[Diagnostic Significance of BAT in Anaphylaxis to Non-ionic Contrast Media].
Zhang, Hao-yue; Xu, Su-jun; Tang, Xiao-xian; Niu, Ji-jun; Guo, Xiang-jie; Gao, Cai-rong
2015-06-01
To investigate the diagnostic significance of basophil activation test (BAT) in anaphylaxis to non-ionic contrast media through testing the content of CD63, mast cell-carboxypeptidase A3 (MC-CPA3), and terminal complement complex SC5b-9 of the individuals by testing their levels in the normal immune group and the anaphylaxis groups to β-lactam drugs and non -ionic contrast media. The CD63 expression of basophilic granulocyte in blood was detected by flow cytometry. The levels of MC-CPA3 in blood serum and SC5b-9 in blood plasma were detected by ELISA. The CD63 expression of basophilic granulocyte in blood, the levels of MC-CPA3 and SC5b-9 of anaphylaxis to non-ionic contrast media and β-lactam drugs were significantly higher than that in normal immune group (P < 0.05). There is activation of basophilic granulocytes, mast cells and complement system in anaphylaxis to non-ionic contrast media. BAT can be used to diagnose the anaphylaxis to non-ionic contrast media.
Influence of MRI contrast media on histamine release from mast cells.
Kun, Tomasz; Jakubowski, Lucjusz
2012-07-01
Mast cells, owing to diversity of secreted mediators, play a crucial role in the regulation of inflammatory response. Together with basophils, mast cells constitute a central pathogenetic element of anaphylactic (IgE-dependent) and anaphylactoid (IgE-independent) reactions. In severe cases, generalized degranulation of mast cells may cause symptoms of anaphylactic shock. The influence of the classical, iodine-based contrast media on mastocyte degranulation has been fully described. Our objective was to determine the influence of the gadolinium-based MRI contrast media on histamine release from mast cells and to compare the activity of ionic and non-ionic preparations of contrast media. To determine the intensity of mast cell degranulation, we used an experimental model based on mastocytes isolated from rat peritoneal fluid. Purified suspensions of mast cells were incubated with various concentrations of Gd-DTPA and Gd-DTPA-BMA, and solutions of PEG 600 which served as a non-toxic osmotic stimulus. The intensity of mast cell activation was presented as mean percentage of histamine released from cells after incubation. The obtained results demonstrate that both ionic and non-ionic preparations of the MRI contrast media are able to induce mast cell degranulation in vitro. It was also proved that the non-ionic MRI contrast media stimulate mast cells markedly more weakly than ionic contrast media at identical concentration. The aforementioned results may suggest a more profitable safety profile of the non-ionic contrast preparations. We may also conclude that triggering of mast cell degranulation after incubation with the solutions of MRI contrast media results from non-specific osmotic stimulation and direct toxicity of free ionic residues.
Torsten Almén (1931-2016): the father of non-ionic iodine contrast media.
Nyman, Ulf; Ekberg, Olle; Aspelin, Peter
2016-09-01
The Swedish radiologist Torsten Almén is the first clinical radiologist ever to have made a fundamental contribution to intravascular contrast medium design, the development of non-ionic contrast media. He became emotionally triggered by the patients' severe pain each time he injected the ionic "high-osmolar" contrast media when performing peripheral arteriographies in the early 1960s. One day he got a flash of genius that combined the observation of pain, a pathophysiological theory and how to eliminate it with suitable contrast media chemistry. After self-studies in chemistry he developed the concept of iodine contrast media not dissociating into ions in solution to reduce their osmolality and even reach plasma isotonicity. He offered several pharmaceutical companies his concept of mono- and polymeric non-ionic agents but without response, since it was considered against the chemical laws of that time. Contrast media constructed as salts and dissociating into ions in solution was regarded an absolute necessity to achieve high enough water solubility and concentration for diagnostic purposes. Finally a small Norwegian company, Nyegaard & Co., took up his idea 1968 and together they developed the essentially painless "low-osmolar" monomeric non-ionic metrizamide (Amipaque) released in 1974 and iohexol (Omipaque) in 1982 followed by the "iso-osmolar" dimeric non-ionic iodixanol (Visipaque) released in 1993. This has implied a profound paradigm shift with regard to reduction of both hypertonic and chemotoxic side effects, which have been a prerequisite for the today's widespread use of contrast medium-enhanced CT and advanced endovascular interventional techniques even in fragile patients. © The Foundation Acta Radiologica 2016.
Deftereos, Spyridon; Giannopoulos, Georgios; Kossyvakis, Charalampos; Raisakis, Konstantinos; Kaoukis, Andreas; Driva, Metaxia; Ntzouvara, Olga; Panagopoulou, Vasiliki; Rentoukas, Ilias; Nikas, Dimitrios J; Pyrgakis, Vlasios; Alpert, Martin A
2009-09-01
The effects of radiographic contrast media on markers of complement activation and apoptosis in patients with chronic coronary artery disease (CAD) are unknown. The purpose of this study was to assess the comparative effects of ionic high-osmolar and non-ionic iso-osmolar radiographic contrast media on plasma markers of complement activation and apoptosis in patients with chronic CAD undergoing coronary angiography. Forty-four patients undergoing coronary angiography for chronic CAD were randomly assigned to receive the ionic high-osmolar radiographic contrast agent diatrizoate (Group A), or the non-ionic iso-osmolar contrast agent iodixanol (Group B) during angiography. Complement component 5 (C5a) and apoptotic markers sFas and sFasL were measured just prior to angiography and 1 hour after completion of angiography. Comparison of mean pre- and post-angiography plasma marker levels showed significantly greater increases in plasma levels in Group A than in Group B of C5a (29.30 +/- 5.45 ng/ml for Group A and 0.47 +/- 0.70 ng/ml for Group B (p < 0.00001), sFas (2.36 +/- 1.63 ng/ml for Group A and 0.23 +/- 0.90 ng/ml for Group B (p < 0.00001) and sFasL (14.00 +/- 5.41 pg/ml for Group A and 0.01 +/- 1.00 pg/ml for Group B (p < 0.00001). The results suggest that in patients with chronic CAD, the use of ionic high-osmolar radiographic contrast media during coronary angiography is associated with a more robust inflammatory and apoptotic milieu than that associated with the use of non-ionic iso-osmolar radiographic contrast media.
Fixed drug eruption associated with intravenous contrast media: report in a woman receiving iohexol.
Wright, Natalie A; Cohen, Philip R
2011-07-01
Fixed drug eruption, a medication-associated mucocutaneous reaction, rarely presents as a delayed adverse reaction to intravenous non-ionic contrast media. We describe a 57-year-old woman with a history of metastatic renal cell carcinoma who repeatedly developed a sharply demarcated, erythematous patch on her left breast after receiving the iodinated non-ionic contrast media iohexol for staging computed tomography scans. Recurrent fixed drug eruption may be avoided by using another contrast medium. Prophylactic treatment with systemic corticosteroids may prevent repeated fixed drug eruption if an alternative contrast agent cannot be used.
Life-Threatening Thrombocytopenia Following Intravenous Contrast Media Infusion
Kim, Minjeong; Park, Jisun
2018-01-01
Radiocontrast media-induced acute severe thrombocytopenia is a very rare complication and potentially life-threatening. Here, we report the case of a 63-year-old male patient with severe acute thrombocytopenia following first exposure to intravenous non-ionic contrast media without immediate allergic reactions. His platelet count dropped from 107000/µL to 2000/µL after six hours of radiocontrast infusion. After administration of corticosteroid and transfusion of platelet concentrates, the platelet count returned gradually to normal within 5 days. To the best of our knowledge, non-ionic contrast media-induced isolated acute severe thrombocytopenia following no signs or symptoms of immediate allergic reaction has never been described. PMID:29214792
Life-Threatening Thrombocytopenia Following Intravenous Contrast Media Infusion.
Park, Mihwa; Kim, Minjeong; Park, Jisun; Cho, Jinhyun
2018-01-01
Radiocontrast media-induced acute severe thrombocytopenia is a very rare complication and potentially life-threatening. Here, we report the case of a 63-year-old male patient with severe acute thrombocytopenia following first exposure to intravenous non-ionic contrast media without immediate allergic reactions. His platelet count dropped from 107000/μL to 2000/μL after six hours of radiocontrast infusion. After administration of corticosteroid and transfusion of platelet concentrates, the platelet count returned gradually to normal within 5 days. To the best of our knowledge, non-ionic contrast media-induced isolated acute severe thrombocytopenia following no signs or symptoms of immediate allergic reaction has never been described. © Copyright: Yonsei University College of Medicine 2018.
Juergens, Craig P; Khaing, Aye Mi; McIntyre, Geraldine J; Leung, Dominic Y C; Lo, Sidney T H; Fernandes, Clyne; Hopkins, Andrew P
2005-09-01
Due to perceived advantages in the use of non-ionic contrast agents for diagnostic angiography and ionic agents for percutaneous coronary intervention (PCI), patients often receive various combinations of both types of agents. To assess potential adverse effects of non-ionic and ionic contrast media when used together or separately during percutaneous coronary intervention. We retrospectively evaluated the outcomes of 532 patients undergoing percutaneous coronary intervention in our institution. Patients were divided into two groups: those that underwent diagnostic angiography and "follow on" PCI; and those that underwent "planned" PCI. The groups were subdivided on the basis of the use of the ionic agent ioxaglate or the non-ionic agent iopromide during PCI. The frequency of allergic reactions and major adverse cardiac events (MACE) were noted. With respect to the "follow on" group, allergic reactions occurred in 9 of 150 patients (6.0%) who received the combination of ioxaglate and iopromide versus 1 of 93 (1.1%) who only received iopromide (p=0.094). There was no difference with respect to MACE [6 (4.0%) ioxaglate and iopromide versus 4 (4.3%) iopromide alone, p=1.00]. In the "planned" group, 7 of 165 patients (4.2%) receiving ioxaglate had an allergic reaction as opposed 0.0% (0 of 124 patients) in the iopromide group (p=0.021). All contrast reactions were mild. The incidence of a MACE was similar in both groups [1 (0.6%) ioxaglate versus 2 (1.6%) iopromide, p=0.579]. The incidence of allergic reactions was similar if ioxaglate was used alone or in combination with iopromide (p=0.478). Whilst combining ionic and non-ionic contrast agents in the same procedure was not associated with any more adverse reactions than using an ionic contrast agent alone, the ionic contrast agent ioxaglate was associated with the majority of allergic reactions. With respect to choice of contrast agent, using the non-ionic agent iopromide alone for coronary intervention is associated with the lowest risk of an adverse event.
Which iodinated contrast media is the least cytotoxic to human disc cells?
Kim, Kyung-Hyun; Park, Jeong-Yoon; Park, Hyo-Suk; Kuh, Sung-Uk; Chin, Dong-Kyu; Kim, Keun-Su; Cho, Yong-Eun
2015-05-01
Iodinated contrast media (CM) is commonly used for various intradiscal injections such as in discography and endoscopic spinal surgery. However, CM has been shown to be toxic to renal tissue due to its ionic strength and osmolarity and as a result of iodine-induced cytotoxicity, which has raised concern over whether there are similar negative effects on disc cells. This in vitro study was designed to identify the least cytotoxic iodinated CM to the human disc cell among four different physiochemical iodinated contrast dyes. In vitro laboratory study. Intervertebral disc tissue was obtained by discectomy from a total of 10 lumbar disc patients undergoing surgery and disc cells were isolated. The human disc cells were grown in 3D alginate bead culture with 0, 0.1, 10, and 100 mg/mL CM solutions (ionic dimer, ionic monomer, non-ionic dimer, and non-ionic monomer) and mannitol as a control for 2 days. The living cells were analyzed with trypan blue staining. Fluorescence-activated cell sorting analysis was performed using Annexin V and propidium iodide (PI) and 3D alginate bead immunostaining to identify live, apoptotic, and necrotic cells. Human disc cell death was time- and dose-dependent in response to CM and more necrosis was observed than apoptosis. In addition, non-ionic dimeric CM (iodixanol) showed the least toxic effect on human disc cells, followed by non-ionic monomeric (iopromide), ionic dimeric (ioxaglate), and ionic monomeric CM (ioxithalamate). Contrast media is cytotoxic to human disc cells in a dose- and time-dependent manner. This in vitro study revealed that, among four different CM preparations, non-ionic dimeric CM is the least detrimental to human disc cell viability. Careful attention should be paid to the type of CM chosen for discography and endoscopic spinal surgery. It is also necessary to investigate the detrimental effects of CM on disc cells and disc degeneration in further in vivo studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Non-ionic iodinated contrast media related immediate reactions: A mechanism study of 27 patients.
Zhai, Liqin; Guo, Xiangjie; Zhang, Haoyue; Jin, Qianqian; Zeng, Qiang; Tang, Xiaoxian; Gao, Cairong
2017-01-01
The underlying mechanism of non-ionic iodinated contrast media-related immediate reactions was evaluated in this study. Patients presenting at least grade II immediate reactions after non-ionic iodinated contrast media injection were enrolled. Basophil activation was evaluated by flow cytometry. The plasma concentration of human terminal complement complex SC5b-9, as well as concentrations of serum chymase, tryptase, human mast cell carboxypeptidase A3, human prostaglandin D2, and total IgE were measured by enzyme-linked immunosorbent assay. The basophil activation percentage was significantly higher in the study group than in the control group (17.94±21.06% vs 3.45±1.49%). The plasma concentration of human terminal complement complex SC5b-9 and concentrations of serum chymase, human mast cell carboxypeptidase A3, prostaglandin D2, tryptase, and total IgE were also significantly increased (236.99±318.21 vs 49.70±30.41ng/mL, 0.41±0.49 vs 0.09±0.06ng/mL, 1.17±0.67 vs 0.30±0.17ng/mL, 203.52±137.27 vs 102.28±48.72pg/mL, 3.81±0.22 vs 2.70±0.16ng/mL, 102.00±51.84 vs 19.97±2.75ng/mL, respectively). Both mast cells and basophils were activated in non-ionic iodinated contrast media to mediate immediate hypersensitivity, and mast cells may be involved. Different mechanisms, including IgE-dependent, complement-dependent, and direct membrane effects, contributed to mast cell and basophil activation. Individual patients may use a single or combined mechanism involving single or combined mast cells and basophils. Immediate reactions following non-ionic iodinated contrast media injection may be a mechanically heterogenous disease. Copyright © 2016. Published by Elsevier B.V.
CT contrast extravasation in the upper extremity: strategies for management.
Sbitany, Hani; Koltz, Peter F; Mays, Chester; Girotto, John A; Langstein, Howard N
2010-01-01
Extravasation of CT scan contrast media into upper extremity subcutaneous tissue is a relatively frequent complication of injection. Potential sequelae of extravasation include compartment syndrome, skin sloughing, and necrosis. Many institutions institute protocols requiring inpatient plastic surgery consultations immediately following extravasation injury to the upper extremity. We hypothesize that conversion to non-ionic contrast media for contrast CT studies has greatly reduced the incidence of severe extravasation injuries, and may alleviate the need for routine hand surgery consultations. Records from 102 consecutive CT contrast media extravasation injuries were identified. Data acquired from a single institution included type and amount of contrast extravasated, anatomic location, post-procedural clinical symptoms, whether consult was obtained, and final recommendations and outcome. In 102 consecutive cases, immediate surgical therapy was necessary in 0. Non-ionic medium was used in 94% of these cases, and ionic dye was used in 6%. Extravasation of less than 100 cc occurred in 90%, and only 10% were greater. Plastic surgery consultation was immediately obtained in 42% of cases. Factors prompting consultation included extravasation >30 cc, and the presence of erythema or induration. Trends for consultation remained without discernable pattern when patients were stratified by age, amount of extravasate, or anatomic location. Conservative management was recommended in all cases. This included elevation of the extremity, frequent pulse and sensation exams, local message, and temporary splinting. There were no secondary complications requiring surgical intervention. Extravasation of non-ionic CT contrast media appears to be innocuous and can be treated with conservative therapy. Plastic surgery consultation should be obtained when there are obvious signs of skin and soft tissue compromise or symptoms of compartment syndrome. Copyright 2010 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Niederalt, Christoph; Wendl, Thomas; Kuepfer, Lars; Claassen, Karina; Loosen, Roland; Willmann, Stefan; Lippert, Joerg; Schultze-Mosgau, Marcus; Winkler, Julia; Burghaus, Rolf; Bräutigam, Matthias; Pietsch, Hubertus; Lengsfeld, Philipp
2013-01-01
A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption. PMID:23355822
Compatibility of epirubicin-loaded DC bead™ with different non-ionic contrast media.
Sarakbi, Iman; Krämer, Irene
2016-12-01
The aim of this study was to determine the compatibility of epirubicin-loaded DC bead™ with different non-ionic contrast media over a period of seven days when stored light protected under refrigerated conditions. DC bead™ (2 ml) (Biocompatibles UK Ltd) of the bead size 70-150 µm ( = DC bead M1) or bead size 100-300 µm were loaded with 75 mg epirubicin powder formulation (Farmorubicin® dissolved in 3 ml water for injection to a concentration of 25 mg/ml) or 76 mg epirubicin injection solution (Epimedac® 2 mg/ml) within 2 h or 6 h, respectively. After removal of the excess solution, the epirubicin-loaded beads were mixed in polypropylene syringes with an equal volume (∼1.5 ml) of contrast media, i.e. Accupaque™ 300 (Nycomed Inc.), Imeron® 300 (Bracco S.p.A), Ultravist® 300 (Bayer Pharma AG), Visipaque™ 320 (GE Healthcare) and agitated in a controlled manner to get a homogenous suspension. Syringes with loaded beads in contrast media were stored protected from light under refrigeration (2-8℃). Compatibility was determined by measuring epirubicin concentrations in the suspensions in triplicate on day 0, 1, and 7. A reversed phase high-performance liquid chromatography assay with ultraviolet detection was utilized to analyze the concentration and purity of epirubicin. Mixing of epirubicin-loaded beads with different non-ionic contrast media released 0.1-0.5% of epirubicin over a period of 24 h, irrespectively, of the DC bead™ size or type of contrast media. No further elution or degradation was observed after seven days when the admixtures were stored protected from light under refrigeration. Compatibility of epirubicin-loaded DC bead™ with an equal volume of different contrast media in polypropylene syringes is given over a period of seven days. Due to a maximum elution of 0.1-0.5% of epirubicin from loaded DC bead™, admixtures with contrast media can be prepared in advance in centralized cytotoxic preparation units. Microbiological aspects have to be considered when determining the expiration date of the product. © The Author(s) 2015.
Sharma, Samin K
2008-05-01
Over 20 years have passed since the introduction of the tri-iodinated low-osmolar nonionic contrast agents such as iopamidol, iohexol, ioversol and iopromide. During this time, most cardiology practices have switched to these nonionic agents to avoid the nuisance side effects and cardiac adverse events associated with the older ionic contrast agents. Although the improved tolerability of the nonionic agents is generally attributed to their decreased osmolality (approximately half that of the older ionic contrast agents), in fact, these contrast agents also differ from the older agents in their ionicity, viscosity and direct chemotoxicity. The impact of these properties on safety, together with cost differences, should be considered when selecting a contrast agent.
Karkossa, Frank; Klein, Sandra
2017-10-01
The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.
Wild, C; Puig, S
2004-11-01
In the context of increasing economic pressure upon on hospital budgets, it is inevitable that central and standardized purchasing of pharmaceuticals must be considered. It was the aim of this assessment to analyse the many different non-ionic contrast media/CM products on the actual "clinical relevance of the differences" in order to give advice for a more concerted purchasing of CM. The assessment was commissioned by a large scale Austrian hospital cooperation; it can be regarded as the beginning of a broad strategy against the many new, only rarely innovative, but nevertheless patent-protected pharmaceuticals. Eight different non-ionic contrast media - used in routine care - were compared for their physico-chemical characteristics: osmolality, nephrotoxicity, viscosity, hydrophilicity and electric charge. In a systematic review 193 publications were analysed. The examined CM show similar pharmacokinetic and -dynamic attributes, and no differences of clinical relevance. An optimisation of purchasing pharmaceuticals by standardisation of the range of products takes place in the context of common strategies of producers and buying agents in marketing-economies. The strategies of the pharmaceutical industry (patent protection of me-too drugs, high-price-policy, extensive marketing of up to 40 % of revenue) and the counter-strategies of the central hospital purchasers (market concentration, drug commissions, institutional measures to disentangle interests) are presented - exemplified by contrast media - in this article.
