NASA Astrophysics Data System (ADS)
Johan, Mohd Rafie; Ibrahim, Suriani
2012-01-01
In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiPF 6-EC-CNT), which has been produced using solution cast technique, is obtained using artificial neural networks approach. Several results have been recorded from experiments in preparation for the training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium hexafluorophosphate (LiPF 6), ethylene carbonate (EC) and carbon nanotubes (CNT) are mixed at various ratios to obtain the highest ionic conductivity. The effects of chemical composition and temperature on the ionic conductivity of the polymer electrolyte system are investigated. Electrical tests reveal that the ionic conductivity of the polymer electrolyte system varies with different chemical compositions and temperatures. In neural networks training, different chemical compositions and temperatures are used as inputs and the ionic conductivities of the resultant polymer electrolytes are used as outputs. The experimental data is used to check the system's accuracy following the training process. The neural network is found to be successful for the prediction of ionic conductivity of nanocomposite polymer electrolyte system.
Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.
2007-01-01
Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.
Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi
2018-06-13
Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.
Kaur, Dilraj Preet; Yamada, K; Park, Jin-Soo; Sekhon, S S
2009-04-23
Room temperature ionic liquid 2,3-dimethyl-1-hexylimidazolium bis(trifluoromethane sulfonyl)imide (DMHxImTFSI) has been synthesized and used in the preparation of polymer gel electrolytes containing polymethylmethacrylate and propylene carbonate (PC). The onset of ion diffusional motion has been studied by (1)H and (19)F NMR spectroscopy and the results obtained for ionic liquid, liquid electrolytes, and polymer gel electrolytes have been correlated with the ionic conductivity results for these electrolytes in the 100-400 K temperature range. The temperature at which (1)H and (19)F NMR lines show motional narrowing and hence ion diffusional motion starts has been found to be closely related to the temperature at which a large increase in ionic conductivity has been observed for these electrolytes. Polymer gel electrolytes have high ionic conductivity over a wide range of temperatures. Thermogravimetric analysis/differential scanning calorimetry studies show that the ionic liquid (DMHxImTFSI) used in the present study is thermally stable up to 400 degrees C, whereas the addition of PC lowers the thermal stability of polymer gel electrolytes containing the ionic liquid. Different electrolytes have been observed to show high ionic conductivity in different range of temperatures, which can be helpful in the design of polymer gel electrolytes for specific applications.
Gel polymer electrolytes for batteries
Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William
2014-11-18
Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.
Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza
2015-01-01
Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.
Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi
2016-01-13
High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.
Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2006-03-01
The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.
Self-doped microphase separated block copolymer electrolyte
Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying
2002-01-01
A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.
Correlating morphology to dc conductivity in polymerized ionic liquids
NASA Astrophysics Data System (ADS)
Iacob, Ciprian; Matusmoto, Atsushi; Inoue, Tadashi; Runt, James
Polymerized ionic liquids (PILs) combine the attractive mechanical characteristics of polymers and unique physico-chemical properties of low molecular weight ionic liquids in the same material. PILs have shown remarkable advantages when employed in electrochemical devices such as dye-sensitized solar cells and lithium batteries, among others. Understanding their ionic transport mechanism is the key for designing highly conductive PILs. In the current study, the correlation between morphology and charge transport in two homologous series of PILs with systematic variation of the alkyl chain length and anions is investigated using broadband dielectric spectroscopy, rheology, differential scanning calorimetry and X-ray scattering. As the alkyl chain length increases, the backbone-to-backbone separation increases, and dc-conductivity consequently decreases. The cations dominate structural dynamics since they are attached to the polymer chains, while the anions are smaller and more mobile ionic species thereby controlling the ionic conductivity. Further interpretation of decoupling of dc conductivity from the segmental relaxation enabled the correlation between polymer morphology and dc conductivity. Supported by the National Science Foundation, Polymers Program.
An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2007-04-01
This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.
Role of succinonitrile in improving ionic conductivity of sodium-ion conductive polymer electrolyte
NASA Astrophysics Data System (ADS)
Nair, Manjula G.; Mohapatra, Saumya R.
2018-05-01
Sodium ion conducting solid polymer electrolytes were prepared using poly (ethylene oxide) (PEO) as polymer matrix, sodium perchlorate (NaClO4) as salt and succinonitrile (SN) as a plasticizer by solution casting technique. By blending a plastic crystal such as succinonitrile (SN) with PEO-NaClO4 electrolyte system, we aimed at improving the ionic conductivity by weakening the ether oxygen-Na+ interactions. The XRD and FTIR studies revealed structural and micro-structural changes in the blended electrolytes which aids in improving ionic conductivity. Also, DSC measurements showed improved segmental motion in the blended polymer electrolytes due to plasticizing effect of SN. The maximum ionic conductivity observed at room temperature is 1.13×10-5 S cm-1 merely for 7 wt. % of SN, which is one order higher than pure polymer-salt complex. The thermo-gravimetric analysis (TGA) suggests that blending of SN with polymer electrolyte had no detrimental effect on its thermal stability.
NASA Astrophysics Data System (ADS)
Chaurasia, S. K.; Saroj, A. L.; Shalu, Singh, V. K.; Tripathi, A. K.; Gupta, A. K.; Verma, Y. L.; Singh, R. K.
2015-07-01
Preparation and characterization of polymer electrolyte films of PEO+10wt.% LiPF6 + xwt.% BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) containing dopant salt lithium hexafluorophosphate (LiPF6) and ionic liquid (BMIMPF6) having common anion PF6 - are reported. The ionic conductivity of the polymer electrolyte films has been found to increase with increasing concentration of BMIMPF6 in PEO+10 wt.% LiPF6 due to the plasticization effect of ionic liquid. DSC and XRD results show that the crystallinity of polymer electrolyte decreases with BMIMPF6 concentration which, in turn, is responsible for the increase in ionic conductivity. FTIR spectroscopic study shows the complexation of salt and/or ionic liquid cations with the polymer backbone. Ion dynamics behavior of PEO+LiPF6 as well as PEO+LiPF6 + BMIMPF6 polymer electrolytes was studied by frequency dependent conductivity, σ(f) measurements. The values σ(f) at various temperatures have been analyzed in terms of Jonscher power law (JPL) and scaled with respect to frequency which shows universal power law characteristics at all temperatures.
A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air
NASA Astrophysics Data System (ADS)
Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan
2005-05-01
The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; ...
2015-07-10
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less
2015-01-01
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials. PMID:27162971
Sa'adun, Nurul Nadiah; Subramaniam, Ramesh; Kasi, Ramesh
2014-01-01
Gel polymer electrolytes (GPEs) are developed using poly(1-vinylpyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] as the host polymer, lithium bis(trifluoromethane) sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10−6 S cm−1 for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA) while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis (XRD), respectively. PMID:25431781
Polymer Ni-MH battery based on PEO-PVA-KOH polymer electrolyte
NASA Astrophysics Data System (ADS)
Yang, Chun-Chen
An alkaline polymer electrolyte film has been prepared by a solvent-casting method. Poly(vinyl alcohol), PVA is added to improve the ionic conductivity of the electrolyte. The ionic conductivity increases from 10 -7 to 10 -2 S cm -1 at room temperature when the weight percent ratio of poly(ethylene oxide), PEO to PVA is increased from 10:0 to 5:5. The activation energy of the ionic conductivity for the PEO-PVA-KOH polymer electrolyte is 3-8 kJ mol -1. The properties of the electrolyte film are characterized by a wide variety of techniques and it is found that the film exhibits good mechanical stability and high ionic conductivity at room temperature. The application of such electrolyte films to nickel-metal-hydride (Ni-MH) batteries is examined and the electrochemical characteristics of a polymer Ni-MH battery are obtained.
Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing
2017-09-04
Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Subramania, A.; Kalyana Sundaram, N. T.; Sukumar, N.
A micro-porous polymer electrolyte based on PVA was obtained from PVA-PVC based polymer blend film by a novel preferential polymer dissolution technique. The ionic conductivity of micro-porous polymer electrolyte increases with increase in the removal of PVC content. Finally, the effect of variation of lithium salt concentration is studied for micro-porous polymer electrolyte of high ionic conductivity composition. The ionic conductivity of the micro-porous polymer electrolyte is measured in the temperature range of 301-351 K. It is observed that a 2 M LiClO 4 solution of micro-porous polymer electrolyte has high ionic conductivity of 1.5055 × 10 -3 S cm -1 at ambient temperature. Complexation and surface morphology of the micro-porous polymer electrolytes are studied by X-ray diffraction and SEM analysis. TG/DTA analysis informs that the micro-porous polymer electrolyte is thermally stable upto 277.9 °C. Chronoamperommetry and linear sweep voltammetry studies were made to find out lithium transference number and stability of micro-porous polymer electrolyte membrane, respectively. Cyclic voltammetry study was performed for carbon/micro-porous polymer electrolyte/LiMn 2O 4 cell to reveal the compatibility and electrochemical stability between electrode materials.
Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.
Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan
2017-10-19
In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.
Impedance analysis on PVA/PVP: GO blend nanocomposite polymer films
NASA Astrophysics Data System (ADS)
Rao, M. C.; Basha, S. K. Shahenoor; Kumar, B. Ranjit
2018-05-01
Nanocomposite polymer films have been prepared by doping Graphene oxide (GO) in PVA/PVP blend polymers by solution cast technique. AC conductivity studies were performed on to the prepared nanocomposite films and the maximum ionic conductivity is found to be 6.13x10-4 Scm-1 for (0.30:0.3) wt% of nanocomposite polymer film at room temperature. The maximum ionic conductivity of nanocomposite polymer films of PVA/PVP: GO holds great promise in potential applications.
NASA Astrophysics Data System (ADS)
Dyartanti, E. R.; Susanto, H.; Widiasa, I. N.; Purwanto, A.
2017-06-01
The Membranes Polymer Gel Electrolyte (MPGEs) based poly (vinylidene fluoride) (PVDF) was prepared by a phase inversion method using polyvinyl pyrrolidone (PVP) as a pore-forming agent and N, N-dimethyl acetamide (DMAc) as a solvent and water as non solvet. The membranes were then soaked in 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC) / dimethyl carbonate (DMC) / Diethyl carbonate (DEC) (4:2:4 %vol) solution in order to prepare polymer electrolyte membranes. The MPEGs PVDF/PVP/Nanoclay was applied using central composite design (CCD) experimental design to obtain a quantitative relationship between selected membranes prepared parameters namely (PVDF, PVP as pore forming agent and nanoclay filler concentration) and Ionic conductivity MPEGs. The model was used to find the optimum ionic conductivity from polymer electrolyte membranes. The polymer electrolyte membranes show good ionic conductivity on the order of 6.3 - 8.7 x 10-3 S cm-1 at the ambient temperatures. The ionic conductivity tended to increase with PVP and nanoclay concentration and decrease with PVDF composition. The model predicted the maximum ionic conductivity of 8.47 x 10-3 S cm-1 when the PVDF, PVP and nanoclay concentration were set at 8.01 %, 8.04 % and 10.12%, respectively. The first section in your paper.
NASA Astrophysics Data System (ADS)
Karuppasamy, K.; Vani, C. Vijil; Nichelson, A.; Balakumar, S.; Shajan, X. Sahaya
2013-06-01
In the present study, the filler chitosan was converted into nanochitosan by ionotropic gelation method. Plasticized nanocomposite solid polymer electrolytes (PNCSPE) composed of poly ethylene oxide as host polymer, LiBOB (lithium bis(oxalatoborate)) as salt, SN as plasticizer and nanochitosan as filler were prepared by membrane hot-press technique. Succinonitrile and nanochitosan incorporation in PEO-LiBOB matrix enhanced the room temperature ionic conductivity. The highest ionic conductivities were found to be in the order of 10-3.2 S/cm.
Lithium ion conducting ionic electrolytes
Angell, C.A.; Xu, K.; Liu, C.
1996-01-16
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.
Lithium ion conducting ionic electrolytes
Angell, C. Austen; Xu, Kang; Liu, Changle
1996-01-01
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in
We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of freemore » ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.« less
Molecular dynamics simulation of low dielectric constant polymer electrolytes
NASA Astrophysics Data System (ADS)
Wheatle, Bill; Lynd, Nathaniel; Ganesan, Venkat
Recent experimental studies measured the ionic conductivities of a series of poly(glycidyl ether)s with varying neat dielectric constants (ɛ), viscosities (η), and glass transition temperatures (Tg), as hosts for lithium bistrifluoromethanesulfonimide (LiTFSI) salt. In such a context, it was demonstrated that the ionic conductivity of these polymer electrolytes was a function of ɛ rather than Tg or η, suggesting that there may exist regimes in which ionic conductivity is not limited by slow segmental dynamics but rather by low ionic dissociation. Motivated by such results, we used atomistic molecular dynamics to study the structure and transport characteristics of the same set of host polymers. We found that the coordination number of TFSI- about Li+ in the first solvation shell and the total fraction of free ions increased as a function of ɛ, implying the polymer hosts enhanced ion dissociation. In addition, we found that increasing the dielectric constant of the host polymer enhanced self-correlated ion transport, as evidenced by an increase in the diffusion coefficients of each ion species. Overall, we confirmed that limited ion dissociation in low- ɛ polymer electrolyte hosts hampers ionic conductivity. We would like to thank the National Science Foundation Graduate Research Fellowship Program for funding this research endeavor.
Lithium Fast-Ion Conductors: Polymer Based Materials.
1987-05-30
significant ambient temperature ionic conductivities. Some of the -aterials may be of interest in other contexts. A study of lithium tetra...This work was a search for lithium-containing materials with ambient temperature ionic conductivities of 10- 5 (ohm-cm) " or larger. The work began with...1-8). The discovery of solids, e.g., sodium.8-alumina(l), and polymer-salt complexes, e.g., (PEO) 8 LiCIO 4 (3), with ionic conductivities approaching
Physical Properties of Substituted Imidazolium Based Ionic Liquids Gel Electrolytes
NASA Astrophysics Data System (ADS)
Sutto, Thomas E.; De Long, Hugh C.; Trulove, Paul C.
2002-11-01
The physical properties of solid gel electrolytes of either polyvinylidene diflurohexafluoropropylene or a combination of polyvinylidene hexafluoropropylene and polyacrylic acid, and the molten salts 1-ethyl-3-methylimidazolium tetrafluoroborate, 1,2-dimethyl-3-n-propylimidazolium tetrafluoroborate, and the new molten salts 1,2-dimethyl-3-n-butylimidazolium tetrafluoroborate, and 1,2-dimethyl-3-n-butylimidazolium hexafluorophosphate were characterized by temperature dependent ionic conductivity measurements for both the pure molten salt and of the molten salt with 0.5 M Li+ present. Ionic conductivity data indicate that for each of the molten salts, the highest concentration of molten salt allowable in a single component polymer gel was 85%, while gels composed of 90%molten salt were possible when using both polyvinylidene hexafluorophosphate and polyacrylic acid. For polymer gel composites prepared using lithium containing ionic liquids, the optimum polymer gel composite consisted of 85% of the 0.5 M Li+/ionic liquid, 12.75% polyvinylidene hexafluoropropylene, and 2.25% poly (1-carboxyethylene). The highest ionic conductivity observed was for the gel containing 90%1-ethyl-3-methyl-imidazolium tetrafluoroborate, 9.08 mS/cm. For the lithium containing ionic liquid gels, their ionic conductivity ranged from 1.45 to 0.05 mS/cm, which is comparable to the value of 0.91 mS/cm, observed for polymer composite gels containing 0.5 M LiBF4 in propylene carbonate.
NASA Astrophysics Data System (ADS)
Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna
2016-05-01
Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com
2016-05-06
Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governedmore » by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.« less
Aggregate-mediated charge transport in ionomeric electrolytes
NASA Astrophysics Data System (ADS)
Lu, Keran; Maranas, Janna; Milner, Scott
Polymers such PEO can conduct ions, and have been studied as possible replacements for organic liquid electrolytes in rechargeable metal-ion batteries. More generally, fast room-temperature ionic conduction has been reported for a variety of materials, from liquids to crystalline solids. Unfortunately, polymer electrolytes generally have limited conductivity; these polymers are too viscous to have fast ion diffusion like liquids, and too unstructured to promote cooperative transport like crystalline solids. Ionomers are polymer electrolytes in which ionic groups are covalently bound to the polymer backbone, neutralized by free counterions. These materials also conduct ions, and can exhibit strong ionic aggregation. Using coarse-grained molecular dynamics, we explore the forces driving ionic aggregation, and describe the role ion aggregates have in mediating charge transport. The aggregates are string-like such that ions typically have two neighbors. We find ion aggregates self-assemble like worm-like micelles. Excess charge, or free ions, occasionally coordinate with aggregates and are transported along the chain in a Grotthuss-like mechanism. We propose that controlling ionomer aggregate structure through materials design can enhance cooperative ion transport.
Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.
2007-01-01
Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.
Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo
2015-10-21
We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.
Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes
Kusuma, Victor A.; Macala, Megan K.; Liu, Jian; ...
2018-10-02
Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less
Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusuma, Victor A.; Macala, Megan K.; Liu, Jian
Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less
Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praveen, D.; Damle, Ramakrishna
2016-05-23
Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO{sub 4}){sub 2}, NH{sub 4}I etc., have already been tried in the past with some success. Also various nanoparticles like Al{sub 2}O{sub 3}, TiO{sub 2} etc., have been tried in themore » past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.« less
Choi, Bong Gill; Hong, Jinkee; Park, Young Chul; Jung, Doo Hwan; Hong, Won Hi; Hammond, Paula T; Park, Hoseok
2011-06-28
The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters. The functionalized graphenes controlled the state of water by means of nanoscale manipulation of the physical geometry and chemical functionality of ionic channels. Furthermore, the confinement of bound water within the reorganized nanochannels of composite membranes was confirmed by the enhanced proton conductivity at high temperature and the low activation energy for ionic conduction through a Grotthus-type mechanism. The selectively facilitated transport behavior of composite membranes such as high proton conductivity and low methanol crossover was attributed to the confined bound water, resulting in high-performance fuel cells.
Characterization of chitosan-starch blend based biopolymer electrolyte doped with ammonium nitrate
NASA Astrophysics Data System (ADS)
Shaffie, Ahmad Hakimi; Khiar, Azwani Sofia Ahmad
2018-06-01
Polymer electrolyte is an ionic conductor formed by dissolving salt in polymer host. In this work, starch/chitosan blend based polymer electrolyte was prepared with different weight percentage of Ammonium Nitrate (NH4NO3) via solution casting technique. The film was characterized by impedance spectroscopy HIOKI 3531- 01 LCR Hi-Tester to measure its ionic conductivity over a wide range of frequency between 50Hz-5MHz and at ambient temperature. Sample with 35 wt% of NH4NO3 shows the highest conductivity of (6.34 ± 1.52) = 10-7 Scm-1. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to correlate the ionic conductivity results.
Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources
NASA Astrophysics Data System (ADS)
Liao, Kang-Shyang; Sutto, Thomas E.; Andreoli, Enrico; Ajayan, Pulickel; McGrady, Karen A.; Curran, Seamus A.
Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1- n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm -1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li xCoO 2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.
NASA Astrophysics Data System (ADS)
Das, S.; Ghosh, A.
2016-05-01
We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.
TiO2 as conductivity enhancer in PVdF-HFP polymer electrolyte system
NASA Astrophysics Data System (ADS)
Bhattacharya, Shreya; Manojkumar Ubarhande, Radha; Usha Rani, M.; Shanker Babu, Ravi; Arunkumar, R.
2017-11-01
Composite polymer electrolytes were prepared by incorporating inorganic filler TiO2 into PVdF-HFP-PMMA-EC-LiClO4 system. The electrolyte films were prepared by solvent casting technique. The effect of inorganic filler on the conductivity of the blended polymer electrolyte was studied and it is found that there is a considerable increase in ionic conductivity 1.296 × 10-3 S/cm-1 on the addition of TiO2. X-ray diffraction (XRD) study elucidate the increase in amorphous nature of the polymer electrolyte. This tendency of the polymer electrolyte could be the reason behind the increase in ionic conductivity. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components.
NASA Astrophysics Data System (ADS)
Dutta, Rituraj; Kumar, Ashok
2016-10-01
Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.
High elastic modulus polymer electrolytes
Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel
2013-10-22
A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.
Electrical and electrochemical studies on sodium ion-based gel polymer electrolytes
NASA Astrophysics Data System (ADS)
Isa, K. B. Md; Othman, L.; Hambali, D.; Osman, Z.
2017-09-01
Gel polymer electrolytes (GPEs) have captured great attention because of their unique properties such as good mechanical stability, high flexibility and high conductivity approachable to that of the liquid electrolytes. In this work, we have prepared sodium ion conducting gel polymer electrolyte (GPE) films consisting of polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) as a polymer host using the solution casting technique. Sodium trifluoromethane- sulfonate (NaCF3SO3) was used as an ionic salt and the mixture of ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizing solvent. Impedance spectroscopy measurements were carried out to determine the ionic conductivity of the GPE films. The sample containing 20 wt.% of NaCF3SO3 salt exhibits the highest room temperature ionic conductivity of 2.50 × 10-3 S cm-1. The conductivity of the GPE films was found to depend on the salt concentration that added to the films. The ionic and cationic transference numbers of GPE films were estimated by DC polarization and the combination of AC and DC polarization method, respectively. The results had shown that both ionic and cationic transference numbers are consistent with the conductivity studies. The electrochemical stability of the GPE films was tested using linear sweep voltammetry (LSV) and the value of working voltage range appears to be high enough to be used as an electrolyte in sodium batteries. The cyclic voltammetry (CV) studies confirmed the sodium ion conduction in the GPE films.
Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites
NASA Astrophysics Data System (ADS)
Bennett, Matthew; Leo, Donald
2005-05-01
Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.
Murthy, Arun; Manthiram, Arumugam
2011-06-28
Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011
Kim, Sung Yeon; Kim, Suhan; Park, Moon Jeong
2010-10-05
Proton exchange fuel cells (PEFCs) have the potential to provide power for a variety of applications ranging from electronic devices to transportation vehicles. A major challenge towards economically viable PEFCs is finding an electrolyte that is both durable and easily passes protons. In this article, we study novel anhydrous proton-conducting membranes, formed by incorporating ionic liquids into synthetic block co-polymer electrolytes, poly(styrenesulphonate-b-methylbutylene) (S(n)MB(m)), as high-temperature PEFCs. The resulting membranes are transparent, flexible and thermally stable up to 180 °C. The increases in the sulphonation level of S(n)MB(m) co-polymers (proton supplier) and the concentration of the ionic liquid (proton mediator) produce an overall increase in conductivity. Morphology effects were studied by X-ray scattering and electron microscopy. Compared with membranes having discrete ionic domains (including Nafion 117), the nanostructured membranes revealed over an order of magnitude increase in conductivity with the highest conductivity of 0.045 S cm(-1) obtained at 165 °C.
Nguyen, Chien A; Xiong, Shanxin; Ma, Jan; Lu, Xuehong; Lee, Pooi See
2011-08-07
Solid polymer electrolytes with excellent ionic conductivity (above 10(-4) S cm(-1)), which result in high optical modulation for solid electrochromic (EC) devices are presented. The combination of a polar host matrix poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and a solid plasticized of a low molecular weight poly(ethylene oxide) (PEO) (M(w)≤ 20,000) blended polymer electrolyte serves to enhance both the dissolution of lithium salt and the ionic transport. Calorimetric measurement shows a reduced crystallization due to a better intermixing of the polymers with small molecular weight PEO. Vibrational spectroscopy identifies the presence of free ions and ion pairs in the electrolytes with PEO of M(w)≤ 8000. The ionic dissolution is improved using PEO as a plasticizer when compared to liquid propylene carbonate, evidently shown in the transference number analysis. Ionic transport follows the Arrhenius equation with a low activation energy (0.16-0.2 eV), leading to high ionic conductivities. Solid electrochromic devices fabricated with the blended P(VDF-TrFE)/PEO electrolytes and polyaniline show good spectroelectrochemical performance in the visible (300-800 nm) and near-infrared (0.9-2.4 μm) regions with a modulation up to 60% and fast switching speed of below 20 seconds. The successful introduction of the solid polymer electrolytes with its best harnessed qualities helps to expedite the application of various electrochemical devices. This journal is © the Owner Societies 2011
Parameswaran, V; Nallamuthu, N; Devendran, P; Manikandan, A; Nagarajan, E R
2018-06-01
Biodegradable polymer blend electrolyte based on ammonium based salt in variation composition consisting of PVA:PVP were prepared by using solution casting technique. The obtained films have been analyzed by various technical methods like as XRD, FT-IR, TG-DSC, SEM analysis and impedance spectroscopy. The XRD and FT-IR analysis exposed the amorphous nature and structural properties of the complex formation between PVA/PVP/NH4Br. Impedance spectroscopy analysis revealed the ionic conductivity and the dielectric properties of PVA/PVP/NH4Br polymer blend electrolyte films. The maximum ionic conductivity was determined to be 6.14 × 10-5 Scm-1 for the composition of 50%PVA: 50%PVP: 10% NH4Br with low activation energy 0.3457 eV at room temperature. Solid state battery is fabricated using highest ionic conducting polymer blend as electrolyte with the configuration Zn/ZnSO4 · 7H2O (anode) ∥ 50%PVA: 50%PVP: 10% NH4Br ∥ Mn2O3 (cathode). The observed open circuit voltage is 1.2 V and its performance has been studied.
Oxyphosphorus-containing polymers as binders for battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Russell Clayton; Mullin, Scott Allen; Eitouni, Hany Basam
A class of polymeric phosphorous esters can be used as binders for battery cathodes. Metal salts can be added to the polymers to provide ionic conductivity. The polymeric phosphorous esters can be formulated with other polymers either as mixtures or as copolymers to provide additional desirable properties. Examples of such properties include even higher ionic conductivity and improved mechanical properties. Furthermore, cathodes that include the polymeric phosphorous esters can be assembled with a polymeric electrolyte separator and an anode to form a complete battery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody
2016-06-15
Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10{sup −3} S cm{sup −1}. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providingmore » flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g{sup −1} for standard metallic current collectors and (ii) 99.5 mAh g{sup −1} for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.« less
NASA Astrophysics Data System (ADS)
Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal
2016-06-01
Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.
Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Fei; Wang, Yangyang; Hong, Tao
2015-07-17
Polymerized ionic liquids (PolyILs) are promising candidates for energy storage and electrochemical devices applications. Understanding their ionic transport mechanism is the key for designing highly conductive PolyILs. By using broadband dielectric spectroscopy (BDS), rheology, and differential scanning calorimetry (DSC), a systematic study has been carried out to provide a better understanding of the ionic transport mechanism in PolyILs with different pendant groups. The variation of pendant groups results in different dielectric, mechanical, and thermal properties of these PolyILs. The Walden plot analysis shows that the data points for all these PolyILs fall above the ideal Walden line, and the deviationmore » from the ideal line increases upon approaching the glass transition temperature (T g). Moreover, the conductivity for these PolyILs at their Tgs are much higher than the usually reported value 10 15 S/cm for polymer electrolytes, in which the ionic transport is closely coupled to the segmental dynamics. These results indicate a decoupling of ionic conductivity from the segmental relaxation in these materials. The degree of decoupling increases with the increase of the fragility of polymer segmental relaxation. Finally, we relate this observation to a decrease in polymer packing efficiency with an increase in fragility.« less
Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials.
Imaizumi, Satoru; Ohtsuki, Yuto; Yasuda, Tomohiro; Kokubo, Hisashi; Watanabe, Masayoshi
2013-07-10
We present here printable high-performance polymer actuators comprising ionic liquid (IL), soluble polyimide, and ubiquitous carbon materials. Polymer electrolytes with high ionic conductivity and reliable mechanical strength are required for high-performance polymer actuators. The developed polymer electrolytes comprised a soluble sulfonated polyimide (SPI) and IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mim][NTf2]), and they exhibited acceptable ionic conductivity up to 1 × 10(-3) S cm(-1) and favorable mechanical properties (elastic modulus >1 × 10(7) Pa). Polymer actuators based on SPI/[C2mim][NTf2] electrolytes were prepared using inexpensive activated carbon (AC) together with highly electron-conducting carbon such as acetylene black (AB), vapor grown carbon fiber (VGCF), and Ketjen black (KB). The resulting polymer actuators have a trilaminar electric double-layer capacitor structure, consisting of a polymer electrolyte layer sandwiched between carbon electrode layers. Displacement, response speed, and durability of the actuators depended on the combination of carbons. Especially the actuators with mixed AC/KB carbon electrodes exhibited relatively large displacement and high-speed response, and they kept 80% of the initial displacement even after more than 5000 cycles. The generated force of the actuators correlated with the elastic modulus of SPI/[C2mim][NTf2] electrolytes. The displacement of the actuators was proportional to the accumulated electric charge in the electrodes, regardless of carbon materials, and agreed well with the previously proposed displacement model.
NASA Astrophysics Data System (ADS)
Pal, P.; Ghosh, A.
2016-07-01
In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, P.; Ghosh, A., E-mail: sspag@iacs.res.in
2016-07-28
In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamicsmore » of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.« less
Interplay of Transport and Morphology in Nanostructured Ion-Containing Polymers
NASA Astrophysics Data System (ADS)
Park, Moon Jeong
The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community to develop innovative ways to improve energy storage and find more efficient methods of transporting the energy. Polymers containing charged species that show high ionic conductivity and good mechanical integrity are the essential components of these energy storage and transport systems. In this talk, first, I will present a fundamental understanding of the thermodynamics and transport in ion-containing block copolymers with a focus on the structure-property relationships. Tailoring the intermolecular interactions between the polymer matrix and the embedded charges appeared to be vital for controlling the transport properties. Particularly, the achievement of well-defined self-assembled morphologies with three-dimensional symmetries has proven to facilitate fast ion transport by constructing less tortuous ion-conducting pathways. Examples of attained morphologies include disorder, lamellae, gyroid, Fddd, hexagonal cylinder, body-centered cubic, face-centered cubic, and A15 phases. Second, various strategies for accessing high cation transference number as well as improved ionic conductivity from ionic-containing polymers are enclosed; (1) the inclusion of terminal ionic units as a new means to control the nanoscale morphologies and the transport efficiency of block copolymer electrolytes and (2) the addition of zwitterions that offered a polar medium close to water, and accordingly increased the charge density and ionic conductivity. The obtained knowledge on polymer electrolytes could be used in a wide range of emerging nanotechnologies such as fuel cells, lithium batteries, and electro-active actuators.
NASA Astrophysics Data System (ADS)
Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank
2011-01-01
The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situscanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situSTM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situmicroscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situscanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situSTM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situmicroscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM). Electronic supplementary information (ESI) available: In situ image of PEDOT in [HMIm]FAP and in situ studies of PEDOT grown in [EMIm]TFSA and redox behavior of PEDOT. See DOI: 10.1039/c0nr00579g
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.
2002-01-01
Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.
Physics of transduction in ionic liquid-swollen Nafion membranes
NASA Astrophysics Data System (ADS)
Bennett, Matthew; Leo, Donald
2006-03-01
Ionic polymer transducers are a class of electroactive polymers that are able to generate large strains (1-5%) in response to low voltage inputs (1-5 V). Additionally, these materials generate electrical charge in response to mechanical strain and are therefore able to operate as soft, distributed sensors. Traditionally, ionic polymer transducers have been limited in their application by their hydration dependence. This work seeks to overcome this limitation by replacing the water with an ionic liquid. Ionic liquids are molten salts that exhibit very high thermal and electrochemical stability while also possessing high ionic conductivity. Results have shown that an ionic liquid-swollen ionic polymer transducer can operate for more than 250,000 cycles in air as compared to about 2,000 cycles for a water-swollen transducer. The current work examines the mechanisms of transduction in ionic liquid-swollen transducers based on Nafion polymer membranes. Specifically, the morphology and relevant ion associations within these membranes are investigated by the use of small-angle X-ray scattering (SAXS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). These results reveal that the ionic liquid interacts with the membrane in much the same way that water does, and that the counterions of the Nafion polymer are the primary charge carriers. The results of these analyses are compared to the macroscopic transduction behavior in order to develop a model of the charge transport mechanism responsible for electromechanical coupling in these membranes.
NASA Astrophysics Data System (ADS)
Ji, Jianying
Solid polymer electrolytes (SPEs) provide advantages over liquid electrolytes in terms of safety, reliability, less temperature sensitive, and simplicity of design. With the use of a SPE in lithium batteries, high specific energy and specific power, safe operation, flexibility in packaging, and low cost of fabrication can be expected. However, after 30 years, SPEs have rarely found commercial success due to the low ionic conductivity and/or insufficient mechanical properties, both of which are related to the movement of the polymer chains. Many physical/chemical methods have been exploited to simultaneously create enhancement in ionic conductivity and mechanical properties, and some suggested ways have shown promise. However, the complex strategies have always introduced other challenge issues and incurred extra costs for manufacturing. In such a context, the development of dry solid state electrolytes is the central challenge to be faced worldwide. This thesis deals with the approaches to improving ionic conductivity and mechanical properties simultaneously. The method is to apply two kinds of controllable organic fillers: copolymer and protein. Our work revealed that the commercial available copolymer, poly (ethylene oxide)- block-polyethylene (PEO-b-PE), possesses a capability for enhancing the multiple performances of poly(ethylene oxide)(PEO)-based polymer electrolyte. And the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs were examined. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties, while increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity. A rubber-like, soy protein-based SPE (s-SPE)was obtained by employing soy protein isolate (SPI), a soy product usually used as rigid fillers for enhancing mechanical properties of polymers, blended with poly(ethylene oxide)(PEO). The results indicated that the s-SPE with 55 wt% of SPI possesses a fully amorphous uniform structure having low Tg, in contrast with crystalline PEO-based SPE having discernable Tg and Tm. The conductivity and elasticity are both significantly improved with SPI involvement. Remarkably, this film has been elongated up to 100% without loss of ionic conductivity and 700% without mechanical damage.
Kim, Jaehwan; Jeon, Jin-Han; Kim, Hyun-Jun; Lim, Hyuneui; Oh, Il-Kwon
2014-03-25
Ionic polymer actuators driven by electrical stimuli have been widely investigated for use in practical applications such as bioinspired robots, sensors, and biomedical devices. However, conventional ionic polymer-metal composite actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of the leakage of the inner electrolyte and hydrated cations through cracks in the metallic electrodes. Here, we developed a highly durable and water-floatable ionic polymer artificial muscle by employing hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes (HLrGOP). The highly conductive, flexible, and cost-effective HLrGOP electrodes have asymmetrically smooth hydrophobic outer and rough inner surfaces, resulting in liquid-impermeable and water-floatable functionalities and strong bonding between an ionic polymer and the electrodes. More interestingly, the HLrGOP electrode, which has a unique functionality to prevent the leakage of the vaporized or liquid electrolyte and mobile ions during electrical stimuli, greatly contributes to an exceptionally durable ionic polymer-graphene composite actuator that is a prerequisite for practical applications in active biomedical devices, biomimetic robots, touch-feedback haptic systems, and flexible soft electronics.
Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel
2014-04-22
A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong
2016-02-01
The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.
Kwon, Taehoon; Cho, Hyeongrae; Lee, Jang-Woo; Henkensmeier, Dirk; Kang, Youngjong; Koo, Chong Min
2017-08-30
Ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA) are assembled into bending ionic polymer actuators. CuPCSA is an organic filler with very high sulfonation degree (IEC = 4.5 mmol H + /g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane, probably due to its good dispersibility in SPAES-containing solutions. SPAES/CuPCSA actuators exhibit larger ion conductivity (102 mS cm -1 ), tensile modulus (208 MPa), strength (101 MPa), and strain (1.21%), exceptionally faster response to electrical stimuli, and larger mechanical power density (3028 W m -3 ) than ever reported for ion-conducting polymer actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next-generation transducers with high power density, which are currently developed, e.g., for underwater propulsion and endoscopic surgery.
NASA Astrophysics Data System (ADS)
Pitawala, H. M. J. C.; Dissanayake, M. A. K. L.; Seneviratne, V. A.
2006-06-01
Poly (ethylene oxide)-(PEO)-based composite polymer electrolytes are of great interest for solid-state-electrochemical devices. This paper presents the results of a preliminary study on electrical conductivity and thermal behavior (DSC) of composite polymer electrolytes (CPEs) containing PEO: LiCF3SO3 complexed with plasticizer (EC) and incorporating nano-sized particles of the ceramic filler Al2O3. Ionic conductivity enhancement in these electrolytes has been obtained by optimizing the combined effect of the plasticizer and the ceramic filler. Nano-composite, plasticized polymer electrolyte films (400-600μm) were prepared by common solvent casting method. It was revealed that the presence of the Al2O3 filler in PEO: LiTf polymer electrolyte significantly enhanced the ionic conductivity in the temperature range of interest, giving the maximum conductivity for (PEO)9LiTf+15 wt.% Al2O3 CPE [σRT (max)=2×10-5 S cm-1]. It was also observed that the addition of plasticizer (EC) to this electrolyte up to a concentration of 50 wt. % EC, showed a further conductivity enhancement [σRT (max) = 1.5×10-4 S cm-1]. It is suggested that the conductivity is enhanced mainly by two mechanisms. The plasticizer (EC) would directly contribute by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolytes. The ceramic filler (Al2O3) would contribute to conductivity enhancement by creating additional sites to migrating ionic species through transient bonding with O/OH groups in the filler surface. The decrease of Tg values of plasticized CPE systems seen in the DSC thermograms points towards the improved segmental flexibility of polymer chains, increasing the mobility of conducting ions.
The Electrolyte Factor in O2 Reduction Electrocatalysis
1993-04-23
molecule thick and does not seem to interfere with 02 and water/proton transport at this interface. This layer resembles a self-ordered Langmuir - Blodgett ... liquid electrolyte from within the polymer is in contact with the catalyst and completes the ionic circuit between the ionic conducting polymer and the...the free energy of adsorption of H2 0 and ionic components because of the lower effective dielectric constant in the electrolyte phase immediately
Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices
NASA Astrophysics Data System (ADS)
Oh, Hyukkeun
Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid group and a poly(ether ether ketone) backbone showed the highest proton conductivity and proton diffusion coefficient among the three ionomers, demonstrating the effect of the perfluorinated side chains. The proton conductivity of the novel ionomer was comparable to that of Nafion over a wide humidity range and temperature. A lithium perfluorosulfonate ionomer based on aromatic poly(arylene ether)s with pendant lithium perfluoroethyl sulfonates was prepared by ion exchange of the perlfuorosulfonic acid ionomer, and subsequently incoroporated into a lithium-ion battery cell as a single-ion conducting electrolyte. The microporous polymer film saturated with organic carbonates exhibited a nearly unity Li + transfer number, high ionic conductivity (e.g. > 10-3 S m-1 at room temperature) over a wide range of temperatures, high electrochemical stability, and excellent mechanical properties. Excellent cyclability with almost identical charge and discharge capacities have been demonstrated at ambient temperature in the batteries assembled from the prepared single-ion conductors. The mechanical stability of the polymer film was attributed to the rigid polymer backbone which was largely unaffected by the presence of plasticizing organic solvents, while the porous channels with high concentration of the perfluorinated side chains resulted in high ionic conductivity. The expected high charge-rate performance was not achieved, however, due to the high interfacial impedance present between the polymer electrolyte and the electrodes. Several procedural modifications were employed in order to decrease the interfacial impedance of the battery cell. The poly(arylene ether) based ionomer was saturated with an ionic liquid mixture, in order to explore the possibility of its application as a safe, inflammable electrolyte. A low-viscosity ionic liquid with high ionic conductivity, 1-butyl-3-methylimidazolium thiocyanate which has never been successfully utilized as an electrolyte for lithium-ion batteries was incorporated into a battery cell as a solvent mixture with propylene carbonate and lithium bis(trifluoromethane)sulfonimide impregnated in a free-standing hybrid electrolyte film. Outstanding ionic conductivity was achieved and the lithium half cell comprising a LTO cathode and a lithium metal anode separated by the solid polymer electrolyte showed good cyclability at room temperature and even at 0°C. The presence of a sufficient amount of propylene carbonate, which resulted in flammability of the polymer electrolyte, was discovered to be critical in the electrochemical stability of the polymer electrolyte.
Soft but Powerful Artificial Muscles Based on 3D Graphene-CNT-Ni Heteronanostructures.
Kim, Jaehwan; Bae, Seok-Hu; Kotal, Moumita; Stalbaum, Tyler; Kim, Kwang J; Oh, Il-Kwon
2017-08-01
Bioinspired soft ionic actuators, which exhibit large strain and high durability under low input voltages, are regarded as prospective candidates for future soft electronics. However, due to the intrinsic drawback of weak blocking force, the feasible applications of soft ionic actuators are limited until now. An electroactive artificial muscle electro-chemomechanically reinforced with 3D graphene-carbon nanotube-nickel heteronanostructures (G-CNT-Ni) to improve blocking force and bending deformation of the ionic actuators is demonstrated. The G-CNT-Ni heteronanostructure, which provides an electrically conductive 3D network and sufficient contact area with mobile ions in the polymer electrolyte, is embedded as a nanofiller in both ionic polymer and conductive electrodes of the ionic actuators. An ionic exchangeable composite membrane consisting of Nafion, G-CNT-Ni and ionic liquid (IL) shows improved tensile modulus and strength of up to 166% and 98%, respectively, and increased ionic conductivity of 0.254 S m -1 . The ionic actuator exhibits enhanced actuation performances including three times larger bending deformation, 2.37 times higher blocking force, and 4 h durability. The electroactive artificial muscle electro-chemomechanically reinforced with 3D G-CNT-Ni heteronanostructures offers improvements over current soft ionic actuator technologies and can advance the practical engineering applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of Branching on Rod-coil Polyimides as Membrane Materials for Lithium Polymer Batteries
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Cubon, Valerie A.; Scheiman, Daniel A.; Bennett, William R.
2003-01-01
This paper describes a series of rod-coil block co-polymers that produce easy to fabricate, dimensionally stable films with good ionic conductivity down to room temperature for use as electrolytes for lithium polymer batteries. The polymers consist of short, rigid rod polyimide segments, alternating with flexible, polyalkylene oxide coil segments. The highly incompatible rods and coils should phase separate, especially in the presence of lithium ions. The coil phase would allow for conduction of lithium ions, while the rigid rod phase would provide a high degree of dimensional stability. An optimization study was carried out to study the effect of four variables (degree of branching, formulated molecular weight, polymerization solvent and lithium salt concentration) on ionic conductivity, glass transition temperature and dimensional stability in this system.
Electrical conductivity studies on (1-x)[PVA/PVP]: x[MgCl2{6H2O}] blend polymer electrolytes
NASA Astrophysics Data System (ADS)
Basha, S. K. Shahenoor; Reddy, K. Veera Bhadra; Rao, M. C.
2018-05-01
Blend polymer electrolytes of polyvinyl alcohol and polyvinyl pyrrolidone were prepared with different molecular wt% ratios of MgCl2.6H2O by solution cast technique. Electrical conductivity measurements for the prepared films were performed using Keithley electrometer model 6514 and the maximum ionic conductivity was found to be 1.01x10-3 S/cm at 373 K for the prepared composition of 35PVA/35PVP:30MgCl2.6H2O. The maximum ionic conductivity of polymer electrolyte has been used in fabrication of electrochemical cell with the configuration of Mg+/(PVA/PVP+MgCl2.6H2O)/(I2+C+electrolyte).
NASA Astrophysics Data System (ADS)
Aihara, Yuichi; Sonai, Atsuo
Three novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 were synthesized and their use in high temperature fuel cells characterized. The precursor polymers, PMD-Im, POD-Im and PDMDP-Im, were synthesized by cyclization polymerization of diisocynanates. After doping with H 3PO 4, the ionic conductivity and the thermal degradation were studied by using the AC impedance method and thermal gravimetric analysis, respectively. These membranes showed high ionic conductivity of the order of 10 -2 S cm -1 at 423 K with good thermal stability. Their application to fuel cells was demonstrated and polarization curves were obtained at 423 K were obtained without humidification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Beatrice Wong Chui; Hanifah, Sharina Abu; Ahmad, Azizan
2015-09-25
Polymer electrolytes based on crosslinked poly(glycidyl methacrylate) as polymer host and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) as incorporated salt were prepared by in-situ photopolymerization technique. The complexes with different mass ratio of glycidyl methacrylate (GMA) monomer to BmimTFSI were investigated. The ionic conductivity of the polymer electrolyte was increased and reach the highest value of 7.50 × 10{sup −4} S cm{sup −1} at the ratio of 3:7 (GMA: BmimTFSI). The interaction between the polymer host and ionic liquid was proved by Attenuated Total Reflectance-Fourier Transformation Infra-Red Spectroscopy (ATR-FTIR). Meanwhile, the X-ray diffraction analysis shows the amorphousity of the polymer electrolyte film increasemore » with the ionic liquid ratio.« less
Solubilization of octane in cationic surfactant-anionic polymer complexes: Effect of ionic strength.
Zhang, Hui; Deng, Lingli; Sun, Ping; Que, Fei; Weiss, Jochen
2016-01-01
Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effect of ionic strength on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results indicated that the CTAB binding capacity of carboxymethyl cellulose increased with increasing NaCl concentrations up to 100 mM, and the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to have a strong dependence on ionic strength. The increasing ionic strength caused the solubilization in CTAB micelles to be less endothermic or even exothermic, but increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be driven by enthalpy. It is indicated that increasing ionic strength gave rise to a larger Gibbs energy decrease but a smaller unfavorable entropy increase for octane solubilization in cationic surfactant micelles. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chong, Mee Yoke; Numan, Arshid; Liew, Chiam-Wen; Ng, H. M.; Ramesh, K.; Ramesh, S.
2018-06-01
Solid polymer electrolyte (SPE) based on fumed silica nanoparticles as nanofillers, hydroxylethyl cellulose (HEC) as host polymer, magnesium trifluoromethanesulfonate salt and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid is prepared by solution casting technique. The ionic conductivity, interactions of adsorbed ions on the host polymer, structural crystallinity and thermal stability are evaluated by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Ionic conductivity studies at room temperature reveals that the SPE with 2 wt. % of fumed silica nanoparticles gives the highest conductivity compared to its counterpart. The XRD and FTIR studies confirm the dissolution of salt, ionic liquid and successful incorporation of fumed silica nanoparticles with host polymer. In order to examine the performance of SPEs, electric double-layer capacitor (EDLC) are fabricated by using activated carbon electrodes. EDLC studies demonstrate that SPE incorporated with 2 wt. % fumed silica nanoparticles gives high specific capacitance (25.0 F/g) at a scan rate of 5 mV/s compared to SPE without fumed silica. Additionally, it is able to withstand 71.3% of capacitance from its initial capacitance value over 1600 cycles at a current density of 0.4 A/g.
Zheng, Jin; Hu, Yan-Yan
2018-01-31
Composite electrolytes are widely studied for their potential in realizing improved ionic conductivity and electrochemical stability. Understanding the complex mechanisms of ion transport within composites is critical for effectively designing high-performance solid electrolytes. This study examines the compositional dependence of the three determining factors for ionic conductivity, including ion mobility, ion transport pathways, and active ion concentration. The results show that with increase in the fraction of ceramic Li 7 La 3 Zr 2 O 12 (LLZO) phase in the LLZO-poly(ethylene oxide) composites, ion mobility decreases, ion transport pathways transit from polymer to ceramic routes, and the active ion concentration increases. These changes in ion mobility, transport pathways, and concentration collectively explain the observed trend of ionic conductivity in composite electrolytes. Liquid additives alter ion transport pathways and increase ion mobility, thus enhancing ionic conductivity significantly. It is also found that a higher content of LLZO leads to improved electrochemical stability of composite electrolytes. This study provides insight into the recurring observations of compositional dependence of ionic conductivity in current composite electrolytes and pinpoints the intrinsic limitations of composite electrolytes in achieving fast ion conduction.
Rapid Polymer Transport in a Single Nanometer-Scale Pore
NASA Astrophysics Data System (ADS)
Kasianowicz, J. J.
1998-03-01
Protein ion channels are nanometer-scale pores that control the transport of ions and polymers across cell membranes. We compared the ability of charged and nonelectrolyte linear polymers to partition into a single channel reconstituted into a planar lipid bilayer membrane. The entry of each polymer (e.g. monodisperse length single-stranded homopolymeric RNA1 or poly(ethylene glycol)2,3) into the pore caused characteristic transient decreases in the channel's ionic conductance. The ionic current blockades yield detailed information about the physical properties of the polymers and the pore. The biological and technological significance of the results will be discussed.
Tibbits, Andrew C; Yan, Yushan S; Kloxin, Christopher J
2017-07-01
Ene-functionalized ionic liquids with a range of different cationic groups and counteranions react stoichiometrically within a tetrathiol-divinyl ether formulation within 20 minutes to form thiol-ene polymers with measurable ionic conductivities via a photoinitiated polymerization and crosslinking reaction. Dynamic mechanical analysis indicates that these networks are more spatially heterogeneous and possess higher glass transition temperatures (T g ) compared with thiol-ene formulations without charge. While tuning the molar content of ionic liquid monomer is one method for adjusting the crosslink and charge densities of the thiol-ene polymeric ionic liquid networks, the presence of cation-anion interactions also plays a critical role in dictating the thermomechanical and conductive properties. Particularly, while cationic structure effects are not significant on the polymer properties, the use of a weakly coordinating hydrophobic anion (bistriflimide) instead of bromide-based networks results in an apparent decrease in hydrated ion conductivity (7.4 to 1.5 mS cm -1 ) and T g (-9.6 to -17.8 °C). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.
Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo
2017-06-01
Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2009-09-01
solvents. Similar behavior was observed for Nafion -117 (also a polymer with ionic SO3H clusters) by other researchers (14). Results shown in this...pattern was only valid for ionic S-SIBS membranes exchanged with cations; neither acid form of SIBS-97-H nor Nafion -117 fell on this line. In order...10 vi INTENTIONALLY LEFT BLANK. 1 1. Introduction Research in ionic polymers has been gaining popularity in the scientific community
Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank
2011-01-01
The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situ STM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situ microscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan
The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants
NASA Astrophysics Data System (ADS)
Chai, M. N.; Isa, M. I. N.
2016-06-01
The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.
High temperature lithium cells with solid polymer electrolytes
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2017-03-07
Electrochemical cells that use electrolytes made from new polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers. Such electrochemical cells can operate safely at higher temperatures than have been possible before, especially in lithium cells. The ionic conductivity of the electrolytes increases with increasing temperature.
