore for thiocyanate-selective electrode.

    PubMed

    Chandra, Sulekh; Hooda, Sunita; Tomar, Praveen Kumar; Malik, Amrita; Kumar, Ankit; Malik, Sakshi; Gautam, Seema

    2016-05-01

    The PVC based-ion selective electrode viz., bis nitrato[4-hydroxyacetophenone semicarbazone] nickel(II) as an ionophore was prepared for the determination of thiocyanate ion. The ionophore was characterized by FT-IR, UV-vis, XRD, magnetic moment and elemental analysis (CHN). On the basis of spectral studies an octahedral geometry has been assigned. The best performance was obtained with a membrane composition of 31% PVC, 63% 2-nitrophenyl octylether, 4.0% ionophore and 2.0% trioctylmethyl ammonium chloride. The electrode exhibited an excellent Nernstian response to SCN(-) ion ranging from 1.0 × 10(-7) to 1.0 × 10(-1)M with a detection limit of 8.6 × 10(-8)M and a slope of -59.4 ± 0.2 mV/decade over a wide pH range (1.8-10.7) with a fast response time (6s) at 25 °C. The proposed electrode showed high selectivity for thiocyanate ion over a number of common inorganic and organic anions. It was successfully applied to direct determination of thiocyanate in biological (urine and saliva) samples in order to distinguish between smokers and non-smokers, environmental samples and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Binder-free Si nanoparticle electrode with 3D porous structure prepared by electrophoretic deposition for lithium-ion batteries.

    PubMed

    Yang, Yang; Chen, Dingqiong; Liu, Bo; Zhao, Jinbao

    2015-04-15

    A binder-free silicon (Si) based electrode for lithium-ion battery was fabricated in an organic solvent through one-step electrophoretic deposition (EPD). The nanosized Si and acetylene black (AB) particles were bonded tightly together to form a homogeneous co-deposited film with 3D porous structure through the EPD process. The 3D porous structure provides buffer spaces to alleviate the mechanical stress due to silicon volume change during the cycling and improves lithium-ion conductivity by shortening ion diffusion length and better ion conducting pathway. The electrode prepared with 5 s deposition duration shows the best cycling performance among electrodes fabricated by EPD method, and thus, it was selected to be compared with the silicon electrode prepared by the conventional method. Our results demonstrate that the Si nanoparticle electrode prepared through EPD exhibits smaller cycling capacity decay rate and better rate capability than the electrode prepared by the conventional method.

  19. Ion-selective gold-thiol film on integrated screen-printed electrodes for analysis of Cu(II) ions.

    PubMed

    Li, Meng; Zhou, Hao; Shi, Lei; Li, Da-Wei; Long, Yi-Tao

    2014-02-07

    A novel type of ion-selective electrode (ISE) was manufactured for detecting trace amounts of Cu(II) ions. The basic substrates of ISE were fabricated using screen-printing technology, which could produce disposable electrodes on a large-scale with good repeatability. Moreover, the printed integrated three-electrode system of ISE could be directly used to read out the open-circuit potentials by a handheld device through a USB port. The ion-selective film was composed of gold nanorods (GNRs) and 6-(bis(pyridin-2-ylmethyl)amino)hexane-1-thiol (compound ), which were layer-by-layer modified on the electrode through an easily controlled self-assembly method. Compound contained the 2,2'-dipyridylamine (dpa) group that could coordinate with Cu(II) ions to form a 2 : 1 complex, therefore the screen-printed ISEs exhibited Nernstian potentiometric responses to Cu(II) ions with a detection limit of 6.3 × 10(-7) mol L(-1) over the range of 1.0 × 10(-6) to 1.0 × 10(-2) mol L(-1). The easily prepared screen-printed ion-selective electrode reported here was appropriate for in field analysis and pollutant detection in remote environments.

  20. Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as Solid Contact: The Ultimate "Water Layer" Test.

    PubMed

    Guzinski, Marcin; Jarvis, Jennifer M; D'Orazio, Paul; Izadyar, Anahita; Pendley, Bradford D; Lindner, Ernő

    2017-08-15

    The aim of this study was to find a conducting polymer-based solid contact (SC) for ion-selective electrodes (ISEs) that could become the ultimate, generally applicable SC, which in combination with all kinds of ion-selective membranes (ISMs) would match the performance characteristics of conventional ISEs. We present data collected with electrodes utilizing PEDOT-C 14 , a highly hydrophobic derivative of poly(3,4-ethylenedioxythiophene), PEDOT, as SC and compare its performance characteristics with PEDOT-based SC ISEs. PEDOT-C 14 has not been used in SC ISEs previously. The PEDOT-C 14 -based solid contact (SC) ion-selective electrodes (ISEs) (H + , K + , and Na + ) have outstanding performance characteristics (theoretical response slope, short equilibration time, excellent potential stability, etc.). Most importantly, PEDOT-C 14 -based SC pH sensors have no CO 2 interference, an essential pH sensors property when aimed for whole-blood analysis. The superhydrophobic properties (water contact angle: 136 ± 5°) of the PEDOT-C 14 SC prevent the detachment of the ion-selective membrane (ISM) from its SC and the accumulation of an aqueous film between the ISM and the SC. The accumulation of an aqueous film between the ISM and its SC has a detrimental effect on the sensor performance. Although there is a test for the presence of an undesirable water layer, if the conditions for this test are not selected properly, it does not provide an unambiguous answer. On the other hand, recording the potential drifts of SC electrodes with pH-sensitive membranes in samples with different CO 2 levels can effectively prove the presence or absence of a water layer in a short time period.

  1. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-01-01

    Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed. PMID:27879786

  2. Electroanalytical and naked eye determination of Cu(2+) ion in various environmental samples using 5-amino-1,3,4-thiadiazole-2-thiol based Schiff bases.

    PubMed

    Bandi, Koteswara Rao; Singh, Ashok Kumar; Upadhyay, Anjali

    2014-01-01

    Novel polydentate Schiff bases 4-(5-mercapto-1,3,4-thiadiazol-2-ylimino)pentan-2-one (S1) and (2-(indol-3-yl)vinyl)-1,3,4-thiadiazole-2-thiol (S2) were synthesized and explored as Cu(2+) selective polymeric membrane electrodes (PME) using different plasticizers and anionic excluders. The potentiometric data revealed that the PME having the membrane composition (S2: NaTPB: TBP: PVC as 4: 2: 58: 36 (w/w; mg)) is shown to have good results. Thus the coated graphite electrode (CGE) with the same composition as the best PME was also fabricated and investigated as Cu(2+) selective electrode. It was found that CGE showed better response characteristics than PME with respect to low detection limit (1.2×10(-8)molL(-1)), near Nernstian slope (29.8±0.4mV decade(-1) of activity), wide working concentration range (6.4×10(-8)-1.0×10(-1)molL(-1)), long shelf life (90days) and fast response time (9s). The CGE was used successfully as an indicator electrode for the potentiometric determination of Cu(2+) ion against EDTA and also used to quantify Cu(2+) ion in soil, water, medicinal plants, vegetables and edible oil samples. The Schiff base S2 is used as chemosensor for the selective determination of Cu(2+) ion. © 2013.

  3. New Signal Readout Principle for Solid-Contact Ion-Selective Electrodes.

    PubMed

    Vanamo, Ulriika; Hupa, Elisa; Yrjänä, Ville; Bobacka, Johan

    2016-04-19

    A novel approach to signal transduction concerning solid-contact ion-selective electrodes (SC-ISE) with a conducting polymer (CP) as the solid contact is investigated. The method presented here is based on constant potential coulometry, where the potential of the SC-ISE vs the reference electrode is kept constant using a potentiostat. The change in the potential at the interface between the ion-selective membrane (ISM) and the sample solution, due to the change in the activity of the primary ion, is compensated with a corresponding but opposite change in the potential of the CP solid contact. This enforced change in the potential of the solid contact results in a transient reducing/oxidizing current flow through the SC-ISE. By measuring and integrating the current needed to transfer the CP to a new state of equilibrium, the total cumulated charge that is linearly proportional to the change of the logarithm of the primary ion activity is obtained. In this work, different thicknesses of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) were used as solid contact. Also, coated wire electrodes (CWEs) were included in the study to show the general validity of the new approach. The ISM employed was selective for K(+) ions, and the selectivity of the membrane under implementation of the presented transduction mechanism was confirmed by measurements performed with a constant background concentration of Na(+) ions. A unique feature of this signal readout principle is that it allows amplification of the analytical signal by increasing the capacitance (film thickness) of the solid contact of the SC-ISE.

  4. Engineering Fast Ion Conduction and Selective Cation Channels for a High-Rate and High-Voltage Hybrid Aqueous Battery.

    PubMed

    Liu, Chunyi; Wang, Xusheng; Deng, Wenjun; Li, Chang; Chen, Jitao; Xue, Mianqi; Li, Rui; Pan, Feng

    2018-03-14

    The rechargeable aqueous metal-ion battery (RAMB) has attracted considerable attention due to its safety, low costs, and environmental friendliness. Yet the poor-performance electrode materials lead to a low feasibility of practical application. A hybrid aqueous battery (HAB) built from electrode materials with selective cation channels could increase the electrode applicability and thus enlarge the application of RAMB. Herein, we construct a high-voltage K-Na HAB based on K 2 FeFe(CN) 6 cathode and carbon-coated NaTi 2 (PO 4 ) 3 (NTP/C) anode. Due to the unique cation selectivity of both materials and ultrafast ion conduction of NTP/C, the hybrid battery delivers a high capacity of 160 mAh g -1 at a 0.5 C rate. Considerable capacity retention of 94.3 % is also obtained after 1000 cycles at even 60 C rate. Meanwhile, high energy density of 69.6 Wh kg -1 based on the total mass of active electrode materials is obtained, which is comparable and even superior to that of the lead acid, Ni/Cd, and Ni/MH batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    PubMed

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fabrication of an Inexpensive Ion-Selective Electrode.

    ERIC Educational Resources Information Center

    Palanivel, A.; Riyazuddin, P.

    1984-01-01

    The preparation and performance of a graphite (silver/copper sulfide) electrode is described. This rod, extracted from a used dry cell, is an acceptable substitute for ion-selective electrodes after it has been cleaned by abrasion followed by an overnight treatment with hydrochloric acid. (JN)

  7. Construction of Uranyl Selective Electrode Based on Complex of Uranyl Ion with New Ligand Carboxybenzotriazole in PVC Matrix Membrane

    NASA Astrophysics Data System (ADS)

    Abu-Dalo, M. A.; Al-Rawashdeh, N. A. F.; Al-Mheidat, I. R.; Nassory, N. S.

    2015-10-01

    In the present study uranyl selective electrodes in polyvinyl chloride (PVC) matrix membrane were prepared based on a complex of uranyl ion (UO2) with carboxybenzotriazole (CBT) as ligand. The effect of the nature of plasticizer in PVC matrix were evaluated using three different plasticizers, these are dibutyl phthalate (DBP), dioctyl phthalate (DOP) and bis(2-ethylhexyl) sebacate (BHS). The results of this study indicated that the best plasticizer could be used is the DBP, which may be attributed to its lowest viscosity value compared to DOP and BHS. The electrodes with DBP as plasticizer exhibits a Nernstian response with a slope of 28.0 mV/ decade, over a wide range of concentration from 3.0×10-5-6.0×10-2 M and a detection limit of 4.0×10-6 M. It can be used in the pH range of 4.0-10.0 with a response time of less than 10 s for DBP and 25 s for both DOP and BHS. The effects of ions interferences on the electrode response were evaluated. The di- and tri-valent cations were found to interfere less than univalent cations, which was attributed to the high diffusion and the exchange rate between the univalent ions and the uranyl ion solution. The electrodes were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron microscopy (SEM). The results of the standard addition method were satisfactory with errors less than 7%. The developed electrode was found to be fast, sensitive and reliable indicated its potential use in measuring the uranly ion concentration in the field.

  8. Construction and performance characteristics of new ion selective electrodes based on carbon nanotubes for determination of meclofenoxate hydrochloride.

    PubMed

    El-Nashar, Rasha M; Abdel Ghani, Nour T; Hassan, Sherif M

    2012-06-12

    This work offers construction and comparative evaluation the performance characteristics of conventional polymer (I), carbon paste (II) and carbon nanotubes chemically modified carbon paste ion selective electrodes (III) for meclofenoxate hydrochloride are described. These electrodes depend mainly on the incorporation of the ion pair of meclofenoxate hydrochloride with phosphomolybdic acid (PMA) or phosphotungestic acid (PTA). They showed near Nernestian responses over usable concentration range 1.0 × 10(-5) to 1.0 × 10(-2)M with slopes in the range 55.15-59.74 mV(concentrationdecade)(-1). These developed electrodes were fully characterized in terms of their composition, response time, working concentration range, life span, usable pH and temperature range. The electrodes showed a very good selectivity for Meclo with respect to a large number of inorganic cations, sugars and in the presence of the degradation product of the drug (p-chloro phenoxy acetic acid). The standard additions method was applied to the determination of MecloCl in pure solution, pharmaceutical preparations and biological samples. Dissolution testing was also applied using the proposed sensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Fabrication of an electrochemical sensor based on spiropyran for sensitive and selective detection of fluoride ion.

    PubMed

    Tao, Jia; Zhao, Peng; Li, Yinhui; Zhao, Wenjie; Xiao, Yue; Yang, Ronghua

    2016-04-28

    In the past decades, numerous electrochemical sensors based on exogenous electroactive substance have been reported. Due to non-specific interaction between the redox mediator and the target, the instability caused by false signal may not be avoided. To address this issue, in this paper, a new electrochemical sensor based on spiropyran skeleton, namely SPOSi, was designed for specific electrochemical response to fluoride ions (F(-)). The breakage of Si-O induced by F(-) based on the specific nucleophilic substitution reaction between F(-) and silica would directly produce a hydroquinone structure for electrochemical signal generation. To improve the sensitivity, SPOSi probe was assembled on the single-walled carbon nanotubes (SWCNTs) modified glassy carbon electrode (GCE) through the π-π conjugating interaction. This electrode was successfully applied to monitor F(-) with a detection limit of 8.3 × 10(-8) M. Compared with the conventional F(-) ion selected electrode (ISE) which utilized noncovalent interaction, this method displays higher stability and a comparable sensitivity in the urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fast Potentiometric Analysis of Lead in Aqueous Medium under Competitive Conditions Using an Acridono-Crown Ether Neutral Ionophore.

    PubMed

    Golcs, Ádám; Horváth, Viola; Huszthy, Péter; Tóth, Tünde

    2018-05-03

    Lead is a particularly toxic heavy metal that is present above acceptable levels in the water of many countries. This article describes a quick detection method of lead(II) ions using a polyvinyl chloride (PVC)-based ion-selective membrane electrode containing an acridono-crown ether ionophore by potentiometry. The electrochemical cell exhibits a Nernstian response for lead(II) ions between the concentration range of 10 −4 to 10 −2 M, and can be used in the pH range of 4⁻7. The applicability of this sensor was verified by measuring a multicomponent aqueous sample. Under the given conditions, this electrode is suitable for the selective quantitative analysis of lead(II) ions in the presence of many additional metal ions.

  11. [Potentiometric concentration determination of cyanide ions in waste water].

    PubMed

    Börner, J; Martin, G; Götz, C

    1990-06-01

    Electrodic systems, consist of gold or silver and metals of the IV, or V, subsidiary groups of the periodic system of elements are qualified for that, because they based strength of their electrodic steepness, selectivity, potentionel stability and sensibility by destination of cyanid ions in waste-water. We are going to introduce a fast-analysis-method for cyanid ions in waste-water of technical processes, which had been tested practically by the continuous control of limits, demanded by the legislator.

  12. Determination of volatile bases in seafood using the ammonia ion selective electrode: collaborative study.

    PubMed

    Ellis, P C; Pivarnik, L F; Thiam, M; Ellis, P C; Pivarnik, L F; Thiam, M

    2000-01-01

    Nine collaborating laboratories tested a combination of 23 seafood samples for volatile bases using an ammonia ion selective electrode. Results were reported as mg NH3/100 g fish, but the method reflected levels of both ammonia and trimethylamine, which permeated the ammonia membrane. The 23 samples were broken down into 8 blind duplicate pairs, 2 Youden matched pairs, and 3 single samples covering fresh to spoiled product ranging from 8 to 82 mg NH3/100 g. Seven species were evaluated: Atlantic cod, squid, Atlantic halibut, gray sole, monkfish, dogfish, and Atlantic mackerel. The ammonia electrode assay was performed on an aqueous homogenate consisting of 95 mL distilled water and 5.0 g sample tissue. Alkaline ion strength adjusting solution (2 mL) was added to the homogenate to liberate ammonia that was sensed by the ion specific electrode and measured on a precalibrated portable meter. Repeatability standard deviations (RSDr) ranged from 4.2 to 17%; reproducibility standard deviations (RSDR) ranged from 8.8 to 21%. A standard ammonium chloride solution was provided to all laboratories to spike 3 different samples at 10 mg NH3/100 g. Recoveries of added ammonia as ammonium chloride for fresh, borderline, and spoiled samples were 88.6, 107, and 128%, respectively.

  13. Ion selective electrode for cesium based on 5-(4'-nitrophenylazo)25,27-bis(2-propyloxy)26,28-dihydroxycalix[4]arene.

    PubMed

    Ramanjaneyulu, P S; Singh, Parminder; Sayi, Y S; Chawla, H M; Ramakumar, K L

    2010-03-15

    A polyvinylchloride (PVC) based liquid membrane ion selective electrode (ISE) for cesium was fabricated with 5-(4'-nitrophenylazo)25,27-bis(2-propyloxy)26,28-dihydroxycalix[4]arene as ionophore. Different membrane constituents were investigated to realise optimum performance of the ISE developed. Of the four plasticizers and two ion additives studied, the best response was observed with membrane having 2-nitro phenyl octyl ether (oNPOE) as plasticizer and potassium tetrakis (perchloro phenyl) borate (KTpClPB) as ion additive. Linear response over concentration range of 10(-5)-10(-1)M CsCl was obtained. The Nernstian slope of the response was 56 mV per decade for Cs with a response time less than 20s. Matched potential method has been applied to find out the selectivity for Cs over several ions like Rb(+), K(+), Na(+), NH(4)(+), Sr(2+), Ba(2+), Ca(2+), Mg(2+), Cu(2+), Pb(2+), Zn(2+), Ni(2+) and Ce(3+). The response of ISE for Cs(+) was fairly constant over the pH range of 3-11. The lifetime of the electrode is 9 months which is the longest life for any membrane-based Cs-ISE so far developed. The concentration of cesium in two simulated high level active waste streams was determined and results agreed well with those obtained independently employing atomic absorption spectrometry. (c) 2009 Elsevier B.V. All rights reserved.

  14. Septonex-tetraphenylborate screen-printed ion selective electrode for the potentiometric determination of Septonex in pharmaceutical preparations.

    PubMed

    Mohamed, Gehad G; El-Shahat, M F; Al-Sabagh, A M; Migahed, M A; Ali, Tamer Awad

    2011-04-07

    A screen-printed electrode (SPE) was fabricated for the determination of 1-(ethoxycarbonyl)pentadecyltrimethylammonium bromide (Septonex) based on the use of Septonex-tetraphenylborate as the electroactive substance, and o-nitrophenyloctylether (o-NPOE) as the plasticizing agent. The electrode passes a near-Nernstian cationic slope of 59.33 ± 0.85 mV from activity between pH values of 2 to 9 with a lower detection limit of 9×10(-7) M and response time of about 5 s and exhibits an adequate shelf-life of 6 months. The method was applied for the determination of Septonex in pharmaceutical preparations. A percentage recovery of 99.88% was obtained with RSD=1.24%. The electrode was successfully applied in the determination of Septonex in laboratory-prepared samples by direct potentiometric, calibration curve and standard addition methods. Potentiometric titration of Septonex with sodium tetraphenylborate and phosphotungstic acid as a titrant was monitored with the modified screen-printed electrode as an end-point indicator electrode. Selectivity coefficients for Septonex relative to a number of potential interfering substances were determined. The sensor was highly selective for Septonex over a large number of compounds. Selectivity coefficient data for some common ions show negligible interference; however, cetyltrimethylammonium bromide and iodide ions interfere significantly. The analytical usefulness of the proposed electrode was evaluated by its application in the determination of Septonex in laboratory-prepared pharmaceutical samples with satisfactory results. The results obtained with the fabricated sensor are comparable with those obtained by the British Pharmacopeia method. © The Royal Society of Chemistry 2011

  15. Sensitive and selective determination of Cu2+ at D-penicillamine functionalized nano-cellulose modified pencil graphite electrode

    NASA Astrophysics Data System (ADS)

    Taheri, M.; Ahour, F.; Keshipour, S.

    2018-06-01

    A novel electrochemical sensor based on D-penicillamine anchored nano-cellulose (DPA-NC) modified pencil graphite electrode was fabricated and used for highly selective and sensitive determination of copper (II) ions in the picomolar concentration by square wave adsorptive stripping voltammetric (SWV) method. The modified electrode showed better and increased SWV response compared to the bare and NC modified electrodes which may be related to the porous structure of modifier along with formation of complex between Cu2+ ions and nitrogen or oxygen containing groups in DPA-NC. Optimization of various experimental parameters influence the performance of the sensor, were investigated. Under optimized condition, DPA-NC modified electrode was used for the analysis of Cu2+ in the concentration range from 0.2 to 50 pM, and a lower detection limit of 0.048 pM with good stability, repeatability, and selectivity. Finally, the practical applicability of DPA-NC-PGE was confirmed via measuring trace amount of Cu (II) in tap and river water samples.

  16. Ion distribution and selectivity of ionic liquids in microporous electrodes.

    PubMed

    Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong

    2017-05-07

    The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.

  17. Preparation of Fe2O3-Clorprenaline/Tetraphenylborate Nanospheres and Their Application as Ion Selective Electrode for Determination of Clorprenaline in Pork

    NASA Astrophysics Data System (ADS)

    Shao, Xintian; Zhang, Jing; Li, Donghui; Yue, Jingli; Chen, Zhenhua

    2016-04-01

    A novel modified ion selective electrode based on Fe2O3-clorprenaline/tetraphenylborate nanospheres (Fe2O3-CLPT NSs) as electroactive materials for the determination of clorprenaline hydrochloride (CLP) is described. The α-Fe2O3 nanoparticles (NPs) were prepared by hydrothermal synthesis, then self-assembled on CLP/tetraphenylborate (TPB) to form Fe2O3-CLPT NSs, which were used as a potentiometric electrode for analyte determination innovatively. The Fe2O3-CLPT NSs modified electrode exhibited a wider concentration range from 1.0 × 10-7 to 1.0 × 10-1 mol/L and a lower detection limit of 3.7 × 10-8 mol/L compared with unmodified electrodes. The selectivity of the modified electrode was evaluated by fixed interference method. The good performance of the modified electrode such as wide pH range (2.4-6.7), fast response time (15 s), and adequate lifetime (14 weeks) indicate the utility of the modified electrode for evaluation of CLP content in various real samples. Finally, the modified electrode was successfully employed to detect CLP in pork samples with satisfactory results. These results demonstrated the Fe2O3-CLPT NSs modified electrode to be a functional and convenient method to the field of potentiometry determination of CLP in real samples.

  18. Selective passive adsorption of nitrate with surfactant treated porous electrode and electrostatic regeneration

    NASA Astrophysics Data System (ADS)

    Oyarzun, Diego I.; Hemmatifar, Ali; Palko, James W.; Stadermann, Michael; Santiago, Juan G.; Stanford microfluidics lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Nitrate is an important pollutant in drinking water worldwide, and a number of methods exist for the removal of nitrate from water including ion exchange and reverse osmosis. However, these approaches suffer from a variety of disadvantages including the need for a regenerating brine supply and disposal of used brine for ion exchange and low water recovery ratio for reverse osmosis. We are researching and developing a form of capacitive deionization (CDI) for energy efficient desalination and selective removal of ionic toxins from water. In CDI an electrode is used to electrostatically trap ions in a pair of porous electrodes. Here, we demonstrate the use of high surface area activated carbon electrodes functionalized with ion exchange moieties for adsorption of nitrate from aqueous solution. Unlike a traditional ion exchanger, the functionalized surfaces can be repeatedly regenerated by the application of an electrostatic potential which displaces the bound NO3- while leaving an excess of electronic charge on the electrode. Trimethylammonium has an intrinsic selectivity, we are using this moiety to selectively remove nitrate over chloride. We performed adsorption/desorption cycles under several desorption voltages and ratios of concentrations.

  19. Ion-selective electrodes in organic elemental and functional group analysis: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selig, W.

    1977-11-08

    The literature on the use of ion-selective electrodes in organic elemental and functional group analysis is surveyed in some detail. The survey is complete through Chemical Abstracts, Vol. 83 (1975). 40 figures, 52 tables, 236 references.

  20. Harvesting polysulfides by sealing the sulfur electrode in a composite ion-selective net

    NASA Astrophysics Data System (ADS)

    Chen, Yazhou; Li, Zhong; Li, Xuekui; Zeng, Danli; Xu, Guodong; Zhang, Yunfeng; Sun, Yubao; Ke, Hanzhong; Cheng, Hansong

    2017-11-01

    A cathode was prepared by sealing a carbon supported sulfur electrode inside a composite ion-selective net made of carbon, binder and lithiated ionomer to restrict shuttling of polysulfide anionic species. As a result, the soluble polysulfide anions become unable to escape from the composite ion-selective films due to the electrostatic repulsion between the immobilized single ion conducting ionomers and the polysulfides with no dead angles. Experimentally, lithiated 4,4‧-difluoro bis(benzene sulfonyl)imide and PEG200 were copolymerized to form a polyether based single ion conducting polymer. The ionic conductivity of the blend film made of ionomer and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) at a mass ratio of 1:1 is 0.57 mS cm-1 at room temperature. The battery capacity with the sealed sulfur electrode is 1412 mAh g-1 at 0.5 C, 1041 mAh g-1 at 1.0 C, 873 mAh g-1 at 2.0 C and 614 mAh g-1 at 5.0 C, significantly better than the results with lithiated Nafion especially at high C rates. In addition, a long cycling test at 2 C for 500 cycles gives rise to a stable capacity of 800 mAh g-1. The intrinsic electrostatic repulsion between polysulfide anions and the negatively charged electrolyte film, together with the overall sealed electrode configuration, is responsible for blocking the shuttling of polysulfides effectively.

  1. Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring

    EPA Science Inventory

    Environmental Technology Verification Report for Instrumentation Northwest, Inc., Aquistar® TempHion Smart Sensor and Datalogger Nitrate-specific Ion-selective Electrode for Groundwater Remediation Monitoring

  2. Ion trap device

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  3. Simulation of Electric Potentials and Ion Motion in Planar Electrode Structures for Lossless Ion Manipulations (SLIM)

    DOE PAGES

    Garimella, Sandilya V. B; Ibrahim, Yehia M.; Webb, Ian K.; ...

    2014-09-26

    Here we report a conceptual study and computational evaluation of novel planar electrode Structures for Lossless Ion Manipulations (SLIM). Planar electrode SLIM devices were designed that allow for flexible ion confinement, transport and storage using a combination of RF and DC fields. Effective potentials can be generated that provide near ideal regions for confining ions in the presence of a gas. Ion trajectory simulations using SIMION 8.1 demonstrated the capability for lossless ion motion in these devices over a wide m/z range and a range of electric fields at low pressures (e.g. a few torr). More complex ion manipulations, e.g.more » turning ions by 90° and dynamically switching selected ion species into orthogonal channels, are also feasible. Lastly, the performance of SLIM devices at ~4 torr pressure for performing ion mobility based separations (IMS) is computationally evaluated and compared to initial experimental results, and both of which agree closely with experimental and theoretical IMS performance for a conventional drift tube design.« less

  4. Chemical multisensors with selective encapsulation of ion-selective membranes

    NASA Astrophysics Data System (ADS)

    Schwager, Felix J.; Bousse, Luc J.; Bowman, Lyn; Meindl, J. D.

    Chemical sensors fabricated with simultaneous wafer scale encapsulation of ion selective electrode mambranes are described. The sensors are miniature ion selective electrodes in chambers located on a silicon substrate. These chambers are made by anodically bonding to the silicon a no. 7740 pyrex glass wafer in which cavities were drilled. Pores with dimensions selectable from 50 microns upwards are opened in the roofs of the chambers by drilling with a CO2 laser. Each sensor die contains four cavities which are filled under reduced pressure with liquid membrane material which is subsequently polymerized. The transducers on the cavity floor are Ag/AgCl electrodes. Interconnects between the sensor chambers on each die and bonding pads are made in the silicon substrate.

  5. Selective crystallization with preferred lithium-ion storage capability of inorganic materials

    PubMed Central

    2012-01-01

    Lithium-ion batteries are supposed to be a key method to make a more efficient use of energy. In the past decade, nanostructured electrode materials have been extensively studied and have presented the opportunity to achieve superior performance for the next-generation batteries which require higher energy and power densities and longer cycle life. In this article, we reviewed recent research activities on selective crystallization of inorganic materials into nanostructured electrodes for lithium-ion batteries and discuss how selective crystallization can improve the electrode performance of materials; for example, selective exposure of surfaces normal to the ionic diffusion paths can greatly enhance the ion conductivity of insertion-type materials; crystallization of alloying-type materials into nanowire arrays has proven to be a good solution to the electrode pulverization problem; and constructing conversion-type materials into hollow structures is an effective approach to buffer the volume variation during cycling. The major goal of this review is to demonstrate the importance of crystallization in energy storage applications. PMID:22353373

  6. A coated-wire ion-selective electrode for ionic calcium measurements

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Arnaud, Sara; Madou, Marc; Joseph, Jose; Jina, Arvind

    1991-01-01

    A coated-wire ion-selective electrode for measuring ionic calcium was developed, in collaboration with Teknektron Sensor Development Corporation (TSDC). This coated wire electrode sensor makes use of advanced, ion-responsive polyvinyl chloride (PVC) membrane technology, whereby the electroactive agent is incorporated into a polymeric film. The technology greatly simplifies conventional ion-selective electrode measurement technology, and is envisioned to be used for real-time measurement of physiological and environment ionic constituents, initially calcium. A primary target biomedical application is the real-time measurement of urinary and blood calcium changes during extended exposure to microgravity, during prolonged hospital or fracture immobilization, and for osteoporosis research. Potential advanced life support applications include monitoring of calcium and other ions, heavy metals, and related parameters in closed-loop water processing and management systems. This technology provides a much simplified ionic calcium measurement capability, suitable for both automated in-vitro, in-vivo, and in-situ measurement applications, which should be of great interest to the medical, scientific, chemical, and space life sciences communities.

  7. Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.

    2013-07-01

    Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.

  8. Hydrothermal growth of CuO nanoleaf structures, and their mercuric ion detection application.

    PubMed

    Ibupoto, Z H; Khun, K; Willander, M

    2014-09-01

    Mercury is the hazardous heavy metal ion for the environment and the human being therefore its determination is very important and herein we describe the development of mercury ion sensor on the CuO nanoleaf like nanostructures using cetyltrimethylammonium bromide (CTAB) surfactant as template for the growth by hydrothermal growth method. Scanning electron microscopy and X-ray diffraction study has shown high density and good crystal quality of the fabricated CuO nanostructures respectively. The presented mercury ion sensor has detected the wide range of 1.0 x 10(-7) to 1.0 x 10(-1) M mercury ion concentrations with an acceptable Nernstian behaviour and a sensitivity of 30.1 ± 0.6 mV/decade. The proposed mercury ion sensor exhibited low detection limit of 1.0 x 10(-8) M and also a fast response time of less than 5 s. In addition, the presented mercury ion sensor has shown an excellent repeatability, reproducibility, stability and selectivity. Moreover, the mercury ion selective electrode based on CuO nanoleaves was tested as an indicator electrode in the potentiometric titration.

  9. Enhanced signal generation for use in the analysis of synthetic pyrethroids using chemical ionization tandem quadrupole ion trap mass spectrometry.

    PubMed

    Sichilongo, Kwenga

    2004-12-01

    Synthetic pyrethroids fragment extensively under electron ionization (EI) conditions to give low mass ions, most of them with the same m/z ratios. This fragmentation is primarily due to the labile ester linkage found in these compounds. In this research we established the best gas chromatography (GC) conditions in the EI mode that served as a benchmark in the development of a chemical ionization (CI) protocol for ten selected synthetic pyrethroids. Based on proton affinity data, several reagent gases were evaluated in the positive CI ionization mode. Methanol was found to produce higher average ion counts relative to the other gases evaluated, which led to the development of an optimized method consisting of selective ejection chemical ionization (SECI) and MS/MS. Standard stainless steel ion trap electrodes produced significant degradation of chromatographic performance on late eluting compounds, which was attributed to electrode surface chemistry. A dramatic improvement in signal-to-noise (S/N) ratios was observed when the chromatographically inert Silcosteel coated electrodes were used. The resulting method, that has significant S/N ratio improvements resulting from a combination of septum programmable injections (SPI), optimized CI and inert Silcosteel-coated electrodes, was used to determine instrument detection limits.

  10. A new ion selective electrode for cesium (I) based on calix[4]arene-crown-6 compounds.

    PubMed

    Ramanjaneyulu, P S; Kumar, Abha Naveen; Sayi, Y S; Ramakumar, K L; Nayak, S K; Chattopadhyay, S

    2012-02-29

    A polyvinylchloride (PVC) based liquid membrane ion selective electrode (ISE) for cesium has been developed. 25,27-Dihydroxycalix[4]arene-crown-6 (L1), 5,11,17,23-tetra-tert-butyl-25,27-dimethoxycalix[4]arene-crown-6 (L2) and 25,27-bis(1-octyloxy)calix[4]arene-crown-6 (L3) were investigated for their use as ionophores. The cation exchange resin DOWEX-50W was used to maintain low activity Cs+ in inner filling solution to improve the performance. The best response for cesium was observed with L3 along with optimized membrane constituents and composition. Excellent Nernstian response (56.6 mV/decade of Cs(I)) over the concentration range 10(-7) to 10(-2)M of Cs(I) was obtained with a fast response time of less than 10s. Detection limit for Cs(I) using the present ISE is 8.48×10(-8) M Cs(I). Separate solution method (SSM) was applied to ascertain the selectivity for Cs(I) over alkali, alkaline earth and transition metal ions. The response of ISE for Cs(I) was fairly constant over the pH range of 4-11. The lifetime of the electrode is 10 months which is the highest life for any membrane based Cs-ISE so far developed. The concentration of cesium ion in two simulated high level active waste streams was determined and results agreed well with those obtained independently employing AAS. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. CMOS compatible electrode materials selection in oxide-based memory devices

    NASA Astrophysics Data System (ADS)

    Zhuo, V. Y.-Q.; Li, M.; Guo, Y.; Wang, W.; Yang, Y.; Jiang, Y.; Robertson, J.

    2016-07-01

    Electrode materials selection guidelines for oxide-based memory devices are constructed from the combined knowledge of observed device operation characteristics, ab-initio calculations, and nano-material characterization. It is demonstrated that changing the top electrode material from Ge to Cr to Ta in the Ta2O5-based memory devices resulted in a reduction of the operation voltages and current. Energy Dispersed X-ray (EDX) Spectrometer analysis clearly shows that the different top electrode materials scavenge oxygen ions from the Ta2O5 memory layer at various degrees, leading to different oxygen vacancy concentrations within the Ta2O5, thus the observed trends in the device performance. Replacing the Pt bottom electrode material with CMOS compatible materials (Ru and Ir) further reduces the power consumption and can be attributed to the modification of the Schottky barrier height and oxygen vacancy concentration at the electrode/oxide interface. Both trends in the device performance and EDX results are corroborated by the ab-initio calculations which reveal that the electrode material tunes the oxygen vacancy concentration via the oxygen chemical potential and defect formation energy. This experimental-theoretical approach strongly suggests that the proper selection of CMOS compatible electrode materials will create the critical oxygen vacancy concentration to attain low power memory performance.

  12. Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection.

    PubMed

    Sartore, Luciana; Barbaglio, Marzia; Borgese, Laura; Bontempi, Elza

    2011-07-20

    A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These polymer grafted QCM sensors can selectively adsorb heavy metal ions, such as copper lead chrome and cadmium, from solution over a wide range from 0.01 to 1000 ppm concentration by complexation with functional groups in the polymers. Cations typically present in natural water did not interfere with the detection of heavy metals. X-Ray Reflectivity (XRR) and Total Reflection X-ray Fluorescence (TXRF) were carried out to characterise the unmodified and modified gold surfaces as well as to verify the possibility to selectively bond and remove metal ions.

  13. Portable, universal, and visual ion sensing platform based on the light emitting diode-based self-referencing-ion selective field-effect transistor.

    PubMed

    Zhang, Xiaowei; Han, Yanchao; Li, Jing; Zhang, Libing; Jia, Xiaofang; Wang, Erkang

    2014-02-04

    In this work, a novel and universal ion sensing platform was presented, which enables the visual detection of various ions with high sensitivity and selectivity. Coaxial potential signals (millivolt-scale) of the sample from the self-referencing (SR) ion selective chip can be transferred into the ad620-based amplifier with an output of volt-scale potentials. The amplified voltage is high enough to drive a light emitting diode (LED), which can be used as an amplifier and indicator to report the sample information. With this double amplification device (light emitting diode-based self-referencing-ion selective field-effect transistor, LED-SR-ISFET), a tiny change of the sample concentration can be observed with a distinguishable variation of LED brightness by visual inspection. This LED-based luminescent platform provided a facile, low-cost, and rapid sensing strategy without the need of additional expensive chemiluminescence reagent and instruments. Moreover, the SR mode also endows this device excellent stability and reliability. With this innovative design, sensitive determination of K(+), H(+), and Cl(-) by the naked eye was achieved. It should also be noticed that this sensing strategy can easily be extended to other ions (or molecules) by simply integrating the corresponding ion (or molecule) selective electrode.

  14. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat.

    PubMed

    Cinti, Stefano; Fiore, Luca; Massoud, Renato; Cortese, Claudio; Moscone, Danila; Palleschi, Giuseppe; Arduini, Fabiana

    2018-03-01

    The recent goal of sustainability in analytical chemistry has boosted the development of eco-designed analytical tools to deliver fast and cost-effective analysis with low economic and environmental impact. Due to the recent focus in sustainability, we report the use of low-cost filter paper as a sustainable material to print silver electrodes and to load reagents for a reagent-free electrochemical detection of chloride in biological samples, namely serum and sweat. The electrochemical detection of chloride ions was carried out by exploiting the reaction of the analyte (i.e. chloride) with the silver working electrode. During the oxidation wave in cyclic voltammetry the silver ions are produced, thus they react with chloride ions to form AgCl, while in the reduction wave, the following reaction occurs: AgCl + e - -->Ag + Cl - . These reactions at the electrode surface resulted in anodic/cathodic peaks directly proportional to the chloride ions in solution. Chloride ions were detected with the addition of only 10μL of the sample on the paper-based electrochemical cell, obtaining linearity up to 200mM with a detection limit equal to 1mM and relative standard deviation lower than 10%. The accuracy of the sensor was evaluated in serum and sweat samples, with percentage recoveries between 93 ± 10 and 108 ± 8%. Moreover, the results achieved with the paper-based device were positively compared with those obtained by using the gold standard method (Ion Selective Electrode) adopted in routine clinical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Introduction to polymer-based solid-contact ion-selective electrodes-basic concepts, practical considerations, and current research topics.

    PubMed

    Bieg, Christoph; Fuchsberger, Kai; Stelzle, Martin

    2017-01-01

    This review aims at providing an introductory overview for researchers new to the field of ion-selective electrodes. Both state of the art technology and novel developments towards solid-contact reference (sc-RE) and solid-contact ion selective electrodes (sc-ISE) are discussed. This technology has potentially widespread and important applications provided certain performance criteria can be met. We present basic concepts, operation principles, and theoretical considerations with regard to their function. Analytical performance and suitability of sc-RE and sc-ISE for a given application depend on critical parameters, which are discussed in this review. Comprehensive evaluation of sensor performance along this set of parameters is considered indispensable to allow for a well-founded comparison of different technologies. Methods and materials employed in the construction of sc-RE and sc-ISE, in particular the solid contact and the polymer membrane composite, are presented and discussed in detail. Operation principles beyond potentiometry are mentioned, which would further extend the field of ISE application. Finally, we conclude by directing the reader to important areas for further scientific research and development work considered particularly critical and promising for advancing this field in sensor R&D. Graphical Abstract ᅟ.

  16. Fiber optic based multiprobe system for intraoperative monitoring of brain functions

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Flamm, E. S.; Pennie, William; Chance, Britton

    1991-05-01

    Monitoring of brain functions during neurosurgical conditions have been made by various groups of investigators. Attempts were made to monitor EEG or evoked potentials, cerebral blood flow, mitochondrial redox state during various neurosurgical procedures. In order to monitor various functions of the brain we have developed a new multiprobe (MPA) assembly, based on fiber optic probes and ion selective electrodes, enabling the assessment of relative CBF, mitochondrial redox state (NADH fluorescence) and ion homeostasis in real-time, intraoperatively. The base features of the multiprobe assembly were described previously (A. Mayevsky, J. Appl. Physiol. 54, 740-748, 1983). The multiprobe holder (made of Delarin) contained a bundle of fibers transmitting light to and from the brain as well as 3 ion selective electrodes (K+%/, Ca(superscript 2+, Na+) combined with DC steady potential electrodes (Ag/AgCl). The common part of the light guide contained 2 groups of fibers. For the Laser Doppler flowmetry one input fiber and two output fibers were glued in a triangular shape and connected to the standard commercial plug of the Laser Doppler flowmeter. For the monitoring of NADH redox state 10 excitation and 10 emission fibers were randomly mixed between and around the fibers used for the Laser Doppler flowmetry. This configuration of the fibers enabled us to monitor CBF and NADH redox state from about the same tissue volume. The ion selective electrodes were connected to an Ag/AgCl electrode holders and the entire MPA was protected by a Plexiglass sleeve. Animal experiments were used for the verification of the methods and recording of typical responses to various pathological situations. The entire multiprobe assembly was sterilized by the standard gas sterilization routine and was checked for electrodes integrity and calibration inside the operation room 24 hours later. The MPA was located on the exposed human cortex using a micromanipulator and data collection started immediately after, using a micro computer based data acquisition system. After recording of baseline levels of CBF, NADH redox state and extracellular ion levels, the responses to CBF decrease (occlusions of a blood vessel) were recorded followed by the recovery period. A significant correlation between the CBF and NADH redox state changes was recorded. This approach enabled us to correlate this change in energy supply, to those of extracellular ion concentration. The preliminary results obtained suggest that the usage of the MPA in the operating room may have a significant contribution to the neurosurgeon as a routine diagnostic tool. It seems to us that a simplified MPA which will enable to monitor only the relative CBF, NADH redox state as well as extracellular K+ is more appropriate for future usage.

  17. Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism.

    PubMed

    Li, Xian-Qing; Liang, Hai-Qing; Cao, Zhong; Xiao, Qing; Xiao, Zhong-Liang; Song, Liu-Bin; Chen, Dan; Wang, Fu-Liang

    2017-03-01

    A simple and rapid mercury ion selective electrode based on 1-undecanethiol (1-UDT) assembled Au substrate (Au/1-UDT) has been well constructed. 1-UDT was for the purpose of generating self-assembled monolayer on gold surface to recognize Hg 2+ in aqueous solution, which had a working concentration range of 1.0×10 -8 -1.0×10 -4 molL -1 , with a Nernst response slope of 28.83±0.4mV/-pC, a detection limit of 4.5×10 -9 molL -1 , and a good selectivity over the other tested cations. Also, the Au/1-UDT possessed good reproducibility, stability, and short response time. The recovery obtained for the determination of mercury ion in practical tremella samples was in the range of 99.8-103.4%. Combined electrochemical analysis and X-ray photoelectron spectroscopy (XPS) with quantum chemical computation, the probable recognition mechanism of the electrode for selective recognition of Hg 2+ has been investigated. The covalent bond formed between mercury and sulfur is stronger than the one between gold and sulfur and thus prevents the adsorption of 1-UDT molecules on the gold surface. The quantum chemical computation with density functional theory further demonstrates that the strong interaction between the mercury atom and the sulfur atom on the gold surface leads to the gold sulfur bond ruptured and the gold mercury metallophilic interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Simple preparation and highly selective detection of silver ions using an electrochemical sensor based on sulfur-doped graphene and a 3,3',5,5'-tetramethylbenzidine composite modified electrode.

    PubMed

    Fu, Yang; Yang, Yajie; Tuersun, Tayierjiang; Yu, Yuan; Zhi, Jinfang

    2018-04-30

    A novel electrochemical sensor based on sulfur (S)-doped graphene (S-Gr) and a 3,3',5,5'-tetramethylbenzidine (TMB) composite (S-Gr-TMB) modified glassy carbon (GCE) electrode for highly selective quantitative detection of silver ions (Ag+) were fabricated. The S-Gr-TMB composite was first prepared via electrostatic interaction between TMB and S-Gr and then, the composite was coated on the surface of GCE. The resultant S-Gr-TMB/GCE electrode showed a significant voltammetric response to Ag+ at 0.3 V vs. Ag/AgCl due to the synergistic effect of S-Gr and TMB. The sensor showed good linearity from 50 μM to 400 μM with a detection limit of 2.15 μM towards the determination of Ag+. In addition, after the addition of Fe3+ and other metal ions, including Al3+, Ca2+, Cd2+, Co2+, Cu2+, K+, Mg2+, Na+, Ni2+, Pb2+ and Zn2+, in the same concentration, the current signal remained almost unchanged, revealing that the proposed electrochemical sensor exhibited a high selectivity for Ag+, which solves the nonselective problem of TMB as a spectral probe. This enhanced detection performance is attributed to two factors: (1) S-Gr has excellent electrical conductivity; (2) the coupling interactions between Ag-S are speculated to result in strengthened enrichment for Ag and good selective performance.

  19. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; Eck, Ernst R H van; Wang, Heng; Basak, Shibabrata; Li, Zhaolong; Wagemaker, Marnix

    2017-10-20

    Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode-electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte-electrode interface design for future all-solid-state batteries.

  20. Integrated Arrays of Ion-Sensitive Electrodes

    NASA Technical Reports Server (NTRS)

    Buehler, Martin; Kuhlman, Kimberly

    2003-01-01

    The figure depicts an example of proposed compact water-quality sensors that would contain integrated arrays of ion-sensitive electrodes (ISEs). These sensors would serve as electronic "tongues": they would be placed in contact with water and used to "taste" selected dissolved ions (that is, they would be used to measure the concentrations of the ions). The selected ions could be any or all of a variety of organic and inorganic cations and anions that could be regarded as contaminants or analytes, depending on the specific application. In addition, some of the ISEs could be made sensitive to some neutral analytes

  1. Samarium (III) Selective Membrane Sensor Based on Tin (IV) Boratophosphate

    PubMed Central

    Mittal, Susheel K.; Sharma, Harish Kumar; Kumar, Ashok S. K.

    2004-01-01

    A number of Sm (III) selective membranes of varying compositions using tin (IV) boratophosphate as electroactive material were prepared. Polyvinyl chloride, polystyrene and epoxy resin were used as binding materials. Membrane having composition of 40% exchanger and 60% epoxy resin exhibited best performance. This membrane worked well over a wide concentration range of 1×10-5M to 1×10-1 M of samarium ions with a Super-Nernstian slope of 40 mV/decade. It has a fast response time of less than 10 seconds and can be used for at least six months without any considerable divergence in potentials. The proposed sensor revealed good selectivities with respect to alkali, alkaline earth, some transition and rare earth metal ions and can be used in the pH range of 4.0-10.0. It was used as an indicator electrode in the potentiometric titration of Sm (III) ions against EDTA. Effect of internal solution was studied and the electrode was successfully used in non-aqueous media, too.

  2. Laboratory Evaluation of Ion-Selective Electrodes for Simultaneous Analysis of Macronutrients in Hydroponic Solution

    USDA-ARS?s Scientific Manuscript database

    Automated sensing of macronutrients in hydroponic solution would allow more efficient management of nutrients for crop growth in closed hydroponic systems. Ion-selective microelectrode technology requires an ion-selective membrane or a solid metal material that responds selectively to one analyte in...

  3. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  4. A novel EIS field effect structures coated with TESUD-PPy-PVC-dibromoaza[7]helicene matrix for potassium ions detection.

    PubMed

    Tounsi, Moncef; Ben Braiek, Mourad; Barhoumi, Houcine; Baraket, Abdoullatif; Lee, Michael; Zine, Nadia; Maaref, Abderrazak; Errachid, Abdelhamid

    2016-04-01

    In this work, we describe the development of new Aza[7]helicene-containing PVC-based membranes for the K(+) ions quantification. Here, silicon nitride-based structures (Si-p/SiO2/Si3N4) were developed and the surface was activated, functionalized with an aldehyde-silane (11-(Triethoxysilyl)undecanal (TESUD)), functionalized with polypyrrole (PPy), and coated with the polyvinylchloride (PVC)-membrane containing the Aza[7]helicene as ionophore. All stages of functionalization process have been thoroughly studied by contact angle measurements (CAMs) and atomic force microscopy (AFM). The developed ion-selective electrode (ISE) was then applied using electrochemical impedance spectroscopy (EIS) for the detection of potassium ions. A linear range was observed between 1.0 × 10(-8) M to 1.0 × 10(-3) M and a detection limit of 1.0 × 10(-8) M was observed. The EIS results have showed a good sensitivity to potassium ion using this novel technique. The target helicene exhibited good solubility and excellent thermal stability with a high decomposition temperature (Td > 300 °C) and it indicates that helicene may be a promising material as ionophore for ion-selective electrodes (ISEs) elaboration. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. In-situ imaging of chloride ions at the metal/solution interface by scanning combination microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.J.; Du, R.G.; Nguyen, T.