Li, X; Chen, J; Zhang, L; Liu, H; Wang, S; Chen, X; Fang, J; Wang, S; Zhang, W
2015-03-01
To analyse the pattern and factors that influence the incidence of adverse drug reactions (ADRs) induced by non-ionic iodinated contrast media and to evaluate their safety profiles. Data from 109,255 cases who underwent enhanced CT examination from 1 January 2008 to 31 August 2013 were analysed. ADRs were classified according to the criteria issued by the American College of Radiology and the Chinese Society of Radiology. A total of 375 (0.34%) patients had ADRs, including 281 mild (0.26%); 80 moderate (0.07%); and 14 severe (0.01%) ADRs; no death was found. 302 (80.53%) of the ADRs occurred within 15 min after examination. Patients aged 40-49 years (204 cases, 0.43%; p < 0.01) or who underwent coronary CT angiography (93 cases, 0.61%; p < 0.01) were at a higher risk of ADRs. Female patients (180 cases, 0.40%; p < 0.01) or outpatients had significantly higher incidence rates of ADRs. The symptoms and signs of most of the ADRs were resolved spontaneously within 24 h after appropriate treatment without sequelae. The occurrence of ADRs is caused by the combined effects of multiple factors. The ADRs induced by non-ionic iodinated contrast media are mainly mild ones, while moderate or severe ADRs are relatively rare, suggesting that enhanced CT examination with non-ionic iodinated contrast media is highly safe, and severe adverse events will seldom occur under appropriate care. The study included 109,255 patients enrolled in various types of enhanced CT examinations, which could reflect ADR conditions and regulations in Chinese population accurately and reliably.
Li, X; Chen, J; Zhang, L; Liu, H; Wang, S; Chen, X; Fang, J; Wang, S
2015-01-01
Objective: To analyse the pattern and factors that influence the incidence of adverse drug reactions (ADRs) induced by non-ionic iodinated contrast media and to evaluate their safety profiles. Methods: Data from 109,255 cases who underwent enhanced CT examination from 1 January 2008 to 31 August 2013 were analysed. ADRs were classified according to the criteria issued by the American College of Radiology and the Chinese Society of Radiology. Results: A total of 375 (0.34%) patients had ADRs, including 281 mild (0.26%); 80 moderate (0.07%); and 14 severe (0.01%) ADRs; no death was found. 302 (80.53%) of the ADRs occurred within 15 min after examination. Patients aged 40–49 years (204 cases, 0.43%; p < 0.01) or who underwent coronary CT angiography (93 cases, 0.61%; p < 0.01) were at a higher risk of ADRs. Female patients (180 cases, 0.40%; p < 0.01) or outpatients had significantly higher incidence rates of ADRs. The symptoms and signs of most of the ADRs were resolved spontaneously within 24 h after appropriate treatment without sequelae. Conclusion: The occurrence of ADRs is caused by the combined effects of multiple factors. The ADRs induced by non-ionic iodinated contrast media are mainly mild ones, while moderate or severe ADRs are relatively rare, suggesting that enhanced CT examination with non-ionic iodinated contrast media is highly safe, and severe adverse events will seldom occur under appropriate care. Advances in knowledge: The study included 109,255 patients enrolled in various types of enhanced CT examinations, which could reflect ADR conditions and regulations in Chinese population accurately and reliably. PMID:25582519
Immediate reactions following iodinated contrast media injection: a study of 38 cases.
Dewachter, Pascale; Laroche, Dominique; Mouton-Faivre, Claudie; Bloch-Morot, Evelyne; Cercueil, Jean-Pierre; Metge, Liliane; Carette, Marie-France; Vergnaud, Marie-Claude; Clément, Olivier
2011-03-01
To investigate the pathomechanisms involved in cases of immediate hypersensitivity reactions occurring after the administration of iodinated contrast media. Patients having presented clinical signs of immediate hypersensitivity suggesting allergy after iodinated contrast medium were investigated. Histamine and tryptase concentrations were measured, and/or skin tests were performed. Patients with positive skin tests to the culprit contrast agent were classified as IgE-mediated allergic hypersensitivity (Group I) and patients with negative skin tests as non-allergic hypersensitivity (Group II). 38 patients were included. Most reactions appeared after non-ionic (n = 32). Reactions were more frequently severe following ionic than non-ionic (p = 0.014). Skin testing was not performed in 11 patients. Skin tests with the culprit contrast agent were negative in 26% of the patients (Group II, n = 7) whereas they were found positive with the contrast agent in 73% of the patients (Group I, n = 19). Latex-induced reaction was diagnosed in one patient, and was consequently excluded from the cohort. In Group I, the frequency of cross-reactivity with the other commercialized iodinated contrast media was low (7%). Cardiovascular signs were present in Group I (52.6%, n = 10), and absent in Group II (p = 0.023). Histamine and tryptase concentrations were higher in patients who had cardiovascular signs (p < 0.02). Immediate reactions with clinical signs suggesting allergy along with positive skin tests with the administered contrast agent confirm immediate allergic hypersensitivity (anaphylaxis) to this agent. Consequently, the culprit contrast agent should be definitely avoided as well as cross-reactive ICM in order to prevent further recurrences. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Lukasiewicz, A; Lebkowska, U; Galar, M
2012-01-01
Some of the adverse clinical effects of intravascular radiological contrast agents include the interference of these contrast media with normal hemostatic processes. The aim of this report was to investigate in vivo whether a non-ionic iodinated contrast agent possess prothrombotic or anticoagulant properties. Hemostatic parameters: vWF (von Willebrand factor), F1+2 (prothrombin fragments 1+2), TAT (thrombin-antithrombin complexes), D-Dimer, β-TG (beta-thromboglobulin) were measured in a group of 35 patients. Blood samples for laboratory investigations were collected before and 30 min after the administration of a iodine contrast agent. There was observed statistically highly significant contrast-induced increase in TAT and F1+2 (p = 0.005 and p = 0.008, respectively). D-Dimer increase and decrease of β-TG and vWF after contrast medium administration were non significant. The volume of contrast medium has no influence on the assessed hemostatic parameters, while the type of contrast medium and/or the route of the contrast administration may significantly affect hemostatic parameters. We found significant effects of non-ionic agents on hemostatic activation. These effects may be important for adverse reactions and for thromboembolic complications.
Wangsuphachart, S
1991-12-01
The cost-effectiveness of three alternative policies for the use of intravenous contrast media for urography and enhanced computerized tomography (CT) are analyzed. Alternative #1 is to use high osmolar contrast media (HOCM) in all patients, the historical policy. Alternative #2 is to replace it with low osmolar contrast media (LOCM) in all patients. Alternative #3 is to use LOCM only in the high risk patients. Data on the 6,242 patients who underwent intravenous urography and enhanced CT at the Department of Radiology, Chulalongkorn Hospital in 1989 were used. Both societal and hospital viewpoints were analyzed. The incremental cost-effectiveness (ICE) between #2 and #1 was 26,739 Baht (US$1,070) per healthy day saved (HDS), while the ICE between #3 and #1 was 12,057 Baht (US$482) per HDS. For fatal cases only, ICE between #2 and #1 was 35,111 Baht (US$1,404) per HDS, while the ICE between #3 and #1 was 18,266 Baht (US$731) per HDS. The incremental cost (IC) per patient was 2,341 Baht (US$94) and 681 Baht (US$27) respectively. For the hospital viewpoint the ICE between #2 and #1 was 13,744 (US$550) and between #3 and #1 was 6,127 Baht (US$245) per HDS. The IC per patient was 1,203 Baht (US$48) and 346 Baht (US$14), respectively. From the sensitivity analysis, #3 should be used if the LOCM price is reduced more than 75% (equal to 626 Baht or less) and more than 80% of the patients are able to pay for the contrast media.
Sakellariou, Sophia; Li, Wenguang; Paul, Manosh C; Roditi, Giles
2016-12-01
Iodinated contrast media (CM) are the most commonly used injectables in radiology today. A range of different media are commercially available, combining various physical and chemical characteristics (ionic state, osmolality, viscosity) and thus exhibiting distinct in vivo behaviour and safety profiles. In this paper, numerical simulations of blood flow with contrast media were conducted to investigate the effects of contrast viscosity on generated vessel wall shear stress and vessel wall pressure to elucidate any possible relation to extravasations. Five different types of contrast for Iodine fluxes ranging at 1.5-2.2gI/s were modelled through 18G and 20G cannulae placed in an ideal vein at two different orientation angles. Results demonstrate that the least viscous contrast media generate the least maximum wall shear stress as well as the lowest total pressure for the same flow rate. This supports the empirical clinical observations and hypothesis that more viscous contrast media are responsible for a higher percentage of contrast extravasations. In addition, results support the clinical hypothesis that a catheter tip directed obliquely to the vein wall always produces the highest maximum wall shear stress and total pressure due to impingement of the contrast jet on the vessel wall. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Contrast media use in the operating room.
Bickham, Peggy; Golembiewski, Julie
2010-04-01
Iodinated contrast media is frequently used in the OR, but often is not well understood by health care providers who are administering it. Although used for diagnosis rather than treatment, contrast media is classified as a drug by the FDA, and has indications, contraindications, adverse effects, drug interactions, disease interactions, and laboratory interference issues related to its use. Iodinated contrast media is classified according to osmolarity and ionicity, and these characteristics contribute to potential for adverse effects and choice of agent. Financial and safety concerns are factors to be considered when selecting an appropriate agent. Adverse effects can range from mild and self-limited to severe and life threatening; potentially the most serious of these are anaphylactoid reactions and contrast-induced acute renal failure. Knowledge of risk factors and preventive strategies is vital, as are issues related to substitution of gadolinium-based contrast, an off-label use. It is important for the perianesthesia nurse to become familiar with these commonly used imaging medications. Copyright 2010 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.
Contrast Media Extravasation in CT and MRI - A Literature Review and Strategies for Therapy.
Mandlik, Veronika; Prantl, Lukas; Schreyer, Andreas G
2018-06-18
Contrast extravasation events in daily radiological routine may lead to serious complications, especially during CT examinations. The resulting symptoms may vary from local pain up to skin ulcers, necrosis or even acute compartment syndrome.There are no uniformly accepted radiological guidelines or recommendations regarding detection and treatment of extravasation events and immanent complications in a timely manner. Systematic literature research considering the last 35 years via PubMed using search terms "contrast medium extravasation/paravasation". In the literature, there are conservative management approaches of contrast media extravasation without major evidence base, such as unguent dressings, cooling or splinting. This therapy is mostly symptomatic. Additionally, various invasive techniques are described. We discuss these techniques in the context of contemporary literature, such as the hyaluronidase Injection into the site of extravasation, suction/aspiration technique including flushing of the affected tissue areas and the squeezing technique. However, most citations lack scientific evidence: many articles include anecdotal enumerations, case studies or cite publications from the era, when ionic high osmolar contrast media was state-of-the-art. Besides, many authors derive their extravasation management from studies, where agents other than contrast media were investigated. After detailed literature review, we suggest early (plastic) surgical consultation when non-ionic, low-osmolar contrast medium extravasation is about 150 cc or more. In case of extravasation less than 150 cc but in presence of additional symptoms such as impaired perfusion or altered sensibility, the (plastic) surgeon should also be consulted instantly. We do not recommend any invasive first line therapy when contrast media extravasation is less than 150 cc and the patient presents no additional symptoms, besides swelling and local pain. Nevertheless continuous monitoring and accurate conservative management such as active cooling and elevation, splinting of the affected extremity are mandatory as early detection of critical symptoms helps to initiate prompt surgical intervention and avoid sequelae. · Morbidity after contrast media extravasation is extremely rare.. · Predicting sequelae after contrast extravasation is difficult at first sight.. · Treatments such as hyaluronidase injection, suction/aspiration, squeeze technique have been described.. · Surgical consultation is recommended for extravasation > 150 cc or when additional symptoms occur.. · Mandlik V, Prantl L, Schreyer AG. Contrast Media Extravasation in CT and MRI - A Literature Review and Strategies for Therapy. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0628-7095. © Georg Thieme Verlag KG Stuttgart · New York.
Ogawa, Masami; Kawaguchi, Yoshiaki; Kawashima, Yohei; Mizukami, Hajime; Maruno, Atsuko; Ito, Hiroyuki; Mine, Tetsuya
2013-09-20
Pancreatitis is the most common and serious complication of endoscopic retrograde cholangiopancreatography (ERCP). Several studies have compared contrast media (CM) with different osmolalities, but the results are conflicting. We conducted this study to clarify the difference between 2 CM used in ERCP. Five hundred and seventy-six patients were examined by using ERCP in our hospital during 2010. Out of these, 56 patients were enrolled in this study. We investigated the incidence of post ERCP pancreatitis (PEP) and hyperamylasemia. Serum amylase levels were compared in the 2 groups. Twenty-seven patients were treated with iodixanol and 29 with diatrizoate meglumine Na. The rate of PEP in the diatrizoate meglumine Na group and iodixanol group was 0% (0/29) and 7.4% (2/27), respectively (P = 0.228). The rate of hyperamylasemia was 10.3% (3/29) and 14.8% (4/27), respectively (P = 0.70). There were no significant differences between two groups for amylase levels pre-procedure (P = 0.082), 3 h post procedure (P = 0.744), or next morning (P = 0.265). There were no significant differences in the rates of PEP or hyperamylasemia between CMs in ERCP. We believe it is unnecessary to use the more expensive low osmolality CM in ERCP to prevent PEP.
Iohexol and diatrizoate: comparison in visceral arteriography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, A.; Hemingway, A.P.; Allison, D.J.
1985-05-01
Iohexol, a low osmolality, nonionic contrast medium, and diatrizoate, a conventional ionic contrast medium, were evaluated for patient tolerance during visceral arteriography. Almost all the procedures performed with iohexol were painless: most patients given this agent reported only a mild feeling of warmth. Diatrizoate produced some pain and a feeling of intense heat in most patients. Both media produced excellent radiographic results and no serious adverse reactions occurred.
Stacul, Fulvio; Bertolotto, Michele; Thomsen, Henrik S; Pozzato, Gabriele; Ugolini, Donatella; Bellin, Marie-France; Bongartz, Georg; Clement, Olivier; Heinz-Peer, Gertraud; van der Molen, Aart; Reimer, Peter; Webb, Judith A W
2018-02-01
Many radiologists and clinicians still consider multiple myeloma (MM) and monoclonal gammopathies (MG) a contraindication for using iodine-based contrast media. The ESUR Contrast Media Safety Committee performed a systematic review of the incidence of post-contrast acute kidney injury (PC-AKI) in these patients. A systematic search in Medline and Scopus databases was performed for renal function deterioration studies in patients with MM or MG following administration of iodine-based contrast media. Data collection and analysis were performed according to the PRISMA statement 2009. Eligibility criteria and methods of analysis were specified in advance. Cohort and case-control studies reporting changes in renal function were included. Thirteen studies were selected that reported 824 iodine-based contrast medium administrations in 642 patients with MM or MG, in which 12 unconfounded cases of PC-AKI were found (1.6 %). The majority of patients had intravenous urography with high osmolality ionic contrast media after preparatory dehydration and purgation. MM and MG alone are not risk factors for PC-AKI. However, the risk of PC-AKI may become significant in dehydrated patients with impaired renal function. Hypercalcaemia may increase the risk of kidney damage, and should be corrected before contrast medium administration. Assessment for Bence-Jones proteinuria is not necessary. • Monoclonal gammopathies including multiple myeloma are a large spectrum of disorders. • In monoclonal gammopathy with normal renal function, PC-AKI risk is not increased. • Renal function is often reduced in myeloma, increasing the risk of PC-AKI. • Correction of hypercalcaemia is necessary in myeloma before iodine-based contrast medium administration. • Bence-Jones proteinuria assessment in myeloma is unnecessary before iodine-based contrast medium administration.
Kim, S R; Lee, J H; Park, K H; Park, H J; Park, J W
2017-01-01
Low-osmolar non-ionic radiocontrast media (RCMs) are commonly used throughout hospitals. However, the incidence of immediate adverse drug reactions (ADRs) to various low-osmolar non-ionic RCMs is not well studied. We compared the incidence of immediate ADRs among different low-osmolar non-ionic RCMs used in computed tomography (CT). Severance Hospital has collected data for adverse reactions occurring in-hospital using an internally developed system. Using this data, we reviewed 1969 immediate ADRs from 286 087 RCM-contrasted CT examinations of 142 099 patients and compared the immediate ADRs of iobitridol, iohexol, iopamidol, and iopromide. We analysed the incidence of immediate ADRs to different RCMs, as well as the effect of single or multiple CT examinations per day. Iopromide showed the highest incidence of immediate ADRs (1.03%) and was followed by iopamidol (0.67%), iohexol (0.64%), and iobitridol (0.34%). In cases of anaphylaxis, iopromide also showed the highest incidence (0.041%), followed by iopamidol (0.023%), iohexol (0.018%), and iobitridol (0.012%). Risk of immediate ADR due to multiple CT examinations (1.19%) was significantly higher than the risk due to a single CT examination (0.63%). Risk of anaphylaxis was also higher for multiple CT examinations (0.052%) than for a single CT examination (0.020%). The incidence of immediate ADRs varied according to the low-osmolar non-ionic RCM used. Iopromide-induced immediate ADRs were more frequent, while iobitridol was associated with fewer immediate ADRs than other RCMs. Multiple CT examinations per day resulted in a higher incidence of immediate ADRs and anaphylaxis than a single CT examination. Clinicians should consider these risk differences of immediate ADRs when prescribing contrasted CT examinations. © 2016 The Authors. Clinical & Experimental Allergy Published by John Wiley & Sons Ltd.
Effects of contrast media on the hepato-pancreato-biliary system
Topcu, Omer; Kurt, Atilla; Nadir, Isilay; Arici, Sema; Koyuncu, Ayhan; Aydin, Cengiz
2009-01-01
AIM: To determine the effects of high osmolarity contrast media (HOCM) and iso-osmolar contrast media (CM) application, with or without pressure, on hepato-pancreato-biliary (HPB) system. METHODS: Sixty rats were divided into six equal groups as follows: Group 1: (0.9% NaCl, control), Group 2: (diatrizoate meglumine Na, ionic HOCM, Urographin®), Group 3: (iodixanol, iso-osmolar non-ionic CM, Visipaque®); each of which was applied without pressure, whereas the animals of the remaining three groups (1p, 2p, 3p) were subjected to the same CM with pressure. We performed a duodenal puncture and introduced a catheter into the ampulla. After the catheterization, 0.2 mL CM or 0.9% NaCl was injected with or without pressure. Blood samples were taken for biochemical evaluations. The histopathological examinations of liver, common bile duct, and pancreas were performed. RESULTS: There were no significant differences between the six groups for blood amylase, alanine aminotransferases, aspartate aminotransferases, bilirubin levels (P > 0.05). Alkaline phosphatase and γ glutamyl transaminase levels were higher (P < 0.05) in the Urographin® groups (2, 2p) than the Visipaque® groups (3, 3p), or control groups (1, 1p). Hepatocyte necrosis, portal area inflammation, and Kupffer’s cell hyperplasia were higher (P < 0.05) in the study groups than the control group. However, there were no significant differences (P > 0.05) between HOCM (2, 2p) and iso-osmolar CM (3, 3p) groups. Bile duct proliferation and regeneration in the Urographin® groups (2, 2p) were significantly higher (P < 0.05) than the Visipaque® groups (3, 3p) or the control groups (1, 1p). Although CM caused minor damage to the pancreas, there were no statistically significant differences (P > 0.05) between the groups. Application of the CM with pressure did not cause additional damage to the HPB system. CONCLUSION: Iso-osmolar, non-ionic CM could be more reliable than the ionic HOCM, whereas the application of pressure during the CM application had no effect on the HPB system. PMID:19824112
Piccotti, K; Guida, D; Carbonetti, F; Stefanetti, L; Macioce, A; Cremona, A; David, V
Comparison of diagnostic quality in hysterosalpingography between low and high-osmolality contrast media. We performed a retrospective evaluation of two cohorts of patients who underwent HSG using contrast media with different osmolarity: the first group ,47 patients, underwent hysterosalpingography in the period September 2011-December 2012 using Iopromide 370 mg/ml; the second group, 50 patients, underwent HSG from January 2013 to October 2013 using Iomeprol 400 mg/ml. Three radiologists, in consensus reading,, reviewed the radiographs by assessing the following four parameters: opacification of the uterine cavity, uterine profiles definition, Fallopian tubes visualization, contrast media spillage into peritoneum. A score-scale from 0 to 3 was assigned for each of the mentioned parameter (0 = minimum non-diagnostic exam, 1 = sufficient examination; 2 = good quality examination; maximum 3 = high quality images). We documented a statistically significant higher quality in displaying Fallopian tubes among patients studied through high osmolarity contrast medium (Iopromide 370 mg/ml) than what obtained through lower osmolarity contrast medium (Iomeprol 400 mg/ml). The use of high osmolarity contrast medium enabled better visualization of the tubes and a greater number of diagnoses of chronic aspecific salpigintis due to the increased osmolality and viscosity of Iomeprol 400 mg/ml. There were no significant differences between the two contrast agents in the evaluation of intra-uterine pathology and in the evaluation of the tubal patency.
Keyes, Samuel D; Gostling, Neil J; Cheung, Jessica H; Roose, Tiina; Sinclair, Ian; Marchant, Alan
2017-06-01
The use of in vivo X-ray microcomputed tomography (μCT) to study plant root systems has become routine, but is often hampered by poor contrast between roots, soil, soil water, and soil organic matter. In clinical radiology, imaging of poorly contrasting regions is frequently aided by the use of radio-opaque contrast media. In this study, we present evidence for the utility of iodinated contrast media (ICM) in the study of plant root systems using μCT. Different dilutions of an ionic and nonionic ICM (Gastrografin 370 and Niopam 300) were perfused into the aerial vasculature of juvenile pea plants via a leaf flap (Pisum sativum). The root systems were imaged via μCT, and a variety of image-processing approaches used to quantify and compare the magnitude of the contrast enhancement between different regions. Though the treatment did not appear to significantly aid extraction of full root system architectures from the surrounding soil, it did allow the xylem and phloem units of seminal roots and the vascular morphology within rhizobial nodules to be clearly visualized. The nonionic, low-osmolality contrast agent Niopam appeared to be well tolerated by the plant, whereas Gastrografin showed evidence of toxicity. In summary, the use of iodine-based contrast media allows usually poorly contrasting root structures to be visualized nondestructively using X-ray μCT. In particular, the vascular structures of roots and rhizobial nodules can be clearly visualized in situ.