Triboelectric energy harvesting with surface-charge-fixed polymer based on ionic liquid
Sano, Chikako; Mitsuya, Hiroyuki; Ono, Shimpei; Miwa, Kazumoto; Toshiyoshi, Hiroshi; Fujita, Hiroyuki
2018-01-01
Abstract A novel triboelectric energy harvester has been developed using an ionic liquid polymer with cations fixed at the surface. In this report, the fabrication of the device and the characterization of its energy harvesting performance are detailed. An electrical double layer was induced in the ionic liquid polymer precursor to attract the cations to the surface where they are immobilized using a UV-based crosslinking reaction. The finalized polymer is capable of generating an electrical current when contacted by a metal electrode. Using this property, energy harvesting experiments were conducted by cyclically contacting a gold-surface electrode with the charge fixed surface of the polymer. Control experiments verified the effect of immobilizing the cations at the surface. By synthesizing a polymer with the optimal composition ratio of ionic liquid to macromonomer, an output of 77 nW/cm2 was obtained with a load resistance of 1 MΩ at 1 Hz. This tuneable power supply with a μA level current output may contribute to Internet of Things networks requiring numerous sensor nodes at remote places in the environment. PMID:29707070
Synthesis and characterizations of novel polymer electrolytes
NASA Astrophysics Data System (ADS)
Chanthad, Chalathorn
Polymer electrolytes are an important component of many electrochemical devices. The ability to control the structures, properties, and functions of polymer electrolytes remains a key subject for the development of next generation functional polymers. Taking advantage of synthetic strategies is a promising approach to achieve the desired chemical structures, morphologies, thermal, mechanical, and electrochemical properties. Therefore, the major goal of this thesis is to develop synthetic methods for of novel proton exchange membranes and ion conductive membranes. In Chapter 2, new classes of fluorinated polymer- polysilsesquioxane nanocomposites have been designed and synthesized. The synthetic method employed includes radical polymerization using the functional benzoyl peroxide initiator for the telechelic fluorinated polymers with perfluorosulfonic acids in the side chains and a subsequent in-situ sol-gel condensation of the prepared triethoxylsilane-terminated fluorinated polymers with alkoxide precursors. The properties of the composite membranes have been studied as a function of the content and structure of the fillers. The proton conductivity of the prepared membranes increases steadily with the addition of small amounts of the polysilsesquioxane fillers. In particular, the sulfopropylated polysilsesquioxane based nanocomposites display proton conductivities greater than Nafion. This is attributed to the presence of pendant sulfonic acids in the fillers, which increases ion-exchange capacity and offers continuous proton transport channels between the fillers and the polymer matrix. The methanol permeability of the prepared membranes has also been examined. Lower methanol permeability and higher electrochemical selectivity than those of Nafion have been demonstrated in the polysilsesquioxane based nanocomposites. In Chapter 3, the synthesis of a new class of ionic liquid-containing triblock copolymers with fluoropolymer mid-block and imidazolium methacrylate end-blocks is described for the first time. The synthetic strategy involves the preparation of the telechelic fluoropolymers using a functional benzoyl peroxide initiator as the macro-chain transfer agent for subsequent RAFT polymerization of the imidazolium methacrylate monomer. As revealed in DSC, SAXS and dielectric relaxation spectroscopy (DRS) measurements, there was no microphase separation in the triblock copolymers, likely due to solubility of ionic liquid moieties in the fluoropolymer matrix. The anionic counterion has direct impact on the thermal properties, ionic conductivity and segmental dynamics of the polymers. The temperature dependence of the ionic conductivity is well described by the Vogel-Tamman-Fulcher model, suggesting that ion motion is closely coupled to segmental motion. In Chapter 4 and 5, new solid electrolytes for lithium cations have been synthesized by catalyzed hydrosilylation reaction involving hydrogen atoms of polysiloxane and polyhedral oligomeric silsesquioxane (POSS) and double bonds of vinyl tris17-bromo-3,6,9,12,15- pentaoxaheptadecan-1-ol silane. The obtained structures are based on branched or dendritic with ionic liquid-ethylene oxide oligomer. High room temperature ionic conductivities have been obtained in the range of 10-4-10-5 can be regarded as solid electrolytes. This is attributed to the high concentration of ions from ionic liquid moieties in the tripodand molecule, high segmental mobility, and high ion dissociation from ethylene oxide spacers. The influence of anion structures and lithium salts and concentration has been investigated.
An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor
NASA Astrophysics Data System (ADS)
Yijing, Yin
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
Costa, Luciano T; Ribeiro, Mauro C C
2007-10-28
Dynamical properties of polymer electrolytes based on poly(ethylene oxide) (PEO) and ionic liquids of 1-alkyl-3-methylimidazolium cations were calculated by molecular dynamics simulations with previously proposed models [L. T. Costa and M. C. Ribeiro, J. Chem. Phys. 124, 184902 (2006)]. The effect of changing the ionic liquid concentration, temperature, and the 1-alkyl-chain lengths, [1,3-dimethylimidazolium]PF(6) and [1-butyl-3-methylimidazolium]PF(6) ([dmim]PF(6) and [bmim]PF(6)), was investigated. Cation diffusion coefficient is higher than those of anion and oxygen atoms of PEO chains. Ionic mobility in PEO[bmim]PF(6) is higher than in PEO[dmim]PF(6), so that the ionic conductivity kappa of the former is approximately ten times larger than the latter. The ratio between kappa and its estimate from the Nernst-Einstein equation kappa/kappa(NE), which is inversely proportional to the strength of ion pairs, is higher in ionic liquid polymer electrolytes than in polymer electrolytes based on inorganic salts with Li(+) cations. Calculated time correlation functions corroborate previous evidence from the analysis of equilibrium structure that the ion pairs in ionic liquid polymer electrolytes are relatively weak. Structural relaxation at distinct spatial scales is revealed by the calculation of the intermediate scattering function at different wavevectors. These data are reproduced with stretched exponential functions, so that temperature and wavevector dependences of best fit parameters can be compared with corresponding results for polymer electrolytes containing simpler ions.
NASA Astrophysics Data System (ADS)
Pesko, Danielle; Jung, Yuki; Coates, Geoff; Balsara, Nitash
2015-03-01
Gaining a fundamental understanding of the relationship between molecular structure and ionic conductivity of polymer electrolytes is an essential step toward designing next generation materials for battery applications. In this study, we use a systematic set of newly-designed polyesters with varying side-chain lengths and oxygen functional groups to elucidate the effects of structural modifications on the conductive properties of the corresponding electrolytes. Mixtures of polyesters and lithium bis(trifluromethanesulfonyl)imide (LiTFSI) were characterized using ac impedance spectroscopy to measure the ionic conductivity at various temperatures and salt concentrations. The relative conductivities of these electrolytes in the dilute limit are directly comparable to results of molecular dynamics simulations performed using the same polymers. The simulations correspond well with the experimental results, and provide molecular level insight about the solvation environment of the lithium ions and how the ions transport through these polyesters.
Block copolymers for alkaline fuel cell membrane materials
NASA Astrophysics Data System (ADS)
Li, Yifan
Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC-b-PS. The incorporation of the hydrophilic polymer allows for an investigation of the effect of hydration on ionic conductivity, resulting in the increase in membrane water affinity, enhancement of conductivity and reduced dependence of conductivity on relative humidity. A study of crosslinking of block copolymers was done wherein the crosslinking occurs in the non-matrix phase in order to maintain mechanical properties. The formation of a cationic crosslinked structure improves the mechanical integrity of the membrane in water while showing little deleterious effect on ionic conductivity and mechanical properties.
NASA Astrophysics Data System (ADS)
Pandita, Surya D.; Lim, Hyoung Tae; Yoo, Youngtai; Park, Hoon Cheol
2006-03-01
Manufacturing and characterization of ionic polymer metal composites (IPMCs) with silver as electrodes have been investigated. Tollen's reagent that contains ion Ag(NH 3) II + was used as a raw material for silver deposition on the surfaces of the polymer membrane Nafion"R". Two types of inner solvents, namely common water based electrolyte solution (LiOH 1N) and ionic liquid were used and investigated. Compared to IPMCs with platinum electrodes, silver-plated IPMCs with water electrolyte showed higher conductivity. The actuation response of silver-plated IPMCs with the water based electrolyte was faster than that of platinum IPMCs. However, the silver electrode was too brittle and severely damaged during the solvent exchange process from water to ionic liquid, resulted in high resistance and hence very low actuation behavior.
NASA Astrophysics Data System (ADS)
Pesko, Danielle; Webb, Michael; Jung, Yukyung; Zheng, Qi; Miller, Thomas, III; Coates, Geoffrey; Balsara, Nitash
Polyethers, such as poly(ethylene oxide) (PEO), are considered to be the most promising polymer electrolyte materials due to their high ionic conductivity and electrochemical stability, both essential for battery applications. To gain a fundamental understanding of the transport properties of polyether systems, we design a systematic set of linear PEO-like polymers to explore the effect of adding carbon spacers to the backbone of the chain. Ac impedance spectroscopy is employed to measure the ionic conductivity of polyether/lithium salt electrolytes; the results elucidate tradeoffs between lowering the glass transition temperature and diluting the polar groups on the polymer chain. Molecular-level insight is provided by molecular dynamics simulations of the polyether electrolytes. We define the useful and intuitive metric of ``connectivity'', a parameter calculated from simulations which describes the physical arrangements of solvation sites in a polymer melt. Direct comparison of experiment and theory allows us to determine the relationship between connectivity and conductivity. The comparison provides insight regarding the factors that control conductivity, and highlights considerations that must be taken when designing new ion-conducting polymers.
Elucidating the correlation between morphology and ion dynamics in polymerized ionic liquids.
NASA Astrophysics Data System (ADS)
Heres, Maximilian; Cosby, Tyler; Iacob, Ciprian; Runt, James; Benson, Roberto; Liu, Hongjun; Paddison, Stephen; Sangoro, Joshua
Charge transport and dynamics are investigated for a series of poly-ammonium and poly-imidazolium-based polymerized ionic liquids (polyIL) with a common bis(trifluoromethylsulfonyl)imide anion using broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry. A significant enhancement of the Tg independent ionic conductivity is observed for ammonium based polyIL with shorter pendant groups, in comparison to imidazolium based systems. These results emphasize the importance of polymer backbone spacing as well as counter-ion size on ionic conductivity in polymerized ionic liquids. NSF DMR 1508394.
Composite Solid Electrolyte For Lithium Cells
NASA Technical Reports Server (NTRS)
Peled, Emmanuel; Nagasubramanian, Ganesan; Halpert, Gerald; Attia, Alan I.
1994-01-01
Composite solid electrolyte material consists of very small particles, each coated with thin layer of Lil, bonded together with polymer electrolyte or other organic binder. Material offers significant advantages over other solid electrolytes in lithium cells and batteries. Features include high ionic conductivity and strength. Composite solid electrolyte expected to exhibit flexibility of polymeric electrolytes. Polymer in composite solid electrolyte serves two purposes: used as binder alone, conduction taking place only in AI2O3 particles coated with solid Lil; or used as both binder and polymeric electrolyte, providing ionic conductivity between solid particles that it binds together.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harun, Fatin; Chan, Chin Han; Winie, Tan
Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO{sub 4}) salt and titanium dioxide (TiO{sub 2}) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO{sub 4} causes a greater increase in glass transition temperature (T{sub g}) and ionic conductivity of ENR50 asmore » compared to ENR25. Upon addition of TiO{sub 2} in ENR/LiClO{sub 4} system, a remarkable T{sub g} elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO{sub 2} loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, P. B., E-mail: anandputhirath@gmail.com, E-mail: jayalekshmi@cusat.ac.in; Jayalekshmi, S., E-mail: anandputhirath@gmail.com, E-mail: jayalekshmi@cusat.ac.in
2014-01-28
Nowadays polymer based solid state electrolytes for applications in rechargeable battery systems are highly sought after materials, pursued extensively by various research groups worldwide. Numerous methods are discussed in literature to improve the fundamental properties like electrical conductivity, mechanical stability and interfacial stability of polymer based electrolytes. The application of these electrolytes in Li-ion cells is still in the amateur state, due to low ionic conductivity, low lithium transport number and the processing difficulties. The present work is an attempt to study the effects of Li doping on the structural and transport properties of the polymer electrolyte, poly-ethelene oxide (PEO)more » (Molecular weight: 200,000). Li doped PEO was obtained by treating PEO with n-Butyllithium in hexane for different doping concentrations. Structural characterization of the samples was done by XRD and FTIR techniques. Impedance measurements were carried out to estimate the ionic conductivity of Li doped PEO samples. It is seen that, the crystallinity of the doped PEO decreases on increasing the doping concentration. XRD and FTIR studies support this observation. It is inferred that, ionic conductivity of the sample is increasing on increasing the doping concentration since less crystallinity permits more ionic transport. Impedance measurements confirm the results quantitatively.« less
Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings
NASA Astrophysics Data System (ADS)
Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.
2018-06-01
Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.
Novel polymer electrolytes based on cationic polyurethane with different alkyl chain length
NASA Astrophysics Data System (ADS)
Liu, Libin; Wu, Xiwen; Li, Tianduo
2014-03-01
A series of comb-like cationic polyurethanes (PUs) were synthesized by quaternizing different bromoalkane (C2H5Br, C8H17Br, and C14H29Br) with polyurethane. Solid polymer electrolytes were prepared by complexes cationic PUs with different content of LiClO4. All the solid polymer electrolytes had sufficient thermal stability as confirmed by TGA and exhibited a single-phase behavior evidenced by DSC results. For these electrolytes, FT-IR spectra indicated the formation of polymer-ion complexes. The ac impedance spectra show that the conductivity of the electrolytes follow the Arrhenius behavior, and ionic conductivity is associated with both the charge migration of ions between coordination sites and transmission between aggregates, as confirmed by FT-IR and SEM. Alkyl quaternary ammonium salts in the polymer backbone are recognized as inherent plasticizers, which make the electrolytes exhibit liquid-like behavior. The plasticizing effect of PU-C8 and PU-C14 electrolytes are more effective than that of PU-C2 electrolyte. Maximum ionic conductivity at room temperature for PU-C8 electrolytes containing 50 wt% LiClO4 reached 1.1 × 10-4 S cm-1. This work provides a new research clue that alkyl quaternary ammonium salts could be used as inherent plasticizers and hence make the system behave like a liquid with high ionic conductivity, while preserving the dimensional stability of the solids.
NASA Astrophysics Data System (ADS)
Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.
2017-06-01
Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.
Siqueira, Leonardo J A; Ribeiro, Mauro C C
2006-12-07
The dynamical properties of the polymer electrolyte poly(ethylene oxide) (PEO)LiClO(4) have been investigated by molecular dynamics simulations. The effect of changing salt concentration and temperature was evaluated on several time correlation functions. Ionic displacements projected on different directions reveal anisotropy in short-time (rattling) and long-time (diffusive) dynamics of Li(+) cations. It is shown that ionic mobility is coupled to the segmental motion of the polymeric chain. Structural relaxation is probed by the intermediate scattering function F(k,t) at several wave vectors. Good agreement was found between calculated and experimental F(k,t) for pure PEO. A remarkable slowing down of polymer relaxation is observed upon addition of the salt. The ionic conductivity estimated by the Nernst-Einstein equation is approximately ten times higher than the actual conductivity calculated by the time correlation function of charge current.
Freitas, Flavio S; de Freitas, Jilian N; Ito, Bruno I; De Paoli, Marco-A; Nogueira, Ana F
2009-12-01
Polymer electrolytes based on mixtures of poly(ethylene oxide-co-propylene oxide) and 1-methyl-3-propyl-imidazolium iodide (MPII) were investigated, aiming at their application in dye-sensitized solar cells (DSSC). The interactions between the copolymer and the ionic liquid were analyzed by infrared spectroscopy and (1)H NMR. The results show interactions between the ether oxygen in the polymer and the hydrogen in the imidazolium cations. The ionic conductivities, electrochemical behaviors, and thermal properties of the electrolytes containing different concentrations of MPII were investigated. The electrolyte containing 70 wt % MPII presented the highest ionic conductivity (2.4 x 10(-3) S cm(-1)) and a diffusion coefficient of 1.9 x 10(-7) cm(2) s(-1). The influence of LiI addition to the electrolytes containing different concentrations of MPII was also investigated. The DSSC assembled with the electrolyte containing 70 wt % MPII showed an efficiency of 3.84% at 100 mW cm(-2). The stability of the devices for a period of 30 days was also evaluated using sealed cells. The devices assembled with the electrolyte containing less ionic liquid showed to be more stable.
NASA Astrophysics Data System (ADS)
de Lannoy, Charles-Francois Pedro Claude Karolek Ghislain
Membrane technologies represent an energy efficient, effective solution for treating municipal and commercial waters/wastewaters. Membranes are predominantly polymer-based and despite steady advances in polymeric materials, they continue to suffer from operational problems including biofouling and breakages. This work addresses these two disparate problems by developing novel CNT-polymer nanocomposite materials that contain variously functionalized carbon nanotubes (fCNTs) in low quantities (<0.5wt%). Several strategies have been employed to achieve highly functional CNT-polymer nanocomposite membranes including blend mixing, ionic charge association, and covalent cross-linking with monomer and oligomer constituents. These CNT-polymer nanocomposite membranes were compared to traditional polymer membranes across various properties including increased Young's Modulus, changes in surface hydrophilicity, fine control over molecular weight cut-off and flux, and surface electrical conductivity. Membranes with high surface electrical conductivity were further tested for their anti-biofouling properties. Finally, CNT stability and polymer compatibility were evaluated throughout membrane manufacture, use, and cleaning. The incorporation of CNTs mixed in bulk phase and linked through ionic associations in polymer matrices showed significant (50%) increases in Young's modulus for certain CNT functionalizations and derivatization percent. Membranes formed with high surface electrical conductivity demonstrated almost complete resistance to biofouling (> 95%) in long-term bacterially challenged experiments. CNTs and polymer mixtures that lacked covalent or ionic bonds were susceptible to significant (up to 10%) loss of CNTs during membrane non-solvent gelation and aggressive chemical cleaning treatment. Functionalized carbon nanotubes endow polymer membranes with their unique strength and electrically conductive properties. These added properties were demonstrated to greatly improve membrane operational efficiency and membrane longevity. CNT-polymer nanocomposite membranes offer low-energy, high-efficiency, and long-lifetime alternatives to traditional polymer membranes. With further advances in polymeric nanomaterials, membrane technology has the potential for wide applicability across many fields outside of water filtration and desalination.
Effect of porosity and tortuosity of electrodes on carbon polymer soft actuators
NASA Astrophysics Data System (ADS)
S, Sunjai Nakshatharan; Punning, Andres; Johanson, Urmas; Aabloo, Alvo
2018-01-01
This work presents an electro-mechanical model and simulation of ionic electroactive polymer soft actuators with a porous carbon electrode, polymer membrane, and ionic liquid electrolyte. An attempt is made to understand the effects of specific properties of the porous electrodes such as porosity and tortuosity on the charge dynamics and mechanical performance of the actuator. The model uses porous electrode theory to study the electrochemical response of the system. The mechanical response of the whole laminate is attributed to the evolution of local stresses caused by diffusion of ions (diffusion-induced stresses or chemical stresses). The model indicates that in actuators with porous electrode, the diffusion coefficient of ions, conductivity of the electrodes, and ionic conductivity in both electrodes and separator are altered significantly. In addition, the model leads to an obvious deduction that the ions that are highly active in terms of mobility will dominate the whole system in terms of resulting mechanical deformation direction and rate of deformation. Finally, to validate the model, simulations are conducted using the finite element method, and the outcomes are compared with the experimental data. Significant effort has been put forward to experimentally measure the key parameters essential for the validation of the model. The results show that the model developed is able to well predict the behavior of the actuator, providing a comprehensive understanding of charge dynamics in ionic polymer actuator with porous electrodes.
NASA Astrophysics Data System (ADS)
Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca
2016-09-01
Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.
Structural control of mixed ionic and electronic transport in conducting polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.
Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less
Structural control of mixed ionic and electronic transport in conducting polymers
Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; ...
2016-04-19
Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavgorodnya, Oleksandra; Shamshina, Julia L.; Bonner, Jonathan R.
Here, we report the correlation between key solution properties and spinability of chitin from the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C 2mim][OAc]), and the similarities and differences to electrospinning solutions of non-ionic polymers in volatile organic compounds (VOCs). We found that when electrospinning is conducted from ILs, conductivity and surface tension are not the key parameters regulating spinability, while solution viscosity and polymer concentration are. Contrarily, for electrospinning of polymers from VOCs, solution conductivity and viscosity have been reported to be among some of the most important factors controlling fiber formation. For chitin electrospun from [C 2mim][OAc], we found bothmore » a critical chitin concentration required for continuous fiber formation (> 0.20 wt%) and a required viscosity for the spinning solution (between ca. 450 – 1500 cP). The high viscosities of the biopolymer-IL solutions made it possible to electrospin solutions with low, less than 1 wt% of polymer concentration and produce thin fibers without the need to adjust the electrospinning parameters. These results suggest new prospects for the control of fiber architecture in non-woven mats, which is crucial for materials performance.« less
Zavgorodnya, Oleksandra; Shamshina, Julia L.; Bonner, Jonathan R.; ...
2017-04-27
Here, we report the correlation between key solution properties and spinability of chitin from the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C 2mim][OAc]), and the similarities and differences to electrospinning solutions of non-ionic polymers in volatile organic compounds (VOCs). We found that when electrospinning is conducted from ILs, conductivity and surface tension are not the key parameters regulating spinability, while solution viscosity and polymer concentration are. Contrarily, for electrospinning of polymers from VOCs, solution conductivity and viscosity have been reported to be among some of the most important factors controlling fiber formation. For chitin electrospun from [C 2mim][OAc], we found bothmore » a critical chitin concentration required for continuous fiber formation (> 0.20 wt%) and a required viscosity for the spinning solution (between ca. 450 – 1500 cP). The high viscosities of the biopolymer-IL solutions made it possible to electrospin solutions with low, less than 1 wt% of polymer concentration and produce thin fibers without the need to adjust the electrospinning parameters. These results suggest new prospects for the control of fiber architecture in non-woven mats, which is crucial for materials performance.« less
Wojnarowska, Zaneta; Feng, Hongbo; Fu, Yao; ...
2017-08-21
Conductivity in polymer electrolytes has been generally discussed with the assumption that the segmental motions control charge transport. However, much less attention has been paid to the mechanism of ion conductivity where the motions of ions are less dependent (decoupled) on segmental dynamics. We present that this phenomenon is observed in ionic materials as they approach their glass transition temperature and becomes essential for design and development of highly conducting solid polymer electrolytes. In this paper, we study the effect of chain rigidity on the decoupling of ion transport from segmental motion in three polymerized ionic liquids (polyILs) containing themore » same cation–anion pair but differing in flexibility of the polymer backbones and side groups. Analysis of dielectric and rheology data reveals that decoupling is strong in vinyl-based rigid polymers while almost negligible in novel siloxane-based flexible polyILs. To explain this behavior, we investigated ion and chain dynamics at ambient and elevated pressure. Our results suggest that decoupling has a direct relationship to the frustration in chain packing and free volume. Finally, these conclusions are also supported by coarse-grained molecular dynamics simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojnarowska, Zaneta; Feng, Hongbo; Fu, Yao
Conductivity in polymer electrolytes has been generally discussed with the assumption that the segmental motions control charge transport. However, much less attention has been paid to the mechanism of ion conductivity where the motions of ions are less dependent (decoupled) on segmental dynamics. We present that this phenomenon is observed in ionic materials as they approach their glass transition temperature and becomes essential for design and development of highly conducting solid polymer electrolytes. In this paper, we study the effect of chain rigidity on the decoupling of ion transport from segmental motion in three polymerized ionic liquids (polyILs) containing themore » same cation–anion pair but differing in flexibility of the polymer backbones and side groups. Analysis of dielectric and rheology data reveals that decoupling is strong in vinyl-based rigid polymers while almost negligible in novel siloxane-based flexible polyILs. To explain this behavior, we investigated ion and chain dynamics at ambient and elevated pressure. Our results suggest that decoupling has a direct relationship to the frustration in chain packing and free volume. Finally, these conclusions are also supported by coarse-grained molecular dynamics simulations.« less
Composite Polymer-Garnet Solid State Electrolytes
NASA Astrophysics Data System (ADS)
Villa, Andres; Oduncu, Muhammed R.; Scofield, Gregory D.; Marinero, Ernesto E.; Forbey, Scott
Solid-state electrolytes provide a potential solution to the safety and reliability issues of Li-ion batteries. We have synthesized cubic-phase Li7-xLa3Zr2-xBixO12 compounds utilizing inexpensive, scalable Sol-gel synthesis and obtained ionic conductivities 1.2 x 10-4 S/cm at RT in not-fully densified pellets. In this work we report on the fabrication of composite polymer-garnet ceramic particle electrolytes to produce flexible membranes that can be integrated with standard battery electrodes without the need for a separator. As a first step we incorporated the ceramic particles into polyethylene oxide polymers (PEO) to form flexible membranes. Early results are encouraging yielding ionic conductivity values 1.0 x 10-5 S/cm at RT. To increment the conductivity in the membranes, we are optimizing amongst other: the ceramic particle size distribution and weight load, the polymer molecular weight and chemical composition and the solvated Li-salt composition and content. Unhindered ion transport across interfaces between the composites and the battery electrode materials is paramount for battery performance. To this end, we are investigating the effect of interface morphology, its atomic composition and exploring novel electrode structures that facilitate ionic transport.
Liew, Chiam-Wen; Ramesh, S
2015-06-25
Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Water Dissolvable Electrolyte with an Ionic Liquid for Eco-Friendly Electronics.
Yamada, Shunsuke; Toshiyoshi, Hiroshi
2018-06-21
A water-dissolvable electrolyte is developed by combining an ionic liquid (IL) with poly(vinyl alcohol) (PVA), which decays over time by contact with water. An IL generally consists of two species of ions (anion and cation), and forms an electrical double layer (EDL) of a large electrostatic capacitance due to the ions accumulated in the vicinity of a conductive electrode when voltage is applied. In a similar manner, the ionic gel developed in this work forms an EDL due to the ions suspended in the conjugated polymer network while maintaining the gel form. Test measurements show a large capacitance of 13 µF cm -2 within the potential window of the IL. The ionic gel shows an electrical conductance of 20 µS cm -1 due to the ionic conduction, which depends on the weight ratio of the IL with respect to the polymer. The developed ionic gel dissolves into water in 16 h. Potential application includes the electrolyte in disposable electronics such as distributed sensors and energy harvesters that are supposed to be harmless to environment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid electrolyte material manufacturable by polymer processing methods
Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez
2012-09-18
The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.
NASA Astrophysics Data System (ADS)
Raghavan, Prasanth; Zhao, Xiaohui; Shin, Chorong; Baek, Dong-Ho; Choi, Jae-Won; Manuel, James; Heo, Min-Yeong; Ahn, Jou-Hyeon; Nah, Changwoon
Apart from PEO based solid polymer electrolytes, tailor-made gel polymer electrolytes based on blend/composite membranes of poly(vinylidene fluoride- co-hexafluoropropylene) and polyacrylonitrile are prepared by electrospinning using 14 wt% polymer solution in dimethylformamide. The membranes show uniform morphology with an average fiber diameter of 320-490 nm, high porosity and electrolyte uptake. Polymer electrolytes are prepared by soaking the electrospun membranes in 1 M lithium hexafluorophosphate in ethylene carbonate/dimethyl carbonate. Temperature dependent ionic conductivity and their electrochemical performance are studied. The blend/composite polymer electrolytes show good ionic conductivity in the range of 10 -3 S cm -1 at ambient temperature and good electrochemical performance. All the Polymer electrolytes show an anodic stability >4.6 V with stable interfacial resistance with storage time. The prototype cell shows good charge-discharge properties and stable cycle performance with comparable capacity fade compared to liquid electrolyte under the test conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasaribu, Marvin H., E-mail: marvin-shady88@yahoo.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id
Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li{sup +} ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anionmore » metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10{sup −2} S cm{sup −1} for chitosan to 1.30 × 10{sup −2} S cm{sup −1} for chitosan with EMImBF4/Li{sup +}, and this result was supported by analysis the surface morphology (SEM)« less
Liew, Chiam-Wen; Ramesh, S
2014-05-21
Two different ionic liquid-based biopolymer electrolyte systems were prepared using a solution casting technique. Corn starch and lithium hexafluorophosphate (LiPF₆) were employed as polymer and salt, respectively. Additionally, two different counteranions of ionic liquids, viz. 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF₆) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (also known as 1-butyl-3-methylimidazolium triflate) (BmImTf) were used and studied in this present work. The maximum ionic conductivities of (1.47 ± 0.02) × 10 -4 and (3.21 ± 0.01) × 10 -4 S∙cm -1 were achieved with adulteration of 50 wt% of BmImPF₆ and 80 wt% of BmImTf, respectively at ambient temperature. Activated carbon-based electrodes were prepared and used in supercapacitor fabrication. Supercapacitors were then assembled using the most conducting polymer electrolyte from each system. The electrochemical properties of the supercapacitors were then analyzed. The supercapacitor containing the triflate-based biopolymer electrolyte depicted a higher specific capacitance with a wider electrochemical stability window compared to that of the hexafluorophosphate system.
Liew, Chiam-Wen; Ramesh, S.
2014-01-01
Two different ionic liquid-based biopolymer electrolyte systems were prepared using a solution casting technique. Corn starch and lithium hexafluorophosphate (LiPF6) were employed as polymer and salt, respectively. Additionally, two different counteranions of ionic liquids, viz. 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (also known as 1-butyl-3-methylimidazolium triflate) (BmImTf) were used and studied in this present work. The maximum ionic conductivities of (1.47 ± 0.02) × 10−4 and (3.21 ± 0.01) × 10−4 S·cm−1 were achieved with adulteration of 50 wt% of BmImPF6 and 80 wt% of BmImTf, respectively at ambient temperature. Activated carbon-based electrodes were prepared and used in supercapacitor fabrication. Supercapacitors were then assembled using the most conducting polymer electrolyte from each system. The electrochemical properties of the supercapacitors were then analyzed. The supercapacitor containing the triflate-based biopolymer electrolyte depicted a higher specific capacitance with a wider electrochemical stability window compared to that of the hexafluorophosphate system. PMID:28788662
Lee, Jang Yeol; Wang, Hyuck Sik; Yoon, Bye Ri; Han, Man Jae; Jho, Jae Young
2010-11-01
On purpose to develop a polymer actuator with high stability in air-operation as well as large bending displacement, a series of ionic polymer-metal composites (IPMC) was constructed with poly(styrene sulfonate)-grafted fluoropolymers as ionomeric matrix and immidazolium-based ionic liquids (IL) as inner solvent. The prepared IPMC actuators exhibited greatly enhanced bending displacement compared to Nafion-based actuators. The actuators were stable in air-operation, maintaining initial displacement for up to 10(4) cycles or 24 h. Investigating the material parameters and morphology of the IPMCs, high ion exchange capacity of the ionomers resulted in high ion conductivity and robust electrode of IPMC, which synergistically contributed to the high bending performance. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Studies on the effect of dispersoid(ZrO2) in PVdF-co-HFP based gel polymer electrolytes
NASA Astrophysics Data System (ADS)
Sivakumar, M.; Subadevi, R.; Muthupradeepa, R.
2013-06-01
Gel polymer electrolytes containing poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) / Lithium bis(trifluoromethane sulfon)imide (LiTFSI) / mixture of ethylene carbonate and propylene carbonate (EC+PC) with different concendration of ZrO2 has been prepared using the solution casting technique. The conductivity of the prepared electrolyte sample has been determined by AC impedance technique in the range 303-353K. The temperature dependent ionic conductivity plot seems to obey VTF relation. The maximum ionic conductivity value of 4.46 × 10-3S/cm has been obtained for PVdF-co-HFP(32%) - LiTFSI(8%) - EC+PC (60%) + ZrO2(6wt%) based polymer electrolyte. The surface morphology of the prepared electrolyte sample has been studied using SEM.
Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity.
Sato, Kan; Mizuma, Takahiro; Nishide, Hiroyuki; Oyaizu, Kenichi
2017-10-04
Robust radical-substituted polymers with ideal redox capability were used as "command surfaces" for liquid crystal orientation. The alignment of the smectic liquid crystal electrolytes with low-dimensional ion conduction pathways was reversible and readily switched in response to the redox states of the polymers. In one example, a charge storage device with a cooperative redox effect was fabricated. The bulk ionic conductivity of the cell was significantly decreased only after the electrode was fully charged, due to the anisotropic ionic conductivity of the electrolytes (ratio >10 3 ). The switching enabled both a rapid cell response and long charge retention. Such a cooperative command surface of self-assembled structures will give rise to new highly energy efficient supramolecular-based devices including batteries, charge carriers, and actuators.
Ionic electroactive hybrid transducers
NASA Astrophysics Data System (ADS)
Akle, Barbar J.; Bennett, Matthew D.; Leo, Donald J.
2005-05-01
Ionic electroactive actuators have received considerable attention in the past ten years. Ionic electroactive polymers, sometimes referred to as artificial muscles, have the ability to generate large bending strain and moderate stress at low applied voltages. Typical types of ionic electroactive polymer transducers include ionic polymers, conducting polymers, and carbon nanotubes. Preliminary research combining multiple types of materials proved to enhance certain transduction properties such as speed of response, maximum strain, or quasi-static actuation. Recently it was demonstrated that ionomer-ionic liquid transducers can operate in air for long periods of time (>250,000 cycles) and showed potential to reduce or eliminate the back-relaxation issue associated with ionomeric polymers. In addition, ionic liquids have higher electrical stability window than those operated with water as the solvent thereby increasing the maximum strain that the actuator can produce. In this work, a new technique developed for plating metal particulates on the surface of ionomeric materials is applied to the development of hybrid transducers that incorporate carbon nanotubes and conducting polymers as electrode materials. The new plating technique, named the direct assembly process, consists of mixing a conducting powder with an ionomer solution. This technique has demonstrated improved response time and strain output as compared to previous methods. Furthermore, the direct assembly process is less costly to implement than traditional impregnation-reduction methods due to less dependence on reducing agents, it requires less time, and is easier to implement than other processes. Electrodes applied using this new technique of mixing RuO2 (surface area 45~65m2/g) particles and Nafion dispersion provided 5x the displacement and 10x the force compared to a transducer made with conventional methods. Furthermore, the study illustrated that the response speed of the transducer is optimized by varying the vol% of metal in the electrode. For RuO2, the optimal loading was approximately 45%. This study shows that carbon nanotubes electrodes have an optimal performance at loadings around 30 vol%, while PANI electrodes are optimized at 95 vol%. Due to low percolation threshold, carbon nanotubes actuators perform better at lower loading than other conducting powders. The addition of nanotubes to the electrode tends to increase both the strain rate and the maximum strain of the hybrid actuator. SWNT/RuO2 hybrid transducer has a strain rate of 2.5%/sec, and a maximum attainable peak-to-peak strain of 9.38% (+/- 2V). SWNT/PANI hybrid also increased both strain and strain rate but not as significant as with RuO2. PANI/RuO2 actuator had an overwhelming back relaxation.
NASA Astrophysics Data System (ADS)
Cote, Philippe
Mercedes-Benz Canada Inc., Fuel Cell Division, manufactures polymer electrolyte membrane fuel cell stacks for use in vehicles. The manufacturing line is being optimized for efficiency and quality control, in order to uphold the high standards of Mercedes-Benz Inc. vehicles. In an operating polymer electrolyte membrane fuel cell, the catalyst coated membrane facilitates the electrochemical reaction that generates electricity. This research examines the equilibration of catalyst coated membrane rolls to controlled temperature and humidity conditions, before they are used in the manufacturing of polymer electrolyte membrane fuel cells. Equilibration involves allowing the water content in the catalyst coated membrane to stabilize at the controlled conditions, in order to reduce mechanical stress in the material for better manufacturability. Initial equilibration measurements were conducted on discrete catalyst coated membrane samples using novel electronic conductivity measurements of the catalyst layer, and compared to ionic conductivity measurements of the membrane. Electronic conductivity measurements are easier to implement in the manufacturing environment than the more complex ionic conductivity measurements. When testing discrete catalyst coated membrane samples in an environmental chamber, the equilibration trends for the measured ionic and electronic conductivity signals were similar enough to permit us to adapt the electronic conductivity measurements for catalyst coated membrane in roll form. Equilibration measurements of catalyst coated membrane rolls were optimized to achieve a robust and repeatable procedure which could be used in the manufacturing environment at Mercedes-Benz Canada Inc., Fuel Cell Division.
Effect of Al2O3 nanoparticles in plasticized PMMA-LiClO4 based solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Pal, P.; Ghosh, A.
2017-05-01
We have studied the broadband complex conductivity spectra covering a 0.01 Hz-3 GHz frequency range for plasticized PMMA-LiClO4 based solid polymer electrolyte embedded with Al2O3 nanoparticle. We have analyzed the conductivity spectra using the random free-energy barrier model (RBM) coupled with electrode polarization contribution in the low frequency region and at high temperatures. The temperature dependence of the ionic conductivity obtained from the analysis has been analyzed using Vogel-Tammann-Fulcher equation. The maximum ionic conductivity ˜ 1.93×10-4 S/cm has been obtained for 1 wt% Al2O3 nanoparticle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradeepa, P.; Raj, S. Edwin; Selvakumar, K.
Poly (ethyl methacrylate) based polymer electrolyte films were prepared by solution casting technique incorporating multi-walled carbon nanotube (MWCNT) as filler and characterized using XRD and Ac impedance analysis. The electrical conductivity is increased with increasing filler concentration (upto 6wt %), which is attributed to the formation of charge transfer complexes. The maximum ionic conductivity value is found to be 1.171×10{sup −3} Scm{sup −1} at 303K for PEMA (19wt %) -LiClO{sub 4} (8wt %) -MWCNT (6wt %) -PC (67wt %) electrolyte system. The temperature dependent ionic conductivity plot seems to obey Vogel -Tamman-Fulcher relation.
NASA Astrophysics Data System (ADS)
Karmakar, A.; Ghosh, A.
2011-11-01
In this paper we report the dynamics of charge carriers and relaxation in polymer electrolytes based on polyethylene oxide (PEO), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPTFSI) ionic liquid prepared by solution cast technique. It has been observed that the incorporation of BMPTFSI into PEO-LiTFSI electrolyte is an effective way for increasing the amorphous phase to a large extent. It has also been observed that both the glass transition and melting temperatures decrease with the increase of BMPTFSI concentration. The ionic conductivity of these polymer electrolytes increases with the increase of BMPTFSI concentration. The highest ionic conductivity obtained at 25 °C is ˜3×10-4 S cm-1 for the electrolyte containing 60 wt % BMPTFSI and ethylene oxide (EO)/Li ratio of 20. The temperature dependence of the dc conductivity and the hopping frequency show Vogel-Tamman-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The frequency dependence of the ac conductivity exhibits a power law with an exponent n which decreases with the increase of temperature. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and BMPTFSI concentrations. We have also presented the electric modulus data which have been analyzed in the framework of a Havriliak-Negami equation and the shape parameters obtained by the analysis show slight temperature dependence, but change sharply with BMPTFSI concentration. The stretched exponent β obtained from Kohlrausch-Williams-Watts fit to the modulus data is much lower than unity signifying that the relaxation is highly nonexponential. The decay function obtained from analysis of experimental modulus data is highly asymmetric with time.
Investigation of ionic conduction in PEO-PVDF based blend polymer electrolytes
NASA Astrophysics Data System (ADS)
Patla, Subir Kumar; Ray, Ruma; Asokan, K.; Karmakar, Sanat
2018-03-01
We investigate the effect of blend host polymer on solid polymer electrolyte (SPE) films doped with ammonium iodide (NH4I) salt using a variety of experimental techniques. Structural studies on the composite SPEs show that the blending of Poly(ethylene oxide) (PEO)-Poly(vinylidene fluoride) (PVDF) polymers in a suitable ratio enhances the amorphous fraction of the polymer matrix and facilitates fast ion conduction through it. We observe that the addition of a small amount of PVDF in the PEO host polymer enhances the ion - polymer interaction leading to more ion dissociation. As a result, the effective number of mobile charge carriers within the polymer matrix increases. Systematic investigation in these blend SPEs shows that the maximum conductivity (1.01 × 10-3 S/cm) is obtained for PEO - rich (80 wt. % PEO, 20 wt. % PVDF) composites at 35 wt. % NH4I concentration at room temperature. Interestingly, at higher salt concentrations (above 35 wt. %), the conductivity is found to decrease in this system. The reduction of conductivity at higher salt concentrations is the consequence of decrease in the carrier concentration due to the formation of an ion pair and ion aggregates. PVDF-rich compositions (20 wt. % PEO and 80 wt. % PVDF), on the other hand, show a very complex porous microstructure. We also observe a much lower ionic conductivity (maximum ˜ 10-6 S/cm at 15 wt. % salt) in these composite systems relative to PEO-rich composites.
Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas
2015-06-04
It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.
Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte
NASA Astrophysics Data System (ADS)
Li, Qin; Ardebili, Haleh
2016-01-01
The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.
Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua
Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less
Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings
Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua; ...
2018-04-24
Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less
Training and shape retention in conducting polymer artificial muscles
NASA Astrophysics Data System (ADS)
Tominaga, Kazuo; Hashimoto, Hikaru; Takashima, Wataru; Kaneto, Keiichi
2011-12-01
Electrochemomechanical deformation (ECMD) of the conducting polymer polyaniline film is studied to investigate the behaviour of actuation under tensile loads. The ECMD was induced by the strains due to the insertion of ionic species (cyclic strain) and a creep due to applied loads during the redox cycle. The cyclic strain was enhanced by the experience of high tensile loads, indicating a training effect. The training effect was explained by the enhanced electrochemical activity of the film. The creep was recovered by removal of the tensile load and several electrochemical cycles. This fact indicates that the creep results from the one-dimensional anisotropic deformation, and is retained (shape retention) by the ionic crosslink. The recovery of creep results from the elastic relaxation of the polymer conformation.
Molecular mobility, morphology, and ion conduction in ionomers for electroactive devices
NASA Astrophysics Data System (ADS)
Tudryn, Gregory J.
A sequential study of ion-containing polymers capable of ion solvation with varied ion content, dielectric constant, and counterions is presented in this dissertation in order to compare ion transport properties in ionomers with various ionic interactions. Structure-property relationships in these ion containing polymers are defined using x-ray scattering, rheology and dielectric spectroscopy, enabling the quantification of ion transport dynamics. Poly(ethylene oxide), (PEO) based ionomers are investigated in order to probe the relation between ion conduction and segmental relaxation, and copolymers of PEO and Poly(tetramethylene oxide), (PTMO) further develop an understanding of the trade-off between ion solvation and segmental dynamics. Ionomers with ionic liquid counterions probe diffuse charge interactions and steric effects on ion transport, and incorporation of ionic liquids into ionomer membranes such as Nafion provides desirable thermal and ion conducting properties which extend the use of such membranes for electroactive devices. PEO ionomers exhibit a strong relation between ionic conductivity and segmental dynamics, providing insight that the glass transition temperature, Tg, dominates the ion conduction mechanism. Increasing temperature induces aggregation of ionic groups as evidenced by the static dielectric constant and X-ray scattering as a function of temperature, revealing the contribution of ionic dipoles in the measured dielectric constant. The trade-off between ion solvation and fast polymer segmental dynamics are quantified in copolymer ionomers of PEO and lower Tg PTMO. While conducting ion content remains nearly unchanged, conductivity is lowered upon incorporation of PTMO, because the vast majority of the PTMO microphase separates from the PEO-rich microdomain that remains continuous and contributes most of the ion conduction. Dielectric constants and X-ray scattering show consistent changes with temperature that suggest a cascading aggregation process in Na ionomers as ionic dipoles thermally randomize and lower the measured dielectric constant of the medium, leading to further aggregation. We observe amplified microphase-separation through ionic groups preferentially solvated by PEO chains, as seen in block copolymers with added salt. Even at 25%PEO / 75%PTMO the ionomers have VFT temperature dependence of conducting ion mobility, meaning that the 25% PEO/ion microphase is still continuous A model is developed to describe the frequency dependent storage and loss modulus and the delay in Rouse motion due to ion association lifetime, as functions of ion content and molecular weight for our low molecular weight ionomers. The ion rearrangement relaxation in dielectric spectroscopy is clearly the ion association lifetime that controls terminal dynamics in linear viscoelasticity, allowing a simple sticky Rouse model, using the most-probable distribution based on NMR Mn, to fully describe master curves of the frequency dependent storage and loss modulus. Using insight from ionic interaction strength, ionic liquids are used as counterions, effectively plasticizing the ionomers without added solvent. Ionic interactions were weakened with increasing counterion size, and with modification of cations using ether-oxygen, promoting self-solvation, which increases conducting ion density by an order of magnitude. Room temperature ionic liquids were subsequently used in combination with NafionRTM membranes as electroactive substrates to correlate ion transport to morphology as a function of volume fraction of ionic liquid. This study illuminated the critical volume uptake of ionic liquid in Nafion, identifying percolation of ionic pathways and a significant increase in dielectric constant at low frequencies, indicating an increase in the number density of ions capable of polarizing at the electrode surface. Consequently, the fundamental information obtained about the structure-property relations of ionomers can be used to predict and design advanced ion-containing polymers to be used in battery membranes and a variety of electroactive devices, including actuators and electromechanical sensors.
Lin, Dingchang; Yuen, Pak Yan; Liu, Yayuan; Liu, Wei; Liu, Nian; Dauskardt, Reinhold H; Cui, Yi
2018-06-25
High-energy all-solid-state lithium (Li) batteries have great potential as next-generation energy-storage devices. Among all choices of electrolytes, polymer-based systems have attracted widespread attention due to their low density, low cost, and excellent processability. However, they are generally mechanically too weak to effectively suppress Li dendrites and have lower ionic conductivity for reasonable kinetics at ambient temperature. Herein, an ultrastrong reinforced composite polymer electrolyte (CPE) is successfully designed and fabricated by introducing a stiff mesoporous SiO 2 aerogel as the backbone for a polymer-based electrolyte. The interconnected SiO 2 aerogel not only performs as a strong backbone strengthening the whole composite, but also offers large and continuous surfaces for strong anion adsorption, which produces a highly conductive pathway across the composite. As a consequence, a high modulus of ≈0.43 GPa and high ionic conductivity of ≈0.6 mS cm -1 at 30 °C are simultaneously achieved. Furthermore, LiFePO 4 -Li full cells with good cyclability and rate capability at ambient temperature are obtained. Full cells with cathode capacity up to 2.1 mAh cm -2 are also demonstrated. The aerogel-reinforced CPE represents a new design principle for solid-state electrolytes and offers opportunities for future all-solid-state Li batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor
We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al{sub 2}O{sub 3} nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al{sub 2}O{sub 3} nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seenmore » to be determined by an interplay between the nanoparticle-polymer, nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.« less
Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration
NASA Astrophysics Data System (ADS)
Das, S.; Ghosh, A.
2016-06-01
In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R = EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R > 9) and single phase in the samples containing high salt concentrations (R ⩽ 9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R > 9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R ⩽ 9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.
Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon
Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which aremore » anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.« less
Alkaline polymer electrolyte fuel cells stably working at 80 °C
NASA Astrophysics Data System (ADS)
Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin
2018-06-01
Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.
NASA Astrophysics Data System (ADS)
Arya, Anil; Sharma, A. L.
2018-01-01
Free-standing solid polymer nanocomposite (PEO-PVC) + LiPF6-TiO2 films have been prepared through a standard solution-cast technique. The improvement in structural, microstructural and electrochemical properties has been observed on the dispersion of nanofiller in polymer salt complex. X-ray diffraction studies clearly reflect the formation of complex formation, as no corresponding salt peak appeared in the diffractograms. The Fourier transform infrared analysis suggested clear and convincing evidence of polymer-ion, ion-ion and polymer-ion-nanofiller interaction. The highest ionic conductivity of the prepared solid polymer electrolyte (SPE) films is ~5 × 10-5 S cm-1 for 7 wt.% TiO2. The linear sweep voltammetry provides the electrochemical stability window of the prepared SPE films, about ~3.5 V. The ion transference number has been estimated, t ion = 0.99 through the DC polarization technique. Dielectric spectroscopic studies were performed to understand the ion transport process in polymer electrolytes. All solid polymer electrolytes possess good thermal stability up to 300 °C. Differential scanning calorimetry analysis confirms the decrease of the melting temperature and signal of glass transition temperature with the addition of nanofiller, which indicates the decrease of crystallinity of the polymer matrix. An absolute correlation between diffusion coefficient (D), ion mobility (µ), number density (n), double-layer capacitance (C dl), glass transition temperature, melting temperature (T m), free ion area (%) and conductivity (σ) has been observed. A convincing model to study the role of nanofiller in a polymer salt complex has been proposed, which supports the experimental findings. The prepared polymer electrolyte system with significant ionic conductivity, high ionic transference number, and good thermal and voltage stability could be suggested as a potential candidate as electrolyte cum separator for the fabrication of a rechargeable lithium-ion battery system.
NASA Astrophysics Data System (ADS)
Maes, Ashley M.
Anion exchange membranes (AEMs) are of considerable interest to developers and researchers of electrochemical conversion and storage devices such as anion exchange membrane fuel cells (AAEMFCs), alkaline polymer electrolyte electrolysers, redox flow batteries and bioelectrochemical devices. AEMs are generally in competition with more established proton exchange membranes (PEMs), but offer the potential for reduction of materials costs and greater fuel flexibility across these applications. This work includes an introduction to AEMs in the context of fuel cell technologies and some key techniques for AEM characterization. There are many synthetic strategies to incorporate cationic functional groups, which promote anion transport, into a polymer matrix. Two membrane chemistries are investigated in the following chapters. The first is based on a simple synthesis procedure that produced a membrane consisting of random, crosslinked polypropylene- ran-polyethyleneimine with quaternary ammonium functional groups. This membrane had moderate chloride ionic conductivity of 0.03 S cm -1 at 95 °C and high water uptake with minimal dimensional swelling. However, the lack of control of crosslink location and density during synthesis produced a material with a very random nature, making it a poor candidate for more fundamental transport studies. The second membrane chemistry is a block copolymer with a hydrophobic and hydrophilic block. The hydrophobic block was selected to provide favorable mechanical and barrier characteristics while a hydrophilic block was selected to provide water uptake and anion conducting functionalities. Poly(vinyl benzyl trimethyl ammonium bromide)-b-poly(methylbutylene) ([PVBTMA][Br]- b-PMB) was synthesized by partners at the University of Massachusetts-Amherst with varied degrees of functionalization (DF) along the hydrophilic block, resulting in ion exchange capacities ranging from 0.77 to 2.20 mmol g -1. Water uptake, in-plane ionic conductivity and membrane morphology were measured across a series of membranes with the original bromide (Br -) counter-ion. These bulk materials characterization experiments demonstrated that this polymer structure produces well-ordered lamellar morphology with moderate water uptake and competitive ionic conductivity (ca. 40 mS cm-1 at 90 °C and 95% relative humidity). These characteristics make it an appropriate candidate for the following more fundamental investigations of ionic conductivity mechanisms. Broadband electrical spectroscopy (BES) was conducted on one [PVBTMA][Br]- b-PMB sample in the Br- form and analyzed in conjunction with thermal stability and relaxation experiments in Chapter 4. We were able to propose two separate ionic conductivity mechanisms and relate each to physical attributes of the polymer structure. A significant thermal transition was observed at Tdelta , which resulted in a dramatic drop in conductivity. In a continued effort to characterize the ionic conductivity of these block-copolymer membranes, another BES study was conducted on three samples with varying DFs. Samples were converted to hydroxide (OH- ) form so we could contrast the Br- conductivity mechanisms to those in a more relevant counter-ion form. After analysis of the electric response of the material, combined with the thermal analysis by TGA, MDSC and DMA, conductivity mechanisms were described. As in the Br- study, conductivity involves two distinct conduction pathways, sigmaEP and sigmaIP,1. Importantly, we again observed a drop in conductivity at Tdelta in each of these samples, with Tdelta decreasing as the density of functional groups along the hydrophilic block increased. It is undesirable for this transition to occur during operation in a fuel cell or other electrochemical device, so future work to investigate strategies for inhibition are recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chew, K. W.; Tan, C. G.; Osman, Z.