    2000-01-01

    Combination solid silver-silver chloride (Ag-AgCl) and liquid membrane Cl{sup {minus}} ion-selective microelectrodes were designed and constructed. These microelectrodes, which had a micrometer-sized tip, contained two compartments: one served as the reference electrode and the other as the Cl{sup {minus}} ion-selective electrode. The microelectrodes were used to map in-situ Cl{sup {minus}} ion distribution in several localized corrosion systems. When used with a computerized scanning stage, the microelectrodes provided information on the distribution of Cl{sup {minus}} ions near the metal/electrolyte interface. Cl{sup {minus}} ions were observed migrating toward and accumulating near the anodic region forming a Cl{sup {minus}}ion-rich island on the metalmore » surface. Scanning combination Cl{sup {minus}} ion-selective microelectrodes may provide a useful tool for mechanistic studies of localized corrosion.« less

  6. Automatic Gain Control in Mass Spectrometry using a Jet Disrupter Electrode in an Electrodynamic Ion Funnel

    PubMed Central

    Page, Jason S.; Bogdanov, Bogdan; Vilkov, Andrey N.; Prior, David C.; Buschbach, Michael A.; Tang, Keqi; Smith, Richard D.

    2007-01-01

    We report on the use of a jet disrupter electrode in an electrodynamic ion funnel as an electronic valve to regulate the intensity of the ion beam transmitted through the interface of a mass spectrometer in order to perform automatic gain control (AGC). The ion flux is determined by either directly detecting the ion current on the conductance limiting orifice of the ion funnel or using a short mass spectrometry acquisition. Based upon the ion flux intensity, the voltage of the jet disrupter is adjusted to alter the transmission efficiency of the ion funnel to provide a desired ion population to the mass analyzer. Ion beam regulation by an ion funnel is shown to provide control to within a few percent of a targeted ion intensity or abundance. The utility of ion funnel AGC was evaluated using a protein tryptic digest analyzed with liquid chromatography Fourier transform ion cyclotron resonance (LC-FTICR) mass spectrometry. The ion population in the ICR cell was accurately controlled to selected levels, which improved data quality and provided better mass measurement accuracy. PMID:15694774

  7. Analytical application of solid contact ion-selective electrodes for determination of copper and nitrate in various food products and drinking water.

    PubMed

    Wardak, Cecylia; Grabarczyk, Malgorzata

    2016-08-02

    A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.

  8. Ruggedized downhole tool for real-time measurements and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Ryan Falcone; Lindblom, Scott C.; Yelton, William G.

    The present invention relates to ruggedized downhole tools and sensors, as well as uses thereof. In particular, these tools can operate under extreme conditions and, therefore, allow for real-time measurements in geothermal reservoirs or other potentially harsh environments. One exemplary sensor includes a ruggedized ion selective electrode (ISE) for detecting tracer concentrations in real-time. In one embodiment, the ISE includes a solid, non-conductive potting material and an ion selective material, which are disposed in a temperature-resistant electrode body. Other electrode configurations, tools, and methods are also described.

  9. PVC membrane, coated-wire, and carbon-paste ion-selective electrodes for potentiometric determination of galantamine hydrobromide in physiological fluids.

    PubMed

    Abdel-Haleem, Fatehy M; Saad, Mohamed; Barhoum, Ahmed; Bechelany, Mikhael; Rizk, Mahmoud S

    2018-08-01

    We report on highly-sensitive ion-selective electrodes (ISEs) for potentiometric determining of galantamine hydrobromide (GB) in physiological fluids. Galantamine hydrobromide (GB) was selected for this study due to its previous medical importance for treating Alzheimer's disease. Three different types of ISEs were investigated: PVC membrane electrode (PVCE), carbon-paste electrode (CPE), and coated-wire electrode (CWE). In the construction of these electrodes, galantaminium-reineckate (GR) ion-pair was used as a sensing species for GB in solutions. The modified carbon-paste electrode (MCPE) was prepared using graphene oxide (MCPE-GO) and sodium tetrakis (trifluoromethyl) phenyl borate (MCPE-STFPB) as ion-exchanger. The potentiometric modified CPEs (MCPE-GO and MCPE-STFPB) show an improved performance in term of Nernstian slope, selectivity, response time, and response stability compared to the unmodified CPE. The prepared electrodes PVCE, CWE, CPE, MCPE-GO and MCPE-STFPB show Nernstian slopes of 59.9, 59.5, 58.1, 58.3 and 57.0 mV/conc. decade, and detection limits of 5.0 × 10 -6 , 6.3 × 10 -6 , 8.0 × 10 -6 , 6.0 × 10 -6 and 8.0 × 10 -6  mol L -1 , respectively. The prepared ISEs also show high selectivity against cations (i.e. Na + , K + , NH 4 + , Ca 2+ , Al 3+ , Fe 3+ ), amino acids (i.e. glycine, L-alanine alanine), and sugars (i.e. fructose, glucose, maltose, lactose). The prepared ISEs are applicable for determining GB in spiked serums, urines, and pharmaceutical preparations, using a standard addition and a direct potentiometric method. The fast response time (<10 s), long lifetime (1-5 weeks), reversibility and stability of the measured signals facilitate the application of these sensors for routine analysis of the real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A Ho(III) potentiometric polymeric membrane sensor based on a new four dentate neutral ion carrier.

    PubMed

    Zamani, Hassan Ali; Zanganeh-Asadabadi, Abbas; Rohani, Mitra; Zabihi, Mohammad Saleh; Fadaee, Javad; Ganjali, Mohammad Reza; Faridbod, Farnoush; Meghdadi, Soraia

    2013-03-01

    In this research, we report a new Ho(3+)-PVC membrane electrode based on N-(4,5-dimethyl-2-(picolinamido)phenyl)picolinamide (H(2)Me(2)bpb) as a suitable ion carrier. Poly vinylchloride (PVC)-based membrane composed of H(2)Me(2)bpb with oleic acid (OA) as anionic additives, and o-nitrophenyloctyl ether (NPOE) as plasticized solvent mediator. The sensor exhibits a Nernstian slope of 20.1 ± 0.2 mV decade(-1) over the concentration range of 1.0 × 10(-6) to 1.0 × 1(-2) mol L(-1), and a detection limit of 5.0 × 10(-7) mol L(-1) of Ho(3+) ions. The potentiometric response of the sensor is independent of the solution pH in the range of 3.5-9.4. It has a very short response time, in the whole concentration range (<10s), and can be used for at least eight weeks. The proposed electrode shows a good selectivity towards Ho(3+) ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. To assess its analytical applicability the proposed Ho(3+) sensor was successfully applied as an indicator electrode in the titration of Ho(3+) ion solutions in certified reference materials, alloy samples and for the determination of the fluoride ion in two mouthwash preparations. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Design and construction of new potentiometric sensors for determination of Al3+ ion based on (Z)-2-(2-methyl benzylidene)-1-(2,4-dinitrophenyl) hydrazine.

    PubMed

    Mizani, F; Salmanzadeh Ardabili, S; Ganjaliab, M R; Faridbod, F; Payehghadr, M; Azmoodeh, M

    2015-04-01

    (Z)-2-(2-methyl benzylidene)-1-(2,4-dinitrophenyl) hydrazine (L) was used as an active component of PVC membrane electrode (PME), coated graphite electrode (CGE) and coated silver wire electrode (CWE) for sensing Al(3+) ion. The electrodes exhibited linear Nernstian responses to Al(3+) ion in the concentration range of 1.0×10(-6) to 1.0×10(-1)M (for PME, LOD=8.8×10(-7)M), 5.5×10(-7) to 2.0×10(-1)M (for CWE, LOD=3.3×10(-7)M) and 1.5×10(-7) to 1.0×10(-1)M (for CGE, LOD=9.2×10(-8)M). The best performances were observed with the membranes having the composition of L:PVC:NPOE:NaTPB in the ratio of 5:35:57:3 (w/w; mg). The electrodes have a response time of 6s and an applicable pH range of 3.5-9.1. The sensors have a lifetime of about 15weeks and exhibited excellent selectivity over a number of mono-, bi-, and tri-valent cations including alkali, alkaline earth metal, heavy and transition metal ions. Analytical utility of the proposed sensor has been further tested by using it as an indicator electrode in the potentiometric titration of Al(3+) with EDTA. The electrode was also successfully applied for the determination of Al(3+) ion in real and pharmaceutical samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Electrochemically Switchable Polymeric Membrane Ion-Selective Electrodes.

    PubMed

    Zdrachek, Elena; Bakker, Eric

    2018-06-07

    We present here for the first time a solid contact ion-selective electrode suitable for the simultaneous sensing of cations (tetrabutylammonium) and anions (hexafluorophosphate), achieved by electrochemical switching. The membrane is based on a thin plasticized polyurethane membrane deposited on poly(3-octylthiophene) (POT) and contains a cation exchanger and lipophilic electrolyte (ETH 500). The cation exchanger is initially in excess; the ion-selective electrode exhibits an initial potentiometric response to cations. During an oxidative current pulse, POT is converted into POT + , which results in the expulsion of cations from the membrane followed by the extraction of anions from the sample solution to fulfill the electroneutrality condition. This creates a defined excess of lipophilic cation in the membrane, resulting in a potentiometric anion response. A reductive current pulse restores the original cation response by triggering the conversion of POT + back into POT, which is accompanied by the expulsion of anions from the membrane and the extraction of cations from the sample solution. Various current pulse magnitudes and durations are explored, and the best results in terms of response slope values and signal stability were observed with an oxidation current pulse of 140 μA cm -2 applied for 8 s and a reduction current pulse of -71 μA cm -2 applied for 8 s.

  13. Calcium-selective electrodes based on photo-cured polyurethane-acrylate membranes covalently attached to methacrylate functionalized poly(3,4-ethylenedioxythiophene) as solid-contact.

    PubMed

    Ocaña, Cristina; Abramova, Natalia; Bratov, Andrey; Lindfors, Tom; Bobacka, Johan

    2018-08-15

    We report here the fabrication of solid-contact calcium-selective electrodes (Ca 2+ -SCISEs) made of a polyurethane acrylate ion-selective membrane (ISM) that was covalently attached to the underlying ion-to-electron transducer (solid-contact). Methacrylate-functionalized poly(3,4-ethylenedioxythiophene) (Meth-PEDOT) and Meth-PEDOT films containing either multiwalled carbon nanotubes (MWCNT) or carboxylated MWCNT (cMWCNT) were used as solid contacts. The solid contacts were deposited by drop-casting on screen-printed electrodes and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and potentiometry. Covalent binding between the solid contact and the ISM was obtained via photopolymerization in order to increase the robustness of the Ca 2+ -SCISEs. The performance of the Ca 2+ -SCISEs was studied by measuring their potentiometric response and their sensitivity to light, oxygen and carbon dioxide. Meth-PEDOT was found to be a promising solid-contact material to develop low-cost and easy to prepare ISEs. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Carbon Dioxide Gas Sensors and Method of Manufacturing and Using Same

    NASA Technical Reports Server (NTRS)

    Liu, Chung Chiun (Inventor); Ward, Benjamin J. (Inventor); Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor)

    2011-01-01

    A gas sensor includes a substrate and a pair of interdigitated metal electrodes selected from the group consisting of Pt, Pd, Au, Ir, Ag, Ru, Rh, In, and Os. The electrodes each include an upper surface. A first solid electrolyte resides between the interdigitated electrodes and partially engages the upper surfaces of the electrodes. The first solid electrolyte is selected from the group consisting of NASICON, LISICON, KSICON, and .beta.''-Alumina (beta prime-prime alumina in which when prepared as an electrolyte is complexed with a mobile ion selected from the group consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+). A second electrolyte partially engages the upper surfaces of the electrodes and engages the first solid electrolyte in at least one point. The second electrolyte is selected from the group of compounds consisting of Na.sup.+, K.sup.+, Li.sup.+, Ag.sup.+, H.sup.+, Pb.sup.2+, Sr.sup.2+ or Ba.sup.2+ ions or combinations thereof.

  15. Selective observation of charge storing ions in supercapacitor electrode materials.

    PubMed

    Forse, Alexander C; Griffin, John M; Grey, Clare P

    2018-02-01

    Nuclear magnetic resonance (NMR) spectroscopy has emerged as a useful technique for probing the structure and dynamics of the electrode-electrolyte interface in supercapacitors, as ions inside the pores of the carbon electrodes can be studied separately from bulk electrolyte. However, in some cases spectral resolution can limit the information that can be obtained. In this study we address this issue by showing how cross polarisation (CP) NMR experiments can be used to selectively observe the in-pore ions in supercapacitor electrode materials. We do this by transferring magnetisation from 13 C nuclei in porous carbons to nearby nuclei in the cations ( 1 H) or anions ( 19 F) of an ionic liquid. Two-dimensional NMR experiments and CP kinetics measurements confirm that in-pore ions are located within Ångströms of sp 2 -hybridised carbon surfaces. Multinuclear NMR experiments hold promise for future NMR studies of supercapacitor systems where spectral resolution is limited. Copyright © 2017 University of Cambridge. Published by Elsevier Inc. All rights reserved.

  16. Ion and Bio-Selective Membrane Electrodes.

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1983-01-01

    Discusses topics on membrane electrodes corresponding to approximately six hours of lecture time. These include glass, liquid, crystal, gas-sensing membrane electrodes as well as enzyme and other bioselective membrane electrodes. Instructional strategies and other topics which might be discussed are provided. (JN)

  17. Indirect Determination of Mercury Ion by Inhibition of a Glucose Biosensor Based on ZnO Nanorods

    PubMed Central

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-01-01

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10−6 mM to 0.5 × 10−4 mM, and from 0.5 × 10−4 mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10−3 mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users. PMID:23202200

  18. Indirect determination of mercury ion by inhibition of a glucose biosensor based on ZnO nanorods.

    PubMed

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-11-06

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10(-6) mM to 0.5 × 10(-4) mM, and from 0.5 × 10(-4) mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10(-3) mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users.

  19. Ruthenium oxide ion selective thin-film electrodes for engine oil acidity monitoring

    NASA Astrophysics Data System (ADS)

    Maurya, D. K.; Sardarinejad, A.; Alameh, K.

    2015-06-01

    We demonstrate the concept of a low-cost, rugged, miniaturized ion selective electrode (ISE) comprising a thin film RuO2 on platinum sensing electrode deposited using RF magnetron sputtered in conjunction with an integrated Ag/AgCl and Ag reference electrodes for engine oil acidity monitoring. Model oil samples are produced by adding nitric acid into fresh fully synthetic engine oil and used for sensor evaluation. Experimental results show a linear potential-versus-acid-concentration response for nitric acid concentration between 0 (fresh oil) to 400 ppm, which demonstrate the accuracy of the RuO2 sensor in real-time operation, making it attractive for use in cars and industrial engines.

  20. Direct evidence of ionic fluxes across ion-selective membranes: a scanning electrochemical microscopic and potentiometric study.

    PubMed

    Gyurcsányi, R E; Pergel, E; Nagy, R; Kapui, I; Lan, B T; Tóth, K; Bitter, I; Lindner, E

    2001-05-01

    Scanning electrochemical microscopy (SECM) supplemented with potentiometric measurements was used to follow the time-dependent buildup of a steady-state diffusion layer at the aqueous-phase boundary of lead ion-selective electrodes (ISEs). Differential pulse voltammetry is adapted to SECM for probing the local concentration profiles at the sample side of solvent polymeric membranes. Major factors affecting the membrane transport-related surface concentrations were identified from SECM data and the potentiometric transients obtained under different experimental conditions (inner filling solution composition, membrane thickness, surface pretreatment). The amperometrically determined surface concentrations correlated well with the lower detection limits of the lead ion-selective electrodes.

  1. Integrated potentiometric detector for use in chip-based flow cells

    PubMed

    Tantra; Manz

    2000-07-01

    A new kind of potentiometric chip sensor for ion-selective electrodes (ISE) based on a solvent polymeric membrane is described. The chip sensor is designed to trap the organic cocktail inside the chip and to permit sample solution to flow past the membrane. The design allows the sensor to overcome technical problems of ruggedness and would therefore be ideal for industrial processes. The sensor performance for a Ba2+-ISE membrane based on a Vogtle ionophore showed electrochemical behavior similar to that observed in conventional electrodes and microelectrode arrangements.

  2. Kinetic Modulation of Pulsed Chrono-potentiometric Polymeric Membrane Ion Sensors by Polyelectrolyte Multilayers

    PubMed Central

    Xu, Yida; Xu, Chao; Shvarev, Alexey; Becker, Thomas; De Marco, Roland

    2010-01-01

    Polymeric membrane ion selective electrodes are normally interrogated by zero current potentiometry, and their selectivity is understood to be primarily dependent on an extraction/ion-exchange equilibrium between the aqueous sample and polymeric membrane. If concentration gradients in the contacting diffusion layers are insubstantial, the membrane response is thought to be rather independent of kinetic processes such as surface blocking effects. In this work, the surface of calcium-selective polymeric ion-selective electrodes is coated with polyelectrolyte multilayers as evidenced by zeta potential measurements, atomic force microscopy and electrochemical impedance spectroscopy. Indeed, such multilayers have no effect on their potentiometric response if the membranes are formulated in a traditional manner, containing a lipophilic ion-exchanger and a calcium-selective ionophore. However, drastic changes in the potential response are observed if the membranes are operated in a recently introduced kinetic mode using pulsed chronopotentiometry. The results suggest that the assembled nanostructured multilayers drastically alter the kinetics of ion transport to the sensing membrane, making use of the effect that polyelectrolyte multilayers have different permeabilities toward ions with different valences. The results have implications to the design of chemically selective ion sensors since surface localized kinetic limitations can now be used as an additional dimension to tune the operational ion selectivity. PMID:17711298

  3. Highly Sensitive Aluminium(III) Ion Sensor Based on a Self-assembled Monolayer on a Gold Nanoparticles Modified Screen-printed Carbon Electrode.

    PubMed

    See, Wong Pooi; Heng, Lee Yook; Nathan, Sheila

    2015-01-01

    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.

  4. Electrochemical Sensing and Imaging Based on Ion Transfer at Liquid/Liquid Interfaces

    PubMed Central

    Amemiya, Shigeru; Kim, Jiyeon; Izadyar, Anahita; Kabagambe, Benjamin; Shen, Mei; Ishimatsu, Ryoichi

    2013-01-01

    Here we review the recent applications of ion transfer (IT) at the interface between two immiscible electrolyte solutions (ITIES) for electrochemical sensing and imaging. In particular, we focus on the development and recent applications of the nanopipet-supported ITIES and double-polymer-modified electrode, which enable the dynamic electrochemical measurements of IT at nanoscopic and macroscopic ITIES, respectively. High-quality IT voltammograms are obtainable using either technique to quantitatively assess the kinetics and dynamic mechanism of IT at the ITIES. Nanopipet-supported ITIES serves as an amperometric tip for scanning electrochemical microscopy to allow for unprecedentedly high-resolution electrochemical imaging. Voltammetric ion sensing at double-polymer-modified electrodes offers high sensitivity and unique multiple-ion selectivity. The promising future applications of these dynamic approaches for bioanalysis and electrochemical imaging are also discussed. PMID:24363454

  5. Pulsed discharge ionization source for miniature ion mobility spectrometers

    DOEpatents

    Xu, Jun; Ramsey, J. Michael; Whitten, William B.

    2004-11-23

    A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.

  6. Membrane Bioprobe Electrodes

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  7. Construction and performance characteristics of polymeric membrane electrode and coated graphite electrode for the selective determination of Fe³⁺ ion.

    PubMed

    Bandi, Koteswara Rao; Singh, Ashok K; Upadhyay, Anjali

    2014-03-01

    Novel Fe(3+) ion-selective polymeric membrane electrodes (PMEs) were prepared using three different ionophores N-(4-(dimethylamino)benzylidene)thiazol-2-amine [L1], 5-((3-methylthiophene-2yl) methyleneamino)-1,3,4-thiadiazole-2-thiol [L2] and N-((3-methylthiophene-2yl)methylene)thiazol-2-amine [L3] and their potentiometric characteristics were discussed. Effect of various plasticizers and anion excluders was also studied in detail and improved performance was observed. The best performance was obtained for the membrane electrode having a composition of L2:PVC:o-NPOE:NaTPB as 3:38.5:56:2.5 (w/w; mg). A coated graphite electrode (CGE) was also prepared with the same composition and compared. CGE is found to perform better as it shows a wider working concentration range of 8.3×10(-8)-1.0×10(-1)molL(-1), a lower detection limit of 2.3×10(-8)molL(-1), and a near Nernstian slope of 19.5 ± 0.4 mVdecade(-1) of activity with a response time of 10s. The CGE shows a shelf life of 6 weeks and in view of high selectivity, it can be used to quantify Fe(3+) ion in water, soil, vegetable and medicinal plants. It can also be used as an indicator electrode in potentiometric titration of EDTA with Fe(3+) ion. Copyright © 2013. Published by Elsevier B.V.

  8. An ion-selective electrode method for determination of chlorine in geological materials

    USGS Publications Warehouse

    Aruscavage, P. J.; Campbell, E.Y.

    1983-01-01

    A method is presented for the determination of chlorine in geological materials, in which a chloride-selective ion electrode is used after decomposition of the sample with hydrofluoric acid and separation of chlorine in a gas-diffusion cell. Data are presented for 30 geological standard materials. The relative standard deviation of the method is estimated to be better than 8% for amounts of chloride of 10 ??g and greater. ?? 1983.

  9. Thermally Regenerative Battery with Intercalatable Electrodes and Selective Heating Means

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor); Narayanan, Sekharipuram R. (Inventor); Hickey, Gregory S. (Inventor)

    2000-01-01

    The battery contains at least one electrode such as graphite that intercalates a first species from the electrolyte disposed in a first compartment such as bromine to form a thermally decomposable complex during discharge. The other electrode can also be graphite which supplies another species such as lithium to the electrolyte in a second electrode compartment. The thermally decomposable complex is stable at room temperature but decomposes at elevated temperatures such as 50 C. to 150 C. The electrode compartments are separated by a selective ion permeable membrane that is impermeable to the first species. Charging is effected by selectively heating the first electrode.

  10. Residual water bactericide monitor development program

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A silver-ion bactericidal monitor is considered for the Space Shuttle Potable Water System. Potentiometric measurement using an ion-selective electrode is concluded to be the most feasible of available techniques. Four commercially available electrodes and a specially designed, solid-state, silver-sulfide electrode were evaluated for their response characteristics and suitability for space use. The configuration of the solid-state electrode with its Nernstian response of 10 to 10,000 ppb silver shows promise for use in space. A pressurized double-junction reference electrode with a quartz-fiber junction and a replaceable bellows electrolyte reservoir was designed verification-tested, and paired with a solid-state silver-sulfide electrode in a test fixture.

  11. Ion-selective electrodes in potentiometric titrations; a new method for processing and evaluating titration data.

    PubMed

    Granholm, Kim; Sokalski, Tomasz; Lewenstam, Andrzej; Ivaska, Ari

    2015-08-12

    A new method to convert the potential of an ion-selective electrode to concentration or activity in potentiometric titration is proposed. The advantage of this method is that the electrode standard potential and the slope of the calibration curve do not have to be known. Instead two activities on the titration curve have to be estimated e.g. the starting activity before the titration begins and the activity at the end of the titration in the presence of large excess of titrant. This new method is beneficial when the analyte is in a complexed matrix or in a harsh environment which affects the properties of the electrode and the traditional calibration procedure with standard solutions cannot be used. The new method was implemented both in a method of linearization based on the Grans's plot and in determination of the stability constant of a complex and the concentration of the complexing ligand in the sample. The new method gave accurate results when using titrations data from experiments with samples of known composition and with real industrial harsh black liquor sample. A complexometric titration model was also developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Note: Ion source design for ion trap systems

    NASA Astrophysics Data System (ADS)

    Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.

    2013-06-01

    A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.

  13. Periodic pulses of calcium ions in a chemical system.

    PubMed

    Kurin-Csörgei, Krisztina; Epstein, Irving R; Orban, Miklós

    2006-06-22

    By coupling the bromate-sulfite-ferrocyanide oscillating chemical reaction with the complexation of calcium ion by EDTA, we construct a system that generates periodic pulses of free Ca(2+) with an amplitude of 2 orders of magnitude and a period of ca. 20 min. These pulses may be observed either with a calcium ion-selective electrode or with Arsenazo(III) as an indicator. We describe the systematic design procedure and the properties of this first abiotic calcium-based chemical oscillator.

  14. A single-walled carbon nanotube thin film-based pH-sensing microfluidic chip.

    PubMed

    Li, Cheng Ai; Han, Kwi Nam; Pham, Xuan-Hung; Seong, Gi Hun

    2014-04-21

    A novel microfluidic pH-sensing chip was developed based on pH-sensitive single-walled carbon nanotubes (SWCNTs). In this study, the SWCNT thin film acted both as an electrode and a pH-sensitive membrane. The potentiometric pH response was observed by electronic structure changes in the semiconducting SWCNTs in response to the pH level. In a microfluidic chip consisting of a SWCNT pH-sensing working electrode and an Ag/AgCl reference electrode, the calibration plot exhibited promising pH-sensing performance with an ideal Nernstian response of 59.71 mV pH(-1) between pH 3 and 11 (standard deviation of the sensitivity is 1.5 mV pH(-1), R(2) = 0.985). Moreover, the SWCNT electrode in the microfluidic device showed no significant variation at any pH value in the range of the flow rate between 0.1 and 15 μl min(-1). The selectivity coefficients of the SWCNT electrode revealed good selectivity against common interfering ions.

  15. An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes

    PubMed Central

    Deveau, Jason S.T.; Grodzinski, Bernard

    2005-01-01

    We describe an improved, efficient and reliable method for the vapour-phase silanization of multi-barreled, ion-selective microelectrodes of which the silanized barrel(s) are to be filled with neutral liquid ion-exchanger (LIX). The technique employs a metal manifold to exclusively and simultaneously deliver dimethyldichlorosilane to only the ion-selective barrels of several multi-barreled microelectrodes. Compared to previously published methods the technique requires fewer procedural steps, less handling of individual microelectrodes, improved reproducibility of silanization of the selected microelectrode barrels and employs standard borosilicate tubing rather than the less-conventional theta-type glass. The electrodes remain stable for up to 3 weeks after the silanization procedure. The efficacy of a double-barreled electrode containing a proton ionophore in the ion-selective barrel is demonstrated in situ in the leaf apoplasm of pea (Pisum) and sunflower (Helianthus). Individual leaves were penetrated to depth of ~150 μm through the abaxial surface. Microelectrode readings remained stable after multiple impalements without the need for a stabilizing PVC matrix. PMID:16136222

  16. Ion Trap Array-Based Systems And Methods For Chemical Analysis

    DOEpatents

    Whitten, William B [Oak Ridge, TN; Ramsey, J Michael [Knoxville, TN

    2005-08-23

    An ion trap-based system for chemical analysis includes an ion trap array. The ion trap array includes a plurality of ion traps arranged in a 2-dimensional array for initially confining ions. Each of the ion traps comprise a central electrode having an aperture, a first and second insulator each having an aperture sandwiching the central electrode, and first and second end cap electrodes each having an aperture sandwiching the first and second insulator. A structure for simultaneously directing a plurality of different species of ions out from the ion traps is provided. A spectrometer including a detector receives and identifies the ions. The trap array can be used with spectrometers including time-of-flight mass spectrometers and ion mobility spectrometers.

  17. Electrochemical Sensor Based on Rh(III) Ion-Imprinted Polymer as a New Modifying Agent for Rhodium Determination.

    PubMed

    Bai, Huiping; Xiong, Caiyun; Wang, Chunqiong; Liu, Peng; Dong, Su; Cao, Qiue

    2018-05-01

    A rhodium (III) ion carbon paste electrode (CPE) based on an ion imprinted polymer (IIP) as a new modifying agent has been prepared and studied. Rh(III) ion imprinted polymer was synthesized by copolymerization of acrylamide-Rh(III) complex and ethylene glycol dimethacrylate according to the precipitation polymerization. Acrylamide acted as both functional monomer and complexing agent to create selective coordination sites in a cross-linked polymer. The ion imprinted carbon paste electrode (IIP-CPE) was prepared by mixing rhodium IIP-nanoparticles and graphite powder in n-eicosane as an adhesive and then embedding them in a Teflon tube. Amperometric i-t curve method was applied as the determination technique. Several parameters, including the functional monomer, molar ratio of template, monomer and cross-linking agent, the amounts of IIP, the applied potential, the buffer solution and pH have been studied. According to the results, IIP-CPE showed a considerably higher response in comparison with the electrode embedded with non-imprinted polymer (NIP), indicating the formation of suitable recognition sites in the IIP structure during the polymerization stage. The introduced electrode showed a linear range of 1.00×10-8~3.0×10-5 mol·L-1 and detection limit of 6.0 nmol L-1 (S/N = 3). The IIP-CPE was successfully applied for the trace rhodium determination in catalyst and plant samples with RSD of less than 3.3% (n = 5) and recoveries in the range of 95.5~102.5%.

  18. The new wave of ion-selective electrodes

    PubMed Central

    Pretsch, Ernö

    2007-01-01

    During the last decade, the capabilities of potentiometric analysis have changed fundamentally in that the lower limit of detection (LOD) of ion-selective electrodes (ISEs) has improved by a factor of up to one million and the discrimination factor of interferences from ions by up to one billion. These spectacular improvements are related to the control of ion fluxes through the ion-selective membrane. Nowadays, ISEs can be used for trace measurements in environmental samples. However, by reducing the volume of the samples, the LOD in terms of the amount of analytes has been reduced to the attomole range. This is promising for bioanalysis using metal nanoparticle labels. Other recent progress includes the excellent fundamental understanding of the working mechanism, the introduction of a novel kind of calibration procedure that reduces the demands on signal stability and reproducibility, and the advent of pulsed amperometric methods. PMID:12175191

  19. A Novel Ion - selective Polymeric Membrane Sensor for Determining Thallium(I) With High Selectivity

    NASA Astrophysics Data System (ADS)

    Kassim, Anuar; Rezayi, Majid; Ahmadzadeh, Saeid; Rounaghi, Gholamhossein; Mohajeri, Masoomeh; Azah Yusof, Noor; Tee, Tan Wee; Yook Heng, Lee; Halim Abdullah, Abd

    2011-02-01

    Thallium is a toxic metal that introduced into the environment mainly as a waste from the production of zinc, cadmium, and lead and by combustion of coal. Thallium causes gastrointestinal irritation and nerve damage when people are exposed to it for relatively short period of time. For long term, thallium has the potential to cause the following effects: change in blood chemistry, damage to liver, kidney, intestinal and testicular tissue, and hair loss. In this work a membrane was prepared by use of 4'-nitrobenzo -18-crown-6 (4'NB18C6) as an ion carrier, polyvinylchloride (PVC) as a matrix, and diocthylphetalate (DOP) as a plasticizer for making an ion selective electrode for measurement of Tl+ cation in solutions. The amount of 4'-nitrobenzo-18C6 and polyvinylchloride were optimized in the preparation of the membrane. The response of the electrode was Nernstian within the concentration range 1.0 × 10-8 to 1.0 × 10-1M. This sensor displays a drift in Nernstian response for this cation with increasing the amount of ionophore and decreasing the amount of polyvinylchloride.The results of potentiometric measurements showed that, this electrode also responses to Cu2+ Ni2+ and Pb2+ cations, but the electrode has a wider dynamic range and a lower detection limit to Tl+ cation. The effects of various parameters such as pH, different cations interferences, effect of the amount of ionophore and polyvinylchloride and time on response of the coated ion selective electrode were investigated. Finally the constructed electrode was used in complexometric and precipitation titrations of Tl+ cation with EDTA and KBr, respectively. The response of the fabricated electrode at concentration range from 1.0 × 10-8 to 1.0 × 10-1M is linear with a Nernstian slope of 57.27 mV.

  20. Determination of iodine in bread and fish using the iodide ion-selective electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, J.B.

    The purpose of this study was to assess the potential for use of the ion-selective electrode (ISE) as a method for measuring the iodine content in bread and fish. Ashing methods, sample preparation and electrode responses were evaluated. The iodine values obtained using the iodide electrode were compared to iodine values obtained by the arsenic-cerium method (As-Ce). Ashing methods were used in preparing bread and haddock for iodine analysis by the ISE. The values were compared to unashed samples measured by the ISE. Electrode response to iodide was examined by varying the sample pH, measuring electrode equilibrium times, and comparingmore » direct measurement in ppm to iodide values obtained by the method of known addition. Oyster reference tissue with a known iodine concentration was used to determine rates of recovery. For the As-Ce procedure, an alkaline dry ash for two hour followed by colorimetric analysis at 320 nm was recommended. The study showed that the pre-treatment of bread and fish was necessary for ISE measurement. The iodine values obtained by the ISE in the analysis of oyster reference tissue, haddock and bread were not in agreement with their corresponding As-Ce values. Further work needs to be done to determine an ashing procedure that has minimal iodide loss an/or develop sample treatments that will improve the reliability and precision of iodine values obtained using the ion-selective electrode.« less

  1. Positive electrode current collector for liquid metal cells

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.

    1984-01-01

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  2. Quantitative Determination of NTA and Other Chelating Agents in Detergents by Potentiometric Titration with Copper Ion Selective Electrode.

    PubMed

    Ito, Sana; Morita, Masaki

    2016-01-01

    Quantitative analysis of nitrilotriacetate (NTA) in detergents by titration with Cu 2+ solution using a copper ion selective electrode was achieved. This method tolerates a wide range of pH and ingredients in detergents. In addition to NTA, other chelating agents, having relatively lower stability constants toward Cu 2+ , were also qualified with sufficient accuracy by this analytical method for model detergent formulations. The titration process was automated by automatic titrating systems available commercially.

  3. E-tongue 2 REDOX response to heavy metals

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Kuhlman, G. M.; Kounaves, S. P.

    2002-01-01

    E-Tongue 2 an array of electrochemical sensors including REDOX electrodes for Cylic Voltammetry and Anodic Stripping Voltammetry measurements, Galvanic cells for corrosion measurements, and Ion Selective Electrodes.

  4. Systems and methods for selective hydrogen transport and measurement

    DOEpatents

    Glatzmaier, Gregory C

    2013-10-29

    Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

  5. Double-barreled and Concentric Microelectrodes for Measurement of Extracellular Ion Signals in Brain Tissue

    PubMed Central

    Haack, Nicole; Durry, Simone; Kafitz, Karl W.; Chesler, Mitchell; Rose, Christine R.

    2015-01-01

    Electrical activity in the brain is accompanied by significant ion fluxes across membranes, resulting in complex changes in the extracellular concentration of all major ions. As these ion shifts bear significant functional consequences, their quantitative determination is often required to understand the function and dysfunction of neural networks under physiological and pathophysiological conditions. In the present study, we demonstrate the fabrication and calibration of double-barreled ion-selective microelectrodes, which have proven to be excellent tools for such measurements in brain tissue. Moreover, so-called “concentric” ion-selective microelectrodes are also described, which, based on their different design, offer a far better temporal resolution of fast ion changes. We then show how these electrodes can be employed in acute brain slice preparations of the mouse hippocampus. Using double-barreled, potassium-selective microelectrodes, changes in the extracellular potassium concentration ([K+]o) in response to exogenous application of glutamate receptor agonists or during epileptiform activity are demonstrated. Furthermore, we illustrate the response characteristics of sodium-sensitive, double-barreled and concentric electrodes and compare their detection of changes in the extracellular sodium concentration ([Na+]o) evoked by bath or pressure application of drugs. These measurements show that while response amplitudes are similar, the concentric sodium microelectrodes display a superior signal-to-noise ratio and response time as compared to the double-barreled design. Generally, the demonstrated procedures will be easily transferable to measurement of other ions species, including pH or calcium, and will also be applicable to other preparations. PMID:26381747

  6. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M [Naperville, IL; Kim, Jeom-Soo [Naperville, IL; Johnson, Christopher S [Naperville, IL

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  7. Potentiometric sensors with carbon black supporting platinum nanoparticles.

    PubMed

    Paczosa-Bator, Beata; Cabaj, Leszek; Piech, Robert; Skupień, Krzysztof

    2013-11-05

    For the first time, a single-piece, all-solid-state ion-selective electrode was fabricated with carbon black supporting platinum nanoparticles (PtNPs-CB) and a polymeric membrane. The PtNPs-CB, as an intermediate layer, was drop-casted directly on the solid substrate, and then an ionophore-doped solvent polymeric membrane was added in order to form a sensor. The performance of the newly developed electrodes was evaluated on the basis of potassium and nitrate ions. The stability of the electrical potential for the electrodes was examined by performing current-reversal chronopotentiometry, and the influence of the interfacial water film was assessed by the potentiometric aqueous-layer test. Fabricated potassium- and nitrate-selective electrodes displayed a Nernstian slope and several outstanding properties such as high long-term potential stability, potential repeatability, and reproducibility.

  8. Ionic Association Ion-Selective Electrode Experiment.

    ERIC Educational Resources Information Center

    Emara, Mostafa M.; And Others

    1979-01-01

    Describes an experiment that, using a commercially available solid-state selective electrode in conjunction with a pH-meter, determines the stability constants of sodium sulfate while varying the ionic strength of the media using sodium chloride. Detailed reproducible procedures of both the measurements and calculations are described. (BT)

  9. Selective gas-chromatographic detection using an ion-selective electrode-II Selective detection of fluorine compounds.

    PubMed

    Kojima, T; Ichise, M; Seo, Y

    1972-04-01

    Components in samples are separated on a gas chromatography column using hydrogen as carrier gas. The individual components from the column are passed through a platinum tube heated at 1000 degrees , where they undergo hydrogenolysis, and fluorine compounds are converted into hydrogen fluoride. The hydrogen fluoride is dissolved in a slow stream of an absorption solution, and the fluoride ion concentration in the resulting solution is monitored in a flow-cell with a fluoride ion electrode. The potentiometric output of the cell is converted into a signal, which is proportional to the concentration of fluoride ion, by an antilogarithmic converter, and recorded. The response of the detector to fluorine compounds was about 10,000 times that to an equal quantity of other organic compounds, and 5 x 10(-11) mole of fluorobenzene could be detected.

  10. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE PAGES

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit; ...

    2017-07-01

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  11. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Economou, Demetre J.

    As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods includemore » the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.« less

  13. The Analysis of Cyanide and Its Breakdown Products in Biological Samples

    DTIC Science & Technology

    2010-01-01

    simultaneous GC-mass spectrometric (MS) analysis of cyanide and thiocyanate, and Funazo et al. (53) quantita- tively methylated cyanide and thiocyanate for...selective membrane electrode for thiocyanate ion based on a bis-taurine- salicylic binuclear copper(II) complex as ionophore. Chinese Journal of Chemistry

  14. The Analysis of Seawater: A Laboratory-Centered Learning Project in General Chemistry.

    ERIC Educational Resources Information Center

    Selco, Jodye I.; Roberts, Julian L., Jr.; Wacks, Daniel B.

    2003-01-01

    Describes a sea-water analysis project that introduces qualitative and quantitative analysis methods and laboratory methods such as gravimetric analysis, potentiometric titration, ion-selective electrodes, and the use of calibration curves. Uses a problem-based cooperative teaching approach. (Contains 24 references.) (YDS)

  15. A mass filter based on an accelerating traveling wave.

    PubMed

    Wiedenbeck, Michael; Kasemset, Bodin; Kasper, Manfred

    2008-01-01

    We describe a novel mass filtering concept based on the acceleration of a pulsed ion beam through a stack of electrostatic plates. A precisely controlled traveling wave generated within such an ion guide will induce a mass-selective ion acceleration, with mass separation ultimately accomplished via a simple energy-filtering system. Crucial for successful filtering is that the velocity with which the traveling wave passes through the ion guide must be dynamically controlled in order to accommodate the acceleration of the target ion species. Mass selection is determined by the velocity and acceleration with which the wave traverses the ion guide, whereby the target species will acquire a higher kinetic energy than all other lighter as well as heaver species. Finite element simulations of this design demonstrate that for small masses a mass resolution M/DeltaM approximately 1000 can be achieved within an electrode stack containing as few as 20 plates. Some of the possible advantages and drawbacks which distinguish this concept from established mass spectrometric technologies are discussed.

  16. Rechargeable magnesium-ion battery based on a TiSe2-cathode with d-p orbital hybridized electronic structure

    PubMed Central

    Gu, Yunpeng; Katsura, Yukari; Yoshino, Takafumi; Takagi, Hidenori; Taniguchi, Kouji

    2015-01-01

    Rechargeable ion-batteries, in which ions such as Li+ carry charges between electrodes, have been contributing to the improvement of power-source performance in a wide variety of mobile electronic devices. Among them, Mg-ion batteries are recently attracting attention due to possible low cost and safety, which are realized by abundant natural resources and stability of Mg in the atmosphere. However, only a few materials have been known to work as rechargeable cathodes for Mg-ion batteries, owing to strong electrostatic interaction between Mg2+ and the host lattice. Here we demonstrate rechargeable performance of Mg-ion batteries at ambient temperature by selecting TiSe2 as a model cathode by focusing on electronic structure. Charge delocalization of electrons in a metal-ligand unit through d-p orbital hybridization is suggested as a possible key factor to realize reversible intercalation of Mg2+ into TiSe2. The viewpoint from the electronic structure proposed in this study might pave a new way to design electrode materials for multivalent-ion batteries. PMID:26228263

  17. Positive interference in lithium determinations from clot activator in collection container.

    PubMed

    Sampson, M; Ruddel, M; Albright, S; Elin, R J

    1997-04-01

    We describe positive interference with the ion-selective electrode determination of lithium (Lytening 2Z analyzer; Dade) when blood is collected in a 10-mL plain red-top plastic Vacutainer Plus Tube (Becton Dickinson) containing a silica clot activator and silicone surfactant (prod. no. 36-7820). We evaluated both the original tube (blue-labeled) and a new tube formulated to contain less silicone surfactant (striped-labeled). We determined that the interference is from either the silica clot activator or the silicone surfactant used to fix the silica to the tube and is inversely related to the volume of blood in the tube. Long-term intermittent exposure of the Li ion-selective electrode to the silica clot activator or surfactant results in decreased Li values--in terms of both the positive interference by the silica clot activator or surfactant and the actual Li determinations. Moreover, this long-term interference with the Li ion-selective electrode for patient's specimens is undetected by the Dade control material (QCLytes).

  18. Three-dimensional carbon architectures for electrochemical capacitors.

    PubMed

    Song, Yu; Liu, Tianyu; Qian, Fang; Zhu, Cheng; Yao, Bin; Duoss, Eric; Spadaccini, Christopher; Worsley, Marcus; Li, Yat

    2018-01-01

    Three-dimensional (3D) carbon-based materials are emerging as promising electrode candidates for energy storage devices. In comparison to the 1D and 2D structures, 3D morphology offers new opportunities in rational design and synthesis of novel architectures tailor-made for promoting electrochemical performance. The capability of building hierarchical porous structures with 3D configuration can significantly advance the performance of energy storage devices by simultaneously enhancing the ion-accessible surface area and ion diffusion. This feature article presents an overview of recent progress in design, synthesis and implementation of 3D carbon-based materials as electrodes for electrochemical capacitors. Synthesis methodologies of four types of 3D carbon-based electrodes: 3D exfoliated carbon structures, 3D graphene scaffolds, 3D hierarchical porous carbon foams, as well as 3D architectures with periodic pores derived from direct ink writing, are thoroughly discussed and highlighted with selected experimental works. Finally, key opportunities and challenges in which different 3D carbons can significantly impact the energy storage and conversion communities will be provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Development of Novel Metal Hydride-Carbon Nanomaterial Based Nanocomposites as Anode Electrode Materials for Lithium Ion Battery

    DTIC Science & Technology

    2014-06-30

    The aim of this study is to develop metal hydride-carbon nanomaterial based nanocomposites as anode electrode materials for high capacity lithium ion battery and...henceforth to develop high energy density, and good cyclic stability lithium ion battery .

  20. Development of Novel Potentiometric Sensors for Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations, Serum and Urine Samples

    PubMed Central

    Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A.

    2017-01-01

    This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade-1 in the concentration range of 1×10-7–1×10-2 and 6.2×10-7–1×10-2 mol L-1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0–8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10-7 and 6.2×10-7 mol L-1), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug. PMID:28979305

  1. Development of Novel Potentiometric Sensors for Determination of Lidocaine Hydrochloride in Pharmaceutical Preparations, Serum and Urine Samples.

    PubMed

    Ali, Tamer Awad; Mohamed, Gehad Genidy; Yahya, Ghada A

    2017-01-01

    This article is focused on the determination of lidocaine hydrochloride as a local anaesthetic drug. A potentiometric method based on modified screen-printed and modified carbon paste ion-selective electrodes was described for the determination of lidocaine hydrochloride in different pharmaceutical preparations and biological fluids (urine and serum). It was based on potentiometric titration of lidocaine hydrochloride using modified screen-printed and carbon paste electrodes as end point indicator sensors. The influences of the paste composition, different conditioning parameters and foreign ions on the electrodes performance were investigated and response times of the electrodes were studied. The electrodes showed Nernstian response of 58.9 and 57.5 mV decade -1 in the concentration range of 1×10 -7 -1×10 -2 and 6.2×10 -7 -1×10 -2 mol L -1 for modified screen-printed and carbon paste electrodes, respectively. The electrodes were found to be usable within the pH range of 2.0-8.0 and 2.0-7.5, exhibited a fast response time (about 6 and 4) low detection limit (1×10 -7 and 6.2×10 -7 mol L -1 ), long lifetime (6 and 4 months) and good stability for modified screen-printed (Electrode VII) and carbon paste electrodes (Electrode III), respectively. The electrodes were successfully applied for the determination of lidocaine hydrochloride in pure solutions, pharmaceutical preparation and biological fluids (urine and serum) samples. The results obtained applying these potentiometric electrodes were comparable with British pharmacopeia. The method validation parameters were optimized and the method can be applied for routine analysis of lidocaine hydrochloride drug.

  2. An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap

    NASA Astrophysics Data System (ADS)

    Z. Alisoy, H.; Alagoz, S.; T. Alisoy, G.; B. Alagoz, B.

    2013-10-01

    This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics.

  3. Determination of Cd2+ in aqueous solution using polyindole-Ce(IV) vanadophosphate conductive nanocomposite ion-selective membrane electrode

    NASA Astrophysics Data System (ADS)

    Khan, Asif Ali; Quasim Khan, Mohd; Hussain, Rizwan

    2017-09-01

    In the present study an organic-inorganic nanocomposite ion exchanger Polyindole-Ce(IV) vanadophosphate (PIn-CVP) was synthesized via sol-gel process showing excellent ion exchange capacity (IEC‒1.90 meqg-1). The material was characterized by SEM, TEM, XRD, FTIR, and TGA. A heterogeneous ion exchange membrane of PIn-CVP (IEC‒0.90 meqg-1) was also prepared by solution casting method. PIn-CVP shows high electrical conductivity (5.5  ×  10-2 S cm-1) and it is stable up to 120 °C under ambient conditions. Cd2+ selective membrane electrode was fabricated and its linear working range (3.98  ×  10-7 M to 1.0  ×  10-1 M), response time (25 s), Nerstian slope 25.00 mV dec-1 and working pH range (4-7) were calculated. It was employed as an indicator electrode in the potentiometric titration of Cd2+.

  4. Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity.

    PubMed

    Kingsbury, Ryan S; Flotron, Sophie; Zhu, Shan; Call, Douglas F; Coronell, Orlando

    2018-04-17

    Ion exchange membranes (IEMs) are versatile materials relevant to a variety of water and waste treatment, energy production, and industrial separation processes. The defining characteristic of IEMs is their ability to selectively allow positive or negative ions to permeate, which is referred to as permselectivity. Measured values of permselectivity that equal unity (corresponding to a perfectly selective membrane) or exceed unity (theoretically impossible) have been reported for cation exchange membranes (CEMs). Such nonphysical results call into question our ability to correctly measure this crucial membrane property. Because weighing errors, temperature, and measurement uncertainty have been shown to not explain these anomalous permselectivity results, we hypothesized that a possible explanation are junction potentials that occur at the tips of reference electrodes. In this work, we tested this hypothesis by comparing permselectivity values obtained from bare Ag/AgCl wire electrodes (which have no junction) to values obtained from single-junction reference electrodes containing two different electrolytes. We show that permselectivity values obtained using reference electrodes with junctions were greater than unity for CEMs. In contrast, electrodes without junctions always produced permselectivities lower than unity. Electrodes with junctions also resulted in artificially low permselectivity values for AEMs compared to electrodes without junctions. Thus, we conclude that junctions in reference electrodes introduce two biases into results in the IEM literature: (i) permselectivity values larger than unity for CEMs and (ii) lower permselectivity values for AEMs compared to those for CEMs. These biases can be avoided by using electrodes without a junction.

  5. A selective potentiometric copper (II) ion sensor based on the functionalized ZnO nanorods.

    PubMed

    Khun, K; Ibupoto, Z H; Liu, X; Nur, O; Willander, M; Danielsson, B

    2014-09-01

    In this work, ZnO nanorods were hydrothermally grown on the gold-coated glass substrate and characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques. The ZnO nanorods were functionalized by two different approaches and performance of the sensor electrode was monitored. Fourier transform infrared spectroscopy (FTIR) was carried out for the confirmation of interaction between the ionophore molecules and ZnO nanorods. In addition to this, the surface of the electrode was characterized by X-ray photoelectron spectroscopy (XPS) showing the chemical and electronic state of the ionophore and ZnO nanorod components. The ionophore solution was prepared in the stabilizer, poly vinyl chloride (PVC) and additives, and then functionalized on the ZnO nanorods that have shown the Nernstian response with the slope of 31 mV/decade. However, the Cu2+ ion sensor was fabricated only by immobilizing the selective copper ion ionophore membrane without the use of PVC, plasticizers, additives and stabilizers and the sensor electrode showed a linear potentiometric response with a slope of 56.4 mV/decade within a large dynamic concentration range (from 1.0 x 10(-6) to 1.0 x 10(-1) M) of copper (II) nitrate solutions. The sensor showed excellent repeatability and reproducibility with response time of less than 10 s. The negligible response to potentially interfering metal ions such as calcium (Ca2+), magnesium (Mg2+), potassium (K+), iron (Fe3+), zinc (Zn2+), and sodium (Na+) allows this sensor to be used in biological studies. It may also be used as an indicator electrode in the potentiometric titration.