Biocatalytic transformations in ionic liquids.
van Rantwijk, Fred; Madeira Lau, Rute; Sheldon, Roger A
2003-03-01
Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems.
Pandya, Bhavi; Chalhoub, Jean M; Parikh, Valay; Gaddam, Sainath; Spagnola, Jonathan; El-Sayegh, Suzanne; Bogin, Marc; Kandov, Ruben; Lafferty, James; Bangalore, Sripal
2017-02-01
Patients with chronic kidney disease (CKD) undergoing coronary angiography (CA), adequate hydration and minimizing volume of contrast media (CM) are class 1b recommendations for preventing contrast induced nephropathy (CIN). Current data are insufficient to justify specific recommendations about isoosmolar vs. low-osmolar contrast media by the ACCF/AHA/SCAI guidelines. Randomized trials comparing IOCM to LOCM in CKD stage 3 and above patients undergoing CA, and reporting incidence of CIN (defined by a rise in creatinine of 25% from baseline) were included in the analysis. The secondary outcome of the study was the incidence of serum creatinine increase by >1mg/dl. A total of 2839 patients were included in 10 trials, in which 1430 patients received IOCM and 1393 received LOCM. When compared to LOCM, IOCM was not associated with significant benefit in preventing CIN (OR=0.72, [CI: 0.50-1.04], P=0.08, I2=59%). Subgroup analysis revealed non-significant difference in incidence of CIN based on baseline use of N-acetylcystine (NAC), diabetes status, ejection fraction, and whether percutaneous coronary intervention vs coronary angiography alone was performed. The difference between IOCM and LOCM was further attenuated when restricted to studies with larger sample size (>250 patients) (OR=0.93; [CI: 0.66-1.30]) or when compared with non-ionic LOCM (OR=0.79, [CI: 0.52-1.21]). In patients with CKD stage 3 and above undergoing coronary angiography, use of IOCM showed overall non-significant difference in incidence of CIN compared to LOCM. The difference was further attenuated when IOCM was compared with non-ionic LOCM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The use of iohexol in pediatric urography: a comparative study with meglumine diatrizoate.
Bani, E; Federighi, F; Ghio, R; Marchitiello, M; Galigani, P; Palla, R
1985-01-01
In a prospective study the nephrotoxicity of iohexol, a new non-ionic contrast medium, was compared with meglumine diatrizoate. Plasma creatinine, BUN, creatinine clearance, urinalysis and the urinary excretion of N-acetyl glucosaminidase (NAG), gamma glutamyl transpeptidase (GGT) and muramidase (MU) were determined prior to and following intravenous pyelography. A significant rise in the enzyme excretion was observed in patients who received iohexol and diatrizoate. Statistical analysis failed to demonstrate any difference in nephrotoxicity between the two iodinated contrast media.
Ionic Liquids as Extraction Media for Metal Ions
NASA Astrophysics Data System (ADS)
Hirayama, Naoki
In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.
Rossi, C; Reginelli, A; D'Amora, M; Di Grezia, G; Mandato, Y; D'Andrea, A; Brunese, L; Grassi, R; Rotondi, A
2014-01-01
The purpose of the study is to examine the incidence of adverse reactions caused by non-ionic contrast media in selected patients after desensitization treatment and to evaluate the safety profile of organ iodine contrast media (i.c.m.) in a multistep prevention protocol. In a population of 2000 patients that had received a CT scan, 100 patients with moderate/high risk for adverse reactions against iodinated contrast agents followed a premedication protocol and all adverse reactions are reported and classified as mild, moderate or severe. 1.7 percent of the pre-treated patients reported a mild, immediate type reaction to iodine contrast; of these five patients with allergy 0.71 percent had received iomeprol, 0.35 percent received ioversol and 0.71 percent received iopromide. The incidence of adverse reactions was reported to be higher (4 out of 5 patients) among those that referred a history of hypersensitivity against iodinated i.c.m. Although intravenous contrast materials have greatly improved, especially in terms of their safety profile, they should not be administered if there isn't a clear or justified indication. In conclusion, even if we know that the majority of these reactions are idiosyncratic and unpredictable we propose, with the aim of improving our knowledge on this subject, a multicenter study, based on skin allergy tests (prick test, patch test, intradermal reaction) in selected patients that have had previous experiences of hypersensitivity against parenteral organ iodine contrast media.
From, Aaron M; Al Badarin, Firas J; McDonald, Furman S; Bartholmai, Brian J; Cha, Stephen S; Rihal, Charanjit S
2010-08-01
Contrast-induced nephropathy (CIN) is associated with significant morbidity and mortality. The objective of our meta-analysis was to assess the efficacy of iodixanol compared with low-osmolar contrast media (LOCM) for prevention of CIN. We searched MEDLINE, the Cochrane Central Register of Controlled Trials, and internet sources of cardiology trial results for individual and relevant reviews of randomized, controlled trials, for the terms contrast media, contrast nephropathy, renal failure, iodixanol, Visipaque, and low-osmolar contrast media. All studies reported an incidence rate of CIN for each study group; there was no restriction on the definition of CIN. There were no restrictions on journal type or patient population. Overall, 36 trials were identified for analysis of aggregated summary data on 7166 patients; 3672 patients received iodixanol and 3494 patients received LOCM. Overall, iodixanol showed no statistically significant reduction in CIN incidence below that observed with heterogeneous comparator agents (P=0.11). Analysis of patient subgroups revealed that there was a significant benefit of iodixanol when compared with iohexol alone (odds ratio, 0.25; 95% confidence interval, 0.11 to 0.55; P<0.001) but not when compared with LOCM other than iohexol or with other ionic dimers or among patients receiving intra-arterial contrast injections or among patients undergoing coronary angiography with or without percutaneous intervention. Analysis of aggregated summary data from multiple randomized, controlled trials of iodixanol against diverse LOCMs for heterogeneous procedures and definitions of CIN show an iodixanol-associated reduction that is suggestive but statistically nonsignificant.
Ionic Liquids as Quasihydrostatic Pressure Media for Diamond Anvil Cell Experiments
NASA Astrophysics Data System (ADS)
Mayorga, Sierra; Moldowan, Kaela; Dan, Ioana; Forster, Paul; Iota, Valentin
2012-02-01
Ionic liquids (ILs) are salts in which the ions are poorly coordinated to the point where the eutectic mixture remains liquid at room temperature. In general, ILs exhibit high chemical and thermal stability, have extended liquid regions in the pressure-temperature domain, and can be easily obtained. Commercial ionic liquids are relatively inexpensive and custom ionic solutions can be easily synthesized by mixing common reactants. These properties make ionic liquids attractive candidates for high-pressure media in Diamond Anvil Cell (DAC) experiments. In this presentation we explore the use of ionic liquids as DAS quasihydrostatic pressure media for pressures up to 50 GPa. As a measure of hydrostaticity we monitor the splitting and peak-widths of the R1 andR 2 fluorescence lines from small ruby chips (Al2O3 :Cr^3+) imbedded in the pressure medium. We present results on a series of commercially available ionic fluids against standard pressure media: methanol-ethanol mixtures, silicone oil, sodium chloride (NaCl) and noble gases (Ar, Ne, He).
Li, Xue; Liu, Heng; Zhao, Li; Liu, Junling; Cai, Li; Liu, Lei
2017-01-01
Objective: To determine the adverse drug reaction (ADR) profile of non-ionic iodinated contrast media in populations with underlying diseases and risk factors and to provide guidance for more safe and rational use of iodinated contrast media (ICMs) in the clinic. Methods: Data from 120,822 cases who underwent enhanced CT examination in our hospital from January 2014 to March 2016 were collected. A standardized case report form was used for data collection and analysis. Results: The incidence of ADRs was 0.4% and 0.44% in patients with and without underlying diseases, respectively (p = 0.378). Risk factor analysis revealed that patients with asthma had the highest incidence of ADRs, followed by patients with cardiac insufficiency and patients who were aged had the lowest incidence. There was a low incidence of ADRs in patients under metformin (0.36%) and β-adrenaline receptor antagonist (0.20%) medication. The incidence was the highest in patients with previous ADRs to ICMs (7.17%) and the lowest in those with a history of ICM usage but no previous reactions (0.32%). ADRs were more common in patients at high risk at a higher injection dose (≥100 ml; p < 0.01) and speed (≥5 ml s−1; p < 0.01). Conclusion: The incidence of ADRs was extremely low in patients regardless of underlying diseases. Some high-risk factors have certain correlations with the occurrence of ADRs. Particular attention should be given to patients at high risk when performing enhanced CT examination. Advances in knowledge: The correlation between various risk factors and underlying diseases and ADRs was comprehensively analyzed in a large-scale population. PMID:27928926
Li, Xue; Liu, Heng; Zhao, Li; Liu, Junling; Cai, Li; Liu, Lei; Zhang, Weiguo
2017-02-01
To determine the adverse drug reaction (ADR) profile of non-ionic iodinated contrast media in populations with underlying diseases and risk factors and to provide guidance for more safe and rational use of iodinated contrast media (ICMs) in the clinic. Data from 120,822 cases who underwent enhanced CT examination in our hospital from January 2014 to March 2016 were collected. A standardized case report form was used for data collection and analysis. The incidence of ADRs was 0.4% and 0.44% in patients with and without underlying diseases, respectively (p = 0.378). Risk factor analysis revealed that patients with asthma had the highest incidence of ADRs, followed by patients with cardiac insufficiency and patients who were aged had the lowest incidence. There was a low incidence of ADRs in patients under metformin (0.36%) and β-adrenaline receptor antagonist (0.20%) medication. The incidence was the highest in patients with previous ADRs to ICMs (7.17%) and the lowest in those with a history of ICM usage but no previous reactions (0.32%). ADRs were more common in patients at high risk at a higher injection dose (≥100 ml; p < 0.01) and speed (≥5 ml s -1 ; p < 0.01). The incidence of ADRs was extremely low in patients regardless of underlying diseases. Some high-risk factors have certain correlations with the occurrence of ADRs. Particular attention should be given to patients at high risk when performing enhanced CT examination. Advances in knowledge: The correlation between various risk factors and underlying diseases and ADRs was comprehensively analyzed in a large-scale population.
Khara, Dinesh Chandra; Kumar, Jaini Praveen; Mondal, Navendu; Samanta, Anunay
2013-05-02
Rotational dynamics of two dipolar solutes, 4-aminophthalimide (AP) and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), and a nonpolar solute, anthracene, have been studied in N-alkyl-N-methylmorpholinium (alkyl = ethyl, butyl, hexyl, and octyl) bis(trifluoromethansulfonyl)imide (Tf2N) ionic liquids as a function of temperature and excitation wavelength to probe the microheterogeneous nature of these ionic liquids, which are recently reported to be more structured than the imidazolium ionic liquids (Khara and Samanta, J. Phys. Chem. B2012, 116, 13430-13438). Analysis of the measured rotational time constants of the solutes in terms of the Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that with increase in the alkyl chain length attached to the cationic component of the ionic liquids, AP shows stick to superstick behavior, PRODAN rotation lies between stick and slip boundary conditions, whereas anthracene exhibits slip to sub slip behavior. The contrasting rotational dynamics of these probe molecules is a reflection of their location in distinct environments of the ionic liquids thus demonstrating the heterogeneity of these ionic liquids. The microheterogeneity of these media, in particular, those with the long alkyl chain, is further evidence from the excitation wavelength dependence study of the rotational diffusion of the dipolar probe molecules.
Ionic Structure at Dielectric Interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics(MD) simulations and compared it with liquid state theory result. We explore the effects of high electrolyte concentrations, multivalent ions, and dielectric contrasts on the ionic distributions. We observe the presence of non-monotonous ionic density profiles leading to structure deformation in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of effective interaction between two interfaces. We show that, in concentrated electrolytes with confinement, it is imperative to take into account the finite-size of the ions as well as proper description of electrostatic interactions in heterogeneous media, which is not fully fulfilled by Poisson-Boltzmann based approaches. The effect of electric field at interface between two immiscible electrolyte solutions is studied as well. The classical Poisson-Boltzmann theory has been widely used to describe the corresponding ionic distribution, even though it neglects the polarization and ion correlations typical of these charged systems. Using Monte Carlo simulations, we provide an enhanced description of an oil-water interface in the presence of an electric field without needing any adjustable parameter, including realistic ionic sizes, ion correlations, and image charges. Our data agree with experimental measurements of excess surface tension for a wide range of electrolyte concentrations of LiCl and TBATPB (tetrabutylammonium-tetraphenylborate), contrasting with the result of the classical non-linear Poisson-Boltzmann theory. More importantly, we show that the size-asymmetry between small Li+ and large Cl- ions can significantly increase the electric field near the liquid interface, or can even reverse it locally, at high salt concentrations in the aqueous phase. These observations suggest a novel trapping/release mechanism of charged nanoparticles at oil-water interfaces in the vicinity of the point of zero charge. In addition, we study the effects of size asymmetry and charge asymmetry on ion distribution at a dielectric interface using coarse-grained MD based on an energy variational principle. The goal is to explore charge amplification with exact consideration of surface polarization. We find that both size asymmetry and charge asymmetry lead to charge separation at the interfaces. In addition, charge separation is enhanced by interface polarization. We are currently extending the research to charged interfaces that has broad applications such as batteries and supercapacitors for energy storage.
Safavi, Afsaneh; Tohidi, Maryam
2014-09-01
Microwave-assisted ionic liquid method was used for synthesis of various noble metals, such as gold, silver, platinum and palladium nanomaterials. This route does not employ any template agent, surface capping agents or reducing agents. The process is fast, simple and of high yield. Different metal precursors in various ionic liquids media (1-butyl-3-methylimidazolium tetrafluoroborate, octyl pyridinium hexaflurophosphate and 1-octyl-3-methylimidazolium hexaflurophosphate) were applied to produce metal nanomaterials. Silver, platinium and palladium nanoparticles exhibit spherical morphology while nanosheets with high aspect ratio were obtained for gold. These metal nanostructures were incorporated into a carbon ionic liquid electrode to investigate their electrocatalytic properties. It was found that synthesis in different ionic liquids result in different activity. Excellent electrocatalytic effects toward adenine, hydrazine, formaldehyde and ethanol were observed for the modified electrodes with different nanoparticles synthesized in 1-butyl-3-methylimidazolium tetrafluoroborate. The high conductivity, large surface-to-volume ratio and active sites of nanosized metal particles are responsible for their electrocatalytic activity. In contrast, the carbon ionic liquid electrode modified with synthesized metal nanoparticles in octyl pyridinium hexaflurophosphate and 1-octyl-3-methylimidazolium hexaflurophosphate showed negligible activity for detection of these probes.
O'Reilly, P H; Brooman, P J; Martin, P J; Pollard, A J; Farah, N B; Mason, G C
1986-01-01
A new method for determining the glomerular filtration rate was analysed prospectively. The method uses an x ray fluorescence technique to measure disappearance from the plasma of injected non-ionic iodinated contrast media. Eighty seven patients were studied. Fifty four had an intravenous dose of 100 ml iohexol (Omnipaque) and 33 had 50 ml iohexol. Clearances of chromium-51 labelled edetic acid (51Cr-EDTA) were measured simultaneously. In the patients given 100 ml iohexol there was excellent correlation with 51Cr-EDTA clearance (r = 0.90). The correlation using 50 ml iohexol was also good (r = 0.85). Correlation between creatinine clearance and clearance of 51Cr-EDTA in 33 patients was less satisfactory (r = 0.69). There were no adverse reactions to the contrast media. The equipment used for measuring contrast clearance was robust and simple to operate. Freezing plasma samples in 10 studies and re-examining them weekly for six weeks showed no significant variation in results; hence reproducibility was good. This new and accurate method for determining the glomerular filtration rate merits further study and might find a useful place in routine clinical practice. Images FIG 1 PMID:3089467
Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali
2013-11-01
The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in bound water as ionic strengths increased. Texture analysis was employed to determine the gel strength and also to explain the drug release for the diltiazem hydrochloride. This methodology can be used as a valuable tool for predicting potential ionic effects related to in vivo fed and fasted states on drug release from hydrophilic ER matrices. Copyright © 2013 Elsevier B.V. All rights reserved.
Subarachnoid Hemorrhage Mimicking Leakage of Contrast Media After Coronary Angiography
Oh, Min Seok; Kwon, Jee Eun; Kim, Kyung Jun; Jo, Joon Hwan; Min, Yun Ju; Byun, Jun Soo; Kim, Kyung Tae; Kim, Sang Wook
2012-01-01
We report a patient who developed subarachnoid hemorrhage (SAH) just after coronary angiography (CAG) with non-ionic contrast media (CM) and minimal dose of heparin. The 55-year-old man had a history of acute ST elevation myocardial infarction that had been treated with primary percutaneous coronary intervention and was admitted for a follow-up CAG. The CAG was performed by the transradial approach, using 1000 U of unfractionated heparin for the luminal coating and 70 mL of iodixanol. At the end of CAG, he complained of nausea and rapidly became stuporous. Brain CT showed a diffusely increased Hounsfield unit (HU) in the cisternal space, similar to leakage of CM. The maximal HU was 65 in the cisternal space. No vascular malformations were detected on cerebral angiography. The patient partially recovered his mental status and motor weakness after 2 days. Two weeks later, subacute SAH was evident on magnetic resonance imaging. The patient was discharged after 28 days. PMID:22493615
Lunar Oxygen Production and Metals Extraction Using Ionic Liquids
NASA Technical Reports Server (NTRS)
Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.
2009-01-01
Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.
van Bree, H; Van Rijssen, B; Tshamala, M; Maenhout, T
1992-09-01
Arthrographic quality and synovial inflammatory response were examined to compare the use of iopromide with that of iotrolan for arthrography of the scapulohumeral joint in 6 dogs. Radiographs obtained 1 and 3 minutes after injection of either nonionic compound were of similar quality, but radiographs obtained 5 minutes after injection of iotrolan were significantly (P less than 0.05) better than those obtained after injection of iopromide. Results of analysis of synovial fluid samples obtained at 1, 3, 7, and 14 days after injection of contrast media were not significantly different between the 2 groups. Histologic examination of synovium and articular cartilage 2 weeks after injection of iopromide or iotrolan revealed minimal inflammatory response for both contrast agents. Injection of iopromide and iotrolan into the scapulohumeral joints of dogs had less effect on synovial fluid than that reported after injection of ionic compounds.
Schönefeld, E; Höwler, S; Osada, N; Torsello, G
2011-10-01
The increasing number of endovascular procedures made aware of a kidney disease induced by contrast media (CM). Contrast-induced nephropathy (= CIN) can develop in 0.6-44 % of the treated patients by angiography and / or endovascular intervention. The incidence in high-risk patients ranges from 50 to 70 %. In most cases CIN is inconspicuous and reversible. But pre-existing chronic kidney disease, diabetes mellitus, age and variable different risk factors (e. g., PAOD) can induce irreversible renal impairment. The purpose of the presented trial is to investigate incidence, predictors, and out-come of CIN in chronic renal failure patients using two different CM; one non-ionic isoosmolar -iodixanol and the other non-ionic low-osmolar iopromide. To evaluate the incidence of CIN after endovascular diagnostics and intervention two collectives of 100 patients with chronic renal insufficiency were treated with different contrast media (CM). Inclusion followed prospectively in two collectives. One collective received iopromide (Ultravist™, Bayer Health Care, Lever-kusen, Germany), and the second hundred patients received iodixanol (Visipaque™, Nycomed Amersham, Princeton, New Jersey). Demographics, comorbidities, procedure-related data were completed by serum creatinine levels and GFR (= glomerular filtration rate). Inclusion criteria were a serum creatinine level ≥ 1.5 mg% and a GFR ≤ 60 mL / min. Those parameters were measured twice pre-interventionally, and one time 48-72 hours after the endovascular procedure. Collectives were homogenous and comparable concerning pre-existing risk factors, age and gender. Renal function stayed at a constant level and was independent of contrast medium selection, repectively. Average creatinine levels ranged around 1.77 mg% ± 0.75 standard deviation (SD) pre-interventionally; postinterventional measurement exposed a creatinine level of 1.74 mg% ± 0.74 SD as mean of both collectives. GFR (preinterventional 39.64 mL / min ± 12.48 SD) increased non-significantly to 45.48 mL / min ± 16.82 SD. Pre-existing chronic kidney disease had no effect on renal function parameters; no other risk factors could be evaluated. According to cost-effectiveness a low-osmolar monomeric contrast medium (LOCM) is a sufficient selection, under careful renal function control. © Georg Thieme Verlag KG Stuttgart ˙ New York.
Effect of ionic liquid on activity, stability, and structure of enzymes: a review.