The effects of plasticizer and lithium salt on PMMA-based solid polymer electrolyte have been investigated. In current project, three system samples consisted of pure poly(methyl methacrylate (PMMA) system, plasticized poly(methyl methacrylate)(PMMA-EC) system and the LiCF{sub 3}SO{sub 3} salted-poly(methyl methacrylate) containing a fixed amount of plasticizer ([PMMA-EC]-LiCF{sub 3}SO{sub 3}) system have been prepared using solution casting technique. The conductivities of the films from each system are characterized by impedance spectroscopy and infrared spectrum. With the addition of plasticizer, results show improvement on the ionic conductivity value where the value of 6.25x10{sup -10} Scm{sup -1} is obtained. This may be due tomore » the nature of plasticizer that softens the polymer and hence enhanced the ionic transportation across the polymer. The room temperature conductivity for the highest conducting sample in the ([PMMA-EC]-LiCF{sub 3}SO{sub 3}) system is 1.36x10{sup -5} Scm{sup -1}. Fourier Transform Infrared Spectroscopy (FTIR) indicates complexation between the polymer and the plasticizer and the polymer, the plasticizer and the salts, and the result of XRD further supports the observation.« less
NASA Astrophysics Data System (ADS)
Martinez, Mathieu; Molmeret, Yannick; Cointeaux, Laure; Iojoiu, Cristina; Leprêtre, Jean-Claude; El Kissi, Nadia; Judeinstein, Patrick; Sanchez, Jean-Yves
The paper deals with the synthesis and characterisation of proton-conducting ionic liquids (PCILs) and their polymer electrolytes obtained by blending modified Nafion membranes with different concentrations of PCILs. The PCILs are obtained by the neutralization of triethylamine with different organic acids. The first part of the paper studies the influence of acidity and acid structure on PCIL thermal and electrochemical performance, while the second part examines membrane conductivity and reveals it to depend more on PCIL structure than on its intrinsic conductivity. At 130 °C, conductivities exceeding 10 mS cm -1 were obtained in fully anhydrous conditions.
ERIC Educational Resources Information Center
Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.
2012-01-01
Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…
Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.
Voortman, Thomas P; Chiechi, Ryan C
2015-12-30
This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.
NASA Astrophysics Data System (ADS)
Misenan, M. S. M.; Isa, M. I. N.; Khiar, A. S. A.
2018-05-01
In this study, blended polymer electrolyte of methylcellulose (MC)/chitosan (CS) was prepared with different weight percentage of 1-butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl) imide (BMIMTFSI) which acts as ion donor. This polymer blend was prepared by solution casting technique. The micro structure was observed by Field Emission Scanning Electron Microscopy (FESEM) where the multilayer could possibly be ascribed to the limited chain mobility. Sample having 60 wt% CS: 40 wt% MC was determined to have the most amorphous morphology extracted using deconvoluted data from x-ray Diffractography (XRD). Fourier Transform Infrared Spectroscopy (FTIR) peaks analysis shows the significant shift indicates complexation between ionic liquid and polymer backbone. The film was also characterized by impedance spectroscopy to measure its ionic conductivity. Samples with 45% of BMITFSI exhibit the highest conductivity of (1.51 ± 0.13) × 10‑6 S cm‑1 at ambient. Conductivity at elevated temperature was also studied, and the electrolytes obeys the Arrhenius behaviour. The conduction mechanism was best presented by small polaron hopping model.
Ionic Conduction in Nanocrystalline Materials
2000-02-10
In the following, we review studies performed films prepared by a polymer precursor process on on stabilized zirconia ceramics with grain sizes alumina ... titania , is reviewed. While it remains too early to make firm conclusions, the following observations are made. Additives which contribute to ion blocking...Keywords: Ionic conductivity; Nanocrystalline; Zirconia; Ceria; Titania ; Defects 1. Introduction tivity by nearly two orders of magnitude [6]. Given the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shubha, Nageswaran; Prasanth, Raghavan; Energy Research Institute - NTU
2013-02-15
Graphical abstract: Display Omitted Highlights: ► P(VdF-co-HFP)–clay nanocomposite based electrospun membranes are prepared. ► The membranes are used as polymer gel electrolyte (PGE) in lithium ion batteries. ► The composite PGE shows ionic conductivity of 5.5 mS cm{sup −1} at room temperature. ► Li/PGE/LiFePO{sub 4} cell delivers initial discharge capacity of 160 mAh g{sup −1}. ► The use of prepared electrolyte significantly improved the cell performance. -- Abstract: A new approach for fabricating polymer gel electrolytes (PGEs) based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) incorporated with layered nanoclay has been employed to enhance the ionic conductivity and electrochemical properties of P(VdF-co-HFP) withoutmore » compromising its mechanical strength. The effect of layered nanoclay on properties of membranes has been evaluated by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Surface morphology of the membranes has been studied using field-emission scanning electron microscopy (FE-SEM). Polymer gel electrolytes are prepared by soaking the fibrous membrane into 1 M LiPF{sub 6} in EC/DEC. The electrochemical studies show that incorporation of layered nanoclay into the polymer matrix greatly enhanced the ionic conductivity and compatibility with lithium electrodes. The charge–discharge properties and cycling performance of Li/LiFePO{sub 4} cells comprising nanocomposite polymer gel electrolytes have been evaluated at room temperature.« less
Role of salt concentration in blend polymer for energy storage conversion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arya, Anil; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com; Sadiq, M.
2016-05-06
Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO,more » PAN and LiPF{sub 6} are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.« less
NASA Astrophysics Data System (ADS)
Gohel, Khushbu; Kanchan, D. K.
Poly(vinylidene fluoride-hexafluropropylene) (PVDF-HFP) and poly(methyl methacrylate) (PMMA)-based gel polymer electrolytes (GPEs) comprising propylene carbonate and diethyl carbonate mixed plasticizer with variation of lithium perchlorate (LiClO4) salt concentrations have been prepared using a solvent casting technique. Structural characterization has been carried out using XRD wherein diffraction pattern reveals the amorphous nature of sample up to 7.5wt.% salt and complexation of polymers and salt have been studied by FTIR analysis. Surface morphology of the samples has been studied using scanning electron microscope. Electrochemical impedance spectroscopy in the temperature range 303-363K has been carried out for electrical conductivity. The maximum room temperature conductivity of 2.83×10-4S cm-1 has been observed for the GPE incorporating 7.5wt.% LiClO4. The temperature dependence of ionic conductivity obeys the Arrhenius relation. The increase in ionic conductivity with change in temperatures and salt content is observed. Transport number measurement is carried out by Wagner’s DC polarization method. Loss tangent (tan δ) and imaginary part of modulus (M‧‧) corresponding to dielectric relaxation and conductivity relaxation respectively show faster relaxation process with increasing salt content up to optimum value of 7.5wt.% LiClO4. The modulus (M‧‧) shows that the conductivity relaxation is of non-Debye type (broader than Debye peak).
Final Report for DE-FG02-93ER14376,Ionic Transport in Electrochemical Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. W. Halley
This project was a molecular dynamics study of the relevant issues associated with the structure and transport of lithium in polymer electrolytes such as polyethylene oxide(PEO). In close collaboration with quantum chemist Larry Curtiss and neutron scatterers David Lee Price and Marie-Louise Saboungi at Argonne, we used molecular dynamics to study the local structure and dynamics and ion transport in the polymer. The studies elucidated the mechanism of Li transport in PEO, revealing that the rate limiting step is extremely sensitive to the magnitude of the torsion forces in the backbone of the polymer. Because the torsion forces are difficultmore » to manipulate chemically, this makes it easier to understand why improving the conductivity of PEO based electrolytes has proven to be very difficult. We studied the transport properties of cations in ionic liquids as possible additives to polymer membranes for batteries and fuel cells and found preliminary indications that the transport is enhanced near phase separation in acid-ionic liquid mixtures.« less
NASA Astrophysics Data System (ADS)
Chandrasekhar, Prasanna; Zay, Brian J.; Barbolt, Scott; Werner, Robert; Birur, Gajanana C.; Paris, Anthony
2009-03-01
This contribution describes the fabrication, function and performance of thin-film variable emittance electrochromic skins fabricated using poly(aniline) as the conducting polymer (CP), a long-chain polymeric dopant, and an ionic liquid as electrolyte. The ionic electrolyte allows operation in space vacuum without any seals. A unique, space-durable coating applied to the external surface of the skins drastically lowers the solar absorptance of the skins, such that in their dark (highly emissive) electrochromic state, it is no more than 0.44, whilst in their light electrochromic state, it is ca. 0.3. Data presented show tailorable, variations from 0.19 to 0.90, ∀(s)<0.3, and nearly indefinite cyclability. Extended thermal vacuum, atomic-O, micrometeoroid, VUV and other studies show excellent space durability. Performance of a doughnut-shaped skin designed for a specific micro-spacecraft is also described.
Selective and Responsive Nanopore-Filled Membranes
2011-03-14
Materials Science and Engineering Poster Competition 15. Chen, H.; Elabd, Y.A. Ionic Liquid Polymers: Electrospinning and Solution Properties. Fall...hydrophilic ionic polymer gels within a hydrophobic polymer host matrix. The specific tasks of this project include (1) synthesizing stimuli...on polymer-polymer nanocomposites of hydrophilic ionic polymer gels within a hydrophobic polymer host matrix. The specific tasks of this project
Synthesis of Long-Chain-Branched (LCB) Polysulfones for Multifunctional Transport Membranes
2010-09-01
R.; Dutta, N. K. Interfacial Interactions in Aprotic Ionic Liquid Based Protonic Membrane and Its Correlation with High Temperature Conductivity...rigidity. The series of novel polymers was characterized for chemical structure, thermal transitions, and molecular weight. Ionic conductivity was tested...Although much progress exists based on perfluorosulfonated platforms ( Nafion , σ ≈ 10-1 – 10-2 S/cm) new and more complicated parameters arise as
Solid polymer electrolyte compositions
Garbe, James E.; Atanasoski, Radoslav; Hamrock, Steven J.; Le, Dinh Ba
2001-01-01
An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.
Electrochemical Analysis of Conducting Polymer Thin Films
Vyas, Ritesh N.; Wang, Bin
2010-01-01
Polyelectrolyte multilayers built via the layer-by-layer (LbL) method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting polymer, poly(p-phenylene vinylene) (PPV), in the preparation of a stable thin film via the LbL method. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize the ionic conductivity of the PPV multilayer films. The ionic conductivity of the films has been found to be dependent on the polymerization temperature. The film conductivity can be fitted to a modified Randle’s circuit. The circuit equivalent calculations are performed to provide the diffusion coefficient values. PMID:20480052
Ionomer Design, Synthesis and Characterization for Ion-Conducting Energy Materials
NASA Astrophysics Data System (ADS)
Colby, Ralph H.
2013-03-01
For ionic actuators and battery separators, it is vital to utilize single-ion conductors that avoid the detrimental polarization of other ions; the commonly studied dual-ion conductors simply will not be used in the next generation of materials for these applications. Ab initio quantum chemistry calculations at 0 K in vacuum characterize ion interactions and ion solvation by various functional groups, allowing identification of constituents with weak interactions to be incorporated in ionomers for facile ion transport. Simple ideas for estimating the ion interactions and solvation at practical temperatures and dielectric constants are presented that indicate the rank ordering observed at 0 K in vacuum should be preserved. Hence, such ab initio calculations are useful for screening the plethora of combinations of polymer-ion, counterion and polar functional groups, to decide which are worthy of synthesis for new ionomers. Single-ion conducting ionomers are synthesized based on these calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for ionic actuators and battery separators. Characterization by X-ray scattering, dielectric spectroscopy, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. Examples are shown of how ab initio calculations can be used to understand experimental observations of dielectric constant, glass transition temperature and conductivity of polymerized ionic liquids with counterions being either lithium, sodium, fluoride, hydroxide (for batteries) or bulky ionic liquids (for ionic actuators). This work was supported by the Department of Energy under Grant BES-DE-FG02-07ER46409.
NASA Astrophysics Data System (ADS)
Patil, Ravikumar V.; Praveen, D.; Damle, R.
2018-05-01
Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.
Parasitic Currents Caused by Different Ionic and Electronic Conductivities in Fuel Cell Anodes.
Schalenbach, Maximilian; Zillgitt, Marcel; Maier, Wiebke; Stolten, Detlef
2015-07-29
The electrodes in fuel cells simultaneously realize electric and ionic conductivity. In the case of acidic polymer electrolytes, the electrodes are typically made of composites of carbon-supported catalyst and Nafion polymer electrolyte binder. In this study, the interaction of the proton conduction, the electron conduction, and the electrochemical hydrogen conversion in such composite electrode materials was examined. Exposed to a hydrogen atmosphere, these composites displayed up to 10-fold smaller resistivities for the proton conduction than that of Nafion membranes. This effect was ascribed to the simultaneously occurring electrochemical hydrogen oxidation and evolution inside the composite samples, which are driven by different proton and electron resistivities. The parasitic electrochemical currents resulting were postulated to occur in the anode of fuel cells with polymer, solid oxide, or liquid alkaline electrolytes, when the ohmic drop of the ion conduction in the anode is higher with the anodic kinetic overvoltage (as illustrated in the graphical abstract). In this case, the parasitic electrochemical currents increase the anodic kinetic overpotential and the ohmic drop in the anode. Thinner fuel cell anodes with smaller ohmic drops for the ion conduction may reduce the parasitic electrochemical currents.
[Advances of poly (ionic liquid) materials in separation science].
Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang
2015-11-01
Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.
Novel polymeric LIT and divalent cation fast ion conducting materials
NASA Astrophysics Data System (ADS)
Angell, C. A.
Solid state energy devices require a component which conducts electricity by ionic migration. The conductivity of this element of the system must be very high. Four types of materials show the promise to provide the necessary conductivity characteristics, while offering other desirable features such as the ability to distort in shape under mechanical stresses: (1) crystalline; (2) plastic crystal; (3) inorganic glassy; and (4) polymer salt solutions. This document reports on the following materials: lead halide-containing fast ion conducting glasses (LiF-PbF2-Al(PO3)3), mixed ionic electronic conduction (Na2O-V2O5-TeO2), alpha relaxation in ionic glasses, glass transition in P2O2, and conductivity transition between all-halide and all-oxide glasses.
Morphology and conductivity of PEO-based polymers having various end functional groups
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong
Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.
Micellar Electrolytes in Organic Electrochemical Transistors
NASA Astrophysics Data System (ADS)
Cicoira, Fabio; Giuseppe, Tarabella; Nanda, Gaurav; Iannotta, Salvatore; Santato, Clara
2012-02-01
Organic electrochemical transistors (OECTs) are promising for applications in sensing and bioelectronics. OECTs consist of a conducting polymer film (transistor channel) in contact with an electrolyte. A gate electrode immersed in the electrolyte controls the doping/dedoping level of the conducting polymer. OECTs can be operated in aqueous electrolytes, making possible the implementation of organic electronic materials at the interface with biology. The inherent signal amplification of OECTs has the potential to yield sensors with low detection limits and high sensitivity. In this talk we will present recent studies on OECTs using ionic surfactants (such as hexadecyl-trimethyl-ammonium bromide) as electrolytes. As the conducting polymer we used PEDOT:PSS, i.e. (Poly,3-4 ethylenedioxythiopene) doped with Poly(styrene sulphonate). Interestingly, ionic surfactant electrolytes result in large transistor current modulation, especially beyond the critical micellar concentration (CMC). Since micelles play a primary role in biological processes and drug-delivery systems, the use for micellar electrolytes opens new exciting opportunities for the use of OECTs in bioelectronics.
1991-10-21
incorporated using a Grignard coupling reaction. 19 The derivatives with long alkoxy side groups were successfully halogenated with elemental bromine in CC14...transmetallation reaction of 2-thienyllithium with 7 anhydrous zinc chloride. This reagent was treated with the 1,4-dibromo-2,5- disubstitutedbenzene...were attributed to the steric effects in polymer 7c and the regiospecificity in the alkoxy substituted polymers. Experimental Section Reagents and
Smart glass based on electrochromic polymers
NASA Astrophysics Data System (ADS)
Xu, Chunye; Kong, Xiangxing; Liu, Lu; Su, Fengyu; Kim, Sooyeun; Taya, Minoru
2006-03-01
Five-layer-structured electrochromic glass (window), containing a transparent conductive layer, an electrochromic layer, an ionic conductive layer, an ionic storage layer and a second conductive transparent layer, was fabricated. The electrochromic glass adopts the conjugated polymer, poly[3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine] (PProDOT-Me2), as a blue electrochromic active layer, vanadium pentaoxide film as an ion storage layer and polymer gel electrolyte as the ionic transport layer. Dimension of smart glass up to 12 x 20 inch was developed. UV curable sealant was applied for the sealing devices. Color changing or switching speed of 12 x 20 inch smart glass from dark state to the transparent state (or vise versa) is less than 15 seconds under applied 1.5 voltages. Besides the long open circuit memory (the colored state or transparent state remains the same state after the power is off), the smart window can be adjusted easily into the intermediate state between the dark state and the transparent state by just simply turn the power on or off. No space consuming or dirt collecting shades, curtains or blinds are needed. The applications of the smart window, e.g. in the aircrafts, automobiles and architectures were discussed as well.
Ward, Ashleigh L; Doris, Sean E; Li, Longjun; Hughes, Mark A; Qu, Xiaohui; Persson, Kristin A; Helms, Brett A
2017-05-24
Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device's active materials when they enter the membrane's pore. This transformation has little influence on the membrane's ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development.
2017-01-01
Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium–sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development. PMID:28573201
NASA Astrophysics Data System (ADS)
Thiburce, Q.; Porcarelli, L.; Mecerreyes, D.; Campbell, A. J.
2017-06-01
We demonstrate the fabrication of polymer thin-film transistors gated with an ion gel electrolyte made of the blend of an ionic liquid and a polymerised ionic liquid. The ion gel exhibits a high stability and ionic conductivity, combined with facile processing by simple drop-casting from solution. In order to avoid parasitic effects such as high hysteresis, high off-currents, and slow switching, a fluorinated photoresist is employed in order to enable high-resolution orthogonal patterning of the polymer semiconductor over an area that precisely defines the transistor channel. The resulting devices exhibit excellent characteristics, with an on/off ratio of 106, low hysteresis, and a very large transconductance of 3 mS. We show that this high transconductance value is mostly the result of ions penetrating the polymer film and doping the entire volume of the semiconductor, yielding an effective capacitance per unit area of about 200 μF cm-2, one order of magnitude higher than the double layer capacitance of the ion gel. This results in channel currents larger than 1 mA at an applied gate bias of only -1 V. We also investigate the dynamic performance of the devices and obtain a switching time of 20 ms, which is mostly limited by the overlap capacitance between the ion gel and the source and drain contacts.
Ionomers for Ion-Conducting Energy Materials
NASA Astrophysics Data System (ADS)
Colby, Ralph
For ionic actuators and battery separators, it is vital to utilize single-ion conducting ionomers that avoid the detrimental polarization of other ions. Single-ion conducting ionomers are synthesized based on DFT calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for battery separators that conduct Li+ or Na+. Characterization by X-ray scattering, dielectric spectroscopy, FTIR, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. 7Li NMR diffusion measurements find that diffusion is faster than expected by conductivity using the Nernst-Einstein equation, which means that the majority of Li diffusion occurs by ion pairs moving with the polymer segmental motion. Segmental motion only contributes to ionic conduction in the rare event that one of these ion pairs has an extra Li (a positive triple ion). This leads us to a new metric for ion-conducting soft materials, the product of the cation number density p0 and their diffusion coefficient D; p0D is the diffusive flux of lithium ions. This new metric has a maximum at intermediate ion content that corresponds to the overlap of ion pair polarizability volumes. At higher ion contents, the ion pairs interact strongly and form larger aggregation states that retard segmental motion of both mobile ion pairs and triple ions.
Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradeepa, P.; Edwinraj, S.; Sowmya, G.
In the present study PEO and PVdF-HFP blend based composite polymer electrolytes (CPEs) has been prepared by using Multi Walled Carbon Nanotube (MWCNT), in order to examine the filler addition effect on the electrochemical properties. The complexed nanocomposite polymer electrolytes were obtained in the form of dimensionally stable and free standing films by using solution casting technique. The electrochemical properties of CPEs were measured by the AC impedance method. From the ionic conductivity results, the CPE containing MWCNT 2wt% showed the highest ionic conductivity with an excellent thermal stability at room temperature. The dielectric loss curve s for the samplemore » 6.25wt% PEO: 18.75 wt% PVdF-HFP: 2wt% MWCNT reveal the low frequency β relaxation peak pronounced at high temperature, and it may caused by side group dipoles.« less
Paper Actuators Made with Cellulose and Hybrid Materials
Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K.; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad
2010-01-01
Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPap is quite comparable with other piezoelectric polymers. But, it is biodegradable, biocompatible, mechanically strong and thermally stable. To enhance ion migration effect in the cellulose, polypyrrole conducting polymer and ionic liquids were nanocoated on the cellulose film. This hybrid cellulose EAPap nanocomposite exhibits durable bending actuation in an ambient humidity and temperature condition. Fabrication, characteristics and performance of the cellulose EAPap and its hybrid EAPap materials are illustrated. Also, its possibility for remotely microwave-driven paper actuator is demonstrated. PMID:22294882
Paper actuators made with cellulose and hybrid materials.
Kim, Jaehwan; Yun, Sungryul; Mahadeva, Suresha K; Yun, Kiju; Yang, Sang Yeol; Maniruzzaman, Mohammad
2010-01-01
Recently, cellulose has been re-discovered as a smart material that can be used as sensor and actuator materials, which is termed electro-active paper (EAPap). This paper reports recent advances in paper actuators made with cellulose and hybrid materials such as multi-walled carbon nanotubes, conducting polymers and ionic liquids. Two distinct actuator principles in EAPap actuators are demonstrated: piezoelectric effect and ion migration effect in cellulose. Piezoelectricity of cellulose EAPap is quite comparable with other piezoelectric polymers. But, it is biodegradable, biocompatible, mechanically strong and thermally stable. To enhance ion migration effect in the cellulose, polypyrrole conducting polymer and ionic liquids were nanocoated on the cellulose film. This hybrid cellulose EAPap nanocomposite exhibits durable bending actuation in an ambient humidity and temperature condition. Fabrication, characteristics and performance of the cellulose EAPap and its hybrid EAPap materials are illustrated. Also, its possibility for remotely microwave-driven paper actuator is demonstrated.
NASA Astrophysics Data System (ADS)
Chen, Shaojie; Wang, Junye; Zhang, Zhihua; Wu, Linbin; Yao, Lili; Wei, Zhenyao; Deng, Yonghong; Xie, Dongjiu; Yao, Xiayin; Xu, Xiaoxiong
2018-05-01
Nano-sized fillers in a polymer matrix with good distribution can play a positive role in improving polymer electrolytes in the aspects of ionic conductivity, mechanical property and electrochemical performance of Li-ion cells. Herein, polyethylene oxide (PEO)/Li3PS4 hybrid polymer electrolyte is prepared via a new in-situ approach. The ionic conductivities of the novel hybrid electrolytes with variable proportions are measured, and the optimal electrolyte of PEO-2%vol Li3PS4 presents a considerable ionic conductivity of 8.01 × 10-4 S cm-1 at 60 °C and an electrochemical window up to 5.1 V. The tests of DSC and EDXS reveal that the Li3PS4 nanoparticles with better distribution, as active fillers scattering in the PEO, exhibit a positive effect on the transference of lithium ion and electrochemical interfacial stabilities. Finally, the assembled solid-state LiFePO4/Li battery presents a decent cycling performance (80.9% retention rate after 325 cycles at 60 °C) and excellent rate capacities with 153, 143, 139 and 127 mAh g-1 at the discharging rate of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C. It is fully proved that it is an advanced strategy to preparing the new organic/inorganic hybrid electrolytes for lithium-ion batteries applications.
Ionic Liquids in Polymer Design: From Energy to Health
2016-10-19
SECURITY CLASSIFICATION OF: ACS Symposium: Ionic Liquids in Polymer Design: From Energy to Health at Fall 2015 ACS Meeting in Boston, MA The...combination of ionic liquids and polymers has emerged as an active field of exploration in polymer science, where new materials have be realized for...2016 Final Report: Ionic Liquids in Polymer Design: From Energy to Health The views, opinions and/or findings contained in this report are those of
NASA Astrophysics Data System (ADS)
Aldalur, Itziar; Zhang, Heng; Piszcz, Michał; Oteo, Uxue; Rodriguez-Martinez, Lide M.; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel
2017-04-01
We report a simple synthesis route towards a new type of comb polymer material based on polyether amines oligomer side chains (i.e., Jeffamine® compounds) and a poly(ethylene-alt-maleic anhydride) backbone. Reaction proceeds by imide ring formation through the NH2 group allowing for attachment of side chains. By taking advantage of the high configurational freedoms and flexibility of propylene oxide/ethylene oxide units (PO/EO) in Jeffamine® compounds, novel polymer matrices were obtained with good elastomeric properties. Fully amorphous solid polymer electrolytes (SPEs) based on lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and Jeffamine®-based polymer matrices show low glass transition temperatures around -40 °C, high ionic conductivities and good electrochemical stabilities. The ionic conductivities of Jeffamine-based SPEs (5.3 × 10-4 S cm-1 at 70 °C and 4.5 × 10-5 S cm-1 at room temperature) are higher than those of the conventional SPEs comprising of LiTFSI and linear poly(ethylene oxide) (PEO), due to the amorphous nature and the high concentration of mobile end-groups of the Jeffamine-based polymer matrices rather than the semi-crystalline PEO The feasibility of Jeffamine-based compounds in lithium metal batteries is further demonstrated by the implementation of Jeffamine®-based polymer as a binder for cathode materials, and the stable cycling of Li|SPE|LiFePO4 and Li|SPE|S cells using Jeffamine-based SPEs.
Predicting Carbonate Species Ionic Conductivity in Alkaline Anion Exchange Membranes
2012-06-01
This method has been used previously with both PEM and AEM fuel cells and demonstrated its ability to accurately predict ionic conductivity [2,9,24...water. In an AMFC, the mobile species is a hydroxide ion (OH - ) and in a PEM fuel cell , the proton is solvated with a water molecule forming...membrane synthesis techniques have produced polymer electrolyte membranes that are capable of transporting anions in alkaline membrane fuel cells
Synthesis and characterization of ionic polymer networks in a room-temperature ionic liquid.
Stanzione, Joseph F; Jensen, Robert E; Costanzo, Philip J; Palmese, Giuseppe R
2012-11-01
Ionic liquid gels (ILGs) for potential use in ion transport and separation applications were generated via a free radical copolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and N,N'-methylene(bis)acrylamide (MBA) using 1-ethyl-3-methylimidazolium ethylsulfate (IL) as a room temperature ionic liquid solvent medium. The AMPS and MBA monomer solubility window in the IL in the temperature range of 25 to 65 °C was determined. In situ ATR-FTIR showed near complete conversion of monomers to a cross-linked polymer network. ILGs with glass transition temperatures (T(g)s) near -50 °C were generated with T(g) decreasing with increasing IL content. The elastic moduli in compression (200 to 6600 kPa) decreased with increasing IL content and increasing AMPS content while the conductivities (0.35 to 2.14 mS cm⁻¹) increased with increasing IL content and decreasing MBA content. The polymer-IL interaction parameter (χ) (0.48 to 0.55) was determined via a modified version of the Bray and Merrill equation.
Electroactive polymers for sensing
2016-01-01
Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846
Simulation of Ionic Aggregation and Ion Dynamics in Model Ionomers
NASA Astrophysics Data System (ADS)
Frischknecht, Amalie L.
2012-02-01
Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. A single-ion conducting polymer electrolyte would be safer and have higher efficiency than the currently-used liquid electrolytes. However, to date ionomeric materials do not have sufficiently high conductivities for practical application. This is most likely because the ions tend to form aggregates, leading to slow ion transport. A key question is therefore how molecular structure affects the ionic aggregation and ion dynamics. To probe these structure-property relationships, we have performed molecular simulations of a set of recently synthesized poly(ethylene-co-acrylic acid) copolymers and ionomers, with a focus on the morphology of the ionic aggregates. The ionomers have a precise, constant spacing of charged groups, making them ideal for direct comparisons with simulations. Ab initio calculations give insight into the expected coordination of cations with fragments of the ionomers. All-atom molecular dynamics (MD) simulations of the ionomer melt show aggregation of the ionic groups into extended string-like clusters. An extensive set of coarse-grained molecular dynamics simulations extend the results to longer times and larger length scales. The structure factors calculated from the MD simulations compare favorably with x-ray scattering data. Furthermore, the simulations give a detailed picture of the sizes, shapes, and composition of the ionic aggregates, and how they depend on polymer architecture. Implications for ion transport will be discussed. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei; Devaux, Didier; Wong, Dominica H. C.; DeSimone, Joseph M.; Balsara, Nitash P.
2016-01-01
Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10−4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li+/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries. PMID:26699512
Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei
2015-12-22
Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. Here, we have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10 -4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Limore » +/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.« less
NASA Astrophysics Data System (ADS)
Hegde, Shreedatta; Ravindrachary, V.; Praveena, S. D.; Guruswamy, B.; Sagar, Rohan N.; Sanjeev, Ganesh
2018-04-01
Solid polymer electrolyte based on lithium chloride doped Poly (vinyl) alcohol composites are prepared by solution casting method. XRD results show that the crystallinity of the polymer interrupted upon LiCl doping and amorphous nature increases with dopant concentration. Impedance analysis revealed that conductivity of PVA increases with doping level and maximum ionic conductivity is observed to be 6.69 × 10-3 S/cm for 15 wt% LiCl doped PVA composite at 353K. Wagner's polarization technique has been followed to calculate ion transport number for high conducting electrolyte and transient study confirmed the presence of single charge species within the polymer electrolyte.
Continuous process to produce lithium-polymer batteries
Chern, Terry Song-Hsing; Keller, David Gerard; MacFadden, Kenneth Orville
1998-01-01
Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte-electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be overcoated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance.
Phase Behavior and Conductivity of Phosphonated Block Copolymers Containing Ionic Liquids
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Kim, Sung Yeon; Park, Moon Jeong
2015-03-01
As the focus on proton exchange fuel cells continues to escalate in the era of alternative energy systems, the rational design of sulfonated polymers has emerged as a key technique for enhancing device efficiency. While the sulfonic acid group guarantees high proton conductivity of membranes under humidified conditions, the growing need for high temperature operation has discouraged their practical uses in fuel cells. In this respect, phosphonated polymers have drawn intensive attention in recent years owing to their self-dissociation ability. In this study, we have synthesized a set of phosphonated block copolymers, poly(styrenephosphonate-methylbutylene) (PSP- b - PMB), by varying phosphonation level (PL). A wide variety of self-assembled morphologies, i.e., disordered, lamellar, hexagonally perforated lamellae and hexagonally packed cylindrical phases, were observed with PL. Remarkably, upon comparing the morphology of PSP- b-PMB and that of sulfonated analog, we found distinctly dissimilar domain sizes at the same molecular weight and composition. A range of ionic liquids (ILs) were incorporated into the PSP- b-PMB block copolymers and their ion transport properties were examined. It has been revealed that the degree of confinement of ionic phases (domain size) impacts the ion mobility and proton dissociation efficiency of IL-containing polymers.
Li, Huili; Lv, Tian; Li, Ning; Yao, Yao; Liu, Kai; Chen, Tao
2017-11-30
Hydrogels with high ionic conductivity consisting of a cross-linked polymer network swollen in water are very promising to be used as an electrolyte for all-solid-state supercapacitors. However, there are rather few flexible supercapacitors using ionic conducting hydrogel electrolytes reported to date. In this work, highly flexible and ionic conducting polyacrylamide hydrogels were synthesized through a simple approach. On using the ionic hydrogels as the electrolyte, the resulting supercapacitors not only exhibited a high specific capacitance but also showed a long self-discharge time (over 10 hours to the half of original open-circuit voltage) and a low leakage current. These newly-developed all-solid-state supercapacitors can be bent, knot, and kneaded for 5000 cycles without performance decay, suggesting excellent flexibility and mechanical stability. These all-solid-state supercapacitors can also be easily tailored into strip-like supercapacitors without a short circuit, which provides an efficient approach to fabricate wearable energy storage devices.
A hybrid nanosensor for TNT vapor detection.
Díaz Aguilar, Alvaro; Forzani, Erica S; Leright, Mathew; Tsow, Francis; Cagan, Avi; Iglesias, Rodrigo A; Nagahara, Larry A; Amlani, Islamshah; Tsui, Raymond; Tao, N J
2010-02-10
Real-time detection of trace chemicals, such as explosives, in a complex environment containing various interferents has been a difficult challenge. We describe here a hybrid nanosensor based on the electrochemical reduction of TNT and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts-per-trillion level TNT in the presence of various interferents within a few minutes.
NASA Astrophysics Data System (ADS)
Tanaka, Hisaaki; Nishio, Satoshi; Ito, Hiroshi; Kuroda, Shin-ichi
2015-12-01
Electronic state of charge carriers, in particular, in highly doped regions, in thin-film transistors of a semicrystalline conducting polymer poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2-b]thiophene), has been studied by using field-induced electron spin resonance (ESR) spectroscopy. By adopting an ionic-liquid gate insulator, a gate-controlled reversible electrochemical hole-doping of the polymer backbone is achieved, as confirmed from the change of the optical absorption spectra. The edge-on molecular orientation in the pristine film is maintained even after the electrochemical doping, which is clarified from the angular dependence of the g value. As the doping level increases, spin 1/2 polarons transform into spinless bipolarons, which is demonstrated from the spin-charge relation showing a spin concentration peak around 1%, contrasting to the monotonic increase in the charge concentration. At high doping levels, a drastic change in the linewidth anisotropy due to the generation of conduction electrons is observed, indicating the onset of metallic state, which is also supported by the temperature dependence of the spin susceptibility and the ESR linewidth. Our results suggest that semicrystalline conducting polymers become metallic with retaining their molecular orientational order, when appropriate doping methods are chosen.
A practical multilayered conducting polymer actuator with scalable work output
NASA Astrophysics Data System (ADS)
Ikushima, Kimiya; John, Stephen; Yokoyama, Kazuo; Nagamitsu, Sachio
2009-09-01
Household assistance robots are expected to become more prominent in the future and will require inherently safe design. Conducting polymer-based artificial muscle actuators are one potential option for achieving this safety, as they are flexible, lightweight and can be driven using low input voltages, unlike electromagnetic motors; however, practical implementation also requires a scalable structure and stability in air. In this paper we propose and practically implement a multilayer conducting polymer actuator which could achieve these targets using polypyrrole film and ionic liquid-soaked separators. The practical work density of a nine-layer multilayer actuator was 1.4 kJ m-3 at 0.5 Hz, when the volumes of the electrolyte and counter electrodes were included, which approaches the performance of mammalian muscle. To achieve air stability, we analyzed the effect of air-stable ionic liquid gels on actuator displacement using finite element simulation and it was found that the majority of strain could be retained when the elastic modulus of the gel was kept below 3 kPa. As a result of this work, we have shown that multilayered conducting polymer actuators are a feasible idea for household robotics, as they provide a substantial practical work density in a compact structure and can be easily scaled as required.
De Gregorio, G L; Giannuzzi, R; Cipolla, M P; Agosta, R; Grisorio, R; Capodilupo, A; Suranna, G P; Gigli, G; Manca, M
2014-11-21
We here report the implementation of poly[(3-N-methylimidazoliumpropyl)methylsiloxane-co-dimethylsiloxane]iodides as suitable polymeric hosts for a novel class of in situ cross-linkable iodine/iodide-based gel-electrolytes for dye-sensitized solar cells. The polymers are first partially quaternized and then subjected to a thermal cross-linking which allows the formation of a 3D polymeric network which is accompanied by a dramatic enhancement of the ionic conductivity.
Ionic liquids and their solid-state analogues as materials for energy generation and storage
NASA Astrophysics Data System (ADS)
Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie
2016-02-01
Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.
Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties
Tafur, Juan P.; Santos, Florencio; Fernández Romero, Antonio J.
2015-01-01
Gel Polymer Electrolytes (GPEs) composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2. PMID:26610580
Ramesh, S; Shanti, R; Morris, Ezra
2013-01-02
Polymer electrolytes were developed by solution casting technique utilizing the materials of cellulose acetate (CA), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and deep eutectic solvent (DES). The DES is synthesized from the mixture of choline chloride and urea of 1:2 ratios. The increasing DES content well plasticizes the CA:LiTFSI:DES matrix and gradually improves the ionic conductivity and chemical integrity. The highest conducting sample was identified for the composition of CA:LiTFSI:DES (28 wt.%:12 wt.%:60 wt.%), which has the greatest ability to retain the room temperature ionic conductivity over the entire 30 days of storage time. The changes in FTIR cage peaks upon varying the DES content in CA:LiTFSI:DES prove the complexation. This complexation results in the collapse of CA matrix crystallinity, observed from the reduced intensity of XRD diffraction peaks. The DES-plasticized sample is found to be more heat-stable compared to pure CA. Nevertheless, the addition of DES diminishes the CA:LiTFSI matrix's heat-resistivity but at the minimum addition the thermal stability is enhanced. Copyright © 2012 Elsevier Ltd. All rights reserved.
Soft actuator based on Kraton with GO/Ag/Pani composite electrodes for robotic applications
NASA Astrophysics Data System (ADS)
Khan, Ajahar; Kant Jain, Ravi; Banerjee, Priyabrata; Inamuddin; Asiri, Abdullah M.
2017-11-01
In this work, electrochemically-driven Kraton/graphene oxide/Ag/polyaniline (Kraton/GO/Ag/Pani) polymer composite based ionic polymer metal composite (IPMC) was fabricated as a soft actuator. Silver nanopowder with polyaniline coating used as an electrode material is a novel approach in the fabrication of IPMC, which gives new opportunities for development of the electrode on ionic polymer actuator surfaces directly without electroless plating of Pt or Au metal. The Kraton/GO/Ag/Pani membrane showed much higher water-uptake (WU), ion exchange capacity (IEC), proton conductivity than those of several reported IPMC membranes. The enhanced actuation performance indicates that the Kraton/GO/Ag/Pani is a better alternative to the highly expensive commercialized IPMC actuator.
Ming, Ng Hon; Ramesh, S.; Ramesh, K.
2016-01-01
In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10−3 S cm−1 and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10−3 S cm−1 and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples. PMID:27273020
Novel Elastomeric Membranes Developed for Polymer Electrolytes in Lithium Batteries
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Meador, Maryann B.; Kinder, James D.; Bennett, William R.
2005-01-01
Lithium-based polymer batteries for aerospace applications need to be highly conductive from -70 to 70 C. State-of-the-art polymer electrolytes are based on polyethylene oxide (PEO) because of the ability of its ether linkages to solvate lithium ions. Unfortunately, PEO has a tendency to form crystalline regions below 60 C, dramatically lowering conductivity below this temperature. PEO has acceptable ionic conductivities (10(exp -4) to 10(exp -3) S/cm) above 60 C, but it is not mechanically strong. The room-temperature conductivity of PEO can be increased by adding solvent or plasticizers, but this comes at the expense of thermal and mechanical stability. One of NASA Glenn Research Center s objectives in the Polymer Rechargeable System program (PERS) is to develop novel polymer electrolytes that are highly conductive at and below room temperature without added solvents or plasticizers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertem, S. Piril; Caire, Benjamin R.; Tsai, Tsung-Han
Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ionmore » exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.« less
NASA Astrophysics Data System (ADS)
Almomani, Abdallah Mohammad
Ionic electroactive polymer (IEAP) transducers are a class of smart structures based on polymers that can be designed as soft actuators or sensors. IEAP actuators exhibit a high mechanical response to an external electrical stimulus. Conversely, they produce electrical signals when subjected to mechanical force. IEAP transducers are mainly composed of four different components: The ionomeric membrane (usually Nafion) is an ion permeable polymer that acts as the backbone of the transducer. Two conductive network composite (CNC) layer on both sides of the ionomeric membrane that enhance the surface conductivity and serve as an extra reservoir to the electrolytes. The electrolytes, (usually ionic liquids (IL)), which provides the mobile ions. And two outer electrodes on both sides of the transducer to either provide a distributed applied potential across the actuators (usually gold leaves) or to collect the generated signals from the sensors (usually copper electrodes). Any variation in any of these components or the operating conditions will directly affect the performance of the IEAP transduces. In this dissertation, we studied some of the parameters dominating the performance of the IEAP transducers by varying some of the transducers components or the transducers operating conditions in order to enhance their performance. The first study was conducted to understand the influence of ionic liquid concentration on the electromechanical performance of IEAP actuators. The IL weight percentage (wt%) was varied from 10% to 30% and both the electromechanical (induced strain) and the electrochemical (the current flow across the actuators) were studied. The results from this study showed an enhanced electrochemical performance (current flow is higher for higher IL wt%) and a maximum electromechanical strain of approximately 1.4% at 22 wt% IL content. A lower induced strain was noticed for IL wt% lower or higher than 22%. The second study was to investigate the effect of changing the morphology of the CNC on the sensing performance of IEAP stress sensors. In this study, small salt molecules were added to the CNC layers. Salt molecules directly affected the morphology of the CNC layers resulting in a thicker, more porous, and high conductive CNCs. As a result, the ionic conductivity increased through the CNC layers and sensing performance was enhanced significantly. In the third study, a non-linear angular deformation (limb-like motion) was achieved by varying the CNC layers of the IEAP actuators by adding some conjugated polymers (CP) patterns during the fabrication of the actuators. It was found that the segments with the CP layers will only expand and never contract during the actuation process. Depending on the direction of motion and the location of the CP layers, different actuation shapes such as square or triangular shapes were achieved rather than the typical circular bending. In the fourth study, the influence of temperature on the electromechanical properties of the IEAP actuators was examined. In this study, both electromechanical and electrochemical studies were conducted for actuators that were operated at temperatures ranging from 25 °C to 90 °C. The electromechanical results showed a lower cationic curvature with increasing temperature up to 70 °C. On the other hand, a maximum anionic curvature was achieved at 50 °C with a sudden decrease after 50 °C. Actuators started to lose functionality and showed unpredictable performance at temperatures higher than 70 °C. Electrochemically, an enhancement of the ionic conductivity was resulted from increasing temperature up to 80 °C. A sudden increase in current flow was recorded at 90 °C indicating a shorted circuit and actuator failure. Finally, in the fifth study, protons in Nafion membranes were exchanged with other counterions of different Van der Waals volumes. The ionic conductivity was measured for IEAP membranes with different counterions at different temperatures. The results showed higher ionic conductivities across membranes with larger Van der Waals volume counterions and higher temperatures. A different ionic conductivity behavior was also noticed for temperatures ranging from 30 °C to 55 °C than temperatures between 55 °C and 70 °C after fitting the data with the Arrhenius conductivity equation.
Polymer stability and function for electrolyte and mixed conductor applications
NASA Astrophysics Data System (ADS)
Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang
2015-03-01
Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.
Liu, Xubo; Men, Chuanling; Zhang, Xiaohua; Li, Qingwen
2016-09-01
Sulfonated graphenal polymers can be assembled up by poly(vinyl alcohol) adhesion. The porous assembly structure results in a remarkably improved ionic conductivity and thus enhances electrochemical performances such as specific capacitance, capacitance retention, and cycling stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shanmugam, G.; Krishnakumar, V.
2018-05-01
Polymer composite films based on PVA-PVP with AlCl3 as the dopant at different concentrations were prepared using solution casting technique. XRD patterns reveal the increase in amorphousity of the films with AlCl3 doping. Optical absorption studies exhibit that the values of optical absorption coefficient, direct and indirect optical band gaps are found to decrease with increase in AlCl3 concentration. It confirms the charge transfer in complexes between the polymer and the dopant. The dielectric studies show the increase in dielectric constant at low frequency with increasing AlCl3 concentration and temperature. The ac conductivity and ionic conductivity increase with the AlCl3 content and the maximum value at room temperature is found to be 6.89 × 10-4 and 8.05 × 10-5 S/cm for higher AlCl3 doped PVA-PVP film. The estimated ionic conductivity value is three or four orders of magnitude greater than those obtained in the certain representative polymer-salt complexes as reported earlier. Electrical modulus plots confirm the removal of electrode polarization and the low conductivity relaxation time with Al doping. The activation energy estimated from the temperature dependent dc conductivity plot is agreed well with the migration energy calculated from the temperature dependent electric modulus plot.
2012-05-01
fluorophenyl)sulfone (DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL... ionic liquid Q M Zhang, Gokhan Hatipoglu, Yang Liu, Ran Zhao, Mitra Yoonessi, Dean M Tigelaar, Srinivas Tadigadapa Virginia Polytechnic Institute...DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL) uptake and
Skotheim, Terje A.; Okamoto, Yoshiyuki; Lee, Hung S.
1989-01-01
The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10.sup.-4 to 10.sup.-7 S cm.sup.-1 at room temperature.
Skotheim, T.A.; Okamoto, Yoshiyuki; Lee, H.S.
1989-11-21
The present invention relates to ion-conducting solvent-free polymeric systems characterized as being cationic single ion conductors. The solvent-free polymer electrolytes comprise a flexible polymer backbone to which is attached a metal salt, such as a lithium, sodium or potassium salt, of a sterically hindered phenol. The solid polymer electrolyte may be prepared either by (1) attaching the hindered phenol directly to a flexible polymeric backbone, followed by neutralization of the phenolic OH's or (2) reacting the hindered phenol with a polymer precursor which is then polymerized to form a flexible polymer having phenolic OH's which are subsequently neutralized. Preferably the hindered phenol-modified polymeric backbone contains a polyether segment. The ionic conductivity of these solvent-free polymer electrolytes has been measured to be in the range of 10[sup [minus]4] to 10[sup [minus]7] S cm[sup [minus]1] at room temperature.
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru
2016-07-01
Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00569a
Ward, Ashleigh L.; Doris, Sean E.; Li, Longjun; ...
2017-04-27
Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptivemore » ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. Furthermore, the origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Ashleigh L.; Doris, Sean E.; Li, Longjun
Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptivemore » ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. Furthermore, the origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development« less
Characteristics of ionic polymer-metal composite with chemically doped TiO2 particles
NASA Astrophysics Data System (ADS)
Jung, Youngsoo; Kim, Seong Jun; Kim, Kwang J.; Lee, Deuk Yong
2011-12-01
Many studies have investigated techniques to improve the bending performance of ionic polymer-metal composite (IPMC) actuators, including 'doping' of metal particles in the polymer membrane usually by means of physical processes. This study is mainly focused on the characterization of the physical, electrochemical and electromechanical properties of TiO2-doped ionic polymer membranes and IPMCs prepared by the sol-gel method, which results in a uniform distribution of the particles inside the polymer membrane. X-ray and UV-visible spectra indicate the presence of anatase-TiO2 in the modified membranes. TiO2-doped membranes (0.16 wt%) exhibit the highest level of water uptake. The glass transition temperature of these membranes, measured using differential scanning calorimetry (DSC), increases with the increase of the amount of TiO2 in the membrane. Dynamic mechanical analysis (DMA) demonstrated that the storage modulus of dried TiO2-doped ionic polymer membranes increases as the amount of TiO2 in the membrane increases, whereas the storage modulus of hydrated samples is closely related to the level of water uptake. Electrochemical impedance spectroscopy (EIS) shows that the conductivity of TiO2-doped membranes decreases with increasing TiO2 content in spite of an internal resistance drop in the samples. Above all, bending deflection of TiO2-doped IPMC decreased with higher TiO2 content in the membrane while the blocking force of each sample increased with the higher TiO2 content. Additionally, it was determined that the lifetime of IPMC is strongly dependent on the level of water uptake.
Electrochemical and morphological studies of ionic polymer metal composites as stress sensors
Hong, Wangyujue; Almomani, Abdallah; Montazami, Reza
2016-10-04
Ionic polymer metal composites (IPMCs) are the backbone of a wide range of ionic devices. IPMC mechanoelectric sensors are advanced nanostructured transducers capable of converting mechanical strain into easily detectable electric signal. Such attribute is realized by ion mobilization in and through IPMC nanostructure. In this study we have investigated electrochemical and morphological characteristics of IPMCs by varying the morphology of their metal composite component (conductive network composite (CNC)). We have demonstrated the dependence of electrochemical properties on CNC nanostructure as well as mechanoelectrical performance of IPMC sensors as a function of CNC morphology. Lastly, it is shown that themore » morphology of CNC can be used as a means to improve sensitivity of IPMC sensors by 3–4 folds.« less
NASA Astrophysics Data System (ADS)
Nykaza, Jacob Richard
In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk electrode (RDE) experiments determined the interfacial resistance imposed during cell assembly between the AEM, catalyst, and ionomer was a factor in fuel cell performance. Further RDE studies investigated the electrochemical stability of the PIL block copolymer ionomer under applied potentials, where it was determined that potential cycling increased the degradation compared to constant voltage or open circuit voltage studies. The PIL diblock copolymer was then anion exchanged to the bis(trifluoromethane)sulfonamide (TFSI-) anion form and imbibed with a lithium salt and ionic liquid solution for use as a SPE in lithium-ion batteries resulting in a maximum discharge capacity of 112 mAh g-1 at 0.1 C with a Coulombic efficiency greater than 94% over 100 cycles. PIL block copolymers have promising mechanical properties and transport properties (i.e., ion conductivity) in both the hydrated (hydrophilic anions; Br-, OH-) and dry (hydrophobic anions; TFSI-) states resulting in highly conductive, chemically/thermally stable, and mechanically robust solid-state polymer separators for use as AEMs in AFCs and as SPEs in lithium-ion batteries.
Coated particles for lithium battery cathodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mohit; Eitouni, Hany Basam; Pratt, Russell Clayton
Particles of cathodic materials are coated with polymer to prevent direct contact between the particles and the surrounding electrolyte. The polymers are held in place either by a) growing the polymers from initiators covalently bound to the particle, b) attachment of the already-formed polymers by covalently linking to functional groups attached to the particle, or c) electrostatic interactions resulting from incorporation of cationic or anionic groups in the polymer chain. Carbon or ceramic coatings may first be formed on the surfaces of the particles before the particles are coated with polymer. The polymer coating is both electronically and ionically conductive.
Polymer compositions based on PXE
Yang, Jin; Eitouni, Hany Basam; Singh, Mohit
2015-09-15
New polymer compositions based on poly(2,6-dimethyl-1,4-phenylene oxide) and other high-softening-temperature polymers are disclosed. These materials have a microphase domain structure that has an ionically-conductive phase and a phase with good mechanical strength and a high softening temperature. In one arrangement, the structural block has a softening temperature of about 210.degree. C. These materials can be made with either homopolymers or with block copolymers.
Nonequilibrium Simulations of Ion Dynamics in Ionomer Melts
NASA Astrophysics Data System (ADS)
Frischknecht, Amalie
Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. However, to date ionomers do not have sufficiently high conductivities for practical application, most likely because the ions tend to form aggregates, leading to slow ion transport. To build a better understanding of the relationships among ionomer chemistry, morphology, and ion transport, we have performed a series of molecular dynamics simulations and connected aspects of these simulations with experiment. In previous work using both atomistic and coarse-grained models, we showed that precise ionomers (with a fixed spacing between ionic groups along the polymer backbone) exhibit a range of ionic aggregate morphologies, from discrete clusters to percolated aggregates. In this talk I will describe recent simulations of our coarse-grained ionomer melts in an applied electric field. From a constant applied field, we are able to extract the ion mobilities and hence conductivities. We find that ionomers with percolated ionic aggregate morphologies have higher ion mobilities and hence higher conductivities. Application of an oscillating electric field enables us to calculate the frequency-dependent conductivity of the model ionomer melts. The real part of the conductivity has a high frequency peak associated with plasma oscillations, and a very broad low frequency peak associated with ion motions in ionic aggregates. I will end with comments on the connections to atomistic simulations and to experimental probes of ion dynamics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Proton conduction of polyAMPS brushes on titanate nanotubes
Feng, Jun; Huang, Yaqin; Tu, Zhengkai; Zhang, Haining; Pan, Mu; Tang, Haolin
2014-01-01
Proton conducting materials having reasonable proton conductivity at low humidification conditions are critical for decrease in system complexity and improvement of power density for polymer electrolyte membrane fuel cells. This study shows that polyelectrolyte brushes on titanate nanotubes formed through surface-initiated free radical polymerization exhibit less humidity-dependent proton conduction because of the high grafting density of polymer electrolyte chains and well-distribution of ionic groups. The results described in this study provide an idea for design of new proton conductors with effective ion transport served at relatively low humidification levels. PMID:25169431
Gabrielsson, Erik O; Janson, Per; Tybrandt, Klas; Simon, Daniel T; Berggren, Magnus
2014-08-13
Full-wave rectification of ionic currents is obtained by constructing the typical four-diode bridge out of ion conducting bipolar membranes. Together with conjugated polymer electrodes addressed with alternating current, the bridge allows for generation of a controlled ionic direct current for extended periods of time without the production of toxic species or gas typically arising from electrode side-reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of blending and nanoparticles on the ionic conductivity of solid polymer electrolyte systems
NASA Astrophysics Data System (ADS)
Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.