  6. Biparametric potentiometric analytical microsystem for nitrate and potassium monitoring in water recycling processes for manned space missions.

    PubMed

    Calvo-López, Antonio; Arasa-Puig, Eva; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2013-12-04

    The construction and evaluation of a Low Temperature Co-fired Ceramics (LTCC)-based continuous flow potentiometric microanalyzer prototype to simultaneously monitor the presence of two ions (potassium and nitrate) in samples from the water recycling process for future manned space missions is presented. The microsystem integrates microfluidics and the detection system in a single substrate and it is smaller than a credit card. The detection system is based on two ion-selective electrodes (ISEs), which are built using all-solid state nitrate and potassium polymeric membranes, and a screen-printed Ag/AgCl reference electrode. The obtained analytical features after the optimization of the microfluidic design and hydrodynamics are a linear range from 10 to 1000 mg L(-1) and from 1.9 to 155 mg L(-1) and a detection limit of 9.56 mg L(-1) and 0.81 mg L(-1) for nitrate and potassium ions respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Lithium-Ion Battery Program Status

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.

    1996-01-01

    The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.

  8. Method and apparatus for removing ions from soil

    DOEpatents

    Bibler, J.P.

    1993-03-02

    A method and apparatus are presented for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  9. Method and apparatus for removing ions from soil

    DOEpatents

    Bibler, Jane P.

    1993-01-01

    A method and apparatus for selectively removing species of ions from an area of soil. Permeable membranes 14 and 18 impregnated with an ion exchange resin that is specific to one or more species of chemical ions are inserted into ground 12 in close proximity to, and on opposing sides of, a soil area of interest 22. An electric potential is applied across electrodes 26 and 28 to cause the migration of ions out of soil area 22 toward the membranes 14 and 18. Preferably, the resin exchanges ions of sodium or hydrogen for ions of mercury that it captures from soil area 22. Once membranes 14 and 18 become substantially saturated with mercury ions, the potential applied across electrodes 26 and 28 is discontinued and membranes 14 and 18 are preferably removed from soil 12 for storage or recovery of the ions. The membranes are also preferably impregnated with a buffer to inhibit the effect of the hydrolysis of water by current from the electrodes.

  10. Determining fluoride ions in ammonium desulfurization slurry using an ion selective electrode method

    NASA Astrophysics Data System (ADS)

    Luo, Zhengwei; Guo, Mulin; Chen, Huihui; Lian, Zhouyang; Wei, Wuji

    2018-02-01

    Determining fluoride ions in ammonia desulphurization slurry using a fluoride ion selective electrode (ISE) is investigated. The influence of pH was studied and the appropriate total ionic strength adjustment buffer and its dosage were optimized. The impact of Fe3+ concentration on the detection results was analyzed under preferable conditions, and the error analysis of the ISE method’s accuracy and precision for measuring fluoride ion concentration in the range of 0.5-2000 mg/L was conducted. The quantitative recovery of F- in ammonium sulfate slurry was assessed. The results showed that when pH ranged from 5.5˜6 and the Fe3+ concentration was less than 750 mg/L, the accuracy and precision test results with quantitative recovery rates of 92.0%-104.2% were obtained.

  11. Edge Vortex Flow Due to Inhomogeneous Ion Concentration

    NASA Astrophysics Data System (ADS)

    Sugioka, Hideyuki

    2017-04-01

    The ion distribution of an open parallel electrode system is not known even though it is often used to measure the electrical characteristics of an electrolyte. Thus, for an open electrode system, we perform a non-steady direct multiphysics simulation based on the coupled Poisson-Nernst-Planck and Stokes equations and find that inhomogeneous ion concentrations at edges cause vortex flows and suppress the anomalous increase in the ion concentration near the electrodes. A surprising aspect of our findings is that the large vortex flows at the edges approximately maintain the ion-conserving condition, and thus the ion distribution of an open electrode system can be approximated by the solution of a closed electrode system that considers the ion-conserving condition rather than the Gouy-Chapman solution, which neglects the ion-conserving condition. We believe that our findings make a significant contribution to the understanding of surface science.

  12. Modern Directions for Potentiometric Sensors

    PubMed Central

    Bakker, Eric; Chumbimuni-Torres, Karin

    2009-01-01

    This paper gives an overview of the newest developments of polymeric membrane ion-selective electrodes. A short essence of the underlying theory is given, emphasizing how the electromotive force may be used to assess binding constants of the ionophore, and how the selectivity and detection limit are related to the underlying membrane processes. The recent developments in lowering the detection limits of ISEs are described, including recent approaches of developing all solid state ISEs, and breakthroughs in detecting ultra-small quantities of ions at low concentrations. These developments have paved the way to use potentiometric sensors as in ultra-sensitive affinity bioanalysis in conjunction with nanoparticle labels. Recent results establish that potentiometry compares favorably to electrochemical stripping analysis. Other new developments with ion-selective electrodes are also described, including the concept of backside calibration potentiometry, controlled current coulometry, pulsed chronopotentiometry, and localized flash titration with ion-selective membranes to design sensors for the direct detection of total acidity without net sample perturbation. These developments have further opened the field for exciting new possibilities and applications. PMID:19890473

  13. Multi-parametric polymer-based potentiometric analytical microsystem for future manned space missions.

    PubMed

    Calvo-López, Antonio; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2017-12-01

    The construction and evaluation of a Cyclic Olefin Copolymer (COC)-based continuous flow potentiometric microanalyzer to simultaneously monitor potassium, chloride and nitrate ions in samples from an on-board water recycling process expected to be installed in future manned space missions is presented. The main goals accomplished in this work address the specific required characteristics for a miniaturized on-line monitoring system to control water quality in such missions. To begin with, the integration of three ion-selective electrodes (ISEs) and a reference electrode in a compact microfluidic platform that incorporates a simple automatic autocalibration process allows obtaining information about the concentration of the three ions with optimal analytical response characteristics, but moreover with low reagents consumption and therefore with few waste generation, which is critical for this specific application. By a simple signal processing (signal removal) the chloride ion interference on the nitrate electrode response can be eliminated. Furthermore, all fluidics management is performed by computer-controlled microvalves and micropumps, so no manual intervention of the crew is necessary. The analytical features provided by the microsystem after the optimization process were a linear range from 6.3 to 630 mg L -1 and a detection limit of 0.51 mg L -1 for the potassium electrode, a linear range from 10 to 1000 mg L -1 and a detection limit of 1.58 mg L -1 for the chloride electrode and a linear range from 10 to 1000 mg L -1 and a detection limit of 3.37 mg L -1 for the nitrate electrode with a reproducibility (RSD) of 4%, 2% and 3% respectively. Sample throughput was 12 h -1 with a reagent consumptions lower than 2 mL per analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development of a linear-type double reflectron for focused imaging of photofragment ions from mass-selected complex ions

    NASA Astrophysics Data System (ADS)

    Okutsu, Kenichi; Nakashima, Yuji; Yamazaki, Kenichiro; Fujimoto, Keita; Nakano, Motoyoshi; Ohshimo, Keijiro; Misaizu, Fuminori

    2017-05-01

    An ion imaging apparatus with a double linear reflectron mass spectrometer has been developed, in order to measure velocity and angular distributions of mass-analyzed fragment ions produced by photodissociation of mass-selected gas phase complex ions. The 1st and the 2nd linear reflectrons were placed facing each other and controlled by high-voltage pulses in order to perform the mass-separation of precursor ions in the 1st reflectron and to observe the focused image of the photofragment ions in the 2nd reflectron. For this purpose, metal meshes were attached on all electrodes in the 1st reflectron, whereas the mesh was attached only on the last electrode in the 2nd reflectron. The performance of this apparatus was evaluated using imaging measurement of Ca+ photofragment ions from photodissociation reaction of Ca+Ar complex ions at 355 nm photoexcitation. The focused ion images were obtained experimentally with the double linear reflectron at the voltages of the reflection electrodes close to the predictions by ion trajectory simulations. The velocity and angular distributions of the produced Ca+ ([Ar] 4p1, 2P3/2) ion were analyzed from the observed images. The binding energy D0 of Ca+Ar in the ground state deduced in the present measurement was consistent with those determined theoretically and by spectroscopic measurements. The anisotropy parameter β of the transition was evaluated for the first time by this instrument.

  15. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.

    PubMed

    Ni, Qiao; Bai, Ying; Wu, Feng; Wu, Chuan

    2017-03-01

    Sodium-ion batteries, representative members of the post-lithium-battery club, are very attractive and promising for large-scale energy storage applications. The increasing technological improvements in sodium-ion batteries (Na-ion batteries) are being driven by the demand for Na-based electrode materials that are resource-abundant, cost-effective, and long lasting. Polyanion-type compounds are among the most promising electrode materials for Na-ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion-type electrode materials are Na 3 V 2 (PO 4 ) 3 and NaTi 2 (PO 4 ) 3 for Na-based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na-ion batteries. Carbonophosphate Na 3 MnCO 3 PO 4 and amorphous FePO 4 have also recently emerged and are contributing to further developing the research scope of polyanion-type Na-ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion-type electrode materials for Na-ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems.

  16. CALUTRON RECEIVERS

    DOEpatents

    Schmidt, F.H.; Stone, K.F.

    1958-09-01

    S>This patent relates to improvements in calutron devices and, more specifically, describes a receiver fer collecting the ion curreot after it is formed into a beam of non-homogeneous isotropic cross-section. The invention embodies a calutron receiver having an ion receiving pocket for separately collecting and retaining ions traveling in a selected portion of the ion beam and anelectrode for intercepting ions traveling in another selected pontion of the ion beam. The electrode is disposed so as to fix the limit of one side of the pontion of the ion beam admitted iato the ion receiving pocket.

  17. Automated lettuce nutrient solution management using an array of ion-selective electrodes

    USDA-ARS?s Scientific Manuscript database

    Automated sensing and control of macronutrients in hydroponic solutions would allow more efficient management of nutrients for crop growth in closed systems. This paper describes the development and evaluation of a computer-controlled nutrient management system with an array of ion-selective electro...

  18. High-field modulated ion-selective field-effect-transistor (FET) sensors with sensitivity higher than the ideal Nernst sensitivity.

    PubMed

    Chen, Yi-Ting; Sarangadharan, Indu; Sukesan, Revathi; Hseih, Ching-Yen; Lee, Geng-Yen; Chyi, Jen-Inn; Wang, Yu-Lin

    2018-05-29

    Lead ion selective membrane (Pb-ISM) coated AlGaN/GaN high electron mobility transistors (HEMT) was used to demonstrate a whole new methodology for ion-selective FET sensors, which can create ultra-high sensitivity (-36 mV/log [Pb 2+ ]) surpassing the limit of ideal sensitivity (-29.58 mV/log [Pb 2+ ]) in a typical Nernst equation for lead ion. The largely improved sensitivity has tremendously reduced the detection limit (10 -10  M) for several orders of magnitude of lead ion concentration compared to typical ion-selective electrode (ISE) (10 -7  M). The high sensitivity was obtained by creating a strong filed between the gate electrode and the HEMT channel. Systematical investigation was done by measuring different design of the sensor and gate bias, indicating ultra-high sensitivity and ultra-low detection limit obtained only in sufficiently strong field. Theoretical study in the sensitivity consistently agrees with the experimental finding and predicts the maximum and minimum sensitivity. The detection limit of our sensor is comparable to that of Inductively-Coupled-Plasma Mass Spectrum (ICP-MS), which also has detection limit near 10 -10  M.

  19. An Electrochemical Cell for Selective Lithium Capture from Seawater.

    PubMed

    Kim, Joo-Seong; Lee, Yong-Hee; Choi, Seungyeon; Shin, Jaeho; Dinh, Hung-Cuong; Choi, Jang Wook

    2015-08-18

    Lithium (Li) is a core element of Li-ion batteries (LIBs). Recent developments in mobile electronics such as smartphones and tablet PCs as well as advent of large-scale LIB applications including electrical vehicles and grid-level energy storage systems have led to an increase in demand for LIBs, giving rise to a concern on the availability and market price of Li resources. However, the current Lime-Soda process that is responsible for greater than 80% of worldwide Li resource supply is applicable only in certain regions on earth where the Li concentrations are sufficiently high (salt lakes or salt pans). Moreover, not only is the process time-consuming (12-18 months), but post-treatments are also required for the purification of Li. Here, we have devised a location-independent electrochemical system for Li capture, which can operate within a short time period (a few hours to days). By engaging olivine LiFePO4 active electrode that improves interfacial properties via polydopamine coating, the electrochemical cell achieves 4330 times amplification in Li/Na ion selectivity (Li/Na molar ratio of initial solution = 0.01 and Li/Na molar ratio of final electrode = 43.3). In addition, the electrochemical system engages an I(-)/I3(-) redox couple in the other electrode for balancing of the redox states on both electrode sides and sustainable operations of the entire cell. Based on the electrochemical results, key material and interfacial properties that affect the selectivity in Li capture are identified.

  20. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    NASA Astrophysics Data System (ADS)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-04-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.

  1. Nonlinear electrokinetic phenomena in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Ben, Yuxing

    This thesis addresses nonlinear electrokinetic mechanisms for transporting fluid and particles in microfluidic devices for potential applications in biomedical chips, microelectronic cooling and micro-fuel cells. Nonlinear electrokinetics have many advantages, such as low voltage, low power, high velocity, and no significant gas formation in the electrolyte. However, they involve new and complex charging and flow mechanisms that are still not fully understood or explored. Linear electrokinetic fingering that occurs when a fluid with a lower electrolyte concentration advances into one with a higher concentration is first analyzed. Unlike earlier miscible fingering theories, the linear stability analysis is carried out in the self-similar coordinates of the diffusing front. This new spectral theory is developed for small-amplitude gravity and viscous miscible fingering phenomena in general and applied to electrokinetic miscible fingering specifically. Transient electrokinetic fingering is shown to be insignificant in sub-millimeter micro-devices. Nonlinear electroosmotic flow around an ion-exchange spherical granule is studied next. When an electric field is applied across a conducting and ion-selective porous granule in an electrolyte solution, a polarized surface layer with excess counter-ions is created. The flux-induced polarization produces a nonlinear slip velocity to produce micro-vortices around this sphere. This polarization layer is reduced by convection at high velocity. Two velocity scalings at low and high electric fields are derived and favorably compared with experimental results. A mixing device based on this mechanism is shown to produce mixing efficiency 10-100 times higher than molecular diffusion. Finally, AC nonlinear electrokinetic flow on planar electrodes is studied. Two double layer charging mechanisms are responsible for the flow---one due to capacitive charging of ions from the bulk electrolyte and one due to Faradaic reactions at the electrode that consume or produce ions in the double layer. Faradaic charging is analyzed for specific reactions. From the theory, particular electrokinetic flows above the electrodes are selected for micropumps and bioparticle trapping by specifying the electrode geometry and the applied voltage and frequency.

  2. Quasi-simultaneous Measurements of Ionic Currents by Vibrating Probe and pH Distribution by Ion-selective Microelectrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, H.S.; Lamaka, S.V.; Taryba, M.

    2011-01-01

    This work reports a new methodology to measure quasi-simultaneously the local electric fields and the distribution of specific ions in a solution via selective microelectrodes. The field produced by the net electric current was detected using the scanning vibrating electrode technique (SVET) with quasi-simultaneous measurements of pH with an ion-selective microelectrode (pH-SME). The measurements were performed in a validation cell providing a 48 ?m diameter Pt wire cross section as a source of electric current. A time lag between acquiring each current density and pH data-point was 1.5 s due to the response time of pH-SME. The quasi-simultaneous SVET-pH measurementsmore » that correlate electrochemical oxidation-reduction processes with acid-base chemical equilibria are reported for the first time. No cross-talk between the vibrating microelectrode and the ion-selective microelectrode could be detected under given experimental conditions.« less

  3. Fabrication of novel coated pyrolytic graphite electrodes for the selective nano-level monitoring of Cd²⁺ ions in biological and environmental samples using polymeric membrane of newly synthesized macrocycle.

    PubMed

    Sahani, Manoj Kumar; Singh, A K; Jain, A K; Upadhyay, Anjali; Kumar, Amit; Singh, Udai P; Narang, Shikha

    2015-02-20

    Novel 5-amino-1,3,4-thiadiazole-2-thiol unit based macrocyclic ionophore 5,11,17-trithia-1,3,7,9,13,15,19,20,21-nonaazatetracyclo[14.2.1.1(4,7).1(10,13)]henicosa-4(20),10(21),16(19)-triene-6,12,18-trithione (M1), was synthesized and characterized. Preliminary studies on M1 have showed that it has more the affinity toward Cd(2+) ion. Thus, the macrocyclic ionophore (M1) was used as electroactive material in the fabrication of PVC-membrane electrodes such as polymeric membrane electrode (PME), coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) were prepared and its performance characteristic were compared with. The electroanalytical studies performed on PME, CGE and CPGE revealed that CPGE having membrane composition M1:PVC:1-CN:NaTPB in the ratio of 7:37:54:2 exhibits the best potentiometric characteristics in terms of detection limit of 7.58×10(-9) mol L(-1), Nernstian slope of 29.6 mV decade(-1) of activity. The sensor was found to be independent of pH in the range 2.5-8.5. The sensor showed a fast response time of 10s and could be used over a period of 4 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for monitoring of the Cd(2+) ion in real samples and also used as an indicator electrode in the potentiometric titration of Cd(2+) ion with EDTA. Copyright © 2014. Published by Elsevier B.V.

  4. Field and In-Lab Determination of Ca[superscript 2+] in Seawater

    ERIC Educational Resources Information Center

    Stoodley, Robin; Nun~ez, Jose R. Rodriguez; Bartz, Tessa

    2014-01-01

    Portions of classic undergraduate quantitative analysis experiments in complexiometric titration and potentiometry are combined with a field-sampling experience to create a two period (2 × 3 h) comparison-based experiment for second-year students. A multifunctional chemical analysis device is used with calcium ion-selective electrode for field…

  5. Ion trap simulation program, ITSIM: A powerful heuristic and predictive tool in ion trap mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bui, Huy Anh

    The multi-particle simulation program, ITSIM version 4.0, takes advantage of the enhanced performance of the Windows 95 and NT operating systems in areas such as memory management, user friendliness, flexibility of graphics and speed, to investigate the motion of ions in the quadrupole ion trap. The objective of this program is to use computer simulations based on mathematical models to improve the performance of the ion trap mass spectrometer. The simulation program can provide assistance in understanding fundamental aspects of ion trap mass spectrometry, precede and help to direct the course of experiments, as well as having didactic value in elucidating and allowing visualization of ion behavior under different experimental conditions. The program uses the improved Euler method to calculate ion trajectories as numerical solutions to the Mathieu differential equation. This Windows version can simultaneously simulate the trajectories of ions with a virtually unlimited number of different mass-to-charge ratios and hence allows realistic mass spectra, ion kinetic energy distributions and other experimentally measurable properties to be simulated. The large number of simulated ions allows examination of (i) the offsetting effects of mutual ion repulsion and collisional cooling in an ion trap and (ii) the effects of higher order fields. Field inhomogeneities arising from exit holes, electrode misalignment, imperfect electrode surfaces or new trap geometries can be simulated with the program. The simulated data are used to obtain mass spectra from mass-selective instability scans as well as by Fourier transformation of image currents induced by coherently moving ion clouds. Complete instruments, from an ion source through the ion trap mass analyzer to a detector, can now be simulated. Applications of the simulation program are presented and discussed. Comparisons are made between the simulations and experimental data. Fourier transformed experiments and a novel six-electrode ion trap mass spectrometer illustrate cases in which simulations precede new experiments. Broadband non-destructive ion detection based on induced image current measurements are described in the case of a quadrupole ion trap having cylindrical geometry.

  6. Potentiometric flow injection system for determination of reductants using a polymeric membrane permanganate ion-selective electrode based on current-controlled reagent delivery.

    PubMed

    Song, Wenjing; Ding, Jiawang; Liang, Rongning; Qin, Wei

    2011-10-17

    A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide.

    PubMed

    Srimuk, Pattarachai; Lee, Juhan; Fleischmann, Simon; Aslan, Mesut; Kim, Choonsoo; Presser, Volker

    2018-05-01

    Selective removal of ions by electrochemical processes is a promising approach to enable various water treatment applications such as water softening or heavy metal removal. Ion intercalation materials have been investigated for their intrinsic ability to prefer one specific ion over others, showing a preference for (small) monovalent ions over multivalent species. In this work, we present for the first time a fundamentally different approach: tunable ion selectivity not by modifying the electrode material, but by changing the operational voltage. We used titanium disulfide which shows distinctly different potentials for the intercalation of different cations and formed thereof binder-free composite electrodes with carbon nanotubes. Capitalizing on this potential difference, we demonstrate controllable cation selectivity by online monitoring the effluent stream during electrochemical operation by inductively coupled plasma optical emission spectrometry for aqueous 50 mM CsCl and MgCl2. We obtained a molar selectivity of Mg2+ over Cs+ of 31 (strong Mg preference) in the potential range between -396 mV and -220 mV vs. Ag/AgCl. By adjusting the operational potential window to -219 mV to +26 mV vs. Ag/AgCl, Cs+ is preferred over Mg2+ by 1.7-times (Cs preference). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. In-depth study of in-trap high-resolution mass separation by transversal ion ejection from a multi-reflection time-of-flight device.

    PubMed

    Fischer, Paul; Knauer, Stefan; Marx, Gerrit; Schweikhard, Lutz

    2018-01-01

    The recently introduced method of ion separation by transversal ejection of unwanted species in electrostatic ion-beam traps and multi-reflection time-of-flight devices has been further studied in detail. As this separation is performed during the ion storage itself, there is no need for additional external devices such as ion gates or traps for either pre- or postselection of the ions of interest. The ejection of unwanted contaminant ions is performed by appropriate pulses of the potentials of deflector electrodes. These segmented ring electrodes are located off-center in the trap, i.e., between one of the two ion mirrors and the central drift tube, which also serves as a potential lift for capturing incoming ions and axially ejecting ions of interest after their selection. The various parameters affecting the selection effectivity and resolving power are illustrated with tin-cluster measurements, where isotopologue ion species provide mass differences down to a single atomic mass unit at ion masses of several hundred. Symmetric deflection voltages of only 10 V were found sufficient for the transversal ejection of ion species with as few as three deflection pulses. The duty cycle, i.e., the pulse duration with respect to the period of ion revolution, has been varied, resulting in resolving powers of up to several tens of thousands for this selection technique.

  9. In-depth study of in-trap high-resolution mass separation by transversal ion ejection from a multi-reflection time-of-flight device

    NASA Astrophysics Data System (ADS)

    Fischer, Paul; Knauer, Stefan; Marx, Gerrit; Schweikhard, Lutz

    2018-01-01

    The recently introduced method of ion separation by transversal ejection of unwanted species in electrostatic ion-beam traps and multi-reflection time-of-flight devices has been further studied in detail. As this separation is performed during the ion storage itself, there is no need for additional external devices such as ion gates or traps for either pre- or postselection of the ions of interest. The ejection of unwanted contaminant ions is performed by appropriate pulses of the potentials of deflector electrodes. These segmented ring electrodes are located off-center in the trap, i.e., between one of the two ion mirrors and the central drift tube, which also serves as a potential lift for capturing incoming ions and axially ejecting ions of interest after their selection. The various parameters affecting the selection effectivity and resolving power are illustrated with tin-cluster measurements, where isotopologue ion species provide mass differences down to a single atomic mass unit at ion masses of several hundred. Symmetric deflection voltages of only 10 V were found sufficient for the transversal ejection of ion species with as few as three deflection pulses. The duty cycle, i.e., the pulse duration with respect to the period of ion revolution, has been varied, resulting in resolving powers of up to several tens of thousands for this selection technique.

  10. An Ion-Selective Electrode/Flow-Injection Analysis Experiment: Determination of Potassium in Serum.

    ERIC Educational Resources Information Center

    Meyerhoff, Mark E.; Kovach, Paul M.

    1983-01-01

    Describes a low-cost, senior-level, instrumental analysis experiment in which a home-made potassium tubular flow-through electrode is constructed and incorporated into a flow injection analysis system (FIA). Also describes experiments for evaluating the electrode's response properties, examining basic FIA concepts, and determining potassium in…

  11. Novel PVC-membrane electrode for flow injection potentiometric determination of Biperiden in pharmaceutical preparations.

    PubMed

    Khaled, Elmorsy; El-Sabbagh, Inas A; El-Kholy, N G; Ghahni, E Y Abdel

    2011-12-15

    The construction and performance characteristics of Biperiden (BP) polyvinyl chloride (PVC) electrodes are described. Different methods for electrode fabrication are tested including; incorporation of BP-ion pairs (BP-IPs), incorporation of ion pairing agents, or soaking the plain electrode in BP-ion pairs suspension solution. Electrode matrices were optimized referring to the effect of modifier content and nature, plasticizer and the method of modification. The proposed electrodes work satisfactorily in the BP concentration range from 10(-5) to 10(-2)mol L(-1), with fast response time (7s) and adequate operational lifetime (28 days). The electrode potential is pH independent within the range 2.0-7.0, with good selectivity towards BP in presence of various interfering species. The developed electrodes have been applied for potentiometric determination of BP in pharmaceutical formulation under batch and flow injection analysis (FIA) conditions. FIA offers the advantages of accuracy and automation feasibility with high sampling frequency. The dissolution profile for Akineton tablets (2mg BP/tablet) was studied using the proposed electrode in comparison with the official methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Solid-contact potentiometric polymer membrane microelectrodes for the detection of silver ions at the femtomole level

    PubMed Central

    Rubinova, Nastassia; Chumbimuni-Torres, Karin; Bakker, Eric

    2010-01-01

    In recent years, ion-selective electrodes based on polymer membranes have been shown to exhibit detection limits that are often in the nanomolar concentration range, and thus drastically lower than traditionally accepted. Since potentiometry is less dependent on scaling laws that other established analytical techniques, their performance in confined sample volumes is explored here. Solid-contact silver-selective microelectrodes, with a sodium-selective microelectrode as a reference, were inserted into a micropipette tip used as a 50-μl sample. The observed potential stabilities, reproducibilities and detection limits were attractive and largely matched that for large 100-ml samples. This should pave the way for further experiments to detecting ultra-small total ion concentrations by potentiometry, especially when used as a transducer after an amplification step in bioanalysis. PMID:20543910

  13. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.

    PubMed

    Li, Dongyue; Jia, Jianbo; Wang, Jianguo

    2010-12-15

    A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Electrode materials for rechargeable battery

    DOEpatents

    Johnson, Christopher; Kang, Sun-Ho

    2015-09-08

    A positive electrode is disclosed for a non-aqueous electrolyte lithium rechargeable cell or battery. The electrode comprises a lithium containing material of the formula Na.sub.yLi.sub.xNi.sub.zMn.sub.1-z-z'M.sub.z'O.sub.d, wherein M is a metal cation, x+y>1, 0

  15. Highly selective electrode for potentiometric analysis of methadone in biological fluids and pharmaceutical formulations.

    PubMed

    Ardeshiri, Moslem; Jalali, Fahimeh

    2016-06-01

    In order to develop a fast and simple procedure for methadone analysis in biological fluids, a graphite paste electrode (GPE) was modified with the ion-pair of methadone-phosphotungstic acid, and multiwalled carbon nanotubes (MWCNTs). Optimized composition of the electrode with respect to graphite powder:paraffin oil:MWCNTs:ion pair, was 58:30:8:4 (w/w%). The electrode showed a near-Nernstian slope of 58.9 ± 0.3 mV/decade for methadone in a wide linear range of 1.0 × 10(-8)-4.6 × 10(-3)M, with a detection limit of 1.0 × 10(-8)M. The electrode response was independent of pH in the range of 5-11, with a fast response time (~4s) at 25 °C. The sensor showed high selectivity and was successfully applied to the determination of sub-micromolar concentrations of methadone in human blood serum and urine samples, with recoveries in the range of 95-99.8%. The average recovery of methadone from tablets (5 mg/tablet) by using the proposed method was 98%. The life time of the modified electrode was more than 5 months, due to the characteristic of GPE which can be cut off and fresh electrode surface be available. A titration procedure was performed for methadone analysis by using phosphotungstic acid, as titrating agent, which showed an accurate end point and 1:1 stoichiometry for the ion-pair formed (methadone:phosphotungstic acid). The simple and rapid procedure as well as excellent detection limit and selectivity are some of the advantages of the proposed sensor for methadone. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characterization of home-made silver sulphide based iodide selective electrode.

    PubMed

    Rajbhandari Nyachhyon, A; Yadav, A P; Manandhar, K; Pradhananga, R R

    2010-09-15

    Polycrystalline silver sulphide/silver iodide ion selective electrodes (ISEs) with four different compositions, 9:1, 2:1, 1:1, 1:9 Ag(2)S-AgI mole ratios, have been fabricated in the laboratory and characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). X-ray diffraction studies show the presence of Ag(3)SI, Ag(2)S and AgI crystalline phases in the electrode material. The electrode surfaces have been found to become smoother and lustrous with increasing percentage of silver sulphide in silver iodide. ISE 1:1, ISE 2:1 and ISE 9:1 all responded in Nernstian manner with slopes of about 60 mV/decade change in iodide ion concentration in the linear range of 1 x 10(-1) to 1 x 10(-6)M while ISE 1:9 showed sub-Nernstian behavior with slope of about 45 mV up to the concentration 1 x 10(-5)M. Two capacitive loops, one corresponding to the charge transfer process at metal electrode and the back contact and a second loop corresponding to the charge transfer process at membrane-electrolyte interface have been observed at high and low frequency ranges, respectively. Mott-Schottky analysis shows that the materials are n-type semiconductors with donor defect concentrations in the range of 5.1 x 10(14) to 2.4 x 10(19)/cm(3). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Toxic Hazards Research Unit Annual Technical Report: 1974

    DTIC Science & Technology

    1974-07-01

    Deuterium Fluoride 130 iv TABLE OF CONTENTS (CONT’D) Section Page Use of Ion Selective Electrodes in Inhalation Toxicology 135 Analysis of Coal Tar...Chamber Atmospheres 144 Tissue Coal Tar Analysis 145 Fractionation of Crude Coal Tar 146 Blood Cyanide (CN - ) Analysis 155 Engineering Programs 162...flask temperature 134 21 System for analysis of chamber contaminant concentration by specific ion electrode 137 22 Simplified scheme of coal tar

  18. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.

    Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively.more » The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.« less

  19. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G [Albuquerque, NM; Fleming, James G [Albuquerque, NM

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  20. Integrated multi-ISE arrays with improved sensitivity, accuracy and precision

    NASA Astrophysics Data System (ADS)

    Wang, Chunling; Yuan, Hongyan; Duan, Zhijuan; Xiao, Dan

    2017-03-01

    Increasing use of ion-selective electrodes (ISEs) in the biological and environmental fields has generated demand for high-sensitivity ISEs. However, improving the sensitivities of ISEs remains a challenge because of the limit of the Nernstian slope (59.2/n mV). Here, we present a universal ion detection method using an electronic integrated multi-electrode system (EIMES) that bypasses the Nernstian slope limit of 59.2/n mV, thereby enabling substantial enhancement of the sensitivity of ISEs. The results reveal that the response slope is greatly increased from 57.2 to 1711.3 mV, 57.3 to 564.7 mV and 57.7 to 576.2 mV by electronic integrated 30 Cl- electrodes, 10 F- electrodes and 10 glass pH electrodes, respectively. Thus, a tiny change in the ion concentration can be monitored, and correspondingly, the accuracy and precision are substantially improved. The EIMES is suited for all types of potentiometric sensors and may pave the way for monitoring of various ions with high accuracy and precision because of its high sensitivity.

  1. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier.

    PubMed

    Singh, A K; Jain, A K; Mehtab, Sameena

    2007-08-06

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2x10(-7) to 1.0x10(-2) M (detection limit 5.5x10(-8) M) with a Nernstian slope of 19.7 mV decade(-1) of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  2. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors

    PubMed Central

    Wang, Xianfen; Kajiyama, Satoshi; Iinuma, Hiroki; Hosono, Eiji; Oro, Shinji; Moriguchi, Isamu; Okubo, Masashi; Yamada, Atsuo

    2015-01-01

    High-power Na-ion batteries have tremendous potential in various large-scale applications. However, conventional charge storage through ion intercalation or double-layer formation cannot satisfy the requirements of such applications owing to the slow kinetics of ion intercalation and the small capacitance of the double layer. The present work demonstrates that the pseudocapacitance of the nanosheet compound MXene Ti2C achieves a higher specific capacity relative to double-layer capacitor electrodes and a higher rate capability relative to ion intercalation electrodes. By utilizing the pseudocapacitance as a negative electrode, the prototype Na-ion full cell consisting of an alluaudite Na2Fe2(SO4)3 positive electrode and an MXene Ti2C negative electrode operates at a relatively high voltage of 2.4 V and delivers 90 and 40 mAh g−1 at 1.0 and 5.0 A g−1 (based on the weight of the negative electrode), respectively, which are not attainable by conventional electrochemical energy storage systems. PMID:25832913

  3. Determination of selected elements in whole coal and in coal ash from the eight argonne premium coal samples by atomic absorption spectrometry, atomic emission spectrometry, and ion-selective electrode

    USGS Publications Warehouse

    Doughten, M.W.; Gillison, J.R.

    1990-01-01

    Methods for the determination of 24 elements in whole coal and coal ash by inductively coupled argon plasma-atomic emission spectrometry, flame, graphite furnace, and cold vapor atomic absorption spectrometry, and by ion-selective electrode are described. Coal ashes were analyzed in triplicate to determine the precision of the methods. Results of the analyses of NBS Standard Reference Materials 1633, 1633a, 1632a, and 1635 are reported. Accuracy of the methods is determined by comparison of the analysis of standard reference materials to their certified values as well as other values in the literature.

  4. Uniform deposition of size-selected clusters using Lissajous scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Hirata, Hirohito

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonalmore » directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.« less

  5. Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries

    PubMed Central

    Ni, Qiao; Wu, Feng

    2017-01-01

    Sodium‐ion batteries, representative members of the post‐lithium‐battery club, are very attractive and promising for large‐scale energy storage applications. The increasing technological improvements in sodium‐ion batteries (Na‐ion batteries) are being driven by the demand for Na‐based electrode materials that are resource‐abundant, cost‐effective, and long lasting. Polyanion‐type compounds are among the most promising electrode materials for Na‐ion batteries due to their stability, safety, and suitable operating voltages. The most representative polyanion‐type electrode materials are Na3V2(PO4)3 and NaTi2(PO4)3 for Na‐based cathode and anode materials, respectively. Both show superior electrochemical properties and attractive prospects in terms of their development and application in Na‐ion batteries. Carbonophosphate Na3MnCO3PO4 and amorphous FePO4 have also recently emerged and are contributing to further developing the research scope of polyanion‐type Na‐ion batteries. However, the typical low conductivity and relatively low capacity performance of such materials still restrict their development. This paper presents a brief review of the research progress of polyanion‐type electrode materials for Na‐ion batteries, summarizing recent accomplishments, highlighting emerging strategies, and discussing the remaining challenges of such systems. PMID:28331782

  6. A New Electrochemical Sensor Based on Task-Specific Ionic Liquids-Modified Palm Shell Activated Carbon for the Determination of Mercury in Water Samples

    PubMed Central

    Ismaiel, Ahmed Abu; Aroua, Mohamed Kheireddine; Yusoff, Rozita

    2014-01-01

    In this study, a potentiometric sensor composed of palm shell activated carbon modified with trioctylmethylammonium thiosalicylate (TOMATS) was used for the potentiometric determination of mercury ions in water samples. The proposed potentiometric sensor has good operating characteristics towards Hg (II), including a relatively high selectivity; a Nernstian response to Hg (II) ions in a concentration range of 1.0 × 10−9 to 1.0 × 10−2 M, with a detection limit of 1 × 10−10 M and a slope of 44.08 ± 1.0 mV/decade; and a fast response time (∼5 s). No significant changes in electrode potential were observed when the pH was varied over the range of 3–9. Additionally, the proposed electrode was characterized by good selectivity towards Hg (II) and no significant interferences from other cationic or anionic species. PMID:25051034

  7. Design of a Selective and Sensitive PVC-Membrane Potentiometric Sensor for Strontium Ion Based on 1,10-Diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dione as a Neutral Ionophore

    PubMed Central

    Shamsipur, Mojtaba; Kazemi, Sayed Yahya; Sharghi, Hashem

    2007-01-01

    A novel PVC membrane sensor for the Sr2+ ion based on 1,10-diaza-5,6-benzo-4,7-dioxacyclohexadecane-2,9-dione has been prepared. The sensor possesses a Nernstian slope of 30.0 ± 0.6 mV decade-1 over a wide linear concentration range of 1.6 × 10-6-3.0 ×10-3 M with a detection limit of 6.3 ×10-7 M. It has a fast response time of <15 s and can be used for at least two months without any considerable divergence in potential. The potentiometric response is independent of the pH of test solution in the pH range 4.3-9.4. The proposed electrode shows good selectivities over a variety of alkali, alkaline earth, and transition metal ions.

  8. Biocompatible Poly(catecholamine)-Film Electrode for Potentiometric Cell Sensing.

    PubMed

    Kajisa, Taira; Yanagimoto, Yoshiyuki; Saito, Akiko; Sakata, Toshiya

    2018-02-23

    Surface-coated poly(catecholamine) (pCA) films have attracted attention as biomaterial interfaces owing to their biocompatible and physicochemical characteristics. In this paper, we report that pCA-film-coated electrodes are useful for potentiometric biosensing devices. Four different types of pCA film, l-dopa, dopamine, norepinephrine, and epinephrine, with thicknesses in the range of 7-27 nm were electropolymerized by oxidation on Au electrodes by using cyclic voltammetry. By using the pCA-film electrodes, the pH responsivities were found to be 39.3-47.7 mV/pH within the pH range of 1.68 to 10.01 on the basis of the equilibrium reaction with hydrogen ions and the functional groups of the pCAs. The pCA films suppressed nonspecific signals generated by other ions (Na + , K + , Ca 2+ ) and proteins such as albumin. Thus, the pCA-film electrodes can be used in pH-sensitive and pH-selective biosensors. HeLa cells were cultivated on the surface of the pCA-film electrodes to monitor cellular activities. The surface potential of the pCA-film electrodes changed markedly because of cellular activity; therefore, the change in the hydrogen ion concentration around the cell/pCA-film interface could be monitored in real time. This was caused by carbon dioxide or lactic acid that is generated by cellular respiration and dissolves in the culture medium, resulting in the change of hydrogen concentration. pCA-film electrodes are suitable for use in biocompatible and pH-responsive biosensors, enabling the more selective detection of biological phenomena.

  9. Aptamer cell sensor based on porous graphene oxide decorated ion-selective-electrode: Double sensing platform for cell and ion.

    PubMed

    Zhang, Rong; Gu, Yajun; Wang, Zhongrong; Li, Yueguo; Fan, Qingjie; Jia, Yunfang

    2018-06-15

    Enlightened by the emerging cell-ion detection based on ion-selective-electrode (ISE), an aptamer capturing and ISE transducing (AC&IT) strategy is proposed on the porous graphene oxide (PGO) decorated ISE (PGO-ISE), its performances in both cell and ion detections are examined by use of AS1411 targeted A549 cell detection and iodide-ISE as proof-of-concept. Firstly, GO flakes, exfoliated from graphite by modified Hummers method, are cross-linked by thiourea mediated hydrothermal process, to 3-dimension networked PGO which is identified by scanning-electron-microscope, UV-visible absorbance and X-ray photoelectron spectroscopy; its enhancing effect for cell capturing is evaluated by microscopy. Then, PGO-ISE is constructed by drop-coating PGO film on the surface of ISE and followed by covalently anchoring AS1411. Electrochemistry measurements for different state ISE (blank, PGO coated, AS1411 anchored and A549 captured) are performed by our home-made ISE-measuring system. It is demonstrated that the best cell-sensitivity in buffer is - 25.21 mV/log 10 C A549 (R 2 = 0.91), resolution in blood is 10 cells/ml. Interestingly, due to PGO's scaffold protection to the ionophore, I - -sensitivity is preserved as - 42.98 mV/pI (R 2 = 0.95, pI = -log 10 (C I )). Theoretical explanations are provided for the double-sensing phenomenon according to basic ISE principle. It is believed the PGO-ISE based aptamer cell sensor will be a promising experimental means for biomedical researches. Copyright © 2018. Published by Elsevier B.V.

  10. Complex Exploration of Hydrocarbon Deposits on Arctic Shelf with Seismic, Electric Prospection and Electrochemical Methods

    ERIC Educational Resources Information Center

    Palamarchuk, Vasily; Holmyanskii, Mihail; Glinskaya, Nadezhda; Mishchenko, Oksana

    2016-01-01

    Article describes basic principles of seismic, electric prospection and electrochemical data complexation, received on the same research objects. The goal of our exploration works is complex exploration of hydrocarbon deposits on arctic shelf. Complex is based on ion-selective electrodes for detection of heavy metal complex anomalies in sea…

  11. Particle-in-cell simulation of ion energy distributions on an electrode by applying tailored bias waveforms in the afterglow of a pulsed plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diomede, Paola; Economou, Demetre J.; Donnelly, Vincent M.

    2011-04-15

    A Particle-in-Cell simulation with Monte Carlo Collisions (PIC-MCC) was conducted of the application of tailored DC voltage steps on an electrode, during the afterglow of a capacitively-coupled pulsed-plasma argon discharge, to control the energy of ions incident on the counter-electrode. Staircase voltage waveforms with selected amplitudes and durations resulted in ion energy distributions (IED) with distinct narrow peaks, with controlled energies and fraction of ions under each peak. Temporary electron heating at the moment of application of a DC voltage step did not influence the electron density decay in the afterglow. The IED peaks were 'smeared' by collisions, especially atmore » the higher pressures of the range (10-40 mTorr) investigated.« less

  12. Detection of mercury ions using L-cysteine modified electrodes by anodic stripping voltammetric method

    NASA Astrophysics Data System (ADS)

    Vanitha, M.; Balasubramanian, N.; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    The detection of contaminants in wastewater is of massive importance in today's situation as they pose a serious threat to the environment as well as humans. One such vital contaminants is mercury and its compound, the reported mercury detectors grieve from low sensitivity, high cost and slow response. In the present work graphene based electrode material is developed for sensing mercury contaminants in wastewater using electrochemical technique. The synthesized material graphene oxide (GO) modified with L-Cysteine in presence of polyvinylpyrrolidone (PVP) as capping agent was characterized using SEM, TEM and Raman Spectroscopic analysis. It is ascertained from the morphological characterization that the nanocomposite exhibits a spherical morphology. The L-cysteine modified graphene oxide electrode is electrochemically characterized using redox couple [Fe(CN)63-/4-] and electrochemical impedance spectroscopic (EIS) analysis. Electrochemical sensing of Hg (II) ions in solution was done using Square wave anodic stripping voltammetry (SWASV). The incorporation of graphene significantly increases the sensitivity and selectivity towards mercury sensing.

  13. A novel instrumentation circuit for electrochemical measurements.

    PubMed

    Yin, Li-Te; Wang, Hung-Yu; Lin, Yang-Chiuan; Huang, Wen-Chung

    2012-01-01

    In this paper, a novel signal processing circuit which can be used for the measurement of H(+) ion and urea concentration is presented. A potentiometric method is used to detect the concentrations of H(+) ions and urea by using H(+) ion-selective electrodes and urea electrodes, respectively. The experimental data shows that this measuring structure has a linear pH response for the concentration range within pH 2 and 12, and the dynamic range for urea concentration measurement is in the range of 0.25 to 64 mg/dL. The designed instrumentation circuit possesses a calibration function and it can be applied to different sensing electrodes for electrochemical analysis. It possesses the advantageous properties of being multi-purpose, easy calibration and low cost.

  14. Controlled Synthesis and Functionalization of Vertically-Aligned Carbon Nanotubes for Multifunctional Applications

    DTIC Science & Technology

    2015-05-07

    6 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic...Cl, Br, or I) Prepared by Ball-Milling and Used as Anode Materials for Lithium - Ion Batteries ……………....................23 3.4 Well-Defined Two...9 1.6 Lithium - Ion Batteries Based on Vertically-Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes

  15. Nano-level monitoring of Mn(2+) ion by fabrication of coated pyrolytic graphite electrode based on isonicotinohydrazide derivatives.

    PubMed

    Sahani, Manoj Kumar; Singh, A K; Jain, A K

    2015-05-01

    The two ionophores N'(N',N‴E,N',N‴E)-N',N‴-((((oxybis(ethane-2,1-diyl))bis(oxy)) bis(2,1-phenylene))bis(methanylylidene))di(isonicotinohydrazide) (I1) and (N',N‴E,N',N‴E)-N',N‴-(((propane-1,3-diylbis(oxy))bis(2,1-phenylene))bis(methanylylidene))di(isonicotinohydrazide) (I2) were synthesised and investigated as neutral carrier in the fabrication of Mn(2+) ion selective sensor. Several membranes were prepared by incorporating different plasticizers and anionic excluders and their effect on potentiometric response was studied. The best analytical performance was obtained with the electrode having a membrane of composition of I2: PVC: o-NPOE: NaTPB in the ratio of 6:34:58:2 (w/w, mg). Comparative studies of coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) based on I2 reveal the superiority of CPGE. The CPGE exhibits wide working concentration range of 1.23×10(-8)-1.0×10(-1) mol L(-1) and a detection limit down to 4.78×10(-9) mol L(-1) with a Nernstian slope of 29.5±0.4 mV decade(-1) of activity. The sensor performs satisfactorily over a wide pH range (3.5-9.0) and exhibited a quick response time (9s). The sensor can work satisfactorily in water-acetonitrile and water-methanol mixtures. It can tolerate 30% acetonitrile and 20% methanol content in the mixtures. The sensor could be used for a period of four months without any significant divergence in performance. The sensor reflects its utility in the quantification of Mn(2+) ion in real samples and has been successfully employed as an indicator electrode in the potentiometric titration of Mn(2+) ion with ethylenediaminetetraacetic acid (EDTA). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The electrocatalytic reduction of nitrate in water on Pd/Sn-modified activated carbon fiber electrode.

    PubMed

    Wang, Ying; Qu, Jiuhui; Wu, Rongcheng; Lei, Pengju

    2006-03-01

    The Pd/Sn-modified activated carbon fiber (ACF) electrodes were successfully prepared by the impregnation of Pd2+ and Sn2+ ions onto ACF, and their electrocatalytic reduction capacity for nitrate ions in water was evaluated in a batch experiment. The electrode was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrum (XPS) and temperature programmed reduction (TPR). The capacity for nitrate reduction depending on Sn content on the electrode and the pH of electrolyte was discussed at length. The results showed that at an applied current density of 1.11 mA cm(-2), nitrate ions in water (solution volume: 400 mL) were reduced from 110 to 3.4 mg L(-1) after 240 min with consecutive change of intermediate nitrite. Ammonium ions and nitrogen were formed as the main final products. The amount of other possible gaseous products (including NO and N2O) was trace. With the increase of Sn content on the Pd/Sn-modified ACF electrode, the activity for nitrate reduction went up to reach a maximum (at Pd/Sn = 4) and then decreased, while the selectivity to N2 was depressed. Higher pH value of electrolyte exhibited more suppression effect on the reduction of nitrite than that of nitrate. However, no significant influence on the final ammonia formation was observed. Additionally, Cu ion in water was found to cover the active sites of the electrode to make the electrode deactivated.

  17. Handheld Microneedle-Based Electrolyte Sensing Platform.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Philip R.; Rivas, Rhiana; Johnson, David

    2015-11-01

    Sandia National Laboratories will provide technical assistance, within time and budget, to Requester on testing and analyzing a microneedle-based electrolyte sensing platform. Hollow microneedles will be fabricated at Sandia and integrated with a fluidic chip using plastic laminate prototyping technology available at Sandia. In connection with commercial ion selective electrodes the sensing platform will be tested for detection of electrolytes (sodium and/or potassium) within physiological relevant concent ration ranges.

  18. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    PubMed

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  19. Synthesis and application of ion imprinting polymer coated magnetic multi-walled carbon nanotubes for selective adsorption of nickel ion

    NASA Astrophysics Data System (ADS)

    He, Junnan; Shang, Hongzhou; Zhang, Xing; Sun, Xiaoran

    2018-01-01

    A novel nickel ion imprinted polymers (IIPs) based on multi-walled carbon nanotubes (MWCNTs) were synthesized inverse emulsion system, using chitosan(CS) and acrylic acid as the functional monomers, Ni (II) as the template, and N' N-methylene bis-acrylamide as the cross-linker. The chemical structure and morphological feature of the IIPs were characterized by scanning electron microscopy (SEM), Thermogravimetry (TG), X-ray diffraction (XRD), and Fourier transform infrared spectrometer (FTIR). The studies indicated that the gel layer was well grafted on the surface of MWCNTs. Studies on the adsorption ability of the IIPs, by atomic absorption spectrophotometry, demonstrated that IIPs possessed excellent adsorption and selective ability towards Ni (II), fitting to pseudo second-order kinetic isotherms and with a maximum capacity of 19.86 mg/g, and selectivity factor of 13.09 and 4.42. The electrochemical performance of ion imprinting carbon paste electrode (CPE/IIPs) was characterized by Cyclic voltammetry (CV). Studies have shown that CPE/IIPs showed excellent electrochemical performance.