Naushad, Mu; Alothman, Zied Abdullah; Khan, Abbul Bashar; Ali, Maroof
2012-11-01
Ionic liquids have shown their potential as a solvent media for many enzymatic reactions as well as protein preservation, because of their unusual characteristics. It is also observed that change in cation or anion alters the physiochemical properties of the ionic liquids, which in turn influence the enzymatic reactions by altering the structure, activity, enatioselectivity, and stability of the enzymes. Thus, it is utmost need of the researchers to have full understanding of these influences created by ionic liquids before choosing or developing an ionic liquid to serve as solvent media for enzymatic reaction or protein preservation. So, in the present review, we try to shed light on effects of ionic liquids chemistry on structure, stability, and activity of enzymes, which will be helpful for the researchers in various biocatalytic applications. Copyright © 2012. Published by Elsevier B.V.
Cláudio, Ana Filipa M.; Neves, Márcia C.; Shimizu, Karina; Canongia Lopes, José N.; Freire, Mara G.; Coutinho, João A. P.
2015-01-01
Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are widely used in the formulation of drugs, cleaning and personal care products. In this work, it is shown that ionic liquids are a new class of powerful catanionic hydrotropes where both the cation and the anion synergistically contribute to increase the solubility of biomolecules in water. The effects of the ionic liquid chemical structures, their concentration and the temperature on the solubility of two model biomolecules, vanillin and gallic acid were evaluated and compared with the performance of conventional hydrotropes. The solubility of these two biomolecules was studied in the entire composition range, from pure water to pure ionic liquids, and an increase in the solubility of up to 40-fold was observed, confirming the potential of ionic liquids to act as hydrotropes. Using dynamic light scattering, NMR and molecular dynamics simulations, it was possible to infer that the enhanced solubility of the biomolecule in the IL aqueous solutions is related to the formation of ionic-liquid–biomolecules aggregates. Finally, it was demonstrated that hydrotropy induced by ionic liquids can be used to recover solutes from aqueous media by precipitation, simply by using water as an anti-solvent. The results reported here have a significant impact on the understanding of the role of ionic liquid aqueous solutions in the extraction of value-added compounds from biomass as well as in the design of novel processes for their recovery from aqueous media. PMID:26379471
Shahvelayati, Ashraf S; Ghazvini, Maryam; Yadollahzadeh, Khadijeh; Delbari, Akram S
2018-01-01
The development of multicomponent reactions (MCRs) in the presence of task-specific ionic liquids (ILs), used not only as environmentally benign reaction media, but also as catalysts, is a new approach that meet with the requirements of sustainable chemistry. In recent years, the use of ionic liquids as a green media for organic synthesis has become a chief study area. This is due to their unique properties such as non-volatility, non-flammability, chemical and thermal stability, immiscibility with both organic compounds and water and recyclability. Ionic liquids are used as environmentally friendly solvents instead of hazardous organic solvents. We report the condensation reaction between α-oximinoketone and dialkyl acetylene dicarboxylate in the presence of triphenylphosphine to afford substituted pyrroles under ionic liquid conditions in good yields. Densely functionalized pyrroles was easily prepared from reaction of α-oximinoketones, dialkyl acetylene dicarboxylate in the presence of triphenylphosphine in a quantitative yield under ionic liquid conditions at room temperature. In conclusion, ionic liquids are indicated as a useful and novel reaction medium for the selective synthesis of functionalized pyrroles. This reaction medium can replace the use of hazardous organic solvents. Easy work-up, synthesis of polyfunctional compounds, decreased reaction time, having easily available-recyclable ionic liquids, and good to high yields are advantages of present method. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO2, rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and...
Uranium (VI) exhibits little adsorption onto sediment minerals in acidic, alkaline or high ionic-strength aqueous media that often occur in U mining or contaminated sites, which makes U(VI) very mobile and difficult to sequester. In this work, magnetic mesoporous silica nanoparti...
The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...
Briguori, Carlo; Visconti, Gabriella; Ricciardelli, Bruno; Condorelli, Gerolama
2011-04-01
The combined prophylactic strategy of sodium bicarbonate plus N-acetylsyteine (NAC) seems to be effective in preventing contrast induced acute kidney injury (CI-AKI) in patients at low-to-medium risk. However, in patients at high and very high risk the rate of CI-AKI is still high. In this subset of patients the anticipated advantages of the RenalGuard(tm) System should be investigated. The RenalGuard(tm) System (PLC Medical Systems, Inc., Franklin, MA, USA) is a real-time measurement and real time matched fluid replacement device designed to accommodate the RenalGuard therapy, which is based on the theory that creating and maintaining a high urine output is beneficial by allowing a quick elimination of contrast media, and, therefore, reducing its toxic effects. The REMEDIAL II trial is a randomised, multicentre, investigator-sponsored trial addressing the hypothesis that the RenalGuard System is superior to the prophylaxis with sodium bicarbonate infusion plus NAC in preventing CI-AKI in high and very high risk patients. Consecutive patients with chronic kidney disease (CKD) and at high to very high risk for CI-AKI, referred to our institutions for coronary and/or peripheral procedures, will be randomly assigned to 1) prophylactic administration of sodium bicarbonate plus NAC (control group) and 2) RenalGuard System treatment (RenalGuard group). All enrolled patients must have an estimated glomerular filtration rate ≤ 30 ml/min/1.73 m2 and/or a contrast nephropathy risk score ≥ 11. In all cases iodixanol (an iso-osmolar, non-ionic contrast agent) will be administered. The primary endpoint is an increase of ≥ 0.3 mg/dL in the serum creatinine concentration 48 hours after the procedure. The REMEDIAL II trial will give important answers on how to prevent CI-AKI in high and very high risk patients undergoing contrast media exposure.
Naito, Shokichi; Tazaki, Hiromi; Okamoto, Tomoko; Takeuchi, Kazuhiro; Kan, Shinichi; Takeuchi, Yasuo; Kamata, Kouju
2017-01-01
Although gadolinium (Gd)-based contrast media have been found to be nephrotoxic, their nephrotoxicity, and the dependence of nephrotoxicity on chelate types, have not been assessed in patients with normal or mildly diminished renal failure. This prospective, randomized study compared the nephrotoxicity of low doses of the nonionic Gd-based contrast medium gadodiamide (Omniscan®) and the ionic Gd-based contrast medium gadopentetate (Magnevist®) in patients with serum creatinine < 1.6 mg/dL. Patients aged 20 to 80 years, weighing 45 to 70 kg and with normal or < 1.6 mg/dL Serum-creatinine in the 3 months prior to undergoing magnetic resonance imaging (MRI) of brain, were enrolled. Patients were randomized to receive 0.1 mol/kg gadodiamide or gadopentetate. Serum-creatinine, serum cystatin-C, estimated glomerular filtration rate (eGFR) using the Modification of Diet in Renal Disease (MDRD) formula, and estimated creatinine clearance rate (eCCr) using the Cockcroft-Gault formula were measured just before and 16-80 hr after MRI. Groups were compared statistically by Mann-Whitney U-tests and Wilcoxon signed-rank tests. There were no significant differences in clinical characteristics between the gadodiamide (n = 43) and gadopentetate (n = 59) groups. Serum-creatinine, eGFR and eCCr before and 16-80 hr after MRI did not differ significantly within either group or between the two groups. Serum cystatin-C was significantly higher 16-80 hr after than before MRI only in the gadodiamide group (0.79 ± 0.21 vs. 0.74 ± 0.14 mg/L, p = 0.028). The ionic contrast medium, gadopentetate, did not affect renal function during MRI, whereas the nonionic contrast medium, gadodiamide, affected renal function transiently.
Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.
Roman, Maxine J; Decker, Eric A; Goddard, Julie M
2014-07-01
Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.
Zeeb, Mohsen; Mirza, Behrooz
2015-04-30
Carvedilol belongs to a group of medicines termed non-selective beta-adrenergic blocking agents. In the presented approach, a practical and environmentally friendly microextraction method based on the application of ionic liquids (ILs) was followed by fluorescence spectrometry for trace determination of carvedilol in pharmaceutical and biological media. A rapid and simple ionic liquid phase microextraction was utilized for preconcentration and extraction of carvedilol. A hydrophobic ionic liquid (IL) was applied as a microextraction solvent. In order to disperse the IL through the aqueous media and extract the analyte of interest, IL was injected into the sample solution and a proper temperature was applied and then for aggregating the IL-phase, the sample was cooled in an ice water-bath. The aqueous media was centrifuged and IL-phase collected at the bottom of the test tube was introduced to the micro-cell of spectrofluorimeter, in order to determine the concentration of the enriched analyte. Main parameters affecting the accuracy and precision of the proposed approach were investigated and optimized values were obtained. A linear response range of 10-250 μg I(-1) and a limit of detection (LOD) of 1.7 μg I(-1) were obtained. Finally, the presented method was utilized for trace determination of carvedilol in commercial pharmaceutical preparations and biological media.
Belle, Mônica B B; Leffa, Daniela D; Mazzorana, Daliane; De Andrade, Vanessa M
2013-01-01
Contrast media (CM) are frequently used in diagnostic radiology and in radiotherapy as a diagnostic tool and in treatment planning. Previous studies have demonstrated that these compounds induce chromosomal aberrations. This study evaluates the mutagenic effects induced by the contrast medium Urografina® 292 (meglumine amidotrizoate and sodium-ionic dimmer) in bone marrow cells (BMC) of mice in vivo. Micronuclei assay was performed in BMC of CF-1 mice injected with CM 1.5 and 3.0 mL/kg intravenous doses and 1.0, 2.0, 3.0 mL/kg intraperitoneal doses. The animals were beheaded 24 h after treatment by cervical dislocation, and femur BMC from each animal were used in the micronucleus test. The group treated with the highest intravenous injection of Urografina® 292 (3.0 mL/kg) presented an increase in the frequency of micronucleated polychromatic erythrocytes (MNPCEs) in relation at the control group (P<0.05). The results obtained after intraperitoneal administration of CM showed that all doses (1.0 mL/kg, 2.0 mL/kg and 3.0 mL/kg) increased the frequency of MNPCEs, being significantly different from the negative control (P< 0.01). The present results suggest that iodinated contrast media Urografina® 292 may cause a significant increase of cytogenetic damage in bone marrow cells of mice.
Yang, Xinyao; Lin, Shihong; Wiesner, Mark R
2014-01-15
Interactions between organic matter (OM) and engineered polymer coatings as they affect the retention of polyvinylpyrrolidone (PVP) polymer-coated silver nanoparticles (AgNPs) were studied. Two distinct types of OM-cysteine representing low molecular weight multivalent functional groups, and Suwannee River Humic Acid (HA) representing high molecular weight polymers, were investigated with respect to their effects on particle stability in aggregation and deposition. Aggregation of the PVP coated AgNPs (PVP-AgNPs) was enhanced by cysteine addition at high ionic strengths, which was attributed to cysteine binding to the AgNPs and replacing the otherwise steric stabilizing agent PVP. In contrast the addition of HA did not increase aggregation rates and decreased PVP-AgNP deposition to the silica porous medium, consistent with enhanced electrosteric stabilization by the HA. Although cysteine also reduced deposition in the porous medium, the mechanisms of reduced deposition appear to be enhanced electric double layer (EDL) interaction at low ionic strengths. At higher ionic strengths, aggregation was favored leading to lower deposition due to smaller diffusion coefficients and single collector efficiencies despite the reduced EDL interactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Esfandyari Bayat, Ali; Junin, Radzuan; Derahman, Mohd Nawi; Samad, Adlina Abdul
2015-09-01
The impact of ionic strength (from 0.003 to 500mM) and salt type (NaCl vs MgCl2) on transport and retention of titanium dioxide (TiO2) nanoparticles (NPs) in saturated limestone porous media was systematically studied. Vertical columns were packed with limestone grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolent-visible spectrometry. Presence of NaCl and MgCl2 in the suspensions were found to have a significant influence on the electrokinetic properties of the NP aggregates and limestone grains. In NaCl and MgCl2 solutions, the deposition rates of the TiO2-NP aggregates were enhanced with the increase in ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Furthermore, the NP aggregates retention increased in the porous media with ionic strength. The presence of salts also caused a considerable delay in the NPs breakthrough time. MgCl2 as compared to NaCl was found to be more effective agent for the deposition and retention of TiO2-NPs. The experimental results followed closely the general trends predicted by the filtration and DLVO calculations. Overall, it was found that TiO2-NP mobility in the limestone porous media depends on ionic strength and salt type. Copyright © 2015 Elsevier Ltd. All rights reserved.
Use of Radiocontrast Agents in CKD and ESRD.
Bahrainwala, Jehan Z; Leonberg-Yoo, Amanda K; Rudnick, Michael R
2017-07-01
Contrast exposure in a population with chronic kidney disease (CKD) requires additional consideration given the risk of contrast-induced nephropathy (CIN) after exposure to iodinated contrast as well as systemic injury with exposure to gadolinium-based contrast agents (GBCA). Strategies to avoid CIN, and manage patients after exposure, including extracorporeal removal of contrast media, may differ among an advanced CKD population as compared to a general population. There is strong evidence to support the use of isotonic volume expansion and the lowest dose of low-osmolar or iso-osmolar contrast media possible to decrease CIN. The current literature on other newer prophylactic strategies such as statins, remote ischemic preconditioning, discontinuation of renin angiotensin aldosterone system (RAAS) blockade, and RenalGuard is limited thus these strategies cannot currently be recommended as routine prophylaxis for CIN. The use of extracorporeal removal of contrast agents as prophylaxis to reduce CIN has been the subject of multiple studies; however, data do not support a beneficial effect in reduction in CIN. Immediate removal of contrast by dialysis in a maintenance dialysis population is also not recommended, unless an individual's cardiopulmonary status is dependent on strict volume management. In patients with reduced renal function, GCBA exposure increases the risk of NSF. In patients with AKI, CKD stage 3 or greater (eGFR <30 ml/minute/1.73 m 2 ), or patients on dialysis, we do not recommend the use of GBCA and alternative imaging modalities should be considered. If patients absolutely need magnetic resonance imaging with GBCA, we recommend the use of the lowest dose possible of the newer macrocylic, ionic agents (gadoterate meglumine) as well as immediate postprocedural HD in patients already on HD or peritoneal dialysis or with stage 5 CKD and with a functioning dialysis access already in place. © 2017 Wiley Periodicals, Inc.
Mikac, Urša; Sepe, Ana; Baumgartner, Saša; Kristl, Julijana
2016-03-07
The formation of a gel coat around xanthan (Xan) tablets, empty or loaded with pentoxifylline (PF), and its release in media differing in pH and ionic strength by NMR, MR imaging, and two release methods were studied. The T1 and T2 NMR relaxation times in gels depend predominantly on Xan concentration; the presence of PF has negligible influence on them. It is interesting that the matrix swelling is primarily regulated by Xan despite high drug loading (25%, 50%). The gastric pH and high ionic strength of the media do not influence the position of the penetration and swelling fronts but do affect the erosion front and gel thickness. The different release profiles obtained in mixing and nonmixing in vitro methods are the consequence of matrix hydration level and erosion at the surface. In water and in diluted acid medium with low ionic strength, the main release mechanism is erosion, whereas in other media (pH 1.2, μ ≥ 0.20 M), anomalous transport dominates as was found out by fitting of measured data with theoretical model. Besides the in vitro investigation that mimics gastric conditions, mathematical modeling makes the product development more successful.
Neoteric Media as Tools for Process Intensification
NASA Astrophysics Data System (ADS)
Beh, C. C.; Mammucari, R.; Foster, N. R.
2017-06-01
Process intensification (PI) is a commonly used term in the chemical processing industry. When the concept of PI was first introduced in the late 1970s within the Imperial Chemical Industries (ICI) company, the main impetus was to reduce the processing cost without impairing the production rate. Neoteric media present as alternatives in chemical processing include gas-expanded liquids, ionic liquids, subcritical water, and combination of gas-expanded liquids and ionic liquids. The applications of neoteric media include particle engineering for improved bioavailability, controlled release of therapeutic implants, pharmaceutical formulations, extraction of natural products, nano-carriers for drug delivery, sterilisation of implants, and chemical reactions. This paper provides an overview of the use of these neoteric media.
New Clathrin-Based Nanoplatforms for Magnetic Resonance Imaging
Vitaliano, Gordana D.; Vitaliano, Franco; Rios, Jose D.; Renshaw, Perry F.; Teicher, Martin H.
2012-01-01
Background Magnetic Resonance Imaging (MRI) has high spatial resolution, but low sensitivity for visualization of molecular targets in the central nervous system (CNS). Our goal was to develop a new MRI method with the potential for non-invasive molecular brain imaging. We herein introduce new bio-nanotechnology approaches for designing CNS contrast media based on the ubiquitous clathrin cell protein. Methodology/Principal Findings The first approach utilizes three-legged clathrin triskelia modified to carry 81 gadolinium chelates. The second approach uses clathrin cages self-assembled from triskelia and designed to carry 432 gadolinium chelates. Clathrin triskelia and cages were characterized by size, structure, protein concentration, and chelate and gadolinium contents. Relaxivity was evaluated at 0.47 T. A series of studies were conducted to ascertain whether fluorescent-tagged clathrin nanoplatforms could cross the blood brain barriers (BBB) unaided following intranasal, intravenous, and intraperitoneal routes of administration. Clathrin nanoparticles can be constituted as triskelia (18.5 nm in size), and as cages assembled from them (55 nm). The mean chelate: clathrin heavy chain molar ratio was 27.04±4.8: 1 for triskelia, and 4.2±1.04: 1 for cages. Triskelia had ionic relaxivity of 16 mM−1s−1, and molecular relaxivity of 1,166 mM−1s−1, while cages had ionic relaxivity of 81 mM−1s−1 and molecular relaxivity of 31,512 mM−1s−1. Thus, cages exhibited 20 times higher ionic relaxivity and 8,000-fold greater molecular relaxivity than gadopentetate dimeglumine. Clathrin nanoplatforms modified with fluorescent tags were able to cross or bypass the BBB without enhancements following intravenous, intraperitoneal and intranasal administration in rats. Conclusions/Significance Use of clathrin triskelia and cages as carriers of CNS contrast media represents a new approach. This new biocompatible protein-based nanotechnology demonstrated suitable physicochemical properties to warrant further in vivo imaging and drug delivery studies. Significantly, both nanotransporters crossed and/or bypassed the BBB without enhancers. Thus, clathrin nanoplatforms could be an appealing alternative to existing CNS bio-nanotechnologies. PMID:22563470
Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).
Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe
2016-10-26
Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.
Retention and transport of graphene oxide in water-saturated limestone media.
Dong, Shunan; Sun, Yuanyuan; Gao, Bin; Shi, Xiaoqing; Xu, Hongxia; Wu, Jianfeng; Wu, Jichun
2017-08-01
In this work, column experiments were conducted to investigate the transport characteristics of graphene oxide (GO) nanoparticles in limestone media under various electrolytes, solution pH, and humic acid (HA) concentration conditions. In the limestone media, GO exhibited relatively low mobility with the mass recovery rate lower than 65.2%, even when solution ionic strength was low. The presence of HA enhanced its mobility. In addition, the presence of S 2- , a divalent anion, also promoted GO transport in limestone media compared to Cl - under similar ionic strength conditions through neutralizing more positive charge and thus diminishing the cation bridging. Solution pH showed slight effect on the transport of GO in limestone with the mass recovery range from 40.3% to 51.7%. Over all, decreases in solution pH, HA concentration and increases in solution ionic strength reduced the mobility of GO in the limestone media under the tested conditions. These results indicated both environmental conditions and media characteristics played important roles in controlling GO fate and transport in porous media. The one-site kinetic deposition model was applied to describe the interactions between the GO and limestone media and model simulations fitted the observed experimental data very well. As limestone is an important component of aquiferous media in subsurface, findings from this study elucidated the key factors and processes controlling the fate of GO particles in limestone media, which can inform the prediction and assessment of the risks of GO in groundwater environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Furfural production using ionic liquids: A review.
Peleteiro, Susana; Rivas, Sandra; Alonso, José Luis; Santos, Valentín; Parajó, Juan Carlos
2016-02-01
Furfural, a platform chemical with a bright future, is commercially obtained by acidic processing of xylan-containing biomass in aqueous media. Ionic liquids (ILs) can be employed in processed for furfural manufacture as additives, as catalysts and/or as reaction media. Depending on the IL utilized, externally added catalysts (usually, Lewis acids, Brönsted acids and/or solid acid catalysts) can be necessary to achieve high reaction yields. Oppositely, acidic ionic liquids (AILs) can perform as both solvents and catalysts, enabling the direct conversion of suitable substrates (pentoses, pentosans or xylan-containing biomass) into furfural. Operating in IL-containing media, the furfural yields can be improved when the product is continuously removed along the reaction (for example, by stripping or extraction), to avoid unwanted side-reactions leading to furfural consumption. These topics are reviewed, as well as the major challenges involved in the large scale utilization of ILs for furfural production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ionic liquids: Promising green solvents for lignocellulosic biomass utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Chang Geun; Pu, Yunqiao; Ragauskas, Arthur J.