2018-05-01
In the present work, a polymer electrolyte blend containing polymers Poly ethylene oxide (PEO) and Poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) was prepared. The polymer blend was complexed with potassium trifluoromethanesulfonate (KCF3SO3), and titanium oxide nanoparticles (TiO2) (10nm size) were dispersed in to the complex at different weight percentages. The conductivity due to ions in the blend is determined by Ac impedance measurements in the frequency range of 10Hz-1MHz. The nano composite polymer blend containing 5wt% of TiO2 shows a conductivity of 7.95×10-5Scm-1, which is almost 1.5 orders more than polymer electrolyte with PEO as a polymer. XRD studies show a decrease in the coherence length of XRD peaks on addition of nanoparticles, which is due to increase the amorphous phase in the systems. Temperature dependence conductivity studies of the systems shows that, activation energy decreases with increase in the percentage of nanoparticles in the blend.
Wojnarowska, Zaneta; Feng, Hongbo; Diaz, Mariana; ...
2017-09-05
Polymerized ionic liquids (polyILs), composed mostly of organic ions covalently bonded to the polymer backbone and free counterions, are considered as an ideal electrolytes for various electrochemical devices, including fuel cells, supercapacitors and batteries. Despite large structural diversity of these systems, all of them reveal a universal but poorly understood feature - a charge transport faster than the segmental dynamics. Here, to address this issue, we have studied three novel polymer electrolyte membrane for fuel cells as well as four single-ion conductors including highly conductive siloxane-based polyIL. Our ambient and high pressure studies revealed fundamental differences in the conducting propertiesmore » of the examined systems. Finally, we demonstrate that the proposed methodology is a powerful tool to identify the charge transport mechanism in polyILs in general and thereby contribute to unraveling the microscopic nature of the decoupling phenomenon in these materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojnarowska, Zaneta; Feng, Hongbo; Diaz, Mariana
Polymerized ionic liquids (polyILs), composed mostly of organic ions covalently bonded to the polymer backbone and free counterions, are considered as an ideal electrolytes for various electrochemical devices, including fuel cells, supercapacitors and batteries. Despite large structural diversity of these systems, all of them reveal a universal but poorly understood feature - a charge transport faster than the segmental dynamics. Here, to address this issue, we have studied three novel polymer electrolyte membrane for fuel cells as well as four single-ion conductors including highly conductive siloxane-based polyIL. Our ambient and high pressure studies revealed fundamental differences in the conducting propertiesmore » of the examined systems. Finally, we demonstrate that the proposed methodology is a powerful tool to identify the charge transport mechanism in polyILs in general and thereby contribute to unraveling the microscopic nature of the decoupling phenomenon in these materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id
Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensilemore » resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.« less
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Bennett, William R.
2003-01-01
A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.
Continuous process to produce lithium-polymer batteries
Chern, T.S.H.; Keller, D.G.; MacFadden, K.O.
1998-05-12
Solid polymer electrolytes are extruded with active electrode material in a continuous, one-step process to form composite electrolyte-electrodes ready for assembly into battery cells. The composite electrolyte electrode sheets are extruded onto current collectors to form electrodes. The composite electrodes, as extruded, are electronically and ionically conductive. The composite electrodes can be over coated with a solid polymer electrolyte, which acts as a separator upon battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte separator has low resistance. 1 fig.
Computer Simulations of Ion Transport in Polymer Electrolyte Membranes.
Mogurampelly, Santosh; Borodin, Oleg; Ganesan, Venkat
2016-06-07
Understanding the mechanisms and optimizing ion transport in polymer membranes have been the subject of active research for more than three decades. We present an overview of the progress and challenges involved with the modeling and simulation aspects of the ion transport properties of polymer membranes. We are concerned mainly with atomistic and coarser level simulation studies and discuss some salient work in the context of pure binary and single ion conducting polymer electrolytes, polymer nanocomposites, block copolymers, and ionic liquid-based hybrid electrolytes. We conclude with an outlook highlighting future directions.
NASA Astrophysics Data System (ADS)
Shmukler, Liudmila E.; Fadeeva, Yuliya A.; Glushenkova, Ekaterina V.; Nguyen, Van Thuc; Safonova, Liubov P.
2018-04-01
The proton-conducting gel electrolytes (PCGEs) based on PMMA, PVdF or PVdF-HFP doped with solutions of phosphonic acid or ammonium based protic ionic liquids (PILs) in DMF have been synthesized. Rather high values of the conductivity (10-4-10-3 S cm-1) have been reached at low dopant concentrations (up to 1 mol l-1). The influence of the nature of both polymeric matrix and dopant as well as dopant concentration on the conductivity values was discussed. It was established that the dependence of conductivity on the nature of dopant, but not the polymeric matrix, was more pronounced.
Ion-Conducting Organic/Inorganic Polymers
NASA Technical Reports Server (NTRS)
Kinder, James D.; Meador, Mary Ann B.
2007-01-01
Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.
Development of multilayer conducting polymer actuator for power application
NASA Astrophysics Data System (ADS)
Ikushima, Kimiya; Kudoh, Yuji; Hiraoka, Maki; Yokoyama, Kazuo; Nagamitsu, Sachio
2009-03-01
In late years many kinds of home-use robot have been developed to assist elderly care and housework. Most of these robots are designed with conventional electromagnetic motors. For safety it is desirable to replace these electromagnetic motors with artificial muscle. However, an actuator for such a robot is required to have simple structure, low driving voltage, high stress generation, high durability, and operability in the air. No polymer actuator satisfying all these requirements has been realized yet. To meet these we took following two approaches focusing on conducting polymer actuators which can output high power in the air. (Approach 1) We have newly developed an actuator by multiply laminating ionic liquid infiltrated separators and polypyrrole films. Compared with conventional actuator that is driven in a bath of ionic liquid, the new actuator can greatly increase generated stress since the total sectional area is tremendously small. In our experiment, the new actuator consists of minimum unit with thickness of 128um and has work/weight ratio of 0.92J/kg by laminating 9 units in 0.5Hz driving condition. In addition, the driving experiment has shown a stable driving characteristic even for 10,000 cycles durability test. Furthermore, from our design consideration, it has been found that the work/weight ratio can be improved up to 8J/kg (1/8 of mammalian muscle of 64J/kg) in 0.1Hz by reducing the thickness of each unit to 30um. (Approach 2) In order to realize a simplified actuator structure in the air without sealing, we propose the use of ionic liquid gel. The actuation characteristic of suggested multilayered actuator using ionic liquid gel is simulated by computer. The result shows that performance degradation due to the use of ionic liquid gel is negligible small when ionic liquid gel with the elasticity of 3kPa or less is used. From above two results it is concluded that the proposed multilayerd actuator is promising for the future robotic applications because it has advantages of high work/weight ratio and in-the-air operation, in addition to advantages of conventional polymer actuators.
NASA Astrophysics Data System (ADS)
Pandey, G. P.; Hashmi, S. A.
2013-12-01
Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.
Understanding ion association states and molecular dynamics using infrared spectroscopy
NASA Astrophysics Data System (ADS)
Masser, Hanqing
A molecular level understanding of the ion transport mechanism within polymer electrolytes is crucial to the further development for advanced energy storage applications. This can be achieved by the identification and quantitative measurement of different ion species in the system and further relating them to the ion conductivity. In the first part of this thesis, research is presented towards understanding the ion association states (free ions, ion pairs and ion aggregates) in ionomer systems, and the correlation of ion association states, ion conduction, polymer dynamics, and morphology. Ion conductivity in ionomers can be improved by lowering glass transition temperature, increasing polymer ion solvation ability, and adjusting ionomer structural variables such as ion content, cation type and side chain structure. These effects are studied in three ionomer systems respectively, using a combination of characterization methods. Fourier Transform Infrared Spectroscopy (FTIR) identifies and quantifies the ion association states. Dielectric Spectroscopy (DRS) characterizes ion conductivity and polymer and ion dynamics. X-ray scattering reveals changes in morphology. The influence of a cation solvating plasticizer on a polyester ionomer is systematically investigated with respect to ion association states, ion and polymer dynamics and morphology. A decrease in the number ratio of ion aggregates with increased plasticizer content and a slight increase at elevated temperature are observed in FTIR. Similar results are also detected by X-ray scattering. As determined from dielectric spectroscopy, ion conductivity increases with plasticizer content, in accordance with the decrease in glass transition temperature. Research on copolymer of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) based ionomers further develops an understanding of the trade-off between ion solvation and segmental dynamics. Upon the incorporation of PTMO, the majority of the PTMO microphase separates from the PEO-rich microphase, and ionic groups are preferentially solvated by PEO chains and reside in the PEO-rich microphase. As the ratio of PTMO increases, the fraction of aggregates increases, resulting in more highly coordinated aggregation states. Results on ion association states are in good agreement with previous results on ion conductivity, polymer dynamics and morphology. The effects of ion content, cation type and ionic side chain structure on ion association states are systemically studied in a series of ionomers with short ethylene oxide and ionic sulfonated styrene side chains, and then correlated to the ion and polymer dynamic characterization. It is found that ionomers with modest ion content, large cation and styrene ionic side chain have the most "free ions" and ion pairs, and highest ion conductivity. Ion conduction in ionomers is optimized by systematically changing their chemical structures. In addition to knowledge of ion association states, a IR band shape also contains information on molecular dynamics. In companion investigation, the vibrational relaxation and dynamic transitions of conformationally insensitive normal modes in two different polymer systems (atactic polystyrene and deuterated poly(methyl methacrylate)) are studied. The information on vibrational relaxations is resolved by conducting precisely controlled FTIR experiments, applying specialized curve resolving data analysis, and calculating time correlation functions through numerical Fourier transformation. The vibrational relaxations of these modes can be described by a two process model: a fast process on the time scale of 0.01 ps, which is inhomogeneously broadened by a slow process on the time scale of picoseconds.
Electrochemical testing of industrially produced PEO-based polymer electrolytes
NASA Astrophysics Data System (ADS)
Appetecchi, G. B.; Alessandrini, F.; Duan, R. G.; Arzu, A.; Passerini, S.
The present report describes the results of the electrochemical tests performed on polyethyleneoxide-based polymer electrolyte thin films industrially manufactured by blown-extrusion. The polymer electrolyte composition was PEO 20 LiCF 3SO 3: 16.7% γLiAlO 2. The polymer electrolyte film was tested to evaluate the ionic conductivity as well as the interfacial properties with lithium metal anodes. The work was developed within the advanced lithium polymer electrolyte (ALPE) project, an Italian project devoted to the realization of lithium polymer batteries for electric vehicle applications, in collaboration with Union Carbide.
NASA Astrophysics Data System (ADS)
Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun
2016-10-01
A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.
Liang, Wuu-Jyh; Chen, Ying-Pin; Wu, Chien-Pang; Kuo, Ping-Lin
2005-12-29
The chemical-covalent polyether-siloxane hybrids (EDS) doped with various amounts of LiClO4 salt were characterized by FT-IR, DSC, TGA, and solid-state NMR spectra as well as impedance measurements. These observations indicate that different types of complexes by the interactions of Li+ and ClO4- ions are formed within the hybrid host, and the formation of transient cross-links between Li+ ions and ether oxygens results in the increase in T(g) of polyether segments and the decrease in thermal stability of hybrid electrolyte. Initially a cation complexation dominated by the oxirane-cleaved cross-link site and PEO block is present, and after the salt-doped level of O/Li+ = 20, the complexation through the PPO block becomes more prominent. Moreover, a significant degree of ionic association is examined in the polymer-salt complexes at higher salt uptakes. A VTF-like temperature dependence of ionic conductivity is observed in all of the investigated salt concentrations, implying that the diffusion of charge carrier is assisted by the segmental motions of the polymer chains. The behavior of ion transport in these hybrid electrolytes is further correlated with the interactions between ions and polymer host.
Searching for a new ionomer for 3D printable ionic polymer-metal composites: Aquivion as a candidate
NASA Astrophysics Data System (ADS)
Trabia, Sarah; Olsen, Zakai; Kim, Kwang J.
2017-11-01
The work presented in this paper introduces Aquivion as a potential candidate for additive manufacturing of ionomeric polymers for the application of IPMCs. First, Aquivion was characterized and compared with Nafion to show that it has the similar qualities, with the major difference being the ionic conductivity. Ionic polymer-metal composites (IPMCs) were fabricated using off-the-shelf membranes of Nafion and Aquivion. The actuation tests showed improved performance for an IPMC with Aquivion as the base compared to an IPMC with a Nafion base. With these results in mind, additive manufacturing of unique shapes using Aquivion filament was studied. A 3D printer was modified to work with Aquivion filament and the polymer was printed into various shapes. Using the printed membranes, IPMCs were fabricated using an electroless plating process. Nafion-based and printed Aquivion-based IPMCs were tested for their performance in back relaxation, frequency driven actuation, blocking force, and mechano-electric sensing. The printed Aquivion-based IPMCs performed comparably to Nafion-based IPMC in back relaxation and showed significantly improved performance in frequency driven actuation, blocking force generation, and mechano-electric sensing.
Quaternary Polymer Electrolytes Containing an Ionic Liquid and a Ceramic Filler.
Sharova, Varvara; Kim, Guk-Tae; Giffin, Guinevere A; Lex-Balducci, Alexandra; Passerini, Stefano
2016-07-01
In this work, the individual and combined effects of an ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and ceramic filler silicon dioxide on the thermal and electrochemical properties of poly(ethylene oxide) electrolytes have been investigated. The electrolyte containing both components has the lowest glass transition (-60 °C) and melting temperatures (27 °C), the highest conductivity at any investigated temperature, and the highest limiting current density (at 40 °C). This solid polymer electrolyte also exhibits the best long-term cycling performance in Li/LiFePO4 cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Paulsen, Bryan D.; Frisbie, C. Daniel
2012-02-01
Ionic liquids, used in place of traditional gate dielectric materials, allow for the accumulation of very high 2D and 3D charge densities (>10^14 #/cm^2 and >10^21 #/cm^3 respectively) at low voltage (<5 V). Here we study the electrochemical gating of the benchmark semiconducting polymer poly(3-hexylthiophene) (P3HT) with the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([EMI][FAP]). The electrochemical stability of [EMI][FAP] allowed the reproducible accumulation of 2 x 10^21 hole/cm^3, or one hole (and stabilizing anion dopant) per every two thiophene rings. A finite potential/charge density window of high electrical conductivity was observed with hole mobility reaching a maximum of 0.86 cm^2/V s at 0.12 holes per thiophene ring. Displacement current measurements, collected versus a calibrated reference electrode, allowed the mapping of the highly structured and extremely broad density of states of the P3HT/[EMI][FAP] doped composite. Variable temperature and charge density hole transport measurements revealed hole transport to be thermally activated and non-monotonic, displaying a activation energy minimum of ˜20 meV in the region of maximum conductivity and hole mobility. To show the generality of this result, the study was extended to an additional four ionic liquids and three semiconducting polymers.
Abdelhamid, Muhammad E; Murdoch, Timothy; Greaves, Tamar L; O'Mullane, Anthony P; Snook, Graeme A
2015-07-21
We report the synthesis of new protic ionic liquids (PILs) based on aniline derivatives and the use of high-throughput (HT) techniques to screen possible candidates. In this work, a simple HT method was applied to rapidly screen different aniline derivatives against different acids in order to identify possible combinations that produce PILs. This was followed by repeating the HT process with a Chemspeed robotic synthesis platform for more accurate results. One of the successful combinations were then chosen to be synthesised on a larger scale for further analysis. The new PILs are of interest to the fields of ionic liquids, energy storage and especially, conducting polymers as they serve as solvents, electrolytes and monomers at the same time for possible electropolymerisation (i.e. a self-contained polymer precursor).
New Polymer Electrolyte Cell Systems
NASA Technical Reports Server (NTRS)
Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.
2004-01-01
PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.
Effect of Al2O3 in poly(methyl methacrylate) composite polymer electrolytes
NASA Astrophysics Data System (ADS)
Sun, C. C.; You, A. H.; Teo, L. L.; Thong, L. W.
2018-05-01
In this work, the effect of inert fillers on poly(methyl methacrylate) (PMMA) composite polymer electrolytes (CPEs) are investigated. The PMMA-LiCF3SO3-EC-Al2O3 composite polymer electrolytes were prepared using solution casting method at room temperature. Lithium trifluoromethanesulfonate (LiCF3SO3) is used as the electrolyte salt which plays an important role in Li ion transfer. In order to soften the polymer matrix, ethylene carbonate (EC) is introduced into the CPEs to help in the disassociation of lithium salt ion pairs. Nano sized aluminium oxide (Al2O3) is then incorporated to enhance mechanical strength and ionic conductivity of the polymer electrolyte. The optimum of 2 wt.% 50 nm Al2O3 was added into the PMMA polymer electrolyte sample. Through Electrochemical Impedance Spectroscopy (EIS) measurements, the highest ionic conductivity at room temperature is determined as 1.52×10-4 S/cm. FTIR spectra analysis showed CH2 twisting mode at 1383.43 cm-1, C=O stretching mode at 1721.56 cm-1 which proven the interaction between host polymer and lithium salt and CH3 stretching mode at 2981.34 cm-1. XRD analysis had also been performed to study the structural behaviour of the PMMA polymer electrolyte. The intense peak at position 2θ angle of 15.04°, 30.92° and 45.58° occur upon interaction with Al2O3. Lastly, the surface morphology is studied through SEM+EDX analysis.
NASA Astrophysics Data System (ADS)
Ramesh, S.; Shanti, R.; Morris, Ezra
2012-01-01
The principle motivation of this research work is to develop environmental-friendly polymer electrolytes utilizing corn starch (CS), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 1-allyl-3-methylimidazolium chloride ([Amim] Cl) by solution casting technique. The highest ionic conductivity value was achieved for the composition CS:LiTFSI:[Amim] Cl (14 wt. %:6 wt. %:80 wt. %) which exhibits the ionic conductivity value of 5.68 × 10 -2 S cm -1 at 40 °C with the activation energy of 4.86 kJ mol -1. This sample possess high concentration of amorphous phase coupled with greater presence of conducting cations (lithium, Li + and imidazolium, [Amim] +) as depicted by the dielectric loss tangent plot. The conductivity-temperature plots were found to obey Arrhenius rule in which the conductivity mechanism is thermally assisted. The melting temperature of polymer electrolyte decreases with increase in [Amim] Cl content. This is attributed to the good miscibility of [Amim] Cl in CS:LiTFSI matrix inducing structural disorderliness. Reference to the TGA results it is found that the addition of [Amim] Cl diminishes the heat-resistivity whereas enhancement in the thermal stability occurred at the initial addition and declines with further doping of [Amim] Cl.
NASA Astrophysics Data System (ADS)
Jho, Jae Y.; Han, Man J.; Park, Jong H.; Lee, Jang Y.; Wang, Hyuck S.
2005-05-01
On purpose to overcome the limit of conventional ionic polymer-metal composites (IPMC) using the commercial ionic membranes, novel IPMCs with radiation-grafted ion-exchange membranes were prepared. Poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-co-HFP) and poly(ethylene-co-tetrafluoroethylene) (ETFE) were radiation-grafted with styrene, and then sulfonated. The properties of the membranes were modulated by controlling the amount of polystyrene sulfonic acid (PSSA) groups in the membranes. The amount of PSSA groups were tuned by controlling the total absorbed dose of γ-ray. The membranes were characterized by measuring the water-uptake, the ion-exchange capacity, and the ion conductivity. The performance of the IPMCs using these membranes were analyzed with laser displacement meter. They exhibited much larger bending displacement in comparison with Nafion-based IPMC. With increasing the amount of PSSA groups, the maximum displacement and the bending speed were remarkably increased. The results made sure that the property of ion-exchange membrane was the key element affecting the actuation performance of IPMC.
Dispersions of polymer ionomers: I.
Capek, Ignác
2004-12-31
The principal subject discussed in the current paper is the effect of ionic functional groups in polymers on the formation of nontraditional polymer materials, polymer blends or polymer dispersions. Ionomers are polymers that have a small amount of ionic groups distributed along a nonionic hydrocarbon chain. Specific interactions between components in a polymer blend can induce miscibility of two or more otherwise immiscible polymers. Such interactions include hydrogen bonding, ion-dipole interactions, acid-base interactions or transition metal complexation. Ion-containing polymers provide a means of modifying properties of polymer dispersions by controlling molecular structure through the utilization of ionic interactions. Ionomers having a relatively small number of ionic groups distributed usually along nonionic organic backbone chains can agglomerate into the following structures: (1) multiplets, consisting of a small number of tightly packed ion pairs; and (2) ionic clusters, larger aggregates than multiplets. Ionomers exhibit unique solid-state properties as a result of strong associations among ionic groups attached to the polymer chains. An important potential application of ionomers is in the area of thermoplastic elastomers, where the associations constitute thermally reversible cross-links. The ionic (anionic, cationic or polar) groups are spaced more or less randomly along the polymer chain. Because in this type of ionomer an anionic group falls along the interior of the chain, it trails two hydrocarbon chain segments, and these must be accommodated sterically within any domain structure into which the ionic group enters. The primary effects of ionic functionalization of a polymer are to increase the glass transition temperature, the melt viscosity and the characteristic relaxation times. The polymer microstructure is also affected, and it is generally agreed that in most ionomers, microphase-separated, ion-rich aggregates form as a result of strong ion-dipole attractions. As a consequence of this new phase, additional relaxation processes are often observed in the viscoelastic behavior of ionomers. Light functionalization of polymers can increase the glass transition temperature and gives rise to two new features in viscoelastic behavior: (1) a rubbery plateau above T(g) and (2) a second loss process at elevated temperatures. The rubbery plateau was due to the formation of a physical network. The major effect of the ionic aggregate was to increase the longer time relaxation processes. This in turn increases the melt viscosity and is responsible for the network-like behavior of ionomers above the glass transition temperature. Ionomers rich in polar groups can fulfill the criteria for the self-assembly formation. The reported phenomenon of surface micelle formation has been found to be very general for these materials.
Costa, Luciano T; Ribeiro, Mauro C C
2006-05-14
Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.
Electroactive semi-interpenetrating polymer networks architecture with tunable IR reflectivity
NASA Astrophysics Data System (ADS)
Chevrot, C.; Teyssié, D.; Verge, P.; Goujon, L.; Tran-Van, F.; Vidal, F.; Aubert, P. H.; Peralta, S.; Sauques, L.
2011-04-01
A promising alternative of multi-layered devices showing electrochromic properties results from the design of a self-supported semi-interpenetrating polymer network (semi-IPN) including an electronic conductive polymer (ECP) formed within. The formation of the ECP in the network has already been described by oxidative polymerization using iron trichloride as an oxidant and leading to conducting semi-IPN with mixed electronic and ionic conductivities as well as convenient mechanical properties. This presentation relates to the elaboration of such semi-IPN using polyethyleneoxide (PEO) network or a PEO/NBR (Nitrile Butadiene Rubber) IPN in which a linear poly (3,4-ethylenedioxythiophene) (PEDOT) is formed symmetrically and selectively as very thin layers very next to the two main faces of the film matrix. PEO/PEDOT semi-IPNs lead to interesting optical reflective properties in the IR between 0.8 and 25 μm. Reflectance contrasts up to 35 % is observed when, after swelling in an ionic liquid, a low voltage is applied between the two main faces of the film. However the low flexibility and brittleness of the film and a slow degradation in air at temperature up from 60°C prompted to replace the PEO matrix by a flexible PEO/NBR IPN one. Indeed, the combination of NBR and PEO in an IPN leads to materials possessing flexible properties, good ionic conductivity at 25°C as well as a better resistance to thermal ageing. Finally, NBR/PEO/PEDOT semi-IPNs allow observing comparable reflectance contrast in the IR range than those shown by PEO/PEDOT semi-IPNs.
Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho
2017-10-04
We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.
NASA Astrophysics Data System (ADS)
Park, Il-Seok; Tiwari, Rashi; Kim, Kwang J.
2008-03-01
In this paper we are reporting a newely developed IPMC fabrication method, "IPMC Paint", which can be directly sprayed onto any complex surface. In order to fabricate the IPMC paint, liquid Nafion TM was used for the ionic conducting polymer instead of the typical film/sheet type Nafion TM. The viscosity of liquid Nafion TM was adjusted by adding Polyvinylpyrrolidone (PVP) to perform spray painting. Modified Nafion was sprayed onto the conducting substrate, Polyfoil TM which acts as base electrode layer. After three times spraying, ionic polymer layer has 45 μm thickness and 10 μm of surface roughness. Sensing tests show that IPMC paint sensor has more sensitivity (+/- 0.06 of producing voltage) than that of the typical IPMC (+/- 0.005 of producing voltage) when dynamic bending with 10 Hz frequency and 1.3 cm of displacement is applied to.
Ion Transport via Structural Relaxations in Polymerized Ionic Liquids
NASA Astrophysics Data System (ADS)
Ganesan, Venkat; Mogurampelly, Santosh
We study the mechanisms underlying ion transport in poly(1-butyl-3-vinylimidazolium-hexafluorophosphate) polymer electrolytes. We consider polymer electrolytes of varying polymerized ionic liquid to ionic liquid (polyIL:IL) ratios and use atomistic molecular dynamics (MD) simulations to probe the dynamical and structural characteristics of the electrolyte. Our results reveal that anion diffusion along polymer backbone occurs primarily viathe formation and breaking of ion-pairs involving threepolymerized cationic monomers of twodifferent polymer chains. Moreover, we observe that the ionic diffusivities exhibit a direct correlation with the structural relaxation times of the ion-pairs and hydrogen bonds (H-bonds). These results provide new insights into the mechanisms underlying ion transport in polymerized ionic liquid electrolytes.
Electronic and Ionic Transport in Processable Conducting Polymers
1991-05-28
doping with nitrosonium fluoborate. 6. Polypyrrole containing luminescent ions has been shown to be useful as in-situ probes of ion transport during...blends, ion transport, fibers, theoretical calculations ABSTRACT (Continue on reverse if necessary and identify by block number) A summary of the research...polymer/dopant ion interactions, symmereically and asymmetrically substituted poly(di-2-heterocycle-2,5-disubstitutedphenylenes), poly(5
NASA Astrophysics Data System (ADS)
Narasimha Rao, B.; Padma suvarna, R.; Giribabu, L.; Raghavender, M.; kumar, V. Ramesh
2018-02-01
Poly (ethylene oxide) (PEO) based gel polymer electrolytes (GPEs) with added acetamide, NaI/I2 have been prepared for dye-sensitized solar cells application (DSSC). The Dye-sensitized solar cell investigated the performance of the optimized gel polymer electrolyte. GPEs synthesized by adding up of acetamide with different wt% in poly (ethylene oxide) (PEO) and poly (ethylene glycol) dimethyl ether (PEGDME) with NaI/I2. A maximum power conversion efficiency of 5.92% is achieved for PEO/PEGDME with 10 wt% acetamide in the photovoltaic performance under 100 mW/cm2 illumination and it exhibits maximum ionic conductivity (σ = 2.81×10-3 S/cm) among all electrolytes, compared to PEO without acetamide (η = 4.35%). The gain in open circuit voltage (Voc) was observed for GPEs due to the decrease in the recombination effect and electron lifetime increases by the addition of acetamide on the PEO. The fill factor (FF) is increased due to the growth in the ionic conductivity and amorphous nature of the GPE increases by the addition of acetamide on the PEO.
Coarse-Grained Molecular Dynamics Simulation of Ionic Polymer Networks
2008-07-01
AFRL-RX-WP-TP-2009-4198 COARSE-GRAINED MOLECULAR DYNAMICS SIMULATION OF IONIC POLYMER NETWORKS (Postprint) T.E. Dirama, V. Varshney, K.L...GRAINED MOLECULAR DYNAMICS SIMULATION OF IONIC POLYMER NETWORKS (Postprint) 5a. CONTRACT NUMBER FA8650-05-D-5807-0052 5b. GRANT NUMBER 5c...We studied two types of networks which differ only by one containing ionic pairs that amount to 7% of the total number of bonds present. The stress
Influence of confinement on polymer-electrolyte relaxational dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanotti, J.-M.; Smith, L. J.; Price, D. L.
2004-01-01
Conception and industrial production of viable high specific energy/power batteries is a central issue for the development of non-polluting vehicles. In terms of stored energy and safety, solid-state devices using polymer electrolytes are highly desirable. One of the most studied systems is PEO (polyethylene oxide) complexed by Li salts. Polymer segmental motions and ionic conductivity are closely related. Bulk PEO is actually a biphasic system where an amorphous and a crystalline state (Tm 335 K) coexist. To improve ionic conduction in those systems requires a significant increase of the amorphous phase fraction where lithium conduction is known to mainly takemore » place. Confinement strongly affects properties of condensed matter and in particular the collective phenomena inducing crystallization. Confinement of the polymer matrix is therefore a possible alternative route to the unpractical use of high temperature. Results of a quasi-elastic incoherent neutron scattering study of the influence of confinement on polyethylene oxide (PEO) and (PEO)8Li+[(CF3SO2)2N]- (or (POE)8LiTFSI) dynamics are presented. The nano-confining media is Vycor, a silica based hydrophilic porous glass (characteristic size of the 3D pore network 50 {angstrom}). As expected, the presence of Li salt slows down the bulk polymer dynamics. The confinement also affects dramatically the apparent mean-square displacement of the polymer. Local relaxational PEO dynamics is described KWW model. We also present an alternate model and show how the detailed polymer dynamics (correlation times and local geometry of the motions) can be described without the use of such stretched exponentials so as to access a rheology-related meaningful physical quantity: the monomeric friction coefficient.« less
Linear finite-difference bond graph model of an ionic polymer actuator
NASA Astrophysics Data System (ADS)
Bentefrit, M.; Grondel, S.; Soyer, C.; Fannir, A.; Cattan, E.; Madden, J. D.; Nguyen, T. M. G.; Plesse, C.; Vidal, F.
2017-09-01
With the recent growing interest for soft actuation, many new types of ionic polymers working in air have been developed. Due to the interrelated mechanical, electrical, and chemical properties which greatly influence the characteristics of such actuators, their behavior is complex and difficult to understand, predict and optimize. In light of this challenge, an original linear multiphysics finite difference bond graph model was derived to characterize this ionic actuation. This finite difference scheme was divided into two coupled subparts, each related to a specific physical, electrochemical or mechanical domain, and then converted into a bond graph model as this language is particularly suited for systems from multiple energy domains. Simulations were then conducted and a good agreement with the experimental results was obtained. Furthermore, an analysis of the power efficiency of such actuators as a function of space and time was proposed and allowed to evaluate their performance.
Solid State Ionics Advanced Materials for Emerging Technologies
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.
2006-06-01
Keynote lecture. Challenges and opportunities of solid state ionic devices / W. Weppner -- pt. I. Ionically conducting inorganic solids. Invited papers. Multinuclear NMR studies of mass transport of phosphoric acid in water / J. R. P. Jayakody ... [et al.]. Crystalline glassy and polymeric electrolytes: similarities and differences in ionic transport mechanisms / J.-L. Souquet. 30 years of NMR/NQR experiments in solid electrolytes / D. Brinkmann. Analysis of conductivity and NMR measurements in Li[symbol]La[symbol]TiO[symbol] fast Li[symbol] ionic conductor: evidence for correlated Li[symbol] motion / O. Bohnké ... [et al.]. Transport pathways for ions in disordered solids from bond valence mismatch landscapes / S. Adams. Proton conductivity in condensed phases of water: implications on linear and ball lightning / K. Tennakone -- Contributed papers. Proton transport in nanocrystalline bioceramic materials: an investigative study of synthetic bone with that of natural bone / H. Jena, B. Rambabu. Synthesis and properties of the nanostructured fast ionic conductor Li[symbol]La[symbol]TiO[symbol] / Q. N. Pham ... [et al.]. Hydrogen production: ceramic materials for high temperature water electrolysis / A. Hammou. Influence of the sintering temperature on pH sensor ability of Li[symbol]La[symbol]TiO[symbol]. Relationship between potentiometric and impedance spectroscopy measurements / Q. N. Pham ... [et al.]. Microstructure chracterization and ionic conductivity of nano-sized CeO[symbol]-Sm[symbol]O[symbol] system (x=0.05 - 0.2) prepared by combustion route / K. Singh, S. A. Acharya, S. S. Bhoga. Red soil in Northern Sri Lanka is a natural magnetic ceramic / K. Ahilan ... [et al.]. Neutron scattering of LiNiO[symbol] / K. Basar ... [et al.]. Preparation and properties of LiFePO[symbol] nanorods / L. Q. Mai ... [et al.]. Structural and electrochemical properties of monoclinic and othorhombic MoO[symbol] phases / O. M. Hussain ... [et al.]. Preparation of Zircon (ZrSiO[symbol]) ceramics via solid state sintering of Zr)[symbol] and SiO[symbol] and the effect of dopants on the zircon yield / U. Dhanayake, B. S. B. Karunaratne. Preparation and properties of vanadium doped ZnTe cermet thin films / M. S. Hossain, R. Islam, K. A. Khan. Dynamical properties and electronic structure of lithium-ion conductor / M. Kobayashi ... [et al.]. Cuprous ion conducting Montmorillonite-Polypyrrole nanocomposites / D. M. M. Krishantha ... [et al.]. Frequency dependence of conductivity studies on a newly synthesized superionic solid solution/mixed system: [0.75AgI: 0.25AgCl] / R. K. Nagarch, R. Kumar. Diffuse X-ray and neutron scattering from Powder PbS / X. Lian ... [et al.]. Electron affinity and work function of Pyrolytic MnO[symbol] thin films prepared from Mn(C[symbol]H[symbol]O[symbol])[symbol].4H[symbol]) / A. K. M. Farid Ul Islam, R. Islam, K. A. Khan. Crystal structure and heat capacity of Ba[symbol]Ca[symbol]Nb[symbol]O[symbol] / T. Shimoyama ... [et al.]. XPS and impedance investigations on amorphous vanadium oxide thin films / M. Kamalanathan ... [et al.]. Sintering and mixed electronic-ionic conducting properties of La[symbol]Sr[symbol]NiO[symbol] derived from a polyaminocarboxylate complex precursor / D.-P. Huang ... [et al.]. Preparation and characteristics of ball milled MgH[symbol] + M (M= Fe, VF[symbol] and FeF[symbol]) nanocomposites for hydrogen storage / N. W. B. Balasooriya, Ch. Poinsignon. Structural studies of oxysulfide glasses by X-ray diffraction and molecular dynamics simulation / R. Prasada Rao, M. Seshasayee, J. Dheepa. Synthesis, sintering and oxygen ionic conducting properties of Bi[symbol]V[symbol]Cu[symbol]O[symbol] / F. Zhang ... [et al.]. Synthesis and transport characteristics of PbI[symbol]-Ag[symbol]O-Cr[symbol]O[symbol] superioninc system / S. A. Suthanthiraraj, V. Mathew. Electronic conductivity of La[symbol]Sr[symbol]Ga[symbol]Mg[symbol]Co[symbol]O[symbol] electrolytes / K. Yamaji ... [et al.] -- pt. II. Electrode materials. Invited papers. Cathodic properties of Al-doped LiCoO[symbol] prepared by molten salt method Li-Ion batteries / M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari. Layered ion-electron conducting materials / M. A. Santa Ana, E. Benavente, G. González. LiNi[symbol]Co[symbol]O[symbol] cathode thin-film prepared by RF sputtering for all-solid-state rechargeable microbatteries / X. J. Zhu ... [et al.] -- Contributed papers. Contributed papers. Nanocomposite cathode for SOFCs prepared by electrostatic spray deposition / A. Princivalle, E. Djurado. Effect of the addition of nanoporous carbon black on the cycling characteristics of Li[symbol]Co[symbol](MoO[symbol])[symbol] for lithium batteries / K. M. Begam, S. R. S. Prabaharan. Protonic conduction in TiP[symbol]O[symbol] / V. Nalini, T. Norby, A. M. Anuradha. Preparation and electrochemical LiMn[symbol]O[symbol] thin film by a solution deposition method / X. Y. Gan ... [et al.]. Synthesis and characterization LiMPO[symbol] (M = Ni, Co) / T. Savitha, S. Selvasekarapandian, C. S. Ramya. Synthesis and electrical characterization of LiCoO[symbol] LiFeO[symbol] and NiO compositions / A. Wijayasinghe, B. Bergman. Natural Sri Lanka graphite as conducting enhancer in manganese dioxide (Emd type) cathode of alkaline batteries / N. W. B. Balasooriya ... [et al.]. Electrochemical properties of LiNi[symbol]Al[symbol]Zn[symbol]O[symbol] cathode material synthesized by emulsion method / B.-H. Kim ... [et al.]. LiNi[symbol]Co[symbol]O[symbol] cathode materials synthesized by particulate sol-gel method for lithium ion batteries / X. J. Zhu ... [et al.]. Pulsed laser deposition of highly oriented LiCoO[symbol] and LiMn[symbol]O[symbol] thin films for microbattery applications / O. M. Hussain ... [et al.]. Preparation of LiNi[symbol]Co[symbol]O[symbol] thin films by a sol-gel method / X. J. Zhu ... [et al.]. Electrochemical lithium insertion into a manganese dioxide electrode in aqueous solutions / M. Minakshi ... [et al.]. AC impedance spectroscopic analysis of thin film LiNiVO[symbol] prepared by pulsed laser deposition technique / S. Selvasekarapandian ... [et al.]. Synthesis and characterization of LiFePO[symbol] cathode materials by microwave processing / J. Zhou ... [et al.]. Characterization of Nd[symbol]Sr[symbol]CoO[symbol] including Pt second phase as the cathode material for low-temperature SOFCs / J. W. Choi ... [et al.]. Thermodynamic behavior of lithium intercalation into natural vein and synthetic graphite / N. W. B. Balasooriya, P. W. S. K. Bandaranayake, Ph. Touzain -- pt. III. Electroactive polymers. Invited papers. Organised or disorganised? looking at polymer electrolytes from both points of view / Y.-P. Liao ... [et al.]. Polymer electrolytes - simple low permittivity solutions? / I. Albinsson, B.-E. Mellander. Dependence of conductivity enhancement on the dielectric constant of the dispersoid in polymer-ferroelectric composite electrolytes / A. Chandra, P. K. Singh, S. Chandra. Design and application of boron compounds for high-performance polymer electrolytes / T. Fujinami. Structural, vibrational and AC impedance analysis of nano composite polymer electrolytes based on PVAC / S. Selvasekarapandian ... [et al.]. Absorption intensity variation with ion association in PEO based electrolytes / J. E. Furneaux ... [et al.]. Study of ion-polymer interactions in cationic and anionic ionomers from the dependence of conductivity on pressure and temperature / M. Duclot ... [et al.]. Triol based polyurethane gel electrolytes for electrochemical devices / A. R. Kulkarni. Contributed papers. Accurate conductivity measurements to solvation energies in nafion / M. Maréchal, J.-L Souquet. Ion conducting behaviour of composite polymer gel electrolyte: PEG-PVA-(NH[symbol]CH[symbol]CO[symbol])[symbol] system / S. L. Agrawal, A. Awadhia, S. K. Patel. Impedance spectroscopy and DSC studies of poly(vinylalcohol)/ silicotungstic acid crosslinked composite membranes / A. Anis, A. K. Banthia. (PEO)[symbol]:Na[symbol]P[symbol]O[symbol]: a report on complex formation / A. Bhide, K. Hariharan. Experimental studies on (PVC+LiClO[symbol]+DMP) polymer electrolyte systems for lithium battery / Ch. V. S. Reddy. Stability of the gel electrolyte, PAN: EC: PC: LiCF[symbol]SO[symbol] towards lithium / K. Perera ... [et al.]. Montmorillonite as a conductivity enhancer in (PEO)[symbol]LiCF[symbol]SO[symbol] polymer electrolyte / C. H. Manoratne ... [et al.]. Polymeric gel electrolytes for electrochemical capacitors / M. Morita ... [et al.]. Electrical conductivity studies on proton conducting polymer electrolytes based on poly (viniyl acetate) / D. Arun Kumar ... [et al.]. Conductivity and thermal studies on plasticized PEO:LiTf-Al[symbol]O[symbol] composite polymer electrolyte / H. M. J. C. Pitawala, M. A. K. L. Dissanayake, V. A. Seneviratne. Investigation of transport properties of a new biomaterials - gum mangosteen / S. S. Pradhan, A. Sarkar. Investigation of ionic conductivity of PEO-MgCl[symbol] based solid polymer electrolyte / M. Sundar ... [et al.]. [symbol]H NMR and Raman analysis of proton conducting polymer electrolytes based on partially hydrolyzed poly (vinyl alcohol) / G. Hirankumar ... [et al.]. Influence of Al[symbol]O[symbol] nanoparticles on the phase matrix of polyethylene oxide-silver triflate polymer electrolytes / S. Austin Suthanthiraraj, D. Joice Sheeba. Effect of different types of ceramic fillers on thermal, dielectric and transport properties of PEO[symbol]LiTf solid polymer electrolyte / K. Vignarooban ... [et al.]. Characterization of PVP based solid polymer electrolytes using spectroscopic techniques / C. S. Ramya ... [et al.]. Electrochemical and structural properties of poly vinylidene fluoride - silver triflate solid polymer electrolyte system / S. Austin Suthanthiraraj, B. Joseph Paul. Micro Raman, Li NMR and AC impedance analysis of PVAC:LiClO[symbol] solid polymer eectrolytes / R. Baskaran ... [et al.].Study of Na+ ion conduction in PVA-NaSCN solid polymer electrolytes / G. M. Brahmanandhan ... [et al.]. Effect of filler addition on plasticized polymer electrolyte systems / M. Sundar, S. Selladurai. Ionic motion in PEDOT and PPy conducting polymer bilayers / U. L. Zainudeen, S. Skaarup, M. A. Careem. Film formation mechanism and electrochemical characterization of V[symbol]O[symbol] xerogel intercalated by polyaniniline / Q. Zhu ... [et al.]. Effect of NH[symbol]NO[symbol] concentration on the conductivity of PVA based solid polymer electrolyte / M. Hema ... [et al.]. Dielectric and conductivity studies of PVA-KSCN based solid polymer electrolytes / J. Malathi ... [et al.] -- pt. IV. Emerging applications. Invited papers. The use of solid state ionic materials and devices in medical applications / R. Linford. Development of all-solid-state lithium batteries / V. Thangadurai, J. Schwenzei, W. Weppner. Reversible intermediate temperature solid oxide fuel cells / B.-E. Mellander, I. Albinsson. Nano-size effects in lithium batteries / P. Balaya, Y. Hu, J. Maier. Electrochromics: fundamentals and applications / C. G. Granqvist. Electrochemical CO[symbol] gas sensor / K. Singh. Polypyrrole for artificial muscles: ionic mechanisms / S. Skaarup. Development and characterization of polyfluorene based light emitting diodes and their colour tuning using Forster resonance energy transfer / P. C. Mattur ... [et al.]. Mesoporous and nanoparticulate metal oxides: applications in new photocatalysis / C. Boxall. Proton Conducting (PC) perovskite membranes for hydrogen separation and PC-SOFC electrodes and electrolytes / H. Jena, B. Rambabu. Contributed papers. Electroceramic materials for the development of natural gas fuelled SOFC/GT plant in developing country (Trinidad and Tobogo (T&T)) / R. Saunders, H. Jena, B. Rambabu. Thin film SOFC supported on nano-porous substrate / J. Hoon Joo, G. M. Choi. Characterization and fabrication of silver solid state battery Ag/AGI-AgPO[symbol]/I[symbol], C / E. Kartini ... [et al.]. Performance of lithium polymer cells with polyacrylonitrile based electrolyte / K. Perera ... [et al.]. Hydrothermal synthesis and electrochemical behavior of MoO[symbol] nanobelts for lithium batteries / Y. Qi ... [et al.]. Electrochemical behaviour of a PPy (DBS)/polyacrylonitrile: LiTF:EC:PC/Li cell / K. Vidanapathirana ... [et al.]. Characteristics of thick film CO[symbol] sensors based on NASICON using Li[symbol]CO[symbol]-CaCO[symbol] auxiliary phases / H. J. Kim ... [et al.]. Solid state battery discharge characteristic study on fast silver ion conducting composite system: 0.9[0.75AgI:0.25AgCl]: 0.1TiO[symbol] / R. K. Nagarch, R. Kumar, P. Rawat. Intercalating protonic solid-state batteries with series and parallel combination / K. Singh, S. S. Bhoga, S. M. Bansod. Synthesis and characterization of ZnO fiber by microwave processing / Lin Wang ... [et al.]. Preparation of Sn-Ge alloy coated Ge nanoparticles and Sn-Si alloy coated Si nanoparticles by ball-milling / J. K. D. S. Jayanett, S. M. Heald. Synthesis of ultrafine and crystallized TiO[symbol] by alalkoxied free polymerizable precursor method / M. Vijayakumar ... [et al.]. Development and characterization of polythiophene/fullerene composite solar cells and their degradation studies / P. K. Bhatnagar ... [et al.].
Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes
NASA Astrophysics Data System (ADS)
McIntosh, Lucas D.
Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the disordered structure observed in diblock polymer melts near the order-disorder transition. In the resulting solid PEMs, the conductivity and modulus are both high, exceeding the 1 mS/cm and approaching the 1 GPa metrics, respectively, often cited for lithium-metal batteries. In the final chapter, an alternative synthetic route to generate nanostructured PEMs is presented. This strategy relies on the formation of a thermodynamically stable network morphology exhibited by a triblock terpolymer prepared with crosslinking moieties along the backbone. Although the mechanical properties of the resulting PEM are excellent, the conductivity is found to be somewhat limited by network defects that result from the solvent-casting procedure.
NASA Astrophysics Data System (ADS)
Mogurampelly, Santosh; Ganesan, Venkat
2017-02-01
We use all atom molecular dynamics simulations to investigate the influence of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) ionic liquid on the structure and transport properties of poly(ethylene oxide) (PEO) polymer electrolytes doped with LiPF6 salt. We observe enhanced diffusivities of the Li+, PF6-, and BMIM+ ions with increasing loading of the ionic liquid. Interplay between the different ion-ion and ion-polymer interactions is seen to lead to a destabilization of the Li-PF6 coordination and increase in the strength of association between the Li+ cations and the polymer backbone. As a consequence, the polymer segmental relaxation times are shown to be only moderately affected by the addition of ionic liquids. The ionic-liquid induced changes in the mobilities of Li+ ions are seen to be correlated to polymer segmental relaxation times. However, the mobilities of BMIM+ ions are seen to be more strongly correlated to the BMIM-PF6 ion-pair relaxation times.
Ionic liquids as novel solvents for ionic polymer transducers
NASA Astrophysics Data System (ADS)
Bennett, Matthew D.; Leo, Donald J.
2004-07-01
The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.
Composite gel polymer electrolyte for lithium ion batteries
NASA Astrophysics Data System (ADS)
Naderi, Roya
Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their electrochemical performance upon the enhancement of acidic properties of the CGPE, gaining the reversible specific capacity of 314 mAh.g-1 in acidic CGPE vs. 247 mAh.g-1 in basic CGPE C/20 after 33 cycles. The CGPE exhibited submicron pore size while the ionic conductivities were in order of 10-3 and 10-5 Scm-1 with and without modified nano-fillers respectively.
The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers
NASA Astrophysics Data System (ADS)
LaFemina, Nikki H.; Chen, Quan; Colby, Ralph H.; Mueller, Karl T.
2016-09-01
Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation.
Structural and electrical characterization of tamarind seed polysaccharide (TSP) doped with NH4HCO2
NASA Astrophysics Data System (ADS)
Premalatha, M.; Mathavan, T.; Selvasekarapandian, S.; Selvalakshmi, S.
2018-04-01
In the modern era, development of electrochemical energy devices such as batteries, fuel cells and supercapacitors gain attention due to the deficiency of renewable energy resources. More specifically, proton conducting materials create prime interest in the development of electrochemical devices. In this regards, a novel proton conducting biopolymer electrolyte based on Tamarind Seed Polysaccharide (TSP) was synthesized with different concentration of ammonium formate (NH4HCO2). The amorphous nature of the polymer electrolytes has been identified by XRD technique. The observed ionic conductivity values reveal that the biopolymer containing 1 g TSP: 0.4 g NH4HCO2 has highest ionic conductivity 1.23×10-3 S cm-1.
Durability of PEM Fuel Cell Membranes
NASA Astrophysics Data System (ADS)
Huang, Xinyu; Reifsnider, Ken
Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.
Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids
Fan, Fei; Wang, Weiyu; Holt, Adam P.; ...
2016-06-07
The unique properties of ionic liquids (ILs) have made them promising candidates for electrochemical applications. Polymerization of the corresponding ILs results in a new class of materials called polymerized ionic liquids (PolyILs). Though PolyILs offer the possibility to combine the high conductivity of ILs and the high mechanical strength of polymers, their conductivities are typically much lower than that of the corresponding small molecule ILs. In this study, seven PolyILs were synthesized having degrees of polymerization ranging from 1 to 333, corresponding to molecular weights (MW) from 482 to 160 400 g/mol. Depolarized dynamic light scattering, broadband dielectric spectroscopy, rheology,more » and differential scanning calorimetry were employed to systematically study the influence of MW on the mechanism of ionic transport and segmental dynamics in these materials. Finally, the modified Walden plot analysis reveals that the ion conductivity transforms from being closely coupled with structural relaxation to being strongly decoupled from it as MW increases.« less
Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Fei; Wang, Weiyu; Holt, Adam P.
The unique properties of ionic liquids (ILs) have made them promising candidates for electrochemical applications. Polymerization of the corresponding ILs results in a new class of materials called polymerized ionic liquids (PolyILs). Though PolyILs offer the possibility to combine the high conductivity of ILs and the high mechanical strength of polymers, their conductivities are typically much lower than that of the corresponding small molecule ILs. In this study, seven PolyILs were synthesized having degrees of polymerization ranging from 1 to 333, corresponding to molecular weights (MW) from 482 to 160 400 g/mol. Depolarized dynamic light scattering, broadband dielectric spectroscopy, rheology,more » and differential scanning calorimetry were employed to systematically study the influence of MW on the mechanism of ionic transport and segmental dynamics in these materials. Finally, the modified Walden plot analysis reveals that the ion conductivity transforms from being closely coupled with structural relaxation to being strongly decoupled from it as MW increases.« less
Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D
2015-12-15
The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. Copyright © 2015 Elsevier Inc. All rights reserved.
Multi-layer electrode for high contrast electrochromic devices
Schwendeman, Irina G [Wexford, PA; Finley, James J [Pittsburgh, PA; Polcyn, Adam D [Pittsburgh, PA; Boykin, Cheri M [Wexford, PA
2011-11-01
An electrochromic device includes a first substrate spaced from a second substrate. A first transparent conductive electrode is formed over at least a portion of the first substrate. A polymeric anode is formed over at least a portion of the first conductive electrode. A second transparent conductive electrode is formed over at least a portion of the second substrate. In one aspect of the invention, a multi-layer polymeric cathode is formed over at least a portion of the second conductive electrode. In one non-limiting embodiment, the multi-layer cathode includes a first cathodically coloring polymer formed over at least a portion of the second conductive electrode and a second cathodically coloring polymer formed over at least a portion of the first cathodically coloring polymer. An ionic liquid is positioned between the anode and the cathode.