  20. Model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Fogler, M. M.; Shklovskii, B. I.

    2011-12-01

    Electric double-layer supercapacitors (SCs) are promising devices for high-power energy storage based on the reversible absorption of ions into porous conducting electrodes. Graphene is a particularly good candidate for the electrode material in SCs due to its high conductivity and large surface area. In this paper, we consider SC electrodes made from a stack of graphene sheets with randomly inserted spacer molecules. We show that the large volumetric capacitances C≳100F/cm3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  1. A model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    NASA Astrophysics Data System (ADS)

    Skinner, Brian; Fogler, Michael; Shklovskii, Boris

    2012-02-01

    Electric double layer supercapacitors are promising devices for high-power energy storage based on the reversible absorption of ions into porous, conducting electrodes. Graphene is a particularly good candidate for the electrode material in supercapacitors due to its high conductivity and large surface area. In this paper we consider supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted ``spacer" molecules. We show that the large volumetric capacitances C > 100 F/cm^3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  2. Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries.

    PubMed

    Fang, Yongjin; Chen, Zhongxue; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2018-03-01

    Grid-scale energy storage batteries with electrode materials made from low-cost, earth-abundant elements are needed to meet the requirements of sustainable energy systems. Sodium-ion batteries (SIBs) with iron-based electrodes offer an attractive combination of low cost, plentiful structural diversity and high stability, making them ideal candidates for grid-scale energy storage systems. Although various iron-based cathode and anode materials have been synthesized and evaluated for sodium storage, further improvements are still required in terms of energy/power density and long cyclic stability for commercialization. In this Review, progress in iron-based electrode materials for SIBs, including oxides, polyanions, ferrocyanides, and sulfides, is briefly summarized. In addition, the reaction mechanisms, electrochemical performance enhancements, structure-composition-performance relationships, merits and drawbacks of iron-based electrode materials for SIBs are discussed. Such iron-based electrode materials will be competitive and attractive electrodes for next-generation energy storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Direct Sensing of Total Acidity by Chronopotentiometric Flash Titrations at Polymer Membrane Ion-Selective Electrodes

    PubMed Central

    Gemene, Kebede L.; Bakker, Eric

    2008-01-01

    Polymer membrane ion-selective electrodes containing lipophilic ionophores are traditionally interrogated by zero current potentiometry, which, ideally, gives information on the sample activity of ionic species. It is shown here that a discrete cathodic current pulse across an H+-selective polymeric membrane doped with the ionophore ETH 5294 may be used for the chronopotentiometric detection of pH in well buffered samples. However, a reduction in the buffer capacity leads to large deviations from the expected Nernstian response slope. This is explained by the local depletion of hydrogen ions at the sample-membrane interface as a result of the galvanostatically imposed ion flux in direction of the membrane. This depletion is found to be a function of the total acidity of the sample and can be directly monitored chronopotentiometrically in a flash titration experiment. The subsequent application of a baseline potential pulse reverses the extraction process of the current pulse, allowing one to interrogate the sample with minimal perturbation. In one protocol, total acidity is found to be proportional to the magnitude of applied current at the flash titration endpoint. More conveniently, the square root of the flash titration endpoint time observed at a fixed applied current is a linear function of the total acid concentration. This suggests that it is possible to perform rapid localized pH titrations at ion-selective electrodes without the need for volumetric titrimetry. The technique is explored here for acetic acid, MES and citric acid with promising results. Polymeric membrane electrodes on the basis of poly(vinyl chloride) plasticized with o-nitrophenyloctylether in a 1:2 mass ratio may be used for the detection of acids of up to ca. 1 mM concentration, with flash titration times on the order of a few seconds. Possible limitations of the technique are discussed, including variations of the acid diffusion coefficients and influence of electrical migration. PMID:18370399

  4. Preliminary flight prototype silver ion monitoring system

    NASA Technical Reports Server (NTRS)

    Brady, J.

    1974-01-01

    The design, fabrication, and testing of a preliminary flight prototype silver ion monitoring system based on potentiometric principles and utilizing a solid-state silver sulfide electrode paired with a pressurized double-junction reference electrode housing a replaceable electrolyte reservoir is described. The design provides automatic electronic calibration utilizing saturated silver bromide solution as a silver ion standard. The problem of loss of silver ion from recirculating fluid, its cause, and corrective procedures are reported. The instability of the silver sulfide electrode is discussed as well as difficulties met in implementing the autocalibration procedure.

  5. Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.

    PubMed

    Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki

    2010-01-01

    Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).

  6. Considerations for Estimating Electrode Performance in Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Bennett, William R.

    2012-01-01

    Advanced electrode materials with increased specific capacity and voltage performance are critical to the development of Li-ion batteries with increased specific energy and energy density. Although performance metrics for individual electrodes are critically important, a fundamental understanding of the interactions of electrodes in a full cell is essential to achieving the desired performance, and for establishing meaningful goals for electrode performance. This paper presents practical design considerations for matching positive and negative electrodes in a viable design. Methods for predicting cell-level discharge voltage, based on laboratory data for individual electrodes, are presented and discussed.

  7. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.

    PubMed

    Ma, Yanfeng; Chang, Huicong; Zhang, Miao; Chen, Yongsheng

    2015-09-23

    Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, have attracted much attention due to the combination of the rapid charge-discharge and long cycle life of supercapacitors and the high energy-storage capacity of lithium-ion batteries. Thus, LIHSs are expected to become the ultimate power source for hybrid and all-electric vehicles in the near future. As an electrode material, graphene has many advantages, including high surface area and porous structure, high electric conductivity, and high chemical and thermal stability, etc. Compared with other electrode materials, such as activated carbon, graphite, and metal oxides, graphene-based materials with 3D open frameworks show higher effective specific surface area, better control of channels, and higher conductivity, which make them better candidates for LIHS applications. Here, the latest advances in electrode materials for LIHSs are briefly summarized, with an emphasis on graphene-based electrode materials (including 3D graphene networks) for LIHS applications. An outlook is also presented to highlight some future directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ion trajectory simulations of axial ac dipolar excitation in the Orbitrap

    NASA Astrophysics Data System (ADS)

    Wu, Guangxiang; Noll, Robert J.; Plass, Wolfgang R.; Hu, Qizhi; Perry, Richard H.; Cooks, R. Graham

    2006-07-01

    The newly developed version of the multi-particle ion trajectory simulation program, ITSIM 6.0, was applied to simulate ac dipolar excitation of ion axial motion in the Orbitrap. The Orbitrap inner and outer electrodes were generated in AutoCAD, a 3D drawing program. The electrode geometry was imported into the 3D field solver COMSOL; the field array was then imported into ITSIM 6.0. Ion trajectories were calculated by solving Newton's equations using Runge-Kutta integration methods. Compared to the analytical solution, calculated radial components of the field at the device's "equator" (z = 0) were within 0.5% and calculated axial components midway between the inner and outer electrodes were within 0.2%. The experiments simulated here involved the control of axial motion of ions in the Orbitrap by the application of dipolar ac signals to the split outer electrodes, as described in a recently published paper from this laboratory [Hu et al., J. Phys. Chem. A 110 (2006) 2682]. In these experiments, ac signal was applied at the axial resonant frequency of a selected ion. Axial excitation and eventual ion ejection resulted when the ac was in phase with, i.e., had 0° phase relative to ion axial motion. De-excitation of ion axial motion until the ions were at z = 0 and at rest with respect to the z-axis resulted if the applied ac was out of phase with ion motion, with re-excitation of ion axial motion occurring if the dipolar ac was continued beyond this point. Both de-excitation and re-excitation could be achieved mass-selectively and depended on the amplitude and duration (number of cycles) of the applied ac. The effects of ac amplitude, frequency, phase relative to ion motion, and bandwidth of applied waveform were simulated. All simulation results were compared directly with the experimental data and good agreement was observed. Such ion motion control experiments and their simulation provide the possibility to improve Orbitrap performance and to develop tandem mass spectrometry (MS/MS) capabilities inside the Orbitrap.

  9. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring.

    PubMed

    Bandodkar, Amay J; Hung, Vinci W S; Jia, Wenzhao; Valdés-Ramírez, Gabriela; Windmiller, Joshua R; Martinez, Alexandra G; Ramírez, Julian; Chan, Garrett; Kerman, Kagan; Wang, Joseph

    2013-01-07

    This article presents the fabrication and characterization of novel tattoo-based solid-contact ion-selective electrodes (ISEs) for non-invasive potentiometric monitoring of epidermal pH levels. The new fabrication approach combines commercially available temporary transfer tattoo paper with conventional screen printing and solid-contact polymer ISE methodologies. The resulting tattoo-based potentiometric sensors exhibit rapid and sensitive response to a wide range of pH changes with no carry-over effects. Furthermore, the tattoo ISE sensors endure repetitive mechanical deformation, which is a key requirement of wearable and epidermal sensors. The flexible and conformal nature of the tattoo sensors enable them to be mounted on nearly any exposed skin surface for real-time pH monitoring of the human perspiration, as illustrated from the response during a strenuous physical activity. The resulting tattoo-based ISE sensors offer considerable promise as wearable potentiometric sensors suitable for diverse applications.

  10. Streaming potentials in gramicidin channels measured with ion-selective microelectrodes.

    PubMed Central

    Tripathi, S; Hladky, S B

    1998-01-01

    Streaming potentials have been measured for gramicidin channels with a new method employing ion-selective microelectrodes. It is shown that ideally ion-selective electrodes placed at the membrane surface record the true streaming potential. Using this method for ion concentrations below 100 mM, approximately seven water molecules are transported whenever a sodium, potassium, or cesium ion, passes through the channel. This new method confirms earlier measurements (Rosenberg, P.A., and A. Finkelstein. 1978. Interaction of ions and water in gramicidin A channels. J. Gen. Physiol. 72:327-340) in which the streaming potentials were calculated as the difference between electrical potentials measured in the presence of gramicidin and in the presence of the ion carriers valinomycin and nonactin. PMID:9635745

  11. Hydrogen-based electrochemical energy storage

    DOEpatents

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  12. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, G.W.; Leeper, R.J.

    1984-08-16

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating a nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a /sup 7/Li(p,..gamma..)/sup 8/Be reaction to produce 16.5 MeV gamma emission.

  13. Magnetically insulated diode for generating pulsed neutron and gamma ray emissions

    DOEpatents

    Kuswa, Glenn W.; Leeper, Ramon J.

    1987-01-01

    A magnetically insulated diode employs a permanent magnet to generate a magnetic insulating field between a spaced anode and cathode in a vacuum. An ion source is provided in the vicinity of the anode and used to liberate ions for acceleration toward the cathode. The ions are virtually unaffected by the magnetic field and are accelerated into a target for generating an nuclear reaction. The ions and target material may be selected to generate either neutrons or gamma ray emissions from the reaction of the accelerated ions and the target. In another aspect of the invention, a field coil is employed as part of one of the electrodes. A plasma prefill is provided between the electrodes prior to the application of a pulsating potential to one of the electrodes. The field coil multiplies the applied voltage for high diode voltage applications. The diode may be used to generate a .sup.7 Li(p,.gamma.).sup.8 Be reaction to produce 16.5 MeV gamma emission.

  14. Ion source with corner cathode

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A. (Inventor); Roman, Patrick A. (Inventor)

    2012-01-01

    An ion source may include first, second, and third electrodes. The first electrode may be a repeller having a V-shaped groove. The second electrode may be an electron emitter filament disposed adjacent the base of the V-shaped groove. The third electrode may be an anode that defines an enclosed volume with an aperture formed therein adjacent the electron emitter filament. A potential of the first electrode may be less than a potential of the second electrode, and the potential of the second electrode may be less than a potential of the third electrode. A fourth electrode that is disposed between the electron emitter filament and the anode may be used to produce a more collimated electron beam.

  15. Design and fabrication of nanoelectrodes for applications with scanning electrochemical microscopy

    NASA Astrophysics Data System (ADS)

    Thakar, Rahul

    Scanning electrochemical microscope (SECM) was introduced two decades ago and has since emerged as a powerful research tool to investigate localized electrochemical reactions at the surface of material and biological samples. The ability to obtain chemical information at a surface differentiates SECM from competing scanning probe microscopy (SPM) techniques. Although, chemical specificity is a unique advantage offered by SECM, inherent limitations due to a slow feedback response, and challenges associated with production of smaller electrodes have remained major drawbacks. Initially in this research, SECM was utilized as a characterization and investigative tool. Later, advances in SECM imaging were achieved with design and production of multifunctional nanoelectrodes. At first, platinum based nanoelectrodes were fabricated for use as electrochemical probes to investigate local electron transfer at chemically-modified surfaces. Further, micron and sub-micron platinum electrodes with chemically modified shrouds were prepared and characterized with voltammetric measurements. Studies reveal experimental evidence for the presence of edge-effects that are typically associated with submicron electrodes. Interestingly, we observed selectivity of these electrodes based on hydrophobic/ hydrophilic character. Through vapor deposition of parylene over microstructured material, single-pore membranes and porous membrane arrays were produced. Pore size characterization within porous membranes was performed with templated growth of micro/nanostructures. Characterization of transport properties of ions and redox-active molecules through hydrophobic parylene membranes was investigated with ion conductance microscopy and SECM, individually. Parylene is an insulative material that is chemically resistant, deposits conformally over high-aspect ratio objects and also converts into conductive carbon at high-temperature pyrolysis. Motivated by these results we identified a unique strategy to fabricate parylene based carbon electrodes Here, we have developed a unique strategy to obtain carbon based nanoelectrodes from vapor deposition of parylene over pulled glass nanopipettes. With this approach, multiple electrode geometries were constructed and the application of individual geomtery with SECM is demonstrated. In particular, enhanced spatial resolution and electrochemical information were obtained with the use of carbon ring/nanopore electrodes. Practical implications of edge-effects observed with carbon ring/nanopore electrodes is discussed with substrate generation tip collection (SG/TC) SECM Carbon ring/nanopore electrodes have also enabled the use of SECM in conjunction with ion conductance microscopy to alleviate the issue of poor feedback response. This has further helped in deconvolution of electrochemcial and topographical signals. Although, use of carbon nanoelectrodes is discussed with specific applications to electrochemcial microscopy, these probes have wide utility in electroanalytical applications. Initial proof-of-concept experiments along with future directions for this work are presented.

  16. Mesoscopic modeling and parameter estimation of a lithium-ion battery based on LiFePO4/graphite

    NASA Astrophysics Data System (ADS)

    Jokar, Ali; Désilets, Martin; Lacroix, Marcel; Zaghib, Karim

    2018-03-01

    A novel numerical model for simulating the behavior of lithium-ion batteries based on LiFePO4(LFP)/graphite is presented. The model is based on the modified Single Particle Model (SPM) coupled to a mesoscopic approach for the LFP electrode. The model comprises one representative spherical particle as the graphite electrode, and N LFP units as the positive electrode. All the SPM equations are retained to model the negative electrode performance. The mesoscopic model rests on non-equilibrium thermodynamic conditions and uses a non-monotonic open circuit potential for each unit. A parameter estimation study is also carried out to identify all the parameters needed for the model. The unknown parameters are the solid diffusion coefficient of the negative electrode (Ds,n), reaction-rate constant of the negative electrode (Kn), negative and positive electrode porosity (εn&εn), initial State-Of-Charge of the negative electrode (SOCn,0), initial partial composition of the LFP units (yk,0), minimum and maximum resistance of the LFP units (Rmin&Rmax), and solution resistance (Rcell). The results show that the mesoscopic model can simulate successfully the electrochemical behavior of lithium-ion batteries at low and high charge/discharge rates. The model also describes adequately the lithiation/delithiation of the LFP particles, however, it is computationally expensive compared to macro-based models.

  17. An EPR and EMF study of Belousov-Zhabotinsky oscillators: Veratric acid and veratraidehyde in a water-acetonitrile medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalitha, P.V.; Ramaswamy, R.; Ramakrishnan, G.

    1992-09-17

    Electron paramagnetic resonance and potentiometric techniques using a platinium indicator electrode/ion selective electrode, are used to study Belousov-Zhabotinsky oscillatory reactions involving veratric acid and veratraldehyde as substrates in a mixed medium. These two techniques have yield a good correlation.

  18. Paper‐Based Electrodes for Flexible Energy Storage Devices

    PubMed Central

    Yao, Bin; Zhang, Jing; Kou, Tianyi; Song, Yu; Liu, Tianyu

    2017-01-01

    Paper‐based materials are emerging as a new category of advanced electrodes for flexible energy storage devices, including supercapacitors, Li‐ion batteries, Li‐S batteries, Li‐oxygen batteries. This review summarizes recent advances in the synthesis of paper‐based electrodes, including paper‐supported electrodes and paper‐like electrodes. Their structural features, electrochemical performances and implementation as electrodes for flexible energy storage devices including supercapacitors and batteries are highlighted and compared. Finally, we also discuss the challenges and opportunity of paper‐based electrodes and energy storage devices. PMID:28725532

  19. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries

    DOE PAGES

    Du, Zhijia; Wood, David L.; Daniel, Claus; ...

    2017-02-09

    We present that increasing electrode thickness, thus increasing the volume ratio of active materials, is one effective method to enable the development of high energy density Li-ion batteries. In this study, an energy density versus power density optimization of LiNi 0.8Co 0.15Al 0.05O 2 (NCA)/graphite cell stack was conducted via mathematical modeling. The energy density was found to have a maximum point versus electrode thickness (critical thickness) at given discharging C rates. The physics-based factors that limit the energy/power density of thick electrodes were found to be increased cell polarization and underutilization of active materials. The latter is affected bymore » Li-ion diffusion in active materials and Li-ion depletion in the electrolyte phase. Based on those findings, possible approaches were derived to surmount the limiting factors. Finally, the improvement of the energy–power relationship in an 18,650 cell was used to demonstrate how to optimize the thick electrode parameters in cell engineering.« less

  20. A Convenient and Versatile Method To Control the Electrode Microstructure toward High-Energy Lithium-Ion Batteries

    DOE PAGES

    Zhao, Hui; Yang, Qing; Yuca, Neslihan; ...

    2016-06-23

    Control over porous electrode microstructure is critical for the continued improvement of electrochemical performance of lithium ion batteries. This paper describes a convenient and economical method for controlling electrode porosity, thereby enhancing material loading and stabilizing the cycling performance. Sacrificial NaCl is added to a Si-based electrode, which demonstrates an areal capacity of ~4 mAh/cm 2 at a C/10 rate (0.51 mA/cm 2) and an areal capacity of 3 mAh/cm 2 at a C/3 rate (1.7 mA/cm 2), one of the highest material loadings reported for a Si-based anode at such a high cycling rate. X-ray microtomography confirmed the improvedmore » porous architecture of the SiO electrode with NaCl. The method developed here is expected to be compatible with the state-of-the-art lithium ion battery industrial fabrication processes and therefore holds great promise as a practical technique for boosting the electrochemical performance of lithium ion batteries without changing material systems.« less

  1. Surface enhanced Raman scattering of new acridine based fluorophore adsorbed on silver electrode

    NASA Astrophysics Data System (ADS)

    Solovyeva, Elena V.; Myund, Liubov A.; Denisova, Anna S.

    2015-10-01

    4,5-Bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA) is a new acridine based fluoroionophore and a highly-selective sensor for cadmium ion. The direct interaction of the aromatic nitrogen atom with a surface is impossible since there are bulky substituents in the 4,5-positions of the acridine fragment. Nevertheless BHIA molecule shows a reliable SERS spectrum while adsorbed on a silver electrode. The analysis of SERS spectra pH dependence reveals that BHIA species adsorbed on a surface can exist in both non-protonated and protonated forms. The adsorption of BHIA from alkaline solution is accompanied by carbonaceous species formation at the surface. The intensity of such "carbon bands" turned out to be related with the supporting electrolyte (KCl) concentration. Upon lowering the electrode potential the SERS spectra of BHIA do not undergo changes but the intensity of bands decreases. This indicates that the adsorption mechanism on the silver surface is realized via aromatic system of acridine fragment. In case of such an adsorption mechanism the chelate fragment of the BHIA molecule is capable of interaction with the solution components. Addition of Cd2+ ions to a system containing BHIA adsorbed on a silver electrode in equilibrium with the solution leads to the formation of BHIA/Cd2+ complex which desorption causes the loss of SERS signal.

  2. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits

    NASA Astrophysics Data System (ADS)

    Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider

    2017-08-01

    In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.

  3. Erosion rate diagnostics in ion thrusters using laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.

    1993-01-01

    We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.

  4. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.

    PubMed

    Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions.

  5. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors

    NASA Astrophysics Data System (ADS)

    Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.

    2015-08-01

    Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.

  6. Sensitive glow discharge ion source for aerosol and gas analysis

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2007-08-14

    A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

  7. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1993-01-01

    The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.

  8. Mars aqueous chemistry experiment

    NASA Astrophysics Data System (ADS)

    Clark, Benton C.; Mason, Larry W.

    1993-06-01

    The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.

  9. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  10. A novel sensor for monitoring of iron(III) ions based on porphyrins.

    PubMed

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A(3)B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10(-7)-1 × 10(-1) M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples.

  11. An Ion-Selective Electrode for the Determination of Phencyclidine (PCP).

    DTIC Science & Technology

    1980-08-06

    as an indicator_ ectrode in potentiometric titration of PCPA at concentrations DD 1473 EDITION or I Nov soIS OSSOOL TC SEPURqITY CLAWSFICATION Of...and ISE detection limits determined as described previous (25). The PCP electrode was used as the indicator electrode in potentiometric titrations of...was standardized by potentiometric titration with a dodecyltrimethyl- ammonium bromide (DoTAB) solution using a DoTA+ ISE (25) as the indicator

  12. An ultra-sensitive Au nanoparticles functionalized DNA biosensor for electrochemical sensing of mercury ions.

    PubMed

    Zhang, Yanyan; Zhang, Cong; Ma, Rui; Du, Xin; Dong, Wenhao; Chen, Yuan; Chen, Qiang

    2017-06-01

    The present work describes an effective strategy to fabricate a highly sensitive and selective DNA-biosensor for the determination of mercury ions (Hg 2+ ). The DNA 1 was modified onto the surface of Au electrode by the interaction between sulfydryl group and Au electrode. DNA probe is complementary with DNA 1. In the presence of Hg 2+ , the electrochemical signal increases owing to that Hg 2+ -mediated thymine bases induce the conformation of DNA probe to change from line to hairpin and less DNA probes adsorb into DNA 1. Taking advantage of its reduction property, methylene blue is considered as the signal indicating molecule. For improving the sensitivity of the biosensor, Au nanoparticles (Au NPs) modified reporter DNA 3 is used to adsorb DNA 1. Electrochemical behaviors of the biosensor were evaluated by electrochemical impedance spectroscopy and cyclic voltammetry. Several important parameters which could affect the property of the biosensor were studied and optimized. Under the optimal conditions, the biosensor exhibits wide linear range, high sensitivity and low detection limit. Besides, it displays superior selectivity and excellent stability. The biosensor was also applied for water sample detection with satisfactory result. The novel strategy of fabricating biosensor provides a potential platform for fabricating a variety of metal ions biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: poly(vinyl chloride)-based sensor for acetate.

    PubMed

    Gupta, Vinod K; Goyal, Rajendra N; Sharma, Ram A

    2008-08-15

    A potentiometric acetate-selective sensor, based on the use of butane-2,3-dione,bis[(2,4-dinitrophenyl)hydrazone] (BDH) as a neutral carrier in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers and cation excluder, cetryaltrimethylammonium bromide (CTAB) was studied. The best performance was obtained with a membrane composition of PVC:BDH:CTAB ratio (w/w; mg) of 160:8:8. The sensor exhibits significantly enhanced selectivity toward acetate ions over a wide concentration range 5.0 x 10(-6) to 1.0 x 10(-1)M with a lower detection limit of 1.2 x 10(-6)M within pH range 6.5-7.5 with a response time of <15s and a Nernstian slope of 60.3+/-0.3 mV decade(-1) of activity. Influences of the membrane composition, and possible interfering anions were investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor has a response time of 15s and can be used for at least 65 days without any considerable divergence in their potential response. Selectivity coefficients determined with the separate solution method (SSM) and fixed interference method (FIM) indicate that high selectivity for acetate ion. The proposed electrode shows fairly good discrimination of acetate from several inorganic and organic anions. It was successfully applied to direct determination of acetate within food preservatives. Total concentration of acetic acid in vinegar samples were determined by direct potentiometry and the values agreed with those mentioned by the manufacturers.

  14. ELECTROCHEMICAL TREATMENT AND RECYCLING OF SPENT PERCHLORATE-CONTAMINATED ION-EXCHANGE REGENERATION BRINE - PHASE I

    EPA Science Inventory

    Eltron Research & Development, Inc. (Eltron) proposes to develop an ion-selective, polymer membrane electrode capable of detecting perchlorate in water at low parts per billion (ppb) concentrations. With the discovery of perchlorate contamination in an increasing number of...

  15. Plasticizer Effects in the PVC Membrane of the Dibasic Phosphate Selective Electrode

    PubMed Central

    Carey, Clifton

    2016-01-01

    The PVC membrane of an ion-selective electrode (ISE) sensitive to dibasic phosphate ions (HPO4-ISE) has not been optimized for maximum selectivity, sensitivity, and useable ISE lifetime and further work was necessary to improve its performance. Two areas of investigation are reported here: include the parameters for the lipophilicity of the plasticizer compound used and the amount of cyclic polyamine ionophore incorporated in the PVC membrane. Six candidate plasticizers with a range of lipophilicity were evaluated for their effect on the useable lifetime, sensitivity, and selectivity of the ISE against 13 different anions. Selectivity was determined by a modified fixed interferent method, sensitivity was determined without interferents, and the usable lifetime evaluated at the elapsed time where 50% of the HPO4-ISE failed (L50). The results show that choosing a plasticizer that has a lipophilicity similar to the ionophore's results in the best selectivity and sensitivity and the longest L50. PMID:27347487

  16. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  17. Method for Predicting the Energy Characteristics of Li-Ion Cells Designed for High Specific Energy

    NASA Technical Reports Server (NTRS)

    Bennett, William, R.

    2012-01-01

    Novel electrode materials with increased specific capacity and voltage performance are critical to the NASA goals for developing Li-ion batteries with increased specific energy and energy density. Although performance metrics of the individual electrodes are critically important, a fundamental understanding of the interactions of electrodes in a full cell is essential to achieving the desired performance, and for establishing meaningful goals for electrode performance in the first place. This paper presents design considerations for matching positive and negative electrodes in a viable design. Methods for predicting cell-level performance, based on laboratory data for individual electrodes, are presented and discussed.

  18. Development of a novel MWCNTs-triazene-modified carbon paste electrode for potentiometric assessment of Hg(II) in the aquatic environments.

    PubMed

    Mashhadizadeh, Mohammad Hossein; Ramezani, Soleyman; Rofouei, Mohammad Kazem

    2015-02-01

    In this approach, a new chemically modified carbon paste electrode was assembled for potentiometric assay of mercury(II) ion in the aqueous environments. Hereby, MWCNTs were used in the carbon paste composition to meliorate the electrical conductivity and sensitivity of the carbon paste owing to its exceptional physicochemical characteristics. Likewise, participation of the BEPT as a super-selective ionophore in the carbon paste composition boosted significantly the selectivity of the modified electrode towards Hg(II) ions over a wide concentration range of 4.0 × 10(-9)-2.2 × 10(-3) mol L(-1) with a lower detection limit of 3.1 × 10(-9) mol L(-1). Besides, Nernstian slope of the proposed sensor was 28.9(± 0.4)mV/decade over a pH range of 3.0-5.2 with potentiometric short response time of 10s. In the interim, by storing in the dark and cool dry place during non-usage period, the electrode can be used for at least 30 days without any momentous divergence of the potentiometric response. Eventually, to judge about its practical efficiency, the arranged sensor was utilized successfully as an indicator electrode for potentiometric titration of mercury(II) with standard solution of EDTA. As well, the quantitative analysis of mercury(II) ions in some aqueous samples with sensible accuracy and precision was satisfactorily performed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus and methods

    DOEpatents

    Zaromb, Solomon

    2001-01-01

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

  20. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOEpatents

    Zaromb, Solomon

    1994-01-01

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

  1. Minimizing analyte electrolysis in electrospray ionization mass spectrometry using a redox buffer coated emitter electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peintler-Krivan, Emese; Van Berkel, Gary J; Kertesz, Vilmos

    2010-01-01

    An emitter electrode with an electroactive poly(pyrrole) (PPy) polymer film coating was constructed for use in electrospray ionization mass spectrometry (ESI-MS). The PPy film acted as a surface-attached redox buffer limiting the interfacial potential of the emitter electrode. While extensive oxidation of selected analytes (reserpine and amodiaquine) was observed in positive ion mode ESI using a bare metal (gold) emitter electrode, the oxidation was suppressed for these same analytes when using the PPy-coated electrode. A semi-quantitative relationship between the rate of oxidation observed and the interfacial potential of the emitter electrode was shown. The redox buffer capacity, and therefore themore » lifetime of the redox buffering effect, correlated with the oxidation potential of the analyte and with the magnitude of the film charge capacity. Online reduction of the PPy polymer layer using negative ion mode ESI between analyte injections was shown to successfully restore the redox buffering capacity of the polymer film to its initial state.« less

  2. Advanced membrane electrode assemblies for fuel cells

    DOEpatents

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  3. Advanced membrane electrode assemblies for fuel cells

    DOEpatents

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  4. Mesoporous Transition Metal Oxides for Supercapacitors.

    PubMed

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-10-14

    Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  5. Mesoporous Transition Metal Oxides for Supercapacitors

    PubMed Central

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088

  6. Failure mechanisms in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Christensen, John Francis

    Lithium-ion batteries have become one of the leading candidates for energy storage in electric and hybrid-electric vehicles due to their high energy and power densities. However, the life of this class of rechargeable cells is limited, and is usually considerably shorter than the requirement for an economically feasible alternative to the internal combustion engine. The goal of this research is to explore specific mechanisms for cell failure via mathematical modeling of phenomena that occur in a broad assortment of lithium-ion cells. The theoretical framework of the models presented here is general enough to be applicable to most lithium-ion cells and even electrochemical cells that fall outside the realm of lithium-ion technology, but the properties and parameters that are used are specific enough that quantitative predictions can be made. Specifically, models for passive-film growth at the electrode/electrolyte interface and for particle fracture are presented. In addition, we discuss a framework for describing and understanding various types of capacity fade. Finally, we optimize the design of a lithium-titanate based cell using an existing full-cell model and compare its performance to that of a graphite based cell. The passive-film model indicates that the extent of film growth and impedance rise in a cell should depend strongly upon the state of charge (SOC) at which a battery is stored. We further show that current efficiency increases with the rate at which a cell is charged, although the cycling range of the cell decreases as the current is raised due to the impedance of the film. The particle-fracture model elucidates the conditions under which both graphitic and lithium-manganese-oxide particles surpass their yield strength, at which point cracking is initiated and particle fragmentation may occur. Higher rates of charge and larger particle size generally lead to a higher likelihood of fracture, although this dependence is absent in materials that undergo a two-phase transition. Pressure diffusion and nonidealities embodied in solid-state diffusion and the kinetics of lithium insertion are included in the model, and are shown to have significant impact on the results. Variations in the thermodynamic factor with lithium content result in local SOCs at which the stress in the material is much higher than would be predicted for an ideal solution. The implications of these variations, including the possibility of selecting SOC windows for battery operation that minimize stress, are examined in detail. The high-rate performance of cells with lithium-titanate negative electrodes can be enhanced, relative to cells with graphitic negative electrodes, through the selection of active material of small particle size. The high potential of the lithium-titanate electrode prevents many of the undesirable side reactions that occur in graphitic electrodes, including passive-film formation and lithium deposition. We conclude that the lithium-titanate electrode is probably the more attractive candidate for hybrid-electric-vehicle and other high-power applications.

  7. Aqueous-Processed, High-Capacity Electrodes for Membrane Capacitive Deionization.

    PubMed

    Jain, Amit; Kim, Jun; Owoseni, Oluwaseye M; Weathers, Cierra; Caña, Daniel; Zuo, Kuichang; Walker, W Shane; Li, Qilin; Verduzco, Rafael

    2018-05-15

    Membrane capacitive deionization (MCDI) is a low-cost technology for desalination. Typically, MCDI electrodes are fabricated using a slurry of nanoparticles in an organic solvent along with polyvinylidene fluoride (PVDF) polymeric binder. Recent studies of the environmental impact of CDI have pointed to the organic solvents used in the fabrication of CDI electrodes as key contributors to the overall environmental impact of the technology. Here, we report a scalable, aqueous processing approach to prepare MCDI electrodes using water-soluble polymer poly(vinyl alcohol) (PVA) as a binder and ion-exchange polymer. Electrodes are prepared by depositing aqueous slurry of activated carbon and PVA binder followed by coating with a thin layer of PVA-based cation- or anion-exchange polymer. When coated with ion-exchange layers, the PVA-bound electrodes exhibit salt adsorption capacities up to 14.4 mg/g and charge efficiencies up to 86.3%, higher than typically achieved for activated carbon electrodes with a hydrophobic polymer binder and ion-exchange membranes (5-13 mg/g). Furthermore, when paired with low-resistance commercial ion-exchange membranes, salt adsorption capacities exceed 18 mg/g. Our overall approach demonstrates a simple, environmentally friendly, cost-effective, and scalable method for the fabrication of high-capacity MCDI electrodes.

  8. Longitudinal flow of endolymph measured by distribution of tetraethylammonium and choline in scala media.

    PubMed

    Syková, E; Syka, J; Johnstone, B M; Yates, G K

    1987-01-01

    Longitudinal endolymph flow rate in the guinea pig cochlea was measured by determining the rate of migration of extrinsic ions, tetraethylammonium chloride (TEA) or choline, with a potassium sensitive ion-selective microelectrode (ISM). Low concentrations of iontophoretically injected TEA were detected with the ISM at various distances from the injection electrode. The results were variable when the ISM was used to record spread of TEA from turn II to turn I and vice versa. However, consistent data were obtained when the TEA spread was measured at different electrode separations (0.2, 0.5, 0.7 mm) within turn II. Electrode locations were systematically exchanged without changing their distance, i.e. the ISM electrode was placed basally or apically with respect to the TEA electrode. Comparison of data with a model, which combines the bulk diffusion of TEA and the flow of endolymph, is consistent with a rate of endolymph flow in turn II of about 0.2 mm/min, apex to base. A similar value was also obtained with the iontophoretic injection of choline. The endolymph flow rate may be different in turn I as indicated by measurements of compound action potential (CAP) changes. However, the results of experiments when TEA spread is measured at large distances must be interpreted cautiously because TEA may enter cellular walls of the cochlear duct and alternative routes of transport may be involved.

  9. Capacitive mixing with electrodes of the same kind for energy production from salinity differences

    NASA Astrophysics Data System (ADS)

    Marino, M.; Kozynchenko, O.; Tennison, S.; Brogioli, D.

    2016-03-01

    The capacitive mixing technique is aimed at producing renewable energy from salinity differences, for example between sea and river water. The technique makes use of two electrodes that modify their potential in opposite directions when the concentration of the solution in which they are immersed is changed, as a consequence of the dynamics of the electric double layer which forms in the ionic solution. Unfortunately, it is difficult to find two electrodes presenting both optimal performances and opposite potential variations. In order to overcome this problem, we present here a cell scheme with electrodes of the same kind (and thus identical dependence of potential on concentration) which can be operated with a CapMix cycle; it is based on a concentration cell with identical electrodes dipped into two compartments separated by a non-perm-selective porous diaphragm. Thanks to the cyclic operation, the actual cell voltage rise and the power production are close to the values obtained with the traditional scheme, or even higher, depending on the features of the ion transport in the liquid junction region. We present an experimental demonstration of the working principles and we study the power production and energy efficiency in the light of the theory of ion transport in fluids. We show that our technique is competitive with respect to the other CapMix techniques, with the relevant advantage that we make use of only one kind of electrode.

  10. Capacitive mixing with electrodes of the same kind for energy production from salinity differences.

    PubMed

    Marino, M; Kozynchenko, O; Tennison, S; Brogioli, D

    2016-03-23

    The capacitive mixing technique is aimed at producing renewable energy from salinity differences, for example between sea and river water. The technique makes use of two electrodes that modify their potential in opposite directions when the concentration of the solution in which they are immersed is changed, as a consequence of the dynamics of the electric double layer which forms in the ionic solution. Unfortunately, it is difficult to find two electrodes presenting both optimal performances and opposite potential variations. In order to overcome this problem, we present here a cell scheme with electrodes of the same kind (and thus identical dependence of potential on concentration) which can be operated with a CapMix cycle; it is based on a concentration cell with identical electrodes dipped into two compartments separated by a non-perm-selective porous diaphragm. Thanks to the cyclic operation, the actual cell voltage rise and the power production are close to the values obtained with the traditional scheme, or even higher, depending on the features of the ion transport in the liquid junction region. We present an experimental demonstration of the working principles and we study the power production and energy efficiency in the light of the theory of ion transport in fluids. We show that our technique is competitive with respect to the other CapMix techniques, with the relevant advantage that we make use of only one kind of electrode.

  11. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g-1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g-1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g-1) and high energy density (98.1 Wh kg-1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  12. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes.

    PubMed

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-03-08

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g -1 , which is 6 times higher than disordered CNTs in HClO 4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g -1 ), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g -1 ) and high energy density (98.1 Wh kg -1 ) in EMIBF 4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation.

  13. High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes

    PubMed Central

    Wu, Guan; Tan, Pengfeng; Wang, Dongxing; Li, Zhe; Peng, Lu; Hu, Ying; Wang, Caifeng; Zhu, Wei; Chen, Su; Chen, Wei

    2017-01-01

    Supercapacitors, which store electrical energy through reversible ion on the surface of conductive electrodes have gained enormous attention for variously portable energy storage devices. Since the capacitive performance is mainly determined by the structural and electrochemical properties of electrodes, the electrodes become more crucial to higher performance. However, due to the disordered microstructure and low electrochemical activity of electrode for ion tortuous migration and accumulation, the supercapacitors present relatively low capacitance and energy density. Here we report a high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V). The supercapacitor displays large specific capacitance of 403.3 F g−1, which is 6 times higher than disordered CNTs in HClO4 electrolyte. Additionally, the supercapacitor can also present high specific capacitance (314.6 F g−1), excellent cycling stability (90.2% retention after 3000 cycles at 4 A g−1) and high energy density (98.1 Wh kg−1) in EMIBF4 organic electrolyte. The key to high-performance lies in the vertical-aligned-structure providing direct path channel for ion faster diffusion and high electrochemical capacitance of polyaniline for ion more accommodation. PMID:28272474

  14. Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes

    PubMed Central

    Lee, Seong-Ki; Boron, Walter F.; Parker, Mark D.

    2013-01-01

    Determining the effective concentration (i.e., activity) of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study. PMID:23322102

  15. A Hybrid Constant and Oscillatory Field Ion Mobility Analyzer in Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran Nair Syamala Amma, Aneesh; Hamid, Ahme

    2018-02-28

    Ion mobility (IM) spectrometry is becoming an important approach for analyzing molecular ions in the gas phase with applications that span a multitude of scientific areas. There are a variety of IM-based approaches that utilize either constant or oscillatory electric fields. Here, we explore the combination of constant and oscillatory fields applied in a single device to affect the separation and filtering of ions based on their mobilities. The mobility analyzer allows confining and manipulating ions utilizing a combination of radio frequency (RF), direct current (DC) fields, and traveling waves (TW) in a structures for lossless ion manipulations (SLIM) module.more » In this work, we have investigated theoretically and experimentally the concept for continuous filtering of ions based on their mobilities where ions are mobility separated and selected by a combination of TW and constant fields providing opposing forces on the ions. The SLIM module was composed of two surfaces with mirror-image arrays of electrodes and had two regions where the different TW and opposing DC fields could be applied. By appropriately choosing the DC gradient and TW parameters for the two sections, it is possible to transmit ions of a selected mobility while filtering out others. The filtering capabilities are determined by the applied DC gradient and the TW parameters, such as frequency, amplitude and the TW sequence (i.e., the duty cycle of the traveling wave). The effect of different parameters on the sensitivity and the IM resolution of the device have been investigated.« less

  16. A Hybrid Constant and Oscillatory Field Ion Mobility Analyzer Using Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhakaran, Aneesh; Hamid, Ahmed M.; Garimella, Sandilya V. B.

    Ion mobility (IM) spectrometry is becoming an important approach for analyzing molecular ions in the gas phase with applications that span a multitude of scientific areas. There are a variety of IM-based approaches that utilize either constant or oscillatory electric fields. Here, we explore the combination of constant and oscillatory fields applied in a single device to affect the separation and filtering of ions based on their mobilities. The mobility analyzer allows confining and manipulating ions utilizing a combination of radio frequency (RF), direct current (DC) fields, and traveling waves (TW) in a structures for lossless ion manipulations (SLIM) module.more » In this work, we have investigated theoretically and experimentally the concept for continuous filtering of ions based on their mobilities where ions are mobility separated and selected by a combination of TW and constant fields providing opposing forces on the ions. The SLIM module was composed of two surfaces with mirror-image arrays of electrodes and had two regions where the different TW and opposing DC fields could be applied. By appropriately choosing the DC gradient and TW parameters for the two sections, it is possible to transmit ions of a selected mobility while filtering out others. The filtering capabilities are determined by the applied DC gradient and the TW parameters, such as frequency, amplitude and the TW sequence (i.e., the duty cycle of the traveling wave). The effect of different parameters on the sensitivity and the IM resolution of the device have been investigated.« less

  17. A review on lithium-ion power battery thermal management technologies and thermal safety

    NASA Astrophysics Data System (ADS)

    An, Zhoujian; Jia, Li; Ding, Yong; Dang, Chao; Li, Xuejiao

    2017-10-01

    Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.

  18. Ferrocene bound poly(vinyl chloride) as ion to electron transducer in electrochemical ion sensors.

    PubMed

    Pawlak, Marcin; Grygolowicz-Pawlak, Ewa; Bakker, Eric

    2010-08-15

    We report here on the synthesis of poly(vinyl chloride) (PVC) covalently modified with ferrocene groups (FcPVC) and the electrochemical behavior of the resulting polymeric membranes in view of designing all solid state voltammetric ion sensors. The Huisgen cycloaddition ("click chemistry") was found to be a simple and efficient method for ferrocene attachment. A degree of PVC modification with ferrocene groups between 1.9 and 6.1 mol % was achieved. The chemical modification of the PVC backbone does not significantly affect the ion-selective properties (selectivity, mobility, and solvent casting ability) of potentiometric sensing membranes applying this polymer. Importantly, the presence of such ferrocene groups may eliminate the need for an additional redox-active layer between the membrane and the inner electric contact in all solid state sensor designs. Electrochemical doping of this system was studied in a symmetrical sandwich configuration: glassy carbon electrode |FcPVC| glassy carbon electrode. Prior electrochemical doping from aqueous solution, resulting in a partial oxidation of the ferrocene groups, was confirmed to be necessary for the sandwich configuration to pass current effectively. The results suggest that only approximately 2.3 mol % of the ferrocene groups are electrochemically accessible, likely due to surface confined electrochemical behavior in the polymer. Indeed, cyclic voltammetry of aqueous hexacyanoferrate (III) remains featureless at cathodic potentials (down to -0.5 V). This indicates that the modified membrane is not responsive to redox-active species in the sample solution, making it possible to apply this polymer as a traditional, single membrane. Yet, the redox capacity of the electrode modified with this type of membrane was more than 520 microC considering a 20 mm(2) active electrode area, which appears to be sufficient for numerous practical ion voltammetric applications. The electrode was observed to operate reproducibly, with 1% standard deviation, when applying pulsed amperometric techniques.

  19. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    PubMed

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.

  20. Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions

    NASA Astrophysics Data System (ADS)

    Taurino, Irene; Sanzó, Gabriella; Mazzei, Franco; Favero, Gabriele; de Micheli, Giovanni; Carrara, Sandro

    2015-10-01

    Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism.

  1. Dissolution testing and potentiometric determination of famciclovir in pure, dosage forms and biological fluids.

    PubMed

    Rezk, Mohamed S; El Nashar, Rasha M

    2013-02-01

    The performance characteristics of two new plastic membrane ion selective electrodes (ISEs) used for the determination of famciclovir (Fcv) based on the ion associate of Fcv with phosphotungstic acid (PTA) or phosphomolybdic acid (PMA) are described. Different experimental conditions as type of plasticizer to be incorporated in the membrane, life span, effect of soaking, pH, temperature, and interferences were studied. Both electrodes showed similar performance under these conditions, exhibiting Nernstian slopes of S (Fcv-PTA)=58.60±0.84 mV/decade and S (Fcv-PMA)=58.77±0.68 mV/decade within a usable concentration range of 10⁻⁵-10⁻² [Fcv/M] at 298/K. Famciclovir was assayed potentiometrically in its pure solution, pharmaceutical preparations and biological fluids (urine and plasma) using proposed electrodes under batch and flow injection analysis (FIA) conditions with a recovery % ranging between 96.76% and 102.83% having RSD of 0.66%-1.81%. The electrodes were also successfully applied in the determination of the dissolution profile of Fcv tablets and the results came in agreement with the validated results of the HPLC method obtained from the quality control unit of the company producing the tablets. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saefurohman, Asep, E-mail: saefurohman.asep78@Gmail.com; Buchari,, E-mail: saefurohman.asep78@Gmail.com; Noviandri, Indra, E-mail: saefurohman.asep78@Gmail.com

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no reportmore » previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.« less

  3. An advanced model framework for solid electrolyte intercalation batteries.

    PubMed

    Landstorfer, Manuel; Funken, Stefan; Jacob, Timo

    2011-07-28

    Recent developments of solid electrolytes, especially lithium ion conductors, led to all solid state batteries for various applications. In addition, mathematical models sprout for different electrode materials and battery types, but are missing for solid electrolyte cells. We present a mathematical model for ion flux in solid electrolytes, based on non-equilibrium thermodynamics and functional derivatives. Intercalated ion diffusion within the electrodes is further considered, allowing the computation of the ion concentration at the electrode/electrolyte interface. A generalized Frumkin-Butler-Volmer equation describes the kinetics of (de-)intercalation reactions and is here extended to non-blocking electrodes. Using this approach, numerical simulations were carried out to investigate the space charge region at the interface. Finally, discharge simulations were performed to study different limitations of an all solid state battery cell. This journal is © the Owner Societies 2011

  4. Novel Ultrahigh Vacuum System for Chip-Scale Trapped Ion Quantum Computing

    NASA Astrophysics Data System (ADS)

    Chen, Shaw-Pin; Trapped Team

    2011-05-01

    This presentation reports the experimental results of an ultrahigh vacuum (UHV) system as a scheme to implement scalable trapped-ion quantum computers that use micro-fabricated ion traps as fundamental building blocks. The novelty of this system resides in our design, material selection, mechanical liability, low complexity of assembly, and reduced signal interference between DC and RF electrodes. Our system utilizes RF isolation and onsite-filtering topologies to attenuate AC signals generated from the resonator. We use a UHV compatible printed circuit board (PCB) material to perform DC routing, while the RF high and RF ground received separated routing via wire-wrapping. The standard PCB fabrication process enabled us to implement ceramic-based filter components adjacent to the chip trap. The DC electrodes are connected to air-side electrical feed through using four 25D adaptors made with polyether ether ketone (PEEK). The assembly process of this system is straight forward and in-chamber structure is self-supporting. We report on initial testing of this concept with a linear chip trap fabricated by the Sandia National Labs.

  5. BioMEMS for mitochondria medicine

    NASA Astrophysics Data System (ADS)

    Padmaraj, Divya

    A BioMEMS device to study cell-mitochondrial physiological functionalities was developed. The pathogenesis of many diseases including obesity, diabetes and heart failure as well as aging has been linked to functional defects of mitochondria. The synthesis of Adenosine Tri Phosphate (ATP) is determined by the electrical potential across the inner mitochondrial membrane and by the pH difference due to proton flux across it. Therefore, electrical characterization by E-fields with complementary chemical testing was used here. The BioMEMS device was fabricated as an SU-8 based microfluidic system with gold electrodes on SiO2/Si wafers for electromagnetic interrogation. Ion Sensitive Field Effect Transistors (ISFETs) were incorporated for proton studies important in the electron transport chain, together with monitoring Na+, K+ and Ca++ ions for ion channel studies. ISFETs are chemically sensitive Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices and their threshold voltage is directly proportional to the electrolytic H+ ion variation. These ISFETs (sensitivity ˜55 mV/pH for H+) were further realized as specific ion sensitive Chemical Field Effect Transistors (CHEMFETs) by depositing a specific ion sensitive membrane on the gate. Electrodes for dielectric spectroscopy studies of mitochondria were designed as 2- and 4-probe structures for optimized operation over a wide frequency range. In addition, to limit polarization effects, a 4-electrode set-up with unique meshed pickup electrodes (7.5x7.5 mum2 loops with 4 mum wires) was fabricated. Sensitivity of impedance spectroscopy to membrane potential changes was confirmed by studying the influence of uncouplers and glucose on mitochondria. An electrical model was developed for the mitochondrial sample, and its frequency response correlated with impedance spectroscopy experiments of sarcolemmal mitochondria. Using the mesh electrode structure, we obtained a reduction of 83.28% in impedance at 200 Hz. COMSOL simulations of selected electrical structures in this sensor were compared with experimental results to better understand the physical system. A broadband permittivity analysis tool consisting of lumped and distributed structures was also developed. The frequency range of this device is from 100 Hz to 40 GHz and utilizes an interdigitated capacitor and coplanar waveguide. The simultaneous measurement of membrane potential, ion concentrations and pH would enhance diagnostics and studies of mitochondrial diseases.