Ionic liquids are effective solvents/media for the utilization of lignocellulosic biomass. The unique properties of ionic liquids enable them to effectively dissolve and/or convert the biomass into various types of products. This review aims to cover the latest progress achieved in applications of ionic liquids on biomass conversion and analysis. Specifically, several recently developed approaches on how to overcome current challenges on the use of ionic liquids in the biomass conversion were highlighted. Here, recent studies addressing the potential applications of ionic liquids for the production of novel biomass-derived chemicals and materials were also discussed.
Ionic liquids: Promising green solvents for lignocellulosic biomass utilization
Yoo, Chang Geun; Pu, Yunqiao; Ragauskas, Arthur J.
2017-06-01
Ionic liquids are effective solvents/media for the utilization of lignocellulosic biomass. The unique properties of ionic liquids enable them to effectively dissolve and/or convert the biomass into various types of products. This review aims to cover the latest progress achieved in applications of ionic liquids on biomass conversion and analysis. Specifically, several recently developed approaches on how to overcome current challenges on the use of ionic liquids in the biomass conversion were highlighted. Here, recent studies addressing the potential applications of ionic liquids for the production of novel biomass-derived chemicals and materials were also discussed.
Furfural production in biphasic media using an acidic ionic liquid as a catalyst.
Peleteiro, Susana; Santos, Valentín; Parajó, Juan C
2016-11-20
Ionic liquids are valuable tools for biorefineries. This study provides an experimental assessment on the utilization of an acidic ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate) as a catalyst for furfural production in water/solvent media. The substrates employed in experiments were commercial xylose (employed as a reference compound) or hemicellulosic saccharides obtained by hydrothermal processing of Eucalyptus globulus wood (which were employed as produced, after membrane concentration or after freeze-drying). A variety of reaction conditions (defined by temperature, reaction time and type of organic solvent) were considered. The possibility of recycling the catalyst was assessed in selected experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Specific binding of (/sup 3/H-Tyr8)physalaemin to rat submaxillary gland substance P receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahouth, S.W.; Lazaro, D.M.; Brundish, D.E.
1985-01-01
(/sup 3/H)Physalaemin ((/sup 3/H)PHY) binds to a single class of noninteracting sites on rat submaxillary gland membranes suspended in high ionic strength media with a KD of 2.7 nM, a Bmax of 240 fmol/mg of protein, and low nonspecific binding. The relative potencies of substance P (SP) and its fragments in competing with (/sup 3/H)PHY correlate with their relative salivation potencies. This indicates that (/sup 3/H)PHY interacts with a physiologically relevant SP receptor. In low ionic strength media, the KD of (/sup 3/H)PHY does not change, but SP and some of its fragments are more potent than PHY in competingmore » with (/sup 3/H) PHY. Computer-assisted analysis of (/sup 3/H)PHY and (/sup 3/H)SP binding in high and low ionic strength media demonstrated that both peptides are equipotent in high ionic strength but that the affinity of SP increases by 70-fold in low ionic strength. The SP fragments that contain a basic residue in positions 1 and/or 3 also display an increased affinity in low ionic strength. These findings document that (/sup 3/H)PHY binding in high ionic strength (mu . 0.6) accurately reflects the pharmacological potencies of agonists on the SP-P receptor. The binding of (/sup 3/H)PHY, like that of (/sup 3/H)SP, increases by the addition of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+). Guanine nucleotides decrease (/sup 3/H)PHY binding by decreasing the Bmax to the same level (160 fmol/mg of protein), in the presence or absence of Mg2+.« less
Scarabelli, Stefania; Cripps, Peter; Rioja, Eva; Alderson, Briony
2016-09-01
To evaluate incidences of adverse reaction after the administration of contrast media. Retrospective observational study. Animals included 356 dogs and 58 cats receiving non-ionic iodinated contrast agents, and 425 dogs and 49 cats receiving gadolinium-based contrast agents. Anaesthesia records of dogs and cats receiving intravenous (IV) gadobutrol for magnetic resonance imaging (MRI) or IV iohexol for computed tomography (CT) were reviewed. Changes in pulse rate, respiratory rate and mean arterial pressure at 5 minutes after administration of the contrast medium were evaluated. Changes of 10-20% were considered mild, those of >20% moderate, and reactions that required immediate treatment were considered severe. Associations of sex, age and weight with contrast reaction were investigated using logistic regression. Differences in the incidences of reactions to CT and MRI contrast media were examined with chi-squared tests. A p-value of <0.05 was considered to indicate statistical significance. Of cats receiving iohexol, eight (13.8%) had mild and 10 (17.2%) had moderate reactions. Of cats receiving gadobutrol, six (12.2%) had mild and six (12.2%) had moderate reactions. No cats had severe reactions and the risk for reaction was not associated with type of medium, age, weight or sex (p > 0.2). Of dogs receiving iohexol, 64 (18.0%) had mild, 65 (18.3%) had moderate and three (0.8%) had severe reactions. Of dogs receiving gadobutrol, 42 (9.9%) had mild, 87 (20.5%) had moderate and one (0.2%) had a severe reaction. When dogs receiving iohexol were compared with those receiving gadobutrol, the odds ratio of a moderate reaction was 2.0 (95% confidence interval 1.34-3.10; p = 0.001). These estimates did not change substantially after adjustment for age, weight and sex. Severe reactions to iohexol and gadobutrol are rare in dogs and cats; moderate reactions are more likely with iohexol than with gadobutrol. © 2015 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.
NASA Astrophysics Data System (ADS)
Park, Y.; Hou, L.; Atwill, R.; Packman, A. I.; Harter, T.
2009-12-01
Cryptosporidium is one of the most common enteric parasites of humans and domestic animals, and a number of outbreaks of Cryprosporidiosis, a diarrheal disease caused by Cryptosporidium have been reported worldwide. Natural porous media has been demonstrated to be an effective filter for removing Cryptosporidium parvum from contaminated water and the amount of Cryptosporidium filtered is known to be highly dependent on physical and chemical conditions of the porous media and the water. Cryptosporidium deposition in saturated porous media involves two main steps: approach and attachment. In contrast to the approach mechanisms, attachment processes have not been systematically described to predict a priori because theories that represent attachment behavior (colloid stability) such as DLVO are insufficient to explain experimental data. For this reason, attachment efficiency is calculated based on empirical data, typically experimental breakthrough curves in laboratory columns or field experiments. In this study, collision (attachment) efficiencies (α) of C. parvum oocyst were calculated to test the effect of chemical property changes on the association of oocysts with sand grains. The breakthrough curve data obtained from twelve column experiments and three models were employed to calculate single collector efficiency (η) and α. The first ten experiments were conducted by changing ionic strength and pH, and mixing with natural sediments under the same physical properties (same η). Our experiment results show that iron coating or clay/suspended solids mixture drastically enhanced oocyst deposition. The experiments also showed that increase in ionic strength and decrease in pH enhanced the attachment efficiency. However, the experiment with 100mM NaCl resulted in low attachment efficiency and the experiment with pH 8.5 showed similar attachment efficiency to the one at pH 7. Based on the results from two additional experiments with different flow velocities, it appears that attachment efficiency changes when the flow velocity changes, which contradicts CFT. The results prove that predicting attachment efficiency of C. parvum oocyst using ionic strength or pH is inappropriate when non-DLVO interactions are involved. A review of our results and comparison to existing data shows that it is challenging to accurately predict the attachment efficiency using single peak value of breakthrough curve data from geochemical information of porous media.
Hu, Anran; Chen, Chen; Mantle, Michael D; Wolf, Bettina; Gladden, Lynn F; Rajabi-Siahboomi, Ali; Missaghi, Shahrzad; Mason, Laura; Melia, Colin D
2017-05-01
Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths. The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media. Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data. Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.
Bi, Yan-Hong; Duan, Zhang-Qun; Li, Xiang-Qian; Wang, Zhao-Yu; Zhao, Xi-Rong
2015-02-11
Biobased ionic liquids with cholinium as the cation and amino acids as the anions, which could be prepared from renewable biomaterials by simple neutralization reactions, have recently been described as promising and green solvents. Herein, they were successfully used as the reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with l-serine for phosphatidylserine synthesis for the first time. Our results indicated that the highest phosphatidylserine yield of 86.5% was achieved. Moreover, 75% original activity of the enzyme was maintained after being used for 10 batches. The present work could be considered an alternative enzymatic strategy for preparing phosphatidylserine. Additionally, the excellent results make the biobased ionic liquids more promising candidates for use as environmentally friendly solvents in biocatalysis fields.
Kulmala, K A M; Karjalainen, H M; Kokkonen, H T; Tiitu, V; Kovanen, V; Lammi, M J; Jurvelin, J S; Korhonen, R K; Töyräs, J
2013-10-01
To investigate the effect of threose-induced collagen cross-linking on diffusion of ionic and non-ionic contrast agents in articular cartilage. Osteochondral plugs (Ø=6mm) were prepared from bovine patellae and divided into two groups according to the contrast agent to be used in contrast enhanced computed tomography (CECT) imaging: (I) anionic ioxaglate and (II) non-ionic iodixanol. The groups I and II contained 7 and 6 sample pairs, respectively. One of the paired samples served as a reference while the other was treated with threose to induce collagen cross-linking. The equilibrium partitioning of the contrast agents was imaged after 24h of immersion. Fixed charge density (FCD), water content, contents of proteoglycans, total collagen, hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP) and pentosidine (Pent) cross-links were determined as a reference. The equilibrium partitioning of ioxaglate (group I) was significantly (p=0.018) lower (-23.4%) in threose-treated than control samples while the equilibrium partitioning of iodixanol (group II) was unaffected by the threose-treatment. FCD in the middle and deep zones of the cartilage (p<0.05) and contents of Pent and LP (p=0.001) increased significantly due to the treatment. However, the proteoglycan concentration was not systematically altered after the treatment. Water content was significantly (-3.5%, p=0.007) lower after the treatment. Since non-ionic iodixanol showed no changes in partition after cross-linking, in contrast to anionic ioxaglate, we conclude that the cross-linking induced changes in charge distribution have greater effect on diffusion compared to the cross-linking induced changes in steric hindrance. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Ionic contrast terahertz near-field imaging of axonal water fluxes
Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Martin, Jean-Louis; Gallot, Guilhem
2006-01-01
We demonstrate the direct and noninvasive imaging of functional neurons by ionic contrast terahertz near-field microscopy. This technique provides quantitative measurements of ionic concentrations in both the intracellular and extracellular compartments and opens the way to direct noninvasive imaging of neurons during electrical, toxin, or thermal stresses. Furthermore, neuronal activity results from both a precise control of transient variations in ionic conductances and a much less studied water exchange between the extracellular matrix and the intraaxonal compartment. The developed ionic contrast terahertz microscopy technique associated with a full three-dimensional simulation of the axon-aperture near-field system allows a precise measurement of the axon geometry and therefore the direct visualization of neuron swelling induced by temperature change or neurotoxin poisoning. Water influx as small as 20 fl per μm of axonal length can be measured. This technique should then provide grounds for the development of advanced functional neuroimaging methods based on diffusion anisotropy of water molecules. PMID:16547134
NASA Astrophysics Data System (ADS)
Sharma, P.
2012-04-01
Nanotechnology is one of the most important technologies in this century and it is evoking a new industrial revolution. Carbon nanotubes (CNTs) are important engineered nanoparticles with unique and beneficial properties. As a result, CNT has been used in a wide range of commercial products including electronics, optical devices and drug delivery leading to their disposal in the natural environment. Literature studies have investigated the mobility of CNTs in saturated porous media under differing physical and chemical conditions. However CNT transport in temporarily changing porous media water content has not been investigated thus far (a common scenario with rainfall/infiltration events in the vadose zone). This study investigated the mobilization of multi-walled CNTs (MCNTs) in repeated wetting and drying cycles with varying flow rates and ionic strength of the inflow solution. Imbibition-drainage-imbibition cycle experiments suggest that MCNTs mobilization increased with increase in flow rates. MCNTs mobilization occurred only with first imbibition events at low ionic strengths however less mobilization happened for higher ionic strength inflow solution in the first imbibition cycle and additional MCNTs were found in the outflow solution in second imbibition cycle, using low ionic strength solution. This observation was likely due to the attachment force between MCNTs and sand surface. Most of the MCNT mobilization occurred during liquid-gas interface movement with less chance of MCNTs to jump the energy barrier at higher ionic strength solution. As a result, less detachment of MCNTs occurred from the sand surface during drainage.
NMR Studies of Mass Transport in New Conducting Media for Fuel Cells
2009-01-01
PEM films, for example those containing phosphoric acid and ionic liquids . Dynamical processes are probed at the short range by spin-lattice...structural environments of muticomponent PEM films, for example those containing phosphoric acid and ionic liquids . Dynamical processes are probed at the...correlation between water diffusivity and proton conductivity in the nanocomposites Transport properties of several ionic liquids (IL’s) and membranes
Gadolinium-enhanced MR images of the growing piglet skeleton: ionic versus nonionic contrast agent.
Menezes, Nina M; Olear, Elizabeth A; Li, Xiaoming; Connolly, Susan A; Zurakowski, David; Foley, Mary; Shapiro, Frederic; Jaramillo, Diego
2006-05-01
To determine whether there are differences in the distribution of ionic and nonionic gadolinium-based contrast agents by evaluating contrast enhancement of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis in the knees of normal piglets. Following approval from the Subcommittee on Research Animal Care, knees of 12 3-week-old piglets were imaged at 3-T magnetic resonance (MR) imaging after intravenous injection of gadoteridol (nonionic contrast agent; n = 6) or gadopentetate dimeglumine (ionic contrast agent; n = 6). Early enhancement evaluation with gradient-echo MR imaging was quantified and compared (Student t test) by means of enhancement ratios. Distribution of contrast material was assessed and compared (Student t test) by means of T1 measurements obtained before and at three 15-minute intervals after contrast agent administration. The relative visibility of the physis, epiphyseal cartilage, secondary ossification center, and metaphysis was qualitatively assessed by two observers and compared (Wilcoxon signed rank test). Differences in matrix content and cellularity that might explain the imaging findings were studied at histologic evaluation. Enhancement ratios were significantly higher for gadoteridol than for gadopentetate dimeglumine in the physis, epiphyseal cartilage, and secondary ossification center (P < .05). After contrast agent administration, T1 values decreased sharply for both agents-but more so for gadoteridol. Additionally, there was less variability in T1 values across structures with this contrast agent. Gadoteridol resulted in greater visibility of the physis, while gadopentetate dimeglumine resulted in greater contrast between the physis and metaphysis (P < .05). The results suggest different roles for the two gadolinium-based contrast agents: The nonionic contrast medium is better suited for evaluating perfusion and anatomic definition in the immature skeleton, while the ionic contrast medium is better for evaluating cartilage fixed-charge density. (c) RSNA, 2006.
Two-dimensional Transport and Retention of Graphene Oxide in Porous Media
NASA Astrophysics Data System (ADS)
Dong, S.; Sun, Y.; Gao, B.; Wu, J.; Shi, X.; Xu, H.
2017-12-01
Graphene oxide (GO) as an exceptional carbon nanomaterial has been used in a wide variety of applications. It is important to understand the fate and transport behaviors of GO in porous media. Lots of laboratory and model studies have focused on the mobility of GO in porous media, indicating complex mechanism such as solution chemistry, media characters, and particle input conditions all influenced GO transport and retention behavior. However, all of the previous studies of GO fate and transport were conducted in column equipment, which were insufficient with its extremely limited boundary conditions. In this work, 2-D homogeneous and heterogeneous sand tank experiments visualized by light transmission were used to examine the fate of graphene oxide (GO) nanoparticles in 2-D porous media under various conditions. A two-dimensional model was applied to describe GO retention and transport in 2-D porous media. The visualized experimental pictures and model results both showed that GO retention and transport in all 2-D porous media were influenced by media grain size, ionic strength, structural heterogeneity and injected location. The retention of GO particles in 2-D porous media increased when the gain size and the ionic strength. In addition, even though the preferential flow phenomena in 2-D heterogeneous porous media dramatically influence the transport of GO, the injected location of GO also has the important effects on its transport. Interestingly, the deposition of GO in 2-D heterogeneous fine sand layer was higher than in corresponding 2-D homogeneous porous media, even though under low ionic strength condition. For all the sand tanks, partly previous retained GO particles that were trapped in the secondary minimum energy well could be instantaneous remobilized from sand grain surface by reducing solution IS, but a portion of GO still retained in 2-D porous media and could not be remobilized. This result demonstrated that extra mechanism also control the transport and deposition behavior of GO particles in porous media. These results reflected the typical transport and retention behavior of GO particles in 2-D porous media. Simulations from the two-dimensional model matched the experimental results well.
Spectacular Rate Enhancement of the Diels-Alder Reaction at the Ionic Liquid/n-Hexane Interface.
Beniwal, Vijay; Manna, Arpan; Kumar, Anil
2016-07-04
The use of the ionic liquid/n-hexane interface as a new class of reaction medium for the Diels-Alder reaction gives large rate enhancements of the order of 10(6) to 10(8) times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H-bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic Association Ion-Selective Electrode Experiment.
ERIC Educational Resources Information Center
Emara, Mostafa M.; And Others
1979-01-01
Describes an experiment that, using a commercially available solid-state selective electrode in conjunction with a pH-meter, determines the stability constants of sodium sulfate while varying the ionic strength of the media using sodium chloride. Detailed reproducible procedures of both the measurements and calculations are described. (BT)
IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE
A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...
The toxicological and regulatory communities are currently exploring the use of the free-ion-activity (FIA) model both alone and in conjunction with the biotic ligand model (BLM) as a means of reducing uncertainties in current methods for assessing metals bioavailability from aqu...
Rare earth metal-containing ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodius, Denis; Mudring, Anja-Verena
As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less
Rare earth metal-containing ionic liquids
Prodius, Denis; Mudring, Anja-Verena
2018-03-07
As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less
Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media
NASA Astrophysics Data System (ADS)
Muniruzzaman, Muhammad; Rolle, Massimo
2016-04-01
Multicomponent ionic interactions have been increasingly recognized as important factors for the displacement of charged species in porous media under both diffusion- [1,2] and advection-dominated flow regimes [3,4]. In this study we investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross-coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also significant differences in the dilution of the distinct ionic plumes, quantified using the flux-related dilution index at the laboratory bench scale [5], were measured at the outflow of the flow-through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow-through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow-through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between the transported ions in the flow-through system. The results of purely forward simulations show a very good agreement with the high-resolution measurements performed at the outlet of the flow-through setup and illustrate the importance of charge effects on pH fronts propagation in porous media. [1] Giambalvo, E. R., C. I. Steefel, A. T. Fisher, N. D. Rosenberg, and C. G. Wheat (2002), Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan de Fuca Ridge, Geochim. Cosmochim. Acta, 66, 1739-1757. [2] Appelo, C. A. J., and P. Wersin (2007), Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in opalinus clay, Environ. Sci. Technol., 41, 5002-5007. [3] Rolle, M., M. Muniruzzaman, C. M. Haberer, and P. Grathwohl (2013), Coulombic effects in advection-dominated transport of electrolytes in porous media: Multicomponent ionic dispersion, Geochim. Cosmochim. Acta, 120, 195-205. [4] Muniruzzaman, M., C. M. Haberer, P. Grathwohl, and M. Rolle (2014), Multicomponent ionic dispersion during transport of electrolytes in heterogeneous porous media: Experiments and model-based interpretation, Geochim. Cosmochim. Acta, 141, 656-669. [5] Rolle, M., G. Chiogna, D. L. Hochstetler, and P. K. Kitanidis (2013), On the importance of diffusion and compound-specific mixing for groundwater transport: An investigation from pore to field scale, J. Contam. Hydrol., 153, 51-68.
Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi
2016-11-01
Erythrocyte swelling in non-ionic sucrose media and the subsequent osmotic lysis are influenced by mechanisms of regulatory volume adjustment and osmotic water permeability. Kinetics of transmembrane water and ion fluxes in varied physiologic states may determine the phenotype of erythrocyte osmotic fragility (EOF) and affect estimates of EOF. Effects of sex, age, late pregnancy (third trimester) and lactation on the haemolysis of Sahel goat erythrocytes incubated in a series of hyposmotic non-ionic sucrose media were investigated. The fragiligram was sigmoidal in 72 (97%) out of 74 goats. Two male (3%) goats with low and high extreme median erythrocyte fragilities (MEF), had non-sigmoidal curves. The mean fragilities at osmolarities of 30-300 mosmol/L of sucrose and the mean osmolarities responsible for 10%-90% haemolysis (CH10-CH90) were not significantly different between males and non-pregnant dry (NPD) females, amongst the age groups and between pregnant or lactating and NPD female goats. The MEF (CH50) of the goats were at osmolarities of 126-252 mosmol/L (median of data: 171 mosmol/L) with a mean of 175.24±16.20 mosmol/L. Therefore, phenotypic homogeneity of EOF occurred with minor deviance, since EOF variables were not differentiated by sex, age, late pregnancy or lactation. Physiologic states of the goat did not affect EOF phenotype in non-ionic sucrose media. Sigmoidal fragility phenotype seemed to be homogeneously conserved by osmoregulatory mechanisms not partitioned by sex, age, late pregnancy or lactation, but a minor non-sigmoidal curve might have occurred due to altered erythrocyte osmotic behaviour that would require further investigation.