NASA Astrophysics Data System (ADS)
Shahinpoor, Mohsen
2011-12-01
The 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio and the 4th International Conference on Artificial Muscles were held in Osaka, Japan, 23-27 November 2009. This special section of Smart Materials and Structures is devoted to a selected number of research papers presented at this international conference and congress. Of the 76 or so papers presented at the conference, only 10 papers were finally selected, reviewed and accepted for this special section, following the regular reviewing procedures of the journal. This special section is focused on polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites and their applications. In particular, an electromechanical model for self-sensing ionic polymer-metal composite actuating devices with patterned surface electrodes is presented which discusses the concept of creating self-sensing ionic polymer-metal composite (IPMC) actuating devices with patterned surface electrodes where actuator and sensor elements are separated by a grounded shielding electrode. Eventually, an electromechanical model of the device is also proposed and validated. Following that, there is broad coverage of polytetrahydrofurane-polyethylene oxide-PEDOT conducting interpenetrating polymer networks (IPNs) for high speed actuators. The conducting polymer (poly(3,4-ethylenedioxythiophene)) is incorporated within the IPNs, which are synthesized from polyethylene oxide (PEO)/polytetrahydrofurane (PTHF) networks. PEO/PTHF IPNs are prepared using poly(ethylene glycol) methacrylate and dimethacrylate and hydroxythelechelic PTHF as starting materials. The conducting IPN actuators are prepared by oxidative polymerization of 3,4-ethylenedioxithiophene (EDOT) using FeCl3 as an oxidizing agent within the PEO/PTHF IPN host matrix. Subsequently, giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels are discussed and the effect of magnetic fields on the viscoelastic properties, magnetorheological effect of carrageenan gel containing iron oxide particles are investigated using dynamic viscoelastic measurements under magnetic fields. Furthermore, the relationship between the magnetorheology and the elasticity of magnetic gel is discussed. This special section then covers the characteristics of ionic polymer-metal composite with chemically-doped TiO2 particles to improve the bending performance of ionic polymer-metal composite (IPMC) actuators. This study is mainly focused on the characterization of the physical, electrochemical, and electromechanical properties of TiO2-doped ionic polymer membranes, and IPMCs prepared by the sol-gel method, which results in a uniform distribution of the particles inside the polymer membrane. It was determined that the lifetime of IPMC is strongly dependent on the level of water uptake. This paper is then followed by a presentation on training and shape retention in conducting polymer artificial muscles. Electrochemomechanical deformation (ECMD) of the conducting polymer, polyaniline film, is studied to investigate the behavior of actuation under tensile loads. The ECMD is induced by strains due to insertion of ionic species (cyclic strain) and a creep due to applied loads during the redox cycle. The cyclic strain is enhanced by the experience of high tensile loads, indicating a training effect. The training effect is explained by the enhanced electrochemical activity of the film. The special section then presents a paper on the current status and future prospects of power generators using dielectric elastomers. Electroactive polymer artificial muscle (EPAM), known as 'dielectric elastomer', appears to offer unique capabilities as an actuator and electrical power generator. However, the power output levels of such generators are small and the efficiencies are rather high. For example, electrical energy conversion efficiency of over 70% has been achieved. The ability of EPAM to produce hydrogen fuel for energy storage was also demonstrated. Because the energy conversion principle of EPAM is capacitive in nature, the performance is largely size-independent. Formation of motile assembly of microtubules driven by kinesins is presented next. Microtubule (MT) and kinesin are rail and motor proteins that are involved in various moving events of eukaryotic cells in natural systems. In vitro, the sliding motion of microtubules (rail) can be reproduced on a kinesin (motor protein)-coated surface coupled with adenosine triphosphate (ATP) hydrolysis, which is called a 'motility assay'. Based on this technique, a method is reported for forming MT assemblies by an active self-assembly (AcSA) process, in which MTs are crosslinked during a sliding motion on a kinesin-coated surface. Streptavidin (ST) is employed as glue to crosslink biotin-labeled MTs. This discussion is then followed by a paper on the performances of fast-moving low-voltage electromechanical actuators based on single-walled carbon nanotubes and ionic liquids. Here the mechanical and electrical properties of the polymer-free single-walled carbon nanotube (SWNT) sheets containing different contents of ionic liquids (ILs) are reported. The polymer-free SWNT sheets are prepared with the knowledge that millimeter-long 'super growth' carbon nanotubes (SG-SWNTs), produced by a water-assisted modified CVD method, associate together tightly with ILs. The molecular mechanism of electroactive polymer actuators is then discussed in the next paper. Movement of ionic electroactive polymer actuators utilizes their anisotropic volume change, which is induced by the applied voltage. The mechanism of the volume change is, however, not well understood, especially at the molecular level. The current understanding of the mechanism of the volume change at the molecular level is reviewed, focusing on the actuators made with carbon materials. Then, the pressure generated in the actuators in response to the applied voltage based on the results of the Monte Carlo simulation is discussed. It is shown that the mechanism of the actuators can be analyzed at the molecular level in terms of the balance between the electrostatic and volume exclusion interactions that act among the electrode materials and the electrolyte ions. The special section then presents a master curve for analyzing the electrochemical aging and memory effects of poly(3,4-ethylenedioxythiophene). The memory effect of conducting polymers in an electrochemical environment is investigated. This memory effect is related to the electromechanical responses of the conducting polymer. Poly(3,4-ethylenedioxythiophene) is chosen because of its interesting properties—mainly its chemical and electrochemical stabilities. By means of cyclic voltammetry, the influence of the waiting time tw at a holding potential Ew in relation to the conformational relaxation process occurring in the conducting polymer is analyzed. The effect of electrochemical aging on the electrical properties is also explained from the viewpoint of the rearrangement of polymer chains. This completes a brief report on the content of the special section on artificial muscles. I would like to thank the contributing authors of this collection of papers on artificial muscles for their outstanding and unique contributions. I am also indebted to all of the reviewers, editors and editorial staff who handled the reviews of all the papers for their time and effort. I would like to express my sincere thanks and appreciation to Professor E Garcia, Editor-in-Chief, for his encouragement and support, and for providing the opportunity to publish this special section of Smart Materials and Structures. I am also grateful to the IOP Publishing team for their support. In particular, I am greatly indebted to publisher Natasha Leeper, for her help and excellent management in the preparation of this special section on artificial muscles.
Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures.
Imaizumi, Satoru; Kato, Yuichi; Kokubo, Hisashi; Watanabe, Masayoshi
2012-04-26
Two solid polymer electrolytes, composed of a polyether-segmented polyurethaneurea (PEUU) and either a lithium salt (lithium bis(trifluoromethanesulfonyl)amide: Li[NTf2]) or a nonvolatile ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide: [C2mim][NTf2]), were prepared in order to utilize them as ionic polymer actuators. These salts were preferentially dissolved in the polyether phases. The ionic transport mechanism of the polyethers was discussed in terms of the diffusion coefficients and ionic transference numbers of the incorporated ions, which were estimated by means of pulsed-field gradient spin-echo (PGSE) NMR. There was a distinct difference in the ionic transport properties of each polymer electrolyte owing to the difference in the magnitude of interactions between the cations and the polyether. The anionic diffusion coefficient was much faster than that of the cation in the polyether/Li[NTf2] electrolyte, whereas the cation diffused faster than the anion in the polyether/[C2mim][NTf2] electrolyte. Ionic polymer actuators, which have a solid-state electric-double-layer-capacitor (EDLC) structure, were prepared using these polymer electrolyte membranes and ubiquitous carbon materials such as activated carbon and acetylene black. On the basis of the difference in the motional direction of each actuator against applied voltages, a simple model of the actuation mechanisms was proposed by taking the difference in ionic transport properties into consideration. This model discriminated the behavior of the actuators in terms of the products of transference numbers and ionic volumes. The experimentally observed behavior of the actuators was successfully explained by this model.
Electric double-layer capacitor based on an ionic clathrate hydrate.
Lee, Wonhee; Kwon, Minchul; Park, Seongmin; Lim, Dongwook; Cha, Jong-Ho; Lee, Huen
2013-07-01
Herein, we suggest a new approach to an electric double-layer capacitor (EDLC) that is based on a proton-conducting ionic clathrate hydrate (ICH). The ice-like structures of clathrate hydrates, which are comprised of host water molecules and guest ions, make them suitable for applications in EDLC electrolytes, owing to their high proton conductivities and thermal stabilities. The carbon materials in the ICH Me4NOH⋅5 H2O show a high specific capacitance, reversible charge-discharge behavior, and a long cycle life. The ionic-hydrate complex provides the following advantages in comparison with conventional aqueous and polymer electrolytes: 1) The ICH does not cause leakage problems under normal EDLC operating conditions. 2) The hydrate material can be utilized itself, without requiring any pre-treatments or activation for proton conduction, thus shortening the preparation procedure of the EDLC. 3) The crystallization of the ICH makes it possible to tailor practical EDLC dimensions because of its fluidity as a liquid hydrate. 4) The hydrate solid electrolyte exhibits more-favorable electrochemical stability than aqueous and polymer electrolytes. Therefore, ICH materials are expected to find practical applications in versatile energy devices that incorporate electrochemical systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, Chetna, E-mail: ctyagi05@gmail.com; Sharma, Ambika, E-mail: ambikasharma2004@yahoo.com
2016-01-07
In the present paper, investigations of CdSe loaded poly(diallyl dimethyl ammonium chloride) (PDADMAC) nanocomposites and pure PDADMAC synthesized by wet chemical technique have been carried out. Fourier transform infrared and X-ray diffraction analysis have been performed to reveal the structural details of pure polymer and polymer nanocomposite (PNC). The dielectric behavior of pure polymer and PNC has been recorded, which results in higher value of the real and imaginary part of dielectric constant for PNC, as compared with pure PDADMAC. The increase is attributed to the addition of CdSe quantum dots to the pure polymer. The contribution of ionic andmore » electronic polarization has been observed at higher frequency. The theoretical fitting of Cole-Cole function to the experimental data of dielectric constant of PNC and pure PDADMAC results in the determination of relaxation time and conductivity of space charge carriers. The CdSe loaded polymer nanocomposite has been used as an electrolyte in the battery fabrication with configuration Al/PNC/Ag{sub 2}O. The ac conductivity measurements have been carried out for both samples in a frequency window of 1 kHz–5 MHz and at different temperatures varying from 298 K to 523 K. Activation energy (E{sub a}) has been determined for pure polymer as well as PNC and is found to be less for PNC, as compared with pure polymer. Further, impedance measurement at different temperatures results in two frequency ranges corresponding to ionic conduction and blocking electrode effect. The value of bulk resistance for pure polymer and PNC has been found to be 3660 Ω and 442 Ω, respectively, at 298 K temperature. Electric modulus has been determined and is observed to support the dielectric constant data; it further reveals the deviation from Debye behavior at a higher frequency.« less
NASA Astrophysics Data System (ADS)
Vishwakarma, Vivek; Jain, Ankur
2017-09-01
While Gel Polymer Electrolytes (GPEs) have been widely investigated for use in next-generation Li-ion cells due to the potential for improved thermal safety, thermal transport within a GPE is still poorly understood. Among all materials in a Li-ion cell, the GPE has the lowest thermal conductivity, and hence determines the overall rate of heat flow in a Li-ion cell. This makes it critical to measure and understand thermal transport in a GPE and investigate trade-offs between thermal and ionic transport. This paper presents measurements of thermal and ionic conductivities in a PVdF-based GPE. The effect of incorporating BN/Al2O3 ceramic nano/microparticles in the GPE on thermal and ionic transport is characterized. Measurements indicate up to 2.5X improvement in thermal conductivity of activated GPE membranes, with relatively minor effect on electrochemical performance of GPE-based single-layer cells. The measured enhancement in thermal conductivity is in very good agreement with theoretical calculations based on the effective medium theory that accounts for thermal transport in a dispersed, two-phase medium such as a GPE. The fundamental insights gained in this work on thermal transport in a GPE and the role of nano/microparticle inclusions may facilitate thermal-electrochemical optimization and design of GPEs for safe, high-performance Li-ion cells.
Abdullayeva, Nazrin; Sankir, Mehmet
2017-01-01
By using an easy and effective method of depositing conjugated polymers (PEDOT:PSS) on flexible substrates, a new design for organic bioelectronic devices has been developed. The purpose was to build up a system that mimics the motion of neurotransmitters in the synaptic cleft by obtaining an electrical to chemical signal transport. Fourier transform infrared (FTIR) spectroscopy and Raman measurements have demonstrated that electrochemical overoxidation region which separates the pristine PEDOT:PSS electrodes and allows ionic conduction has been achieved successfully. The influence of both electrical and ionic conductivities on organic electronic ion pump (OEIP) performances has been studied. The ultimate goal was to achieve the highest equilibrium current density at the lowest applied voltage via enhancing the electrical conductivity of PEDOT:PSS and ionic conductivity of electrochemically overoxidized region. The highest equilibrium current density, which corresponds to 4.81 × 1017 number of ions of acetylcholine was about 41 μA cm−2 observed for the OEIP with the electrical conductivities of 54 S cm−1. This was a threshold electrical conductivity beyond which the OEIP performances were not changed much. Once Nafion™ has been applied for enhancing the ionic conductivity, the equilibrium current density increased about ten times and reached up to 408 μA cm−2. Therefore, it has been demonstrated that the OEIP performance mainly scales with the ionic conductivity. A straightforward method of producing organic bioelectronics is proposed here may provide a clue for their effortless mass production in the near future. PMID:28772946
NASA Astrophysics Data System (ADS)
Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin
2017-12-01
Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.
NASA Astrophysics Data System (ADS)
Monobe, Hirosato; Tsuchiya, Nobuyuki; Yamamura, Masahiro; Mukai, Ken; Sugino, Takushi; Asaka, Kinji
2018-03-01
In this study, the platelet-shaped graphene was used as a conductive additive in porous electrodes of a dry-type polymer actuator consisting of carbon nanotube (CNT), ionic liquid, and a base polymer to improve actuation properties. The generated strain was estimated from the bending motion of the actuator in the frequency range from 0.005 to 10 Hz. Ten different types of electrode film were prepared by changing the mixing amounts and surface areas of the platelet-shaped graphene. When a small amount of graphene (30 mg) relative to CNT (50 mg) was added to the CNT electrode, the strain was increased to be almost twice larger than that of CNT (50 mg) without any additives. The strain coefficient of the three-layered actuator with CNT electrodes with graphene additives is positively correlated with the capacitance per volume of such electrodes.
Rod/Coil Block Copolyimides for Ion-Conducting Membranes
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Kinder, James D.
2003-01-01
Rod/coil block copolyimides that exhibit high levels of ionic conduction can be made into diverse products, including dimensionally stable solid electrolyte membranes that function well over wide temperature ranges in fuel cells and in lithium-ion electrochemical cells. These rod/coil block copolyimides were invented to overcome the limitations of polymers now used to make such membranes. They could also be useful in other electrochemical and perhaps some optical applications, as described below. The membranes of amorphous polyethylene oxide (PEO) now used in lithium-ion cells have acceptably large ionic conductivities only at temperatures above 60 C, precluding use in what would otherwise be many potential applications at lower temperatures. PEO is difficult to process, and, except at the highest molecular weights it is not very dimensionally stable. It would be desirable to operate fuel cells at temperatures above 80 C to take advantage of better kinetics of redox reactions and to reduce contamination of catalysts. Unfortunately, proton-conduction performance of a typical perfluorosulfonic polymer membrane now used as a solid electrolyte in a fuel cell decreases with increasing temperature above 80 C because of loss of water from within the membrane. The loss of water has been attributed to the hydrophobic nature of the polymer backbone. In addition, perfluorosulfonic polymers are expensive and are not sufficiently stable for long-term use. Rod/coil block copolyimides are so named because each molecule of such a polymer comprises short polyimide rod segments alternating with flexible polyether coil segments (see figure). The rods and coils can be linear, branched, or mixtures of linear and branched. A unique feature of these polymers is that the rods and coils are highly incompatible, giving rise to a phase separation with a high degree of ordering that creates nanoscale channels in which ions can travel freely. The conduction of ions can occur in the coil phase, the rod phase, or both phases.
Membrane separation of ionic liquid solutions
Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart
2015-09-01
A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.
Stimuli-Responsive Polymers for Actuation.
Zhang, Qiang Matthew; Serpe, Michael J
2017-06-02
A variety of stimuli-responsive polymers have been developed and used as actuators and/or artificial muscles, with the movement being driven by an external stimulus, such as electrical potential. This Review highlights actuators constructed from liquid-crystal elastomers, dielectric elastomers, ionic polymers, and conducting polymers. The Review covers recent examples of a variety of actuators generated from these materials and their utility. The mechanism of actuation will be detailed for most examples in order to stimulate possible future research, and lead to new applications and advanced applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz
2008-01-01
Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed. PMID:27879825
NASA Astrophysics Data System (ADS)
Kikuchi, Kunitomo; Sakamoto, Takumi; Tsuchitani, Shigeki; Asaka, Kinji
2011-04-01
Ionic polymer metal composites (IPMCs) that can operate in air have recently been developed by incorporating an ionic liquid in ionic polymers. To understand transduction in these composites, it is important to determine the role of the ionic liquid in the ionic polymer (Nafion®), to identify the counter cation, and to investigate the interaction of IPMCs with water vapor in the air. We used Fourier-transform infrared spectroscopy to analyze three Nafion® membranes, which were soaked in mixtures of water and an ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIBF4), 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6)). The results demonstrate that only cations (EMI+ and BMI+) in the ionic liquids are taken into the Nafion® membranes as counter ions and that the water content of the membranes in air is less than ˜4% that of Nafion® swollen with water. Based on the experimental results, a transduction model is proposed for an IPMC with an ionic liquid. In this model, bending is caused by local swelling due to the volume effect of the bulky counter cations. This model can explain 30-50% of the experimentally observed bending curvature.
Wang, Shih-Hong; Lin, Yong-Yi; Teng, Chiao-Yi; Chen, Yen-Ming; Kuo, Ping-Lin; Lee, Yuh-Lang; Hsieh, Chien-Te; Teng, Hsisheng
2016-06-15
This study reports on a high ionic-conductivity gel polymer electrolyte (GPE), which is supported by a TiO2 nanoparticle-decorated polymer framework comprising poly(acrylonitrile-co-vinyl acetate) blended with poly(methyl methacrylate), i.e. , PAVM: TiO2. High conductivity TiO2 is achieved by causing the PAVM:TiO2 polymer framework to swell in 1 M LiPF6 in carbonate solvent. Raman analysis results demonstrate that the poly(acrylonitrile) (PAN) segments and TiO2 nanoparticles strongly adsorb PF6(-) anions, thereby generating 3D percolative space-charge pathways surrounding the polymer framework for Li(+)-ion transport. The ionic conductivity of TiO2 is nearly 1 order of magnitude higher than that of commercial separator-supported liquid electrolyte (SLE). TiO2 has a high Li(+) transference number (0.7), indicating that most of the PF6(-) anions are stationary, which suppresses PF6(-) decomposition and substantially enlarges the voltage that can be applied to TiO2 (to 6.5 V vs Li/Li(+)). Immobilization of PF6(-) anions also leads to the formation of stable solid-electrolyte interface (SEI) layers in a full-cell graphite|electrolyte|LiFePO4 battery, which exhibits low SEI and overall resistances. The graphite|electrolyte|LiFePO4 battery delivers high capacity of 84 mAh g(-1) even at 20 C and presents 90% and 71% capacity retention after 100 and 1000 charge-discharge cycles, respectively. This study demonstrates a GPE architecture comprising 3D space charge pathways for Li(+) ions and suppresses anion decomposition to improve the stability and lifespan of the resulting LIBs.
Self-consistent field theory of polymer-ionic molecule complexation.
Nakamura, Issei; Shi, An-Chang
2010-05-21
A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.
Ion conduction and relaxation in PEO-LiTFSI-Al{sub 2}O{sub 3} polymer nanocomposite electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in
2015-05-07
Ion conduction and relaxation in PEO-LiTFSI-Al{sub 2}O{sub 3} polymer nanocomposite electrolytes have been studied for different concentrations of Al{sub 2}O{sub 3} nanoparticles. X-ray diffraction and differential scanning calorimetric studies show that the maximum amorphous phase of PEO is observed for PEO-LiTFSI embedded with 5 wt. % Al{sub 2}O{sub 3}. The maximum ionic conductivity ∼3.3 × 10{sup −4} S cm{sup −1} has been obtained for this composition. The transmission electron microscopic image shows a distribution of Al{sub 2}O{sub 3} nanoparticles in all compositions with size of <50 nm. The temperature dependence of the ionic conductivity follows Vogel-Tamman-Fulcher nature, indicating a strong coupling between ionic and polymermore » chain segmental motions. The scaling of the ac conductivity implies that relaxation dynamics follows a common mechanism for different temperatures and Al{sub 2}O{sub 3} concentrations. The imaginary modulus spectra are asymmetric and skewed toward the high frequency sides of the maxima and analyzed using Havriliak-Negami formalism. The temperature dependence of the relaxation time obtained from modulus spectra also exhibits Vogel-Tamman-Fulcher nature. The values of the stretched exponent obtained from Kohlrausch-Williams-Watts fit to the modulus data are fairly low, suggesting highly non-exponential relaxation for all concentrations of Al{sub 2}O{sub 3} in these electrolytes.« less
NASA Astrophysics Data System (ADS)
Mukai, Ken; Asaka, Kinji; Hata, Kenji; Oike, Hideaki
2011-12-01
In this paper, we study the details of the mechanical and electrical properties of polymer-free single-walled carbon nanotube (SWNT) sheets containing different contents of ionic liquids (ILs). The polymer-free SWNT sheets were prepared by a previously reported finding that millimeter-long 'super-growth' carbon nanotubes (SG-SWNTs), produced by a water-assisted modified chemical vapor deposition (CVD) method, associate together tightly with ILs, affording a free-standing sheet with a superb conductivity. The Young's modulus, breaking strength and the electrical conductivity of the SG-SWNT sheet with 67 wt% 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) showed large values, 0.63 GPa, 20 MPa, and 147 S cm-1, respectively, although it has large amounts of ILs. We also measure the frequency dependence of the displacement of the actuator composed of SG-SWNT sheets sandwiching an ionic-gel electrolyte layer (SG-SWNT actuator). At more than 50 wt% of EMITFSI content, the frequency response of the actuation of the SG-SWNT actuator is flat up to around 100 Hz. The results of the displacement measurements are discussed in relation to the mechanical and electrical properties of the SG-SWNT actuators.
Simulation of polymer translocation through protein channels
Muthukumar, M.; Kong, C. Y.
2006-01-01
A modeling algorithm is presented to compute simultaneously polymer conformations and ionic current, as single polymer molecules undergo translocation through protein channels. The method is based on a combination of Langevin dynamics for coarse-grained models of polymers and the Poisson–Nernst–Planck formalism for ionic current. For the illustrative example of ssDNA passing through the α-hemolysin pore, vivid details of conformational fluctuations of the polymer inside the vestibule and β-barrel compartments of the protein pore, and their consequent effects on the translocation time and extent of blocked ionic current are presented. In addition to yielding insights into several experimentally reported puzzles, our simulations offer experimental strategies to sequence polymers more efficiently. PMID:16567657
Morphology of Block Copolymer Electrolytes: A Numerical Self-Consistent Field Theory Study
NASA Astrophysics Data System (ADS)
Hou, Kevin; Qin, Jian
Engineering the morphology of ion-containing block copolymers is imperative for the optimization of their charge-transport and mechanical properties. Existing experiments have demonstrated that the addition of ions has a dramatic effect on the morphology and thermodynamic behavior of these structured electrolytes. We have developed an efficient, symmetry-adapted algorithm to calculate the ionic interactions in the SCFT for ion-containing polymers. We present the results of a numerical SCFT study examining how dielectric heterogeneity, ion concentration, and ion solvation affect morphology, domain spacing, ion distribution, and polymer density profiles. Particular attention is given to the detailed morphological analysis of the bicontinuous gyroidal phase, as well as the relevance of the aforementioned results to ionic conductivity.
Charge Dynamics and Bending Actuation in Aquivion Membrane Swelled with Ionic Liquids.
Lin, Junhong; Liu, Yang; Zhang, Q M
2011-01-21
The actuation strain and speed of ionic electroactive polymer (EAP) actuators are mainly determined by the charge transport through the actuators and excess ion storage near the electrodes. We employ a recently developed theory on ion transport and storage to investigate the charge dynamics of short-side-chain Aquivion® (Hyflon®) membranes with different uptakes of ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf). The results reveal the existence of a critical uptake of ionic liquids above which the membrane exhibit a high ionic conductivity (σ>5×10(-2) mS/cm). Especially, we investigate the charge dynamics under voltages which are in the range for practical device operation (~1 volts and higher). The results show that the ionic conductivity, ionic mobility, and mobile ion concentration do not change with the applied voltage below 1 volt (and for σ below 4 volts). The results also show that bending actuation of the Aquivion membrane with 40 wt% EMI-Tf is much larger than that of Nafion, indicating that the shorter flexible side chains improve the electromechanical coupling between the excess ions and the membrane backbones, while not affect the actuation speed.
Charge Dynamics and Bending Actuation in Aquivion Membrane Swelled with Ionic Liquids
Lin, Junhong; Liu, Yang; Zhang, Q. M.
2011-01-01
The actuation strain and speed of ionic electroactive polymer (EAP) actuators are mainly determined by the charge transport through the actuators and excess ion storage near the electrodes. We employ a recently developed theory on ion transport and storage to investigate the charge dynamics of short-side-chain Aquivion® (Hyflon®) membranes with different uptakes of ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf). The results reveal the existence of a critical uptake of ionic liquids above which the membrane exhibit a high ionic conductivity (σ>5×10−2 mS/cm). Especially, we investigate the charge dynamics under voltages which are in the range for practical device operation (~1 volts and higher). The results show that the ionic conductivity, ionic mobility, and mobile ion concentration do not change with the applied voltage below 1 volt (and for σ below 4 volts). The results also show that bending actuation of the Aquivion membrane with 40 wt% EMI-Tf is much larger than that of Nafion, indicating that the shorter flexible side chains improve the electromechanical coupling between the excess ions and the membrane backbones, while not affect the actuation speed. PMID:21339839
Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kelly, Jesse C.
Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on-off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.
NASA Astrophysics Data System (ADS)
Luo, B.; Chen, Z.
2017-11-01
Most ionic polymer mental composites employ Nafion as the polymer matrix, Aquivion can also manufactured as ionic polymer mental composite while research was little. This paper researched on two kinds of ionic polymer mental composite based on Aquivion and Nafion matrix with palladium electrode called Aquivion-IPMC and Nafion-IPMC. The samples were fabricated by the same preparation process. The current and deformation responses of the samples were measured at voltage to characterize the mechano-electrical properties. The experimental observations revealed that shorter flexible side chains in Aquivion-IPMC provide a larger force than Nafion-IPMC, while the displacement properties were similar in two different samples. The results also showed that Aquivion membrane can also replace Nafion to reproduce IPMC application in soft robots, MEMS, and so on.
Preparation and Conductivity Measurements of Thin Film (PEO)nZnCl2 Electrolyte System
NASA Astrophysics Data System (ADS)
Salehuddin, N.; Mohamad, A. A.; Alias, Y.
2010-03-01
We report zinc ion conducting thin film polymer based on non-volatile room temperature ionic liquid, with a zinc chloride dissolved in a water and blend with poly(ethylene) oxide in different ratio of salt. The resultant films are free standing, translucent, flexible and elastic. The conductivity measurement of the films was carried out at room temperature to find the highest conductivity films.
Multivalent Ion Transport in Polymers via Metal-Ligand Coordination
NASA Astrophysics Data System (ADS)
Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel
Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.
Ionic-liquid materials for the electrochemical challenges of the future.
Armand, Michel; Endres, Frank; MacFarlane, Douglas R; Ohno, Hiroyuki; Scrosati, Bruno
2009-08-01
Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
Ionic-liquid materials for the electrochemical challenges of the future
NASA Astrophysics Data System (ADS)
Armand, Michel; Endres, Frank; Macfarlane, Douglas R.; Ohno, Hiroyuki; Scrosati, Bruno
2009-08-01
Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
Weiber, E Annika; Jannasch, Patric
2014-09-01
A series of copoly(arylene ether sulfone)s that have precisely two, three, or four quaternary ammonium (QA) groups clustered directly on single phenylene rings along the backbone are studied as anion-exchange membranes. The copolymers are synthesized by condensation polymerizations that involve either di-, tri-, or tetramethylhydroquinone followed by virtually complete benzylic bromination using N-bromosuccinimide and quaternization with trimethylamine. This synthetic strategy allows excellent control and systematic variation of the local density and distribution of QA groups along the backbone. Small-angle X-ray scattering of these copolymers shows extensive ionic clustering, promoted by an increasing density of QA on the single phenylene rings. At an ion-exchange capacity (IEC) of 2.1 meq g(-1), the water uptake decreases with the increasing local density of QA groups. Moreover, at moderate IECs at 20 °C, the Br(-) conductivity of the densely functionalized copolymers is higher than a corresponding randomly functionalized polymer, despite the significantly higher water uptake of the latter. Thus, the location of multiple cations on single aromatic rings in the polymers facilitates the formation of a distinct percolating hydrophilic phase domain with a high ionic concentration to promote efficient anion transport, despite probable limitations by reduced ion dissociation. These findings imply a viable strategy to improve the performance of alkaline membrane fuel cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Borodin, Oleg
2010-03-01
Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.
2004-09-16
published in non peer-reviewed journals: 1. Gross, SM, Hamilton JL. "Polymer Gels for Use in Lithium Polymer Batteries", Nebraska Academy of Science...a process for the anionic polymerization of styrene and methyl methacrylate in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ...Current polymer electrolyte composites used for these applications typically comprise polyethers with ethylene carbonate solvents containing lithium
Structure and Dynamics Ionic Block co-Polymer Melts: Computational Study
NASA Astrophysics Data System (ADS)
Aryal, Dipak; Perahia, Dvora; Grest, Gary S.
Tethering ionomer blocks into co-polymers enables engineering of polymeric systems designed to encompass transport while controlling structure. Here the structure and dynamics of symmetric pentablock copolymers melts are probed by fully atomistic molecular dynamics simulations. The center block consists of randomly sulfonated polystyrene with sulfonation fractions f = 0 to 0.55 tethered to a hydrogenated polyisoprene (PI), end caped with poly(t-butyl styrene). We find that melts with f = 0.15 and 0.30 consist of isolated ionic clusters whereas melts with f = 0.55 exhibit a long-range percolating ionic network. Similar to polystyrene sulfonate, a small number of ionic clusters slow the mobility of the center of mass of the co-polymer, however, formation of the ionic clusters is slower and they are often intertwined with PI segments. Surprisingly, the segmental dynamics of the other blocks are also affected. NSF DMR-1611136; NERSC; Palmetto Cluster Clemson University; Kraton Polymers US, LLC.
NASA Astrophysics Data System (ADS)
Aldalur, Itziar; Martinez-Ibañez, Maria; Piszcz, Michal; Rodriguez-Martinez, Lide M.; Zhang, Heng; Armand, Michel
2018-04-01
Novel solid polymer electrolytes (SPEs), comprising of comb polymer matrix grafted with soft and disordered polyether moieties (Jeffamine®) and lithium bis(fluorosulfonyl)imide (LiFSI) are investigated in all-solid-state lithium metal (Li°) polymer cells. The LiFSI/Jeffamine-based SPEs are fully amorphous at room temperature with glass transitions as low as ca. -55 °C. They show higher ionic conductivities than conventional poly(ethylene oxide) (PEO)-based SPEs at ambient temperature region, and good electrochemical compatibility with Li° electrode. These exceptional properties enable the operational temperature of Li° | LiFePO4 cells to be decreased from an elevated temperature (70 °C) to room temperature. Those results suggest that LiFSI/Jeffamine-based SPEs can be promising electrolyte candidates for developing safe and high performance all-solid-state Li° batteries.
Biocompatible ionic liquid-biopolymer electrolyte-enabled thin and compact magnesium-air batteries.
Jia, Xiaoteng; Yang, Yang; Wang, Caiyun; Zhao, Chen; Vijayaraghavan, R; MacFarlane, Douglas R; Forsyth, Maria; Wallace, Gordon G
2014-12-10
With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium-air battery device with a total thickness of approximately 300 μm. It consists of a biocompatible polypyrrole-para(toluene sulfonic acid) cathode and a bioresorbable magnesium alloy anode. The biocompatible electrolyte used is made of choline nitrate (ionic liquid) embedded in a biopolymer, chitosan. This polymer electrolyte is mechanically robust and offers a high ionic conductivity of 8.9 × 10(-3) S cm(-1). The assembled battery delivers a maximum volumetric power density of 3.9 W L(-1), which is sufficient to drive some types of IMDs, such as cardiac pacemakers or biomonitoring systems. This miniaturized, biocompatible magnesium-air battery may pave the way to a future generation of implantable power sources.
Method of making soluble polyacetylenic and polyaromatic polymers
Aldissi, Mahmoud; Liepins, Raimond
1985-01-01
A soluble polyene polymer and a method of making the same are disclosed. The polymer is of the class suitable for doping to produce an electrically conductive polymer. The method is generally applicable to acetylenic and aromatic monomers, proven examples of which include acetylene, benzene, anthracene and napthalene. In accordance with the method, the monomer is dissolved in arsenic trifluoride. Arsenic pentafluoride is then introduced into the solution to induce polymerization by what is speculated to be an ionic polymerization reaction. The resulting polymer differs from other polyene polymers in that it is soluble in common organic solvents, and further in that it can be melted without undergoing decomposition, thereby rendering it particularly suitable for processing to form various polymeric articles.
Soluble polyacetylenic and polyaromatic polymers and method of mking the same
Aldissi, M.; Liepins, R.
1983-12-16
A soluble polyene polymer and a method of making the same are disclosed. The polymer is of the class suitable for doping to produce an electrically conductive polymer. The method is generally applicable to acetylenic and aromatic monomers, proven examples of which include acetylene, benzene, anthracene and napthalene. In accordance with the method, the monomer is dissolved in arsenic trifluoride. Arsenic pentafluoride is then introduced into the solution to induce polymerization by what is speculated to be an ionic polymerization reaction. The resulting polymer differs from other polyene polymers in that it is soluble in common organic solvents, and further in that it can be melted without undergoing decomposition, thereby rendering it particularly suitable for processing to form various polymeric articles.
Nanostructure and Dynamics of Ionic and Non-Ionic PEO-Containing Polyureas
NASA Astrophysics Data System (ADS)
Chuayprakong, Sunanta; Runt, James
2013-03-01
A series of polyethylene oxide (PEO) - based diamines with molecular weights ranging from 250 - 6000 g/mol were polymerized in solution with 4,4'-methylene diphenyl diisocyanate (MDI). In addition, PEO soft segment diamines where modified to incorporate ionomeric species and also polymerized with MDI. The role of PEO soft segment molecular weight and the presence of ionic species on nanoscale segregation and cation conductivity were explored. The former was investigated using small-angle X-ray scattering and atomic force microscopy. Dielectric relaxation spectroscopy was used to investigate polymer and ion dynamics. Local environment and hydrogen bonding were identified by using FTIR spectroscopy.
NASA Astrophysics Data System (ADS)
Chandra, A.
2013-07-01
Synthesis and ion transport characterization of a new Ag+ ion conducting glass-polymer electrolyte (GPE) films: (1- x) PEO: x [0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)], where 0 < x < 50 wt%, are reported. The composition: 70PEO: 30[0.8(0.75AgI:0.25AgCl):0.2(Ag2O:V2O5)] with conductivity ( σ) 7.7 × 10-7 Ω-1 cm-1 is identified as highest conducting composition referred to as the optimum conducting composition (OCC). Approximately two and half orders of conductivity enhancement have been achieved in OCC from that of the pure polymer poly(ethylene oxide). The glass-polymer complexation is confirmed by the XRD, FTIR, DSC and TGA techniques. The ion transport behavior has been reported on the basis of experimental measurements on some basic ionic parameters. A solid state polymeric battery has been fabricated by using GPE OCC as an electrolyte and their important cell parameters have been also calculated from the discharge profiles.
NASA Astrophysics Data System (ADS)
Lin, Kan-Ju; Maranas, Janna
2010-03-01
We use molecular dynamics simulation to study ion clustering and dynamics in ion containing polymers. This PEO based single-ion conducting ionomer serves as a model system for understanding cation transport in solid state polymer electrolytes (SPEs). Although small-angle x-ray scattering does not show an ionomer peak, we observer various cation-anion complexes in the simulation, suggesting ionomer backbones are crosslinked through ion complexes. These crosslinks reduce the adjacent PEO mobility resulting in a symmetric mobility gradient along the PEO chain. We vary the cation-anion interaction in the simulation to observe the interplay of cation-anion association, polymer mobility and cation motion. Cation-anion association controls the number of free ions, which is important in ionic conductivity when these materials are used as SPEs. Polymer mobility controls how fast the free ions are able to move through the SPE. High conductivity requires both a high free ion content and fast polymer motion. To understand the connection between the two, we ``tune'' the force field in order to manipulate the free ion content and observe the influence on PEO dynamics.
Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef
2013-08-01
A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens
2018-05-01
We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.
Shen, Jian; Zhao, He; Cao, Hongbin; Zhang, Yi; Chen, Yongsheng
2014-02-01
Whether a cationic organic polymer can remove more total cyanide (TCN) than a non-ionic organic polymer during the same flocculation system has not been reported previously. In this study, the effects of organic polymers with different charge density on the removal mechanisms of TCN in coking wastewater are investigated by polyferric sulfate (PFS) with a cationic organic polymer (PFS-C) or a non-ionic polymer (PFS-N). The coagulation experiments results show that residual concentrations of TCN (Fe(CN)6(3-)) after PFS-C flocculation (TCN < 0.2 mg/L) are much lower than that after PFS-N precipitation. This can be attributed to the different TCN removal mechanisms of the individual organic polymers. To investigate the roles of organic polymers, physical and structural characteristics of the flocs are analyzed by FT-IR, XPS, TEM and XRD. Owing to the presence of N+ in PFS-C, Fe(CN)6(3-) and negative flocs (Fe(CN)6(3-) adsorbed on ferric hydroxides) can be removed via charge neutralization and electrostatic patch flocculation by the cationic organic polymer. However, non-ionic N in PFS-N barely reacts with cyanides through sweeping or bridging, which indicates that the non-ionic polymer has little influence on TCN removal.
Highly Conductive, Stretchable, and Transparent Solid Polymer Electrolyte Membrane
NASA Astrophysics Data System (ADS)
He, Ruixuan; Echeverri, Mauricio; Kyu, Thein
2014-03-01
With the guidance of ternary phase diagrams, completely amorphous polymer electrolyte membranes (PEM) were successfully prepared by melt processing for lithium-ion battery. The PEM under consideration consisted of poly (ethylene glycol diacrylate) (PEGDA), succinonitrile (SCN) and Lithium bis(trifluoro-methane)sulfonamide (LiTFSI). After UV-crosslinking, the PEM is transparent and light-weight. Addition of SCN plastic crystal affords not only dissociation of the lithium salt, but also plasticization to the crosslinked PEGDA network. Of particular importance is the achievement of room-temperature ionic conductivity of ~10-3 S/cm, which is comparable to that of commercial liquid electrolyte. Higher ionic conductivities were achieved at elevated temperatures or with use of a moderately higher molecular weight of PEGDA. In terms of electrochemical and chemical stability, the PEM exhibited oxidative stability up to 5 V against lithium reference electrode. Stable interface behavior between the PEM and lithium electrode is also seen with ageing time. In the tensile tests, samples containing low molecular weight PEGDA are stiffer, whereas the high molecular weight PEGDA is stretchable up to 80% elongation. Supported by NSF-DMR 1161070.
Electroactive polymer actuator based on a reduced graphene electrode
NASA Astrophysics Data System (ADS)
Im, Ki Hong; Choi, Hyonkwang
2014-03-01
We report an electroactive polymer (EAP) actuator using a reduced graphene electrode for a ionic polymer-metal composite actuator. Aqueous-reduced graphene is deposited to both sides of the ionic polymer membranes by using a simple inkjet printing process. The electrical and the optical properties of the reduced graphene were evaluated by using a four-point probe system, Raman spectroscopy, and Fourier-transform infrared attenuated total reflection spectroscopy. The actuator properties were evaluated from the curvatures of the ionic polymer graphene composite (IPGC) for various input voltages. From the results, we propose a new and simple isosceles trapezoidal element model for analyzing the relations among the input voltage, thickness, and curvature of IPGC.
Ultrahigh Ionic Conduction in Water-Stable Close-Packed Metal-Carbonate Frameworks.
Manna, Biplab; Desai, Aamod V; Illathvalappil, Rajith; Gupta, Kriti; Sen, Arunabha; Kurungot, Sreekumar; Ghosh, Sujit K
2017-08-21
Utilization of the robust metal-carbonate backbone in a series of water-stable, anionic frameworks has been harnessed for the function of highly efficient solid-state ion-conduction. The compact organization of hydrophilic guest ions facilitates water-assisted ion-conduction in all the compounds. The dense packing of the compounds imparts high ion-conducting ability and minimizes the possibility of fuel crossover, making this approach promising for design and development of compounds as potential components of energy devices. This work presents the first report of evaluating ion-conduction in a purely metal-carbonate framework, which exhibits high ion-conductivity on the order of 10 -2 S cm -1 along with very low activation energy, which is comparable to highly conducting well-known crystalline coordination polymers or commercialized organic polymers like Nafion.
Enhanced photophysics of conjugated polymers
Chen, Liaohai [Argonne, IL; Xu, Su [Santa Clara, CA; McBranch, Duncan [Santa Fe, NM; Whitten, David [Santa Fe, NM
2003-05-27
The addition of oppositely charged surfactant to fluorescent ionic conjugated polymer forms a polymer-surfactant complex that exhibits at least one improved photophysical property. The conjugated polymer is a fluorescent ionic polymer that typically has at least one ionic side chain or moiety that interacts with the specific surfactant selected. The photophysical property improvements may include increased fluorescence quantum efficiency, wavelength-independent emission and absorption spectra, and more stable fluorescence decay kinetics. The complexation typically occurs in a solution of a polar solvent in which the polymer and surfactant are soluble, but it may also occur in a mixture of solvents. The solution is commonly prepared with a surfactant molecule:monomer repeat unit of polymer ratio ranging from about 1:100 to about 1:1. A polymer-surfactant complex precipitate is formed as the ratio approaches 1:1. This precipitate is recoverable and usable in many forms.
Ion-Containing Polymers: Ionomers.
ERIC Educational Resources Information Center
Bazuin, C. G.; Eisenberg, A.
1981-01-01
Demonstrates how the incorporation of relatively low amounts of ionic material into nonionic polymers affects the structure and properties of these polymers. The extent to which properties are altered depends on dielectric constant of the backbone, position and type of ionic group, counterion type, ion concentration, and degree of neutralization.…
Characterization of Highly Sulfonated SIBS Polymer Partially Neutralized With Mg(+2) Cations
2008-08-01
protective clothing, block copolymer ionomer membranes emerge. They are highly ordered sequence of both ionic and nonionic blocks, in which the ionic ...incorporated into the ionic polymer. Fourier-transform infrared spectroscopy results revealed that a significant amount of ordering occurred as a result on...increasing Mg content. This band indicates Mg complexation formed when two or more sulfonate groups ionically bonded to the Mg+2 cation
Development of ionic gels using thiol-based monomers in ionic liquid
NASA Astrophysics Data System (ADS)
Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu
2016-04-01
Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.
Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).
Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe
2016-10-26
Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.
NASA Astrophysics Data System (ADS)
Toi, Yutaka; Jung, Woosang
The electrochemical-poroelastic bending behavior of conducting polymer actuators has an attractive feature, considering their potential applications such as artificial muscles or MEMS. In the present study, a computational modeling is presented for the bending behavior of polypyrrole-based actuators. The one-dimensional governing equation for the ionic transportation in electrolytes given by Tadokoro et al. is combined with the finite element modeling for the poroelastic behavior of polypyrroles considering the effect of finite deformation. The validity of the proposed model has been illustrated by comparing the computed results with the experimental results in the literatures.
Mantravadi, Ramya; Chinnam, Parameswara Rao; Dikin, Dmitriy A; Wunder, Stephanie L
2016-06-01
Strong, solid polymer electrolyte ion gels, with moduli in the MPa range, a capacitance of 2 μF/cm(2), and high ambient ionic conductivities (>1 × 10(-3) S/cm), all at room temperature, have been prepared from butyl-N-methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide (PYR14TFSI) and methyl cellulose (MC). These properties are particularly attractive for supercapacitor applications. The ion gels are prepared by codissolution of PYR14TFSI and MC in N,N-dimethylformamide (DMF), which after heating and subsequent cooling form a gel. Evaporation of DMF leave thin, flexible, self-standing ion gels with up to 97 wt % PYR14TFSI, which have the highest combined moduli and ionic conductivity of ion gels to date, with an excellent electrochemical stability window (5.6 V). These favorable properties are attributed to the immiscibility of PYR14TFSI in MC, which permits the ionic conductivity to be independent of the MC at low MC content, and the in situ formation of a volume spanning network of semicrystalline MC nanofibers, which have a high glass transition temperature (Tg = 190 °C) and remain crystalline until they degrade at 300 °C.
Aquagel electrode separator for use in batteries and supercapacitors
Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.
1995-01-01
An electrode separator for electrochemical energy storage devices, such as a high energy density capacitor incorporating a variety of carbon foam electrodes. The separator is derived from an aquagel of resorcinol-formaldehyde and related polymers and containing ionically conducting electrolyte in the pores thereof.
One-volt-driven superfast polymer actuators based on single-ion conductors
Kim, Onnuri; Kim, Hoon; Choi, U. Hyeok; Park, Moon Jeong
2016-01-01
The key challenges in the advancement of actuator technologies related to artificial muscles include fast-response time, low operation voltages and durability. Although several researchers have tackled these challenges over the last few decades, no breakthrough has been made. Here we describe a platform for the development of soft actuators that moves a few millimetres under 1 V in air, with a superfast response time of tens of milliseconds. An essential component of this actuator is the single-ion-conducting polymers that contain well-defined ionic domains through the introduction of zwitterions; this achieved an exceptionally high dielectric constant of 76 and a 300-fold enhancement in ionic conductivity. Moreover, the actuator demonstrated long-term durability, with negligible changes in the actuator stroke over 20,000 cycles in air. Owing to its low-power consumption (only 4 mW), we believe that this actuator could pave the way for cutting-edge biomimetic technologies in the future. PMID:27857067
Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine
2017-01-18
Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.
Abedini, Asghar; Crabtree, Ellis; Bara, Jason E; Turner, C Heath
2017-10-24
Polyimides are at the forefront of advanced membrane materials for CO 2 capture and gas-purification processes. Recently, ionic polyimides (i-PIs) have been reported as a new class of condensation polymers that combine structural components of both ionic liquids (ILs) and polyimides through covalent linkages. In this study, we report CO 2 and CH 4 adsorption and structural analyses of an i-PI and an i-PI + IL composite containing [C 4 mim][Tf 2 N]. The combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations is used to compute the gas solubility and the adsorption performance with respect to the density, fractional free volume (FFV), and surface area of the materials. Our results highlight the polymer relaxation process and its correlation to the gas solubility. In particular, the surface area can provide meaningful guidance with respect to the gas solubility, and it tends to be a more sensitive indicator of the adsorption behavior versus only considering the system density and FFV. For instance, as the polymer continues to relax, the density, FFV, and pore-size distribution remain constant while the surface area can continue to increase, enabling more adsorption. Structural analyses are also conducted to identify the nature of the gas adsorption once the ionic liquid is added to the polymer. The presence of the IL significantly displaces the CO 2 molecules from the ligand nitrogen sites in the neat i-PI to the imidazolium rings in the i-PI + IL composite. However, the CH 4 molecules move from the imidazolium ring sites in the neat i-PI to the ligand nitrogen atoms in the i-PI + IL composite. These molecular details can provide critical information for the experimental design of highly selective i-PI materials as well as provide additional guidance for the interpretation of the simulated adsorption systems.
Transport and spectroscopic studies of liquid and polymer electrolytes
NASA Astrophysics Data System (ADS)
Bopege, Dharshani Nimali
Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.
Muthupradeepa, R; Sivakumar, M; Subadevi, R; Suryanarayanan, V; Liu, Wei-Ren
2018-01-01
The present study emphases on the effect of toting of TiO2 filler on the electrochemical enactment of polymer electrolyte containing PVdF-co-HFP(30) + SEt3TFSI(10) + EC/PC(60) + TiO2(x) wt% (Poly (vinylidene fluoride-co-hexafluoropropylene + Triethylsulfoniumbis(trifluoromethylsulfonyl)imide + Ethylene carbonate/Propylene carbonate (1:1 ratio) + Titanium dioxide) for lithium battery applications. Composite electrolytes with different weight percentages of TiO2 were prepared and characterized by different surface analytical, thermal and electrochemical techniques. With gradual increase of the amount of TiO2 upto 6 wt%, broadening of the prominent peak has been noted, suggesting a decrease in the degree of crystallinity upon the addition of TiO2, as revealed by X-ray diffraction (XRD). Raman and FT-IR studies confirm the presence of various functional groups, present in the matrix. The electrolyte with TiO2 (6 wt%) has maximum stability of 460 °C, as confirmed by thermal analysis. Conductivity of the composite polymer electrolytes increases upto 6 wt% of TiO2 (3.42 × 10-3 S/cm at 303 K) and further addition, causes a dip down in conductivity, indicating an improvement in the ionic conductivity and thermal stability with the incorporation of TiO2 filler. Surface morphologic images show the presence of surface and cavity in the polymer matrix, filled with the filler uniformly. Voltammetric studies confirm the electrochemical stability of films upto 4.62 V. Coin cell containing Li anode and LiFePO4 cathode along with polymer electrolyte/6 wt% TiO2 filler, delivers a first discharge capacity of 145 mAh/g with the working voltage of 3.4 V.
Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique
NASA Astrophysics Data System (ADS)
Harshlata, Mishra, Kuldeep; Rai, D. K.
2018-04-01
A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.