  6. A new method based on the Butler-Volmer formalism to evaluate voltammetric cation and anion sensors.

    PubMed

    Cano, Manuel; Rodríguez-Amaro, Rafael; Fernández Romero, Antonio J

    2008-12-11

    A new method based on the Butler-Volmer formalism is applied to assess the capability of two voltammetric ion sensors based on polypyrrole films: PPy/DBS and PPy/ClO4 modified electrodes were studied as voltammetric cation and anion sensors, respectively. The reversible potential versus electrolyte concentrations semilogarithm plots provided positive calibration slopes for PPy/DBS and negative ones for PPy/ClO4, as was expected from the proposed method and that based on the Nernst equation. The slope expressions deduced from Butler-Volmer include the electron-transfer coefficient, which allows slope values different from the ideal Nernstian value to be explained. Both polymeric films exhibited a degree of ion-selectivity when they were immersed in mixed-analyte solutions. Selectivity coefficients for the two proposed voltammetric cation and anion sensors were obtained by several experimental methods, including the separated solution method (SSM) and matched potential method (MPM). The K values acquired by the different methods were very close for both polymeric sensors.

  7. Microfabricated cylindrical ion trap

    DOEpatents

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  8. Molecular physics of electrical double layers in electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Feng, Guang

    At present, electrochemical capacitors (ECs) are emerging as a novel type of energy storage devices and have attracted remarkable attention, due to their key characteristics, such as high power density and excellent durability. However, the moderate energy density of ECs restricts their widespread deployment in everyday technology. To surmount this limitation, four strategies are adopted: (1) to reduce the total system mass, (2) to increase the specific surface area of electrodes, (3) to enhance normalized capacitance, and (4) to expand the range of potentials applied on electrodes. The implementation of these approaches critically relies on the fundamental understanding of physical processes underlying the energy storage mechanisms hinging on the electrical double layers (EDLs) in ECs. In this dissertation, to gain the fundamentals of EDLs in ECs, based on the strategies described above, we studied the structure, capacitance, and dynamics of EDLs in different electrolytes near electrodes featuring different pores using atomistic simulations. The pores of electrodes are categorized into macropores, mesopores, and micropores, following the decreasing order of pore size. The chosen electrolytes fall into aqueous electrolytes, organic electrolytes, and ionic liquids (ILs), listed by the increasing order of their decomposition voltages. For the aqueous electrolytes, we explored the water and ion distributions inside electrified micropores (< 2nm) using molecular dynamics (MD) simulations. The results showed that the ion distribution differs qualitatively from that described by classical EDL theories. Based on such exceptional phenomenon, a new sandwich capacitance model was developed to describe the EDLs inside micropores, which is capable of predicting the sharp increase of capacitance that has been experimentally observed in micropores. For the organic electrolytes, we examined the ion solvation and the EDL structure, capacitance, and dynamics in the electrolyte of tetraethylammonium tetrafluoroborate (TEABF4) in the aprotic solvent of acetonitrile (ACN). Firstly, the solvation of TEA+ and BF4 - ions is found to be much weaker than that of small inorganic ions. This characteristic accounts for the rich structure of EDLs near the electrodes. In particular, near charged electrodes, the ion distribution cannot be explained by the traditional EDL models. Secondly, the computed capacitances of EDLs agree well with those inferred from experimental measurements. Finally, we probed the dynamics of EDLs in organic electrolytes by analyzing the rotational dynamics of solvent and the self diffusion coefficients of ion/solvent. For the ILs, we performed the MD simulations of EDLs at the interface between an IL of 1-butyl-3-methylimidazolium nitrate ([BMIM][NO3]) and planar electrodes. The results revealed that the structure of the EDL is significantly affected by the liquid nature of the IL, the short-range ion--electrode and ion--ion interactions, and the charge delocalization of ions. We showed that the differential capacitance is a quantitative measure of the response of the EDL structure to a change of electrode surface charge density, and the concave-shaped capacitance--potential (C--V ) curve is in good agreement with that in the literature. To further acquire the theoretical understanding of EDLs in ILs, we investigated the effects of ion size and electrode curvature on the EDLs in ILs of 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). The results indicated that the ion size considerably affects the ion distribution and orientational structure of EDLs, and the EDL capacitances follow a certain order of the ion size. It was also found that the EDL capacitance increases as the electrode curvature increases. Based on the insights gained from the EDL structure and capacitance, a "Multiple Ion Layers with Overscreening" (MILO) model was proposed for EDLs in ILs. The capacitance predicted by the MILO model agrees well with that computed from the MD simulation.

  9. Electrochemical Ionization and Analyte Charging in the Array of Micromachined UltraSonic Electrospray (AMUSE) Ion Source

    PubMed Central

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2010-01-01

    Electrochemistry and ion transport in a planar array of mechanically-driven, droplet-based ion sources are investigated using an approximate time scale analysis and in-depth computational simulations. The ion source is modeled as a controlled-current electrolytic cell, in which the piezoelectric transducer electrode, which mechanically drives the charged droplet generation using ultrasonic atomization, also acts as the oxidizing/corroding anode (positive mode). The interplay between advective and diffusive ion transport of electrochemically generated ions is analyzed as a function of the transducer duty cycle and electrode location. A time scale analysis of the relative importance of advective vs. diffusive ion transport provides valuable insight into optimality, from the ionization prospective, of alternative design and operation modes of the ion source operation. A computational model based on the solution of time-averaged, quasi-steady advection-diffusion equations for electroactive species transport is used to substantiate the conclusions of the time scale analysis. The results show that electrochemical ion generation at the piezoelectric transducer electrodes located at the back-side of the ion source reservoir results in poor ionization efficiency due to insufficient time for the charged analyte to diffuse away from the electrode surface to the ejection location, especially at near 100% duty cycle operation. Reducing the duty cycle of droplet/analyte ejection increases the analyte residence time and, in turn, improves ionization efficiency, but at an expense of the reduced device throughput. For applications where this is undesirable, i.e., multiplexed and disposable device configurations, an alternative electrode location is incorporated. By moving the charging electrode to the nozzle surface, the diffusion length scale is greatly reduced, drastically improving ionization efficiency. The ionization efficiency of all operating conditions considered is expressed as a function of the dimensionless Peclet number, which defines the relative effect of advection as compared to diffusion. This analysis is general enough to elucidate an important role of electrochemistry in ionization efficiency of any arrayed ion sources, be they mechanically-driven or electrosprays, and is vital for determining optimal design and operation conditions. PMID:20607111

  10. Application of graphene oxide/lanthanum-modified carbon paste electrode for the selective determination of dopamine

    NASA Astrophysics Data System (ADS)

    Ye, Fengying; Feng, Chenqi; Fu, Ning; Wu, Huihui; Jiang, Jibo; Han, Sheng

    2015-12-01

    A home-made carbon paste electrode (CPE) was reformed by graphene oxide (GO)/lanthanum (La) complexes, and a modified electrode, called GO-La/CPE, was fabricated for the selective determination of dopamine (DA) by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several factors affecting the electrocatalytic performance of the modified sensor were investigated. Owning to the combination of GO and La ions, the GO-La/CPE sensor exhibited large surface area, well selectivity, good repeatability and stability in the oxidation reaction of DA. At optimal conditions, the response of the GO-La/CPE electrode for determining DA was linear in the region of 0.01-0.1 μM and 0.1-400.0 μM. The limit of detection was down to 0.32 nM (S/N = 3). In addition, this modified electrode was successfully applied to the detection of DA in real urine and serum samples by using standard adding method, showing its promising application in the electroanalysis of real samples.

  11. Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries.

    PubMed

    Gaikwad, Abhinav M; Arias, Ana Claudia

    2017-02-22

    Flexible lithium-ion batteries are necessary for powering the next generation of wearable electronic devices. In most designs, the mechanical flexibility of the battery is improved by reducing the thickness of the active layers, which in turn reduces the areal capacity and energy density of the battery. The performance of a battery depends on the electrode composition, and in most flexible batteries, standard electrode formulation is used, which is not suitable for flexing. Even with considerable efforts made toward the development of flexible lithium-ion batteries, the formulation of the electrodes has received very little attention. In this study, we investigate the relation between the electrode formulation and the mechanical strength of the electrodes. Peel and drag tests are used to compare the adhesion and cohesion strength of the electrodes. The strength of an electrode is sensitive to the particle size and the choice of polymeric binder. By optimizing the electrode composition, we were able to fabricate a high areal capacity (∼2 mAh/cm 2 ) flexible lithium-ion battery with conventional metal-based current collectors that shows superior electrochemical and mechanical performance in comparison to that of batteries with standard composition.

  12. Thick electrodes for Li-ion batteries: A model based analysis

    NASA Astrophysics Data System (ADS)

    Danner, Timo; Singh, Madhav; Hein, Simon; Kaiser, Jörg; Hahn, Horst; Latz, Arnulf

    2016-12-01

    Li-ion batteries are commonly used in portable electronic devices due to their outstanding energy and power density. A remaining issue which hinders the breakthrough e.g. in the automotive sector is the high production cost. For low power applications, such as stationary storage, batteries with electrodes thicker than 300 μm were suggested. High energy densities can be attained with only a few electrode layers which reduces production time and cost. However, mass and charge transport limitations can be severe at already small C-rates due to long transport pathways. In this article we use a detailed 3D micro-structure resolved model to investigate limiting factors for battery performance. The model is parametrized with data from the literature and dedicated experiments and shows good qualitative agreement with experimental discharge curves of thick NMC-graphite Li-ion batteries. The model is used to assess the effect of inhomogeneities in carbon black distribution and gives answers to the possible occurrence of lithium plating during battery charge. Based on our simulations we can predict optimal operation strategies and improved design concepts for future Li-ion batteries employing thick electrodes.

  13. Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chin; Maier, Joachim

    2018-02-01

    The requirements for rechargeable batteries place high demands on the electrodes. Efficient storage means accommodating both ions and electrons, not only in substantial amounts, but also with substantial velocities. The materials' space could be largely extended by decoupling the roles of ions and electrons such that transport and accommodation of ions take place in one phase of a composite, and transport and accommodation of electrons in the other phase. Here we discuss this synergistic concept being equally applicable for positive and negative electrodes along with examples from the literature for Li-based and Ag-based cells. Not only does the concept have the potential to mitigate the trade-off between power density and energy density, it also enables a generalized view of bulk and interfacial storage as necessary for nanocrystals. It furthermore allows for testable predictions of heterogeneous storage in passivation layers, dependence of transfer resistance on the state of charge, or heterogeneous storage of hydrogen at appropriate contacts. We also present an outlook on constructing artificial mixed-conductor electrodes that have the potential to achieve both high energy density and high power density.

  14. Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries.

    PubMed

    Chen, Shuangqiang; Wu, Chao; Shen, Laifa; Zhu, Changbao; Huang, Yuanye; Xi, Kai; Maier, Joachim; Yu, Yan

    2017-12-01

    Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high overall abundance of precursors, their even geographical distribution, and low cost. Apart from inherent thermodynamic disadvantages, SIBs have to overcome multiple kinetic problems, such as fast capacity decay, low rate capacities and low Coulombic efficiencies. A special case is sodium super ion conductor (NASICON)-based electrode materials as they exhibit - besides pronounced structural stability - exceptionally high ion conductivity, rendering them most promising for sodium storage. Owing to the limiting, comparatively low electronic conductivity, nano-structuring is a prerequisite for achieving satisfactory rate-capability. In this review, we analyze advantages and disadvantages of NASICON-type electrode materials and highlight electrode structure design principles for obtaining the desired electrochemical performance. Moreover, we give an overview of recent approaches to enhance electrical conductivity and structural stability of cathode and anode materials based on NASICON structure. We believe that this review provides a pertinent insight into relevant design principles and inspires further research in this respect. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An improved method for direct estimation of free cyanide in drinking water by Ion Chromatography-Pulsed Amperometry Detection (IC-PAD) on gold working electrode.

    PubMed

    Kumar Meher, Alok; Labhsetwar, Nitin; Bansiwal, Amit

    2018-02-01

    In the present work a fast, reliable and safe Ion Exchange Chromatography-Pulsed Amperometry Detection (IC-PAD) method for direct determination of free cyanide in drinking water has been reported. To the best of our knowledge for the first time we are reporting the application of Gold working electrode for detection of free cyanide in a chromatography system. The system shows a wide linear range up to 8000µg/L. The electrode was found to have improved sensitivity and selectivity in the presence of interfering ions. The detection limit of the system was calculated to be 2µg/L. Long term evaluation of the electrode was found to be stable. Reproducible results were obtained from analysis of drinking water samples with recoveries of 98.3-101.2% and Relative Standard Deviations (RSD) of <2%. This study proves the potential application of the newly developed method for the analysis of free cyanide in drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Soft Landing of Bare PtRu Nanoparticles for Electrochemical Reduction of Oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Colby, Robert J.; Engelhard, Mark H.

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu alloy nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 x 104 ions µm-2 and that their average height is centered at 4 nm. Scanning transmission electron microscopy images obtained in themore » high-angle annular dark field mode (STEM-HAADF) further confirm that the soft-landed PtRu alloy nanoparticles are uniform in size and have a Ru core decorated with small regions of Pt on the surface. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in relative atomic concentrations of ~9% and ~33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt4f and Ru3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the alloy nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He+ and O+ ions. The activity of electrodes containing 7 x 104 ions µm-2 of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the alloy nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare alloy nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions« less

  17. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    DOEpatents

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  18. Surface functional groups in capacitive deionization with porous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Hemmatifar, Ali; Oyarzun, Diego I.; Palko, James W.; Hawks, Steven A.; Stadermann, Michael; Santiago, Juan G.; Stanford Microfluidics Lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Capacitive deionization (CDI) is a promising technology for removal of toxic ions and salt from water. In CDI, an applied potential of about 1 V to pairs of porous electrodes (e.g. activated carbon) induces ion electromigration and electrostatic adsorption at electrode surfaces. Immobile surface functional groups play a critical role in the type and capacity of ion adsorption, and this can dramatically change desalination performance. We here use models and experiments to study weak electrolyte surface groups which protonate and/or depropotante based on their acid/base dissociation constants and local pore pH. Net chemical surface charge and differential capacitance can thus vary during CDI operation. In this work, we present a CDI model based on weak electrolyte acid/base equilibria theory. Our model incorporates preferential cation (anion) adsorption for activated carbon with acidic (basic) surface groups. We validated our model with experiments on custom built CDI cells with a variety of functionalizations. To this end, we varied electrolyte pH and measured adsorption of individual anionic and cationic ions using inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) techniques. Our model shows good agreement with experiments and provides a framework useful in the design of CDI control schemes.

  19. Comparison of three‐dimensional analysis and stereological techniques for quantifying lithium‐ion battery electrode microstructures

    PubMed Central

    TAIWO, OLUWADAMILOLA O.; FINEGAN, DONAL P.; EASTWOOD, DAVID S.; FIFE, JULIE L.; BROWN, LEON D.; DARR, JAWWAD A.; LEE, PETER D.; BRETT, DANIEL J.L.

    2016-01-01

    Summary Lithium‐ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium‐ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3‐D imaging techniques, quantitative assessment of 3‐D microstructures from 2‐D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two‐dimensional (2‐D) data sets. In this study, stereological prediction and three‐dimensional (3‐D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium‐ion battery electrodes were imaged using synchrotron‐based X‐ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2‐D image sections generated from tomographic imaging, whereas direct 3‐D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2‐D image sections is bound to be associated with ambiguity and that volume‐based 3‐D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially‐dependent parameters, such as tortuosity and pore‐phase connectivity. PMID:26999804

  20. Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures.

    PubMed

    Taiwo, Oluwadamilola O; Finegan, Donal P; Eastwood, David S; Fife, Julie L; Brown, Leon D; Darr, Jawwad A; Lee, Peter D; Brett, Daniel J L; Shearing, Paul R

    2016-09-01

    Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity. © 2016 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  1. Development of taste sensor system for differentiation of Indonesian herbal medicines

    NASA Astrophysics Data System (ADS)

    Kaltsum, U.; Triyana, K.; Siswanta, D.

    2014-09-01

    In Indonesia, herbal medicines are usually produced by small and medium enterprises which are relatively low in quality control. The purpose of this paper is to report that we have developed a taste sensor system with global selectivity, i.e., electronic tongue (e-tongue) for differentiation of Indonesian herbal medicines. The e-tongue was composed of five kinds of ion selective electrodes as working electrodes, data acquisition system, and pattern recognition system. Each ion selective electrode (ISE) was built by attaching lipid/polymer membrane. For this purpose, the five kinds of membranes were built by mixing lipid, plasticizer (nitrophenyl octyl ether/NPOE), polyvinyl chloride (PVC), and tetrahydrofuran (THF). In this study, we employed five kinds of lipid, namely oleic acid (OA), dioctyl phosphate (DOP), decyl alcohol (DA), dodecylamine (DDC), and trioctyl methyl ammonium chloride (TOMA). In this case, the membranes transform information of taste substances into electric signal. The five kinds of Indonesian herbal medicine were purchased from local supermarket in Yogyakarta, i.e., kunyit asam (made from turmeric and tamarind), beras kencur (made from rice and kencur), jahe wangi (made from ginger and fragrance), sirih wangi (made from betel leaf), and temulawak (made from Javanese ginger). Prior to detecting the taste from the Indonesian herbal medicine samples, each ion selective electrode was tested with five basic taste samples, i.e., for saltiness, sweetness, umami, bitterness, and sourness. All ISEs showed global selectivity to all samples. Furthermore, the array of ISEs showed specific response pattern to each Indonesian herbal medicine. For pattern recognition system, we employed principle component analysis (PCA). As a result, the e-tongue was able to differentiate five kinds of Indonesian herbal medicines, proven by the total variance of first and second principle components is about 93%. For the future, the e-tongue may be developed for quality control application in herbal medicine industries.

  2. Development of taste sensor system for differentiation of Indonesian herbal medicines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaltsum, U., E-mail: um-mik@yahoo.co.id; Triyana, K., E-mail: triyana@ugm.ac.id; Siswanta, D., E-mail: triyana@ugm.ac.id

    In Indonesia, herbal medicines are usually produced by small and medium enterprises which are relatively low in quality control. The purpose of this paper is to report that we have developed a taste sensor system with global selectivity, i.e., electronic tongue (e-tongue) for differentiation of Indonesian herbal medicines. The e-tongue was composed of five kinds of ion selective electrodes as working electrodes, data acquisition system, and pattern recognition system. Each ion selective electrode (ISE) was built by attaching lipid/polymer membrane. For this purpose, the five kinds of membranes were built by mixing lipid, plasticizer (nitrophenyl octyl ether/NPOE), polyvinyl chloride (PVC),more » and tetrahydrofuran (THF). In this study, we employed five kinds of lipid, namely oleic acid (OA), dioctyl phosphate (DOP), decyl alcohol (DA), dodecylamine (DDC), and trioctyl methyl ammonium chloride (TOMA). In this case, the membranes transform information of taste substances into electric signal. The five kinds of Indonesian herbal medicine were purchased from local supermarket in Yogyakarta, i.e., kunyit asam (made from turmeric and tamarind), beras kencur (made from rice and kencur), jahe wangi (made from ginger and fragrance), sirih wangi (made from betel leaf), and temulawak (made from Javanese ginger). Prior to detecting the taste from the Indonesian herbal medicine samples, each ion selective electrode was tested with five basic taste samples, i.e., for saltiness, sweetness, umami, bitterness, and sourness. All ISEs showed global selectivity to all samples. Furthermore, the array of ISEs showed specific response pattern to each Indonesian herbal medicine. For pattern recognition system, we employed principle component analysis (PCA). As a result, the e-tongue was able to differentiate five kinds of Indonesian herbal medicines, proven by the total variance of first and second principle components is about 93%. For the future, the e-tongue may be developed for quality control application in herbal medicine industries.« less

  3. Non-invasive paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis

    NASA Astrophysics Data System (ADS)

    Suresh, Vignesh; Qunya, Ong; Kanta, Bera Lakshmi; Yuh, Lee Yeong; Chong, Karen S. L.

    2018-03-01

    This work describes the design, fabrication and characterization of a paper-based microfluidic device for ultra-low detection of urea through enzyme catalysis. The microfluidic system comprises an entry port, a fluidic channel, a reaction zone and two electrodes (contacts). Wax printing was used to create fluidic channels on the surface of a chromatography paper. Pre-conceptualized designs of the fluidic channel are wax-printed on the paper substrate while the electrodes are screen-printed. The paper printed with wax is heated to cause the wax reflow along the thickness of the paper that selectively creates hydrophilic and hydrophobic zones inside the paper. Urease immobilized in the reaction zone catalyses urea into releasing ions and, thereby, generating a current flow between the electrodes. A measure of current with respect to time at a fixed potential enables the detection of urea. The methodology enabled urea concentration down to 1 pM to be detected. The significance of this work lies in the use of simple and inexpensive paper-based substrates to achieve detection of ultra-low concentrations of analytes such as urea. The process is non-invasive and employs a less cumbersome two-electrode assembly.

  4. Searching for Sustainable and "Greener" Li-ion Batteries

    ScienceCinema

    Tarascon, Jean-Marie [University of Picardie at Aimens, France

    2017-12-09

    Lithium-ion batteries are strong candidates for powering upcoming generations of hybrid electric vehicles and plug-in hybrid electric vehicles. But improvements in safety must be achieved while keeping track of materials resources and abundances, as well as materials synthesis and recycling processes, all of which could inflict a heavy energy cost. Thus, electrode materials that have a minimum footprint in nature and are made via eco-efficient processes are sorely needed. The arrival of electrode materials based on minerals such as LiFePO4 (tryphilite) is a significant, but not sufficient, step toward the long-term demand for materials sustainability. The eco-efficient synthesis of LiFePO4 nanopowders via hydrothermal/ solvo-thermal processes using latent bases, structure directing templates, or other bio-related approaches will be presented in this talk. However, to secure sustainability and greeness, organic electrodes appear to be ideal candidates.... We took a fresh look at organic based electrodes; the results of this research into sequentially metal-organic-framework electrodes and Li-based organic electrodes (LixCyOz) will be reported and discussed.

  5. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    PubMed

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of substrate nature on the electrochemical deposition of calcium-deficient hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Gualdrón-Reyes, A. F.; Domínguez-Vélez, V.; Morales-Morales, J. A.; Cabanzo, R.; Meléndez, A. M.

    2017-01-01

    Calcium phosphates were obtained by reducing nitrate ions to produce hydroxide ions on TiO2/stainless steel and TiO2/titanium electrodes. TiO2 coatings on metallic substrates were prepared by sol-gel dip-coating method. The morphology of deposits was observed by FESEM. Chemical nature of calcium phosphate deposits was identified by Raman micro-spectroscopy and FESEM/EDS microanalysis. Electrochemical behavior of nitrate and nitrite reduction on stainless steel and titanium electrodes was studied by linear sweep voltammetry. In addition, voltammetric study of the calcium phosphate electrodeposition on both electrodes was performed. From these measurements was selected the potential to form a calcium phosphate. A catalytic current associated to nitrate reduction reaction was obtained for stainless steel electrode, leading to significant deposition of calcium phosphate. Ca/P ratio for both substrates was less than 1.67. The formation of calcium deficient hydroxyapatite was confirmed by Raman spectroscopy.

  7. Solvent-free dry powder coating process for low-cost manufacturing of LiNi1/3Mn1/3Co1/3O2 cathodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Al-Shroofy, Mohanad; Zhang, Qinglin; Xu, Jiagang; Chen, Tao; Kaur, Aman Preet; Cheng, Yang-Tse

    2017-06-01

    We report a solvent-free dry powder coating process for making LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrodes in lithium-ion batteries. This process eliminates volatile organic compound emission and reduces thermal curing time from hours to minutes. A mixture of NMC, carbon black, and poly(vinylidene difluoride) was electrostatically sprayed onto an aluminum current collector, forming a uniformly distributed electrode with controllable thickness and porosity. Charge/discharge cycling of the dry-powder-coated electrodes in lithium-ion half cells yielded a discharge specific capacity of 155 mAh g-1 and capacity retention of 80% for more than 300 cycles when the electrodes were tested between 3.0 and 4.3 V at a rate of C/5. The long-term cycling performance and durability of dry-powder coated electrodes are similar to those made by the conventional wet slurry-based method. This solvent-free dry powder coating process is a potentially lower-cost, higher-throughput, and more environmentally friendly manufacturing process compared with the conventional wet slurry-based electrode manufacturing method.

  8. Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg(2.).

    PubMed

    Xie, Hua; Wang, Qin; Chai, Yaqin; Yuan, Yali; Yuan, Ruo

    2016-12-15

    In this work, a label-free electrochemical biosensor was developed for sensitive and selective detection of mercury (II) ions (Hg(2+)) based on in-situ deposition of silver nanoparticles (AgNPs) on terminal deoxynucleotidyl transferase (TdT) extended ssDNA for signal output and nicking endonuclease for cycling amplification. In the presence of target Hg(2+), the T-rich DNA (HP1) could partly fold into duplex-like structure (termed as output DNA) via T-Hg(2+)-T base pairs and thus exposed its sticky end. The sticky end of output DNA could then hybridize with 3'-PO4 terminated capture DNA (HP2) on electrode surface to form output DNA-HP2 hybridization complex with the sequence 5'-CCTCAGC-3'/3'-GGAGTCG-5' (the sequence could be recognized by nicking endonuclease Nt. BbvCI). With the introduction of Nt. BbvCI, output DNA existed in hybridization complex was released from electrode and participated in the next hybridization process, accompanying with the cleave of HP2 to expose substantial 3'-OH group, which could be extended into a long ssDNA nanotail with the aid of TdT and deoxyadenosine triphosphate (dATP). Since the long negatively charged ssDNA nanotail absorbed the positively charged silver ions on the DNA skeleton, the metallic silver could be in-situ deposited on electrode surface for electrochemical signal output upon addition of reduction regent sodium borohydride. Under optimal conditions, the developed electrochemical biosensor presented a good response to Hg(2+) with a detection limit of 3 pM (S/N=3). Furthermore, the biosensor exhibited good reproducibility and high selectivity towards other interfering ions. The proposed sensing system also showed a promising potential application in real sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide.

    PubMed

    Shea, Colleen; Alexoff, David L; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J; Fowler, Joanna S; Qu, Wenchao

    2015-08-01

    In this research, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([(11)C]CN¯) produced by our in-house built automated [(11)C]HCN production system and to identify the major sources of (12)C-cyanide ((12)CN¯). The [(11)C]CN¯ is produced from [(11)C]CO2, which is generated by the (14)N(p,α)(11)C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [(11)C]HCN production system were isolated in order to determine their relative contributions to (12)CN¯ mass. It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33µA for 1 and 10min) did not contribute significantly to the mass. Additionally, we compared the SA of our [(11)C]HCN precursor determined using the ISE to the SA of our current [(11)C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide

    DOE PAGES

    Shea, Colleen; Alexoff, David L.; Kim, Dohyun; ...

    2015-04-25

    In this study, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([ 11C]CN¯) produced by our in-house built automated [ 11C]HCN production system and to identify the major sources of 12C-cyanide ( 12CN¯). The [ 11C]CN¯ is produced from [ 11C]CO 2, which is generated by the 14N(p,α) 11C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [ 11C]HCN production system were isolated in ordermore » to determine their relative contributions to 12CN¯ mass. It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33 µA for 1 and 10 min) did not contribute significantly to the mass. Additionally, we compared the SA of our [ 11C]HCN precursor determined using the ISE to the SA of our current [ 11C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose.« less

  11. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, Colleen; Alexoff, David L.; Kim, Dohyun

    In this study, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([ 11C]CN¯) produced by our in-house built automated [ 11C]HCN production system and to identify the major sources of 12C-cyanide ( 12CN¯). The [ 11C]CN¯ is produced from [ 11C]CO 2, which is generated by the 14N(p,α) 11C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [ 11C]HCN production system were isolated in ordermore » to determine their relative contributions to 12CN¯ mass. It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33 µA for 1 and 10 min) did not contribute significantly to the mass. Additionally, we compared the SA of our [ 11C]HCN precursor determined using the ISE to the SA of our current [ 11C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose.« less

  12. A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins

    PubMed Central

    Vlascici, Dana; Fagadar-Cosma, Eugenia; Popa, Iuliana; Chiriac, Vlad; Gil-Agusti, Mayte

    2012-01-01

    Three A3B porphyrins with mixed carboxy-, phenoxy-, pyridyl-, and dimethoxy-substituent functionalization on the meso-phenyl groups were obtained by multicomponent synthesis, fully characterized and used as ionophores for preparing PVC-based membrane sensors selective to iron(III). The membranes have an ionophore:PVC:plasticizer composition ratio of 1:33:66. Sodium tetraphenylborate was used as additive (20 mol% relative to ionophore). The performance characteristics (linear concentration range, slope and selectivity) of the sensors were investigated. The best results were obtained for the membrane based on 5-(4-carboxyphenyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin plasticized with bis(2-ethylhexyl)sebacate, in a linear range from 1 × 10−7–1 × 10−1 M with a slope of 21.6 mV/decade. The electrode showed high selectivity with respect to alkaline and heavy metal ions and a response time of 20 s. The influence of pH on the sensor response was studied. The sensor was used for a period of six weeks and the utility has been tested for the quantitative determination of Fe(III) in recovered solutions from spent lithium ion batteries and for the quantitative determination of Fe(III) in tap water samples. PMID:22969395

  13. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.

    PubMed

    Fan, Chen-Shiuan; Liou, Sofia Ya Hsuan; Hou, Chia-Hung

    2017-10-01

    A single-pass-mode capacitive deionization (CDI) reactor was used to remove arsenic from groundwater in the presence of multiple ions. The CDI reactor involved an applied voltage of 1.2 V and six cell pairs of activated carbon electrodes, each of which was 20 × 30 cm 2 . The results indicate that this method achieved an effluent arsenic concentration of 0.03 mg L -1 , which is lower than the arsenic concentration standard for drinking water and irrigation sources in Taiwan, during the charging stage. Additionally, the ability of the CDI to remove other coexisting ions was studied. The presence of other ions has a significant influence on the removal of arsenic from groundwater. From the analysis of the electrosorption selectivity, the preference for anion removal could be ordered as follows: NO 3 -  > SO 4 2-  > F -  > Cl - >As. The electrosorption selectivity for cations could be ordered as follows: Ca 2+  > Mg 2+  > Na +  ∼ K + . Moreover, monovalent cations can be replaced by divalent cations at the electrode surface in the later period of the electrosorption stage. Consequently, activated carbon-based capacitive deionization is demonstrated to be a high-potential technology for remediation of arsenic-contaminated groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  15. Development of a pH sensing membrane electrode based on a new calix[4]arene derivative.

    PubMed

    Kormalı Ertürün, H Elif; Demirel Özel, Ayça; Sayın, Serkan; Yılmaz, Mustafa; Kılıç, Esma

    2015-01-01

    A new pH sensing poly(vinyl chloride) (PVC) membrane electrode was developed by using recently synthesized 5,17-bis(4-benzylpiperidine-1-yl)methyl-25,26,27,28-tetrahydroxy calix[4]arene as an ionophore. The effects of membrane composition, inner filling solution and conditioning solution on the potential response of the proposed pH sensing membrane electrode were investigated. An optimum membrane composition of 3% ionophore, 67% o-nitrophenyl octyl ether (o-NPOE) as plasticizer, 30% PVC was found. The electrode exhibited a near-Nernstian slope of 58.7±1.1 mV pH(-1) in the pH range 1.9-12.7 at 20±1 °C. It showed good selectivity for H(+) ions in the presence of some cations and anions and a longer lifetime of at least 12 months when compared with the other PVC membrane pH electrodes reported in the literature. Having a wide working pH range, it was not only applied as a potentiometric indicator electrode in various acid-base titrations, but also successfully employed in different real samples. It has good reproducibility and repeatability with a response time of 6-7s. Compared to traditional glass pH electrode, it exhibited excellent potentiometric response after being used in fluoride-containing media. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP

    DOE PAGES

    Wood, David L.; Quass, Jeffrey D.; Li, Jianlin; ...

    2017-05-16

    Processing lithium-ion battery (LIB) electrode dispersions with water as the solvent during primary drying offers many advantages over N-methylpyrrolidone (NMP). An in-depth analysis of the comparative drying costs of LIB electrodes is discussed for both NMP- and water-based dispersion processing in terms of battery pack $/kWh. Electrode coating manufacturing and capital equipment cost savings are compared for water vs. conventional NMP organic solvent processing. A major finding of this work is that the total electrode manufacturing costs, whether water- or NMP-based, contribute about 8–9% of the total pack cost. However, it was found that up to a 2 × reductionmore » in electrode processing (drying and solvent recovery) cost can be expected along with a $3–6 M savings in associated plant capital equipment (for a plant producing 100,000 10-kWh Plug-in Hybrid Electric Vehicle (PHEV) batteries) using water as the electrode solvent. This paper shows a different perspective in that the most important benefits of aqueous electrode processing actually revolve around capital equipment savings and environmental stewardship and not processing cost savings.« less

  17. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The QMA-based instrument will thus give way to substantial reductions of the mass of flight instruments.

  19. Selective sodium intercalation into sodium nickel-manganese sulfate for dual Na-Li-ion batteries.

    PubMed

    Marinova, Delyana M; Kukeva, Rosica R; Zhecheva, Ekaterina N; Stoyanova, Radostina K

    2018-05-09

    Double sodium transition metal sulfates combine in themselves unique intercalation properties with eco-compatible compositions - a specific feature that makes them attractive electrode materials for lithium and sodium ion batteries. Herein, we examine the intercalation properties of novel double sodium nickel-manganese sulfate, Na2Ni1/2Mn1/2(SO4)2, having a large monoclinic unit cell, through electrochemical and ex situ diffraction and spectroscopic methods. The sulfate salt Na2Ni1/2Mn1/2(SO4)2 is prepared by thermal dehydration of the corresponding hydrate salt Na2Ni1/2Mn1/2(SO4)2·4H2O having a blödite structure. The intercalation reactions on Na2Ni1-xMnx(SO4)2 are studied in two model cells: half-ion cell versus Li metal anode and full-ion cell versus Li4Ti5O12 anode by using lithium (LiPF6 dissolved in EC/DMC) and sodium electrolytes (NaPF6 dissolved in EC:DEC). Based on ex situ XRD and TEM analysis, it is found that sodium intercalation into Na2Ni1/2Mn1/2(SO4)2 takes place via phase separation into the Ni-rich monoclinic phase and Mn-rich alluaudite phase. The redox reactions involving participation of manganese and titanium ions are monitored by ex situ EPR spectroscopy. It has been demonstrated that manganese ions from the sulfate salt are participating in the electrochemical reaction, while the nickel ions remain intact. As a result, a reversible capacity of about 65 mA h g-1 is reached. The selective intercalation properties determine sodium nickel-manganese sulfate as a new electrode material for hybrid lithium-sodium ion batteries that is thought to combine the advantages of individual lithium and sodium batteries.

  20. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0

  1. Hydrate-melt electrolytes for high-energy-density aqueous batteries

    NASA Astrophysics Data System (ADS)

    Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-10-01

    Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (<100 Wh kg-1 based on total electrode weight), which results from the narrow operating potential window of water and the limited selection of suitable negative electrodes, is problematic for their future widespread application. Here, we explore optimized eutectic systems of several organic Li salts and show that a room-temperature hydrate melt of Li salts can be used as a stable aqueous electrolyte in which all water molecules participate in Li+ hydration shells while retaining fluidity. This hydrate-melt electrolyte enables a reversible reaction at a commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).

  2. Field ion spectrometry: a new technology for cocaine and heroin detection

    NASA Astrophysics Data System (ADS)

    Carnahan, Byron L.; Day, Stephen; Kouznetsov, Viktor; Tarassov, Alexandre

    1997-02-01

    Field ion spectrometry, also known as transverse field compensation ion mobility spectrometry, is a new technique for trace gas analysis that can be applied to the detection of cocaine and heroin. Its principle is based on filtering ion species according to the functional dependence of their mobilities with electric field strength. Field ion spectrometry eliminates the gating electrodes needed in conventional IMS to pulse ions into the spectrometer; instead, ions are injected in to the spectrometer and reach the detector continuously, resulting in improved sensitivity. The technique enables analyses that are difficult with conventional constant field strength ion mobility spectrometers. We have shown that a filed ion spectrometer can selectively detect the vapors from cocaine and heroin emitted from both their base and hydrochloride forms. The estimated volumetric limits of detection are in the low pptv range, based on testing with standardized drug vapor generation systems. The spectrometer can detect cocaine base in the vapor phase, at concentrations well below its estimated 100 pptv vapor pressure equivalent at 20 degrees C. This paper describes the underlying principles of field ion spectrometry in relation to narcotic drug detection, and recent results obtained for cocaine and heroin. The work has been sponsored in part by the United States Advanced Research Projects Agency under contract DAAB10-95C-0004, for the DOD Counterdrug Technology Development Program.

  3. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries.

    PubMed

    Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2016-01-07

    Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.

  4. Integrated, paper-based potentiometric electronic tongue for the analysis of beer and wine.

    PubMed

    Nery, Emilia Witkowska; Kubota, Lauro T

    2016-04-28

    The following manuscript details the stages of construction of a novel paper-based electronic tongue with an integrated Ag/AgCl reference, which can operate using a minimal amount of sample (40 μL). First, we optimized the fabrication procedure of silver electrodes, testing a set of different methodologies (electroless plating, use of silver nanoparticles and commercial silver paints). Later a novel, integrated electronic tongue system was assembled with the use of readily available materials such as paper, wax, lamination sheets, bleach etc. New system was thoroughly characterized and the ion-selective potentiometric sensors presented performance close to theoretical. An electronic tongue, composed of electrodes sensitive to sodium, calcium, ammonia and a cross-sensitive, anion-selective electrode was used to analyze 34 beer samples (12 types, 19 brands). This system was able to discriminate beers from different brands, and types, indicate presence of stabilizers and antioxidants, dyes or even unmalted cereals and carbohydrates added to the fermentation wort. Samples could be classified by type of fermentation (low, high) and system was able to predict pH and in part also alcohol content of tested beers. In the next step sample volume was minimalized by the use of paper sample pads and measurement in flow conditions. In order to test the impact of this advancement a four electrode system, with cross-sensitive (anion-selective, cation-selective, Ca(2+)/Mg(2+), K(+)/Na(+)) electrodes was applied for the analysis of 11 types of wine (4 types of grapes, red/white, 3 countries). Proposed matrix was able to group wines produced from different varieties of grapes (Chardonnay, Americanas, Malbec, Merlot) using only 40 μL of sample. Apart from that, storage stability studies were performed using a multimeter, therefore showing that not only fabrication but also detection can be accomplished by means of off-the-shelf components. This manuscript not only describes new paper-based, potentiometric sensors but also according to our knowledge is the first description of an electrochemical paper-based electronic tongue with integrated reference. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A theoretical consideration of ion size effects on the electric double layer and voltammetry of nanometer-sized disk electrodes.

    PubMed

    Gao, Yu; Liu, Yuwen; Chen, Shengli

    2016-12-12

    Considering that an electric-double-layer (EDL) structure may significantly impact on the mass transport and charge transfer kinetics at the interfaces of nanometer-sized electrodes, while EDL structures could be altered by the finite sizes of electrolyte and redox ions, the possible effects of ion sizes on EDL structures and voltammetric responses of nanometer-sized disk (nanodisk) electrodes are investigated. Modified Boltzmann and Nernst-Planck (NP) equations, which include the influence of the finite ion volumes, are combined with the Poisson equation and modified Butler-Volmer equation to gain knowledge on how the finite sizes of ions and the nanometer sizes of electrodes may couple with each other to affect the structures and reactivities of a nanoscale electrochemical interface. Two typical ion radii, 0.38 nm and 0.68 nm, which could represent the sizes of the commonly used aqueous electrolyte ions (e.g., the solvated K + ) and the organic electrolyte ions (e.g., the solvated TEA + ) respectively, are considered. The finite size of ions can result in decreased screening of electrode charges, therefore magnifying EDL effects on the ion transport and the electron transfer at electrochemical interfaces. This finite size effect of ions becomes more pronounced for larger ions and at smaller electrodes as the electrode radii is larger than 10 nm. For electrodes with radii smaller than 10 nm, however, the ion size effect may be less pronounced with decreasing the electrode size. This can be explained in terms of the increased edge effect of disk electrodes at nanometer scales, which could relax the ion crowding at/near the outer Helmholtz plane. The conditions and situations under which the ion sizes may have a significant effect on the voltammetry of electrodes are discussed.

  6. Determination of Fluoride in Toothpaste Using an Ion-Selective Electrode

    ERIC Educational Resources Information Center

    Light, Truman S.; Cappuccino, Carleton C.

    1975-01-01

    Outlines the theory of chemical potentiometry, describes the experimental procedure for free fluoride determination, and presents sample data of fluoride concentration for various brands of toothpaste. (GS)

  7. Protein-Modified-Paramagnetic-Particles as a Tool for Detection of Silver(I) Ions

    NASA Astrophysics Data System (ADS)

    Kizek, R.; Krizkova, S.; Adam, V.; Huska, D.; Hubalek, J.; Trnkova, L.

    2009-04-01

    In a number of published articles the toxic effect of silver(I) ions on aquatic organisms is described. Silver(I) ions in aquatic environment are stable in a wide range of pH. Under alkali pH AgOH and Ag(OH)2- can be formed. However, in water environment there are many compounds to interact with silver(I) ions. The most important ones are chloride anions, which forms insoluble precipitate with silver(I) ions (AgCl). The insoluble silver containing compounds do not pose any threat to aquatic organisms. Toxicity of silver ions is probably caused by their very good affinity to nucleic acids and also proteins. The binding into active enzyme site leads to the expressive enzyme reaction inhibition. Silver(I) ions are into living environment introduced thanks to anthropogenic activities. They easily contaminate atmosphere as well as aquatic environment or soils. Several authors described using of carbon electrode as working electrode for determination of silver. Recently, we have suggested heavy metal biosensor based on interaction of metal ions with low molecular mass protein called metallothionein (MT), which was adsorbed on the surface of hanging mercury drop electrode (HMDE). The biosensor was successfully used for detection of cadmium(II) and zinc(II) ions, cisplatin, cisplatin-DNA adducts and palladium(II) ions. Due to the convincing results with MT as biological component we report on suggesting of heavy metal biosensor based on immobilization of metallothionein (MT) on the surface of carbon paste electrode (CPE) via MT-antibodies. Primarily we studied of basic electrochemical behaviour of MT at surface of carbon paste electrode by using of square wave voltammetry (SWV). Detection limit (3 S/N) for MT was evaluated as 0.1 μg/ml. After that we have evaluated the electroactivity of MT at surface of SWV, we aimed our attention on the way of capturing of MT on the surface of CPE. We choose antibody against MT obtained from chicken eggs for these purposes. Antibodies incorporated mixed with carbon paste were stable. Even after 14 days we did not determine change in the peak height higher than 5 %. Further linkage of MT with polyclonal chicken antibodies incorporated in carbon paste electrode was determined by SWV. Two signals were observed in voltammograms, cysMT corresponding to -SH moieties of MT and Wa corresponding to tryptophan residues of chicken antibodies. We optimized time of interaction (300 s) and concentration of MT (125 µg/ml) to suggest silver(I) ions biosensor. Biosensor (MT-antibody-modified CPE) prepared under the optimized conditions was utilized for silver(I) ions detection. The detection limit (3 S/N) for silver(I) ions were estimated as 100 nM. The proposed biosensor was tested by detection of silver(I) ions spiked in various water samples (from very pure distilled water to rainwater). Recoveries varied from 74 to 104 %. MT, low molecular mass proteins rich cysteine, play important role in the processes of heavy metals ions metabolism. Due to their unique physico-chemical properties they are able to bind heavy metals with high affinity. We used this feature to suggest simple biosensor based on immobilization of MT on the surface of carbon paste electrode via chicken antibodies against MT. The suggested biosensor was further successfully employed to detect silver(I) ions. The main advantage of the biosensor is that it can be easily miniaturized, whereas carbon nanostructures with immobilized MT should be used as working electrodes. Acknowledgements Financial support from INCHEMBIOL MSMT 0021622412 and GA CR 526/07/0674 is highly acknowledged.

  8. A Quasi-Solid-State Li-Ion Capacitor Based on Porous TiO2 Hollow Microspheres Wrapped with Graphene Nanosheets.

    PubMed

    Wang, Faxing; Wang, Chun; Zhao, Yujuan; Liu, Zaichun; Chang, Zheng; Fu, Lijun; Zhu, Yusong; Wu, Yuping; Zhao, Dongyuan

    2016-12-01

    The quasi-solid-state Li-ion capacitor is demonstrated with graphene nanosheets prepared by an electrochemical exfoliation as the positive electrode and the porous TiO 2 hollow microspheres wrapped with the same graphene nanosheets as the negative electrode, using a Li-ion conducting gel polymer electrolyte. This device may be the key to bridging the gap between conventional lithium-ion batteries and supercapacitors, meanwhile meeting the safety demands of electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution

    PubMed Central

    Pujol, Luca; Evrard, David; Groenen-Serrano, Karine; Freyssinier, Mathilde; Ruffien-Cizsak, Audrey; Gros, Pierre

    2014-01-01

    A great challenge in the area of heavy metal trace detection is the development of electrochemical techniques and devices which are user-friendly, robust, selective, with low detection limits and allowing fast analyses. This review presents the major contribution of the French scientific academic community in the field of electrochemical sensors and electroanalytical methods within the last 20 years. From the well-known polarography to the up-to-date generation of functionalized interfaces, the different strategies dedicated to analytical performances improvement are exposed: stripping voltammetry, solid mercury-free electrode, ion selective sensor, carbon based materials, chemically modified electrodes, nano-structured surfaces. The paper particularly emphasizes their advantages and limits face to the last Water Frame Directive devoted to the Environmental Quality Standards for heavy metals. Recent trends on trace metal speciation as well as on automatic “on line” monitoring devices are also evoked. PMID:24818124

  10. Lithium ion batteries and their manufacturing challenges

    DOE PAGES

    Daniel, Claus

    2015-03-01

    There is no single lithium ion battery. With the variety of materials and electrochemical couples available, it is possible to design battery cells specific to their applications in terms of voltage, state of charge use, lifetime needs, and safety. Selection of specific electrochemical couples also facilitates the design of power and energy ratios and available energy. Integration in a large format cell requires optimized roll-to-roll electrode manufacturing and use of active materials. Electrodes are coated on a metal current collector foil in a composite structure of active material, binders, and conductive additives, requiring careful control of colloidal chemistry, adhesion, andmore » solidification. But the added inactive materials and the cell packaging reduce energy density. Furthermore, degree of porosity and compaction in the electrode can affect battery performance.« less

  11. Functionalized β-cyclodextrin based potentiometric sensor for naproxen determination.

    PubMed

    Lenik, Joanna; Łyszczek, Renata

    2016-04-01

    Potentiometric sensors based on neutral β-cyclodextrins: (2-hydroxypropyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin and anionic β-cyclodextrin: (2-hydroxy-3-N,N,N-trimethylamino)propyl-β-cyclodextrin chloride for naproxen are described. Inclusion complexes of naproxen with the above-mentioned cyclodextrins were studied using IR spectroscopy. The electrode surface was made from PVC membranes doped with the appropriate β-cyclodextrin as ionophores and quaternary ammonium chlorides as positive charge additives that were dispersed in plasticizers. The optimum membrane contains heptakis(2,3,6-tri-O-benzoyl)-β-cyclodextrin, o-nitrophenyloctyl ether and tetraoctyl ammonium chloride as a lipophilic salt. The electrode is characterized by a Nernstian response slope of -59.0 ± 0.5 mV decade(-1) over the linear range of 5.0 × 10(-5)-1.0 × 10(-2) mol L(-1) and the detection limit 1.0 × 10(-5) mol L(-1), as well as the response time 10s. It can be used in the pH range 6.2-8.5 for 10 months without any considerable deterioration. Incorporation of β-cyclodextrins improved the electrode selectivity towards naproxen ions from several inorganic and organic interferents and some common drug excipients due to concovalent interactions (host molecule-guest molecule). The notable advantages of the naproxen-selective electrode include its high sensitivity, high selectivity, cost-effectiveness as well as accurate and comfortable application in drug analysis and milk samples. Copyright © 2015. Published by Elsevier B.V.

  12. Development of an automated experimental setup for the study of ionic-exchange kinetics. Application to the ionic adsorption, equilibrium attainment and dissolution of apatite compounds.

    PubMed

    Thomann, J M; Gasser, P; Bres, E F; Voegel, J C; Gramain, P

    1990-02-01

    An ion-selective electrode and microcomputer-based experimental setup for the study of ionic-exchange kinetics between a powdered solid and the solution is described. The equipment is composed of easily available commercial devices and a data acquisition and regularization computer program is presented. The system, especially developed to investigate the ionic adsorption, equilibrium attainment and dissolution of hard mineralized tissues, provides good reliable results by taking into account the volume changes of the reacting solution and the electrode behaviour under different experimental conditions, and by avoiding carbonation of the solution. A second computer program, using the regularized data and the experimental parameters, calculates the quantities of protons consumed and calcium released in the case of equilibrium attainment and dissolution of apatite-like compounds. Finally, typical examples of ion-exchange and dissolution kinetics under constant pH of enamel and synthetic hydroxyapatite are examined.

  13. Morphology engineering of high performance binary oxide electrodes.

    PubMed

    Chen, Kunfeng; Sun, Congting; Xue, Dongfeng

    2015-01-14

    Advances in materials have preceded almost every major technological leap since the beginning of civilization. On the nanoscale and microscale, mastery over the morphology, size, and structure of a material enables control of its properties and enhancement of its usefulness for a given application, such as energy storage. In this review paper, our aim is to present a review of morphology engineering of high performance oxide electrode materials for electrochemical energy storage. We begin with the chemical bonding theory of single crystal growth to direct the growth of morphology-controllable materials. We then focus on the growth of various morphologies of binary oxides and their electrochemical performances for lithium ion batteries and supercapacitors. The morphology-performance relationships are elaborated by selecting examples in which there is already reasonable understanding for this relationship. Based on these comprehensive analyses, we proposed colloidal supercapacitor systems beyond morphology control on the basis of system- and ion-level design. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

  14. In situ multi-length scale approach to understand the mechanics of soft and rigid binder in composite lithium ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Jäckel, Nicolas; Dargel, Vadim; Shpigel, Netanel; Sigalov, Sergey; Levi, Mikhael D.; Daikhin, Leonid; Aurbach, Doron; Presser, Volker

    2017-12-01

    Intercalation-induced dimensional changes of composite battery electrodes containing either a stiff or a soft polymeric binder is one of the many factors determining the cycling performance and ageing. Herein, we report dimensional changes in bulk composite electrodes by in situ electrochemical dilatometry (eD) combined with electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D). The latter tracks the mechanical properties on the level of the electrode particle size. Lithium iron phosphate (LiFePO4, LFP) electrodes with a stiff binder (PVdF) and a soft binder (NaCMC) were investigated by cycling in lithium sulfate (Li2SO4) aqueous solution. The electrochemical and mechanical electrode performances depend on the electrode cycling history. Based on combined eD and EQCM-D measurements we provide evidence which properties are preferred for a binder used for a composite Li-ion battery electrode.