Callahan, Michael J; Servaes, Sabah; Lee, Edward Y; Towbin, Alexander J; Westra, Sjirk J; Frush, Donald P
2014-04-01
There are limited data available on the use of i.v. contrast media for CT studies in the pediatric population. The purpose of this study is to determine the practice patterns of i.v. contrast media usage for pediatric CT by members of the Society for Pediatric Radiology (SPR). SPR members were surveyed regarding the use of i.v. contrast media for pediatric CT studies. Questions pertained to information required before administering i.v. contrast media, types of central catheters for injecting i.v. contrast media, injection rates based on angiocatheter size and study type, and management of i.v. contrast media extravasation. The response rate of 6% (88/1545) represented practice patterns of 26% (401/1545) of the SPR membership. Most respondents thought the following clinical information was mandatory before i.v. contrast media administration: allergy to i.v. contrast media (97%), renal insufficiency (97%), current metformin use (72%), significant allergies (61%), diabetes (54%), and asthma (52%). Most administered i.v. contrast media through nonimplanted central venous catheters (78%), implanted venous ports (78%), and peripherally inserted central catheters (72%). The most common maximum i.v. contrast media injection rates were 5.0 mL/s or greater for a 16-gauge angiocatheter, 4.0 mL/s for an 18-gauge angiocatheter, 3.0 mL/s for a 20-gauge angiocatheter, and 2.0 mL/s for a 22-gauge angiocatheter. For soft-tissue extravasation of i.v. contrast media, 95% elevate the affected extremity, 76% use ice, and 45% use heat. The results of this survey illustrate the collective opinion of a subset of SPR members relating to the use of i.v. contrast media in pediatric CT, providing guidelines for clinical histories needed before i.v. contrast media, maximum i.v. contrast injection rates for standard angiocatheters, contrast media injection rates for specific CT studies, and management of i.v. contrast media soft-tissue extravasation.
Smooth deuterated cellulose films for the visualisation of adsorbed bio-macromolecules
Su, Jielong; Raghuwanshi, Vikram S.; Raverty, Warwick; Garvey, Christopher J.; Holden, Peter J.; Gillon, Marie; Holt, Stephen A.; Tabor, Rico; Batchelor, Warren; Garnier, Gil
2016-01-01
Novel thin and smooth deuterated cellulose films were synthesised to visualize adsorbed bio-macromolecules using contrast variation neutron reflectivity (NR) measurements. Incorporation of varying degrees of deuteration into cellulose was achieved by growing Gluconacetobacter xylinus in deuterated glycerol as carbon source dissolved in growth media containing D2O. The derivative of deuterated cellulose was prepared by trimethylsilylation(TMS) in ionic liquid(1-butyl-3-methylimidazolium chloride). The TMS derivative was dissolved in toluene for thin film preparation by spin-coating. The resulting film was regenerated into deuterated cellulose by exposure to acidic vapour. A common enzyme, horseradish peroxidase (HRP), was adsorbed from solution onto the deuterated cellulose films and visualized by NR. The scattering length density contrast of the deuterated cellulose enabled accurate visualization and quantification of the adsorbed HRP, which would have been impossible to achieve with non-deuterated cellulose. The procedure described enables preparing deuterated cellulose films that allows differentiation of cellulose and non-deuterated bio-macromolecules using NR. PMID:27796332
Hamed, Rania; AlJanabi, Reem; Sunoqrot, Suhair; Abbas, Aiman
2017-08-01
The objective of this study was to investigate the effect of the different physiological parameters of the gastrointestinal (GI) fluid (pH, buffer capacity, and ionic strength) on the in vitro release of the weakly basic BCS class II drug quetiapine fumarate (QF) from two once-a-day matrix tablet formulations (F1 and F2) developed as potential generic equivalents to Seroquel ® XR. F1 tablets were prepared using blends of high and low viscosity grades of hydroxypropyl methylcellulose (HPMC K4M and K100LV, respectively), while F2 tablets were prepared from HPMC K4M and PEGylated glyceryl behenate (Compritol ® HD5 ATO). The two formulations attained release profiles of QF over 24 h similar to that of Seroquel ® XR using the dissolution medium published by the Food and Drug Administration (FDA). A series of solubility and in vitro dissolution studies was then carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH, buffer capacity and ionic strength range of the GIT. Solubility studies revealed that QF exhibits a typical weak base pH-dependent solubility profile and that the solubility of QF increases with increasing the buffer capacity and ionic strength of the media. The release profiles of QF from F1, F2 and Seroquel ® XR tablets were found to be influenced by the pH, buffer capacity and ionic strength of the dissolution media to varying degrees. Results highlight the importance of studying the physiological variables along the GIT in designing controlled release formulations for more predictive in vitro-in vivo correlations.
The radiation chemistry of ionic liquids: A review
Mincher, Bruce J.; Wishart, James F.
2014-07-03
Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less
Generation and detection of the cyclohexadienyl radical in phosphonium ionic liquids.
Lauzon, J M; Arseneau, D J; Brodovitch, J C; Clyburne, J A C; Cormier, P; McCollum, B; Ghandi, K
2008-10-21
The formation of the cyclohexadienyl radical, C(6)H(6)Mu, in ionic and molecular solvents has been compared. This is the first time that a muoniated free radical is reported in an ionic liquid. In marked contrast to molecular liquids, free radical generation in ionic liquids is significantly enhanced. Comparison of the hyperfine interactions in the ionic liquid and in molecular solvents and with theoretical calculations, suggests significant and unforeseen solvent interaction with the cyclohexadienyl radical.
Nanoparticles in ionic liquids: interactions and organization.
He, Zhiqi; Alexandridis, Paschalis
2015-07-28
Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.
Rolfe, M; Parmar, A; Hoy, T G; Coakley, W T
2001-01-01
The topology of the cell-cell contact seam formed when normal or pronase pre-treated (PPT) erythrocytes are exposed to wheat germ agglutinin (WGA) in isotonic media of different ionic strengths was examined here. Lectin uptake and cell agglutination were also quantified. Agglutination of normal cells was gradually and significantly inhibited as ionic strength (IS) was reduced from 0.15 (buffered 145 mm NaCl) to 0.105. Agglutination was less inhibited in PPT cells, even when IS was reduced to 0.09. Cell contact seams formed during agglutination showed patterns of localized contacts. The scale of the patterns, i.e. the average lateral separation distance of contact regions, was 0.62 microm for normal cells and was significantly shorter, at 0.44 microm, for PPT cells at an IS of 0.15. The scale increased significantly for both cell types when the IS was reduced to 0.09. Flow cytometry measurements showed that WGA uptake by normal cells increased slightly, whilst that for PPT cells was unchanged, as IS was decreased from 0.15 to 0.09. The results imply that, whilst ionic strength change does not exert a strong influence on intermolecular WGA-ligand binding, physico-chemical modification of the interaction between cells modulates not only the extent and progression of the biospecific lectin-induced cell-cell agglutination but also the topology of the contact seam. The IS dependence of contact separation in WGA-agglutinated cells is contrasted here with that reported for cells adhering in dextran solutions. The influence of IS change and pronase pre-treatment on contact pattern are consistent with predictions, from interfacial instability theory, of punctuate thinning of the aqueous layer separating bilayer membranes in close apposition.
One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes
Gabitto, Jorge; Tsouris, Costas
2018-01-19
Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less
One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabitto, Jorge; Tsouris, Costas
Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less
Magi Meconi, Giulia; Ballard, Nicholas; Asua, José M; Zangi, Ronen
2017-12-06
Although surfactants are known to play a vital role in polymerization reactions carried out in dispersed media, many aspects of their use are poorly understood, perhaps none more so than the vastly different action of ionic and nonionic surfactants in emulsion polymerization. In this work, we combine experimental measurements of emulsion polymerization of styrene with atomistic molecular dynamics simulations to better understand the behavior of surfactants at monomer/polymer-water interfaces. In a batch emulsion polymerization of styrene, the nonionic surfactant Disponil AFX 1080 leads to two nucleation periods, in contrast to the behavior observed for the ionic surfactant SDS. This can be explained by the absorption of the nonionic surfactant into the organic phase at the early stages of the polymerization reaction which is then released as the reaction progresses. Indeed, we find that the partition coefficient of the surfactant between the organic phase and water increases with the amount of monomer in the former, and preferential partitioning is detected to organic phases containing at least 55% styrene. Results from molecular dynamics simulations confirm that spontaneous dissolution of the non-ionic surfactant into a styrene-rich organic phase occurs above a critical concentration of the surfactant adsorbed at the interface. Above this critical concentration, a linear correlation between the amount of surfactant adsorbed at the interface and that absorbed inside the organic phase is observed. To facilitate this absorption into a completely hydrophobic medium, water molecules accompany the intruding surfactants. Similar simulations but with the ionic surfactant instead did not result in any absorption of the surfactant into a neat styrene phase, likely because of its strongly hydrophilic head group. The unusual partitioning behavior of nonionic surfactants explains a number of observable features of emulsion polymerization reactions which use nonionic surfactants and should help with future development of processes for improved control over polymerization.
[Hypersensitivity reaction to radio contrast media: diagnosis, prevention and treatment].
Mahlab-Guri, Keren; Herskovitz, Pearl; Sthoeger, Zev
2012-07-01
More than 70 million radiographic examinations with radio contrast media are performed worldwide each year. The incidence of adverse reactions to radio contrast media is 5-13%. Adverse reactions include hypersensitivity reactions, chemotoxic reactions and renal toxicity. Hypersensitivity reactions to radio contrast media range from mild pruritus to life-threatening emergency. The differential diagnosis between hypersensitivity reaction to radio contrast media and chemotoxic reaction is challenging. The incidence of chemotoxic reactions is mainly affected by the chemical structure of the radio contrast media and the rate of infusion. The incidence of hypersensitivity radio contrast media reaction is affected by age and by the presence of asthma and other atopic diseases. The diagnosis of hypersensitivity reaction to radio contrast media is based on clinical manifestations. The additional value of laboratory tests is limited and questionable. In case of hypersensitivity radio contrast reaction, the infusion should be stopped immediately, airways should be protected and fluids, oxygen and drugs should be given. Prophylactic treatment before its administration may prevent hypersensitivity reactions to radio contrast media.
Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.
Voortman, Thomas P; Chiechi, Ryan C
2015-12-30
This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers.
Iglesias, Daniel; Senokos, Evgeny; Alemán, Belén; Cabana, Laura; Navío, Cristina; Marcilla, Rebeca; Prato, Maurizio; Vilatela, Juan J; Marchesan, Silvia
2018-02-14
The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.
Tepetam, Fatma Merve; Çiftaslan, Nezihe; Oruç, Özlem; Duman, Dildar; Ağca, Meltem; Bulut, İsmet; Çolakoğlu, Bahattin
2016-08-01
Previous hypersensitivity reactions to contrast media (CM), atopy, atopic disease, drug allergy, and age (20-29 or >55) are risk factors for CM hypersensitivity reactions. Our aim was to evaluate whether these risk factors should prompt skin testing for diagnosing CM allergy. The study was conducted among patients referred for allergy testing with CM. Skin tests were performed with non ionic or gadolinium CM, recommended by a radiologist. After completion of tests patients were telephonically queried on their symptoms of reactions. 151 risk patients (53 men, 98 women; mean age 55.2) were included in the study. Only 13 (9 %) had a history of hypersensitivity reaction to CM. Compared with the other patients, atopy was significantly more common in patients with a history of CM hypersensitivity reactions. Female gender and mean age were also higher, but not significant. All of the tests with CMs were negative. Only one patient reported urticaria within 1-2 min after administration of CM (telephonically). Atopy can increase the risk of CM allergy. However, skin tests with CMs may be inefficient, unnecessary, and time-consuming, except in cases with a history of CM allergy. Premedication protocols appear to be beneficial in patients with a history of CM allergy and cannot be recommended for patients with well-controlled asthma, rhinitis, atopic dermatitis or history of drug allergy.
Oliveira, Filipe S; Cabrita, Eurico J; Todorovic, Smilja; Bernardes, Carlos E S; Lopes, José N Canongia; Hodgson, Jennifer L; MacFarlane, Douglas R; Rebelo, Luís P N; Marrucho, Isabel M
2016-01-28
In this work, we explore the interactions between the ionic liquid 1-ethyl-3-methylimidazolim acetate and different inorganic salts belonging to two different cation families, those based on ammonium and others based on sodium. NMR and Raman spectroscopy are used to screen for changes in the molecular environment of the ions in the ionic liquid + inorganic salt mixtures as compared to pure ionic liquid. The ion self-diffusion coefficients are determined from NMR data, allowing the discussion of the ionicity values of the ionic liquid + inorganic salt mixtures calculated using different methods. Our data reveal that preferential interactions are established between the ionic liquid and ammonium-based salts, as opposed to sodium-based salts. Computational calculations show the formation of aggregates between the ionic liquid and the inorganic salt, which is consistent with the spectroscopic data, and indicate that the acetate anion of the ionic liquid establishes preferential interactions with the ammonium cation of the inorganic salts, leaving the imidazolium cation less engaged in the media.
Several newer strategies, such as solvent-free (dry media), solid-supported with and without microwave (MW) irradiation, and mechanochemical mixing (grinding); and the use of room temperature ionic liquids, supercritical carbon dioxide, and water as reaction media that can be com...
Ionic liquid electrolytes for dye-sensitized solar cells.
Gorlov, Mikhail; Kloo, Lars
2008-05-28
The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.
Ionic-liquid materials for the electrochemical challenges of the future.
Armand, Michel; Endres, Frank; MacFarlane, Douglas R; Ohno, Hiroyuki; Scrosati, Bruno
2009-08-01
Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
Ionic liquids and their solid-state analogues as materials for energy generation and storage
NASA Astrophysics Data System (ADS)
Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie
2016-02-01
Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.
Ionic-liquid materials for the electrochemical challenges of the future
NASA Astrophysics Data System (ADS)
Armand, Michel; Endres, Frank; Macfarlane, Douglas R.; Ohno, Hiroyuki; Scrosati, Bruno
2009-08-01
Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
Akaighe, Nelson; Depner, Sean W; Banerjee, Sarbajit; Sohn, Mary
2013-07-01
The transport and deposition of silver nanoparticles (AgNPs) formed from Ag(+) reduction by Suwannee River Humic Acid (SRHA) and Suwannee River Natural Organic Matter (SRNOM) utilizing a silica matrix is reported. The morphology and stability of the AgNPs was analyzed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. The percentage conversion of the initial [Ag(+)] to [AgNPs] was determined from a combination of atomic absorption (AAS) and UV-Vis spectroscopy, and centrifugation techniques. The results indicate higher AgNP transport and consequently low deposition in the porous media at basic pH conditions and low ionic strength. However, at low acidic pH and high ionic strength, especially with the divalent metallic cations, the mobility of the AgNPs in the porous media was very low, most likely due to NP aggregation. Overall, the results suggest the potential for AgNP contamination of subsurface soils and groundwater aquifers is mostly dependent on their aggregation state, controlled by the soil water and sediment ionic strength and pH. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chen, Xing; Tume, Ron K; Xu, Xinglian; Zhou, Guanghong
2017-10-13
The qualitative characteristics of meat products are closely related to the functionality of muscle proteins. Myofibrillar proteins (MPs), comprising approximately 50% of total muscle proteins, are generally considered to be insoluble in solutions of low ionic strength (< 0.2 M), requiring high concentrations of salt (> 0.3 M) for solubilization. These soluble proteins are the ones which determine many functional properties of meat products, including emulsification and thermal gelation. In order to increase the utilization of meat and meat products, many studies have investigated the solubilization of MPs in water or low ionic strength media and determining their functionality. However, there still remains a lack of systematic information on the functional properties of MPs solubilized in this manner. Hence, this review will explore some typical techniques that have been used. The main procedures used for their solubilization, the fundamental principles and their functionalities in water (low ionic strength medium) are comprehensively discussed. In addition, advantages and disadvantages of each technique are summarized. Finally, future considerations are presented to facilitate progress in this new area and to enable water soluble muscle MPs to be utilized as novel meat ingredients in the food industry.
Renal excretion of water-soluble contrast media after enema in the neonatal period.
Kim, Hee Sun; Je, Bo-Kyung; Cha, Sang Hoon; Choi, Byung Min; Lee, Ki Yeol; Lee, Seung Hwa
2014-08-01
When abdominal distention occurs or bowel obstruction is suspected in the neonatal period, a water-soluble contrast enema is helpful for diagnostic and therapeutic purposes. The water-soluble contrast medium is evacuated through the anus as well as excreted via the kidneys in some babies. This study was designed to evaluate the incidence of renal excretion after enemas using water-soluble contrast media and presume the causes. Contrast enemas using diluted water-soluble contrast media were performed in 23 patients under 2 months of age. After the enema, patients were followed with simple abdominal radiographs to assess the improvement in bowel distention, and we could also detect the presence of renal excretion of contrast media on the radiographs. Reviewing the medical records and imaging studies, including enemas and consecutive abdominal radiographs, we evaluated the incidence of renal excretion of water-soluble contrast media and counted the stay duration of contrast media in urinary tract, bladder, and colon. Among 23 patients, 12 patients (52%) experienced the renal excretion of water-soluble contrast media. In these patients, stay-in-bladder durations of contrast media were 1-3 days and stay-in-colon durations of contrast media were 1-10 days, while stay-in-colon durations of contrast media were 1-3 days in the patients not showing renal excretion of contrast media. The Mann-Whitney test for stay-in-colon durations demonstrated the later evacuation of contrast media in the patients with renal excretion of contrast media (p = 0.07). The review of the medical records showed that 19 patients were finally diagnosed as intestinal diseases, including Hirschsprung's disease, meconium ileum, meconium plug syndrome, and small bowel atresia or stenosis. Fisher's exact test between the presence of urinary excretion and intestinal diseases indicated a statistically significant difference (p = 0.04). The intestinal diseases causing bowel obstruction may increase the water-soluble contrast media's dwell time in the bowel and also increase urinary excretion. Copyright © 2013. Published by Elsevier B.V.
Jacquemin, Johan; Feder-Kubis, Joanna; Zorębski, Michał; Grzybowska, Katarzyna; Chorążewski, Mirosław; Hensel-Bielówka, Stella; Zorębski, Edward; Paluch, Marian; Dzida, Marzena
2014-02-28
During this research, we present a study on the thermal properties, such as the melting, cold crystallization, and glass transition temperatures as well as heat capacities from 293.15 K to 323.15 K of nine in-house synthesized protic ionic liquids based on the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate ([H-Im-C1OC(n)][Sal]) with n = 3-11. The 3D structures, surface charge distributions and COSMO volumes of all investigated ions are obtained by combining DFT calculations and the COSMO-RS methodology. The heat capacity data sets as a function of temperature of the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate are then predicted using the methodology originally proposed in the case of ionic liquids by Ge et al. 3-(Alkoxymethyl)-1H-imidazol-3-ium salicylate based ionic liquids present specific heat capacities higher in many cases than other ionic liquids that make them suitable as heat storage media and in heat transfer processes. It was found experimentally that the heat capacity increases linearly with increasing alkyl chain length of the alkoxymethyl group of 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate as was expected and predicted using the Ge et al. method with an overall relative absolute deviation close to 3.2% for temperatures up to 323.15 K.
NASA Astrophysics Data System (ADS)
Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto
2018-06-01
We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.
Niedz, Randall P.
2016-01-01
ARS-Media for Excel is an ion solution calculator that uses “Microsoft Excel” to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Excel’s Solver add-on solves the linear programming equation to generate a recipe. Calculating a mixture of salts to generate exact solutions of complex ionic mixtures is required for at least 2 types of problems– 1) formulating relevant ecological/biological ionic solutions such as those from a specific lake, soil, cell, tissue, or organ and, 2) designing ion confounding-free experiments to determine ion-specific effects where ions are treated as statistical factors. Using ARS-Media for Excel to solve these two problems is illustrated by 1) exactly reconstructing a soil solution representative of a loamy agricultural soil and, 2) constructing an ion-based experiment to determine the effects of substituting Na+ for K+ on the growth of a Valencia sweet orange nonembryogenic cell line. PMID:27812202
Niedz, Randall P
2016-01-01
ARS-Media for Excel is an ion solution calculator that uses "Microsoft Excel" to generate recipes of salts for complex ion mixtures specified by the user. Generating salt combinations (recipes) that result in pre-specified target ion values is a linear programming problem. Excel's Solver add-on solves the linear programming equation to generate a recipe. Calculating a mixture of salts to generate exact solutions of complex ionic mixtures is required for at least 2 types of problems- 1) formulating relevant ecological/biological ionic solutions such as those from a specific lake, soil, cell, tissue, or organ and, 2) designing ion confounding-free experiments to determine ion-specific effects where ions are treated as statistical factors. Using ARS-Media for Excel to solve these two problems is illustrated by 1) exactly reconstructing a soil solution representative of a loamy agricultural soil and, 2) constructing an ion-based experiment to determine the effects of substituting Na+ for K+ on the growth of a Valencia sweet orange nonembryogenic cell line.
The clinical application of radiopharmaceuticals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeds, N.E.