NASA Astrophysics Data System (ADS)
Guha Thakurta, Soma
Sulfonated polymer based solid polymer electrolytes (SPEs) have received considerable interest in recent years because of their wide variety of applications particularly in fuel cells, batteries, supercapacitors, and electrochromic devices. The present research was focused on three interrelated subtopics. First, two different bisphenol-A-poly(arylene ethers), polyetherimide (PEI) and polysulfone (PSU) were sulfonated by a post sulfonation method to various degrees of sulfonation, and their thermal and mechanical properties were examined. The effects of poly(arylene ether) chemical structure, reaction time, concentration, and types of sulfonating agents on sulfonation reaction were investigated. It was found that deactivation of bisphenol A unit caused by the electron withdrawing imide, retarded the sulfonation of PEI compared to PSU. Sulfonation conducted with a high concentration of sulfonating agent and/or prolonged reaction time exhibited evidence of degradation at the isopropylidene unit. The degradation occurred through the same mechanistic pathway with the two different sulfonating agents, chlorosulfonic acid (CSA) and trimethylsilyl chlorosulfonate (TMSCS). The degradation was faster with CSA than its silyl ester, TMSCS, and was evident even at low acid concentration. Second, novel anhydrous proton conducting solid polymer electrolytes (SPEs) were prepared by the incorporation of 1H-1,2,4-triazole (Taz) as a proton solvent in sulfonated polyetherimide (SPEI) matrix. The size, shape, and state of dispersion (crystal morphology) of triazole crystals in SPEI were examined as a function of degree of sulfonation and triazole concentration. Increasing sulfonic acid content caused reduction of triazole crystallite size, hence the depression of melting temperature and their uniform distribution throughout the sulfonated polymer matrix. The increased rate of structure diffusion within the smaller size crystals due to the improved molecular mobility contributed significantly to the anhydrous state proton conductivity. Third, a new category of single lithium ion conducting SPEs was developed by crosslinking a polyether epoxy, poly(ethylene glycol)diglicidyl ether (PEGDGE) (lithium ion solvent), in sulfonated polysulfone (SPSU) matrix. The effects of degree of sulfonation and electrolyte composition on ionic conductivity, thermal, and tensile properties of SPEs were investigated. It was found that ion-dipole interactions between lithium sulfonate (SO3Li) and PEGDGE were responsible for the reduction in size of the dispersed epoxy phase and increased thermal stability. Lithium sulfonate promoted compatibilization and also caused improvement in elongation at break. A low molecular weight electrolyte salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was further dissolved in PEGDGE phase prior to its crosslinking in SPSU matrix, and the ionic conductivity and thermal properties were evaluated as a function of doping level. The ionic conductivity showed remarkable improvement compared to the undoped system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Sipei; Lee, Keun Hyung; Sun, Jingru
2013-03-07
The viscoelastic properties and ionic conductivity of ion gels based on the self-assembly of a poly(styrene-b-ethylene oxide-b-styrene) (SOS) triblock copolymer (M{sub n,S} = 3 kDa, M{sub n,O} = 35 kDa) in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMI][TFSA]) were investigated over the composition range of 10-50 wt % SOS and the temperature range of 25-160 C. The poly(styrene) (PS) end-blocks associate into micelles, whereas the poly(ethylene oxide) (PEO) midblocks are well-solvated by this ionic liquid. The ion gel with 10 wt % SOS melts at 54 C, with the longest relaxation time exhibiting a similar temperature dependence to that of themore » viscosity of bulk PS. However, the actual values of the gel relaxation time are more than 4 orders of magnitude larger than the relaxation time of bulk PS. This is attributed to the thermodynamic penalty of pulling PS end-blocks through the PEO/[EMI][TFSA] matrix. Ion gels with 20-50 wt % SOS do not melt and show two plateaus in the storage modulus over the temperature and frequency ranges measured. The one at higher frequencies is that of an entangled network of PEO strands with PS cross-links; the modulus displays a quadratic dependence on polymer weight fraction and agrees with the prediction of linear viscoelastic theory assuming half of the PEO chains are elastically effective. The frequency that separates the two plateaus, {omega}{sub c}, reflects the time scale of PS end-block pull-out. The other plateau at lower frequencies is that of a congested micelle solution with PS cores and PEO coronas, which has a power law dependence on domain spacing similar to diblock melts. The ionic conductivity of the ion gels is compared to PEO homopolymer solutions at similar polymer concentrations; the conductivity is reduced by a factor of 2.1 or less, decreases with increasing PS volume fraction, and follows predictions based on a simple obstruction model. Our collective results allow the formulation of basic design considerations for optimizing the mechanical properties, thermal stability, and ionic conductivity of these gels.« less
Extensional ionomeric polymer conductor composite actuators with ionic liquids
NASA Astrophysics Data System (ADS)
Liu, Sheng; Lin, Minren; Zhang, Qiming
2008-03-01
Although the Ionic Polymer-Metal Composite (IPMC) actuators developed up to date are in the form of bending actuators, development of extensional actuators based on IMPC is highly desirable from practical applications and fundamental understanding points of view. This talk presents the design, fabrication and characterization of a recent work on an extensional Ionic Polymer-Metal Composite actuator. The extensional actuator consists of the Nafion ionomer as the matrix and the sub-micron size RuO II particles as the conductive filler for the conductor/ionomr composites. In this investigation, several ionic liquids (IL) were investigated. For a Nafion/RuO II composite with 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) IL, it was found that as the ions are driven into the ionomer/RuO II composite (the composite under negative voltage), an extensional strain of 0.9% was observed; while as the ions were expelled from the ionomer/RuO II composite (under positive voltage), a contraction of -1.2% was observed. The results indicate that multiple ions are participating in charge transport and actuation process. In this paper, we also discuss several design considerations for future extensional actuators with fast response, much improved strain and stress level. Especially an actuator based on multilayer configuration can significantly increase the electric field level in the actuator and consequently significantly improve the actuator speed. The extensional actuator investigated here provides a unique platform to investigate various phenomena related to ion transport and their interaction with the ionomer/conductor matrix to realize high electromechanical performance.
NASA Astrophysics Data System (ADS)
Plesse, C.; Khaldi, A.; Wang, Q.; Cattan, E.; Teyssié, D.; Chevrot, C.; Vidal, F.
2011-12-01
In recent years, numerous studies on electro-active polymer (EAP) actuators have been reported. One promising technology is the elaboration of electronic conducting polymer-based actuators with interpenetrating polymer network (IPNs) architecture. In this study, the synthesis and characterisation of conducting IPNs for actuator applications is described. The IPNs are synthesised from polyethylene oxide (PEO) and polytetrahydrofurane (PTHF) networks in which the conducting polymer (poly(3,4-ethylenedioxythiophene)) is incorporated. In a first step, PEO/PTHF IPNs were prepared via an 'in situ' process using poly(ethylene glycol) methacrylate and dimethacrylate and hydroxytelechelic PTHF as starting materials. The IPN mechanical properties were examined by DMA and tensile strength tests. N-ethylmethylimidazolium bis(trifluoromethanesulfonyl)imide (EMITFSI) swollen PEO/PTHF IPNs show ionic conductivities up to 10-3 S cm-1 at 30 °C. In a second step, the conducting IPN actuators were prepared by oxidative polymerisation of 3,4-ethylenedioxithiophene (EDOT) using FeCl3 as an oxidising agent within the PEO/PTHF IPN host matrix. The frequency response performance of the bending conducting IPN actuator was then evaluated. The resulting actuator exhibits a mechanical resonance frequency of up to 125 Hz with 0.75% strain for an applied potential of ± 5 V.
Monisha, S; Mathavan, T; Selvasekarapandian, S; Milton Franklin Benial, A; Aristatil, G; Mani, N; Premalatha, M; Vinoth Pandi, D
2017-02-10
Proton conducting materials create prime interest in electro chemical device development. Present work has been carried out to design environment friendly new biopolymer electrolytes (BPEs) using cellulose acetate (CA) complex with different concentrations of ammonium nitrate (NH 4 NO 3 ), which have been prepared as film and characterized. The 50mol% CA and 50mol% NH 4 NO 3 complex has highest ionic conductivity (1.02×10 -3 Scm -1 ). Differential scanning calorimetry shows the changes in glass transition temperature depends on salt concentration. Structural analysis indicates that the highest ionic conductivity complex exhibits more amorphous nature. Vibrational analysis confirms the complex formation, which has been validated theoretically by Gaussian 09 software. Conducting element in the BPEs has been predicted. Primary proton battery and proton exchange membrane fuel cell have been developed for highest ionic conductivity complex. Output voltage and power performance has been compared for single fuel cell application, which manifests the present BPE holds promise application in electrochemical devices. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ong, Ai Lien; Saad, Saeed; Lan, Rong; Goodfellow, Robert J.; Tao, Shanwen
2011-10-01
Hydroxyl-ion conductive poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) membranes with different characteristics were prepared via relatively simple bromination/amination serial reactions with reduced number of involved chemicals and shorter reaction time. The effects of reactants ratio, reaction atmosphere, polymer concentration, casting solvent, and hydroxylation treatment on reaction were investigated in details. The microstructure, water uptake, swelling ratio, ion-exchange capacity and ionic conductivity of the membranes were also studied. The obtained results demonstrate that, the ionic conductivity of the membrane is dependent on casting solvent. The N-methyl-2-pyrrolidonecast membrane exhibits the highest conductivity with the thinnest film. Although the membrane was prepared via a relatively simple preparation route with least toxic chemicals, a competitive ionic conductivity value of 1.64 × 10-2 S cm-1 was achieved at 60 °C. A power density of 19.5 mW cm-2 has been demonstrated from the alkaline membrane fuel cell operated at 70 °C, assembled from the entirely homemade membrane electrode assembly without any hot-pressing.
NASA Astrophysics Data System (ADS)
Kakati, Nitul; Das, Gautam; Yoon, Young Soo
2016-01-01
A blend of poly(vinyl alcohol) (PVA) with diglycidyl ether of bisphenol-A (DGB) in the presence of sulfosuccinic acid (SSA) was investigated as hydrolytically-stable proton-conducting membrane. The PVA modification was carried out by varying the DGB:SSA ratio (20:20, 10:20, and 5:20). A nanocomposite of the blend (20:20) was prepared with sulfonated multiwall carbon nanotubes (viz., 1, 3 and 5 wt%). The water uptake behavior and the proton conductivity of the prepared membranes were evaluated. The ionic conductivity of the membranes and the water uptake behavior depended on the s-MWCNT and the DGB contents. The ionic conductivity showed an enhancement for the blend and for the nanocomposite membrane as compared to the pristine polymer.
NASA Astrophysics Data System (ADS)
Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt
2008-03-01
Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyati, R.; Murray, R.W.
1996-02-01
This report describes the synthesis, microelectrode voltammetry, and ionic conductivity of a new room temperature molten salt N-(methoxy(ethoxy){sub 2}ethyl)pyridinium p-toluene sulfonate (abbreviated as[Py(E{sub 3}M){sup +}][Tos{sup {minus}}]) and of its solution in a hydroxy-terminated polydimethylsiloxane. Both ionically conductive liquids (conductivity = 1 {times} 10{sup {minus}4} {Omega}{sup {minus}1} cm{sup {minus}1}) exhibit voltammetric potential windows of about 1.5 V. The negative potential limit is determined by the reduction of the [Py(E{sub 3}M){sup +}] pyridinium species, with subsequent radical coupling to form a voltammetrically observed viologen dimer. The estimated diffusivities of the [Py(E{sub 3}M){sup +}] species, of a diethyleneglycol-tailed ferrocene redox solute studied, andmore » by application of Nernst-Einstein relation to the ionic charge carriers, all lie in the 10{sup {minus}7} to 10{sup {minus}8} cm{sup 2}/s range. Viscosities and glass transition thermal observations are reported as is the fit of the temperature dependencies of ionic conductivity in [Py(E{sub 3}M){sup +}][Tos{sup {minus}}] and in [Py(E{sub 3}M){sup +}][TOS{sup {minus}}]/PDMS mixtures to Vogel-Tamman-Fulcher predictions.« less
High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature
NASA Astrophysics Data System (ADS)
Mindemark, Jonas; Sun, Bing; Törmä, Erik; Brandell, Daniel
2015-12-01
Incorporation of carbonate repeating units in a poly(ε-caprolactone) (PCL) backbone used as a host material in solid polymer electrolytes is found to not only suppress crystallinity in the polyester material, but also give higher ionic conductivity in a wide temperature range exceeding the melting point of PCL crystallites. Combined with high cation transference numbers, this electrolyte material has sufficient lithium transport properties to be used in battery cells that are operational at temperatures down to below 23 °C, thus clearly demonstrating the potential of using non-polyether electrolytes in high-performance all-solid lithium polymer batteries.
NASA Astrophysics Data System (ADS)
Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.
2017-02-01
In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.
Vijayakumar, Vijayalekshmi; Khastgir, Dipak
2018-01-01
A series of novel ionic cross-linked chitosan (CS) based hybrid nanocomposites were prepared by using polyaniline/nano silica (PAni/SiO 2 ) as inorganic filler and sulfuric acid as an ionic cross-linking agent. The CS-PAni/SiO 2 nanocomposites show enhanced mechanical properties and improved oxidative stabilities. These nanocomposites can be effectively used as environmental friendly proton exchange membranes. Incorporation of PAni/SiO 2 into CS matrix enhances water uptake and facilitates the phase separation which enables the formation of hydrophilic domains and improves the proton transport. Moreover, the doped polyaniline also provides some additional pathways for proton conduction. The membrane containing 3wt% loading of PAni/SiO 2 in chitosan (CS-PAni/SiO 2 -3) exhibits high proton conductivity at 80°C (8.39×10 -3 Scm -1 ) in fully hydrated state due to its excellent water retention properties. Moreover, methanol permeability of the ionic cross-linked CS-PAni/SiO 2 nanocomposite membranes significantly reduces with the addition of PAni/SiO 2 nano particles. The CS-PAni/SiO 2 -3 composite membrane displays the best overall performance as a polymer electrolyte membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fullerene reinforced ionic polymer transducer
NASA Astrophysics Data System (ADS)
Jung, J. H.; Cheng, T. H.; Oh, I. K.
2009-07-01
Novel fullerene reinforced nano-composite transducers based on nafion were developed inorder to improve the ionic polymer metal composite transducer. The fullerene reinforced nano-composite membranes were fabricated by recasting method with 0.1 and 0.5 weight percentage of a Fullerenes. Stress-Strain tests showed tremendous increase in stiffness and modulus of the nano-composite membranes even at these minute concentrations of Fullerenes. Ionic exchange capacity analysis and proton conductivity test were performed to calculate the electrical property of the composite films. Water uptake was measured to understand the liquid adsorbing characteristics of the membranes. Also, tip displacement of the nano-composite membrane transducer was investigated under AC excitations with various magnitudes and frequencies. Furthermore, the generated energy was measured from external sinusoidal physical input vibration with several displacements and frequencies by using a mechanical shaker. As a result, the fullerene reinforced nanocomposite membrane based on nafion shows higher stiffness and Young's modulus than that of pure nafion membrane. Also, the nano-composite membrane had better water uptake and proton conductivity than the pure membrane. Fullerene reinforced nano-composite membrane transducer actuates to a much larger deformations than pure nafion membrane transducer. The developed membrane transducer dissipates more energy from the physical input vibration than that of unfilled(or virgin) Nafion membrane transducer.
NASA Astrophysics Data System (ADS)
Montazami, Reza; Liu, Sheng; Liu, Yang; Wang, Dong; Zhang, Qiming; Heflin, James R.
2011-05-01
Ionic electroactive polymer (IEAP) actuators containing porous conductive network composites (CNCs) and ionic liquids can result in high strain and fast response times. Incorporation of spherical gold nanoparticles in the CNC enhances conductivity and porosity, while maintaining relatively small thickness. This leads to improved mechanical strain and bending curvature of the actuators. We have employed the layer-by-layer self-assembly technique to fabricate a CNC with enhanced curvature (0.43 mm-1) and large net intrinsic strain (6.1%). The results demonstrate that curvature and net strain of IEAP actuators due to motion of the anions increase linearly with the thickness of the CNC as a result of the increased volume in which the anions can be stored. In addition, after subtracting the curvature of a bare Nafion actuator without a CNC, it is found that the net intrinsic strain of the CNC layer is independent of thickness for the range of 20-80 nm, indicating that the entire CNC volume contributes equivalently to the actuator motion. Furthermore, the response time of the actuator due to anion motion is independent of CNC thickness, suggesting that traversal through the Nafion membrane is the limiting factor in the anion motion.
Yasin, Siti Mariah Mohd; Ibrahim, Suriani; Johan, Mohd Rafie
2014-01-01
New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10(-4) Scm(-1)). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased.
Yasin, Siti Mariah Mohd; Ibrahim, Suriani
2014-01-01
New solid polymer electrolytes (SPE) based on poly(ethylene oxide) (PEO) doped with lithium trifluoromethanesulfonate (LiCF3SO3), dibutyl phthalate (DBP) plasticizer, and zirconium oxide (ZrO2) nanoparticles were prepared by solution-casting technique. The conductivity was enhanced by addition of dibutyl phthalate (DBP) plasticizer and ZrO2 nanofiller with maximum conductivity (1.38 × 10−4 Scm−1). The absorption edge and band gap values showed decreases upon addition of LiSO3CF3, DBP, and ZrO2 due to the formation of localized states in the SPE and the degree of disorder in the films increased. PMID:25133244
Carbon nanotube-graphene composite for ionic polymer actuators
NASA Astrophysics Data System (ADS)
Yang, Woosung; Choi, Hyonkwang; Choi, Suho; Jeon, Minhyon; Lee, Seung-Yop
2012-05-01
In this paper, we develop a new ionic polymer-metal composite (IPMC) by replacing a typical platinum or gold electrode with a multi-walled carbon nanotube (MWNT)-graphene based electrode. A solvent of MWNT and graphene is formed on both sides of the ionic polymer membranes as electrodes by means of spray coating and baking. Then, the ionic liquid process is performed for actuating in air. The four kinds of IPMC samples with different MWNT-graphene ratios are fabricated with the same solid Nafion film. Experimental results show that the IPMC with a pure MWNT based electrode exhibits higher displacement compared to the conventional IPMC with a platinum electrode. Also, the increment of the ratio of graphene to the MWNT-graphene electrode decreases the resultant displacement but increases the fundamental natural frequency of the polymer actuator.
A high performance ceramic-polymer separator for lithium batteries
NASA Astrophysics Data System (ADS)
Kumar, Jitendra; Kichambare, Padmakar; Rai, Amarendra K.; Bhattacharya, Rabi; Rodrigues, Stanley; Subramanyam, Guru
2016-01-01
A three-layered (ceramic-polymer-ceramic) hybrid separator was prepared by coating ceramic electrolyte [lithium aluminum germanium phosphate (LAGP)] over both sides of polyethylene (PE) polymer membrane using electron beam physical vapor deposition (EB-PVD) technique. Ionic conductivities of membranes were evaluated after soaking PE and LAGP/PE/LAGP membranes in a 1 Molar (1M) lithium hexafluroarsenate (LiAsF6) electrolyte in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethylmethyl carbonate (EMC) in volume ratio (1:1:1). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to evaluate morphology and structure of the separators before and after cycling performance tests to better understand structure-property correlation. As compared to regular PE separator, LAGP/PE/LAGP hybrid separator showed: (i) higher liquid electrolyte uptake, (ii) higher ionic conductivity, (iii) lower interfacial resistance with lithium and (iv) lower cell voltage polarization during lithium cycling at high current density of 1.3 mA cm-2 at room temperature. The enhanced performance is attributed to higher liquid uptake, LAGP-assisted faster ion conduction and dendrite prevention. Optimization of density and thickness of LAGP layer on PE or other membranes through manipulation of PVD deposition parameters will enable practical applications of this novel hybrid separator in rechargeable lithium batteries with high energy, high power, longer cycle life, and higher safety level.
NASA Astrophysics Data System (ADS)
Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.
2016-09-01
A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).
NASA Astrophysics Data System (ADS)
Bala Sahu, Tripti; Sahu, Manju; Karan, Shrabani; Mahipal, Y. K.; Sahu, D. K.; Agrawal, R. C.
2017-07-01
Synthesis and characterization of ion transport behavior in Cu2+-conducting nano composite polymer electrolyte (NCPE) films: [90PEO: 10Cu(CF3SO3)2] + x CuO have been reported. NCPE films have been formed by hot-press casting technique using solid polymer electrolyte (SPE) film composition: [90PEO: 10Cu(CF3SO3)2] as 1st-phase host and nanoparticles of CuO in varying wt.(%) as 2nd-phase active filler. SPE: [90PEO: 10Cu(CF3SO3)2] was identified earlier as highest conducting film with room temperature conductivity (σ rt) ~ 3.0 x 10-6 S cm-1, which is three orders of magnitude higher than that of pure polymer host PEO with σ rt ~ 3.2 × 10-9 S cm-1. Filler particle concentration dependent conductivity study revealed NCPE film: [90PEO: 10Cu(CF3SO3)2] + 3%CuO as optimum conducting composition (OCC) exhibiting σ rt ~ 1.14 × 10-5 S cm-1. Hence, by the fractional dispersal of 2nd-phase active filler into 1st-phase SPE host, σ-enhancement of approximately an order of magnitude has further been obtained. Ion transport behavior in NCPE OCC film has been characterized in terms of basic ionic parameters viz. ionic conductivity (σ), total ionic transference (t ion)/cationic (t +) numbers. Temperature dependent conductivity measurement has also been done to explain the mechanism of ion transport and to compute activation energy (E a). Materials characterization and hence, confirmation of complexation of salt in polymeric host and/or dispersal of filler particles in SPE host have been done by scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDS), x-ray diffraction (XRD), Fourier transform infra-red (FTIR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). All-solid-state battery in the cell configuration: Cu (Anode) || SPE host/NCPE OCC film || C + I2 + Electrolyte) (Cathode) has been fabricated and cell performance has been studied under two load resistances viz. 60 and 100 kΩ. Each NCPE cell gave on an open circuit voltage (OCV) ~ 0.68 V. Some important battery parameters have also been evaluated from the plateau regions of cell potential discharge profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Chen, Yan; Hood, Zachary D.
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
Elucidating interactions of ionic liquids with polymer films using confocal Raman spectroscopy.
Schäfer, Thomas; Di Paolo, Roberto E; Franco, Ricardo; Crespo, João G
2005-05-28
We report on the molecular interactions between room-temperature ionic liquids (RTILs) and Nafion and PDMS membranes, proving that in contact with these polymers RTILs behave like electrolytes rather than solvents.
PBT,PBO-Based Hybrid Polymers with Nonlinear Optical Properties or High Electrical Conductivity
1988-08-29
standing. Experiments with stronger oxidizing agents such as nitrosonium salts (e.g., NO+Br4, NO+PF6) and high-potential quinones (e.g., DDQ...several unique possibilities. First, the ionic structure should raise Tg. Second, electrophoretic ion migration under the influence of the poling field
Aquagel electrode separator for use in batteries and supercapacitors
Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.
1995-03-28
An electrode separator is described for electrochemical energy storage devices, such as a high energy density capacitor incorporating a variety of carbon foam electrodes. The separator is derived from an aquagel of resorcinol-formaldehyde and related polymers and containing ionically conducting electrolyte in the pores thereof. 9 figures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arya, Anil; Sharma, Sweety; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com
Blend polymer electrolytes are prepared for salt concentration (Ö/Li = 4) with the constant ratio (0.5 gm) of PEO and PAN using solution casting technique. The prepared free standing solid polymeric film is characterized by Field Emission Scanning Electron Microscopy (FESEM) which confirms the homogeneous distribution of dissociated salt in blend polymer matrix. After addition of salt the ionic conductivity value is found to be of the order of 7.13 × 10{sup −5} Scm{sup −1} which is three orders higher when compared with pure blend polymer films. The microscopic interaction among the polymer-ion, ion-ion has been confirmed by the Fouriermore » Transform Infrared (FTIR) Spectroscopy. A very fine correlation has been built in the electrical conductivity and FTIR result. On the basis of above finding, a prepared free standing solid polymeric film appears to be appropriate for the energy storage/conversion device applications.« less
Photoinitiated Bottom-Up Click Synthesis of Ion-Containing Networks as Hydroxide Exchange Membranes
NASA Astrophysics Data System (ADS)
Tibbits, Andrew Charles
Fuel cells are energy conversion devices which directly convert chemical energy into electrical energy and environmentally friendly byproducts (i.e., water) with potential versatility for transportation and portable applications. Hydroxide exchange membrane fuel cells (HEMFCs) have the potential to decrease the overall fuel cell cost through the utilization of non-precious metal catalysts such as nickel and silver as opposed to platinum which is used by the current standard technology, proton exchange membrane fuel cells (PEMFCs). However, substantial improvements in thermal and alkaline stability, hydroxide conductivity, mechanical flexibility, and processing are needed to create a competitive membrane for HEMFC applications. Regardless of the type of membrane, the high water uptake that is typically associated with increased ionic conductivity is problematic and can result in the dissolution of the membrane during fuel cell operation. Covalent crosslinking of the membrane is an approach which has been effectively applied to reduce water uptake without a significant compromise of the hydroxide conductivity. The synthesis and processing of membrane materials is vastly simplified by using click polymerization schemes. Click chemistry is a collection of organic chemical reactions that are rapid, selective, and high yielding. One of the most versatile and facile click reactions is the thiol-ene reaction, which is the radical-mediated addition reaction between a thiol (an -SH group) and an 'ene' (an electron rich vinyl group, C=C) in the presence of a photoinitiator and light. The click attributes of the thiol-ene reaction enables potential of "bottom-up" design of ion-containing polymers via a single step photoinitiated crosslinking reaction with precise control over structure and physicochemical properties not only for fuel cell membranes but also for a range of other applications including separations, sensors, flexible electronics, and coatings. However, a fundamental understanding of the formation and properties of ion-containing thiol-ene materials and their implementation as hydroxide exchange membranes is largely absent from the current literature. The work described herein will highlight the versatility of click reactions, primarily the thiol-ene reaction, for fabrication of ion-containing networks with tunable properties based on the rational design and synthesis of photopolymerizable ionic liquid comonomers with an emphasis on applicability for HEMFC applications. The role of ionic liquid monomer structure on the kinetics and mechanism of thiol-ene ionic network formation and the subsequent properties (i.e., ion conductive, thermomechanical, and structural) will be elucidated to establish a guided framework for click ionic material development. This framework will be directed onto the development of alkaline stable hydroxide-conductive membranes for fuel cell applications as well as the incorporation of catalytic nanoparticles into a photocrosslinkable formulation as a self-standing catalyst layer. Finally, novel approaches to membrane fabrication will be implemented to build on the foundational studies that will simultaneously enhance the ionic conductivity and mechanical properties of the ion-containing polymer materials: these approaches include the synthesis and crosslinking of photopolymerizable cationic surfactants for microphase separated membranes as well as the first "bottom-up" ion-containing polymer synthesized from the photoinitiated copper-catalyzed azide-alkyne cycloaddition (photo-CuAAC) reaction which exhibits enhanced processability and hydroxide conductivity (>50 mS/cm).
Preparation of Proton Exchange Membranes and Lithium Batteries from Melamine-containing Ormosils
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Kinder, James D.; Meador, Mary Ann; Waldecker, James; Bennett, William R.
2004-01-01
Our laboratory has recently reported a series of rodcoil polymers for lithium batteries that display dimensionally stable films with good ionic conductivity. The rod segments consist of rigid linear and branched polyimides and the coil segments are polyethylene oxides (PEO). It has been proposed that good mechanical and transport properties are due to phase separation between the rod and coil segments. It was also observed that increased branching and molecular weight lead to increased conductivity. The following study was undertaken to assess the effects of phase separation in polyalkylene oxides connected by melamine linkages. Melamine was chosen as the linking unit because it provides a branching site, cation binding sites to help ionic transport between polymer chains, and the opportunity for self assembly through hydrogen bonding. Polymers were made by the reaction of cyanuric chloride with a series of amine-terminated alkylene oxides. A linear polymer was first made, followed by reaction of the third site on cyanuric chloride with varying ratios of monofunctional Jeffamine and (3-aminopropyl)triethoxysilane. The lithium trifluoromethane sulfonamide-doped polymers are then crosslinked through a sol-gel process to form free-standing films. Initial results have shown mechanically strong films with lithium conductivities on the order of 2 x 10(exp -5) S/cm at ambient temperature. In a separate study, organically modified silanes (Ormosils) that contain sulfonic acid derivatized melamines have been incorporated into proton exchange membranes. The membranes are made by reaction of the primary amine groups of various ratios of melamine derivative and difunctional Jeffamine (MW = 2000) with the epoxide group of (3-Glycidyloxypropyl)trimethoxysilane. The films were then cross-linked through a sol-gel process. Resulting sulfuric acid doped films are strong, flexible, and have proton conductivities on the order of 2 x l0(exp -2) S/cm (120 C, 25% relative humidity). Our best results have been observed when films contain 60% PEO and 40% sulfonated melamine.
NASA Astrophysics Data System (ADS)
Barhoumi, Z.; Saini, M.; Amdouni, N.; Pal, A.
2016-09-01
The micellization of an aqueous solution of the surface active ionic liquid (SAIL), 1-butyl-3-methylimidazolium octylsufate (C4mim)(C8OSO3) and its interaction with an anionic polymer sodium polystyrene sulfonate, (NaPSS) were studied using conductimetry, tensiometry and fluorimetry. Surface tension profile shows a more dramatic increase in the value of surface tension of aqueous (C4mim)(C8OSO3) before the critical micelle concentration (cmc) of IL. The critical micelle concentration (cmc) value of this surfactant was found out from conductance measurements. The thermodynamic parameters, i.e., Gibb's free energy, enthalpy, and entropy of micellization of the IL in aqueous solution have been calculated. Behavior of fluorescence probe confirms the binding interactions between SAIL and the polyelectrolyte.
Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.
Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano
2016-01-11
The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molecular Approach to Conjugated Polymers with Biomimetic Properties.
Baek, Paul; Voorhaar, Lenny; Barker, David; Travas-Sejdic, Jadranka
2018-06-13
The field of bioelectronics involves the fascinating interplay between biology and human-made electronics. Applications such as tissue engineering, biosensing, drug delivery, and wearable electronics require biomimetic materials that can translate the physiological and chemical processes of biological systems, such as organs, tissues. and cells, into electrical signals and vice versa. However, the difference in the physical nature of soft biological elements and rigid electronic materials calls for new conductive or electroactive materials with added biomimetic properties that can bridge the gap. Soft electronics that utilize organic materials, such as conjugated polymers, can bring many important features to bioelectronics. Among the many advantages of conjugated polymers, the ability to modulate the biocompatibility, solubility, functionality, and mechanical properties through side chain engineering can alleviate the issues of mechanical mismatch and provide better interface between the electronics and biological elements. Additionally, conjugated polymers, being both ionically and electrically conductive through reversible doping processes provide means for direct sensing and stimulation of biological processes in cells, tissues, and organs. In this Account, we focus on our recent progress in molecular engineering of conjugated polymers with tunable biomimetic properties, such as biocompatibility, responsiveness, stretchability, self-healing, and adhesion. Our approach is general and versatile, which is based on functionalization of conjugated polymers with long side chains, commonly polymeric or biomolecules. Applications for such materials are wide-ranging, where we have demonstrated conductive, stimuli-responsive antifouling, and cell adhesive biointerfaces that can respond to external stimuli such as temperature, salt concentration, and redox reactions, the processes that in turn modify and reversibly switch the surface properties. Furthermore, utilizing the advantageous chemical, physical, mechanical and functional properties of the grafts, we progressed into grafting of the long side chains onto conjugated polymers in solution, with the vision of synthesizing solution-processable conjugated graft copolymers with biomimetic functionalities. Examples of the developed materials to date include rubbery and adhesive photoluminescent plastics, biomolecule-functionalized electrospun biosensors, thermally and dually responsive photoluminescent conjugated polymers, and tunable self-healing, adhesive, and stretchable strain sensors, advanced functional biocidal polymers, and filtration membranes. As outlined in these examples, the applications of these biomimetic, conjugated polymers are still in the development stage toward truly printable, organic bioelectronic devices. However, in this Account, we advocate that molecular engineering of conjugated polymers is an attractive approach to a versatile class of organic electronics with both ionic and electrical conductivity as well as mechanical properties required for next-generation bioelectronics.
Chemical synthesis of water-soluble, chiral conducting-polymer complexes
Wang, Hsing-Lin; McCarthy, Patrick A.; Yang, Sze Cheng
2003-01-01
The template-guided synthesis of water-soluble, chiral conducting polymer complexes is described. Synthesis of water-soluble polyaniline complexes is achieved by carefully controlling the experimental parameters such as; acid concentration, ionic strength, monomer/template ratio, total reagent concentration, and order of reagent addition. Chiral (helical) polyaniline complexes can be synthesized by addition of a chiral inducing agent (chiral acid) prior to polymerization, and the polyaniline helix can be controlled by the addition of the (+) or (-) form of the chiral acid. Moreover the quantity of chiral acid and the salt content has a significant impact on the degree of chirality in the final polymer complexes. The polyaniline and the template have been found to be mixed at the molecular level which results in chiral complexes that are robust through repeated doping and dedoping cycles.
NASA Astrophysics Data System (ADS)
Thiam, A.; Iojoiu, C.; Leprêtre, J.-C.; Sanchez, J.-Y.
2017-10-01
Polymer electrolytes based on a series of new lithium anilinyl-perfluorosulfonamide exhibit conductivities close to LiTFSI ones and higher cationic transference numbers. Taking advantage of an extended delocalization on the negative charge, the anodic stability of the salts was found to range between 4.2 and 4.9 V vs Li/Li+, according to the electron-withdrawing group EWG located in para/ortho position. The simplicity of the synthesis process of the new salts, with lower fluorine content than LiPF6 and LiTFSI, paves the way for a further semi-pilot scale-up. Moreover, Linear Free Energy Relationships, LFER, were established for the first time, for both ionic conductivity and anodic stability. These LFER demonstrate unambiguously and quantitatively the conductivity dependence on anion basicity. Polymer electrolytes were soundly investigated through a variety of physicochemical and electrochemical characterizations.
Introducing catalyst in alkaline membrane for improved performance direct borohydride fuel cells
NASA Astrophysics Data System (ADS)
Qin, Haiying; Lin, Longxia; Chu, Wen; Jiang, Wei; He, Yan; Shi, Qiao; Deng, Yonghong; Ji, Zhenguo; Liu, Jiabin; Tao, Shanwen
2018-01-01
A catalytic material is introduced into the polymer matrix to prepare a novel polymeric alkaline electrolyte membrane (AEM) which simultaneously increases ionic conductivity, reduces the fuel cross-over. In this work, the hydroxide anion exchange membrane is mainly composed of poly(vinylalcohol) and alkaline exchange resin. CoCl2 is added into the poly(vinylalcohol) and alkaline exchange resin gel before casting the membrane to introduce catalytic materials. CoCl2 is converted into CoOOH after the reaction with KOH solution. The crystallinity of the polymer matrix decreases and the ionic conductivity of the composite membrane is notably improved by the introduction of Co-species. A direct borohydride fuel cell using the composite membrane exhibits an open circuit voltage of 1.11 V at 30 °C, which is notably higher than that of cells using other AEMs. The cell using the composite membrane achieves a maximum power density of 283 mW cm-2 at 60 °C while the cell using the membrane without Co-species only reaches 117 mW cm-2 at the same conditions. The outstanding performance of the cell using the composite membrane benefits from impregnation of the catalytic Co-species in the membrane, which not only increases the ionic conductivity but also reduces electrode polarization thus improves the fuel cell performance. This work provides a new approach to develop high-performance fuel cells through adding catalysts in the electrolyte membrane.
Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes.
Sun, Che-Nan; Zawodzinski, Thomas A; Tenhaeff, Wyatt E; Ren, Fei; Keum, Jong Kahk; Bi, Sheng; Li, Dawen; Ahn, Suk-Kyun; Hong, Kunlun; Rondinone, Adam J; Carrillo, Jan-Michael Y; Do, Changwoo; Sumpter, Bobby G; Chen, Jihua
2015-03-28
Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.
NASA Technical Reports Server (NTRS)
Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel
1993-01-01
Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.
Multifunctional structural lithium ion batteries for electrical energy storage applications
NASA Astrophysics Data System (ADS)
Javaid, Atif; Zeshan Ali, Muhammad
2018-05-01
Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.
Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes.
Fong, Kara D; Wang, Tiesheng; Kim, Hyun-Kyung; Kumar, R Vasant; Smoukov, Stoyan K
2017-09-08
Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 μm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.
NASA Astrophysics Data System (ADS)
Hendrana, S.; Pryliana, R. F.; Natanael, C. L.; Rahayu, I.
2018-03-01
Phosphoric acid is one agents used in membrane fuel cell to modify ionic conductivity. Therefore, its distribution in membrane is a key parameter to gain expected conductivity. Efforts have been made to distribute phosphoric acid in a supramolecular-structured membrane prepared with a matrix. To achieve even distribution across bulk of the membrane, the inclusion of the polyacid is carried out under pressurized chamber. Image of scanning electron microscopy (SEM) shows better phosphoric acid distribution for one prepared in pressurized state. It also leads in better performing in ionic conductivity. Moreover, data from differential scanning calorimetry (DSC) indicate that the addition of phosphoric acid is prominent in the change of membrane structure, while morphological changes are captured in SEM images.
NASA Astrophysics Data System (ADS)
Peng, Gangrou; Ge, Yu; Ding, Jie; Wang, Caiyun; Wallace, Gordon G.; Li, Weihua
2018-03-01
Ionogels are a new class of hybrid materials where ionic liquids are immobilized by macromolecular support. The excessive amount of crosslinking polymer enhances the mechanical strength but compromises the conductivity. Here, we report an elastomeric magnetorheological (MR) ionogel with an enhanced conductivity and mechanical strength as well. Following the application of magnetic nanoparticles into an ionic liquid containing minimum cross-linking agent, the formation, thus physical properties, of MR ionogels are co-controlled by simultaneously applied UV light and external magnetic field. The application of MR ionogels as solid electrolytes in supercapacitors is also demonstrated to study electrochemical performance. This work opens a new avenue to synthesize robust ionogels with the desired conductivity and controllable mechanical properties for soft flexible electronic devices. Besides, as a new class of conductive MR elastomers, the proposed MR ionogel also possesses the potential for engineering applications, such as sensors and actuators.
NASA Astrophysics Data System (ADS)
Sreeram, Arvind
Conjugated polymers have found several applications in recent years, in energy conversion and storage devices such as organic light emitting diodes, solar cells, batteries, and super capacitors. Thin films of polymers used for these applications need to be mechanically and thermally stable to withstand the harsh operating conditions. Although there is significant information on the optoelectronic properties of many of these polymers, there are only few studies on their mechanical properties. There is little information in the literature on how processing of these films influence mechanical properties. In the first part of this study, poly(p-phenylene vinylene) (PPV) films were prepared by thermolytic conversion of poly[p -phenylene (tetrahydrothiophenium)ethylene chloride] precursor films, at different temperatures and the kinetics of reaction was investigated using thermogravimetry and Fourier transform infrared (FTIR) spectroscopy. The mechanical properties of the films, studied using nanoindentation, showed a dependence on the extent of conversion and chemical composition of the films. The presence of chemical defects (e.g., carbonyl groups, detected using FTIR spectroscopy), was also found to have a noticeable effect on the modulus and hardness of the films. The storage modulus, E', and plasticity decreased with an increase in conversion, whereas the loss modulus, E", showed the opposite trend. Both the precursor and the fully-converted PPV films were found to have significantly lower E" than E', consistent with the glassy nature of the polymers at room temperature. In the second part of the study, polyacetylene films were synthesized by acid-catalyzed dehydration reaction of poly(vinyl alcohol) (PVA) precursor films. The kinetics of this reaction was monitored by thermogravimetry. The chemical structure of the conjugated polymer films was characterized by Raman and IR spectroscopy. Polyacetylene films incorporated with 1-propyl-3-methylimidazolium ionic liquid (IL) could be obtained in a single step reaction. The incorporation of IL in the film, not only greatly improved its mechanical properties, by acting as a plasticizer, but also imparted a dual mechanism of charge transport. The segments of conjugated double bonds imparted electronic conductivity to the films, and the IL resulted in ionic conductivity. The presence of both electronic and ionic conduction pathways in the films was confirmed by electrochemical impedance spectroscopy (EIS). These IL-imbibed conjugated polymer films are promising as materials for electrochemical energy conversion and storage. In the third part of this work, conjugated polymer films containing multiwalled carbon nanotubes (MWNT) and graphene nanoplatelets (GNP) were synthesized and characterized. PPV--MWNT nanocomposite films and PA--GNP nanocomposite films were characterized using a variety of analytical techniques including transmission electron microscopy, quasistatic and dynamic nanoindentaiton, electrochemical impedance spectroscopy, and cyclic voltammetry. Potential application of these films is in electrochemical supercapacitors.
Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.
Han, Mengwei; Espinosa-Marzal, Rosa M
2017-09-07
We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.
Highly Selective Ionic Block Copolymer Membranes
2010-11-10
Multicomponent Diffusion and Sorption in an Ionic Polymer Membrane We recently measured the diffusion and sorption of methanol/water mixtures in Nafion (most...methanol feed concentration (17 M). Figure 1 shows one experiment where hydrated Nafion was exposed to a 2 M methanol/water liquid mixture resulting...copolymer membranes revealed several surprising results. Contrary to what has been observed in most ionic polymer membranes (e.g., Nafion ), the proton
Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean
2012-07-30
In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.
Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean
2012-01-01
In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295
In Situ Study of Strain-Dependent Ion Conductivity of Stretchable Polyethylene Oxide Electrolyte
Kelly, Taylor; Ghadi, Bahar Moradi; Berg, Sean; Ardebili, Haleh
2016-01-01
There is a strong need in developing stretchable batteries that can accommodate stretchable or irregularly shaped applications including medical implants, wearable devices and stretchable electronics. Stretchable solid polymer electrolytes are ideal candidates for creating fully stretchable lithium ion batteries mainly due to their mechanical and electrochemical stability, thin-film manufacturability and enhanced safety. However, the characteristics of ion conductivity of polymer electrolytes during tensile deformation are not well understood. Here, we investigate the effects of tensile strain on the ion conductivity of thin-film polyethylene oxide (PEO) through an in situ study. The results of this investigation demonstrate that both in-plane and through-plane ion conductivities of PEO undergo steady and linear growths with respect to the tensile strain. The coefficients of strain-dependent ion conductivity enhancement (CSDICE) for in-plane and through-plane conduction were found to be 28.5 and 27.2, respectively. Tensile stress-strain curves and polarization light microscopy (PLM) of the polymer electrolyte film reveal critical insights on the microstructural transformation of stretched PEO and the potential consequences on ionic conductivity. PMID:26831948
Dual-responsive soft actuators based on self-assembled polymers
NASA Astrophysics Data System (ADS)
Kim, Seung Jae; Park, Moon Jeong
Electroactive polymer actuators (EAPs) have been extensively studied for biomimetic technologies such as artificial muscles and soft robotics. While a large deformation can be achievable from EAPs under relatively low-driving voltages, the slow response time has long been a fundamental drawback of EAPs. Here, we investigate a new soft actuator capable of responding two different external stimuli. The actuator is composed of electroactive polymer and light-responsive polymer. We have employed ionic block copolymers having well-connected ion-conduction channels to raise response to electric-field. Light-responsive polymers were additionally incorporated into them to control the deformation of the actuator in an independent manner. Noteworthy observation in the present study is that the dual-responsive polymers resulted in synergetic achievement of high bending strain and fast response time, which marked a significant improvement from the conventional EAPs.
Electrochemical characteristics of Li/LiMn 2O 4 cells using gel polymer electrolytes
NASA Astrophysics Data System (ADS)
Kim, Dong-Won; Ko, Jang-Myoun; Chun, Jong-Han
Gel polymer electrolytes composed of acrylonitrile-methylmethacrylate (AM) copolymer and 1 M LiClO 4-ethylene carbonate (EC)/propylene carbonate (PC) are prepared. The ionic conductivity reaches 1.9×10 -3 S cm -1 in a gel polymer electrolyte with 20 wt.% of AM copolymer and 80 wt.% of LiClO 4-EC/PC at room temperature. These systems showed no solvent exudation from the matrix polymer due to enhanced compatibility between AM copolymer and organic liquid electrolyte. A Li/gel polymer electrolyte/LiMn 2O 4 cell has a reversible capacity of 132 mAh g -1 in the voltage range of 3.0-4.3 V at the C/5 rate and shows good cycling performance with a coulombic efficiency >99%.
NASA Astrophysics Data System (ADS)
Middleton, Luri Robert
Acid- and ion-containing polymers have interchain interactions that alter polymer behavior at the nano, micro, and bulk length scales. Strong secondary-bonds act as thermo-reversible physical crosslinks between chains which drive self-assembly. Tuning theses interactions can modify bulk polymer properties including stiffness, toughness, melt viscosity, resilience, clarity, abrasion resistance and puncture resistance. Furthermore, understanding and improving the relevant factors that control transport properties would have vast implications on developing solid polymer electrolytes (SPEs) for technologically important applications including water desalination, ion exchange membranes and microelectronics. This thesis explores the structure - processing - morphology - property relationships of acid and ionic functionalized polymers. Improvements in synthetic techniques and advancements in characterization methods have enabled new studies of associating polymer systems. Synthesis of entangled, high molecular weight, linear polyethylene (PE) chains functionalized with interacting pendant groups (acidic or ionic) placed periodically along the polymer backbone represent a new class of associating polymers. These polymers with periodic distributions of acid groups are much more homogenous than the commercially available polymers. Previous studies of these polymers with greater structural homogeneity revealed great variety in morphologies of the nano-aggregated polar groups within the non-polar polymer matrix. This thesis correlated the morphologies with bulk properties through real-time X-ray scattering and tensile deformation at a range of temperatures and sample compositions. New, transient morphologies and hierarchical morphologies were observed which coincided with unusual tensile strain hardening. These results indicate that improvements in synthetic control of polymers can enhance physical properties such as tensile strain-hardening, through cooperative bonding between chains. The structural regularity of precise polyethylenes also enables robust comparisons between experiments and computer simulations. At pico- to nano-seconds time scales and length scales of polymer and aggregate dynamics, neutron scattering and molecular dynamics simulations were combined to extend the knowledge of the molecular-level aggregated polymer dynamics. These experiments provide a baseline for future studies of ion-conduction in associating polymer melts.
Artificial muscles with adjustable stiffness
NASA Astrophysics Data System (ADS)
Mutlu, Rahim; Alici, Gursel
2010-04-01
This paper reports on a stiffness enhancement methodology based on using a suitably designed contact surface with which cantilevered-type conducting polymer bending actuators are in contact during operation. The contact surface constrains the bending behaviour of the actuators. Depending on the topology of the contact surface, the resistance of the polymer actuators to deformation, i.e. stiffness, is varied. As opposed to their predecessors, these polymer actuators operate in air. Finite element analysis and modelling are used to quantify the effect of the contact surface on the effective stiffness of a trilayer cantilevered beam, which represents a one-end-free, the-other-end-fixed polypyrrole (PPy) conducting polymer actuator under a uniformly distributed load. After demonstrating the feasibility of the adjustable stiffness concept, experiments were conducted to determine the stiffness of bending-type conducting polymer actuators in contact with a range (20-40 mm in radius) of circular contact surfaces. The numerical and experimental results presented demonstrate that the stiffness of the actuators can be varied using a suitably profiled contact surface. The larger the radius of the contact surface is, the higher is the stiffness of the polymer actuators. The outcomes of this study suggest that, although the stiffness of the artificial muscles considered in this study is constant for a given geometric size, and electrical and chemical operation conditions, it can be changed in a nonlinear fashion to suit the stiffness requirement of a considered application. The stiffness enhancement methodology can be extended to other ionic-type conducting polymer actuators.
Clustering effects in ionic polymers: Molecular dynamics simulations.
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S
2015-08-01
Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. These ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Decrease in electrostatic interaction significantly enhances the mobility of the polymer.
De Gregorio, Gian Luca; Agosta, Rita; Giannuzzi, Roberto; Martina, Francesca; De Marco, Luisa; Manca, Michele; Gigli, Giuseppe
2012-03-25
Four different species of ionically conductive polymers were synthesized and successfully implemented to formulate novel quasi-solid electrolytes for dye solar cells. A power conversion efficiency superior to 85% of the correspondent liquid electrolyte as well as an excellent cell's stability was demonstrated after 500 days of storage.
Kim, Ilhwan; Kim, Bong Sung; Nam, Seunghoon; Lee, Hoo-Jeong; Chung, Ho Kyoon; Cho, Sung Min; Luu, Thi Hoai Thuong; Hyun, Seungmin; Kang, Chiwon
2018-01-01
Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) by electrospinning for a gel polymer electrolyte (GPE) for use in flexible Li-ion batteries (LIBs). As a solvent, we use N-methyl-2-pyrrolidone (NMP), which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP) separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10−3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED), demonstrating a fully flexible unit of LIB and OLED. PMID:29614800
Kim, Ilhwan; Kim, Bong Sung; Nam, Seunghoon; Lee, Hoo-Jeong; Chung, Ho Kyoon; Cho, Sung Min; Luu, Thi Hoai Thuong; Hyun, Seungmin; Kang, Chiwon
2018-04-02
Here, we fabricate poly(vinylidene fluoride- co -hexafluoropropene) (PVDF- co -HFP) by electrospinning for a gel polymer electrolyte (GPE) for use in flexible Li-ion batteries (LIBs). As a solvent, we use N -methyl-2-pyrrolidone (NMP), which helps produce the cross-linked morphology of PVDF- co -HFP separator, owing to its low volatility. The cross-linked PVDF- co -HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP) separator. Moreover, the PVDF- co -HFP separator shows an ionic conductivity of 2.3 × 10 -3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF- co -HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF- co -HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF- co -HFP GPE with a flexible organic light emitting diode (OLED), demonstrating a fully flexible unit of LIB and OLED.
Saikia, Diganta; Pan, Yu-Chi; Kao, Hsien-Ming
2012-01-01
Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS) and 3-(triethoxysilyl)propyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, alternating current (AC) impedance and solid-state nuclear magnetic resonance (NMR) spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher)-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains. PMID:24958176
Proximity and touch sensing using deformable ionic conductors (Conference Presentation)
NASA Astrophysics Data System (ADS)
Madden, John D. W.; Dobashi, Yuta; Sarwar, Mirza S.; Preston, Eden C.; Wyss, Justin K. M.; Woehling, Vincent; Nguyen, Tran-Minh-Giao; Plesse, Cedric; Vidal, Frédéric; Naficy, Sina; Spinks, Geoffrey M.
2017-04-01
There is increasing interest in creating bendable and stretchable electronic interfaces that can be worn or applied to virtually any surface. The electroactive polymer community is well placed to add value by incorporating sensors and actuators. Recent work has demonstrated transparent dielectric elastomer actuation as well as pressure, stretch or touch sensing. Here we present two alternative forms of sensing. The first uses ionically conductive and stretchable gels as electrodes in capacitive sensors that detect finger proximity. In this case the finger acts as a third electrode, reducing capacitance between the two gel electrodes as it approaches, which can be detected even during bending and stretching. Very light finger touch is readily detected even during deformation of the substrate. Lateral resolution is achieved by creating a sensor array. In the second approach, electrodes placed beneath a salt containing gel are able to detect ion currents generated by the deformation of the gel. In this approach, applied pressure results in ion currents that create a potential difference around the point of contact, leading to a voltage and current in the electrodes without any need for input electrical energy. The mechanism may be related to effects seen in ionomeric polymer metal composites (IPMCs), but with the response in plane rather than through the thickness of the film. Ultimately, these ionically conductive materials that can also be transparent and actuate, have the potential to be used in wearable devices.
Fattah, N. F. A.; Ng, H. M.; Mahipal, Y. K.; Numan, Arshid; Ramesh, S.; Ramesh, K.
2016-01-01
Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge–discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g−1, which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application. PMID:28773573
Fattah, N F A; Ng, H M; Mahipal, Y K; Numan, Arshid; Ramesh, S; Ramesh, K
2016-06-06
Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge-discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g -1 , which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.
Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.