  15. Perylene-Based All-Organic Redox Battery with Excellent Cycling Stability.

    PubMed

    Iordache, Adriana; Delhorbe, Virginie; Bardet, Michel; Dubois, Lionel; Gutel, Thibaut; Picard, Lionel

    2016-09-07

    Organic materials derived from biomass can constitute a viable option as replacements for inorganic materials in lithium-ion battery electrodes owing to their low production costs, recyclability, and structural diversity. Among them, conjugated carbonyls have become the most promising type of organic electrode material as they present high theoretical capacity, fast reaction kinetics, and quasi-infinite structural diversity. In this letter, we report a new perylene-based all-organic redox battery comprising two aromatic conjugated carbonyl electrode materials, the prelithiated tetra-lithium perylene-3,4,9,10-tetracarboxylate (PTCLi6) as negative electrode material and the poly(N-n-hexyl-3,4,9,10-perylene tetracarboxylic)imide (PTCI) as positive electrode material. The resulting battery shows promising long-term cycling stability up to 200 cycles. In view of the enhanced cycling performances, the two organic materials studied herein are proposed as suitable candidates for the development of new all-organic lithium-ion batteries.

  16. Porous, Hyper-cross-linked, Three-Dimensional Polymer as Stable, High Rate Capability Electrode for Lithium-Ion Battery.

    PubMed

    Mukherjee, Debdyuti; Gowda Y K, Guruprasada; Makri Nimbegondi Kotresh, Harish; Sampath, S

    2017-06-14

    Organic materials containing active carbonyl groups have attracted considerable attention as electrodes in Li-ion batteries due to their reversible redox activity, ability to retain capacity, and, in addition, their ecofriendly nature. Introduction of porosity will help accommodate as well as store small ions and molecules reversibly. In the present work, we introduce a mesoporous triptycene-related, rigid network polymer with high specific surface area as an electrode material for rechargeable Li-ion battery. The designed polymer with a three-dimensional (3D), rigid porous network allows free movement of ions/electrolyte as well as helps in interacting with the active anhydride moieties (containing two carbonyl groups). Considerable intake of Li + ions giving rise to very high specific capacity of 1100 mA h g -1 at a discharge current of 50 mA g -1 and ∼120 mA h g -1 at a high discharge current of 3 A g -1 are observed with excellent cyclability up to 1000 cycles. This remarkable rate capability, which is one of the highest among the reported organic porous polymers to date, makes the triptycene-related rigid 3D network a very good choice for Li-ion batteries and opens up a new method to design polymer-based electrode materials for metal-ion battery technology.

  17. Iodine in foods. February 1974-December 1979 (citations from the Food Science and Technology Abstracts data base). Report for February 1974-December 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, C.G.

    The bibliography cites reports dealing with determination, content and effects of iodine in foods and beverages such as milk and water. Methods of determination include utilization of ion-selective electrodes, gas chromatography and neutron activation analysis. I values of fats and oils are reported, as well as effects of iodophor preparations used for washing udders and milk equipment. (Contains 188 abstracts)

  18. Initial experimental test of a helicon plasma based mass filter

    NASA Astrophysics Data System (ADS)

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.

    2016-06-01

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. Concurrent spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.

  19. Symposium on Biosensors

    DTIC Science & Technology

    1989-11-01

    cherists because a new parameter; the refractive index of materials is an important in design as the chemistry of the absorbing or reacting layer ...redox electrode surfaces (the Sharp electrodes); use of enzymes in reactive layers to generate from neutral charge substrate species that can be...and natural and synthetic ionophores in monovalent and divalent ion sensors since 1965); use of selective layers to extract or partition species into

  20. Influence of finite geometrical asymmetry of the electrodes in capacitively coupled radio frequency plasma

    NASA Astrophysics Data System (ADS)

    Bora, B.; Soto, L.

    2014-08-01

    Capacitively coupled radio frequency (CCRF) plasmas are widely studied in last decades due to the versatile applicability of energetic ions, chemically active species, radicals, and also energetic neutral species in many material processing fields including microelectronics, aerospace, and biology. A dc self-bias is known to generate naturally in geometrically asymmetric CCRF plasma because of the difference in electrode sizes known as geometrical asymmetry of the electrodes in order to compensate electron and ion flux to each electrode within one rf period. The plasma series resonance effect is also come into play due to the geometrical asymmetry and excited several harmonics of the fundamental in low pressure CCRF plasma. In this work, a 13.56 MHz CCRF plasma is studied on the based on the nonlinear global model of asymmetric CCRF discharge to understand the influences of finite geometrical asymmetry of the electrodes in terms of generation of dc self-bias and plasma heating. The nonlinear global model on asymmetric discharge has been modified by considering the sheath at the grounded electrode to taking account the finite geometrical asymmetry of the electrodes. The ion density inside both the sheaths has been taken into account by incorporating the steady-state fluid equations for ions considering that the applied rf frequency is higher than the typical ion plasma frequency. Details results on the influences of geometrical asymmetry on the generation of dc self-bias and plasma heating are discussed.

  1. Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tran, Hai Yen; Greco, Giorgia; Täubert, Corina; Wohlfahrt-Mehrens, Margret; Haselrieder, Wolfgang; Kwade, Arno

    2012-07-01

    The electrode manufacturing for lithium-ion batteries is based on a complex process chain with several influencing factors. A proper tailoring of the electrodes can greatly improve both the electrochemical performances and the energy density of the battery. In the present work, some significant parameters during the preparation of LiNi0.8Co0.15Al0.05O2-based cathodes were investigated. The active material was mixed with a PVDF-binder and two conductive additives in different ratios. The electrode thickness, the degree of compacting and the conductive agent type and mixing ratio have proven to have a strong impact on the electrochemical performances of the composite electrodes, especially on their behaviour at high C-rates. Further it has been shown that the compacting has an essential influence on the mechanical properties of NCA coatings, according to their total, ductile and elastic deformation behaviour.

  2. Freestanding nano crystalline Tin@carbon anode electrodes for high capacity Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Guler, M. O.; Guzeler, M.; Nalci, D.; Singil, M.; Alkan, E.; Dogan, M.; Guler, A.; Akbulut, H.

    2018-07-01

    Due to their high specific capacities tin based electrode materials are in the focus of many researchers almost for a decade. However, tin based electrodes are hampered in practical applications due to the volumetric changes during the lithiation and delithiation processes. Therefore, we designed and synthesized a novel "yolk-shell" structure in order to remove these challenges. The production of high purity nano Sn particles were synthesized through a facile chemical reduction method. As-synthesized nano particles were then embedded into conformal and self-standing carbon architectures, designed with hollow space in between the shell and the active electrode particles. As-synthesized Sn@C composite particles were decorated between the layers of graphene produced by Hummers method in order to obtained self-standing thin graphene films. A stable discharge capacity of 284.5 mA h g-1 after 250 cycles is obtained. The results have shown that Sn@C@graphene composite electrodes will be a promising novel candidate electrode material for high capacity lithium ion batteries.

  3. Gold dendrites Co-deposited with M13 virus as a biosensor platform for nitrite ions.

    PubMed

    Seo, Yeji; Manivannan, Shanmugam; Kang, Inhak; Lee, Seung-Wuk; Kim, Kyuwon

    2017-08-15

    We developed a biosensor for nitrite ion on an electrode surface modified with M13 viruses and gold nanostructures. Gold dendritic nanostructures (Au-DNs) are electrochemically co-deposited from 4E peptides engineered M13 virus (M13 4E ) mixed electrolyte on to the ITO electrode. The M13 4E could specifically nucleate Au precursor (Gold (III) chloride), which enable the efficient growth of dendritic nanostructures, whereas such dendritic structures were not obtained in the presence of wild-type and Y3E peptides engineered M13 viruses. The structural features of the Au-DNs and their interfacing mechanism with ITO electrode are characterized by SEM, EDX and XRD analyses. The growth of Au-DNs at ITO electrode has been monitored by time dependent SEM study. The M13 4E induces the formation and plays a crucial role in shaping the dendritic morphology for Au. Biosensor electrode was constructed using Au-DNs modified electrode for nitrite ions and found improved sensitivity relative to the sensor electrode prepared from wild-type M13, Y3E peptides engineered M13 and without M13. Sensor electrode exhibited good selectivity toward target analyte from the possible interferences. Furthermore, 4E native peptides were used as additive to deposit Au nanostructures and it is compared with the structure and reactivity of the Au nanostructures prepared in the presence of M13 4E . Our novel biosensor fabrication can be extended to other metal and metal oxide nanostructures and its application might be useful to develop novel biosensor electrode for variety of biomolecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes.

    PubMed

    Guinovart, Tomàs; Parrilla, Marc; Crespo, Gastón A; Rius, F Xavier; Andrade, Francisco J

    2013-09-21

    A simple and generalized approach to build electrochemical sensors for wearable devices is presented. Commercial cotton yarns are first turned into electrical conductors through a simple dyeing process using a carbon nanotube ink. These conductive yarns are then partially coated with a suitable polymeric membrane to build ion-selective electrodes. Potentiometric measurements using these yarn-potentiometric sensors are demonstrated. Examples of yarns that can sense pH, K(+) and NH4(+) are presented. In all cases, these sensing yarns show limits of detection and linear ranges that are similar to those obtained with lab-made solid-state ion-selective electrodes. Through the immobilization of these sensors in a band-aid, it is shown that this approach could be easily implemented in a wearable device. Factors affecting the performance of the sensors and future potential applications are discussed.

  5. Renewable-juglone-based high-performance sodium-ion batteries.

    PubMed

    Wang, Hua; Hu, Pengfei; Yang, Jie; Gong, Guangming; Guo, Lin; Chen, Xiaodong

    2015-04-08

    A renewable-biomolecule-based electrode is developed through a facile synchronous reduction and self-assembly process, without any binder or additional conductive agent. The hybridized electrodes can be fabricated with arbitrary size and shape and exhibit superior capacity and cycle performance. The renewable-biomaterial-based high-performance electrodes will hold a place in future energy-storage devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes.

    PubMed

    Higgins, Thomas M; Park, Sang-Hoon; King, Paul J; Zhang, Chuanfang John; McEvoy, Niall; Berner, Nina C; Daly, Dermot; Shmeliov, Aleksey; Khan, Umar; Duesberg, Georg; Nicolosi, Valeria; Coleman, Jonathan N

    2016-03-22

    This work describes silicon nanoparticle-based lithium-ion battery negative electrodes where multiple nonactive electrode additives (usually carbon black and an inert polymer binder) are replaced with a single conductive binder, in this case, the conducting polymer PSS. While enabling the production of well-mixed slurry-cast electrodes with high silicon content (up to 95 wt %), this combination eliminates the well-known occurrence of capacity losses due to physical separation of the silicon and traditional inorganic conductive additives during repeated lithiation/delithiation processes. Using an in situ secondary doping treatment of the PSS with small quantities of formic acid, electrodes containing 80 wt % SiNPs can be prepared with electrical conductivity as high as 4.2 S/cm. Even at the relatively high areal loading of 1 mg/cm(2), this system demonstrated a first cycle lithiation capacity of 3685 mA·h/g (based on the SiNP mass) and a first cycle efficiency of ∼78%. After 100 repeated cycles at 1 A/g this electrode was still able to store an impressive 1950 mA·h/g normalized to Si mass (∼75% capacity retention), corresponding to 1542 mA·h/g when the capacity is normalized by the total electrode mass. At the maximum electrode thickness studied (∼1.5 mg/cm(2)), a high areal capacity of 3 mA·h/cm(2) was achieved. Importantly, these electrodes are based on commercially available components and are produced by the standard slurry coating methods required for large-scale electrode production. Hence, the results presented here are highly relevant for the realization of commercial LiB negative electrodes that surpass the performance of current graphite-based negative electrode systems.

  7. The analysis of ion-selective field-effect transistor operation in chemical sensors

    NASA Astrophysics Data System (ADS)

    Hotra, Zenon; Holyaka, Roman; Hladun, Michael; Humenuk, Iryna

    2003-09-01

    In this paper we present the research results of influence of substrate potential in ion-selective field-effect transistors (ISFET) on output signal of chemical sensors, e.g. PH-meters. It is shown that the instability of substrate-source p-n junction bias in well-known chemical sensors, which use grounded reference electrode - ISFET gate, affect on sensor characteristics in negative way. The analytical description and research results of 'substrate effect' on ISFET characteristics are considered.

  8. An all-solid-state reference electrode based on the layer-by-layer polymer coating.

    PubMed

    Kwon, Nak-Hyun; Lee, Kyung-Sun; Won, Mi-Sook; Shim, Yoon-Bo

    2007-09-01

    A solid-state reference electrode (SSRE) was fabricated by layering a silicone rubber (SR) film containing KCl on an AgCl surface, then a perfluorinated ionomer film, and finally a polyurethane-based membrane containing an ionophore, a lipophilic ionic additive, and a plasticizer, respectively. The addition of SiCl4 to the polyurethane-based membrane layer enhanced the strength of the membrane in an aqueous solution. The morphologies of the membranes were studied separately by SEM. The fabrication of the Ag/AgCl electrode through this layer-by-layer polymer coating improved the electrode stability enormously. In addition, the potential drift of the SSRE according to the pH of the medium was minimized by introducing a H+-ion-selective ionophore (tridodecylamine; TDDA) into the outmost polymer membrane. The cyclic voltammetric and potentiometric responses using the SSRE and a conventional reference electrode, respectively, were consistent. The SSRE exhibited little potential variation even in the case of the addition of very high concentrations of various salts, such as Na salicylate, LiCl, KCl, CaCl2, MgCl2, KNO3, NaCl, and NaHCO3. The practicability of the proposed SSRE was tested for the determination of blood pH and pCO2 in a flow cell system. The SSRE fabricated in the present study was stable over two years.

  9. A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Zhang, Sijie; Liu, Jie; Gu, Junjie

    2015-12-01

    Lithium ion (Li-ion) battery has emerged as an important power source for portable devices and electric vehicles due to its superiority over other energy storage technologies. A mild temperature variation as well as a proper operating temperature range are essential for a Li-ion battery to perform soundly and have a long service life. In this review paper, the heat generation and dissipation of Li-ion battery are firstly analyzed based on the energy conservation equations, followed by an examination of the hazardous effects of an above normal operating temperature. Then, advanced techniques in respect of electrode modification and systematic battery thermal management are inspected in detail as solutions in terms of reducing internal heat production and accelerating external heat dissipation, respectively. Specifically, variable parameters like electrode thickness and particle size of active material, along with optimization methods such as coating, doping, and adding conductive media are discussed in the electrode modification section, while the current development in air cooling, liquid cooling, heat pipe cooling, and phase change material cooling systems are reviewed in the thermal management part as different ways to improve the thermal performance of Li-ion batteries.

  10. Graphene-coated carbon fiber cloth for flexible electrodes of glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Hoshi, Kazuki; Muramatsu, Kazuo; Sumi, Hisato; Nishioka, Yasushiro

    2016-02-01

    In this work, we fabricated flexible electrodes for a miniaturized, simple structured, and flexible glucose biofuel cell (BFC) using a graphene-coated carbon fiber cloth (GCFC). The areas of the anode and cathode electrodes were 3 × 10 mm2. The anode area was coated with the enzyme glucose oxidase, and the cathode area was coated with the enzyme bilirubin oxidase. No ion-exchange film was needed because glucose oxidase selectively oxidizes glucose and bilirubin oxidase selectively reduces oxygen. The power density of the BFC with GCFC electrodes in a phosphate buffer solution of 200 mM glucose solution at room temperature was 34.3 µW/cm2 at 0.43 V. The power density of a BFC using carbon fiber cloth (CFC) without graphene modification was 18.5 µW/cm2 at 0.13 V. The BFC with the GCFC electrode continued to function longer than 24 h with a power density higher than 5 µW/cm2. These effects were attributed to the much larger effective surface areas of the GCFC electrodes that maintain more enzymes than those of the CFC electrodes.

  11. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  12. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  13. A new electrochemical sensor for highly sensitive and selective detection of nitrite in food samples based on sonochemical synthesized Calcium Ferrite (CaFe2O4) clusters modified screen printed carbon electrode.

    PubMed

    Balasubramanian, Paramasivam; Settu, Ramki; Chen, Shen-Ming; Chen, Tse-Wei; Sharmila, Ganapathi

    2018-08-15

    Herein, we report a novel, disposable electrochemical sensor for the detection of nitrite ions in food samples based on the sonochemical synthesized orthorhombic CaFe 2 O 4 (CFO) clusters modified screen printed electrode. As synthesized CFO clusters were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and amperometry (i-t). Under optimal condition, the CFO modified electrode displayed a rapid current response to nitrite, a linear response range from 0.016 to 1921 µM associated with a low detection limit 6.6 nM. The suggested sensor also showed the excellent sensitivity of 3.712 μA μM -1  cm -2 . Furthermore, a good reproducibility, long-term stability and excellent selectivity were also attained on the proposed sensor. In addition, the practical applicability of the sensor was investigated via meat samples, tap water and drinking water, and showed desirable recovery rate, representing its possibilities for practical application. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Titanium (III) cation selective electrode based on synthesized tris(2pyridyl) methylamine ionophore and its application in water samples

    NASA Astrophysics Data System (ADS)

    Rezayi, Majid; Karazhian, Reza; Abdollahi, Yadollah; Narimani, Leila; Sany, Seyedeh Belin Tavakoly; Ahmadzadeh, Saeid; Alias, Yatimah

    2014-04-01

    The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10-6-1.0 × 10-2 M and pH range from 1-2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 +/- 0.24 mV/dec, 7.9 × 10-7 M, and 20 s, respectively. The direct determination of 4-39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out.

  15. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.

    PubMed

    Qiu, M C; Yang, L W; Qi, X; Li, Jun; Zhong, J X

    2010-12-01

    Highly ordered NiO coated Si nanowire array films are fabricated as electrodes for a high performance lithium ion battery via depositing Ni on electroless-etched Si nanowires and subsequently annealing. The structures and morphologies of as-prepared films are characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. When the potential window versus lithium was controlled, the coated NiO can be selected to be electrochemically active to store and release Li+ ions, while highly conductive crystalline Si cores function as nothing more than a stable mechanical support and an efficient electrical conducting pathway. The hybrid nanowire array films exhibit superior cyclic stability and reversible capacity compared to that of NiO nanostructured films. Owing to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowire array films will be promising anode materials for high performance lithium-ion batteries.

  16. Nickel-Cobalt Oxide Decorated Three-Dimensional Graphene as an Enzyme Mimic for Glucose and Calcium Detection.

    PubMed

    Wu, Meiyan; Meng, Shangjun; Wang, Qian; Si, Weili; Huang, Wei; Dong, Xiaochen

    2015-09-30

    Glucose and calcium ion play key roles in human bodies. The needlelike NiCo2O4 nanostructures are in situ deposited on three-dimensional graphene foam (3DGF) by a facile hydrothermal procedure. The structure and morphology of the hierarchical NiCo2O4/3DGF are characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. With the self-standing NiCo2O4/3DGF as electrochemical electrode, it can realize the high-sensitivity detections for glucose and calcium ion. The limit of detection can reach 0.38 and 4.45 μM, respectively. In addition, the electrochemical electrode presents excellent selectivity for glucose and calcium ion. This study demonstrates that NiCo2O4/3DGF is a unique and promising material for practical application in both glucose and calcium ion sensing.

  17. Evaluation residual moisture in lithium-ion battery electrodes and its effect on electrode performance

    DOE PAGES

    Li, Jianlin; Daniel, Claus; Wood, III, David L.; ...

    2016-01-11

    Removing residual moisture in lithium-ion battery electrodes is essential for desired electrochemical performance. In this manuscript, the residual moisture in LiNi 0.5Mn 0.3Co 0.2O 2 cathodes produced by conventional solvent-based and aqueous processing is characterized and compared. The electrochemical performance has also been investigated for various residual moisture contents. As a result, it has been demonstrated that the residual moisture lowers the first cycle coulombic efficiency, but its effect on short term cycle life is insignificant.

  18. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography

    PubMed Central

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-01-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906

  19. Modified cermet fuel electrodes for solid oxide electrochemical cells

    DOEpatents

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  20. In situ plasma removal of surface contaminants from ion trap electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haltli, Raymond A.

    2015-05-01

    In this thesis, the construction and implementation of an in situ plasma discharge designed to remove surface contaminants from electrodes in an ion trapping experimental system is presented with results. In recent years, many advances have been made in using ion traps for quantum information processing. All of the criteria defined by DiVincenzo for using ion traps for implementing a quantum computer have been individually demonstrated, and in particular surface traps provide a scalable platform for ions. In order to be used for quantum algorithms, trapped ions need to be cooled to their motional (quantum mechanical) ground state. One ofmore » the hurdles in integrating surface ion traps for a quantum computer is minimizing electric field noise, which causes the ion to heat out of its motional ground state and which increases with smaller ion-to-electrode distances realized with surface traps. Surface contamination of trap electrodes is speculated to be the primary source of electric field noise. The main goal achieved by this work was to implement an in situ surface cleaning solution for surface electrode ion traps, which would not modify the ion trap electrode surface metal. Care was taken in applying the RF power in order to localize a plasma near the trap electrodes. A method for characterizing the energy of the plasma ions arriving at the ion trap surface is presented and results for plasma ion energies are shown. Finally, a method for quantifying the effectiveness of plasma cleaning of trap electrodes, using the surface analysis technique of X-ray photoelectron spectroscopy for measuring the amount and kind of surface contaminants, is described. A significant advantage of the trap electrode surface cleaning method presented here is the minimal changes necessary for implementation on a working ion trap experimental system.« less

  1. A numerical study on electrochemical transport of ions in calcium fluoride slag

    NASA Astrophysics Data System (ADS)

    Karimi-Sibaki, E.; Kharicha, A.; Wu, M.; Ludwig, A.

    2016-07-01

    Electrically resistive CaF 2-based slags are widely used in electroslag remelting (ESR) process to generate Joule heat for the melting of electrode. The electric current is conducted by ions (electrolyte) such as Ca +2 or F -, thus it is necessary to establish electrochemical models to study electrical behavior of slag. This paper presents a numerical model on electrochemical transport of ions in an arbitrary symmetrical (ZZ) and non-symmetrical (CaF2) stagnant electrolytes blocked by two parallel, planar electrodes. The dimensionless Poisson-Nernst-Planck (PNP) equations are solved to model electro-migration and diffusion of ions. The ions are considered to be inert that no Faradic reactions occur. Spatial variations of concentrations of ions, charge density and electric potential across the electrolyte are analyzed. It is shown that the applied potential has significant influence on the system response. At high applied voltage, the anodic potential drop near the electrode is significantly larger than cathodic potential drop in fully dissociated CaF2 electrolyte.

  2. Potentiometric determination of ketotifen fumarate in pharmaceutical preparations and urine using carbon paste and PVC membrane selective electrodes.

    PubMed

    Frag, Eman Y Z; Mohamed, Gehad G; Khalil, Mohamed M; Hwehy, Mohammad M A

    2011-01-01

    This study compares between unmodified carbon paste (CPE; the paste has no ion pair) and polyvinyl chloride (PVC) membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF), where sodium tetraphenylborate (NaTPB) was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10(-7) to 10(-2) mol L(-1). The electrodes show Nernstian slope value of 52.51 ± 0.20 and 51.51 ± 0.25 mV decade(-1) for CPE and PVC membrane electrodes at 30°C, respectively. The potential is nearly stable over the pH range 3.0-6.0 and 2.0-7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets), and biological fluid (urine). The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97 ± 0.53 and 98.62 ± 0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method.

  3. Potentiometric Determination of Ketotifen Fumarate in Pharmaceutical Preparations and Urine Using Carbon Paste and PVC Membrane Selective Electrodes

    PubMed Central

    Frag, Eman Y. Z.; Mohamed, Gehad G.; Khalil, Mohamed M.; Hwehy, Mohammad M. A.

    2011-01-01

    This study compares between unmodified carbon paste (CPE; the paste has no ion pair) and polyvinyl chloride (PVC) membrane selective electrodes that were used in potentiometric determination of ketotifen fumarate (KTF), where sodium tetraphenylborate (NaTPB) was used as titrant. The performance characteristics of these sensors were evaluated according to IUPAC recommendations which reveal a fast, stable, and linear response for KTF over the concentration range of 10−7 to 10−2 mol L−1. The electrodes show Nernstian slope value of 52.51 ± 0.20 and 51.51 ± 0.25 mV decade−1 for CPE and PVC membrane electrodes at 30°C, respectively. The potential is nearly stable over the pH range 3.0–6.0 and 2.0–7.0 for CPE and PVC membrane electrodes, respectively. Selectivity coefficient values towards different inorganic cations, sugars, and amino acids reflect high selectivity of the prepared electrodes. The electrodes responses at different temperatures were also studied, and long operational lifetime of 12 and 5 weeks for CPE and PVC membrane electrodes, respectively, were found. These are used for determination of ketotifen fumarate using potentiometric titration, calibration, and standard addition methods in pure samples, its pharmaceutical preparations (Zaditen tablets), and biological fluid (urine). The direct potentiometric determination of KTF using the proposed sensors gave recoveries % of 98.97 ± 0.53 and 98.62 ± 0.74 with RSD 1.42 and 0.63% for CPE and PVC membrane selective electrodes, respectively. Validation of the method shows suitability of the proposed sensors for use in quality control assessment of KTF. The obtained results were in a good agreement with those obtained using the reported spectrophotometric method. PMID:22013443

  4. An Aqueous Ca-Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gheytani, Saman; Liang, Yanliang; Wu, Feilong

    Multivalent-ion batteries are emerging as low-cost, high energy density, and safe alternatives to Li-ion batteries but are challenged by slow cation diffusion in electrode materials due to the high polarization strength of Mg- and Al-ions. In contrast, Ca-ion has a low polarization strength similar to that of Li-ion, therefore a Ca-ion battery will share the advantages while avoiding the kinetics issues related to multivalent batteries. However, there is no battery known that utilizes the Ca-ion chemistry due to the limited success in Ca-ion storage materials. Here, a safe and low-cost aqueous Ca-ion battery based on a highly reversible polyimide anodemore » and a high-potential open framework copper hexacyanoferrate cathode is demonstrated. The prototype cell shows a stable capacity and high efficiency at both high and low current rates, with an 88% capacity retention and an average 99% coloumbic efficiency after cycling at 10C for 1000 cycles. The Ca-ion storage mechanism for both electrodes as well as the origin of the fast kinetics have been investigated. Finally, additional comparison with a Mg-ion cell with identical electrodes reveals clear kinetics advantages for the Ca-ion system, which is explained by the smaller ionic radii and more facile desolvation of hydrated Ca-ions.« less

  5. An Aqueous Ca-Ion Battery.

    PubMed

    Gheytani, Saman; Liang, Yanliang; Wu, Feilong; Jing, Yan; Dong, Hui; Rao, Karun K; Chi, Xiaowei; Fang, Fang; Yao, Yan

    2017-12-01

    Multivalent-ion batteries are emerging as low-cost, high energy density, and safe alternatives to Li-ion batteries but are challenged by slow cation diffusion in electrode materials due to the high polarization strength of Mg- and Al-ions. In contrast, Ca-ion has a low polarization strength similar to that of Li-ion, therefore a Ca-ion battery will share the advantages while avoiding the kinetics issues related to multivalent batteries. However, there is no battery known that utilizes the Ca-ion chemistry due to the limited success in Ca-ion storage materials. Here, a safe and low-cost aqueous Ca-ion battery based on a highly reversible polyimide anode and a high-potential open framework copper hexacyanoferrate cathode is demonstrated. The prototype cell shows a stable capacity and high efficiency at both high and low current rates, with an 88% capacity retention and an average 99% coloumbic efficiency after cycling at 10C for 1000 cycles. The Ca-ion storage mechanism for both electrodes as well as the origin of the fast kinetics have been investigated. Additional comparison with a Mg-ion cell with identical electrodes reveals clear kinetics advantages for the Ca-ion system, which is explained by the smaller ionic radii and more facile desolvation of hydrated Ca-ions.

  6. An Aqueous Ca-Ion Battery

    DOE PAGES

    Gheytani, Saman; Liang, Yanliang; Wu, Feilong; ...

    2017-10-26

    Multivalent-ion batteries are emerging as low-cost, high energy density, and safe alternatives to Li-ion batteries but are challenged by slow cation diffusion in electrode materials due to the high polarization strength of Mg- and Al-ions. In contrast, Ca-ion has a low polarization strength similar to that of Li-ion, therefore a Ca-ion battery will share the advantages while avoiding the kinetics issues related to multivalent batteries. However, there is no battery known that utilizes the Ca-ion chemistry due to the limited success in Ca-ion storage materials. Here, a safe and low-cost aqueous Ca-ion battery based on a highly reversible polyimide anodemore » and a high-potential open framework copper hexacyanoferrate cathode is demonstrated. The prototype cell shows a stable capacity and high efficiency at both high and low current rates, with an 88% capacity retention and an average 99% coloumbic efficiency after cycling at 10C for 1000 cycles. The Ca-ion storage mechanism for both electrodes as well as the origin of the fast kinetics have been investigated. Finally, additional comparison with a Mg-ion cell with identical electrodes reveals clear kinetics advantages for the Ca-ion system, which is explained by the smaller ionic radii and more facile desolvation of hydrated Ca-ions.« less

  7. Simple and fast method for fabrication of endoscopic implantable sensor arrays.

    PubMed

    Tahirbegi, I Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep

    2014-06-26

    Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.

  8. Electrochemical activity of Fe-MIL-100 as a positive electrode for Na-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sava Gallis, Dorina F.; Pratt III, Harry D.; Anderson, Travis M.

    2016-01-01

    Here we investigate the electrochemical activity of metal-organic frameworks (MOFs) as positive electrodes for Na-ion batteries in coin cell configurations. The performance of Fe-MIL-100 material is highly dependent on the choice of sodium salt source, and electrolyte system. The overall capacity fades over many cycles, however the high Coulombic efficiency is maintained. This can be correlated with inaccessibility of active sites for Na intercalation, due to the increase of extra carbonaceous material inside the pores. High resolution synchrotron powder X-ray and pair distribution function analyses of the as-made and cycled electrodes reveal the structure maintains the long-range order with progressivemore » cycling. This finding suggests that careful consideration of all variables in battery components, and especially electrolyte selection can lead to greatly improved performances.« less

  9. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.

    PubMed

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-02-16

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.

  10. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors

    PubMed Central

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-01-01

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878

  11. Toward lithium ion batteries with enhanced thermal conductivity.

    PubMed

    Koo, Bonil; Goli, Pradyumna; Sumant, Anirudha V; dos Santos Claro, Paula Cecilia; Rajh, Tijana; Johnson, Christopher S; Balandin, Alexander A; Shevchenko, Elena V

    2014-07-22

    As batteries become more powerful and utilized in diverse applications, thermal management becomes one of the central problems in their application. We report the results on thermal properties of a set of different Li-ion battery electrodes enhanced with multiwalled carbon nanotubes. Our measurements reveal that the highest in-plane and cross-plane thermal conductivities achieved in the carbon-nanotube-enhanced electrodes reached up to 141 and 3.6 W/mK, respectively. The values for in-plane thermal conductivity are up to 2 orders of magnitude higher than those for conventional electrodes based on carbon black. The electrodes were synthesized via an inexpensive scalable filtration method, and we demonstrate that our approach can be extended to commercial electrode-active materials. The best performing electrodes contained a layer of γ-Fe2O3 nanoparticles on carbon nanotubes sandwiched between two layers of carbon nanotubes and had in-plane and cross-plane thermal conductivities of ∼50 and 3 W/mK, respectively, at room temperature. The obtained results are important for thermal management in Li-ion and other high-power-density batteries.

  12. Evaluation and Testing of Commercially-Available Carbon Nanotubes as Negative Electrodes for Lithium Ion Cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    2007-01-01

    Rechargeable lithium ion (Li-ion) battery technology offers significant performance advantages over the nickel-based technologies used for energy storage for the majority of NASA's missions. Specifically Li-ion technology offers a threefold to fourfold increase in gravimetric and volumetric energy densities and produces voltages in excess of three times the value of typical nickel-based battery systems. As part of the Advanced Battery Technology program at NASA Glenn Research Center (GRC), a program on the evaluation of anodes for Li-ion cells and batteries was conducted. This study focused on the feasibility of using carbon nanotubes as anodes in Li-Ion cells. Candidate materials from multiple sources were evaluated. Their performance was compared to a standard anode comprised of mesocarbon microbeads. In all cases, the standard MCMB electrode exhibited superior performance. The details and results of the study are presented.

  13. Layered electrodes for lithium cells and batteries

    DOEpatents

    Johnson; Christopher S. , Thackeray; Michael M. , Vaughey; John T. , Kahaian; Arthur J. , Kim; Jeom-Soo

    2008-04-15

    Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

  14. Spontaneous and Selective Nanowelding of Silver Nanowires by Electrochemical Ostwald Ripening and High Electrostatic Potential at the Junctions for High-Performance Stretchable Transparent Electrodes.

    PubMed

    Lee, Hyo-Ju; Oh, Semi; Cho, Ki-Yeop; Jeong, Woo-Lim; Lee, Dong-Seon; Park, Seong-Ju

    2018-04-25

    Metal nanowires have been gaining increasing attention as the most promising stretchable transparent electrodes for emerging field of stretchable optoelectronic devices. Nanowelding technology is a major challenge in the fabrication of metal nanowire networks because the optoelectronic performances of metal nanowire networks are mostly limited by the high junction resistance between nanowires. We demonstrate the spontaneous and selective welding of Ag nanowires (AgNWs) by Ag solders via an electrochemical Ostwald ripening process and high electrostatic potential at the junctions of AgNWs. The AgNWs were welded by depositing Ag nanoparticles (AgNPs) on the conducting substrate and then exposing them to water at room temperature. The AgNPs were spontaneously dissolved in water to form Ag + ions, which were then reduced to single-crystal Ag solders selectively at the junctions of the AgNWs. Hence, the welded AgNWs showed higher optoelectronic and stretchable performance compared to that of as-formed AgNWs. These results indicate that electrochemical Ostwald ripening-based welding can be used as a promising method for high-performance metal nanowire electrodes in various next-generation devices such as stretchable solar cells, stretchable displays, organic light-emitting diodes, and skin sensors.

  15. Pseudo-indicator behaviour of platinum electrode explored for the potentiometric estimation of non-redox systems.

    PubMed

    Raashid, Syed; Chat, Oyais Ahmad; Rizvi, Masood A; Bhat, Mohsin Ahmad; Khan, Badruddin

    2012-11-15

    A pseudo-indicator electrode based potentiometric method for estimation of non-redox metal ions is presented. In the proposed method, nature and concentration specific impact of analyte over the redox potential of ideally polarisable Pt/pregenerated-redox-couple interface forms the basis of quantification. Utility of the method in estimation of six non-redox metal ions viz. Zn(2+), Cu(2+), Ni(2+), Cd(2+), Pb(2+), Al(3+) in the concentration range of 10(-1)-10(-3) moldm(-3), individually and as binary mixtures is also presented. Three types of potentiometric behaviours, which we ascribe to the nature specific thermodynamic and kinetic aspects of metal-EDTA binding, were observed. While Cu(2+), Ni(2+), Pb(2+) and Al(3+) were found to bind EDTA efficiently, without exchanging Fe(3+); Zn(2+) and Cd(2+) were observed to replace Fe(3+) from EDTA. In contrast, Ca(2+) and Mg(2+) were found to show no binding affinity to EDTA in the pH range employed in the present work. The proposed method was also used to explore the reversibility and the Nernestian behaviour of ferricyanide/ferrocyanide redox couple through spectroelectrochemical titration of Zn(2+) with ferrocyanide. The presented method is presaged to be a reliable and low cost future replacement for costly and delicate ion selective electrodes (ISE) in the estimation of non-redox species like Zn(2+), Cu(2+), etc. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A modified ion-selective electrode method for measurement of chloride in sweat.

    PubMed

    Finley, P R; Dye, J A; Lichti, D A; Byers, J M; Williams, R J

    1978-06-01

    A modified method of analysis of sweat chloride concentration with an ion-selective electrode is presented. The original method of sweat chloride analysis proposed by the Orion Research Corporation (Cambridge, Massachusetts 02139) is inadequate because it produces erratic and misleading results. The modified method was compared with the reference quantitative method of Gibson and Cooke. In the modified method, individual electrode pads are cut and placed in the electrodes rather than using the pads supplied by the company; pilocarpine nitrate (2,000 mg/l) is used in place of pilocarpine HCl (640 mg/l); sodium bicarbonate as the weak electrolyte is used instead of K2SO4. A 10-minute period for sweat accumulation is employed rather than a zero-time collection as in the original Orion method. The modification has been studied for reproducibility in individuals, reproducibility between right and left arm in individuals; it has been compared extensively with the quantitative method of Gibson and Cooke, both in normal individuals and in patients with cystic fibrosis. There is excellent agreement between the modified method and the quantitative reference method. There appears to be a slight bias toward higher concentrations of chloride from the right arm compared with the left arm, but this difference is not medically significant.

  17. Efficient Conservative Reformulation Schemes for Lithium Intercalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urisanga, PC; Rife, D; De, S

    Porous electrode theory coupled with transport and reaction mechanisms is a widely used technique to model Li-ion batteries employing an appropriate discretization or approximation for solid phase diffusion with electrode particles. One of the major difficulties in simulating Li-ion battery models is the need to account for solid phase diffusion in a second radial dimension r, which increases the computation time/cost to a great extent. Various methods that reduce the computational cost have been introduced to treat this phenomenon, but most of them do not guarantee mass conservation. The aim of this paper is to introduce an inherently mass conservingmore » yet computationally efficient method for solid phase diffusion based on Lobatto III A quadrature. This paper also presents coupling of the new solid phase reformulation scheme with a macro-homogeneous porous electrode theory based pseudo 20 model for Li-ion battery. (C) The Author(s) 2015. Published by ECS. All rights reserved.« less

  18. Initial experimental test of a helicon plasma based mass filter

    DOE PAGES

    Gueroult, R.; Evans, E. S.; Zweben, S. J.; ...

    2016-05-12

    High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrentmore » spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.« less

  19. Actinide ion sensor for pyroprocess monitoring

    DOEpatents

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  20. Experimental and modeling study on charge storage/transfer mechanism of graphene-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Ban, Shuai; Jing, Xie; Zhou, Hongjun; Zhang, Lei; Zhang, Jiujun

    2014-12-01

    A symmetrical graphene-based supercapacitor is constructed for studying the charge-transfer mechanism within the graphene-based electrodes using both experiment measurements and molecular simulation. The in-house synthesized graphene is characterized by XRD, SEM and BET measurements for morphology and surface area. It is observed that the electric capacity of graphene electrode can be reduced by both high internal resistance and limited mass transfer. Computer modeling is conducted at the molecular level to characterize the diffusion behavior of electrolyte ions to the interior of electrode with emphasis on the unique 2D confinement imposed by graphene layers. Although graphene powder poses a moderate internal surface of 400 m2 g-1, the capacitance performance of graphene electrode can be as good as that of commercial activated carbon which has an overwhelming surface area of 1700 m2 g-1. An explanation to this abnormal correlation is that graphene material has an intrinsic capability of adaptively reorganizing its microporous structure in response to intercalation of ions and immergence of electrolyte solvent. The accessible surface of graphene is believed to be dramatically enlarged for ion adsorption during the charging process of capacitor.

  1. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.

    PubMed

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang

    2011-01-01

    Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized alumina membrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.

  2. Building one-dimensional oxidenanostructure arrays on conductive metal substrates for lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang

    2011-01-01

    Lithium ion battery (LIB) is potentially one of the most attractive energy storage devices. To meet the demands of future high-power and high-energy density requirements in both thin-film microbatteries and conventional batteries, it is challenging to explore novel nanostructured anode materials instead of conventional graphite. Compared to traditional electrodes based on nanostructure powder paste, directly grown ordered nanostructure array electrodes not only simplify the electrode processing, but also offer remarkable advantages such as fast electron transport/collection and ion diffusion, sufficient electrochemical reaction of individual nanostructures, enhanced material-electrolyte contact area and facile accommodation of the strains caused by lithium intercalation and de-intercalation. This article provides a brief overview of the present status in the area of LIB anodes based on one-dimensional nanostructure arrays growing directly on conductive inert metal substrates, with particular attention to metal oxides synthesized by an anodized aluminamembrane (AAM)-free solution-based or hydrothermal methods. Both the scientific developments and the techniques and challenges are critically analyzed.

  3. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  4. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  5. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Tanghong; Chen, Wei; Cheng, Lei

    Reversible intercalation reactions provide the basis for modern battery electrodes. In spite of the decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K+ ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopymore » confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. Our study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  6. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Tanghong; Chen, Wei; Cheng, Lei

    Reversible intercalation reactions provide the basis for modern battery electrodes. Despite decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K + ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopy confirmed themore » existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. This study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  7. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    DOE PAGES

    Yi, Tanghong; Chen, Wei; Cheng, Lei; ...

    2017-01-20

    Reversible intercalation reactions provide the basis for modern battery electrodes. In spite of the decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials A xK 1–xFeF 3 (A = Li, Na). By starting with KFeF 3, approximately 75% of K+ ions were subsequently replaced by Li + and Na + through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopymore » confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe 2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. Our study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.« less

  8. A General and Mild Approach to Controllable Preparation of Manganese-Based Micro- and Nanostructured Bars for High Performance Lithium-Ion Batteries.

    PubMed

    Ma, Guo; Li, Sheng; Zhang, Weixin; Yang, Zeheng; Liu, Shulin; Fan, Xiaoming; Chen, Fei; Tian, Yuan; Zhang, Weibo; Yang, Shihe; Li, Mei

    2016-03-07

    One-dimensional (1D) micro- and nanostructured electrode materials with controllable phase and composition are appealing materials for use in lithium-ion batteries with high energy and power densities, but they are challenging to prepare. Herein, a novel ethanol-water mediated co-precipitation method by a chimie douce route (synthesis conducted under mild conditions) has been exploited to selectively prepare an extensive series of manganese-based electrode materials, manifesting the considerable generalizability and efficacy of the method. Moreover, by simply tuning the mixed solvent and reagents, transition metal oxide bars with differing aspect ratios and compositions were prepared with an unprecedented uniformity. Application prospects are demonstrated by Li-rich 0.5 Li2 MnO3 ⋅0.5 LiNi1/3 Co1/3 Mn1/3 O2 bars, which demonstrate excellent reversible capacity and rate capability thanks to the steerable nature of the synthesis and material quality. This work opens a new route to 1D micro- and nanostructured materials by customizing the precipitating solvent to orchestrate the crystallization process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Performance investigation of InAs based dual electrode tunnel FET on the analog/RF platform

    NASA Astrophysics Data System (ADS)

    Anand, Sunny; Sarin, R. K.

    2016-09-01

    In this paper for the first time, InAs based doping-less Tunnel FET is proposed and investigated. This paper also demonstrates and discusses the impact of gate stacking (SiO2 + HfO2) with equivalent oxide thickness EOT = 0.8 for analog/RF performance. The charge plasma technique is used to form source/drain region on an intrinsic InAs body by selecting proper work function of metal electrode. The paper compares different combinations of gate stacking (SiO2 and HfO2) on the basis of different analog and RF parameters such as transconductance (gm), transconductance to drive current ratio (gm/ID), output conductance (gd), intrinsic gain (AV), total gate capacitance (Cgg) and unity-gain cutoff frequency (fT). The proposed device produces an ON state current of ION ∼6 mA along with ION/IOFF ∼1012, point subthreshold slope (SS ∼ 1.9 mV/dec), average subthreshold slope (AV-SS ∼ 14.2 mV/dec) and cut-off frequency in Terahertz. The focus of this work is to eliminate the fabrication issues and providing the enhanced performance compared to doped device.

  10. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    Blanco, Mario (Inventor); West, William C. (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  11. Thermo-electrochemical instrumentation of cylindrical Li-ion cells

    NASA Astrophysics Data System (ADS)

    McTurk, Euan; Amietszajew, Tazdin; Fleming, Joe; Bhagat, Rohit

    2018-03-01

    The performance evaluation and optimisation of commercially available lithium-ion cells is typically based upon their full cell potential and surface temperature measurements, despite these parameters not being fully representative of the electrochemical processes taking place in the core of the cell or at each electrode. Several methods were devised to obtain the cell core temperature and electrode-specific potential profiles of cylindrical Li-ion cells. Optical fibres with Bragg Gratings were found to produce reliable core temperature data, while their small mechanical profile allowed for low-impact instrumentation method. A pure metallic lithium reference electrode insertion method was identified, avoiding interference with other elements of the cell while ensuring good contact, enabling in-situ observations of the per-electrode electrochemical responses. Our thermo-electrochemical instrumentation technique has enabled us to collect unprecedented cell data, and has subsequently been used in advanced studies exploring the real-world performance limits of commercial cells.

  12. Determination of ion mobility in EHD flow zone of plasma generator

    NASA Astrophysics Data System (ADS)

    Sumariyah, Kusminarto, Hermanto, Arief; Nuswantoro, Pekik

    2015-12-01

    Determination has been carried out for ion mobility in EHD flow zone generated using a pin-concentric multiple ring electrodes and a pin-single ring electrode used as a comparator. The pin needle was made from stainless steel with a tip diameter of 0.18 mm. The concentris multiple ring electrode in form three/two concentric ring electrodes which made of metal material connected to each other. Each ring of three concentric ring electrode has a diameter of 24 mm, 16 mm and 8 mm. And each ring of two concentric ring electrode has a diameter of 24 mm and 16 mm. Single ring electrode has a diameter24 mm. The all ring has same of width and thickness were 2 mm and 3 mm. EHD was generated by using a DC high voltage of 10 kV. Pin functional as an active electrode of corona discharge while the all ring electrodes acted as ions collector and passive electrodes. The experimental results show that the ion current is proportional to V2 according to calculations by Chouelo for hyperbolic-field approach. Ion mobility obtained from the quadratic polynomial fitting of experimental data were current and voltage as well as Choelo formulation. The results showed that the mobility of ions in the EHD flow zones utilizing pin-consentric multiple ring electrode larger than utilizing pin-single ring electrode. Pin-three Consentic ring electrode has the largest of ion mobility

  13. Extended artificial neural networks: incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels.

    PubMed

    Mueller, Amy V; Hemond, Harold F

    2013-12-15

    A novel artificial neural network (ANN) architecture is proposed which explicitly incorporates a priori system knowledge, i.e., relationships between output signals, while preserving the unconstrained non-linear function estimator characteristics of the traditional ANN. A method is provided for architecture layout, disabling training on a subset of neurons, and encoding system knowledge into the neuron structure. The novel architecture is applied to raw readings from a chemical sensor multi-probe (electric tongue), comprised of off-the-shelf ion selective electrodes (ISEs), to estimate individual ion concentrations in solutions at environmentally relevant concentrations and containing environmentally representative ion mixtures. Conductivity measurements and the concept of charge balance are incorporated into the ANN structure, resulting in (1) removal of estimation bias typically seen with use of ISEs in mixtures of unknown composition and (2) improvement of signal estimation by an order of magnitude or more for both major and minor constituents relative to use of ISEs as stand-alone sensors and error reduction by 30-50% relative to use of standard ANN models. This method is suggested as an alternative to parameterization of traditional models (e.g., Nikolsky-Eisenman), for which parameters are strongly dependent on both analyte concentration and temperature, and to standard ANN models which have no mechanism for incorporation of system knowledge. Network architecture and weighting are presented for the base case where the dot product can be used to relate ion concentrations to both conductivity and charge balance as well as for an extension to log-normalized data where the model can no longer be represented in this manner. While parameterization in this case study is analyte-dependent, the architecture is generalizable, allowing application of this method to other environmental problems for which mathematical constraints can be explicitly stated. © 2013 Elsevier B.V. All rights reserved.

  14. Effect of Nanoparticles on Modified Screen Printed Inhibition Superoxide Dismutase Electrodes for Aluminum

    PubMed Central

    Barquero-Quirós, Miriam; Arcos-Martínez, María Julia

    2016-01-01

    A novel amperometric biosensor for the determination of Al(III) based on the inhibition of the enzyme superoxide dismutase has been developed. The oxidation signal of epinephrine substrate was affected by the presence of Al(III) ions leading to a decrease in its amperometric current. The immobilization of the enzyme was performed with glutaraldehyde on screen-printed carbon electrodes modifiedwith tetrathiofulvalene (TTF) and different types ofnanoparticles. Nanoparticles of gold, platinum, rhodium and palladium were deposited on screen printed carbon electrodes by means of two electrochemical procedures. Nanoparticles were characterized trough scanning electronic microscopy, X-rays fluorescence, and atomic force microscopy. Palladium nanoparticles showed lower atomic force microscopy parameters and higher slope of aluminum calibration curves and were selected to perform sensor validation. The developed biosensor has a detection limit of 2.0 ± 0.2 μM for Al(III), with a reproducibility of 7.9% (n = 5). Recovery of standard reference material spiked to buffer solution was 103.8% with a relative standard deviation of 4.8% (n = 5). Recovery of tap water spiked with the standard reference material was 100.5 with a relative standard deviation of 3.4% (n = 3). The study of interfering ions has also been carried out. PMID:27681735

  15. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz

    2008-01-01

    Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed. PMID:27879825

  16. Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Bo, Zheng; Li, Changwen; Yang, Huachao; Ostrikov, Kostya; Yan, Jianhua; Cen, Kefa

    2018-06-01

    Electric double-layer capacitors (EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode-electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics (MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography, can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway. Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties (e.g., the affinity between the electrode and the ions) can affect the ion-packing phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties.[Figure not available: see fulltext.