1990-11-01
This article highlights the choices and the arguments in the selection of appropriate contrast materials in radiological examinations--nonionic versus ionic contrast material--and aims to assist the physician in decision-making. Various authors have raised questions concerning the proposed advantages of nonionic contrast material. However, studies in low risk patients have shown more complications with the use of ionic contrast than nonionic contrast materials; this is the important group of patients since in high risk patients nonionics are used almost exclusively. The important factor that increases the controversy is cost, which is significant since nonionic agents cost 10 to 15 times moremore » than ionic agents in the USA. Thus, cost-benefit considerations are important because price sensitivity and cost may determine fund availability for equipment or materials that also may be necessary or important in improving patient care. In magnetic resonance imaging (MRI), as in computed tomography (CT), the use of contrast material has improved diagnostic accuracy and the ability to reveal lesions not otherwise easily detected in brain and spinal cord imaging. These include separating scan from disc, meningitis, meningeal spread of tumour, tumour seeding, small metastases, intracanalicular tumours, separating major mass from oedema, determining bulk tumour size and ability to demonstrate blood vessels so dynamic circulatory changes may be revealed. 33 refs.« less
Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank
2017-09-25
Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.
NASA Astrophysics Data System (ADS)
Lo, Ching-Jung; Yang, Pei-Ying; Chao, Tsi-Chian; Tu, Shu-Ju
2015-06-01
In the treatment planning of radiation therapy, patients may be administrated with contrast media in CT scanning to assist physicians for accurate delineation of the target or organs. However, contrast media are not used in patients during the treatment delivery. In particular, contrast media contain materials with high atomic numbers and dosimetric variations may occur between scenarios where contrast media are present in treatment planning and absent in treatment delivery. In this study we evaluate the effect of contrast media on the dosimetry and biological consequence. An analytical phantom based on AAPM TG 119 and five sets of CT images from clinical patients are included. Different techniques of treatment planning are considered, including 1-field AP, 2-field AP+PA, 4-field box, 7-field IMRT, and RapidArc. RapidArc is a recent technique of volumetric modulated arc therapy and is used in our study of contrast media in clinical scenarios. The effect of RapidArc on dosimetry and biological consequence for administration of contrast media in radiotherapy is not discussed previously in literature. It is shown that dose difference is reduced as the number of external beams is increased, suggesting RapidArc may be favored to be used in the treatment planning enhanced by contrast media. Linear trend lines are fitted for assessment of percent dose differences in the planning target volume versus concentrations of contrast media between plans where contrast media are present and absent, respectively.
Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals.
Ståhlberg, Tim; Fu, Wenjing; Woodley, John M; Riisager, Anders
2011-04-18
The synthesis of 5-(hydroxymethyl)furfural (HMF) in ionic liquids is a field that has grown rapidly in recent years. Unique dissolving properties for crude biomass in combination with a high selectivity for HMF formation from hexose sugars make ionic liquids attractive reaction media for the production of chemicals from renewable resources. A wide range of new catalytic systems that are unique for the transformation of glucose and fructose to HMF in ionic liquids has been found. However, literature examples of scale-up and process development are still scarce, and future research needs to complement the new chemistry with studies on larger scales in order to find economically and environmentally feasible processes for HMF production in ionic liquids. This Minireview surveys important progress made in catalyst development for the synthesis of HMF in ionic liquids, and proposes future research directions in process technology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frenzel, Thomas; Lawaczeck, Rüdiger; Taupitz, Matthias; Jost, Gregor; Lohrke, Jessica; Sieber, Martin A; Pietsch, Hubertus
2015-09-01
Over the last 120 years, the extensive advances in medical imaging allowed enhanced diagnosis and therapy of many diseases and thereby improved the quality of life of many patient generations. From the beginning, all technical solutions and imaging procedures were combined with dedicated pharmaceutical developments of contrast media, to further enhance the visualization of morphology and physiology. This symbiosis of imaging hardware and contrast media development was of high importance for the development of modern clinical radiology. Today, all available clinically approved contrast media fulfill the highest requirements for clinical safety and efficacy. All new concepts to increase the efficacy of contrast media have also to consider the high clinical safety standards and cost of goods of current marketed contrast media. Nevertheless, diagnostic imaging will contribute significantly to the progresses in medicine, and new contrast media developments are mandatory to address the medical needs of the future.
Myocardial ischemia during intravenous DSA in patients with cardiac disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hesselink, J.R.; Hayman, L.A.; Chung, K.J.
1984-12-01
A prospective study was performed for 48 patients who had histories of angina and were referred for digital subtraction angiography (DSA). Cardiac disease was graded according to the American Heart Association (AHA) functional classification system. Each patient received 2-5 injections of 40-ml diatrizoate meglumine and diatrizoate sodium at 15 ml per second in the superior vena cava. Of the 28 patients in functional Classes I or II, 11% had angina and 32% had definite ischemic ECG changes after the DSA injections. Of the patients in functional Class III 63% had angina, and 58% had definite ischemic ECG changes after themore » injections. These observed cardiac effects following bolus injections of hypertonic ionic contrast media indicate that special precautions are necessary when performing intravenous DSA examinations on this group of high risk patients.« less
Hemodynamic and tubular changes induced by contrast media.
Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico
2014-01-01
The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.
Hemodynamic and Tubular Changes Induced by Contrast Media
Caiazza, Antonella; Russo, Luigi; Russo, Domenico
2014-01-01
The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510
Fröhlich, J M; Kubik-Huch, R A
2013-01-01
The use and the safety of radiographic, MR- or ultrasound contrast media in the diagnostic work-up of pregnant or lactating patients is a frequently discussed question. As only sparse clinical data is available, a careful benefit-risk assessment must contain physico-chemical properties, preclinical data including teratogeneity and embryotoxicity, as well as maternal and foetal exposure. With consideration to the individual risks, iodinated contrast media, macrocyclic MR contrast media with increased stability or sulphur hexafluoride ultrasound contrast media may, if clinically justified, be administered in the smallest possible doses throughout pregnancy. After parental administration of an iodinated contrast medium after the 12th week of pregnancy, the neonate's thyroidal function should be checked during the first week after birth. After parental administration of iodinated, stable macrocyclic, gadolinium or ultrasound contrast media, lactation can be continued normally. In any case, contrast media should be used with caution and only if the benefits outweigh the risk. © Georg Thieme Verlag KG Stuttgart · New York.
Jinzaki, Masahiro; Kitagawa, Kakuya; Tsai, I-Chen; Chan, Carmen; Yu, Wei; Yong, Hwan Seok; Choi, Byoung Wook
2010-12-01
The use of contrast media for cardiac imaging becomes increasing as the widespread of cardiac CT and cardiac MR. A radiologist needs to carefully consider the indication and the injection protocol of contrast media to be used as well as the possibility of adverse effect. There are several guidelines for contrast media in western countries. However, these are focusing the adverse effect of contrast media. The Asian Society of Cardiovascular Imaging, the only society dedicated to cardiovascular imaging in Asia, formed a Working Group and created a guideline, which summarizes the integrated knowledge of contrast media for cardiac imaging. In cardiac imaging, coronary artery evaluation is feasible by non-contrast MR angiography, which can be an alternative examination in high risk patients for the use of iodine contrast media. Furthermore, the body habitus of Asian patients is usually smaller than that of their western counterparts. This necessitates modifications in the injection protocol and in the formula for calculation of estimated glomerular filtration rate. This guideline provided fundamental information for the use of contrast media for Asian patients in cardiac imaging.
Kitagawa, Kakuya; Tsai, I-Chen; Chan, Carmen; Yu, Wei; Yong, Hwan Seok; Choi, Byoung Wook
2010-01-01
The use of contrast media for cardiac imaging becomes increasing as the widespread of cardiac CT and cardiac MR. A radiologist needs to carefully consider the indication and the injection protocol of contrast media to be used as well as the possibility of adverse effect. There are several guidelines for contrast media in western countries. However, these are focusing the adverse effect of contrast media. The Asian Society of Cardiovascular Imaging, the only society dedicated to cardiovascular imaging in Asia, formed a Working Group and created a guideline, which summarizes the integrated knowledge of contrast media for cardiac imaging. In cardiac imaging, coronary artery evaluation is feasible by non-contrast MR angiography, which can be an alternative examination in high risk patients for the use of iodine contrast media. Furthermore, the body habitus of Asian patients is usually smaller than that of their western counterparts. This necessitates modifications in the injection protocol and in the formula for calculation of estimated glomerular filtration rate. This guideline provided fundamental information for the use of contrast media for Asian patients in cardiac imaging. PMID:20931289
Nelson, B B; Goodrich, L R; Barrett, M F; Grinstaff, M W; Kawcak, C E
2017-07-01
The use of contrast media in computed tomography (CT) and magnetic resonance imaging (MRI) is increasing in horses. These contrast-enhanced imaging techniques provide improved tissue delineation and evaluation, thereby expanding diagnostic capabilities. While generally considered safe, not all contrast media exhibit the same safety profiles. The safety of contrast media use and descriptions of adverse events occurring in horses are sparsely reported. This review summarises the reported evidence of contrast media use and adverse events that occur in horses, with added contribution from other veterinary species and studies in man for comparison. This comprehensive data set empowers equine clinicians to develop use and monitoring strategies when working with contrast media. Finally, it summarises the current state-of-the-art and highlights the potential applications of contrast-enhanced CT and MRI for assessment of diseased or injured equine tissues, as well as (patho)physiological processes. © 2017 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Orellana, Sandra; Soto, César; Toral, M. Inés
2010-01-01
The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.
Endothelial safety of radiological contrast media: why being concerned.
Scoditti, Egeria; Massaro, Marika; Montinari, Maria Rosa
2013-01-01
Iodinated radiocontrast media have been the most widely used pharmaceuticals for intravascular administration in diagnostic and interventional angiographic procedures. Although they are regarded as relatively safe drugs and vascular biocompatibility of contrast media has been progressively improved, severe adverse reactions may occur, among which acute nephropathy is one of the most clinically significant complications after intravascular administration of contrast media and a powerful predictor of poor early and long-term outcomes. Since radiocontrast media are given through the arterial or the venous circulation in vascular procedures, morphological and functional changes of the microvascular and macrovascular endothelial cells substantially contribute to the pathogenesis of organ-specific and systemic adverse reactions of contrast media. Endothelial toxicity of contrast media seems to be the result of both direct proapoptotic effects and morphological derangements, as well as endothelial dysfunction and induction of inflammation, oxidative stress, thrombosis, and altered vasomotor balance, with predominant vasoconstrictive response in atherosclerotic coronary arteries and kidney microcirculation. Further understanding of pathogenetic mechanisms underlying contrast media-induced adverse reactions in cellular targets, including endothelial cells, will hopefully lead to the development of novel preventive strategies appropriately curbing the pathogenesis of contrast media vasotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.
Investigation of X-ray permeability of surgical gloves coated with different contrast agents
Kayan, Mustafa; Yaşar, Selçuk; Saygın, Mustafa; Yılmaz, Ömer; Aktaş, Aykut Recep; Kayan, Fatmanur; Türker, Yasin; Çetinkaya, Gürsel
2016-01-01
Objective: We aimed to investigate the effectiveness and radiation protection capability of latex gloves coated with various contrast agents as an alternative to lead gloves. Methods: The following six groups were created to evaluate the permeability of X-ray in this experimental study: lead gloves, two different non-ionic contrast media (iopromide 370/100 mg I/mL and iomeprol 400/100 mg I/mL), 10% povidone–iodine (PV–I), 240/240 g/mL barium sulphate and a mixture of equal amounts of all contrast agents. A radiation dose detector was placed in coated latex gloves for each one. The absorption values of radiation from latex gloves coated with various contrast agents were measured and compared with the absorption of radiation from lead gloves. This study was designed as an ‘experimental study’. Results: The mean absorption value of X-ray from lead gloves was 3.0±0.08 µG/s. The mean absorption values of X-ray from latex gloves coated with various contrast agents were 3.7±0.09 µG/s (iopromide 370/100 mg I/mL), 3.6±0.09 µG/s (iomeprol 400/100 mg I/mL), 3.7±0.04 µG/s (PV–I), 3.1±0.07 µG/s (barium sulphate) and 3.8±0.05 µG/s (mixture of all contrast agents). Latex gloves coated with barium sulphate provided the best radiation absorption compared with latex gloves coated with other radiodense contrast agents. Conclusion: Latex gloves coated with barium sulphate may provide protection equivalent to lead gloves. PMID:26680548
NASA Astrophysics Data System (ADS)
Xueyan, L.; Gao, B.; Sun, Y.; Wu, J.
2017-12-01
Perfluorooctanoic acid (PFOA) has been used in a wide variety of industrial and consumer product applications. PFOA has been detected around the world at ng/L to μg/L levels in groundwater, and at ng/g levels in soil.The physicochemical properties of porous media were proven to play pivotal roles in determining the transport behavior of various pollutants. It is anticipated that physicochemical properties of porous media will strongly influence the transport behavior of PFOA. In addition, previous investigations have revealed that input concentration significantly influence the transport behavior of nanoparticles and antibiotics. Thus, this study was designed experimentally and fundamentally to gain insight into transport and retention of PFOA in various porous medias at different input concentrations, solution IS and cation type. Unlike in quartz sand porous media, the BTCs in limestone porous media exhibited increasing retention rate and high degree of tailing in limestone porous media. Results showed that higher relative retention occurred in limestone porous media than in quartz sand porous media under the same solution chemistry. This result was attributed to the less negative zeta-potentials, rougher surface and larger specific surface area, and the presence of hydroxyl groups and organic matters of limestone grains. Higher ionic strength and Ca2+ had little impact on the mobility of PFOA in quartz sand porous media, but significantly enhanced the retention of PFOA in limestone porous media. The difference is likely due to the compression of the electrical double layer, and the surface-charge neutralization and cation-bridging effect of Ca2+. Higher input concentration resulted in lower relative PFOA retention in limestone porous media, but the influence were insignificant in quartz sand porous media. This effect is likely because attachment sites in limestone responced to the variety of input concentration differently than quartz.
Mu, Bin; Lu, Chunyin; Liu, Peng
2011-02-01
The disintegration-controllable stimuli-responsive polyelectrolyte multilayer microcapsules have been fabricated via the covalent layer-by-layer assembly between the amino groups of chitosan (CS) and the aldehyde groups of the oxidized sodium alginate (OSA) onto the sacrificial templates (polystyrene sulfonate, PSS) which was removed by dialysis subsequently. The covalent crosslinking bonds of the multilayer microcapsules were confirmed by FTIR analysis. The TEM analysis showed that the diameter of the multilayer microcapsules was <200nm. The diameter of the multilayer microcapsules decreased with the increasing of the pH values or the ionic strength. The pH and ionic strength dual-responsive multilayer microcapsules were stable in acidic and neutral media while they could disintegrate only at strong basic media. Copyright © 2010 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...
NASA Astrophysics Data System (ADS)
Morales, V. L.; Gao, B.; Steenhuis, T. S.
2008-12-01
Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column experiments to obtain effluent breakthrough data, in-situ visualization of internal processes with bright field microscopy, batch adsorption measurements, and changes in hydrophobic interaction energy of colloid and media surfaces for realistic aqueous ionic strength and pH ranges. Such experimental results are expected to provide sufficient evidence to corroborate our speculations that under natural soil water conditions, humic acids may greatly contribute to the immobilization of colloidal particles.
MRI and CT contrast media extravasation: A systematic review.
Heshmatzadeh Behzadi, Ashkan; Farooq, Zerwa; Newhouse, Jeffery H; Prince, Martin R
2018-03-01
This systematic review combines data from multiple papers on contrast media extravasation to identify factors contributing to increased extravasation risk. Data were extracted from 17 papers reporting 2191 extravasations in 1,104,872 patients (0.2%) undergoing computed tomography (CT) or magnetic resonance imaging (MRI). Extravasation rates were 0.045% for gadolinium-based contrast agents (GBCA) and nearly 6-fold higher, 0.26% for iodinated contrast agents. Factors associated with increased contrast media extravasations included: older age, female gender, using an existing intravenous (IV) instead of placing a new IV in radiology, in-patient status, use of automated power injection, high injection rates, catheter location, and failing to warm up the more viscous contrast media to body temperature. Contrast media extravasation is infrequent but nearly 6 times less frequent with GBCA for MRI compared with iodinated contrast used in CT.
Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B; Georgakilas, Vasilios; Giannelis, Emmanuel P
2010-09-01
We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine (liquid-like) and the control (solid-like).
NASA Astrophysics Data System (ADS)
Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.
2010-09-01
We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like).
Co-transport of gold nanospheres with single-walled carbon nanotubes in saturated porous media.
Afrooz, A R M Nabiul; Das, Dipesh; Murphy, Catherine J; Vikesland, Peter; Saleh, Navid B
2016-08-01
Porous media transport of engineered nanomaterials (ENMs) is typically assessed in a controlled single-particulate environment. Presence of a secondary particle (either natural or engineered) in the natural environment though likely, is rarely taken into consideration in assessing ENMs' transport behavior. This study systematically assesses the effect of a secondary ENM (i.e., pluronic acid modified single-walled carbon nanotubes, PA-SWNTs) on a primary particle (i.e., gold nanospheres, AuNSs) transport through saturated porous media under a wide range of aquatic conditions (1-100 mM NaCl). AuNS hetero-dispersions (i.e., with PA-SWNTs) are transported through saturated sand columns, and the transport behavior is compared to AuNS-only homo-dispersion cases, which display classical ionic strength-dependent behavior. AuNS hetero-dispersion, however, is highly mobile with little to no ionic strength-dependent effects. This study also assesses the role of pre-coating of the collectors with PA-SWNTs on AuNSs' mobility, thereby elucidating the role played by the order of introduction of the secondary particles. Pre-existence of the secondary particles in the porous media shows enhanced filtration of primary AuNSs. However, the presence of natural organic matter (NOM) slightly increases AuNS mobility through PA-SWNT coated sand at 10 mM ionic strength. The study results demonstrate that the presence and order of addition of the secondary particles strongly influence primary particles' mobility. Thus ENMs can demonstrate facilitated transport or enhanced removal, depending on the presence of the secondary particulate matter and background solution chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen
2013-01-01
Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434
Dubinin, M V; Vedernikov, A A; Khoroshavina, E I; Samartsev, V N
2014-06-01
In liver mitochondria loaded with Ca2+ or Sr(2+), α,ω-hexadecanedioic acid (HDA) can induce nonspecific permeability of the inner membrane (mitochondrial pore) by the mechanism insensitive to cyclosporin A (CsA). In this work we studied the effect of ionic strength of the incubation medium on the kinetics of the processes that accompany Ca2+-dependent induction of the mitochondrial pore by fatty acid: organelle swelling, Ca2+ release from the matrix, changes in transmembrane potential (Δψ) and rate of oxygen consumption, and the release of cytochrome c from the intermembrane space. Two basic incubation media were used: sucrose medium and isotonic ionic medium containing KCl without sucrose. We found that 200 μM Ca2+ and 20 μM HDA in the presence of CsA effectively induce high-amplitude swelling of mitochondria both in the case of sucrose and in the ionic incubation medium. In the presence of CsA, mitochondria can rapidly absorb Ca2+ and retain it in the matrix for a while without reducing Δψ. Upon incubation in the ionic medium, mitochondria retain most of the added Ca2+ in the matrix for a short time without reducing the Δψ. In both cases the addition of HDA to the mitochondria 2 min after the introduction of Ca2+ leads to the rapid release of these ions from the matrix and total drop in Δψ. The mitochondrial swelling induced by Ca2+ and HDA in non-ionic medium is accompanied by almost maximal stimulation of respiration. Under the same conditions, but during incubation of mitochondria in the ionic medium, it is necessary to add cytochrome c for significant stimulation of respiration. The mitochondrial swelling induced by Ca2+ and HDA leads to the release of cytochrome c in a larger amount in the case of ionic medium than for the sucrose medium. We conclude that high ionic strength of the incubation medium determines the massive release of cytochrome c from mitochondria and liberates it from the respiratory chain, which leads to blockade of electron transport along the respiratory chain and consequently to disruption of the energy functions of the organelles.
MRI and CT contrast media extravasation
Heshmatzadeh Behzadi, Ashkan; Farooq, Zerwa; Newhouse, Jeffery H.; Prince, Martin R.
2018-01-01
Abstract Background: This systematic review combines data from multiple papers on contrast media extravasation to identify factors contributing to increased extravasation risk. Methods: Data were extracted from 17 papers reporting 2191 extravasations in 1,104,872 patients (0.2%) undergoing computed tomography (CT) or magnetic resonance imaging (MRI). Results: Extravasation rates were 0.045% for gadolinium-based contrast agents (GBCA) and nearly 6-fold higher, 0.26% for iodinated contrast agents. Factors associated with increased contrast media extravasations included: older age, female gender, using an existing intravenous (IV) instead of placing a new IV in radiology, in-patient status, use of automated power injection, high injection rates, catheter location, and failing to warm up the more viscous contrast media to body temperature. Conclusion: Contrast media extravasation is infrequent but nearly 6 times less frequent with GBCA for MRI compared with iodinated contrast used in CT. PMID:29489663
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perriot, Romain; Uberuaga, Blas P.; Zamora, Richard J.
Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd 2Ti 2O 7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivitymore » is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.« less
Mixtures of amino-acid based ionic liquids and water.