1994-07-01
The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2SO4 (X=Si, Ge, Ti) Systems * A DSC and Conductivity Study of the Influence of Cesium Ion on the Beta-Alpha Transition in Silver Iodide * Phase Diagrams, Stoichiometries and Properties of Bi4V2O11:M2+ Solid Electrolytes * Physical Properties of Electrodeposited Silver Chromotungstate * Pseudopotential Study of Bonding in the Superionic Material AgI: The Effect of Statistical Distribution of Mobile Ions * Cubic Phase Dominant Region in Submicron BaTiO3 Particles * The Crystallization of CoZr Amorphous Alloys via Electrical Resistivity * Cation Ratio Related Properties of Synthetic Mg/Al Layered Double Hydroxide and it's Nanocomposite * DC Conductivity of Nano-Particles of Silver Iodide * Effect of Anomalous Diffusion on Quasielastic Scattering in Superionic Conductors * Computer Simulation Study of Conductivity Enhancement in Superionic-Insulator Composites * Dynamics of Superionic Silver and Copper Iodide Salt Melts * Influence of Dopant Salt AgI, Glass Modifier Ag2O and Glass Formers (SeO3 + MoO3) on Electrical Conductivity in Quaternary Glassy System * Fast Ion Conductivity in the Presence of Competitive Network Formers * Role of Alkali Ions in Borate Glasses * Inelastic Light Scattering in Cadmium Borate Glasses * Investigation on Transport Properties of Mixed Glass System 0.75 [0.75AgI:0.25AgCl]. 0.25[Ag2O:CrO3] * Conduction Mechanism in Lithium Tellurite Glasses * Optimized Silver Tungstoarsenate Glass Electrolyte * Stabilized Superfine Zirconia Powder Prepared by Sol-Gel Process * Study of New PAN-based Electrolytes * Electrical and Thermal Characterization of PVA based Polymer Electrolytes * Conductive Electroactive Polymers: Versatile Solid State Ionic Materials * The Role of Ag2O Addition on the Superconducting Properties of Y-124 Compound * Absorption Spectra Studies of the C60 Films on Transition Metal Film Substrates * Effect of Alumina Dispersal on the Conductivity and Crystallite Size of Polymer Electrolyte * New Mixed Galss-Polymer Solid Electrolytes * The Sputtered La0.5Sr0.5MnO3-Yttria Stabilized Zirconia Composite Electrode in Solid Oxide Fuel Cells * A Solid Electrochemical Ferro Sensor for Molten Matte * SnO2-based Sensor for H2S Monitoring-Electrical Conductivity Measurements and Device Testing * Humidity Sensor using Potassium Tungsten Bronze Synthesized from Peroxo-Polytungstic Acid * Study on Li/LiClO4/V6O13 Test Cells * Fabrication and Characterisation of Some Solid Electrolyte Cells Containing CuI and Silver Oxysalts * Solid State Battery of Proton Conducting Sodium Thiosulphate Pentahydrate * Low Temperature Synthesis of LiMn2O4 for Secondary Lithium Batteries * Effect of Different Cathode Active Materials on Battery Performance with Silver Molybdate Electrolyte Partially Substituted with Zinc Oxide * Fabrication and Characterization of Electrochemical Cells based on Silver Molybdoarsenate and Silver Tungstoarsenate Glass Electrolytes * Lorentz Force Dependence of Dissipation in a Granular Superconductor * Late Entry (Invited paper) * Simultaneous Voltammetry and Spectroscopy of Polyaniline in Propylene Carbonate * Author Index * Tentative List of Participants
Sun, Xiao -Guang; Fang, Youxing; Jiang, Xueguang; ...
2015-10-22
Polymer gel electrolyte using AlCl3 complexed acrylamide as functional monomer and ionic liquids based on acidic mixture of 1-ethyl-3-methylimidazolium chloride (EMImCl) and AlCl 3 as plasticizer has been successfully prepared for the first time by free radical polymerization. Aluminum deposition is successfully obtained with a polymer gel membrane contianing 80 wt% ionic liquid. As a result, the polymer gel membranes are also good candidates for rechargeable aluminum ion batteries.
Liu, Sheng; Liu, Yang; Cebeci, Hülya; de Villoria, Roberto Guzmán; Lin, Jun-Hong
2011-01-01
Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fraction create unique opportunities for markedly improving the electromechanical performance of ionic polymer conductor network composite (IPCNC) actuators. Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast device actuation speed (>10% strain/second). One critical issue in developing advanced actuator materials is how to suppress the strain that does not contribute to the actuation (unwanted strain) thereby reducing actuation efficiency. Here our experiments demonstrate that the VA-CNTs give an anisotropic elastic response in the composite electrodes, which suppresses the unwanted strain and markedly enhances the actuation strain (>8% strain under 4 volts). The results reported here suggest pathways for optimizing the electrode morphology in IPCNCs using ultra-high volume fraction VA-CNTs to further enhanced performance. PMID:21765822
Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation
NASA Astrophysics Data System (ADS)
Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo
2018-07-01
Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.
Subianto, Surya; Mistry, Mayur K; Choudhury, Namita Roy; Dutta, Naba K; Knott, Robert
2009-06-01
A new type of supported liquid membrane was made by combining an ionic liquid (IL) with a Nafion membrane reinforced with multifunctional polyhedral oligomeric silsesquioxanes (POSSs) using a layer-by-layer strategy for anhydrous proton-exchange membrane (PEM) application. The POSS was functionalized by direct sulfonation, and the sulfonated POSS (S-POSS) was incorporated into Nafion 117 membranes by the infiltration method. The resultant hybrid membrane shows strong ionic interaction between the Nafion matrix and the multifunctional POSS, resulting in increased glass transition temperature and thermal stability at very low loadings of S-POSS (1%). The presence of S-POSS has also improved the proton conductivity especially at low humidities, where it shows a marked increase due to its confinement in the ionic domains and promotes water uptake by capillary condensation. In order to achieve anhydrous conductivity, the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-BTSI) was incorporated into these membranes to provide proton conduction in the absence of water. Although the incorporation of an IL shows a plasticizing effect on the Nafion membrane, the S-POSS composite membrane with an IL shows a higher modulus at high temperatures compared to Nafion 117 and a Nafion-IL membrane, with significantly higher proton conductivity (5 mS/cm at 150 degrees C with 20% IL). This shows the ability of the multifunctional POSS and IL to work symbiotically to achieve the desirable proton conductivity and mechanical properties of such membranes by enhancing the ionic interaction within the material.
Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette
NASA Astrophysics Data System (ADS)
Vilozny, Boaz; Wollenberg, Alexander L.; Actis, Paolo; Hwang, Daniel; Singaram, Bakthan; Pourmand, Nader
2013-09-01
Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems.Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen to collapsed upon binding to monosaccharides. As a result, the current rectification in nanopipettes can be reversibly switched depending on the concentration of monosaccharides. Such molecular actuation of nanofluidic conductance may be used in novel sensors and drug delivery systems. Electronic supplementary information (ESI) available: Experimental details on synthesis of polymer PVP-Bn, optical methods, 1H-NMR spectra, details on pH and ionic strength studies, and examples of current actuation with several different nanopores. See DOI: 10.1039/c3nr02105j
Electrical study on Carboxymethyl Cellulose-Polyvinyl alcohol based bio-polymer blend electrolytes
NASA Astrophysics Data System (ADS)
Saadiah, M. A.; Samsudin, A. S.
2018-04-01
The present work deals with the formulation of bio-materials namely carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) for bio-polymer blend electrolytes (BBEs) system which was successfully carried out with different ratio of polymer blend. The biopolymer blend was prepared via economical & classical technique that is solution casting technique and was characterized by using impedance spectroscopy (EIS). The ionic conductivity was achieved to optimum value 9.12 x 10-6 S/cm at room temperature for sample containing ratio 80:20 of CMC:PVA. The highest conducting sample was found to obey the Arrhenius behaviour with a function of temperature. The electrical properties were analyzed using complex permittivity ε* and complex electrical modulus M* for BBEs system and it shows the non-Debye characteristics where no single relaxation time has observed.
Immobilization of yeast cells with ionic hydrogel carriers by adhesion-multiplication.
Zhaoxin, L; Fujimura, T
2000-12-01
The mixture of an ionic monomer, 2-acrylamido 2-methylpropanesulfonic acid (TBAS), and a series of poly(ethylene glycol) dimethacrylate (nG) monomers were copolymerized with 60Co gamma-rays, and the produced ionic hydrogel polymers were used for immobilization of yeast cells. The cells were adhered onto the surface of the hydrogel polymers and intruded into the interior of the polymers with growing. The immobilized yeast cells with these hydrogel polymers had higher ethanol productivity than that of free cells. The yield of ethanol with poly(TBAS-14G) carrier was the highest and increased by 3.5 times compared to the free cells. It was found that the ethanol yield increased with the increase of glycol number in poly(ethylene glycol) dimethacrylate. The state of the immobilized cells was observed with microscope, and it was also found that the difference in the ethanol productivity is mainly due to the difference in the internal structure and properties of polymer carrier, such as surface charge, hydrophilicity, and swelling ability of polymer carrier.
NASA Astrophysics Data System (ADS)
Choi, Eunsong
Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We conclude the study by showing an excellent agreement between the simulation and the experiment.
NASA Astrophysics Data System (ADS)
Siu, Ana Rosa
Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol decreased when the content of free water in the membranes decreased. Variation in permeability trends observed for the different polymer classes of the same content of free water was explained on the basis of tortuosity and interaction of methanol within the ionic network. Finally, a novel set of polymers containing non-ionic hydrophilic segments were examined for enhanced water transport in order to see if such domains might offset the flux of water due to electro-osmosis.
Clustering effects in ionic polymers: Molecular dynamics simulations
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.
2015-08-18
Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing themore » electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.« less
An air-stable Na 3SbS 4 superionic conductor prepared by a rapid and economic synthetic procedure
Wang, Hui; Chen, Yan; Hood, Zachary D.; ...
2016-01-01
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
Ionic Liquids as the MOFs/Polymer Interfacial Binder for Efficient Membrane Separation.
Lin, Rijia; Ge, Lei; Diao, Hui; Rudolph, Victor; Zhu, Zhonghua
2016-11-23
Obtaining strong interfacial affinity between filler and polymer is critical to the preparation of mixed matrix membranes (MMMs) with high separation efficiency. However, it is still a challenge for micron-sized metal organic frameworks (MOFs) to achieve excellent compatibility and defect-free interface with polymer matrix. Thin layer of ionic liquid (IL) was immobilized on micron-sized HKUST-1 to eliminate the interfacial nonselective voids in MMMs with minimized free ionic liquid (IL) in polymer matrix, and then the obtained IL decorated HKUST-1 was incorporated into 4,4'-(hexafluoroisopropylidene)diphthalic anhydride-2,3,5,6-tetramethyl-1,3-phenyldiamine (6FDA-Durene) to fabricate MMMs. Acting as a filler/polymer interfacial binder, the favorable MOF/IL and IL/polymer interaction can facilitate the enhancement of MOF/polymer affinity. Compared to MMM with only HKUST-1 incorporation, MMM with IL decorated HKUST-1 succeeded in restricting the formation of nonselective interfacial voids, leading to an increment in CO 2 selectivity. The IL decoration method can be an effective approach to eliminate interfacial voids in MMMs, extending the filler selection to a wide range of large-sized fillers.
Sharma, Jai; Tleugabulova, Dina; Czardybon, Wojciech; Brennan, John D
2006-04-26
Time-resolved fluorescence anisotropy (TRFA) is widely used to study dynamic motions of biomolecules in a variety of environments. However, depolarization due to rapid side chain motions often complicates the interpretation of anisotropy decay data and interferes with the accurate observation of segmental motions. Here, we demonstrate a new method for two-point ionic labeling of polymers and biomolecules that have appropriately spaced amino groups using the fluorescent probe 8-hydroxyl-1,3,6-trisulfonated pyrene (pyranine). TRFA analysis shows that such labeling provides a more rigid attachment of the fluorophore to the macromolecule than the covalent or single-point ionic labeling of amino groups, leading to time-resolved anisotropy decays that better reflect the backbone motion of the labeled polymer segment. Optimal coupling of pyranine to biomolecule dynamics is shown to be obtained for appropriately spaced Arg groups, and in such cases the ionic binding is stable up to 150 mM ionic strength. TRFA was used to monitor the behavior of pyranine-labeled poly(allylamine) (PAM) and poly-d-lysine (PL) in sodium silicate derived sol-gel materials and revealed significant restriction of backbone motion upon entrapment for both polymers, an observation that was not readily apparent in a previous study with entrapped fluorescein-labeled PAM and PL. The implications of these findings for fluorescence studies of polymer and biomolecule dynamics are discussed.
Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemalatha, K.; Gowtham, G. K.; Somashekarappa, H., E-mail: drhssappa@gmail.com
2016-05-23
A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO{sub 4}) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO{sub 4}. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements inmore » these films show that the conductivity increases as the concentration of CuSO{sub 4} increases. These films were suitable for electro chemical applications.« less
McDonald, Michael B; Hammond, Paula T
2018-05-09
In this work, an all-functional polymer material composed of the electrically conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) and lithium-conducting poly(ethylene oxide) (PEO) was developed to form a dual conductor for three-dimensional electrodes in electrochemical applications. The composite exhibits enhanced ionic conductivity (∼10 -4 S cm -1 ) and, counterintuitively, electronic conductivity (∼45 S cm -1 ) with increasing PEO proportion, optimal at a monomer ratio of 20:1 PEO:PEDOT. Microscopy reveals a unique morphology, where PSS interacts favorably with PEO, destabilizing PEDOT to associate into highly branched, interconnected networks that allow for more efficient electronic transport despite relatively low concentrations. Thermal and X-ray techniques affirm that the PSS-PEO domain suppresses crystallinity, explaining the high ionic conductivity. Electrochemical experiments in lithium cell environments indicate stability as a function of cycling and improved overpotential due to dual transport characteristics despite known issues with both individual components.
Finite element modeling of the electromechanical coupling in ionic polymer transducers
NASA Astrophysics Data System (ADS)
Akle, Barbar; Habchi, Wassim; Wallmersperger, Thomas; Leo, Donald
2010-04-01
Several researchers are actively studying Ionomeric polymer transducers (IPT) as a large strain low voltage Electro- Active Polymer (EAP) actuator. EAPs are devices that do not contain any moving parts leading to a potential large life time. Furthermore, they are light weight and flexible. An IPT is made of an ion saturated polymer usually Nafion, sandwiched between two electrodes made of a mixture of Nafion and electrically conductive particles usually RuO2 or platinum. Nafion is an acid membrane in which the cations are mobile while the anions are covalently fixed to the polymer structure. Upon the application of an electric potential on the order of 2V at the electrodes the mobile positive ions migrate towards the cathode leading to bending strains in the order of 5%. Our earlier studies demonstrate that the cations develop thin boundary layers around the electrode. Later developments in this finite element model captured the importance of adding particles in the electrode. This study presents the electromechanical coupling in ionic polymer transducers. Since all our earlier models were restricted to the electro-chemical part, here we will introduce the chemomechanical coupling. This coupling is performed based on previous studies (Akle and Leo) in which the authors experimentally showed that the mechanical strain in IPTs is proportional to a linear term and a quadratic term of the charge accumulated at the electrode. The values of the linear and quadratic terms are extracted from experimental data.
NASA Astrophysics Data System (ADS)
He, Ruixuan
In pursuit of safer and more flexible solid-state lithium ion batteries, solid polymer electrolytes have emerged as a promising candidate. The present dissertation entails exploration of solid plasticized, photopolymerized (i.e. ultraviolent-cured) polymer electrolyte membranes (PEM) for fulfilling the critical requirements of electrolytes, such as high ionic conductivity and good thermal and electrochemical stability, among others. Electrochemical performance of PEMs containing lithium ion half-cells was also investigated at different two temperatures. Phase diagram approach was adopted to guide the fabrication of two types of plasticized PEMs. Prepolymer poly (ethylene glycol) diacrylate (PEGDA) was used as a matrix for building an ionic conductive and mechanically sturdy network. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was incorporated as a source of lithium ions, while a solid plasticizer succinonitrile (SCN) and a liquid plasticizer tetraethylene glycol dimethyl ether (TEGDME) were incorporated in the respective systems. The important role of plasticizer on the enhancement of ionic conductivity (sigma) to the superionic conductive level (10-3 S/cm) was revealed in both systems. It is worth noting that photopolymerization induced crystallization (PIC) occurred during UV-curing in the SCN-rich region of the ternary PEGDA/LiTFSI/SCN ternary mixtures. The PEM thus formed contained a plastic crystal phase, which showed lower σ relative to their amorphous PEGDA/LiTFSI/TEGDME counterpart. Comparisons on other thermal and electrochemical properties of the two types of PEMs are presented in Chapter IV. For the PEGDA/LiTFSI/SCN PEMs, fundamental study was carried out to clarify the relationship between σ and glass transition temperature (T g). In lithium salt/polymer binary PEMs, increase in Tg and reduction in σ were observed; these may be attributed to ion-dipole complexation between dissociated lithium cations and ether oxygen upon salt addition. Notably, above the threshold salt concentration of 7 mol %, dual loss tangent peaks were observed in dynamic mechanical studies. These might be ascribed to segmental relaxations of ion-dipole complexed networks and that of polymer chains surrounding the undissociated lithium salt acting like "fillers". Upon SCN incorporation, these two peaks merged into one that was further suppressed below the Tg of the pure network, whereas σ improved to the superionic conductor level. The role of SCN on the σ enhancement as both plasticizer for the polymer network and ionizer for the salt is discussed in Chapter V. In order to improve the mechanical toughness of the highly conductive PEGDA/LiTFSI/SCN PEM, effects of prepolymer molecular weight on mechanical and electrochemical properties of PEMs were further investigated. By increasing molecular weight of PEGDA from 700 to 6000 g/mol, toughness and elongation at break were enhanced as expected. Interestingly, improved ionic conductivity was achieved simultaneously. The dual improvement may be attributed to the less chemical crosslinked points and the more flexible chain motion in the looser network of PEGDA6000-PEM relative to its PEGDA700 counterpart. Subsequently, high thermal stability and electrochemical stability of both types of PEMs, as well as the satisfactory room temperature charge/discharge cycling performance of PEM containing lithium ion half-cells were observed. The pertinent information is documented in Chapter VI. Finally, the investigation of the charge/discharge cycling performance of solid-state LiFePO4 half-cells at an elevated temperature of 60°C is discussed in Chapter VII. In the half-cells, particularly, SCN plasticized PEMs with and without electrolyte modifier lithium bis(oxalato)borate (LiBOB) were respectively employed. Rapid decline of capacity and increase of cell resistance were found in the unmodified PEM containing cell; however, these deteriorations were greatly suppressed upon LiBOB modification. Electrochemical and thermal compatibility of PEMs towards different electrodes were examined in several symmetric cells and half-cells. Detailed characterization on LiFePO 4 electrodes and PEMs retrieved from these cells implied that the observed battery failure might be triggered by an amide-forming side reaction that took place at the interface of a SCN plasticized PEM and a lithium electrode at high temperature. Of particular importance is the fact that this detrimental side reaction was effectively suppressed upon LiBOB electrolyte modifier addition. Plausible mechanisms are discussed.
Materials Development for All-Solid-State Battery Electrolytes
NASA Astrophysics Data System (ADS)
Wang, Weimin
Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in glasses as involving a jump by the migrating cation and transient reversible isotropic displacement of atoms in the immediate vicinity, and express the activation energy as a sum of Coulomb and elastic terms. By fitting our experimental data to this model, we find that the number of affected atoms in the vicinity ranges between 20 and 30. Furthermore, elastic deformations in ion jumping are almost purely hydrostatic and hardly shear. Considering that the energy required for the cation jump is made available by concentrating thermal phonons at the jump site, we establish a relationship between structural stiffness and activation energy. Moreover, the more atoms that partake in the cation jump, the more degrees of freedom for atomic motion can be relied upon to achieve the required net outward expansion to facilitate the passage of the jumping cation, lowering the activation energy. To combine the flexibility of polymers and the good mechanical and electrochemical properties of silica, we use sol-gel methods for fabricating silica-based hybrid organic-inorganic electrolytes. Polyethylene glycol is covalently grafted onto the silica backbone as the organic filler that provides the environment for ion conduction. We developed synthesis methods in which grafting and polycondensation occur concurrently, or the grafting occurs after the silica backbone has formed. Small angle x-ray scattering measurements reveal that different structures are achieved depending on the method used. The two-step procedure allows for a larger amount of conducting polymer to be embedded into network pores than in the one-pot method. This greatly enhances the ionic conductivity without sacrificing mechanical stability afforded by the continuous silica backbone. Here we provide a cumulative account of a systematic materials design efforts, in which we sequentially implement several important design aspects to identify their respective importance and influence on the materials performance characteristics.
Klepsch, Matthias M.; Schmitt, Marco; Paul Knox, J.; Jansen, Steven
2016-01-01
Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been reported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrinking of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as heteroxylans or arabinogalactan–proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycoproteins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated using light and electron microscopy. The ionic effect varied from 18 % (± 9) to 32 % (± 13). Epitopes of homogalacturonan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in parenchyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pectic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect. PMID:27354661
A Comparative Study of Phosphoric Acid-doped m-PBI Membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Kelly A; More, Karren Leslie; Payzant, E Andrew
2014-01-01
Phosphoric acid (PA)-doped m-polybenzimidazole (PBI) membranes used in high temperature fuel cells and hydrogen pumps were prepared by a conventional imbibing process and a sol-gel fabrication process. A comparative study was conducted to investigate the critical properties of PA doping levels, ionic conductivities, mechanical properties, and molecular ordering. This systematic study found that sol-gel PA-doped m-PBI membranes were able to absorb higher acid doping levels and to achieve higher ionic conductivities than conventionally imbibed membranes when treated in an equivalent manner. Even at similar acid loadings, the sol-gel membranes exhibited higher ionic conductivities. Heat treatment of conventionally imbibed membranes withmore » 29wt% solids caused a significant reduction in mechanical properties; conversely, sol-gel membranes exhibited an enhancement in mechanical properties. From X-ray structural studies and atomistic simulations, both conventionally imbibed and sol-gel membranes exhibited d-spacings of 3.5 and 4.6 , which were tentatively attributed to parallel ring stacking and staggered side-to-side packing, respectively, of the imidazole rings in these aromatic hetercyclic polymers. An anisotropic staggered side-to-side chain packing present in the conventional membranes may be root to the reduction in mechanical properties.« less
Wang, Fan; Jeon, Jin-Han; Park, Sukho; Kee, Chang-Doo; Kim, Seong-Jun; Oh, Il-Kwon
2016-01-07
Upcoming human-related applications such as soft wearable electronics, flexible haptic systems, and active bio-medical devices will require bio-friendly actuating materials. Here, we report a soft biomolecule actuator based on carboxylated bacterial cellulose (CBC), ionic liquid (IL), and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) electrodes. Soft and biocompatible polymer-IL composites were prepared via doping of CBC with ILs. The highly conductive PSS layers were deposited on both sides of the CBC-IL membranes by a dip-coating technique to yield a sandwiched actuator system. Ionic conductivity and ionic exchange capacity of the CBC membrane can be increased up to 22.8 times and 1.5 times compared with pristine bacterial cellulose (BC), respectively, resulting in 8 times large bending deformation than the pure BC actuators with metallic electrodes in an open air environment. The developed CBC-IL actuators show significant progress in the development of biocompatible and soft actuating materials with quick response, low operating voltage and comparatively large bending deformation.
Raoov, Muggundha; Mohamad, Sharifah; Abas, Mhd Radzi
2014-01-01
β-Cyclodextrin-ionic liquid polymer (CD-ILP) was first synthesized by functionalized β-cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using a toluene diisocyanate (TDI) linker to form insoluble CD-ILP (βCD-BIMOTs-TDI). The βCD-BIMOTs-TDI polymer was characterized using various tools and the results obtained were compared with those derived from the native β-cyclodextrin polymer (βCD-TDI). The SEM result shows that the presence of ionic liquid (IL) increases the pore size, while the thermo gravimetric analysis (TGA) result shows that the presence of IL increases the stability of the polymer. Meanwhile, Brunauer-Emmett-Teller (BET) results show that βCD-BIMOTs-TDI polymer has 1.254 m2/g surface areas and the Barret-Joyner-Halenda (BJH) pore size distribution result reveals that the polymer exhibits macropores with a pore size of 77.66 nm. Preliminary sorption experiments were carried out and the βCD-BIMOTs-TDI polymer shows enhanced sorption capacity and high removal towards phenols and As(V). PMID:24366065
2017-01-01
We report on the synthesis and structure–property relations of a novel, dual-responsive organometallic poly(ionic liquid) (PIL), consisting of a poly(ferrocenylsilane) backbone of alternating redox-active, silane-bridged ferrocene units and tetraalkylphosphonium sulfonate moieties in the side groups. This PIL is redox responsive due to the presence of ferrocene in the backbone and also exhibits a lower critical solution temperature (LCST)-type thermal responsive behavior. The LCST phase transition originates from the interaction between water molecules and the ionic substituents and shows a concentration-dependent, tunable transition temperature in aqueous solution. The PIL’s LCST-type transition temperature can also be influenced by varying the redox state of ferrocene in the polymer main chain. As the polymer can be readily cross-linked and is easily converted into hydrogels, it represents a new dual-responsive materials platform. Interestingly, the as-formed hydrogels display an unusual, strongly hysteretic volume-phase transition indicating useful thermal memory properties. By employing the dispersing abilities of this cationic PIL, CNT-hydrogel composites were successfully prepared. These hybrid conductive composite hydrogels showed bi-stable states and tunable resistance in heating–cooling cycles. PMID:28654756
Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf
NASA Astrophysics Data System (ADS)
Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan
2013-11-01
The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF3SO3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2-10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10-7 Scm-1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.
Rechargeable aluminum batteries with conducting polymers as positive electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudak, Nicholas S.
2013-12-01
This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole andmore » polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g -1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg -1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.« less
Fuentes, Manuel; Pessela, Benevides C C; Maquiese, Jorgette V; Ortiz, Claudia; Segura, Rosa L; Palomo, Jose M; Abian, Olga; Torres, Rodrigo; Mateo, Cesar; Fernández-Lafuente, Roberto; Guisán, J M
2004-01-01
New and strong ionic exchange resins have been prepared by the simple and rapid ionic adsorption of anionic polymers (sulfate-dextran) on porous supports activated with the opposite ionic group (DEAE/MANAE). Ionic exchange properties of such composites were strongly dependent on the size of the ionic polymers as well as on the conditions of the ionic coating of the solids with the ionic polymers (optimal conditions were 400 mg of sulfate-dextran 5000 kDa per gram of support). Around 80% of the proteins contained in crude extracts from Escherichia coli and Acetobacter turbidans could be adsorbed on these porous composites even at pH 7. This interaction was stronger than that using conventional carboxymethyl cellulose (CMC) and even others such as supports coated with aspartic-dextran polymer. By means of the sequential use of the new supports and supports coated with polyethyleneimine (PEI), all proteins from crude extracts could be immobilized. In fact, a large percentage (over 50%) could be immobilized on both supports. Finally, some industrially relevant enzymes (beta-galactosidases from Aspergillus oryzae, Kluyveromyces lactis, and Thermussp. strain T2, lipases from Candida antarctica A and B, Candida rugosa, Rhizomucor miehei, and Rhyzopus oryzae and bovine pancreas trypsin and chymotrypsin) have been immobilized on these supports with very high activity recoveries and immobilization rates. After enzyme inactivation, the protein could be fully desorbed from the support, and then the support could be reused for several cycles. Moreover, in some instances the enzyme stability was significantly improved, mainly in the presence of organic solvents, perhaps as a consequence of the highly hydrophilic microenvironment of the support.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Wang, Zhiyan; Zhang, Yan; Fang, Rui; Yuan, Zun; Miao, Chang; Yan, Xuemin; Jiang, Yu
2018-04-01
To improve the ionic conductivity as well as enhance the mechanical strength of the gel polymer electrolyte, poly(vinylidene fluoride-hexafluoroprolene) (P(VDF-HFP))-based composite polymer electrolyte (CPE) membranes doped with the organic-inorganic hybrid particles poly(methyl methacrylate) -ZrO2 (PMMA-ZrO2) are prepared by phase inversion method, in which PMMA is successfully grafted onto the surface of the homemade nano-ZrO2 particles via in situ polymerization confirmed by FT-IR. XRD and DSC patterns show adding PMMA-ZrO2 particles into P(VDF-HFP) can significantly decrease the crystallinity of the CPE membrane. The CPE membrane doped with 5 wt % PMMA-ZrO2 particles can not only present a homogeneous surface with abundant interconnected micro-pores, but maintain its initial shape after thermal exposure at 160 °C for 1 h, in which the ionic conductivity and lithium ion transference number at room temperature can reach to 3.59 × 10-3 S cm-1 and 0.41, respectively. The fitting results of the EIS plots indicate the doped PMMA-ZrO2 particles can significantly lower the interface resistance and promote lithium ions diffusion rate. The Li/CPE-sPZ/LiCoO2 and Li/CPE-sPZ/Graphite coin cells can deliver excellent rate and cycling performance. Those results suggest the P(VDF-HFP)-based CPE doped with 5 wt % PMMA-ZrO2 particles can become an exciting potential candidate as polymer electrolyte for the lithium ion battery.
Microwave-Assisted Syntheses in Recyclable Ionic Liquids: Photoresists Based on Renewable Resources
Petit, Charlotte; Luef, Klaus P; Edler, Matthias; Griesser, Thomas; Kremsner, Jennifer M; Stadler, Alexander; Grassl, Bruno; Reynaud, Stéphanie; Wiesbrock, Frank
2015-01-01
The copoly(2-oxazoline) pNonOx80-stat-pDc=Ox20 can be synthesized from the cationic ring-opening copolymerization of 2-nonyl-2-oxazoline NonOx and 2-dec-9′-enyl-2-oxazoline Dc=Ox in the ionic liquid n-hexyl methylimidazolium tetrafluoroborate under microwave irradiation in 250 g/batch quantities. The polymer precipitates upon cooling, enabling easy recovery of the polymer and the ionic liquid. Both monomers can be obtained from fatty acids from renewable resources. pNonOx80-stat-pDc=Ox20 can be used as polymer in a photoresist (resolution of 1 μm) based on UV-induced thiol–ene reactions. PMID:26354027
Bitner-Michalska, Anna; Nolis, Gene M.; Żukowska, Grażyna; Zalewska, Aldona; Poterała, Marcin; Trzeciak, Tomasz; Dranka, Maciej; Kalita, Michał; Jankowski, Piotr; Niedzicki, Leszek; Zachara, Janusz; Marcinek, Marek; Wieczorek, Władysław
2017-01-01
A new family of fluorine-free solid-polymer electrolytes, for use in sodium-ion battery applications, is presented. Three novel sodium salts withdiffuse negative charges: sodium pentacyanopropenide (NaPCPI), sodium 2,3,4,5-tetracyanopirolate (NaTCP) and sodium 2,4,5-tricyanoimidazolate (NaTIM) were designed andtested in a poly(ethylene oxide) (PEO) matrix as polymer electrolytes for anall-solid sodium-ion battery. Due to unique, non-covalent structural configurations of anions, improved ionic conductivities were observed. As an example, “liquid-like” high conductivities (>1 mS cm−1) were obtained above 70 °C for solid-polymer electrolyte with a PEO to NaTCP molar ratio of 16:1. All presented salts showed high thermal stability and suitable windows of electrochemical stability between 3 and 5 V. These new anions open a new class of compounds with non-covalent structure for electrolytes system applications. PMID:28067301
Chen, Nan; Reeja-Jayan, B; Liu, Andong; Lau, Jonathan; Dunn, Bruce; Gleason, Karen K
2016-03-01
A group of crosslinked cyclic siloxane (Si-O) and silazane (Si-N) polymers are synthesized via solvent-free initiated chemical vapor deposition (iCVD). Notably, this is the first report of cyclic polysilazanes synthesized via the gas-phase iCVD method. The deposited nanoscale thin films are thermally stable and chemically inert. By iCVD, they can uniformly and conformally cover nonplanar surfaces having complex geometry. Although polysiloxanes are traditionally utilized as dielectric materials and insulators, our research shows these cyclic organosilicon polymers can conduct lithium ions (Li(+) ) at room temperature. The conformal coating and the room temperature ionic conductivity make these cyclic organosilicon polymers attractive for use as thin-film electrolytes in solid-state batteries. Also, their synthesis process and properties have been systemically studied and discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bitner-Michalska, Anna; Nolis, Gene M.; Żukowska, Grażyna; Zalewska, Aldona; Poterała, Marcin; Trzeciak, Tomasz; Dranka, Maciej; Kalita, Michał; Jankowski, Piotr; Niedzicki, Leszek; Zachara, Janusz; Marcinek, Marek; Wieczorek, Władysław
2017-01-01
A new family of fluorine-free solid-polymer electrolytes, for use in sodium-ion battery applications, is presented. Three novel sodium salts withdiffuse negative charges: sodium pentacyanopropenide (NaPCPI), sodium 2,3,4,5-tetracyanopirolate (NaTCP) and sodium 2,4,5-tricyanoimidazolate (NaTIM) were designed andtested in a poly(ethylene oxide) (PEO) matrix as polymer electrolytes for anall-solid sodium-ion battery. Due to unique, non-covalent structural configurations of anions, improved ionic conductivities were observed. As an example, “liquid-like” high conductivities (>1 mS cm-1) were obtained above 70 °C for solid-polymer electrolyte with a PEO to NaTCP molar ratio of 16:1. All presented salts showed high thermal stability and suitable windows of electrochemical stability between 3 and 5 V. These new anions open a new class of compounds with non-covalent structure for electrolytes system applications.
NASA Astrophysics Data System (ADS)
Zhang, Zhizhen; Xu, Kaiqi; Rong, Xiaohui; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan
2017-12-01
Solid electrolytes with high ionic conductivity and excellent electrochemical stability are of prime significance to enable the application of solid-state batteries in energy storage and conversion. In this study, solid composite polymer electrolytes (CPEs) based on sodium bis(trifluorosulfonyl) imide (NaTFSI) and poly (ethylene oxide) (PEO) incorporated with active ceramic filler (NASICON) are reported for the first time. With the addition of NASICON fillers, the thermal stability and electrochemical stability of the CPEs are improved. A high conductivity of 2.8 mS/cm (at 80 °C) is readily achieved when the content of the NASICON filler in the composite polymer reaches 50 wt%. Furthermore, Na3V2(PO4)3/CPE/Na solid-state batteries using this composite electrolyte display good rate and excellent cycle performance.
Novel, Solvent-Free, Single Ion-Conductive Polymer Electrolytes
2008-02-01
tetrahedron structure wherein no hydrogen is present. The main advantage of the use of LiBOB salt is the high ionic conductivity at low-ambient...In addition to its plasticizing effect, the LiBOB salt offers other important advantages such as: no risk of production of harmful gases and/or...6 to the (120) reflection. Increase of CP concentration up to 1:0.5 salt -to-additive ratio in the SiO2-containing PE is followed by a
Jung, Yun-Chae; Park, Myung-Soo; Kim, Duck-Hyun; Ue, Makoto; Eftekhari, Ali; Kim, Dong-Won
2017-12-13
Amorphous poly(ethylene ether carbonate) (PEEC), which is a copolymer of ethylene oxide and ethylene carbonate, was synthesized by ring-opening polymerization of ethylene carbonate. This route overcame the common issue of low conductivity of poly(ethylene oxide)(PEO)-based solid polymer electrolytes at low temperatures, and thus the solid polymer electrolyte could be successfully employed at the room temperature. Introducing the ethylene carbonate units into PEEC improved the ionic conductivity, electrochemical stability and lithium transference number compared with PEO. A cross-linked solid polymer electrolyte was synthesized by photo cross-linking reaction using PEEC and tetraethyleneglycol diacrylate as a cross-linking agent, in the form of a flexible thin film. The solid-state Li/LiNi 0.6 Co 0.2 Mn 0.2 O 2 cell assembled with solid polymer electrolyte based on cross-linked PEEC delivered a high initial discharge capacity of 141.4 mAh g -1 and exhibited good capacity retention at room temperature. These results demonstrate the feasibility of using this solid polymer electrolyte in all-solid-state lithium batteries that can operate at ambient temperatures.
Solid State Ionics: from Michael Faraday to green energy-the European dimension.
Funke, Klaus
2013-08-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.
Solid State Ionics: from Michael Faraday to green energy—the European dimension
Funke, Klaus
2013-01-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585
The evolution of cyclopropenium ions into functional polyelectrolytes
Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; Brucks, Spencer D.; Killops, Kato L.; Bandar, Jeffrey S.; Torsitano, Christopher; Balsara, Nitash P.; Lambert, Tristan H.; Campos, Luis M.
2015-01-01
Versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion. We demonstrate the facile synthesis of a series of polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. The materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes. PMID:25575214
NASA Astrophysics Data System (ADS)
Patra, Tarak; Yang, Junhong; Cheng, Yiz; Simmons, David
Polymeric ionic liquids (PILs) are very promising materials to enable more environmentally stable high density energy storage devices. Realization of PILs providing high environmental and mechanical stability while maximizing ion conductivity would be accelerated by an improved molecular level understanding of their structure and dynamics. Extensive evidence suggests that both mechanical properties and ion conductivity in anhydrous PILs are intimately related to the PIL's glass formation behavior. This represents a major challenge to the rational design of these materials, given that the basic nature of glass formation and its connection to molecular properties remains a substantial open question in polymer and condensed matter physics. Here we describe coarse-grained and atomistic molecular dynamics simulations probing the relationship between PIL architecture and interactions, glass formation behavior, and ion transport characteristics. These studies provide guidance towards the design of PILs with improved stability and ion conductivity for future energy applications.
The evolution of cyclopropenium ions into functional polyelectrolytes
Jiang, Yivan; Freyer, Jessica L.; Cotanda, Pepa; ...
2015-01-09
We report that versatile polyelectrolytes with tunable physical properties have the potential to be transformative in applications such as energy storage, fuel cells and various electronic devices. Among the types of materials available for these applications, nanostructured cationic block copolyelectrolytes offer mechanical integrity and well-defined conducting paths for ionic transport. To date, most cationic polyelectrolytes bear charge formally localized on heteroatoms and lack broad modularity to tune their physical properties. To overcome these challenges, we describe herein the development of a new class of functional polyelectrolytes based on the aromatic cyclopropenium ion.We demonstrate the facile synthesis of a series ofmore » polymers and nanoparticles based on monomeric cyclopropenium building blocks incorporating various functional groups that affect physical properties. In conclusion, the materials exhibit high ionic conductivity and thermal stability due to the nature of the cationic moieties, thus rendering this class of new materials as an attractive alternative to develop ion-conducting membranes.« less
Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries
Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi
2016-01-01
Here we demonstrate that by regulating the mobility of classic −EO− based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm−1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions. PMID:26791572
Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries
NASA Astrophysics Data System (ADS)
Porcarelli, Luca; Gerbaldi, Claudio; Bella, Federico; Nair, Jijeesh Ravi
2016-01-01
Here we demonstrate that by regulating the mobility of classic -EO- based backbones, an innovative polymer electrolyte system can be architectured. This polymer electrolyte allows the construction of all solid lithium-based polymer cells having outstanding cycling behaviour in terms of rate capability and stability over a wide range of operating temperatures. Polymer electrolytes are obtained by UV-induced (co)polymerization, which promotes an effective interlinking between the polyethylene oxide (PEO) chains plasticized by tetraglyme at various lithium salt concentrations. The polymer networks exhibit sterling mechanical robustness, high flexibility, homogeneous and highly amorphous characteristics. Ambient temperature ionic conductivity values exceeding 0.1 mS cm-1 are obtained, along with a wide electrochemical stability window (>5 V vs. Li/Li+), excellent lithium ion transference number (>0.6) as well as interfacial stability. Moreover, the efficacious resistance to lithium dendrite nucleation and growth postulates the implementation of these polymer electrolytes in next generation of all-solid Li-metal batteries working at ambient conditions.
Mechanisms Underlying Ionic Mobilities in Nanocomposite Polymer Electrolytes
NASA Astrophysics Data System (ADS)
Ganesan, Venkat; Hanson, Benjamin; Pryamitsyn, Victor
2014-03-01
Recently, a number of experiments have demonstrated that addition of ceramics with nanoscale dimensions can lead to substantial improvements in the low temperature conductivity of the polymeric materials. However, the origin of such behaviors, and more generally, the manner by which nanoscale fillers impact the ion mobilities remain unresolved. In this communication, we report the results of atomistic molecular dynamics simulations which used multibody polarizable force-fields to study lithium ion diffusivities in an amorphous poly(ethylene-oxide) (PEO) melt containing well-dispersed TiO2 nanoparticles. We observed that the lithium ion diffusivities decrease with increased particle loading. Our analysis suggests that the ion mobilities are correlated to the nanoparticle-induced changes in the polymer segmental dynamics. Interestingly, the changes in polymer segmental dynamics were seen to be related to the nanoparticle's influence on the polymer conformational features. Overall, our results indicate that addition of nanoparticle fillers modify polymer conformations and the polymer segmental dynamics, and thereby influence the ion mobilities of polymer electrolytes.
Harnessing Poly(ionic liquid)s for Sensing Applications.
Guterman, Ryan; Ambrogi, Martina; Yuan, Jiayin
2016-07-01
The interest in poly(ionic liquid)s for sensing applications is derived from their strong interactions to a variety of analytes. By combining the desirable mechanical properties of polymers with the physical and chemical properties of ILs, new materials can be created. The tunable nature of both ionic liquids and polymers allows for incredible diversity, which is exemplified in their broad applicability. In this article we examine the new field of poly(ionic liquid) sensors by providing a detailed look at the current state-of-the-art sensing devices for solvents, gases, biomolecules, pH, and anions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Block copolymers from ionic liquids for the preparation of thin carbonaceous shells
Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang
2017-01-01
This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials. PMID:28904612
Block copolymers from ionic liquids for the preparation of thin carbonaceous shells.
Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Zentel, Rudolf
2017-01-01
This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO 2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO 2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials.
Reliability of ionic polymer metallic composite for opto-mechanical applications
NASA Astrophysics Data System (ADS)
Yu, Chung-Yi; Su, Guo-Dung J.
2014-09-01
Electroactive polymer (EAP) is capable of exhibiting large shape changes in response to electrical stimulation. EAPs can produce large deformation with lower applied voltage for actuation applications. IPMC (Ionic Polymer Metal Composite) is a well-known ionic EAPs. It has numerous attractive advantages, such as low electrical energy consumption and light weight. The mechanism of IPMC actuator is due to the ionic diffusion when the voltage gradient is applied, so that the type of ionic solution has a large impact on the physical properties of IPMC. In this paper, the reliability tests of IPMC with non-aqueous ionic solution are demonstrated. Pt-IPMC with LiOH aqueous solution exhibits the best maximum displacement, but the water in LiOH solution is electrolyzed because of the low electrolysis voltage 1.23 V of water. To improve electrolysis problems and the operation time in the air, proper solvents including high electrolysis voltage and low vapor pressure should be considered. The reliability tests focus on the durability of IPMC in the air. The surface resistance, tip displacement and response time of IPMC are presented. More improvements of IPMC fabrication, such as Ag-IPMC, was developed in this paper.
Transports of ionic liquids in ionic polymer conductor network composite actuators
NASA Astrophysics Data System (ADS)
Liu, Yang; Liu, Sheng; Lin, Junhong; Wang, Dong; Jain, Vaibhav; Montazami, Reza; Heflin, James R.; Li, Jing; Madsen, Louis; Zhang, Q. M.
2010-04-01
We investigate the influence of ionic liquids on the electromechanical performance of Ionic Polymer Conductor Network Composite (IPCNC) bending actuators. Two imidazolium ionic liquids (ILs) with one cation, which is 1-ethyl-3- methylimidazolium ([EMI+]), and two different anions, which are tetrafluoroborate ([BF4-]) and trifluoromethanesulfonate ([Tf-]), are chosen for the study. By combining the time domain electric and electromechanical responses, we developed a new model that describes the ion transports in IPCNC actuators. The time constant of excess cation and anion migration in various composite electrodes are deduced: 6s and 25s in RuO2/Nafion; 7.9s and 36.3s in RuO2/Aquivion; 4.8s and 53s in Au/PAH, respectively. NMR is also applied to provide quantitative measures of self-diffusion coefficients independently for IL anions and cations both in pure ILs and in ILs absorved into ionomers. All the results indicate that the motion of cation, in the studied pure ionic liquids, polymer matrix and conductor network composites, is faster than that of anion. Moreover, the CNC morphology is playing a crucial role in determining the ion transport in the porous electrodes.
Hu, Anran; Chen, Chen; Mantle, Michael D; Wolf, Bettina; Gladden, Lynn F; Rajabi-Siahboomi, Ali; Missaghi, Shahrzad; Mason, Laura; Melia, Colin D
2017-05-01
Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths. The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media. Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data. Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.
NASA Astrophysics Data System (ADS)
Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.
2016-10-01
We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.
Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia
2016-04-07
A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.
Lithium secondary batteries: Role of polymer cathode morphology
NASA Astrophysics Data System (ADS)
Naoi, Katsuhiko; Osaka, Tetsuya; Owens, Boone B.
1988-06-01
Electrically conducting polymers have been utilized both as the cathode and as the electrolyte element of Li secondary cells. Polymer cathodes were limited in their suitability for batteries because of the low energy content associated with low levels of doping and the inclusion of complex ionic species in the cathode. Recent studies have indicated that doping levels up to 100 percent can be achieved in polyanilene. High doping levels in combination with controlled morphologies have been found to improve the energy and rate capabilities of polymer cathodes. A morphology-modifying technique was utilized to enhance the charge/discharge characteristics of Li/liquid electrolyte polypyrrole cells. The polymer is electropolymerized in a preferred orientation morphology when the substrate is first precoated with an insulating film of nitrile butadiene rubber (NBR). Modification of the kinetic behavior of the electrode results from variations in the chemical composition of the NBR.
A novel hybrid metal-organic framework-polymeric monolith for solid-phase microextraction.
Lin, Chen-Lan; Lirio, Stephen; Chen, Ya-Ting; Lin, Chia-Her; Huang, Hsi-Ya
2014-03-17
This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions. Quantitative analysis of the extracted penicillin samples using the MOF-organic polymer for SPME was conducted by using capillary electrochromatography (CEC) coupled with UV analysis. The penicillin recovery was 63-96.2 % with high reproducibility, sensitivity, and reusability. The extraction time with the proposed fabricated SPME was only 34 min. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen
2017-11-01
It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.
Mehta, Somil C; Somasundaran, P; Kulkarni, Ravi
2009-05-15
Silicone oils are widely used in cosmetics and personal care applications to improve softness and condition skin and hair. Being insoluble in water and most hydrocarbons, a common mode of delivering them is in the form of emulsions. Currently most applications use polyoxyethylene (non-ionic) modified siloxanes as emulsifiers to stabilize silicone oil emulsions. However, ionically grafted silicone polymers have not received much attention. Ionic silicones have significantly different properties than the non-ionic counterpart. Thus considerable potential exists to formulate emulsions of silicones with different water/silicone oil ratios for novel applications. In order to understand the mechanisms underlying the effects of hydrophilic modifications on the ability of hybrid silicone polymers to stabilize various emulsions, this article focuses on the phase diagram studies for silicone emulsions. The emulsifying ability of functional silicones was seen to depend on a number of factors including hydrophilicity of the polymer, nature of the functional groups, the extent of modification, and the method of emulsification. It was observed that the region of stable emulsion in a phase diagram expanded with increase in shear rate. At a given shear rate, the region of stable emulsion and the nature of emulsion (water-in-oil or oil-in-water) was observed to depend on hydrophilic-hydrophobic balance of the hybrid silicone emulsifier. At a fixed amount of modification, the non-ionically modified silicone stabilized an oil-in-water emulsion, whereas the ionic silicones stabilized inverse water-in-oil emulsions. This was attributed to the greater hydrophilicity of the polyoxyethylene modified silicones than the ionic counterparts. In general, it is postulated that with progressive increase in hydrophilicity of hybrid silicone emulsifiers, their tendency to stabilize water-in-oil emulsion decreases with corresponding increase in oil-in-water emulsion. Further, this behavior is hypothesized to depend on the nature of modifying functional groups. Thus a hybrid silicone polymer can be tailored by selecting the nature and degree of hydrophilicity to obtain a desired silicone emulsion.
Thermotropic Ionic Liquid Crystals
Axenov, Kirill V.; Laschat, Sabine
2011-01-01
The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986
Thermotropic Ionic Liquid Crystals.
Axenov, Kirill V; Laschat, Sabine
2011-01-14
The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.
Fabrication of fiber supported ionic liquids and methods of use
Luebke, David R; Wickramanayake, Shan
2013-02-26
One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.
Cold-start characteristics of polymer electrolyte fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishler, Jeff; Mukundan, Rangachary; Wang, Yun
2010-01-01
In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.
Dynamics of water in sulfonated poly(phenylene) membranes
NASA Astrophysics Data System (ADS)
Osti, Naresh; Etampawala, Thusitha; Shrestha, Umesh; Perahia, Dvora; Cornelius, Christopher
2011-03-01
The dynamics of water in networks formed by highly rigid ionic polymers, sulfonated poly(phenylene) as observed by quasi elastic neutron scattering (QENS) is presented. These rigid ionic polymers have potential as effective ion exchange membranes with impact on a large number of applications from water purification to clean energy, where its rigidity distinguishes it from other ionic polymers. Its transport characteristics are affected by its rigidness as well as by direct interactions with the solvent. Our QENS studies as a function of sulfonation levels, temperature and solvent content have shown that on the time scale of the measurement, the polymers are rigid. While macroscopically all samples swell, and transport water, the water molecules appear locally rather confined. Water however remind non-frozen to subzero temperatures. The results will be discussed in view of theoretical models including continues diffusion and hopping of solvent molecules.
Brombosz, Scott M.; Lee, Sungwon; Firestone, Millicent A.
2014-11-04
We describe post-polymerization radical bromination of a nanostructured poly(ionic liquid) that selectively introduces a reactive bromo-group onto the polyalkylthiophene backbone. Raman and FT-IR spectroscopy proves that the bromine is successfully introduced at the 3-methyl position of the thiophene and that the molecular structure of the polymer remains largely intact with only minimal chain scission detected. FT-IR and Vis-NIR spectroscopy indicates that incorporation of the bromine induces twisting (loss of co-planarity) of the polythiophene backbone. WAXS confirms retention of an ordered lamellar structure with minor lattice spacing contraction. Cyclic voltammetry confirms spectroscopic findings that the bromination reaction yields a stable p-dopedmore » polymer. The installed bromine is susceptible to nucleophilic displacement permitting the covalent attachment of other functional molecules, such as a dialkylphosphonate. Elemental analysis of such a transformation established that 100 % functionalization can be achieved. These results collectively demonstrate that post-modification of a π-conjugated polymer can be used to both tune electronic and photonic properties, as well as install a chemoselective attachment point for the covalent wiring of other molecules.« less
ERIC Educational Resources Information Center
Chen, Yueh-Huey; He, Yu-Chi; Yaung, Jing-Fun
2014-01-01
Hydrogels of the so-called smart polymers or environment-sensitive polymers are important modern biomaterials. Herein, we describe a hands-on activity to explore the pH-responsive characteristics of hydrogels using a commercially available ionic soft contact lens that is a hydrogel of poly(2-hydroxyethyl methacrylate-"co"-methacrylic…
Biomimetic Beetle-Inspired Flapping Air Vehicle Actuated by Ionic Polymer-Metal Composite Actuator.
Zhao, Yang; Xu, Di; Sheng, Jiazheng; Meng, Qinglong; Wu, Dezhi; Wang, Lingyun; Xiao, Jingjing; Lv, Wenlong; Chen, Qinnan; Sun, Daoheng
2018-01-01
During the last decades, the ionic polymer-metal composite (IPMC) received much attention because of its potential capabilities, such as large displacement and flexible bending actuation. In this paper, a biomimetic flapping air vehicle was proposed by combining the superiority of ionic polymer metal composite with the bionic beetle flapping principle. The blocking force was compared between casted IPMC and IPMC. The flapping state of the wing was investigated and the maximum displacement and flapping angle were measured. The flapping displacement under different voltage and frequency was tested. The flapping displacement of the wing and the support reaction force were measured under different frequency by experiments. The experimental results indicate that the high voltage and low frequency would get large flapping displacement.
Water dynamics in rigid ionomer networks.
Osti, N C; Etampawala, T N; Shrestha, U M; Aryal, D; Tyagi, M; Diallo, S O; Mamontov, E; Cornelius, C J; Perahia, D
2016-12-14
The dynamics of water within ionic polymer networks formed by sulfonated poly(phenylene) (SPP), as revealed by quasi-elastic neutron scattering (QENS), is presented. These polymers are distinguished from other ionic macromolecules by their rigidity and therefore in their network structure. QENS measurements as a function of temperature as the fraction of ionic groups and humidity were varied have shown that the polymer molecules are immobile while absorbed water molecules remain dynamic. The water molecules occupy multiple sites, either bound or loosely constrained, and bounce between the two. With increasing temperature and hydration levels, the system becomes more dynamic. Water molecules remain mobile even at subzero temperatures, illustrating the applicability of the SPP membrane for selective transport over a broad temperature range.