  17. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    NASA Technical Reports Server (NTRS)

    Attia, Alan I. (Inventor); Halpert, Gerald (Inventor); Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  18. Distance scaling of electric-field noise in a surface-electrode ion trap

    NASA Astrophysics Data System (ADS)

    Sedlacek, J. A.; Greene, A.; Stuart, J.; McConnell, R.; Bruzewicz, C. D.; Sage, J. M.; Chiaverini, J.

    2018-02-01

    We investigate anomalous ion-motional heating, a limitation to multiqubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multizone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance d . We find a scaling of approximately d-4 regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using the application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure the frequency scaling of the inherent electric-field noise close to 1 /f at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a d-4 distance dependence, including several microscopic models of current interest.

  19. Vacuum chamber for ion manipulation device

    DOEpatents

    Chen, Tsung-Chi; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D; Anderson, Gordon A; Baker, Erin M

    2014-12-09

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. A predetermined number of pairs of surfaces are disposed in one or more chambers, forming a multiple-layer ion mobility cyclotron device.

  20. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-07

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  1. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO4 Electrodes by Low Temperature Direct Writing Process

    PubMed Central

    Cheng, Xingxing; Li, Bohan; Chen, Zhangwei; Mi, Shengli; Lao, Changshi

    2017-01-01

    LiFePO4 (LFP) is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW)-based 3D printing was used to fabricate three-dimensional (3D) LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes. PMID:28796182

  2. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO₄ Electrodes by Low Temperature Direct Writing Process.

    PubMed

    Liu, Changyong; Cheng, Xingxing; Li, Bohan; Chen, Zhangwei; Mi, Shengli; Lao, Changshi

    2017-08-10

    LiFePO₄ (LFP) is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW)-based 3D printing was used to fabricate three-dimensional (3D) LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes.

  3. Trifluorostyrene containing compounds, and their use in polymer electrolyte membranes

    DOEpatents

    Choudhury, Biswajit [Kingston, CA; Roelofs, Mark Gerrit [Hockessin, DE; Yang,; Zhen-Yu, [Hockessin, DE

    2009-07-21

    A fluorinated ion exchange polymer is prepared by grafting a monomer onto a base polymer, wherein the grafting monomer is selected from the group consisting of structure 1a, 1b and mixture thereof; ##STR00001## wherein Y is selected from the group consisting of --R.sub.FSO.sub.2F, --R.sub.FSO.sub.3M, --R.sub.SO.sub.2NH.sub.2 and --R.sub.FSO.sub.2N(M)SO.sub.2R.sup.2.sub.F, where in M is hydrogen, an alkali cation or ammonium; and R.sub.F and R.sup.2.sub.F are perfluorinated or partially fluorinated, and may optionally include ether oxygens; and n is between 1 and 2 for 1a, or n is between 1 and 3 for 1b. These ion exchange polymers are useful is preparing catalyst coated membranes and membrane electrode assemblies for fuel cells.

  4. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.

    PubMed

    Kasnatscheew, Johannes; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora

    2018-04-18

    Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.

  5. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    PubMed

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cycling behavior of NCM523/graphite lithium-ion cells in the 3–4.4 V range: Diagnostic studies of full cells and harvested electrodes

    DOE PAGES

    Gilbert, James A.; Bareño, Javier; Spila, Timothy; ...

    2016-09-22

    Energy density of full cells containing layered-oxide positive electrodes can be increased by raising the upper cutoff voltage above the current 4.2 V limit. In this article we examine aging behavior of cells, containing LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523)-based positive and graphite-based negative electrodes, which underwent up to ~400 cycles in the 3-4.4 V range. Electrochemistry results from electrodes harvested from the cycled cells were obtained to identify causes of cell performance loss; these results were complemented with data from X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) measurements. Our experiments indicate that the full cell capacitymore » fade increases linearly with cycle number and results from irreversible lithium loss in the negative electrode solid electrolyte interphase (SEI) layer. The accompanying electrode potential shift reduces utilization of active material in both electrodes and causes the positive electrode to cycle at higher states-of-charge. Here, full cell impedance rise on aging arises primarily at the positive electrode and results mainly from changes at the electrode-electrolyte interface; the small growth in negative electrode impedance reflects changes in the SEI layer. Our results indicate that cell performance loss could be mitigated by modifying the electrode-electrolyte interfaces through use of appropriate electrode coatings and/or electrolyte additives.« less

  7. Electrochemical sample matrix elimination for trace-level potentiometric detection with polymeric membrane ion-selective electrodes.

    PubMed

    Chumbimuni-Torres, Karin Y; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric

    2008-08-01

    Potentiometric sensors are today sufficiently well understood and optimized to reach ultratrace level (subnanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth-coated electrode, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte.

  8. Electrochemical Sample Matrix Elimination for Trace Level Potentiometric Detection with Polymeric Membrane Ion-Selective Electrodes

    PubMed Central

    Chumbimuni-Torres, Karin Y.; Calvo-Marzal, Percy; Wang, Joseph; Bakker, Eric

    2008-01-01

    Potentiometric sensors are today sufficiently well understood and optimized to reach ultra-trace level (sub-nanomolar) detection limits for numerous ions. In many cases of practical relevance, however, a high electrolyte background hampers the attainable detection limits. A particularly difficult sample matrix for potentiometric detection is seawater, where the high saline concentration forms a major interfering background and reduces the activity of most trace metals by complexation. This paper describes for the first time a hyphenated system for the online electrochemically modulated preconcentration and matrix elimination (EMPM) of trace metals, combined with a downstream potentiometric detection with solid contact polymeric membrane ion-selective microelectrodes. Following the preconcentration at the bismuth coated electrodes, the deposited metals are oxidized and released to a medium favorable to potentiometric detection, in this case calcium nitrate. Matrix interferences arising from the saline sample medium are thus circumvented. This concept is successfully evaluated with cadmium as a model trace element and offers potentiometric detection down to low parts per billion levels in samples containing 0.5 M NaCl background electrolyte. PMID:18570385

  9. MOF-Based Membrane Encapsulated ZnO Nanowires for Enhanced Gas Sensor Selectivity.

    PubMed

    Drobek, Martin; Kim, Jae-Hun; Bechelany, Mikhael; Vallicari, Cyril; Julbe, Anne; Kim, Sang Sub

    2016-04-06

    Gas sensors are of a great interest for applications including toxic or explosive gases detection in both in-house and industrial environments, air quality monitoring, medical diagnostics, or control of food/cosmetic properties. In the area of semiconductor metal oxides (SMOs)-based sensors, a lot of effort has been devoted to improve the sensing characteristics. In this work, we report on a general methodology for improving the selectivity of SMOx nanowires sensors, based on the coverage of ZnO nanowires with a thin ZIF-8 molecular sieve membrane. The optimized ZnO@ZIF-8-based nanocomposite sensor shows markedly selective response to H2 in comparison with the pristine ZnO nanowires sensor, while showing the negligible sensing response to C7H8 and C6H6. This original MOF-membrane encapsulation strategy applied to nanowires sensor architecture pave the way for other complex 3D architectures and various types of applications requiring either gas or ion selectivity, such as biosensors, photo(catalysts), and electrodes.

  10. Ion manipulation method and device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Gordon A.; Baker, Erin M.; Smith, Richard D.

    2017-11-07

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electricmore » field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.« less

  11. Ion manipulation device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Gordon A.; Baker, Erin M.; Smith, Richard D.

    2018-05-08

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electricmore » field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.« less

  12. Emodin induces chloride secretion in rat distal colon through activation of mast cells and enteric neurons

    PubMed Central

    Xu, J-D; Liu, S; Wang, W; Li, L-S; Li, X-F; Li, Y; Guo, H; Ji, T; Feng, X-Y; Hou, X-L; Zhang, Y; Zhu, J-X

    2012-01-01

    BACKGROUND AND PURPOSE Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an active component of many herb-based laxatives. However, its mechanism of action is unclear. The aim of the present study was to investigate the role of mast cells and enteric neurons in emodin-induced ion secretion in the rat colon. EXPERIMENTAL APPROACH Short-circuit current (ISC) recording was used to measure epithelial ion transport. A scanning ion-selective electrode technique was used to directly measure Cl- flux (JCl−) across the epithelium. RIA was used to measure emodin-induced histamine release. KEY RESULTS Basolateral addition of emodin induced a concentration-dependent increase in ISC in colonic mucosa/submucosa preparations, EC50 75 µM. The effect of emodin was blocked by apically applied glibenclamide, a Cl- channel blocker, and by basolateral application of bumetanide, an inhibitor of the Na+-K+-2Cl- cotransporter. Emodin-evoked JCl− in mucosa/submucosa preparations was measured by scanning ion-selective electrode technique, which correlated to the increase in ISC and was significantly suppressed by glibenclamide and bumetanide. Pretreatment with tetrodotoxin and the muscarinic receptor antagonist atropine had no effect on emodin-induced ΔISC in mucosa-only preparations, but significantly reduced emodin-induced ΔISC and JCl− in mucosa/submucosa preparations. The COX inhibitor indomethacin, the mast cell stabilizer ketotifen and H1 receptor antagonist pyrilamine significantly reduced emodin-induced ΔISC in mucosa and mucosa/submucosa preparations. The H2 receptor antagonist cimetidine inhibited emodin-induced ΔISC and JCl− only in the mucosa/submucosa preparations. Furthermore, emodin increased histamine release from the colonic mucosa/submucosa tissues. CONCLUSIONS AND IMPLICATIONS The results suggest that emodin-induced colonic Cl- secretion involves mast cell degranulation and activation of cholinergic and non-cholinergic submucosal neurons. PMID:21718311

  13. Trapped-ion quantum logic gates based on oscillating magnetic fields.

    PubMed

    Ospelkaus, C; Langer, C E; Amini, J M; Brown, K R; Leibfried, D; Wineland, D J

    2008-08-29

    Oscillating magnetic fields and field gradients can be used to implement single-qubit rotations and entangling multiqubit quantum gates for trapped-ion quantum information processing (QIP). With fields generated by currents in microfabricated surface-electrode traps, it should be possible to achieve gate speeds that are comparable to those of optically induced gates for realistic distances between the ion crystal and the electrode surface. Magnetic-field-mediated gates have the potential to significantly reduce the overhead in laser-beam control and motional-state initialization compared to current QIP experiments with trapped ions and will eliminate spontaneous scattering, a fundamental source of decoherence in laser-mediated gates.

  14. Synthesis and Electrochemical Properties of Amorphous Carbon Coated Sn Anode Material for Lithium Ion Batteries and Sodium Ion Batteries.

    PubMed

    Choi, Ji-Seub; Lee, Hoi-Jin; Ha, Jong-Keun; Cho, Kwon-Koo

    2018-09-01

    Sn is one of the promising anode material for lithium-ion and sodium-ion batteries because of Sn has many advantages such as a high theoretical capacity of 994 mAh/g, inexpensive, abundant and nontoxic. However, Sn-based anodes have a critical problem from pulverization of the particles due to large volume change (>300% in lithium-ion battery and 420% in the sodium-ion battery) during alloying/dealloying reaction. To overcome this problem, we fabricate Sn/C particle of core/shell structure. Sn powder was produced by pulsed wire explosion in liquid media, and amorphous carbon coating process was prepared by hydrothermal synthesis. The charge capacity of Sn electrode and amorphous carbon coated Sn electrode was 413 mAh/g and 452 mAh/g after 40 cycles in lithium half-cell test. The charge capacity of Sn electrode and amorphous carbon coated Sn electrode was 240 mAh/g and 487 mAh/g after 40 cycles in sodium half-cell test. Amorphous carbon coating contributed to the improvement of capacity in lithium and sodium battery systems. And the effect of amorphous carbon coating in sodium battery system was superior to that in lithium battery system.

  15. Magnetron with flux switching cathode and method of operation

    DOEpatents

    Aaron, D.B.; Wiley, J.D.

    1989-09-12

    A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness. 5 figs.

  16. Magnetron with flux switching cathode and method of operation

    DOEpatents

    Aaron, David B.; Wiley, John D.

    1989-01-01

    A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness.

  17. Design, Fabrication and Characterization of an In Silico Cell Physiology lab for Bio Sensing Applications

    NASA Astrophysics Data System (ADS)

    Haque, A. ul; Rokkam, M.; DeCarlo, A. R.; Wereley, S. T.; Wells, H. W.; McLamb, W. T.; Roux, S. J.; Irazoqui, P. P.; Porterfield, D. M.

    2006-04-01

    In this paper, we report the design, fabrication and characterization of an In Silico cell physiology biochip for measuring Ca2+ ion concentrations and currents around single cells. This device has been designed around specific science objectives of measuring real time multidimensional calcium flux patterns around sixteen Ceratopteris richardii fern spores in microgravity flight experiments and ground studies. The sixteen microfluidic cell holding pores are 150 by 150 µm each and have 4 Ag/AgCl electrodes leading into them. An SU-8 structural layer is used for insulation and packaging purposes. The In Silico cell physiology lab is wire bonded on to a custom PCB for easy interface with a state of the art data acquisition system. The electrodes are coated with a Ca2+ ion selective membrane based on ETH-5234 ionophore and operated against an Ag/AgCl reference electrode. Initial characterization results have shown Nernst slopes of 30mv/decade that were stable over a number of measurement cycles. While this work is focused on technology to enable basic research on the Ceratopteris richardii spores, we anticipate that this type of cell physiology lab-on-a-chip will be broadly applied in biomedical and pharmacological research by making minor modifications to the electrode material and the measurement technique. Future applications include detection of glucose, hormones such as plant auxin, as well as multiple analyte detection on the same chip.

  18. Nanoporous Au-based chronocoulometric aptasensor for amplified detection of Pb(2+) using DNAzyme modified with Au nanoparticles.

    PubMed

    Zhang, Chen; Lai, Cui; Zeng, Guangming; Huang, Danlian; Tang, Lin; Yang, Chunping; Zhou, Yaoyu; Qin, Lei; Cheng, Min

    2016-07-15

    The authors herein described an amplified detection strategy employing nanoporous Au (NPG) and gold nanoparticles (AuNPs) to detect Pb(2+) ions in aqueous solution. The thiol modified Pb(2+)-specific DNAzyme was self-assembled onto the surface of the NPG modified electrode for hybridizing with the AuNPs labeled oligonucleotide and for forming the DNA double helix structure. Electrochemical signal, redox charge of hexaammineruthenium(III) chloride (RuHex), was measured by chronocoulometry. Taking advantage of amplification effects of the NPG electrode for increasing the reaction sites of capture probe and DNA-AuNPs complexes for bringing about the adsorption of large numbers of RuHex molecules, this electrochemical sensor could detect Pb(2+) quantitatively, in the range of 0.05-100nM, with a limit of detection as low as 0.012nM. Selectivity measurements revealed that the sensor was specific for Pb(2+) even with interference by high concentrations of other metal ions. This sensor was also used to detect Pb(2+) ions from samples of tap water, river water, and landfill leachate samples spiked with Pb(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. This simple aptasensor represented a promising potential for on-site detecting Pb(2+) in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Decreasing redox voltage of terephthalate-based electrode material for Li-ion battery using substituent effect

    NASA Astrophysics Data System (ADS)

    Lakraychi, A. E.; Dolhem, F.; Djedaïni-Pilard, F.; Thiam, A.; Frayret, C.; Becuwe, M.

    2017-08-01

    The preparation and assessment versus lithium of a functionalized terephthalate-based as a potential new negative electrode material for Li-ion battery is presented. Inspired from molecular modelling, a decrease in redox potential is achieved through the symmetrical adjunction of electron-donating fragments (-CH3) on the aromatic ring. While the electrochemical activity of this organic material was maximized when used as nanocomposite and without any binder, the potential is furthermore lowered by 110 mV upon functionalization, consistently with predicted value gained from DFT calculations.

  20. Electrolyte Structure near Electrode Interfaces in Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Ong, Mitchell; Verners, Osvalds; van Duin, Adri; Draeger, Erik; Pask, John

    2014-03-01

    The performance of lithium-ion secondary batteries (LIBs) is strongly tied to electrochemistry and ionic transport near the electrode-electrolyte interface. Changes in ion solvation near the interface affect ion conductivity and also are associated with the formation and evolution of solid-electrolyte interphase (SEI) layers, which impede transport but also passivate the interface. Thus, understanding these effects is critical to optimizing battery performance. Here we present molecular dynamics (MD) simulations of typical organic liquid LIB electrolytes in contact with graphite electrodes to understand differences in molecular structure and solvation near the interface compared to the bulk electrolyte. Results for different graphite terminations are presented. We compare the results of density-functional based MD to the empirical reactive forcefield ReaxFF and the non-reactive, non-polarizable COMPASS forcefield. Notable differences in the predictive power of each of these techniques are discussed. Prepared by LLNL under Contract DE-AC52-07NA27344.

  1. Simple and Fast Method for Fabrication of Endoscopic Implantable Sensor Arrays

    PubMed Central

    Tahirbegi, I. Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep

    2014-01-01

    Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope. PMID:24971473

  2. Multiphoton Ionization Mass and Photoelectron Spectroscopy.

    DTIC Science & Technology

    1984-07-01

    tracted information about ion vibrational energy levels. Molecules studted include benzene, toluene, aniline, paradifluorobenzene, nitric oxide ...molecules or subgroups and not to others. Ion specific electrodes play an analogous role in electro - chemistry. The prospect of selectively ionizing a... acetaldehyde and butyraldehyde have been studied at the KrF and ArF laser wavelengths. Their ionization potentials are 10.2 and 9.8 eV, respectively

  3. Highly sensitive determination of cadmium and lead using a low-cost electrochemical flow-through cell based on a carbon paste electrode.

    PubMed

    Wonsawat, Wanida; Dungchai, Wijitar; Motomizu, Shoji; Chuanuwatanakul, Suchada; Chailapakul, Orawon

    2012-01-01

    A low-cost thin-layer electrochemical flow-through cell based on a carbon paste electrode (CPE), was constructed for the highly sensitive determination of cadmium(II) (Cd(2+)) and lead(II) (Pb(2+)) ions. The sensitivity of the proposed cell for Cd(2+) and Pb(2+) ion detection was improved by using the smallest channel height without the need for any complicated electrode modification. Under the optimum conditions, the detection limits of Cd(2+) and Pb(2+) ions (0.08 and 0.07 µg dm(-3), respectively) were 13.8- and 11.4-fold lower than that of a commercial flow cell (1.1 and 0.8 µg dm(-3), respectively). Moreover, the percentage recoveries of Cd(2+) and Pb(2+) for the in-house designed thin-layer flow cell were higher than those for the commercially available cell in all tested water samples, and within the acceptable range. The proposed flow cell is promising as an inexpensive and alternative one for the highly sensitive monitoring of heavy metal ions. 2012 © The Japan Society for Analytical Chemistry

  4. Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak

    For this, a new model that keeps all major advantages of the single-particle model of lithium-ion batteries (LIBs) and includes three-dimensional structure of the electrode was developed. Unlike the single spherical particle, this model considers a small volume element of an electrode, called the Representative Volume Element (RVE), which represent the real electrode structure. The advantages of using RVE as the model geometry was demonstrated for a typical LIB electrode consisting of nano-particle LiFePO 4 (LFP) active material. The three-dimensional morphology of the LFP electrode was reconstructed using a synchrotron X-ray nano-computed tomography at the Advanced Photon Source of themore » Argonne National. A 27 μm 3 cube from reconstructed structure was chosen as the RVE for the simulation purposes. The model was employed to predict the voltage curve in a half-cell during galvanostatic operations and validated with experimental data. The simulation results showed that the distribution of lithium inside the electrode microstructure is very different from the results obtained based on the single-particle model. The range of lithium concentration is found to be much greater, successfully illustrates the effect of microstructure heterogeneity.« less

  5. Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography

    DOE PAGES

    Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak; ...

    2017-01-28

    For this, a new model that keeps all major advantages of the single-particle model of lithium-ion batteries (LIBs) and includes three-dimensional structure of the electrode was developed. Unlike the single spherical particle, this model considers a small volume element of an electrode, called the Representative Volume Element (RVE), which represent the real electrode structure. The advantages of using RVE as the model geometry was demonstrated for a typical LIB electrode consisting of nano-particle LiFePO 4 (LFP) active material. The three-dimensional morphology of the LFP electrode was reconstructed using a synchrotron X-ray nano-computed tomography at the Advanced Photon Source of themore » Argonne National. A 27 μm 3 cube from reconstructed structure was chosen as the RVE for the simulation purposes. The model was employed to predict the voltage curve in a half-cell during galvanostatic operations and validated with experimental data. The simulation results showed that the distribution of lithium inside the electrode microstructure is very different from the results obtained based on the single-particle model. The range of lithium concentration is found to be much greater, successfully illustrates the effect of microstructure heterogeneity.« less

  6. A novel electrochemical ion exchange system and its application in water treatment.

    PubMed

    Li, Yansheng; Li, Yongbin; Liu, Zhigang; Wu, Tao; Tian, Ying

    2011-06-01

    A novel electrochemical ion exchange system with porous cylinder electrodes is proposed for treatment of wastewater. This system can be used for desalination without the costly ion-exchange membrane and extra chemical reagents. Since the electrodes are completely uniform and no ion-exchange membrane was used in this system, it can be operated by switching anodes and cathodes flexibly for eliminating the scaling on the surface of electrodes. The strong base ion-exchange resin grains placed among the anode and cathode have played as supporting electrolyte, which is capable for the treatment of wastewater with low conductivity. The concentrated and neutralized anolyte containing chlorine is effective for disinfection and contaminants removal. Under the experimental conditions, the removal percentage of total dissolved salts was 83% and the removal percentage of chemical oxygen demand was 92% without consumption of extra chemical reagents. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  7. Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries.

    PubMed

    Sandu, Georgiana; Coulombier, Michael; Kumar, Vishank; Kassa, Hailu G; Avram, Ionel; Ye, Ran; Stopin, Antoine; Bonifazi, Davide; Gohy, Jean-François; Leclère, Philippe; Gonze, Xavier; Pardoen, Thomas; Vlad, Alexandru; Melinte, Sorin

    2018-06-28

    A tri-dimensional interweaving kinked silicon nanowires (k-SiNWs) assembly, with a Ni current collector co-integrated, is evaluated as electrode configuration for lithium ion batteries. The large-scale fabrication of k-SiNWs is based on a procedure for continuous metal assisted chemical etching of Si, supported by a chemical peeling step that enables the reuse of the Si substrate. The kinks are triggered by a simple, repetitive etch-quench sequence in a HF and H 2 O 2 -based etchant. We find that the inter-locking frameworks of k-SiNWs and multi-walled carbon nanotubes exhibit beneficial mechanical properties with a foam-like behavior amplified by the kinks and a suitable porosity for a minimal electrode deformation upon Li insertion. In addition, ionic liquid electrolyte systems associated with the integrated Ni current collector repress the detrimental effects related to the Si-Li alloying reaction, enabling high cycling stability with 80% capacity retention (1695 mAh/g Si ) after 100 cycles. Areal capacities of 2.42 mAh/cm 2 (1276 mAh/g electrode ) can be achieved at the maximum evaluated thickness (corresponding to 1.3 mg Si /cm 2 ). This work emphasizes the versatility of the metal assisted chemical etching for the synthesis of advanced Si nanostructures for high performance lithium ion battery electrodes.

  8. Fiber-optic microsensor array based on fluorescent bulk optode microspheres for the trace analysis of silver ions.

    PubMed

    Wygladacz, Katarzyna; Radu, Aleksandar; Xu, Chao; Qin, Yu; Bakker, Eric

    2005-08-01

    An optical microsensor array is described for the rapid analysis of silver ions at low parts per trillion levels. Because the ionophore o-xylylenebis(N,N-diisobutyldithiocarbamate) (Cu-I) was reevaluated and shown to exhibit excellent selectivity for silver ions, ion-selective electrode (ISE) membranes were optimized and found to exhibit the lowest reported detection limit so far (3 x 10(-10) M). A corresponding Ag+-selective fluorescent optical microsensor array for the rapid sensing of trace level Ag+ was then developed. It was fabricated using plasticized PVC-based micrometer-scale fluorescent microspheres that were produced via a sonic particle casting device. They contained 156 mmol/kg Cu-I, 10 mmol/kg 9-(diethylamino)-5-[4-(15-butyl-1,13-dioxo-2,14-dioxanodecyl) phenylimino]benzo[a]phenoxazine (chromoionophore VII, ETH 5418), 2.3 mmol/kg 1,1' '-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (internal reference dye), and 14 mmol/kg sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and were deposited onto the etched distal end of a 3200-microm-diameter optical fiber bundle. The microarray was characterized by fluorescence spectroscopy in samples containing 10(-12)-10(-8) M AgNO3 at pH 7.4, with selectivity characteristics comparable to the corresponding ISEs. The response time of the microsensor array was found to be less than 15 min for 10(-9) M AgNO3, which is drastically shorter than earlier data on optode films (8 h) and corresponding ISEs (30 min). A detection limit of 4 x 10(-11) M for Ag+ was observed, lower than any previously reported optode or silver-selective ISE. The microsensor array was applied for measurement of free silver levels in buffered pond water samples.

  9. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode.

    PubMed

    Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman

    2015-01-01

    A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl4, and the electrochemical reduction of HAuCl4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl4 along with FeCl3 and/or CuCl2, the NCPF remained selective toward the electrochemical reduction of HAuCl4 into the metallic state. The chemical reduction of HAuCl4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29±1.45 mg g(-1) at 60°C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Internal corrosion monitoring of subsea oil and gas production equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joosten, M.W.; Fischer, K.P.; Strommen, R.

    1995-04-01

    Nonintrusive techniques will dominate subsea corrosion monitoring compared with the intrusive methods because such methods do not interfere with pipeline operations. The long-term reliability of the nonintrusive techniques in general is considered to be much better than that of intrusive-type probes. The nonintrusive techniques based on radioactive tracers (TLA, NA) and FSM and UT are expected to be the main types of subsea corrosion monitoring equipment in the coming years. Available techniques that could be developed specifically for subsea applications are: electrochemical noise, corrosion potentials (using new types of reference electrodes), multiprobe system for electrochemical measurements, and video camera inspectionmore » (mini-video camera with light source). The following innovative techniques have potential but need further development: ion selective electrodes, radioactive tracers, and Raman spectroscopy.« less

  11. Synthesis of nano-sized hydrogen phosphate-imprinted polymer in acetonitrile/water mixture and its use as a recognition element of hydrogen phosphate selective all-solid state potentiometric electrode.

    PubMed

    Alizadeh, Taher; Atayi, Khalil

    2018-02-01

    Herein, a new recipe is introduced for the preparation of hydrogen phosphate ion-imprinted polymer nanoparticles (nano-IIP) in acetonitrile/water (63.5:36.5) using phosphoric acid as the template. The nano-IIP obtained was used as the recognition element of a carbon paste potentiometric sensor. The IIP electrode showed a Nernstian response to hydrogen phosphate anion; whereas, the non-imprinted polymer (NIP)-based electrode had no considerable sensitivity to the anion. The presence of both methacrylic acid and vinyl pyridine in the IIP structure, as well as optimization of the functional monomers-template proportion, was found to be important to observe the sensing capability of the IIP electrode. The nano-IIP electrode showed a dynamic linear range of 1 × 10 -5 -1 × 10 -1  mol L-1, Nernstian slope of 30.6 ± (0.5) mV decade -1 , response time of 25 seconds, and detection limit of 4.0 × 10 -6  mol L -1 . The utility of the electrodes was checked by potentiometric titration of hydrogen phosphate with La 3+ solution. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Novel H+-Ion Sensor Based on a Gated Lateral BJT Pair

    PubMed Central

    Yuan, Heng; Zhang, Jixing; Cao, Chuangui; Zhang, Gangyuan; Zhang, Shaoda

    2015-01-01

    An H+-ion sensor based on a gated lateral bipolar junction transistor (BJT) pair that can operate without the classical reference electrode is proposed. The device is a special type of ion-sensitive field-effect transistor (ISFET). Classical ISFETs have the advantage of miniaturization, but  they are difficult to fabricate by a single fabrication process because of the bulky and brittle reference electrode materials. Moreover, the reference electrodes need to be separated from the sensor device in some cases. The proposed device is composed of two gated lateral BJT components, one of which had a silicide layer while the other was without the layer. The two components were operated under the metal-oxide semiconductor field-effect transistor (MOSFET)-BJT hybrid mode, which can be controlled by emitter voltage and base current. Buffer solutions with different pH values were used as the sensing targets to verify the characteristics of the proposed device. Owing to their different sensitivities, both components could simultaneously detect the H+-ion concentration and function as a reference to each other. Per the experimental results, the sensitivity of the proposed device was found to be approximately 0.175 μA/pH. This experiment demonstrates enormous potential to lower the cost of the ISFET-based sensor technology. PMID:26703625

  13. Investigating microstructural evolution during the electroreduction of UO2 to U in LiCl-KCl eutectic using focused ion beam tomography

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Abdulaziz, R.; Tjaden, B.; Inman, D.; Brett, D. J. L.; Shearing, P. R.

    2016-11-01

    Reprocessing of spent nuclear fuels using molten salt media is an attractive alternative to liquid-liquid extraction techniques. Pyroelectrochemical processing utilizes direct, selective, electrochemical reduction of uranium dioxide, followed by selective electroplating of a uranium metal. Thermodynamic prediction of the electrochemical reduction of UO2 to U in LiCl-KCl eutectic has shown to be a function of the oxide ion activity. The pO2- of the salt may be affected by the microstructure of the UO2 electrode. A uranium dioxide filled "micro-bucket" electrode has been partially electroreduced to uranium metal in molten lithium chloride-potassium chloride eutectic. This partial electroreduction resulted in two distinct microstructures: a dense UO2 and a porous U metal structure were characterised by energy dispersive X-ray spectroscopy. Focused ion beam tomography was performed on five regions of this electrode which revealed an overall porosity ranging from 17.36% at the outer edge to 3.91% towards the centre, commensurate with the expected extent of reaction in each location. The pore connectivity was also seen to reduce from 88.32% to 17.86% in the same regions and the tortuosity through the sample was modelled along the axis of propagation of the electroreduction, which was seen to increase from a value of 4.42 to a value of infinity (disconnected pores). These microstructural characteristics could impede the transport of O2- ions resulting in a change in the local pO2- which could result in the inability to perform the electroreduction.

  14. A selective naked-eye chemosensor derived from 2-methoxybenzylamine and 2,3-dihydroxybenzaldehyde - synthesis, spectral characterization and electrochemistry of its bis-bidentates Schiff bases metal complexes

    NASA Astrophysics Data System (ADS)

    Djouhra, Aggoun; Ali, Ourari; Ramiro, Ruiz-Rosas; Emilia, Morallon

    2017-09-01

    A new colorimetric receptor HL, acting as a bidentate Schiff base ligand, has been synthesized by condensation of 2-methoxybenzylamine on 2,3-dihydroxybenzaldehyde in a methanolic solution. Interestingly, this chelating agent can selectively detect Cu2 +, Co2 +, Fe2 + and Fe3 + ions with a simple and an easy-to-make, well defined naked-eye visible color changes in two different solvents like acetonitrile and methanol. This bidentate ligand coordinates three metal ions of Co(II), Cu(II) and Fe(II) via nitrogen and oxygen atoms. The molecular structures of the synthesized compounds were elucidated by various physicochemical properties such as the elemental analysis, FT-IR, HNMR, UV-Vis and the Mass spectrometry. The resulting general formulae [M(L)2·H2O] (M(II) = Cu, Fe, Co) are proposed as mononuclear complexes. The solvatochromism properties of these compounds were studied with their absorption spectra using different solvents as methanol (MeOH), acetonitrile (AN), tetrahydrofuran (THF), dimethylformamid (DMF), dimethylsulfoxid (DMSO) and dichloromethane (DC). The Electrochemical behavior of copper complex was explored in DMF solutions by cyclic voltammetry (CV) with two working electrodes: glassy carbon (GC) and platinum electrode (Pt). This study reveals that copper complex shows successively two redox systems as CuIII/II and CuII/I. The FeIII/II and CoII/I redox systems have also been studied in DMF and DMSO media.

  15. Development of Gold Standard Ion-Selective Electrode-Based Methods for Fluoride Analysis

    PubMed Central

    Martínez-Mier, E.A.; Cury, J.A.; Heilman, J.R.; Katz, B.P.; Levy, S.M.; Li, Y.; Maguire, A.; Margineda, J.; O’Mullane, D.; Phantumvanit, P.; Soto-Rojas, A.E.; Stookey, G.K.; Villa, A.; Wefel, J.S.; Whelton, H.; Whitford, G.M.; Zero, D.T.; Zhang, W.; Zohouri, V.

    2011-01-01

    Background/Aims: Currently available techniques for fluoride analysis are not standardized. Therefore, this study was designed to develop standardized methods for analyzing fluoride in biological and nonbiological samples used for dental research. Methods A group of nine laboratories analyzed a set of standardized samples for fluoride concentration using their own methods. The group then reviewed existing analytical techniques for fluoride analysis, identified inconsistencies in the use of these techniques and conducted testing to resolve differences. Based on the results of the testing undertaken to define the best approaches for the analysis, the group developed recommendations for direct and microdiffusion methods using the fluoride ion-selective electrode. Results Initial results demonstrated that there was no consensus regarding the choice of analytical techniques for different types of samples. Although for several types of samples, the results of the fluoride analyses were similar among some laboratories, greater differences were observed for saliva, food and beverage samples. In spite of these initial differences, precise and true values of fluoride concentration, as well as smaller differences between laboratories, were obtained once the standardized methodologies were used. Intraclass correlation coefficients ranged from 0.90 to 0.93, for the analysis of a certified reference material, using the standardized methodologies. Conclusion The results of this study demonstrate that the development and use of standardized protocols for F analysis significantly decreased differences among laboratories and resulted in more precise and true values. PMID:21160184

  16. Applications of SPICE for modeling miniaturized biomedical sensor systems

    NASA Technical Reports Server (NTRS)

    Mundt, C. W.; Nagle, H. T.

    2000-01-01

    This paper proposes a model for a miniaturized signal conditioning system for biopotential and ion-selective electrode arrays. The system consists of three main components: sensors, interconnections, and signal conditioning chip. The model for this system is based on SPICE. Transmission-line based equivalent circuits are used to represent the sensors, lumped resistance-capacitance circuits describe the interconnections, and a model for the signal conditioning chip is extracted from its layout. A system for measurements of biopotentials and ionic activities can be miniaturized and optimized for cardiovascular applications based on the development of an integrated SPICE system model of its electrochemical, interconnection, and electronic components.

  17. Supercapacitors based on modified graphene electrodes with poly(ionic liquid)

    NASA Astrophysics Data System (ADS)

    Trigueiro, João Paulo C.; Lavall, Rodrigo L.; Silva, Glaura G.

    2014-06-01

    The improved accessibility of the electrolyte to the surface of carbon nanomaterials is a challenge to be overcome in supercapacitors based on ionic liquid electrolytes. In this study, we report the preparation of supercapacitors based on reduced graphene oxide (RGO) electrodes and ionic liquid as the electrolyte (specifically, 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide or [MPPy][TFSI]). Two types of electrodes were compared: the RGO-based electrode and a poly(ionic liquid)-modified RGO electrode (PIL:RGO). The supercapacitor produced with the PIL:RGO electrode and [MPPy][TFSI] showed an electrochemical stability of 3 V and provided a capacitance of 71.5 F g-1 at room temperature; this capacitance is 130% higher with respect to the RGO-based supercapacitor. The decrease of the specific capacitance after 2000 cycles is only 10% for the PIL:RGO-based device. The results revealed the potential of the PIL:RGO material as an electrode for supercapacitors. This composite electrode increases the compatibility with the ionic liquid electrolyte compared to an RGO electrode, promoting an increase in the effective surface area of the electrode accessible to the electrolyte ions.

  18. Investigation of electrochemical actuation by polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi

    2017-09-01

    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  19. A CW radiofrequency ion source for production of negative hydrogen ion beams for cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvas, T.; Tarvainen, O.; Komppula, J.

    2015-04-08

    A CW 13.56 MHz radiofrequency-driven ion source RADIS for production of H{sup −} and D{sup −} beams is under development for replacing the filament-driven ion source of the MCC30/15 cyclotron. The RF ion source has a 16-pole multicusp plasma chamber, an electromagnet-based magnetic filter and an external planar spiral RF antenna behind an AlN window. The extraction is a 5-electrode system with an adjustable puller electrode voltage for optimizing the beam formation, a water-cooled electron dump electrode and an accelerating einzel lens. At 2650 W of RF power, the source produces 1 mA of H{sup −} (2.6 mA/cm{sup 2}), which is the intensity neededmore » at injection for production of 200 µA H{sup +} with the filament-driven ion source. A simple pepperpot device has been developed for characterizing the beam emittance. Plans for improving the power efficiency with the use of a new permanent magnet front plate is discussed.« less

  20. From Si wafers to cheap and efficient Si electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gauthier, Magali; Reyter, David; Mazouzi, Driss; Moreau, Philippe; Guyomard, Dominique; Lestriez, Bernard; Roué, Lionel

    2014-06-01

    High-energy ball milling is used to recycle Si wafers to produce Si powders for negative electrodes of Li-ion batteries. The resulting Si powder consists in micrometric Si agglomerates made of cold-welded submicrometric nanocrystalline Si particles. Silicon-based composite electrodes prepared with ball-milled Si wafer can achieve more than 900 cycles with a capacity of 1200 mAh g-1 of Si (880 mAh g-1 of electrode) and a coulombic efficiency higher than 99%. This excellent electrochemical performance lies in the use of nanostructured Si produced by ball milling, the electrode formulation in a pH 3 buffer solution with CMC as binder and the use of FEC/VC additives in the electrolyte. This work opens the way to an economically attractive recycling of Si wastes.

  1. A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery.

    PubMed

    Nirmale, Trupti C; Kale, Bharat B; Varma, Anjani J

    2017-10-01

    Lithium ion batteries (LIB) are the most promising energy storage systems for portable electronics and future electric or hybrid-electric vehicles. However making them safer, cost effective and environment friendly is the key challenge. In this regard, replacing petro-derived materials by introducing renewable biomass derived cellulose derivatives and lignin based materials into the battery system is a promising approach for the development of green materials for LIB. These biomaterials introduce sustainability as well as improved safety in the final disposal of LIB batteries. In this review we introduce LIB materials technology in brief and recent developments in electrodes and binders based on cellulose and their derivatives and lignin for lithium ion batteries. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Solvation-controlled lithium-ion complexes in a nonflammable solvent containing ethylene carbonate: structural and electrochemical aspects.

    PubMed

    Sogawa, Michiru; Kawanoue, Hikaru; Todorov, Yanko Marinov; Hirayama, Daisuke; Mimura, Hideyuki; Yoshimoto, Nobuko; Morita, Masayuki; Fujii, Kenta

    2018-02-28

    The structural and electrochemical properties of lithium-ion solvation complexes in a nonflammable organic solvent, tris(2,2,2-trifluoroethyl)phosphate (TFEP) containing ethylene carbonate (EC), were investigated using vibrational spectroscopic and electrochemical measurements. Based on quantitative Raman and infrared (IR) spectral analysis of the Li bis(trifluoromethanesulfonyl)amide (TFSA) salt in TFEP + EC electrolytes, we successfully evaluated the individual solvation numbers of EC (n EC ), TFEP (n TFEP ), and TFSA - (n TFSA ) in the first solvation sphere of the Li-ion. We found that the n EC value linearly increased with increasing EC mole fraction (x EC ), whereas the n TFEP and n TFSA values gradually decreased with increasing n EC . The ionic conductivity and viscosity (Walden plots) indicated that mainly Li + TFSA - ion pairs formed in neat TFEP (x EC = 0). This ion pair gradually dissociated into positively charged Li-ion complexes as x EC increased, which was consistent with the Raman/IR spectroscopy results. The redox reaction corresponding to an insertion/desertion of Li-ion into/from the graphite electrode occurred in the LiTFSA/TFEP + EC system at x EC ≥ 0.25. The same was not observed in the lower x EC cases. We discussed the relation between Li-ion solvation and electrode reaction behaviors at the molecular level and proposed that n EC plays a crucial role in the electrode reaction, particularly in terms of solid electrolyte interphase formation on the graphite electrode.

  3. Electrode Nanostructures in Lithium‐Based Batteries

    PubMed Central

    Mahmood, Nasir

    2014-01-01

    Lithium‐based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium‐based (Li‐ion, Li‐air and Li‐S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium‐based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures. PMID:27980896

  4. Electrode Nanostructures in Lithium-Based Batteries.

    PubMed

    Mahmood, Nasir; Hou, Yanglong

    2014-12-01

    Lithium-based batteries possessing energy densities much higher than those of the conventional batteries belong to the most promising class of future energy devices. However, there are some fundamental issues related to their electrodes which are big roadblocks in their applications to electric vehicles (EVs). Nanochemistry has advantageous roles to overcome these problems by defining new nanostructures of electrode materials. This review article will highlight the challenges associated with these chemistries both to bring high performance and longevity upon considering the working principles of the various types of lithium-based (Li-ion, Li-air and Li-S) batteries. Further, the review discusses the advantages and challenges of nanomaterials in nanostructured electrodes of lithium-based batteries, concerns with lithium metal anode and the recent advancement in electrode nanostructures.

  5. Construction and evaluation of ion selective electrodes for nitrate with a summing operational amplifier. Application to tobacco analysis.

    PubMed

    Pérez-Olmos, R; Rios, A; Fernández, J R; Lapa, R A; Lima, J L

    2001-01-05

    In this paper, the construction and evaluation of an electrode selective to nitrate with improved sensitivity, constructed like a conventional electrode (ISE) but using an operational amplifier to sum the potentials supplied by four membranes (ESOA) is described. The two types of electrodes, without an inner reference solution, were constructed using tetraoctylammonium bromide as sensor, dibutylphthalate as solvent mediator and PVC as plastic matrix, the membranes obtained directly applied onto a conductive epoxy resin support. After the comparative evaluation of their working characteristics they were used in the determination of nitrate in different types of tobacco. The limit of detection of the direct potentiometric method developed was found to be 0.18 g kg(-1) and the precision and accuracy of the method, when applied to eight different samples of tobacco, expressed in terms of mean R.S.D. and average percentage of spike recovery was 0.6 and 100.3%, respectively. The comparison of variances showed, on all ocassions, that the results obtained by the ESOA were similar to those obtained by the conventional ISE, but with higher precision. Linear regression analysis showed good agreement (r=0.9994) between the results obtained by the developed potentiometric method and those of a spectrophotometric method based on brucine, adopted as reference method, when applied simultaneously to 32 samples of different types of tobacco.

  6. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    PubMed Central

    Perry, Nicola H.; Ishihara, Tatsumi

    2016-01-01

    Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance. PMID:28773978

  7. Asymmetric ion trap

    DOEpatents

    Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  8. Understanding interaction of curcumin and metal ions on electrode surfaces using EDXRF

    NASA Astrophysics Data System (ADS)

    Joseph, Daisy; Kumar, K. Krishna; Narayanan, S. Sriman

    2018-04-01

    A chemically modified electrode was developed for determination of metal ions (Cd, Pb, Zn, Co, Hg). The modifier used for the study was Curcumin. Curcumin acts as a complexing agent at the surface of the electrode for preconcentration of metal ions from electrolyte to electrode surface and stripped back to electrolyte during analysis. EDXRF was used to analyze these electrodes and it was concluded that the PCR modified electrode favored effective chelation for lead and mercury.

  9. Plasma processes in the preparation of lithium-ion battery electrodes and separators

    NASA Astrophysics Data System (ADS)

    Nava-Avendaño, J.; Veilleux, J.

    2017-04-01

    Lithium-ion batteries (LIBs) are the energy storage devices that dominate the portable electronic market. They are now also considered and used for electric vehicles and are foreseen to enable the smart grid. Preparing batteries with high energy and power densities, elevated cycleability and improved safety could be achieved by controlling the microstructure of the electrode materials and the interaction they have with the electrolyte over the working potential window. Selecting appropriate precursors, reducing the preparation steps and selecting more efficient synthesis methods could also significantly reduce the costs of LIB components. Implementing plasma technologies can represent a high capital investment, but the versatility of the technologies allows the preparation of powdered nanoparticles with different morphologies, as well as with carbon and metal oxide coatings. Plasma technologies can also enable the preparation of binder-free thin films and coatings for LIB electrodes, and the treatment of polymeric membranes to be used as separators. This review paper aims at highlighting the different thermal and non-thermal plasma technologies recently used to synthesize coated and non-coated active materials for LIB cathodes and anodes, and to modify the surface of separators.

  10. First-principles investigation of aluminum intercalation and diffusion in TiO2 materials: Anatase versus rutile

    NASA Astrophysics Data System (ADS)

    Tang, Weiqiang; Xuan, Jin; Wang, Huizhi; Zhao, Shuangliang; Liu, Honglai

    2018-04-01

    Aluminum-ion batteries, emerging as a promising post-lithium battery solution, have been a subject of increasing research interest. Yet, most existing aluminum-ion research has focused on electrode materials development and synthesis. There has been a lack of fundamental understanding of the electrode processes and thus theoretical guidelines for electrode materials selection and design. In this study, by using density functional theory, we for the first time report a first-principles investigation on the thermodynamic and kinetic properties of aluminum intercalation into two common TiO2 polymorphs, i.e., anatase and rutile. After examining the aluminum intercalation sites, intercalation voltages, storage capacities and aluminum diffusion paths in both cases, we demonstrate that the stable aluminum intercalation site locates at the center of the O6 octahedral for TiO2 rutile and off center for TiO2 anatase. The maximum achievable Al/Ti ratios for rutile and anatase are 0.34375 and 0.36111, respectively. Although rutile is found to have an aluminum storage capacity slightly higher than anatase, the theoretical specific energy of rutile can reach 20.90 Wh kg-1, nearly twice as high as anatase (9.84 Wh kg-1). Moreover, the diffusion coefficient of aluminum ions in rutile is 10-9 cm2 s-1, significantly higher than that in anatase (10-20 cm2 s-1). In this regard, TiO2 rutile appears to be a better candidate than anatase as an electrode material for aluminum-ion batteries.

  11. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge.

    PubMed

    Chun, Sang-Eun; Evanko, Brian; Wang, Xingfeng; Vonlanthen, David; Ji, Xiulei; Stucky, Galen D; Boettcher, Shannon W

    2015-08-04

    Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg(-1) based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30-50 Wh kg(-1) is possible with optimization.

  12. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge

    PubMed Central

    Chun, Sang-Eun; Evanko, Brian; Wang, Xingfeng; Vonlanthen, David; Ji, Xiulei; Stucky, Galen D.; Boettcher, Shannon W.

    2015-01-01

    Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg−1 based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30–50 Wh kg−1 is possible with optimization. PMID:26239891

  13. Electrochemical detection of aqueous Ag+ based on Ag+-assisted ligation reaction

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Han, Kun; Wang, Bidou; Luo, Gangyin; Wang, Peng; Chen, Mingli; Tang, Yuguo

    2015-03-01

    In this work, a novel strategy to fabricate a highly sensitive and selective biosensor for the detection of Ag+ is proposed. Two DNA probes are designed and modified on a gold electrode surface by gold-sulfur chemistry and hybridization. In the presence of Ag+, cytosine-Ag+-cytosine composite forms and facilitates the ligation event on the electrode surface, which can block the release of electrochemical signals labeled on one of the two DNA probes during denaturation process. Ag+ can be sensitively detected with the detection limit of 0.1 nM, which is much lower than the toxicity level defined by U.S. Environmental Protection Agency. This biosensor can easily distinguish Ag+ from other interfering ions and the performances in real water samples are also satisfactory. Moreover, the two DNA probes are designed to contain the recognition sequences of a nicking endonuclease, and the ligated DNA can thus be cleaved at the original site. Therefore, the electrode can be regenerated, which allows the biosensor to be reused for additional tests.

  14. Titanium (III) cation selective electrode based on synthesized tris(2pyridyl) methylamine ionophore and its application in water samples

    PubMed Central

    Rezayi, Majid; Karazhian, Reza; Abdollahi, Yadollah; Narimani, Leila; Sany, Seyedeh Belin Tavakoly; Ahmadzadeh, Saeid; Alias, Yatimah

    2014-01-01

    The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10−6–1.0 × 10−2 M and pH range from 1–2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 ± 0.24 mV/dec, 7.9 × 10−7 M, and 20 s, respectively. The direct determination of 4–39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out. PMID:24722576

  15. Electronic tongue

    NASA Technical Reports Server (NTRS)

    Kuhlman, Kimberly (Inventor); Buehler, Martin G. (Inventor)

    2004-01-01

    An ion selective electrode (ISE) array is described, as well as methods for producing the same. The array can contain multiple ISE which are individually electronically addressed. The addressing allows simplified preparation of the array. The array can be used for water quality monitoring, for example.

  16. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE PAGES

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS; ...

    2015-10-28

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 V p-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  17. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamid, Ahmed M.; Ibrahim, Yehia M.; Garimella, Venkata BS

    We report on the development and characterization of a new traveling wave-based Structure for Lossless Ion Manipulations (TW-SLIM) for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters aremore » reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200–2500) utilizing a confining rf waveform (~1 MHz and ~300 V p-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ~32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. In conclusion, the combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.« less

  18. Self-sustained focusing of high-density streaming plasma

    NASA Astrophysics Data System (ADS)

    Bugaev, A.; Dobrovolskiy, A.; Goncharov, A.; Gushenets, V.; Litovko, I.; Naiko, I.; Oks, E.

    2017-01-01

    We describe our observations of the transport through an electrostatic plasma lens of a wide-aperture, high-current, low energy, metal-ion plasma flow produced by a cathodic arc discharge. The lens input aperture was 80 mm, the length of the lens was 140 mm, and there were three electrostatic ring electrodes located in a magnetic field formed by permanent magnets. The lens outer electrodes were grounded and the central electrode was biased up to -3 kV. The plasma was a copper plasma with directed (streaming) ion energy 20-40 eV, and the equivalent ion current was up to several amperes depending on the potential applied to the central lens electrode. We find that when the central lens electrode is electrically floating, the current density of the plasma flow at the lens focus increases by up to 40%-50%, a result that is in good agreement with a theoretical treatment based on plasma-optical principles of magnetic insulation of electrons and equipotentialization along magnetic field lines. When the central lens electrode is biased negatively, an on-axis stream of energetic electrons is formed, which can also provide a mechanism for focusing of the plasma flow. Optical emission spectra under these conditions show an increase in intensity of lines corresponding to both copper atoms and singly charged copper ions, indicating the presence of fast electrons within the lens volume. These energetic electrons, as well as accumulating on-axis and providing ion focusing, can also assist in reducing the microdroplet component in the dense, low-temperature, metal plasma.

  19. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  20. Signal processing with a summing operational amplifier in multicomponent potentiometric titrations.

    PubMed

    Parczewski, A

    1987-06-01

    It has been proved that application of two indicator electrodes connected to the ordinary titration apparatus through an auxiliary electronic device (a summing operational amplifier) significantly extends the scope of multicomponent potentiometric titrations in which the analytes are determined simultaneously from a single titration curve. For each analyte there is a corresponding potential jump on the titration curve. By application of the proposed auxiliary device, the sum of the electrode potentials is measured. The device also enables the relative sizes of the potential jumps at the end-points on the titration curve to be varied. The advantages of the proposed signal processing are exemplified by complexometric potentiometric titrations of Fe(III) and Cu(II) in mixtures, with a platinum electrode and a copper ion-selective electrode as the indicator electrodes.

  1. Influence of electrolyte ion-solvent interactions on the performances of supercapacitors porous carbon electrodes

    NASA Astrophysics Data System (ADS)

    Decaux, C.; Matei Ghimbeu, C.; Dahbi, M.; Anouti, M.; Lemordant, D.; Béguin, F.; Vix-Guterl, C.; Raymundo-Piñero, E.

    2014-10-01

    The development of advanced and safe electrochemical supercapacitors or hybrid supercapacitors combining a battery electrode material such as graphite and a porous carbon electrode implies the use of new electrolytes containing a tetra-alkylammonium or lithium salt dissolved preferentially in a safe and environmentally friendly solvent such as alkylcarbonates. In those systems, the carbon porosity of the activated carbon electrode controls the electrochemical behavior of the whole device. In this work, it is demonstrated that electrolytes containing highly polarizing ions such as Li+ dissolved in polar solvents such as alkylcarbonates do not completely loss their solvation shell at the opposite of what is observed for poorly solvated cations like TEABF4. As a consequence, the optimal carbon pore size for obtaining the largest energy density, while keeping a high power density, is wider when strongly solvated cations, like Li+ are used than for conventional organic electrolytes using acetonitrile as solvent and TEA+ as salt cations. TEA+ cations are easily desolvated and hence are able to penetrate in small pores matching the dimensions of bare ions. The dissimilarity of behavior of alkylcarbonates and acetonitrile based electrolytes highlights the importance of ion-solvent interactions when searching the optimal porous texture for the electrode material.

  2. Ti-substituted tunnel-type Na 0.44MnO 2 oxide as a negative electrode for aqueous sodium-ion batteries

    DOE PAGES

    Wang, Yuesheng; Liu, Jue; Lee, Byungju; ...

    2015-03-25

    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na 0.44MnO 2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi 2(PO 4) 3, are available. Here we show that Ti-substituted Na 0.44MnO 2 (Na 0.44[Mn 1-xTi x]O 2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on sphericalmore » aberration-corrected electron microscopy and ab initio calculations are utilized to accurately identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na 0.44[Mn 1-xTi x]O 2 is a promising negative electrode material for aqueous sodium-ion batteries.« less

  3. Potentiometric analytical microsystem based on the integration of a gas-diffusion step for on-line ammonium determination in water recycling processes in manned space missions.

    PubMed

    Calvo-López, Antonio; Ymbern, Oriol; Puyol, Mar; Casalta, Joan Manel; Alonso-Chamarro, Julián

    2015-05-18

    The design, construction and evaluation of a versatile cyclic olefin copolymer (COC)-based continuous flow potentiometric microanalyzer to monitor the presence of ammonium ion in recycling water processes for future manned space missions is presented. The microsystem integrates microfluidics, a gas-diffusion module and a detection system in a single substrate. The gas-diffusion module was integrated by a hydrophobic polyvinylidene fluoride (PVDF) membrane. The potentiometric detection system is based on an all-solid state ammonium selective electrode and a screen-printed Ag/AgCl reference electrode. The analytical features provided by the analytical microsystem after the optimization process were a linear range from 0.15 to 500 mg L(-1) and a detection limit of 0.07 ± 0.01 mg L(-1). Nevertheless, the operational features can be easily adapted to other applications through the modification of the hydrodynamic variables of the microfluidic platform. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Electrically contacted enzyme based on dual hairpin DNA structure and its application for amplified detection of Hg2+.

    PubMed

    Wang, Guangfeng; Huang, Hao; Zhang, Xiaojun; Wang, Lun

    2012-05-15

    In the present study, based on a dual hairpin DNA structure, a novel system of electrically contacted enzyme and its signal amplification for ultrasensitive detection of Hg(2+) was demonstrated. In the presence of Hg(2+), with the interaction of thymine-Hg(2+)-thymine (T-Hg(2+)-T), DNA sequence dully labeled with ferrocene (Fc) at 5' end and horseradish peroxidase (HRP) at 3' end, hybridized to the capture probe and formed the dual hairpin structure on the electrode. Fc unit acts as a relay that electrically contacts HRP with the electrode and activates the bioelectrocatalyzed reduction of H(2)O(2). And based on the bioelectrocatalyzed signal amplification of the presented system, Hg(2+) could be quantitatively detected in the range of 10(-10)-10(-6)M with a low detection limit of 52 pM. And it also demonstrated excellent selectivity against other interferential metal ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Ion Propulsion Thruster Including a Plurality of Ion Optic Electrode Pairs

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor)

    2016-01-01

    Ion optics for use in a conventional or annular or other shaped ion thruster are disclosed including a plurality of planar, spaced apart ion optic electrode pairs sized to include a diameter smaller than the diameter of thruster exhaust and retained in, on or otherwise associated with a frame across the thruster exhaust. An electrical connection may be provided for establishing electrical connectivity among a set of first upstream electrodes and an electrical connection may be provided for establishing electrical connectivity among the second downstream electrodes.

  6. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.

    PubMed

    Rocha, Victoria G; García-Tuñón, Esther; Botas, Cristina; Markoulidis, Foivos; Feilden, Ezra; D'Elia, Eleonora; Ni, Na; Shaffer, Milo; Saiz, Eduardo

    2017-10-25

    The current lifestyles, increasing population, and limited resources result in energy research being at the forefront of worldwide grand challenges, increasing the demand for sustainable and more efficient energy devices. In this context, additive manufacturing brings the possibility of making electrodes and electrical energy storage devices in any desired three-dimensional (3D) shape and dimensions, while preserving the multifunctional properties of the active materials in terms of surface area and conductivity. This paves the way to optimized and more efficient designs for energy devices. Here, we describe how three-dimensional (3D) printing will allow the fabrication of bespoke devices, with complex geometries, tailored to fit specific requirements and applications, by designing water-based thermoresponsive inks to 3D-print different materials in one step, for example, printing the active material precursor (reduced chemically modified graphene (rCMG)) and the current collector (copper) for supercapacitors or anodes for lithium-ion batteries. The formulation of thermoresponsive inks using Pluronic F127 provides an aqueous-based, robust, flexible, and easily upscalable approach. The devices are designed to provide low resistance interface, enhanced electrical properties, mechanical performance, packing of rCMG, and low active material density while facilitating the postprocessing of the multicomponent 3D-printed structures. The electrode materials are selected to match postprocessing conditions. The reduction of the active material (rCMG) and sintering of the current collector (Cu) take place simultaneously. The electrochemical performance of the rCMG-based self-standing binder-free electrode and the two materials coupled rCMG/Cu printed electrode prove the potential of multimaterial printing in energy applications.

  7. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt.

    PubMed

    Jeżowski, P; Crosnier, O; Deunf, E; Poizot, P; Béguin, F; Brousse, T

    2018-02-01

    Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO 2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.

  8. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt

    NASA Astrophysics Data System (ADS)

    Jeżowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Béguin, F.; Brousse, T.

    2018-02-01

    Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.

  9. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Eastwood, D. S.; Bradley, R. S.; Tariq, F.; Cooper, S. J.; Taiwo, O. O.; Gelb, J.; Merkle, A.; Brett, D. J. L.; Brandon, N. P.; Withers, P. J.; Lee, P. D.; Shearing, P. R.

    2014-04-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li+ ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.

  10. Ion Trapping with Fast-Response Ion-Selective Microelectrodes Enhances Detection of Extracellular Ion Channel Gradients

    PubMed Central

    Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.

    2009-01-01

    Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875

  11. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  12. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  13. Ion manipulation device with electrical breakdown protection

    DOEpatents

    Chen, Tsung-Chi; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D; Anderson, Gordon A; Baker, Erin M

    2014-12-02

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. The surfaces are housed in a chamber, and at least one electrically insulative shield is coupled to an inner surface of the chamber for increasing a mean-free-path between two adjacent electrodes in the chamber.

  14. Facile Synthesis of Mixed Metal Organic Frameworks: Electrode Materials for Supercapacitor with Excellent Areal Capacitance and Operational Stability.

    PubMed

    Kazemi, Sayed Habib; Hosseinzadeh, Batoul; Kazemi, Hojjat; Kiani, Mohammad Ali; Hajati, Shaaker

    2018-06-08

    Electrode materials with high surface area, tailored pore size and efficient capability for ion insertion and enhanced transport of electrons and ions are needed for advanced supercapacitors. In the present study, a mixed metal organic framework (cobalt and manganese based MOF) was synthesized through a simple one pot solvothermal method and employed as the electrode material for supercapacitor. Notably, Co-Mn MOF electrode displayed a large surface area and excellent cycling stability (over 95% capacitance retention after 1500 cycles). Also, superior pseudocapacitive behavior was observed for Co-Mn MOF electrode in KOH electrolyte with an exceptional areal capacitance of 1.318 F cm-2. Moreover, an asymmetric supercapacitor was assembled using Co-Mn MOF and activated carbon electrode as positive and negative electrodes, respectively. The fabricated supercapacitor showed specific capacitances of 106.7 F g-1 at a scan rate of 10 mV s-1 and delivered maximum energy density of 30 Wh kg-1 at 2285.7 W kg-1. Our studies suggest the Co-Mn MOF as promising electrode materials for supercapacitor applications.

  15. Microfabricated linear Paul-Straubel ion trap

    DOEpatents

    Mangan, Michael A [Albuquerque, NM; Blain, Matthew G [Albuquerque, NM; Tigges, Chris P [Albuquerque, NM; Linker, Kevin L [Albuquerque, NM

    2011-04-19

    An array of microfabricated linear Paul-Straubel ion traps can be used for mass spectrometric applications. Each ion trap comprises two parallel inner RF electrodes and two parallel outer DC control electrodes symmetric about a central trap axis and suspended over an opening in a substrate. Neighboring ion traps in the array can share a common outer DC control electrode. The ions confined transversely by an RF quadrupole electric field potential well on the ion trap axis. The array can trap a wide array of ions.

  16. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    PubMed Central

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-01-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs. PMID:26215887

  17. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min

    2014-01-01

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact.

  18. ZIF-8 Cooperating in TiN/Ti/Si Nanorods as Efficient Anodes in Micro-Lithium-Ion-Batteries.

    PubMed

    Yu, Yingjian; Yue, Chuang; Lin, Xionggui; Sun, Shibo; Gu, Jinping; He, Xu; Zhang, Chuanhui; Lin, Wei; Lin, Donghai; Liao, Xinli; Xu, Binbin; Wu, Suntao; Zheng, Mingsen; Li, Jing; Kang, Junyong; Lin, Liwei

    2016-02-17

    Zeolite imidazolate framework-8 (ZIF-8) nanoparticles embedded in TiN/Ti/Si nanorod (NR) arrays without pyrolysis have shown increased energy storage capacity as anodes for lithium ion batteries (LIBs). A high capacity of 1650 μAh cm(-2) has been achieved in this ZIF-8 composited multilayered electrode, which is ∼100 times higher than the plain electrodes made of only silicon NR. According to the electrochemical impedance spectroscopy (EIS) and (1)H nuclear magnetic resonance (NMR) characterizations, the improved diffusion of lithium ions in ZIF-8 and boosted electron/Li(+) transfer by the ZIF-8/TiN/Ti multilayer coating are proposed to be responsible for the enhanced energy storage ability. The first-principles calculations further indicate the favorable accessibility of lithium with appropriate size to diffuse in the open pores of ZIF-8. This work broadens the application of ZIF-8 to silicon-based LIBs electrodes without the pyrolysis and provides design guidelines for other metal-organic frameworks/Si composite electrodes.

  19. Ion funnel with extended mass range and reduced conductance limit aperture

    DOEpatents

    Tolmachev, Aleksey V [Richland, WA; Smith, Richard D [Richland, WA

    2008-04-01

    An improved ion funnel design is disclosed that decreases the axial RF (parasite) fields at the ion funnel exit. This is achieved by addition of one or more compensation electrodes after the conductance limit electrode. Various RF voltage profiles may be applied to the various electrodes minimizing the parasite axial potential wells. The smallest RF aperture that serves as the conductance limiting electrode is further reduced over standard designs. Overall, the ion funnel improves transmission ranges of both low m/z and high m/z ions, reducing RF activation of ions and decreasing the gas load to subsequent differential pumping stages.

  20. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid.

    PubMed

    Zhang, Lijun; Wang, Guiheng; Wu, Di; Xiong, Can; Zheng, Lei; Ding, Yunsheng; Lu, Hongbo; Zhang, Guobing; Qiu, Longzhen

    2018-02-15

    In this study, an organic electrochemical transistor sensor (OECT) with a molecularly imprinted polymer (MIP)-modified gate electrode was prepared for the detection of ascorbic acid (AA). The combination of the amplification function of an OECT and the selective specificity of MIPs afforded a highly sensitive, selective OECT sensor. Cyclic voltammetry and electrochemical impedance spectroscopy measurements were carried out to monitor the stepwise fabrication of the modified electrodes and the adsorption capacity of the MIP/Au electrodes. Atomic force microscopy was employed for examining the surface morphology of the electrodes. Important detection parameters, pH and detection temperature were optimized. With the change in the relative concentration of AA from 1μM to 100μM, the MIP-OECT sensor exhibited a low detection limit of 10nM (S/N > 3) and a sensitivity of 75.3μA channel current change per decade under optimal conditions. In addition, the MIP-OECT sensor exhibited excellent specific recognition ability to AA, which prevented the interference from other structurally similar compounds (e.g., aspartic acid, glucose, uric acid, glycine, glutathione, H 2 O 2 ), and common metal ions (K + , Na + , Ca 2+ , Mg 2+ , and Fe 2+ ). In addition, a series of vitamin C beverages were analyzed to demonstrate the feasibility of the MIP-OECT sensor. Using the proposed principle, several other sensors with improved performance can be constructed via the modification of organic electrochemical transistors with appropriate MIP films. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Investigating the Doping Mechanism of Pyrene Based Methacrylate Functional Conductive Binder in Silicon Anodes for Lithium-Ion Batteries

    DOE PAGES

    Ling, Min; Liu, Michael; Zheng, Tianyue; ...

    2017-01-01

    The doping mechanism of poly (1-pyrenemethyl methacrylate) (PPy) is investigated through electrochemical analytical and spectroscopic method. The performance of PPy as a Si materials binder is studied and compared with that of a commercial available lithium polyacrylate (PAALi) binder. The pyrene moiety consumes lithium ions according to the cyclic voltammogram (CV) measurement, as a doping to the PPy binder. Based on the lithium consumption, PPy based Si/graphite electrode doping is quantified at 1.1 electron/pyrene moiety. Lastly, the PPy binder based electrodes surface are uniform and crack free during lithiation/delithiation, which is revealed through Scanning electron microscope (SEM) imaging.

  2. First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries

    DOE PAGES

    Zhu, Yizhou; He, Xingfeng; Mo, Yifei

    2015-12-11

    All-solid-state Li-ion batteries based on ceramic solid electrolyte materials are a promising next-generation energy storage technology with high energy density and enhanced cycle life. The poor interfacial conductance is one of the key limitations in enabling all-solid-state Li-ion batteries. However, the origin of this poor conductance has not been understood, and there is limited knowledge about the solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. In this paper, we performed first principles calculations to evaluate the thermodynamics of the interfaces between solid electrolyte and electrode materials and to identify the chemical and electrochemical stabilities of these interfaces. Our computation results revealmore » that many solid electrolyte–electrode interfaces have limited chemical and electrochemical stability, and that the formation of interphase layers is thermodynamically favorable at these interfaces. These formed interphase layers with different properties significantly affect the electrochemical performance of all-solid-state Li-ion batteries. The mechanisms of applying interfacial coating layers to stabilize the interface and to reduce interfacial resistance are illustrated by our computation. This study demonstrates a computational scheme to evaluate the chemical and electrochemical stability of heterogeneous solid interfaces. Finally, the enhanced understanding of the interfacial phenomena provides the strategies of interface engineering to improve performances of all-solid-state Li-ion batteries.« less

  3. COPPER COMPLEXATION BY NATURAL ORGANIC MATTER IN CONTAMINATED AND UNCOMTAINATED GROUND WATER

    EPA Science Inventory

    Ground-water samples were collected from an uncontaminated and a contaminated site. Copper complexation was characterized by ion-selective electrode (ISE), fluorescence quenching (FQ), and cathodic stripping voltammetric (CSV) titrations. All of the samples were titrated at their...

  4. Asymmetric ion trap

    DOEpatents

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  5. Proposal of simple and novel method of capacity fading analysis using pseudo-reference electrode in lithium ion cells: Application to solvent-free lithium ion polymer batteries

    NASA Astrophysics Data System (ADS)

    Shono, Kumi; Kobayashi, Takeshi; Tabuchi, Masato; Ohno, Yasutaka; Miyashiro, Hajime; Kobayashi, Yo

    2014-02-01

    We propose a simple procedure for introducing a pseudo-reference electrode (PRE) to lithium ion batteries using isometric lithium metal placed between the cathode and anode, and we successfully obtained the cathode and anode voltage profiles, individual interfacial impedances, and the misalignment of the operation range between the cathode and anode after cycle operation. The proposed procedure is applicable to lithium ion battery systems using a solid electrolyte to prepare two cells with a lithium counter electrode. We determined the capacity decrease of a solvent-free lithium ion polymer battery consisting of a LiNi1/3Mn1/3Co1/3O2 (NMC), a polyether-based solid polymer electrolyte (SPE), and a graphite (Gr) with the proposed PRE over 1000 cycles. The capacity retention of the [Gr|SPE|NMC] cell reached 50% at the 1000th cycle upon the optimization of cell preparation, and we found that the main factor of the capacity decrease was the continuous irreversible loss of active lithium at the graphite anode, not the oxidation of the SPE. Our findings suggest that we should reconsider combining a polyether-based SPE with a conventionally used 4 V class cathode and a graphite anode to develop an innovative, safe, and low-cost battery for the expected large lithium ion battery systems for stationary use.

  6. Understanding the Size-Dependent Sodium Storage Properties of Na2C6O6-Based Organic Electrodes for Sodium-Ion Batteries.

    PubMed

    Wang, Yaqun; Ding, Yu; Pan, Lijia; Shi, Ye; Yue, Zhuanghao; Shi, Yi; Yu, Guihua

    2016-05-11

    Organic electroactive materials represent a new generation of sustainable energy storage technology due to their unique features including environmental benignity, material sustainability, and highly tailorable properties. Here a carbonyl-based organic salt Na2C6O6, sodium rhodizonate (SR) dibasic, is systematically investigated for high-performance sodium-ion batteries. A combination of structural control, electrochemical analysis, and computational simulation show that rational morphological control can lead to significantly improved sodium storage performance. A facile antisolvent method was developed to synthesize microbulk, microrod, and nanorod structured SRs, which exhibit strong size-dependent sodium ion storage properties. The SR nanorod exhibited the best performance to deliver a reversible capacity of ∼190 mA h g(-1) at 0.1 C with over 90% retention after 100 cycles. At a high rate of 10 C, 50% of the capacity can be obtained due to enhanced reaction kinetics, and such high electrochemical activity maintains even at 80 °C. These results demonstrate a generic design route toward high-performance organic-based electrode materials for beyond Li-ion batteries. Using such a biomass-derived organic electrode material enables access to sustainable energy storage devices with low cost, high electrochemical performance and thermal stability.

  7. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository

    PubMed Central

    Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis

    2017-01-01

    We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl− selective electrodes, one Ag2S/Ag-based reference or S2− selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors. PMID:28608820

  8. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository.

    PubMed

    Daoudi, Jordan; Betelu, Stephanie; Tzedakis, Theodore; Bertrand, Johan; Ignatiadis, Ioannis

    2017-06-13

    We present an innovative electrochemical probe for the monitoring of pH, redox potential and conductivity in near-field rocks of deep geological radioactive waste repositories. The probe is composed of a monocrystalline antimony electrode for pH sensing, four AgCl/Ag-based reference or Cl - selective electrodes, one Ag₂S/Ag-based reference or S 2- selective electrode, as well as four platinum electrodes, a gold electrode and a glassy-carbon electrode for redox potential measurements. Galvanostatic electrochemistry impedance spectroscopy using AgCl/Ag-based and platinum electrodes measure conductivity. The use of such a multi-parameter probe provides redundant information, based as it is on the simultaneous behaviour under identical conditions of different electrodes of the same material, as well as on that of electrodes made of different materials. This identifies the changes in physical and chemical parameters in a solution, as well as the redox reactions controlling the measured potential, both in the solution and/or at the electrode/solution interface. Understanding the electrochemical behaviour of selected materials thus is a key point of our research, as provides the basis for constructing the abacuses needed for developing robust and reliable field sensors.

  9. Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies

    NASA Astrophysics Data System (ADS)

    Beattie, Shane D.; Loveridge, M. J.; Lain, Michael J.; Ferrari, Stefania; Polzin, Bryant J.; Bhagat, Rohit; Dashwood, Richard

    2016-01-01

    Commercial Li-ion batteries are typically cycled between 3.0 and 4.2 V. These voltages limits are chosen based on the characteristics of the cathode (e.g. lithium cobalt oxide) and anode (e.g. graphite). When alternative anode/cathode chemistries are studied the same cut-off voltages are often, mistakenly, used. Silicon (Si) based anodes are widely studied as a high capacity alternative to graphite for Lithium-ion batteries. When silicon-based anodes are paired with high capacity cathodes (e.g. Lithium Nickel Cobalt Aluminium Oxide; NCA) the cell typically suffers from rapid capacity fade. The purpose of this communication is to understand how the choice of upper cut-off voltage affects cell performance in Si/NCA cells. A careful study of three-electrode cell data will show that capacity fade in Si/NCA cells is due to an ever-evolving silicon voltage profile that pushes the upper voltage at the cathode to >4.4 V (vs. Li/Li+). This behaviour initially improves cycle efficiency, due to liberation of new lithium, but ultimately reduces cycling efficiency, resulting in rapid capacity fade.

  10. Increasing ion sorption and desorption rates of conductive electrodes

    DOEpatents

    DePaoli, David William; Kiggans, Jr., James O; Tsouris, Costas; Bourcier, William; Campbell, Robert; Mayes, Richard T

    2014-12-30

    An electrolyte system includes a reactor having a pair of electrodes that may sorb ions from an electrolyte. The electrolyte system also includes at least one power supply in electrical communication with the reactor. The at least one power supply may supply a DC signal and an AC signal to the pair of electrodes during sorption of the ions. In addition, the power supply may supply only the AC signal to the pair of electrodes during desorption of the ions.

  11. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...Various macrocycles, their synthesis, characterization and subsequent use in lithium - ion batteries were attempted. Ellagic acid, alizarin and...characterization and subsequent use in lithium - ion batteries have been attempted to. Lithium -based batteries are at the forefront of battery

  12. A review of laser electrode processing for development and manufacturing of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pfleging, Wilhelm

    2018-02-01

    Laser processes for cutting, annealing, structuring, and printing of battery materials have a great potential in order to minimize the fabrication costs and to increase the electrochemical performance and operational lifetime of lithium-ion cells. Hereby, a broad range of applications can be covered such as micro-batteries, mobile applications, electric vehicles, and stand-alone electric energy storage devices. Cost-efficient nanosecond (ns)-laser cutting of electrodes was one of the first laser technologies which were successfully transferred to industrial high-energy battery production. A defined thermal impact can be useful in electrode manufacturing which was demonstrated by laser annealing of thin-film electrodes for adjusting of battery active crystalline phases or by laser-based drying of composite thick-film electrodes for high-energy batteries. Ultrafast or ns-laser direct structuring or printing of electrode materials is a rather new technical approach in order to realize three-dimensional (3D) electrode architectures. Three-dimensional electrode configurations lead to a better electrochemical performance in comparison to conventional 2D one, due to an increased active surface area, reduced mechanical tensions during electrochemical cycling, and an overall reduced cell impedance. Furthermore, it was shown that for thick-film composite electrodes an increase of electrolyte wetting could be achieved by introducing 3D micro-/nano-structures. Laser structuring can turn electrodes into superwicking. This has a positive impact regarding an increased battery lifetime and a reliable battery production. Finally, laser processes can be up-scaled in order to transfer the 3D battery concept to high-energy and high-power lithium-ion cells.

  13. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    NASA Astrophysics Data System (ADS)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  14. Examination of ionic wind and cathode sheath effects in a E-field premixed flame with ion density measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Stewart V., E-mail: svj0001@uah.edu; Xu, Kunning G., E-mail: gabe.xu@uah.edu

    2016-04-15

    The effect of the ionic wind on a premixed methane-air flame under a DC electric field is studied via mapping of the ion density with Langmuir probes. Ion densities were observed to increase near the burner with increasing electrode voltage up to 6 kV. Past this electrode supply voltage, ion densities ceased increasing and began to decline in some locations within the premixed flame. The increased ion density is caused by an increase in ionic wind force and cathode sheath thickness. The plateau in density is due to the cathode sheath fully encompassing the flame front which is the ion source,more » thereby collecting all ions in the flame. The spatial density data support the ionic wind hypothesis and provide further explanation of its limits based on the plasma sheath.« less

  15. Lithium-ion capacitors using carbide-derived carbon as the positive electrode - A comparison of cells with graphite and Li4Ti5O12 as the negative electrode

    NASA Astrophysics Data System (ADS)

    Rauhala, Taina; Leis, Jaan; Kallio, Tanja; Vuorilehto, Kai

    2016-11-01

    The use of carbide-derived carbon (CDC) as the positive electrode material for lithium-ion capacitors (LICs) is investigated. CDC based LIC cells are studied utilizing two different negative electrode materials: graphite and lithium titanate Li4Ti5O12 (LTO). The graphite electrodes are prelithiated before assembling the LICs, and LTO containing cells are studied with and without prelithiation. The rate capability and cycle life stability during 1000 cycles are evaluated by galvanostatic cycling at current densities of 0.4-4 mA cm-2. The CDC shows a specific capacitance of 120 F g-1 in the organic lithium-containing electrolyte, and the LICs demonstrate a good stability over 1000 charge-discharge cycles. The choice of the negative electrode is found to have an effect on the utilization of the CDC positive electrode during cycling and on the specific energy of the device. The graphite/CDC cell delivers a maximum specific discharge energy of 90 Wh kg-1 based on the total mass of active material in the cell. Both the prelithiated and non-prelithiated LTO/CDC cells show a specific energy of around 30 Wh kg-1.

  16. Nanoscale visualization of redox activity at lithium-ion battery cathodes.

    PubMed

    Takahashi, Yasufumi; Kumatani, Akichika; Munakata, Hirokazu; Inomata, Hirotaka; Ito, Komachi; Ino, Kosuke; Shiku, Hitoshi; Unwin, Patrick R; Korchev, Yuri E; Kanamura, Kiyoshi; Matsue, Tomokazu

    2014-11-17

    Intercalation and deintercalation of lithium ions at electrode surfaces are central to the operation of lithium-ion batteries. Yet, on the most important composite cathode surfaces, this is a rather complex process involving spatially heterogeneous reactions that have proved difficult to resolve with existing techniques. Here we report a scanning electrochemical cell microscope based approach to define a mobile electrochemical cell that is used to quantitatively visualize electrochemical phenomena at the battery cathode material LiFePO4, with resolution of ~100 nm. The technique measures electrode topography and different electrochemical properties simultaneously, and the information can be combined with complementary microscopic techniques to reveal new perspectives on structure and activity. These electrodes exhibit highly spatially heterogeneous electrochemistry at the nanoscale, both within secondary particles and at individual primary nanoparticles, which is highly dependent on the local structure and composition.

  17. A novel mechanistic modeling framework for analysis of electrode balancing and degradation modes in commercial lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Schindler, Stefan; Danzer, Michael A.

    2017-03-01

    Aiming at a long-term stable and safe operation of rechargeable lithium-ion cells, elementary design aspects and degradation phenomena have to be considered depending on the specific application. Among the degrees of freedom in cell design, electrode balancing is of particular interest and has a distinct effect on useable capacity and voltage range. Concerning intrinsic degradation modes, understanding the underlying electrochemical processes and tracing the overall degradation history are the most crucial tasks. In this study, a model-based, minimal parameter framework for combined elucidation of electrode balancing and degradation pathways in commercial lithium-ion cells is introduced. The framework rests upon the simulation of full cell voltage profiles from the superposition of equivalent, artificially degraded half-cell profiles and allows to separate aging contributions from loss of available lithium and active materials in both electrodes. A physically meaningful coupling between thermodynamic and kinetic degradation modes based on the correlation between altered impedance features and loss of available lithium as well as loss of active material is proposed and validated by a low temperature degradation profile examined in one of our recent publications. The coupled framework is able to determine the electrode balancing within an error range of < 1% and the projected cell degradation is qualitatively and quantitatively in line with experimental observations.

  18. Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.

    PubMed

    Younis, Adnan; Chu, Dewei; Shah, Abdul Hadi; Du, Haiwei; Li, Sean

    2017-01-18

    As an alternative to transistor-based flash memories, redox reactions mediated resistive switches are considered as the most promising next-generation nonvolatile memories that combine the advantages of a simple metal/solid electrolyte (insulator)/metal structure, high scalability, low power consumption, and fast processing. For cation-based memories, the unavailability of in-built mobile cations in many solid electrolytes/insulators (e.g., Ta 2 O 5 , SiO 2 , etc.) instigates the essential role of absorbed water in films to keep electroneutrality for redox reactions at counter electrodes. Herein, we demonstrate electrochemical characteristics (oxidation/reduction reactions) of active electrodes (Ag and Cu) at the electrode/electrolyte interface and their subsequent ions transportation in Fe 3 O 4 film by means of cyclic voltammetry measurements. By posing positive potentials on Ag/Cu active electrodes, Ag preferentially oxidized to Ag + , while Cu prefers to oxidize into Cu 2+ first, followed by Cu/Cu + oxidation. By sweeping the reverse potential, the oxidized ions can be subsequently reduced at the counter electrode. The results presented here provide a detailed understanding of the resistive switching phenomenon in Fe 3 O 4 -based memory cells. The results were further discussed on the basis of electrochemically assisted cations diffusions in the presence of absorbed surface water molecules in the film.

  19. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in Lithium-ion full cells

    DOE PAGES

    Gilbert, James A.; Shkrob, Ilya A.; Abraham, Daniel P.

    2017-01-05

    Continuous operation of full cells with layered transition metal (TM) oxide positive electrodes (NCM523) leads to dissolution of TM ions and their migration and incorporation into the solid electrolyte interphase (SEI) of the graphite-based negative electrode. These processes correlate with cell capacity fade and accelerate markedly as the upper cutoff voltage (UCV) exceeds 4.30 V. At voltages ≥ 4.4 V there is enhanced fracture of the oxide during cycling that creates new surfaces and causes increased solvent oxidation and TM dissolution. Despite this deterioration, cell capacity fade still mainly results from lithium loss in the negative electrode SEI. Among TMs,more » Mn content in the SEI shows a better correlation with cell capacity loss than Co and Ni contents. As Mn ions become incorporated into the SEI, the kinetics of lithium trapping change from power to linear at the higher UCVs, indicating a large effect of these ions on SEI growth and implicating (electro)catalytic reactions. Lastly, we estimate that each Mn II ion deposited in the SEI causes trapping of ~10 2 additional Li + ions thereby hastening the depletion of cyclable lithium ions. Using these results, we sketch a mechanism for cell capacity fade, emphasizing the conceptual picture over the chemical detail.« less

  20. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries.

    PubMed

    He, Jianjiang; Wang, Ning; Cui, Zili; Du, Huiping; Fu, Lin; Huang, Changshui; Yang, Ze; Shen, Xiangyan; Yi, Yuanping; Tu, Zeyi; Li, Yuliang

    2017-10-27

    Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g -1 for lithium ion batteries and 650 mAh g -1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.

  1. Electrode behavior RE-visited: Monitoring potential windows, capacity loss, and impedance changes in Li 1.03 (Ni 0.5Co 0.2Mn 0.3) 0.97O 2/silicon-graphite full cells

    DOE PAGES

    Klett, Matilda; Gilbert, James A.; Trask, Stephen E.; ...

    2016-03-04

    Here, the capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li 1.03(Ni 0.5Co 0.2Mn 0.3) 0.97O 2–based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials aremore » used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a Li xSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0–4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observations on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells.« less

  2. Quality control tool of electrode coating for lithium-ion batteries based on X-ray radiography

    NASA Astrophysics Data System (ADS)

    Etiemble, A.; Besnard, N.; Adrien, J.; Tran-Van, P.; Gautier, L.; Lestriez, B.; Maire, E.

    2015-12-01

    A simple and efficient method, based on X-ray radiography, is developed to check the quality (homogeneity of the thickness, presence of defects) of NMC-, LFP- and NMC/LFP-based electrode coating for Li-ion batteries at the scale of several cm2 with a resolution of 20 μm. As a first step, the attenuation coefficient of NMC- and LFP-based coating is experimentally determined according to the Beer-Lambert law. Then, the attenuation coefficient of each active material is estimated from these experimental results and X-ray attenuation databases, which allows establishing an attenuation law for any coating composition. Finally, thanks to this relationship, the thickness can be evaluated in each spot of the film and the defects, such as pinholes or broad edges with gradual decrease of the thickness coating, can be detected. The analysis of NMC-, LFP- and NMC/LFP-based electrodes shows that the coating quality decreases as coating thickness increases and as the nanometric vs. micrometric material content increases in the coating composition. This reveals detrimental aspects of nanomaterials with respect to their use in composite electrode manufactured through conventional slot-die or casting process.

  3. In situ continuous monitoring of nitrogen with ion-selective electrodes in a constructed wetland receiving treated wastewater: an operating protocol to obtain reliable data.

    PubMed

    Papias, Sandrine; Masson, Matthieu; Pelletant, Sébastien; Prost-Boucle, Stéphanie; Boutin, Catherine

    2018-03-01

    Constructed wetlands receiving treated wastewater (CWtw) are placed between wastewater treatment plants and receiving water bodies, under the perception that they increase water quality. A better understanding of the CWtw functioning is required to evaluate their real performance. To achieve this, in situ continuous monitoring of nitrate and ammonium concentrations with ion-selective electrodes (ISEs) can provide valuable information. However, this measurement needs precautions to be taken to produce good data quality, especially in areas with high effluent quality requirements. In order to study the functioning of a CWtw instrumented with six ISE probes, we have developed an appropriate methodology for probe management and data processing. It is based on an evaluation of performance in the laboratory and an adapted field protocol for calibration, data treatment and validation. The result is an operating protocol concerning an acceptable cleaning frequency of 2 weeks, a complementary calibration using CWtw water, a drift evaluation and the determination of limits of quantification (1 mgN/L for ammonium and 0.5 mgN/L for nitrate). An example of a 9-month validated dataset confirms that it is fundamental to include the technical limitations of the measuring equipment and set appropriate maintenance and calibration methodologies in order to ensure an accurate interpretation of data.

  4. Characteristics of NH4+ and NO3− fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique

    PubMed Central

    Ruan, Li; Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Fen; Wu, Liyun; Bai, Peixian; Zhang, Chengcai

    2016-01-01

    As a vital beverage crop, tea has been extensively planted in tropical and subtropical regions. Nitrogen (N) levels and forms are closely related to tea quality. Based on different N levels and forms, we studied changes in NO3− and NH4+ fluxes in tea roots utilizing scanning ion-selective electrode technique. Our results showed that under both single and mixed N forms, influx rates of NO3− were much lower than those of NH4+, suggesting a preference for NH4+ in tea. With the increase in N concentration, the influx rate of NO3− increased more than that of NH4+. The NH4+ influx rates in a solution without NO3− were much higher than those in a solution with NO3−, while the NO3− influx rates in a solution without NH4+ were much lower than those in a solution with NH4+. We concluded that (1) tea roots showed a preference for NH4+, (2) presence of NO3− had a negative effect on NH4+ influx, and (3) NH4+ had a positive effect on NO3− influx. Our findings not only may help advance hydroponic tea experiments but also may be used to develop efficient fertilization protocols for soil-grown tea in the future. PMID:27918495

  5. Characteristics of NH4+ and NO3- fluxes in tea (Camellia sinensis) roots measured by scanning ion-selective electrode technique.

    PubMed

    Ruan, Li; Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Fen; Wu, Liyun; Bai, Peixian; Zhang, Chengcai

    2016-12-05

    As a vital beverage crop, tea has been extensively planted in tropical and subtropical regions. Nitrogen (N) levels and forms are closely related to tea quality. Based on different N levels and forms, we studied changes in NO 3 - and NH 4 + fluxes in tea roots utilizing scanning ion-selective electrode technique. Our results showed that under both single and mixed N forms, influx rates of NO 3 - were much lower than those of NH 4 + , suggesting a preference for NH 4 + in tea. With the increase in N concentration, the influx rate of NO 3 - increased more than that of NH 4 + . The NH 4 + influx rates in a solution without NO 3 - were much higher than those in a solution with NO 3 - , while the NO 3 - influx rates in a solution without NH 4 + were much lower than those in a solution with NH 4 + . We concluded that (1) tea roots showed a preference for NH 4 + , (2) presence of NO 3 - had a negative effect on NH 4 + influx, and (3) NH 4 + had a positive effect on NO 3 - influx. Our findings not only may help advance hydroponic tea experiments but also may be used to develop efficient fertilization protocols for soil-grown tea in the future.

  6. Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions

    NASA Astrophysics Data System (ADS)

    Kasnatscheew, Johannes; Evertz, Marco; Streipert, Benjamin; Wagner, Ralf; Nowak, Sascha; Cekic Laskovic, Isidora; Winter, Martin

    2017-08-01

    Increasing the specific energy of a lithium ion battery and maintaining its cycle life is a predominant goal and major challenge for electrochemical energy storage applications. Focusing on the positive electrode as the specific energy bottleneck, cycle life characteristics of promising layered oxide type active materials (LiMO2) has been thoroughly investigated. Comparing the variety of LiMO2 compositions, it could be shown that the "Ni-rich" (Ni ≥ 60% for M in LiMO2) electrodes expectably revealed best performance compromises between specific energy and cycle life at 20 °C, but only LiNi0.6Mn0.2Co0.2O2 (NMC622) could also maintain sufficient cycle performance at elevated temperatures. Focusing on NMC622, it could be demonstrated that the applied electrochemical conditions (charge capacity, delithiation amount) in the formation cycles significantly influence the subsequent cycling performance. Moreover, the insignificant transition metal dissolution, demonstrated by means of total X-ray fluorescence (TXRF) technique, and unchanged lithiation degree in the discharged state, determined by the measurement of the Li+ content by means of the inductively coupled plasma optical emission spectroscopy (ICP-OES) technique, pointed to a delithiation (charge) hindrance capacity fade mechanism. Considering these insights, thoughtful modifications of the electrochemical charge conditions could significantly prolong the cycle life.

  7. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance.

    PubMed

    Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe

    2018-05-09

    The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.

  8. Microstructure of room temperature ionic liquids at stepped graphite electrodes

    DOE PAGES

    Feng, Guang; Li, Song; Zhao, Wei; ...

    2015-07-14

    Molecular dynamics simulations of room temperature ionic liquid (RTIL) [emim][TFSI] at stepped graphite electrodes were performed to investigate the influence of the thickness of the electrode surface step on the microstructure of interfacial RTILs. A strong correlation was observed between the interfacial RTIL structure and the step thickness in electrode surface as well as the ion size. Specifically, when the step thickness is commensurate with ion size, the interfacial layering of cation/anion is more evident; whereas, the layering tends to be less defined when the step thickness is close to the half of ion size. Furthermore, two-dimensional microstructure of ionmore » layers exhibits different patterns and alignments of counter-ion/co-ion lattice at neutral and charged electrodes. As the cation/anion layering could impose considerable effects on ion diffusion, the detailed information of interfacial RTILs at stepped graphite presented here would help to understand the molecular mechanism of RTIL-electrode interfaces in supercapacitors.« less

  9. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  10. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    DOE PAGES

    Zhang, Chao; Xu, Jun; Cao, Lei; ...

    2017-05-05

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion andmore » a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. Finally, the test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.« less

  11. Design of electrochromic window technology with single and multi-color patterns

    NASA Astrophysics Data System (ADS)

    Kim, Sooyeun

    The electrochromic window (ECW) technology has gained a lot of attention due to its current and potential applications for office, vehicle and aircraft windows. Center for Intelligent Materials and System (CIMS) at University of Washington has proposed the new design of an ECW for its high contrast, rapid switching speed and long cyclic lifetime. Three primary components of the ECW are an electrochromic (EC) layer, an ion conducting layer and an ion storage layer. A V2O5-TiO2 (V/Ti=70/30) film, fabricated by a sol-gel electrophoretic deposition, was proposed as an ion storage layer. The film was characterized by X-ray diffraction, a scanning probe microscope and impedance spectroscopy. Its optical and electrochemical properties were investigated. The poly-(3,3-dimethy1-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) film was suggested as an EC layer. Its electropolymerization kinetics and optical and electrochemical properties were reported. The V2O 5-TiO2 film based ECW was successfully fabricated and examined. The ECW exhibited its high electrochromic contrast, rapid switching speed and long-term cyclic durability. Its contrast (Delta%T = Tmax-T min) was 68%T with a minimum transmittance of 1% at 580 nm wavelength. The ECW took five seconds for complete coloration, while it did four seconds for complete bleaching. Its asymmetric switching behavior was explained by modeling the ECW as a simple equivalent circuit. The cyclic durability of the ECW was measured over 150,000 cycles. It revealed the contrast degradation of only 2% at 580 nm wavelength. The ECW dimensions were scaled up to 300 x 300 mm2, demonstrating their high contrast and long-term electrochemical cycle stability. Multi-color pattern electrochromic window technology was considered to evolve toward higher definition devices. Patterning of electrodes was essential to fabricate multi-color pattern ECWs which required the separation of adjacent electrodes. New fabrication procedures to create a pattern electrode were challenged. Two monomers were selectively electropolymerized on the pattern electrode in order to display a set of colors. The successful construction of a two-color pattern ECW was based on the sandwich-type configuration.

  12. Classification of heavy metal ions present in multi-frequency multi-electrode potable water data using evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Karkra, Rashmi; Kumar, Prashant; Bansod, Baban K. S.; Bagchi, Sudeshna; Sharma, Pooja; Krishna, C. Rama

    2017-11-01

    Access to potable water for the common people is one of the most challenging tasks in the present era. Contamination of drinking water has become a serious problem due to various anthropogenic and geogenic events. The paper demonstrates the application of evolutionary algorithms, viz., particle swan optimization and genetic algorithm to 24 water samples containing eight different heavy metal ions (Cd, Cu, Co, Pb, Zn, Ar, Cr and Ni) for the optimal estimation of electrode and frequency to classify the heavy metal ions. The work has been carried out on multi-variate data, viz., single electrode multi-frequency, single frequency multi-electrode and multi-frequency multi-electrode water samples. The electrodes used are platinum, gold, silver nanoparticles and glassy carbon electrodes. Various hazardous metal ions present in the water samples have been optimally classified and validated by the application of Davis Bouldin index. Such studies are useful in the segregation of hazardous heavy metal ions found in water resources, thereby quantifying the degree of water quality.

  13. Electrode-active material for electrochemical batteries and method of preparation

    DOEpatents

    Varma, R.

    1983-11-07

    A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  14. Electrode-active material for electrochemical batteries and method of preparation

    DOEpatents

    Varma, Ravi

    1987-01-01

    A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

  15. Confined Transformation Derived Ultrathin Titanate Nanosheets/ Graphene Films for Excellent Na/K Ion Storage.

    PubMed

    Zeng, Cheng; Xie, Fangxi; Yang, Xianfeng; Jaroniec, Mietek; Zhang, Lei; Qiao, Shizhang

    2018-05-02

    Confined transformation of assembled two-dimensional MXene (titanium carbide) and reduced graphene oxide (rGO) nanosheets was employed to prepare the free-standing films of the integrated ultrathin sodium titanate (NTO)/potassium titanate (KTO) nanosheets sandwiched between graphene layers. The ultrathin Ti-based nanosheets reduce the diffusion distance while rGO layers enhance conductivity. Incorporation of graphene into the titanate films produced efficient binder-free anodes for ion storage. The resulting NTO/rGO electrode for sodium ion batteries exhibited an excellent rate performance and long cycling stability characterized by reversible capacity of 72 mA h g-1 at 5 A g-1 after 10000 cycles. Moreover, flexible KTO/rGO electrode for potassium ion batteries maintained a reversible capacity of 75 mA h g-1 after 700 cycles at 2 A g-1. These results demonstrate the superiority of the unique sandwich-type electrodes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells

    DOEpatents

    Doe, Robert Ellis; Downie, Craig Michael; Fischer, Christopher; Lane, George Hamilton; Morgan, Dane; Nevin, Josh; Ceder, Gerbrand; Persson, Kristin Aslaug; Eaglesham, David

    2015-10-27

    Electrochemical devices which incorporate cathode materials that include layered crystalline compounds for which a structural modification has been achieved which increases the diffusion rate of multi-valent ions into and out of the cathode materials. Examples in which the layer spacing of the layered electrode materials is modified to have a specific spacing range such that the spacing is optimal for diffusion of magnesium ions are presented. An electrochemical cell comprised of a positive intercalation electrode, a negative metal electrode, and a separator impregnated with a nonaqeuous electrolyte solution containing multi-valent ions and arranged between the positive electrode and the negative electrode active material is described.

  17. Mega-Amp Opening Switch with Nested Electrodes/Pulsed Generator of Ion and Ion Cluster Beams

    DTIC Science & Technology

    1987-07-30

    The use of a plasma focus as a mega-amp opening switch has been demonstrated by two modes of operation: (a) Single shot mode; (b) Repetitive Mode...energy level and under the same voltage and filling-pressure conditions but without field distortion elements. Misfirings of the plasma focus machine...are also virtually eliminated by using FDE at the coaxial electrode breech. The tests (based on about 10000 shots and five plasma focus machines

  18. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    PubMed Central

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  19. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-06-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.

  20. The Effect of Microstructure On Transport Properties of Porous Electrodes

    NASA Astrophysics Data System (ADS)

    Peterson, Serena W.

    The goal of this work is to further understand the relationships between porous electrode microstructure and mass transport properties. This understanding allows us to predict and improve cell performance from fundamental principles. The investigated battery systems are the widely used rechargeable Li-ion battery and the non-rechargeable alkaline battery. This work includes three main contributions in the battery field listed below. Direct Measurement of Effective Electronic Transport in Porous Li-ion Electrodes. An accurate assessment of the electronic conductivity of electrodes is necessary for understanding and optimizing battery performance. The bulk electronic conductivity of porous LiCoO2-based cathodes was measured as a function of porosity, pressure, carbon fraction, and the presence of an electrolyte. The measurements were performed by delamination of thin-film electrodes from their aluminum current collectors and by use of a four-line probe. Imaging and Correlating Microstructure To Conductivity. Transport properties of porous electrodes are strongly related to microstructure. An experimental 3D microstructure is needed not only for computation of direct transport properties, but also for a detailed electrode microstructure characterization. This work utilized X-ray tomography and focused ion beam (FIB)/scanning electron microscopy (SEM) to obtain the 3D structures of alkaline battery cathodes. FIB/SEM has the advantage of detecting carbon additives; thus, it was the main tomography tool employed. Additionally, protocols and techniques for acquiring, processing and segmenting series of FIB/SEM images were developed as part of this work. FIB/SEM images were also used to correlate electrodes' microstructure to their respective conductivities for both Li-ion and alkaline batteries. Electrode Microstructure Metrics and the 3D Stochastic Grid Model. A detailed characterization of microstructure was conducted in this work, including characterization of the volume fraction, nearest neighbor probability, domain size distribution, shape factor, and Fourier transform coefficient. These metrics are compared between 2D FIB/SEM, 3D FIB/SEM and X-ray structures. Among those metrics, the first three metrics are used as a basis for SG model parameterization. The 3D stochastic grid (SG) model is based on Monte Carlo techniques, in which a small set of fundamental inter-domain parameters are used to generate structures. This allows us to predict electrode microstructure and its effects on both electronic and ionic properties.

Top