Sun, Gongchen; Senapati, Satyajyoti
2016-01-01
A microfluidic-ion exchange membrane hybrid chip is fabricated by polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (> 100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems. PMID:26960551
Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan
2015-06-01
An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon Redox-Polymer-Gel Hybrid Supercapacitors.
Vlad, A; Singh, N; Melinte, S; Gohy, J-F; Ajayan, P M
2016-02-26
Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances.
Solid composite electrolytes for lithium batteries
Kumar, Binod; Scanlon, Jr., Lawrence G.
2001-01-01
Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.
Formation of ion clusters in the phase separated structures of neutral-charged polymer blends
NASA Astrophysics Data System (ADS)
Kwon, Ha-Kyung; Olvera de La Cruz, Monica
2015-03-01
Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).
NASA Astrophysics Data System (ADS)
Roach, David J.
Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments. Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T g) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components and relative mobilities of the polymer backbone of a suite of. lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content. Each of the main backbone components (PEO spacer and isophthalate groups) exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content on PEO mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, determined from the rate of magnetization transfer from 1H to 13C nuclei, in all ionic samples becomes similar for T [special characters omitted] 1.1 Tg, indicating that the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results compliment previous findings and present an improved picture of the dependence of backbone dynamics on cation type and density in these amorphous PEO-based ionomer systems. 7Li PFG NMR experiments provided measurements of the self-diffusion coefficients for Li+ cations in the PEO600-y Li ionomer series over a range of temperatures. When the Tg values are taken into account, the self-diffusion coefficients of Li+ in each sample follow a similar trendline, indicating that lithium diffusion is independent of ion concentration at any given reduced inverse temperature, Tg/T. Ion aggregation increases Tg and slows both lithium cation diffusion and displacement, but there is no further slowing beyond the Tg effect in the PEO600-y Li ionomers samples. The differences in activation energies obtained from diffusion measurements and relaxation times suggest that at least one additional barrier must be overcome for cations emerge from local hopping motion to macroscopic cation transpfort. Using the Nernst- Einstein equation lithium diffusion coefficients were also calculated from conductivity measurements. The differences between the diffusion measured by the two separate techniques indicate the presence of ion pairs. The activation energy of lithium diffusion was found to be nearly identical between the PFG NMR and conductivity, suggesting that the conductivity and ionic diffusion are related to the same ionic dynamics. As the ion content within the PEO600-y Li samples increases the relative concentration of nonconducting ion pairs decrease. Also an increase in temperature causes a fraction of ion pairs to thermally dissociate into positive triple ions.
CVD Polymers for Devices and Device Fabrication.
Wang, Minghui; Wang, Xiaoxue; Moni, Priya; Liu, Andong; Kim, Do Han; Jo, Won Jun; Sojoudi, Hossein; Gleason, Karen K
2017-03-01
Chemical vapor deposition (CVD) polymerization directly synthesizes organic thin films on a substrate from vapor phase reactants. Dielectric, semiconducting, electrically conducting, and ionically conducting CVD polymers have all been readily integrated into devices. The absence of solvent in the CVD process enables the growth of high-purity layers and avoids the potential of dewetting phenomena, which lead to pinhole defects. By limiting contaminants and defects, ultrathin (<10 nm) CVD polymeric device layers have been fabricated in multiple laboratories. The CVD method is particularly suitable for synthesizing insoluble conductive polymers, layers with high densities of organic functional groups, and robust crosslinked networks. Additionally, CVD polymers are prized for the ability to conformally cover rough surfaces, like those of paper and textile substrates, as well as the complex geometries of micro- and nanostructured devices. By employing low processing temperatures, CVD polymerization avoids damaging substrates and underlying device layers. This report discusses the mechanisms of the major CVD polymerization techniques and the recent progress of their applications in devices and device fabrication, with emphasis on initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Khalfan, Amish N.
This dissertation investigates the structural and dynamical properties of polymer electrolyte materials for applications to lithium-ion batteries and fuel cells. The nuclear magnetic resonance (NMR) technique was used to characterize these materials. NMR aids in understanding the local environments of nuclei and the mobility of a molecular/ionic species. Five research projects were carried out, and they have been outlined in this work. NASA has developed rod-coil block copolymers for use as electrolytes in lithium-ion batteries. The copolymers exhibit a microphase separation within their structure leading to the formation of ionically conducting channels. We studied ion transport properties of the copolymers, and determined the predominant mechanism for transport to occur in the amorphous phase. Seven gel polymer electrolytes, each containing a mixture of LiBETI salt and organic solvents, were studied. Two of them incorporated BMI (1-n-butyl-3-methylimidazolium) ionic liquid. Ionic liquids are room temperature molten salts. BMI had been thought to enhance ion mobility. However, the BMI component was observed to restrict ion mobility. Gel polymer electrolytes containing LiTFSI salt and P13TFSI ionic liquid with or without the inclusion of ethylene carbonate (EC) were studied for application to lithium metal/air batteries, which have high theoretical energy densities. The addition of EC was found to improve lithium ion transport. The gels with EC therefore prove to be favorable for use as electrolytes in lithium metal/air batteries. Highly sulfonated poly(arylenethioethersulfone) (SPTES) membranes were examined for use in direct methanol fuel cells (DMFCs) as an alternative to the Nafion membrane. DMFCs use methanol as a fuel instead of reformed hydrogen as in conventional proton exchange membrane fuel cells. Compared to Nafion, the SPTES membranes were shown to retain water better at high temperatures and yield lower methanol diffusion. SPTES membranes with the addition of fluorine groups (6F-SPTES) were also studied, and these membranes had been thought to show an improvement in water transport properties over SPTES. However, water diffusion studies of the 6F-SPTES membranes revealed the fluorinated membranes to be unfavorable. The morphology of the FSPTES is suspected to be more susceptible to the loss of bound water at higher temperatures than SPTES.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Tan, Rui; Yang, Jie; Wang, Kai; Gao, Rongtan; Liu, Dong; Liu, Yidong; Yang, Jinlong; Pan, Feng
2017-02-01
We report a novel 3D-hybrid cathode material with three-dimensional (3D) N-GO/CNT framework to load sulfur (77.6 wt %), and sulfonated polyaniline (SPANI) of coating layer. Used as a cathode material, it possesses a high capacity (1196 mAh g-1@0.3 A g-1@1.6 mg cm-2), excellent charging-discharging rate (680 mAh g-1@7.5 A g-1) and long-life performance (maintaining 71.1% capacity over 450 cycles), which is mainly attributed to the benefits of excellent electronic/Li-ionic dual-conductivity and confinement effect of the 3D-hybrid N-GO/CNT framework coated by self-doping conducting polymer SPANI. Thus, a 3D sulfur cathode modified with electronic/Li-ionic dual-conduction network can significantly enhance the electrochemical performance and stability, and this novel type of material is very promising for commercial applications that require high energy and power density, long life, and excellent abuse tolerance.
Murphy, Ryan J.; Weigandt, Katie M.; Uhrig, David; ...
2015-11-30
The demand for lower cost and flexible electronics has driven industry to develop alternative transparent electrode (TE) materials to replace indium tin oxide (ITO). ITO is the benchmark TE on the market, but its high cost and low flexibility limit it for use in future technologies. Recent work has shown the combination of the conducting polymer poly(3,4-ethylenedioxythiophene)–polystyrenesulfonate (PEDOT:PSS) with the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate (EMIM:TCB) is a viable ITO replacement. This study investigates the nature of the interaction between PEDOT:PSS and EMIM:TCB in the solution state. A combination of scattering methods is used to illustrate a novel, multilength scale modelmore » of this system. At length scales larger than 300nm PEODT:PSS adopts a microgel-like structure, and below ~300nm the system adopts an entangled polyelectrolyte mesh structure. As EMIM:TCB is added, the microgel interior adopts a more neutral polymer mesh structure as EMIM:TCB concentration is increased.« less
Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo
2018-04-25
Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.
Shin, Dong Won; Guiver, Michael D; Lee, Young Moo
2017-03-22
A fundamental understanding of polymer microstructure is important in order to design novel polymer electrolyte membranes (PEMs) with excellent electrochemical performance and stabilities. Hydrocarbon-based polymers have distinct microstructure according to their chemical structure. The ionic clusters and/or channels play a critical role in PEMs, affecting ion conductivity and water transport, especially at medium temperature and low relative humidity (RH). In addition, physical properties such as water uptake and dimensional swelling behavior depend strongly on polymer morphology. Over the past few decades, much research has focused on the synthetic development and microstructural characterization of hydrocarbon-based PEM materials. Furthermore, blends, composites, pressing, shear field, electrical field, surface modification, and cross-linking have also been shown to be effective approaches to obtain/maintain well-defined PEM microstructure. This review summarizes recent work on developments in advanced PEMs with various chemical structures and architecture and the resulting polymer microstructures and morphologies that arise for potential application in fuel cell, lithium ion battery, redox flow battery, actuators, and electrodialysis.
Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda
2014-04-24
Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl{sub 2}O{sub 4})] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF{sub 6} in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl{sub 2}O{sub 4} exhibits high ionic conductivity of 2.80 × 10{sup −3} S/cm at room temperature. The charge-discharge capacity of Li/LiCoO{sub 2} coin cells composed of the newly prepared nanocomposite [(16more » wt.%) PVdF-co-HFP+(5 wt.%) MgAl{sub 2}O{sub 4}] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.« less
Wang, Jeng-An; Lu, Yi-Ting; Lin, Sheng-Chi; Wang, Yu-Sheng; Ma, Chen-Chi M; Hu, Chi-Chang
2018-05-30
A novel copolymer, polyurethane-poly(acrylic acid) (PAA), is successfully synthesized from poly(acrylic acid) (PAA) backbone cross-linked with waterborne polyurethane (WPU). This sticky polymer, which is neutralized with 1 M KOH and then soaked in 1 M KOH (denoted as WPU-PAAK-K), provides an ionic conductivity greater than 10 -2 S cm -1 and acts as a gel electrolyte perfectly improving the electrode/electrolyte interfaces in a flexible all-solid-state electrical double-layer capacitor (EDLC). The PAA backbone chains in the copolymer increase the amount of carboxyl groups and promote the segmental motion. The carboxyl groups enhance the water-uptake capacity, which facilitates the ion transport and promotes the ionic conductivity. The cross-linked agent, WPU chains, effectively maintains the rich water content and provides mechanical stickiness to bind two electrodes together. An acid-treated carbon paper (denoted as ACP) combining with such a gel polymer electrolyte demonstrates excellent capacitive behavior with a high areal capacitance of 211.6 mF cm -2 at 10 mV s -1 . A full cell consisting of ACP/WPU-PAAK-K/ACP displays a low equivalent series resistance of 0.44 Ω from the electrochemical impedance spectroscopic results. An all-solid-state ACP/WPU-PAAK-K/ACP EDLC provides an areal specific capacitance of 94.6 mF cm -2 at 1 mA cm -2 . This device under 180° bending shows a capacitance retention over 90%, revealing its remarkable flexibility.
2015-01-01
Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087
Kuberský, Petr; Altšmíd, Jakub; Hamáček, Aleš; Nešpůrek, Stanislav; Zmeškal, Oldřich
2015-01-01
A systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis. The working electrode, deposited from water-based carbon nanotube ink, was prepared by aerosol-jet printing technology. It was observed that the thermal treatment and crystallinity of poly(vinylidene fluoride) (PVDF) in the solid polymer electrolyte influenced the sensitivity. Picture analysis of the morphology of the SPE layer based on [EMIM][N(Tf)2] ionic liquid treated under different conditions suggests that the sensor sensitivity strongly depends on the fractal dimension of PVDF spherical objects in SPE. Their deformation, e.g., due to crowding, leads to a decrease in sensor sensitivity. PMID:26569248
NASA Astrophysics Data System (ADS)
Lee, Jeongwoo; Faruk Emon, Md Omar; Vatani, Morteza; Choi, Jae-Won
2017-03-01
Ionic liquid (IL)/polymer composites (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIMBF4)/2-[[(butylamino)carbonyl]oxy]ethyl acrylate (BACOEA)) were fabricated to use as sensing materials for stretchable piezoresistive tactile sensors. The detectability of the IL/polymer composites was enhanced because the ionic transport properties of EMIMBF4 in the composites were improved by the synergic actions between the coordinate sites generated by the local motion of BACOEA chain segments under enough activation energy. The performance of the piezoresistive sensors was investigated with the degree of crosslinking and polymerization of the IL/polymer composites. As the compressive strain was increased, the distance between two electrodes decreased, and the motion of polymer chains and IL occurred, resulting in a decrease in the electrical resistance of the sensors. We have confirmed that the sensitivity of the sensors are affected by the degree of crosslink and polymerization of the IL/polymer composites. In addition, all of the materials (skins, sensing material, and electrode) used in this study are photo-curable, and thus the stretchable piezoresistive tactile sensors can be successfully fabricated by 3D printing.
Modeling and simulation of Li-ion conduction in poly(ethylene oxide)
NASA Astrophysics Data System (ADS)
Gitelman, L.; Israeli, M.; Averbuch, A.; Nathan, M.; Schuss, Z.; Golodnitsky, D.
2007-12-01
Polyethylene oxide (PEO) containing a lithium salt (e.g., LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li + ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na +, K +, and other ions, and the PEO helical chain that conducts Li + ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca. 0.1 nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.
(1-Butyl-4-methyl-pyridinium)[Cu(SCN)2]: a coordination polymer and ionic liquid.
Spielberg, Eike T; Edengeiser, Eugen; Mallick, Bert; Havenith, Martina; Mudring, Anja-Verena
2014-04-25
The compound (C4C1py)[Cu(SCN)2], (C4C1py = 1-Butyl-4-methyl-pyridinium), which can be obtained from CuSCN and the ionic liquid (C4C1py)(SCN), turns out to be a new organic-inorganic hybrid material as it qualifies both, as a coordination polymer and an ionic liquid. It features linked [Cu(SCN)2](-) units, in which the thiocyanates bridge the copper ions in a μ1,3-fashion. The resulting one-dimensional chains run along the a axis, separated by the C4C1py counterions. Powder X-ray diffraction not only confirms the single-crystal X-ray structure solution but proves the reformation of the coordination polymer from an isotropic melt. However, the materials shows a complex thermal behavior often encountered for ionic liquids such as a strong tendency to form a supercooled melt. At a relatively high cooling rate, glass formation is observed. When heating this melt in differential scanning calorimetry (DSC) and temperature-dependent polarizing optical microscopy (POM), investigations reveal the existence of a less thermodynamically stable crystalline polymorph. Raman measurements conducted at 10 and 100 °C point towards the formation of polyanionic chain fragments in the melt. Solid-state UV/Vis spectroscopy shows a broad absorption band around 18,870 cm(-1) (530 nm) and another strong one below 20,000 cm(-1) (<500 nm). The latter is attributed to the d(Cu(I))→π*(SCN)-MLCT (metal-to-ligand charge transfer) transition within the coordination polymer yielding an energy gap of 2.4 eV. At room temperature and upon irradiation with UV light, the material shows a weak fluorescence band at 15,870 cm(-1) (630 nm) with a quantum efficiency of 0.90(2) % and a lifetime of 131(2) ns. Upon lowering the temperature, the luminescence intensity strongly increases. Simultaneously, the band around 450 nm in the excitation spectrum decreases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biomimetic Beetle-Inspired Flapping Air Vehicle Actuated by Ionic Polymer-Metal Composite Actuator
Zhao, Yang; Xu, Di; Sheng, Jiazheng; Meng, Qinglong; Wu, Dezhi; Wang, Lingyun; Xiao, Jingjing; Lv, Wenlong; Sun, Daoheng
2018-01-01
During the last decades, the ionic polymer-metal composite (IPMC) received much attention because of its potential capabilities, such as large displacement and flexible bending actuation. In this paper, a biomimetic flapping air vehicle was proposed by combining the superiority of ionic polymer metal composite with the bionic beetle flapping principle. The blocking force was compared between casted IPMC and IPMC. The flapping state of the wing was investigated and the maximum displacement and flapping angle were measured. The flapping displacement under different voltage and frequency was tested. The flapping displacement of the wing and the support reaction force were measured under different frequency by experiments. The experimental results indicate that the high voltage and low frequency would get large flapping displacement. PMID:29682006
NASA Astrophysics Data System (ADS)
Raju, S. G.; Hariharan, Krishnan S.; Park, Da-Hye; Kang, HyoRang; Kolake, Subramanya Mayya
2015-10-01
Molecular dynamics (MD) simulations of ternary polymer electrolyte - ionic liquid mixtures are conducted using an all-atom model. N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CnMPy][TFSI], n = 1, 3, 6, 9) and polyethylene oxide (PEO) are used. Microscopic structure, energetics and dynamics of ionic liquid (IL) in these ternary mixtures are studied. Properties of these four pure IL are also calculated and compared to that in ternary mixtures. Interaction between pyrrolidinium cation and TFSI is stronger and there is larger propensity of ion-pair formation in ternary mixtures. Unlike the case in imidazolium IL, near neighbor structural correlation between TFSI reduces with increase in chain length on cation in both pure IL and ternary mixtures. Using spatial density maps, regions where PEO and TFSI interact with pyrrolidinium cation are identified. Oxygens of PEO are above and below the pyrrolidinium ring and away from the bulky alkyl groups whereas TFSI is present close to nitrogen atom of CnMPy. In pure IL, diffusion coefficient (D) of C3MPy is larger than of TFSI but D of C9MPy and C6MPy are larger than that of TFSI. The reasons for alkyl chain dependent phenomena are explored.
Block Copolymers and Ionic Liquids: A New Class of Functional Nanocomposites
NASA Astrophysics Data System (ADS)
Lodge, Timothy
2009-03-01
Block copolymers provide a remarkably versatile platform for achieving desired nanostructures by self-assembly, with lengthscales varying from a few nanometers up to several hundred nanometers. Ionic liquids are an emerging class of solvents, with an appealing set of physical attributes. These include negligible vapor pressure, high chemical and thermal stability, tunable solvation properties, high ionic conductivity, and wide electrochemical windows. For various applications it will be necessary to solidify the ionic liquid into particular spatial arrangements, such as membranes or gels, or to partition the ionic liquid in coexisting phases, such as microemulsions and micelles. One example includes formation of spherical, cylindrical, and vesicular micelles by poly(butadiene-b-ethylene oxide) and poly(styrene-b-methylmethacrylate) in the common hydrophobic ionic liquids [BMI][PF6] and [EMI][TFSI]. This work has been extended to the formation of reversible micelle shuttles between ionic liquids and water, whereby entire micelles transfer from one phase to the other, reversibly, depending on temperature and solvent quality. Formation of ion gels has been achieved by self-assembly of poly(styrene-b-ethylene oxide-b-styrene) triblocks in ionic liquids, and by the thermoreversible system poly(N-isopropylacrylamide-b-ethylene oxide-b-N-isopropylacrylamide), using as little as 4% copolymer. Further, these gels have been shown to be remarkably effective as gate dielectrics in organic thin film transistors. The remarkably high capacitance of the ion gels (> 10 μF/cm^2) supports a very high carrier density in an organic semiconductor such as poly(3-hexylthiophene), leading to milliamp currents for low applied voltages. Furthermore, the rapid mobility of the ions enables switching speeds approaching 10 kHz, orders of magnitude higher than achievable with other polymer-based dielectrics such as PEO/LiClO4. Finally, we have shown that ordered nanostructures of block copolymers plus ionic liquids show the characteristic self-assembly properties of strongly-segregated systems. Prospects for anisotropic ionic conductivity are also being explored.
Highly Stable, Anion Conductive, Comb-Shaped Copolymers for Alkaline Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, NW; Leng, YJ; Hickner, MA
2013-07-10
To produce an anion-conductive and durable polymer electrolyte for alkaline fuel cell applications, a series of quaternized poly(2,6-dimethyl phenylene oxide)s containing long alkyl side chains pendant to the nitrogen-centered cation were synthesized using a Menshutkin reaction to form comb-shaped structures. The pendant alkyl chains were responsible for the development of highly conductive ionic domains, as confirmed by small-angle X-ray scattering (SAXS). The comb-shaped polymers having one alkyl side chain showed higher hydroxide conductivities than those with benzyltrimethyl ammonium moieties or structures with more than one alkyl side chain per cationic site. The highest conductivity was observed for comb-shaped polymers withmore » benzyldimethylhexadecyl ammonium cations. The chemical stabilities of the comb-shaped membranes were evaluated under severe, accelerated-aging conditions, and degradation was observed by measuring IEC and ion conductivity changes during aging. The comb-shaped membranes retained their high ion conductivity in 1 M NaOH at 80 degrees C for 2000 h. These cationic polymers were employed as ionomers in catalyst layers for alkaline fuel cells. The results indicated that the C-16 alkyl side chain ionomer had a slightly better initial performance, despite its low IEC value, but very poor durability in the fuel cell. In contrast, 90% of the initial performance was retained for the alkaline fuel cell with electrodes containing the C-6 side chain after 60 h of fuel cell operation.« less
Effect of Eutectic Concentration on Conductivity in PEO:LiX Based Solid Polymer Electrolytes
NASA Astrophysics Data System (ADS)
Zhan, Pengfei; Ganapatibhotla, Lalitha; Maranas, Janna
Polyethylene oxide (PEO) and lithium salt based solid polymer electrolytes (SPEs) have been widely proposed as a substitution for the liquid electrolyte in Li-ion batteries. As salt concentration varies, these systems demonstrate rich phase behavior. Conductivity as a function of salt concentration has been measured for decades and various concentration dependences have been observed. A PEO:LiX mixture can have one or two conductivity maximums, while some mixtures with salt of high ionic strength will have higher conductivity as the salt concentration decrease. The factors that affect the conductivity are specific for each sample. The universal factor that affects conductivity is still not clear. In this work, we measured the conductivity of a series of PEO:LiX mixtures and statistical analysis shows conductivity is affected by the concentration difference from the eutectic concentration (Δc). The correlation with Δc is stronger than the correlation with glass transition temperature. We believe that at the eutectic concentration, during the solidification process, unique structures can form which aid conduction. Currently at Dow Chemical.
Non-crosslinked, amorphous, block copolymer electrolyte for batteries
Mayes, Anne M.; Ceder, Gerbrand; Chiang, Yet-Ming; Sadoway, Donald R.; Aydinol, Mehmet K.; Soo, Philip P.; Jang, Young-Il; Huang, Biying
2006-04-11
Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0.degree. C. to about 70.degree. C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of Li.sub.xM.sub.yN.sub.zO.sub.2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the M.sub.yN.sub.z portion of the compound is (4-x). In certain embodiments, these compounds are used in the cathodes of rechargeable batteries. The present invention also includes methods of predicting the potential utility of metal dichalgogenide compounds for use in lithium intercalation compounds. It also provides methods for processing lithium intercalation oxides with the structure and compositional homogeneity necessary to realize the increased formation energies of said compounds. An article is made of a dimensionally-stable, interpenetrating microstructure of a first phase including a first component and a second phase, immiscible with the first phase, including a second component. The first and second phases define interphase boundaries between them, and at least one particle is positioned between a first phase and a second phase at an interphase boundary. When the first and second phases are electronically-conductive and ionically-conductive polymers, respectively, and the particles are ion host particles, the arrangement is an electrode of a battery.
NASA Astrophysics Data System (ADS)
Gao, Jing; Sun, Chunshui; Xu, Lei; Chen, Jian; Wang, Chong; Guo, Decai; Chen, Hao
2018-04-01
Due to flexible property and light weight, the lithiated Nafion membrane swollen with PC (PC-Li-Nafion) has been employed as both solid-state electrolyte and separator to fabricate solid-state Li-S cells. The electrochemical measurements of PC-Li-Nafion membrane show that its Li-ion transference number is 0.928, ionic conductivity of 2.1 × 10-4 S cm-1 can be achieved at 70 °C and its electrochemical window is 0 ∼ +4.1 V vs. Li+/Li. It is observed that the Li dendrites are suppressed by using PC-Li-Nafion membrane due to its single-ion conducting property. The amounts of Li-Nafion resin binder and conductive carbon in the cathode are optimized as 40% and 10% respectively to make a balance of ionic and electronic conductivities. A thin-layer Li-Nafion resin with a thickness of around 2 μm is fabricated between the cathode and PC-Li-Nafion membrane to improve the interfacial contact and further enhance the specific capacity of the cell. When measured at 70 °C, the Li-S cell delivers a reversible specific capacity of 1072.8 mAh g-1 (S) at 0.05 C and 895 mAh g-1 (S) at 1 C. The capacity retention at 1 C is 89% after 100 cycles. These results suggest that high-performance solid-state Li-S cells can be fabricated with the Li-Nafion polymer electrolyte.
"Washing-out" ionic liquids from polyethylene glycol to form aqueous biphasic systems.
Tomé, Luciana I N; Pereira, Jorge F B; Rogers, Robin D; Freire, Mara G; Gomes, José R B; Coutinho, João A P
2014-02-14
The molecular-level mechanisms behind the formation of aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and polymers are hitherto not completely understood. For the first time, it is herein shown that polymer-IL-based ABS are a result of a "washing-out" phenomenon, and not of a salting-out effect of the IL over the polymer as assumed in the past few years. Novel evidence is herein provided by experimental results combined with molecular dynamics (MD) simulations and density functional theory (DFT) calculations.
The Role of Polymer Electrolytes in Drug Delivery
NASA Astrophysics Data System (ADS)
Latham, R. J.; Linford, R. G.; Schlindwein, W. S.
2002-12-01
30 years ago Michel Armand, who was working on intercalation cathode materials in high energy power sources, identified the need to develop flexible, ionically conducting, electronically insulating electrolyte materials to accommodate the gross dimensional changes that occur on charge and discharge. In 1973, Peter Wright produced the first such materials designed for this purpose. His "polymer electrolytes" consisted of thin films of sodium or potassium salts dissolved in poly (ethylene oxide) PEO. Many polymer electrolytes had been developed in the ensuing years. Those for power source use have focussed on Lithium as the conducting species whereas complementary materials have been utilised for sensor and other applications. It is well known that the flexible matrix, a heteropolymer usually modified by additives such as plasticisers and/or inert fillers, provides a facile conducting pathway for ions. It is a significant disadvantage of many early polymer electrolytes that both the electrochemically active cations and the charge-compensating anions were mobile. Classic methods of drug delivery have embraced a number of routes into the site of pharmacological action, including ingestion into the lung, the digestive tract or the colon; injection into muscle tissue; and intravenous delivery through a catheter (a "drip"). Modern preference, wherever possible, is for a non-invasive route to minimise the chance of cross infection, especially of the AIDS virus. The skin, which is the largest organ in the human body, is a particularly appealing route as, in the absence of wounds and blemishes, it offers a natural, high-integrity, barrier to the outside world. Skin patches containing active drug that is allowed to diffuse across the external skin barrier into the bloodstream now enjoy wide application but a problem is that the rate of egress is often slow. Transport can be enhanced by artificially dilating the skin pores and/or by opening up additional pores by the application of voltage pulses (electroporation). For certain ionic drugs, including local anaesthetics such as Novacaine and, more recently peptides and gene-based, biotechnological engineered pharmaceuticals, it is possible substantially to enhance transdermal transport by iontophoresis. Key issues affecting iontophoretic delivery are reviewed in this paper and the potential role of polymer electrolyte materials in iontophoretic devices will be described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chew, K. W.; Chen, S. S.; Pang, W. L.
The effects of Lithium triflate salt (LiCF{sub 3}SO{sub 3}), on the poly (methyl methacrylate)(PMMA)-based solid polymer electrolytes plasticized with propylene carbonate (PC) solvated in Tetrahydrofuran (THF) have been studied through a.c impedance spectroscopy and infrared spectroscopy. Lithium triflate was incorporated into the predetermined PMMA/PC system that has the highest value of ionic conductivity. In current investigations, four combination systems: Pure PMMA, (PMMA+PC) systems, (PMMA+LiCF{sub 3}SO{sub 3}) and (PMMA+PC+LiCF{sub 3}SO{sub 3}) systems were prepared using the solution cast method. Solutions were stirred for numerous hours to obtain a homogenous solution before it is poured into the petri dishes under ambient temperaturemore » to form the solid electrolyte thin film. The films were then removed from petri discs and transferred into the dessicator for further drying prior to the different tests. From the characterization done through the a.c impedance spectroscopy, the highest room temperature ionic conductivity in the pure PMMA sample, (PMMA+PC) system and (PMMA+LiCF{sub 3}SO{sub 3}) system is 2.83x10{sup -12} Scm{sup -1}, 4.39x10{sup -11} Scm{sup -1} and 3.93x10{sup -6} Scm{sup -1} respectively. The conductivity for (PMMA+PC+LiCF{sub 3}SO{sub 3}) system was obtained with the 30 wt% of lithium triflate, which is 2.48x10{sup -5} Scm{sup -1}. Infrared spectroscopy shows that complexation occurred between the polymer and the plasticizer, and the polymer and plasticizer and salt. The interactions have been studied in the C=O band, C-O-C band and the O-CH{sub 3} band.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Ye; Zhou, Xingyi; Yu, Guihua
Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing the conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.« less
Shi, Ye; Zhou, Xingyi; Yu, Guihua
2017-10-05
Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel bindermore » systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing the conductive polymer gel binders with 3D framework nanostructures. These gel binders provide multiple functions owing to their structure derived properties. The gel framework facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. The polymer coating formed on every particle acts as surface modification and prevents particle aggregation. The mechanically strong and ductile gel framework also sustains long-term stability of electrodes. In addition, the structures and properties of gel binders can be facilely tuned. We further introduce the development of multifunctional binders by hybridizing conductive polymers with other functional materials. Meanwhile mechanistic understanding on the roles that novel binders play in the electrochemical processes of batteries is also reviewed to reveal general design rules for future binder systems. We conclude with perspectives on their future development with novel multifunctionalities involved. Highly efficient binder systems with well-tailored molecular and nanostructures are critical to reach the entire volume of the battery and maximize energy use for high-energy and high-power lithium batteries. We hope this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of multifunctional binder materials.« less
Decoupled Ion Transport in a Protein-Based Solid Ion Conductor.
Fu, Xuewei; Jewel, Yead; Wang, Yu; Liu, Jin; Zhong, Wei-Hong
2016-11-03
Simultaneous achievement of good electrochemical and mechanical properties is crucial for practical applications of solid ion conductors. Conventional polymer conductors suffer from low conductivity, low transference number, and deteriorated mechanical properties with the enhancement of conductivity, resulting from the coupling between ion transport and polymer movement. Here we present a successful fabrication and fundamental understanding of a high performance soy protein-based solid conductor. The conductor shows ionic conductivity of ∼10 -5 S/cm, transference number of 0.94, and modulus of 1 GPa at room temperature, and still remains flexible and easily processable. Molecular simulations indicate that this is due to appropriate manipulation of the protein structures for effective exploitation of protein functional groups. A decoupled transport mechanism, which is able to explain all results, is proposed. The new insights can be utilized to provide guidelines for design, optimization, and fabrication of high performance biosolid conductors.
All Solid State Rechargeable Lithium Batteries using Block Copolymers
NASA Astrophysics Data System (ADS)
Hallinan, Daniel; Balsara, Nitash
2011-03-01
The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.
Hess, Katherine C; Epting, William K; Litster, Shawn
2011-12-15
We report the development and use of a microstructured electrode scaffold (MES) to make spatially resolved, in situ, electrolyte potential measurements through the thickness of a polymer electrolyte fuel cell (PEFC) electrode. This new approach uses a microfabricated apparatus to analyze the coupled transport and electrochemical phenomena in porous electrodes at the microscale. In this study, the MES allows the fuel cell to run under near-standard operating conditions, while providing electrolyte potential measurements at discrete distances through the electrode's thickness. Here we use spatial distributions of electrolyte potential to evaluate the effects of Ohmic and mass transport resistances on the through-plane reaction distribution for various operating conditions. Additionally, we use the potential distributions to estimate the ionic conductivity of the electrode. Our results indicate the in situ conductivity is higher than typically estimated for PEFC electrodes based on bulk polymer electrolyte membrane (PEM) conductivity.
Boundary layer charge dynamics in ionic liquid-ionic polymer transducers
NASA Astrophysics Data System (ADS)
Davidson, Jacob D.; Goulbourne, N. C.
2011-01-01
Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites, are soft sensors and actuators which operate through a coupling of microscale chemical, electrical, and mechanical interactions. The use of an ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. In this work, we apply Nernst-Planck/Poisson theory to model charge transport in an ionic liquid IPT by considering a certain fraction of the ionic liquid ions as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs compared to their water-based counterparts. Numerical simulations are performed using the finite element method to examine how the introduction of another pair of mobile ions affects boundary layer charge dynamics, concentration, and charge density distributions in the electric double layer, and the overall charge transferred and current response of the IPT. Due to interactions with the Nafion ionomer, not all of the ionic liquid ions will function as mobile charge carriers; only a certain fraction will exist as "free" ions. The presence of mobile ionic liquid ions in the transducer will increase the overall charge transferred when a voltage is applied, and cause the current in the transducer to decay more slowly. The additional mobile ions also cause the ionic concentration profiles to exhibit a nonlinear dynamic response, characterized by nonmonotonic ionic concentration profiles in space and time. Although the presence of mobile ionic liquid ions increases the overall amount of charge transferred, this additional charge transfer occurs in a somewhat symmetric manner. Therefore, the additional charge transferred due to the ionic liquid ions does not greatly increase the net bending moment of the transducer; in fact, it is possible that ionic liquid ion movement actually decreases the observed bending response. This suggests that an optimal electromechanical conversion efficiency for bending actuation is achieved by using an ionic liquid where only a relatively small fraction of the ionic liquid ions exist as free ions. Conversely, if it is desired to increase the overall amount of charge transferred, an ionic liquid with a large fraction of free ions should be used. These theoretical considerations are found to be in good qualitative agreement with recent experimental results.
Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan
2017-11-29
Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.
Soft nanoparticles: nano ionic networks of associated ionic polymers
Aryal, Dipak; Grest, Gary S.; Perahia, Dvora
2017-01-01
Directing the formation of nanostructures that serve as building blocks of membranes presents an immense step towards engineering controlled polymeric ion transport systems. Here, using the exquisite atomic detail captured by molecular dynamics simulations, we follow the assembly of a co-polymer that consists of polystyrene sulfonate tethered symmetrically to hydrophobic blocks, realizing a new type of long lived solvent-responsive soft nanoparticle.
Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu
2014-10-08
Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers.
Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu
2014-01-01
Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246
Composite fabrication and polymer modification using neoteric solvents
NASA Astrophysics Data System (ADS)
Eastman, Scott A.
This thesis is divided into two research initiatives: The fabrication and study of bulk, co-continuous, cellulosic-polymer composites with the aid of supercritical CO2 (SC CO2); and the study of poly(vinyl alcohol) (PVOH) modification and surface activity in ionic liquids. The first part of this thesis utilizes the tunable solubility, gas-like diffusivity, and omniphilic wettability of SC CO2 to incorporate and subsequently polymerize silicone and poly(enemer) prepolymer mixtures throughout various cellulosic substrates. Chapters two and three investigate the mechanical properties of these composites and demonstrate that nearly every resulting composite demonstrates an improved flexural modulus and energy release rate upon splitting. Fire resistance of these composites was also investigated and indicates that the heat release rate, total heat released, and char yield were significantly improved upon for all silicone composites compared to the untreated cellulosic material. Chapter four looks specifically at aspen-silicone composites for thermo-oxidative studies under applied loads in order to study the effect of silicone incorporation on the failure kinetics of aspen. The aspen-silicone composites tested under these conditions demonstrated significantly longer lifetimes under the same loading and heating conditions compared with untreated aspen. The second part of this thesis focuses on studying ionic liquids as potentially useful solvents and reaction media for poly(vinyl alcohol). Two ionic liquids (1-Butyl-3-methylimidizolium chloride and tributylethylphosphonium diethylphosphate) were found to readily dissolve PVOH. More importantly, we have demonstrated that these solvents can be used as inert reaction media for PVOH modification. Both ionic liquids were found to facilitate the quantitative esterification of PVOH, while only the phosphonium ionic liquid supports the quantitative urethanation of the polymer. In an attempt to tune the surface properties of ionic liquid/polymer solutions, PVOH was also partially esterified with low surface energy substituents. Both surface tension and surface composition of the ionic liquid/polymer solutions can be manipulated by the stoichiometric addition of low surface energy acid chlorides. This work on the modification of PVOH can be directly applied to the modification of polysaccharides such as cellulose which could have important implications from a sustainability and energy standpoint.
NASA Astrophysics Data System (ADS)
Won, Lee Ji; Kim, Jae Hong; Thogiti, Suresh
2018-05-01
A novel polymer blend electrolyte for dye-sensitized solar cells (DSSCs) was synthesized by quasi-solidifying a liquid-based electrolyte containing an iodide/triiodide redox couple and supporting salts with a mixture of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and indigenous hydroxypropyl methyl cellulose (HPMC). A high ionic conductivity of 8.8 × 10-4 S cm-1 was achieved after introducing 5 wt% of HPMC with respect to the weight of PVDH-HFP. DSSCs were fabricated using gel polymer blend electrolytes, and the J-V characteristics of the fabricated devices were analyzed. Under optimal conditions, the photovoltaic conversion efficiency of cells with the novel HPMC-blended gel electrolyte (5.34%) was significantly greater than that of cells without HPMC (3.97%).
Carbon Redox-Polymer-Gel Hybrid Supercapacitors
Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.
2016-01-01
Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470
Diddens, Diddo; Heuer, Andreas
2014-01-30
We present an extensive molecular dynamics (MD) simulation study of the lithium ion transport in ternary polymer electrolytes consisting of poly(ethylene oxide) (PEO), lithium-bis(trifluoromethane)sulfonimide (LiTFSI), and the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide (PYR13TFSI). In particular, we focus on two different strategies by which the ternary electrolytes can be devised, namely by (a) adding the ionic liquid to PEO20LiTFSI and (b) substituting the PEO chains in PEO20LiTFSI by the ionic liquid. To grasp the changes of the overall lithium transport mechanism, we employ an analytical, Rouse-based cation transport model (Maitra et al. Phys. Rev. Lett. 2007, 98, 227802), which has originally been devised for binary PEO-based electrolytes. This model distinguishes three different microscopic transport mechanisms, each quantified by an individual time scale. In the course of our analysis, we extend this mathematical description to account for an entirely new transport mechanism, namely, the TFSI-supported diffusion of lithium ions decoupled from the PEO chains, which emerges for certain stoichiometries. We find that the segmental mobility plays a decisive role in PEO-based polymer electrolytes. That is, whereas the addition of the ionic liquid to PEO20LiTFSI plasticizes the polymer network and thus also increases the lithium diffusion, the amount of free, mobile ether oxygens reduces when substituting the PEO chains by the ionic liquid, which compensates the plasticizing effect. In total, our observations allow us to formulate some general principles about the lithium ion transport mechanism in ternary polymer electrolytes. Moreover, our insights also shed light on recent experimental observations (Joost et al. Electrochim. Acta 2012, 86, 330).
Fan, Lidan; Wang, Mengyue; Zhang, Zhen; Qin, Gang; Hu, Xiaoyi; Chen, Qiang
2018-04-26
Natural bamboo charcoal (BC) powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA)-based alkaline solid polymer electrolyte (ASPE) by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm) distributed inside and on the surface of the membranes, indicating a three-dimension network formed in the polymer framework. The ionic conductivity was measured by the alternating-current (AC) impedance method, and the highest conductivity value of 6.63 × 10 −2 S·cm −1 was obtained with 16 wt % of BC content and m KOH : m PVA = 2:1.5 at 30 °C. The contents of BC and KOH could significantly influence the conductivity. The temperature dependence of the bulk electrical conductivity displayed a combination of Arrhenius nature, and the activation energy for the ion in polymer electrolyte has been calculated. The electrochemical stability window of the electrolyte membrane was over 1.6 V. The thermogravimetric analysis curves showed that the degradation temperatures of PVA-BC-KOH ASPE membranes shifted toward higher with adding BC. A simple nickel-hydrogen battery containing PVA-BC-KOH electrolyte membrane was assembled with a maximum discharge capacity of 193 mAh·g −1 .
Organic transistors making use of room temperature ionic liquids as gating medium
NASA Astrophysics Data System (ADS)
Hoyos, Jonathan Javier Sayago
The ability to couple ionic and electronic transport in organic transistors, based on pi conjugated organic materials for the transistor channel, can be particularly interesting to achieve low voltage transistor operation, i.e. below 1 V. The operation voltage in typical organic transistors based on conventional dielectrics (200 nm thick SiO2) is commonly higher than 10 V. Electrolyte-gated (EG) transistors, i.e. employing an electrolyte as the gating medium, permit current modulations of several orders of magnitude at relatively low gate voltages thanks to the exceptionally high capacitance at the electrolyte/transistor channel interface, in turn due to the low thickness (ca. 3 nm) of the electrical double layers forming at the electrolyte/semiconductor interface. Electrolytes based on room temperature ionic liquids (RTILs) are promising in EG transistor applications for their high electrochemical stability and good ionic conductivity. The main motivation behind this work is to achieve low voltage operation in organic transistors by making use of RTILs as gating medium. First we demonstrate the importance of the gate electrode material in the EG transistor performance. The use of high surface area carbon gate electrodes limits undesirable electrochemical processes and renders unnecessary the presence of a reference electrode to monitor the channel potential. This was demonstrated using activated carbon as gate electrode, the electronic conducting polymer MEH-PPV, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] channel material, and the ionic liquid [EMIM][TFSI] (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), as gating medium. Using high surface area gate electrodes resulted in sub-1 V operation and charge carrier mobilities of (1.0 +/- 0.5) x 10-2 cm2V -1s-1. A challenge in the field of EG transistors is to decrease their response time, a consequence of the slow ion redistribution in the transistor channel upon application of electric biases. We systematically investigated EG transistors employing RTILs belonging to the same family, i.e. based on a common anion and different cations. The transistor characteristics showed a limited cation influence in establishing the p-type doping of the conducting polymer. Interestingly, we observed that the transistor response time depends on at least two processes: the redistribution of ions from the electrolyte into the transistor channel, affecting the gate-source current (I gs); and the redistribution of charges in the transistor channel, affecting the drain-source current (Ids), as a function of time. The two processes have different rates, with the latter being the slowest. Incorporating propylene carbonate in the electrolyte proved to be an effective solution to increase the ionic conductivity, to lower the viscosity and, consequently, to reduce the transistor response time. Finally, we were able to demonstrate a multifunctional device integrating the transistor logic function with that of energy storage in a supercapacitor: the TransCap. The polymer/electrolyte/carbon vertical stacking of the EG transistor features the cell configuration of a hybrid supercapacitor. Supercapacitors are high specific power systems that, for their ability to store/deliver charge within short times may outperform batteries in applications having high power demand. When the TransCap is ON (open transistor channel), the polymer and the carbon gate electrodes store charge (Q) at a given Vgs, hence the stored energy equals Q˙V gs. When the TransCap is switched OFF, the channel and the gate are discharged and the energy can be delivered back to power other electronic components. EG transistors, making use of activated carbon as gate electrode and different RTILs as well as RTIL solvent mixtures as electrolyte gating medium, are interesting towards low voltage printable electronics. The high capacitance at the interface between the electrolyte and the transistor channel enables energy storage within the EG transistor architecture.
Thermal modeling of the lithium/polymer battery
NASA Astrophysics Data System (ADS)
Pals, C. R.
1994-10-01
Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.
ENZYMATIC POLYMERIZATION OF PHENOLS IN ROOM TEMPERATURE IONIC LIQUIDS
Eker, Bilge; Zagorevski, Dmitri; Zhu, Guangyu; Linhardt, Robert J.; Dordick, Jonathan S.
2009-01-01
Soybean peroxidase (SBP) was used to catalyze the polymerization of phenols in room-temperature ionic liquids (RTILs). Phenolic polymers with number average molecular weights ranging from 1200 to 4100 D were obtained depending on the composition of the reaction medium and the nature of the phenol. Specifically, SBP was highly active in methylimidazolium-containing RTILs, including 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(BF4)), and 1-butyl-3-methylpyridinium tetrafluoroborate (BMPy(BF4)) with the ionic liquid content as high as 90% (v/v); the balance being aqueous buffer. Gel permeation chromatography and MALDI-TOF analysis indicated that higher molecular weight polymers can be synthesized in the presence of higher RTIL concentrations, with selective control over polymer size achieved by varying the RTIL concentration. The resulting polyphenols exhibited high thermostability and possessed thermosetting properties. PMID:20161409
Electronic and Ionic Transport in Processable Conducting Polymers
1990-04-10
Multiangle laser light scanting molecular weight GPC studies of a number of different samples of poly(3-octylhiophenc) has shown a’variation from...photochemistry at chemically modified electrodes offers a powerful ro ute to catalyst generation at, the surface.( 0!" 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT...unsymmetric molecules. Oxidative polymerization has been accomplished using both chemical (FeC13) and electrochemical methods. In the case of the 2
Zheng, Qi; Ma, Lin; Khurana, Rachna
2016-01-01
Lithium dendrite growth is a fundamental problem that precludes the practical use of lithium metal batteries. Solid polymer electrolytes (SPEs) have been widely studied to resist the growth of lithium dendrites but the underlying mechanisms are still unclear. Most SPEs sacrifice high ionic conductivities for increased dendrite suppression performance by using components with high mechanical stiffness. We report a class of cross-linked hydrocarbon/poly(ethylene oxide) SPEs with both high ionic conductivities (approaching 1 × 10–3 S cm–1 at 25 °C) and superior dendrite suppression characteristics. A systematic structure–property study shows that the crystallinity of the hydrocarbon backbones plays a key role in regulating size and morphology of lithium dendrites, as well as the ability to suppress their growth. PMID:28451125
A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
NASA Astrophysics Data System (ADS)
Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.
2015-12-01
Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Feng, Jiwen
2017-01-01
Abstract It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self‐catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte (C‐PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 8.9 × 10−5 S cm−1 at ambient temperature. Moreover, the LiFePO4/C‐PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self‐catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes. PMID:29201612
A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.
Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A
2015-12-04
Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.
A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.
2015-01-01
Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries. PMID:26634644
NASA Astrophysics Data System (ADS)
Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon
2009-07-01
To develop artificial muscles with improved performance, a novel ionic polymer-metal composite (IPMC) actuator was developed by employing the newly-synthesized ionic networking film of poly (styrene-alt-maleimide) (PSMI)- incorporated poly (vinylidene fluoride) (PVDF). Scanning electron microscope and transmission electron microscopy revealed that much smaller and more uniform nano-sized platinum particles were formed on the surfaces of the film as well as within its polymer matrix after the electroless-plating process. Fourier transform infrared results suggested that no hydrolysis occurred for the as-prepared film actuator before and after the exposure to the elevated PH solutions at 25°C for 48h. The new actuator showed much larger tip displacement than that of a Nafion-based counterpart under the applied electrical stimulus, and overcame the back relaxation of the traditional IPMC actuator under the constant voltage. The current actuator was operated over 6.5h at high-frequency sinusoidal excitation, and its tip displacement was still comparable to that of the referenced Nafion actuator when the test was terminated. The excellent electromechanical performance is due to the inherent large ionic-exchange capacity and the unique hydrophilic nano-channels of the ionic networking film. Furthermore, the working principle of the developed IPMC actuator is thought to be based on a combination of piezoelectricity and ionic transport. The film of PSMI-incorporated PVDF has some advantages over the most widely-used Nafion-based one by diversifying niche applications in biomimetic motion, and the present study is believed to open a new avenue for the design and fabrication of the electro-active polymer film with unique functional properties.
NASA Astrophysics Data System (ADS)
Kizewski, Jamie Peter; Mudri, Nurul H.; Varcoe, John R.
2013-08-01
The application of alkaline anion-exchange membranes (AAEM) in solid alkaline fuel cells is growing in prominence mainly due to enhanced tolerance to carbon dioxide, compared to alkaline fuel cells containing aqueous electrolytes, and the potential for using non precious metal catalysts. Radiation grafting is a common methodology for the production of functional polymers and membranes. This statistical study examines the synthesis of radiation grafted AAEMs that are formed from electron beam irradiated poly(ethylene-co-tetrafluoroethylene), EB-ETFE. It is shown that EB-ETFE can be cold stored for at least 16 months and still be used to produce ionically conductive AAEMs. The limitations of routine measurements of properties, such as dimensional increases, ion-exchange capacity, water uptakes and ionic conductivities, are also highlighted.
Bocharova, V.; Wojnarowska, Z.; Cao, Peng-Fei; ...
2017-11-28
Polymerized ionic liquids (PolyILs) are promising candidates for a wide range of technological applications due to their single ion conductivity and good mechanical properties. Tuning the glass transition temperature (T g) in these materials constitutes a major strategy to improve room temperature conductivity while controlling their mechanical properties. In this paper, we show experimental and simulation results demonstrating that in these materials T g does not follow a universal scaling behavior with the volume of the structural units V m (including monomer and counterion). Instead, T g is significantly influenced by the chain flexibility and polymer dielectric constant. We proposemore » a simplified empirical model that includes the electrostatic interactions and chain flexibility to describe T g in PolyILs. Finally, our model enables design of new functional PolyILs with the desired T g.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bocharova, V.; Wojnarowska, Z.; Cao, Peng-Fei
Polymerized ionic liquids (PolyILs) are promising candidates for a wide range of technological applications due to their single ion conductivity and good mechanical properties. Tuning the glass transition temperature (T g) in these materials constitutes a major strategy to improve room temperature conductivity while controlling their mechanical properties. In this paper, we show experimental and simulation results demonstrating that in these materials T g does not follow a universal scaling behavior with the volume of the structural units V m (including monomer and counterion). Instead, T g is significantly influenced by the chain flexibility and polymer dielectric constant. We proposemore » a simplified empirical model that includes the electrostatic interactions and chain flexibility to describe T g in PolyILs. Finally, our model enables design of new functional PolyILs with the desired T g.« less
Electrochemical Impedance Analysis of a PEDOT:PSS-Based Textile Energy Storage Device
Gokceoren, Argun Talat; Odhiambo, Sheilla Atieno; De Mey, Gilbert; Hertleer, Carla; Van Langenhove, Lieva
2017-01-01
A textile-based energy storage device with electroactive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)) polymer functioning as a solid-state polyelectrolyte has been developed. The device was fabricated on textile fabric with two plies of stainless-steel electroconductive yarn as the electrodes. In this study, cyclic voltammetry and electrochemical impedance analysis were used to investigate ionic and electronic activities in the bulk of PEDOT:PSS and at its interfaces with stainless steel yarn electrodes. The complex behavior of ionic and electronic origins was observed in the interfacial region between the conductive polymer and the electrodes. The migration and diffusion of the ions involved were confirmed by the presence of the Warburg element with a phase shift of 45° (n = 0.5). Two different equivalent circuit models were found by simulating the model with the experimental results: (QR)(QR)(QR) for uncharged and (QR)(QR)(Q(RW)) for charged samples. The analyses also showed that the further the distance between electrodes, the lower the capacitance of the cell. The distribution of polymer on the cell surface also played important role to change the capacitance of the device. The results of this work may lead to a better understanding of the mechanism and how to improve the performance of the device. PMID:29283427
Ionic Liquids for Advanced Materials
2008-12-01
optical clarity to completely opacity with increased amounts of ionic liquid . This transition was not previously observed in Nafion ® membranes swollen...1 IONIC LIQUIDS FOR ADVANCED MATERIALS Timothy E. Long, Sean M. Ramirez, Randy Heflin, Harry W. Gibson, Louis A. Madsen, Donald J. Leo, Nakhiah...is to develop a micromechanical model for the electrochemomechanical transduction mechanisms in newly synthesized ionic liquid polymers in order to