Chaban, Vitaly V; Fileti, Eudes Eterno
2015-09-01
New ionic liquids (ILs) involving increasing numbers of organic and inorganic ions are continuously being reported. We recently developed a new force field; in the present work, we applied that force field to investigate the structural properties of a few novel imidazolium-based ILs in aqueous mixtures via molecular dynamics (MD) simulations. Using cluster analysis, radial distribution functions, and spatial distribution functions, we argue that organic ions (imidazolium, deprotonated alanine, deprotonated methionine, deprotonated tryptophan) are well dispersed in aqueous media, irrespective of the IL content. Aqueous dispersions exhibit desirable properties for chemical engineering. The ILs exist as ion pairs in relatively dilute aqueous mixtures (10 mol%), while more concentrated mixtures feature a certain amount of larger ionic aggregates.
Correlation Between Bile Reflux Gastritis and Biliary Excreted Contrast Media in the Stomach.
Hyun, Jong Jin; Yeom, Suk Keu; Shim, Euddeum; Cha, Jaehyung; Choi, Inyoung; Lee, Seung Hwa; Chung, Hwan Hoon; Cha, Sang Hoon; Lee, Chang Hee
This study aimed to evaluate the relationship between biliary excreted contrast media in the stomach and the presence of bile reflux gastritis. Consecutive 111 patients who underwent both gadoxetic acid-enhanced magnetic resonance cholangiography (gadoxetic MRC) and gastric endoscopy were included in this study. We performed a review of the gadoxetic-MRC image sets acquired 60 minutes after intravenous injection of contrast media and endoscopic images. We recorded amount of contrast media in the stomach. The sensitivity, specificity, and accuracy of duodenogastric bile reflux diagnosis were evaluated for the gadoxetic MRC. Statistical analysis was performed using the Fisher exact test and the linear-by-linear association test. Among the 111 patients, 39 had 60-minute delayed images showing the presence of contrast media in the stomach. Of these 39 patients, 13 had bile reflux gastritis and 5 showed bile in the stomach without evidence of erythematous gastritis. Of the 72 patients who did not show contrast media in the stomach, none had bile reflux gastritis and 2 patients showed bile staining in the stomach without evidence of erythematous gastritis. Bile reflux gastritis was significantly more frequent in patients with contrast media in the stomach on gadoxetic MRC than in those without. Patients with high-grade extension of contrast media in the stomach had significantly frequent bile reflux gastritis than did those with low-grade extension. Biliary excreted contrast media in the stomach on 60-minute delayed gadoxetic MRC has a correlation with the presence of bile reflux gastritis on endoscopic examination.
Cova, Maria Assunta; Stacul, Fulvio; Quaranta, Roberto; Guastalla, Pierpaolo; Salvatori, Guglielmo; Banderali, Giuseppe; Fonda, Claudio; David, Vincenzo; Gregori, Massimo; Zuppa, Antonio Alberto; Davanzo, Riccardo
2014-08-01
Breastfeeding is a well-recognised investment in the health of the mother-infant dyad. Nevertheless, many professionals still advise breastfeeding mothers to temporarily discontinue breastfeeding after contrast media imaging. Therefore, we performed this review to provide health professionals with basic knowledge and skills for appropriate use of contrast media. A joint working group of the Italian Society of Radiology (SIRM), Italian Society of Paediatrics (SIP), Italian Society of Neonatology (SIN) and Task Force on Breastfeeding, Ministry of Health, Italy prepared a review of the relevant medical literature on the safety profile of contrast media for the nursing infant/child. Breastfeeding is safe for the nursing infant of any post-conceptional age after administration of the majority of radiological contrast media to the mother; only gadolinium-based agents considered at high risk of nephrogenic systemic fibrosis (gadopentetate dimeglumine, gadodiamide, gadoversetamide) should be avoided in the breastfeeding woman as a precaution; there is no need to temporarily discontinue breastfeeding or to express and discard breast milk following the administration of contrast media assessed as compatible with breastfeeding. Breastfeeding women should receive unambiguous professional advice and clear encouragement to continue breastfeeding after imaging with the compatible contrast media. • Breastfeeding is a well-known investment in the health of the mother-infant dyad. • Breastfeeding is safe after administration of contrast media to the mother. • There is no need to temporarily discontinue breastfeeding following administration of contrast media.
NASA Astrophysics Data System (ADS)
Johnson, William; Farnsworth, Anna; Vanness, Kurt; Hilpert, Markus
2017-04-01
The key element of a mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment) is representation of the nano-scale surface heterogeneity (herein called discrete heterogeneity) that drives colloid attachment under unfavorable conditions. The observed modes of colloid attachment under unfavorable conditions emerge from simulations that incorporate discrete heterogeneity. Quantitative prediction of attachment (and detachment) requires capturing the sizes, spatial frequencies, and other properties of roughness asperities and charge heterodomains in discrete heterogeneity representations of different surfaces. The fact that a given discrete heterogeneity representation will interact differently with different-sized colloids as well as different ionic strengths for a given sized colloid allows backing out representative discrete heterogeneity via comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has been achieved on unfavorable smooth surfaces yielding quantitative prediction of attachment, and qualitative prediction of detachment in response to ionic strength or flow perturbations. Extending this treatment to rough surfaces, and representing the contributions of nanoscale roughness as well as charge heterogeneity is a focus of this talk. Another focus of this talk is the upscaling the pore scale simulations to produce contrasting breakthrough-elution behaviors at the continuum (column) scale that are observed, for example, for different-sized colloids, or same-sized colloids under different ionic strength conditions. The outcome of mechanistic pore scale simulations incorporating discrete heterogeneity and subsequent upscaling is that temporal processes such as blocking and ripening will emerge organically from these simulations, since these processes fundamentally stem from the limited sites available for attachment as represented in discrete heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Easley, Emily A.
Authored article from the media services team talking about Dave Heldebrant's research with CO2 capture with reversible ionic liquids. The article also provides a look into Dave's personal life and why he became a scientist.
Perrin, E; Jackson, M; Grant, R; Lloyd, C; Chinaka, F; Goh, V
2018-02-01
In many centres, a fixed method of contrast-media administration is used for CT regardless of patient body habitus. The aim of this trial was to assess contrast enhancement of the aorta, portal vein, liver and spleen during abdomino-pelvic CT imaging using a weight-adapted contrast media protocol compared to the current fixed dose method. Thirty-nine oncology patients, who had previously undergone CT abdomino-pelvic imaging at the institution using a fixed contrast media dose, were prospectively imaged using a weight-adapted contrast media dose (1.4 ml/kg). The two sets of images were assessed for contrast enhancement levels (HU) at locations in the liver, aorta, portal vein and spleen during portal-venous enhancement phase. The t-test was used to compare the difference in results using a non-inferiority margin of 10 HU. When the contrast dose was tailored to patient weight, contrast enhancement levels were shown to be non-inferior to the fixed dose method (liver p < 0.001; portal vein p = 0.003; aorta p = 0.001; spleen p = 0.001). As a group, patients received a total contrast dose reduction of 165 ml using the weight-adapted method compared to the fixed dose method, with a mean cost per patient of £6.81 and £7.19 respectively. Using a weight-adapted method of contrast media administration was shown to be non-inferior to a fixed dose method of contrast media administration. Patients weighing 76 kg, or less, received a lower contrast dose which may have associated cost savings. A weight-adapted contrast media protocol should be implemented for portal-venous phase abdomino-pelvic CT for oncology patients with adequate renal function (>70 ml/min/1.73 m 2 ). Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Sessa, Maurizio; Rossi, Claudia; Rafaniello, Concetta; Mascolo, Annamaria; Cimmaruta, Daniela; Scavone, Cristina; Fiorentino, Sonia; Grassi, Enrico; Reginelli, Alfonso; Rotondo, Antonio; Sportiello, Liberata
2016-12-01
The current study aims to assess the preventability of the contrast media adverse drug reactions reported through the Campania spontaneous reporting system, identifying the possible limitations emerged in this type of evaluation. All the individual case safety reports validated by the Campania Pharmacovigilance Regional Centre from July 2012 to September 2015 were screened to select those that reported contrast media as suspected drug. Campania Preventability Assessment Committee, in collaboration with clinicians specialized in Radiology, assessed the preventability according to the P-Method, through a case-by-case approach. From July 2012 to September 2015, 13798 cases were inserted by pharmacovigilance managers in the Italian Pharmacovigilance Network database (in the geographical contest of the Campania Region), of which 67 reported contrast media as suspected drug. Five preventable cases were found. The most reported causes for preventability were the inappropriate drug use for the case clinical conditions and the absence of the preventive measure administrated prior to the contrast media administration. Several limitations were found in the evaluation of the critical criteria for the preventability assessment. Educational initiatives will be organized directly to the healthcare professionals involved in the contrast media administration, to promote an appropriate use of the contrast media.
Callahan, Michael J; Talmadge, Jennifer M; MacDougall, Robert D; Kleinman, Patricia L; Taylor, George A; Buonomo, Carlo
2017-04-01
In our experience, questions about the appropriate use of enteric contrast media for pediatric fluoroscopic studies are common. The purpose of this article is to provide a comprehensive review of enteric contrast media used for pediatric fluoroscopy, highlighting the routine use of these media at a large tertiary care pediatric teaching hospital.
Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua
2016-01-15
A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. Copyright © 2015 Elsevier B.V. All rights reserved.
PCE solubilization and mobilization by commercial humic acid
NASA Astrophysics Data System (ADS)
Johnson, William P.; John, W. Wynn
1999-01-01
In this paper, comparison is made of terms describing solubilization of hydrophobic organic compounds (HOC) by dissolved humic substances (DHS) and commercial non-ionic surfactants. This paper examines the ability of a commercial humic acid (Aldrich humic acid) to solubilize and mobilize tetrachlorothene (PCE) residual in porous media. The constant for solubilization of PCE by Aldrich humic acid is shown to be a factor of two to thirty times less than that published for dodecyl alcohol ethoxylate surfactants, showing that Aldrich humic acid is less capable than some non-ionic surfactants at solubilizing residual PCE. The depression of PCE-water interfacial tension in the presence of DHS is shown to be significantly less than published values for a non-ionic surfactant, and surfactant mixtures, indicating that the DHS used in this study is less prone to cause mobilization of non-aqueous phase liquids relative to surfactants. Several possible advantages of DHS use in the remediation of subsurface media contaminated with HOC are described, including the ability of DHS to solubilize HOC irrespective of the DHS concentration, and potential lesser tendency of DHS to depress the interfacial tension between non-aqueous phases and water relative to surfactants (an advantage when mobilization is undesired).
Xu, Jiaxing; Wang, Xinfeng; Hu, Lei; Xia, Jun; Wu, Zhen; Xu, Ning; Dai, Benlin; Wu, Bin
2015-04-01
In this study, microbial communities from chemicals polluted microhabitats were cultured with the addition of imidazolium-based ionic liquid (IL) to enrich for IL-tolerant microbes. A strain of Fusarium oxysporum BN producing cellulase from these enrichments was capable of growing in 10% (w/v) 1-ethyl-3-methylimidazolium phosphinate, much higher than the normal IL concentrations in the lignocellulose regenerated from ILs. Cellulase secreted by the strain showed high resistance to ILs based on phosphate and sulfate radicals, evidencing of a high conformational stability in relevant media. Gratifyingly, F. oxysporum BN can directly convert IL-pretreated rice straw to bioethanol via consolidated bioprocessing (I-CBP). At optimum fermentation condition, a maximum ethanol yield of 0.125 g ethanol g(-1) of rice straw was finally obtained, corresponding to 64.2% of the theoretical yield. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank
2011-01-01
The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situscanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situSTM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situmicroscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situscanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situSTM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situmicroscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM). Electronic supplementary information (ESI) available: In situ image of PEDOT in [HMIm]FAP and in situ studies of PEDOT grown in [EMIm]TFSA and redox behavior of PEDOT. See DOI: 10.1039/c0nr00579g
Nonpharmacological Strategies to Prevent Contrast-Induced Acute Kidney Injury
Eiam-Ong, Somchai
2014-01-01
Contrast-induced AKI (CI-AKI) has been one of the leading causes for hospital-acquired AKI and is associated with independent risk for adverse clinical outcomes including morbidity and mortality. The aim of this review is to provide a brief summary of the studies that focus on nonpharmacological strategies to prevent CI-AKI, including routine identification of at-risk patients, use of appropriate hydration regimens, withdrawal of nephrotoxic drugs, selection of low-osmolar contrast media or isoosmolar contrast media, and using the minimum volume of contrast media as possible. There is no need to schedule dialysis in relation to injection of contrast media or injection of contrast agent in relation to dialysis program. Hemodialysis cannot protect the poorly functioning kidney against CI-AKI. PMID:24795882
Kalaiselvan, Vivekanandan; Sharma, Surbhi; Singh, Gyanendra Nath
2014-09-01
Contrast media are used widely to improve medical imaging. Like all other pharmaceuticals, these agents are not completely devoid of risk, and continuous monitoring of adverse reactions with these agents is important. Spontaneous reporting is the simplest method for understanding the safety profile of pharmaceutical products after their approval. Our objective was to identify the pattern and characteristics of adverse reactions attributed to contrast media in the Indian population reported to the National Coordination Centre for the Pharmacovigilance Programme of India (NCC-PvPI). Individual case safety reports (ICSRs) attributed to contrast media submitted spontaneously to the NCC-PvPI were extracted from the database for July 2010 to September 2013. We analysed these reports for information related to reporter's professional category, patient's age and sex, reporter's diagnosis of the reaction, seriousness of the reaction, type of contrast media exposure, system organ class (SOC) affected (as described in World Health Organization Adverse Reaction Terminology [WHO-ART]) and outcome. Of the total 59,915 ICSRs in the database, 415 (0.7%) were suspected adverse reactions to contrast media; 44 reports were serious, including three fatal cases. The most affected SOCs were skin and appendage disorders, body as a whole-general disorders, gastrointestinal system disorders and respiratory system disorders. Hypersensitivity reactions were reported in the majority of ICSRs. The contrast media with the highest number of reports were iohexol (40.7%), iomeprol (17.8%), iopamidol (12%) and diatrizoate (12%). Most of the reactions to contrast media were allergic-like, and no previously unrecognised adverse reactions were observed in the Indian population. Further data and increased awareness among healthcare professionals is required to signal and prevent the consequences of adverse reactions attributed to contrast media.
In vivo differentiation of complementary contrast media at dual-energy CT.
Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F; Gao, Dong-Wei; Yeh, Benjamin M
2012-10-01
To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase-enhanced CT scan simultaneously in a single examination. Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012.
In Vivo Differentiation of Complementary Contrast Media at Dual-Energy CT
Mongan, John; Rathnayake, Samira; Fu, Yanjun; Wang, Runtang; Jones, Ella F.; Gao, Dong-Wei
2012-01-01
Purpose: To evaluate the feasibility of using a commercially available clinical dual-energy computed tomographic (CT) scanner to differentiate the in vivo enhancement due to two simultaneously administered contrast media with complementary x-ray attenuation ratios. Materials and Methods: Approval from the institutional animal care and use committee was obtained, and National Institutes of Health guidelines for the care and use of laboratory animals were observed. Dual-energy CT was performed in a set of iodine and tungsten solution phantoms and in a rabbit in which iodinated intravenous and bismuth subsalicylate oral contrast media were administered. In addition, a second rabbit was studied after intravenous administration of iodinated and tungsten cluster contrast media. Images were processed to produce virtual monochromatic images that simulated the appearance of conventional single-energy scans, as well as material decomposition images that separate the attenuation due to each contrast medium. Results: Clear separation of each of the contrast media pairs was seen in the phantom and in both in vivo animal models. Separation of bowel lumen from vascular contrast medium allowed visualization of bowel wall enhancement that was obscured by intraluminal bowel contrast medium on conventional CT scans. Separation of two vascular contrast media in different vascular phases enabled acquisition of a perfectly coregistered CT angiogram and venous phase–enhanced CT scan simultaneously in a single examination. Conclusion: Commercially available clinical dual-energy CT scanners can help differentiate the enhancement of selected pairs of complementary contrast media in vivo. © RSNA, 2012 PMID:22778447
Composite fabrication and polymer modification using neoteric solvents
NASA Astrophysics Data System (ADS)
Eastman, Scott A.
This thesis is divided into two research initiatives: The fabrication and study of bulk, co-continuous, cellulosic-polymer composites with the aid of supercritical CO2 (SC CO2); and the study of poly(vinyl alcohol) (PVOH) modification and surface activity in ionic liquids. The first part of this thesis utilizes the tunable solubility, gas-like diffusivity, and omniphilic wettability of SC CO2 to incorporate and subsequently polymerize silicone and poly(enemer) prepolymer mixtures throughout various cellulosic substrates. Chapters two and three investigate the mechanical properties of these composites and demonstrate that nearly every resulting composite demonstrates an improved flexural modulus and energy release rate upon splitting. Fire resistance of these composites was also investigated and indicates that the heat release rate, total heat released, and char yield were significantly improved upon for all silicone composites compared to the untreated cellulosic material. Chapter four looks specifically at aspen-silicone composites for thermo-oxidative studies under applied loads in order to study the effect of silicone incorporation on the failure kinetics of aspen. The aspen-silicone composites tested under these conditions demonstrated significantly longer lifetimes under the same loading and heating conditions compared with untreated aspen. The second part of this thesis focuses on studying ionic liquids as potentially useful solvents and reaction media for poly(vinyl alcohol). Two ionic liquids (1-Butyl-3-methylimidizolium chloride and tributylethylphosphonium diethylphosphate) were found to readily dissolve PVOH. More importantly, we have demonstrated that these solvents can be used as inert reaction media for PVOH modification. Both ionic liquids were found to facilitate the quantitative esterification of PVOH, while only the phosphonium ionic liquid supports the quantitative urethanation of the polymer. In an attempt to tune the surface properties of ionic liquid/polymer solutions, PVOH was also partially esterified with low surface energy substituents. Both surface tension and surface composition of the ionic liquid/polymer solutions can be manipulated by the stoichiometric addition of low surface energy acid chlorides. This work on the modification of PVOH can be directly applied to the modification of polysaccharides such as cellulose which could have important implications from a sustainability and energy standpoint.
Quality evaluation of radiographic contrast media in large-volume prefilled syringes and vials.
Sendo, T; Hirakawa, M; Yaginuma, M; Aoyama, T; Oishi, R
1998-06-01
The authors compared the particle contaminations of radiographic contrast media packaged in large-volume prefilled syringes and vials. Particle counting was performed for four contrast media packaged in large-volume prefilled syringes (iohexol, ioversol, ioversol for angiography, and ioxaglate) and three contrast media packaged in vials (iohexol, ioversol, and ioxaglate). X-ray emission spectrometry was performed to characterize the individual particles. The amount of silicone oil in the syringe was quantified with infrared spectrophotometry. The particle contamination in syringes containing ioversol was higher than that in syringes containing iohexol or ioxaglate. Particle contamination in the vials was relatively low, except with ioxaglate. X-ray emission spectrometry of the components of the syringe and vial showed that the source of particles was internal material released from the rubber stopper or inner surface. The particle counts for contrast media packaged in syringes and vials varied considerably among the different contrast media and were related to the amount of silicone oil on the inner surface and rubber piston of the syringe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagani, J.J.; Hayman, L.A.; Bigelow, R.H.
1983-04-01
The effect of 5 mg of intravenous diazepam (Valium) on contrast media-associated seizer incidence was studied in a randomized controlled trial involving 284 patients with known or suspected brain metastases undergoing cerebral computed tomography. Of these patients, 188 were found to have brain metastases, and it is estimated that for this subgroup prophylactic diazepam reduces the risk of contrast-assocated seizure by a factor of 0.26. Seizures occurred in three of 96 patients with metastases on diazepam and in 14 of 92 patients with metastases but without diazepam. Factors related to increased risk of contrast media-associated seizures are: (1) prior seizuremore » history due to brain metatases and/or prior contrast, (2) progressive cerebral metastases, and (3) prior or concurrent brain antineoplastic therapy. Factors not related to an increased risk of these seizures are: (1) contrast media dosage, chemical composition, or osmolarity, (2) computed tomographic appearance of metastases, and (3) type of primary malignancy. Concomitant therapeutic levels of diphenylhydantoin (Dilantin) do not protect completely against contrast media-associated seizures. Pathophysiology of contrast media-associated seizures is discussed in view of the risk factors determined by this study.« less
Experimental and Modeling Study on Detachment of Silver Nanoparticles in Saturated Granular Media
NASA Astrophysics Data System (ADS)
Kim, I.; Jeon, C. H.; Lawler, D. F.
2017-12-01
The detachment of citrate-capped silver nanoparticles (AgNPs) previously captured in a column packed with 350-μm glass beads was investigated either by increasing the hydrodynamic force (filtration velocity) or by reducing electrosteric attraction. Overall, the physical enforcement showed negligible (0.4 0.7%) release of attached AgNPs while the chemically-driven force resulted in the noticeable release up to 25.5% of attached AgNPs. Among the chemical parameters tested in this study, Na ionic strength reduction clearly demonstrated the reversible deposition in the secondary energy minimum of classical DLVO theory, yielding the most significant release of the attached AgNPs. The immediate and transient AgNP release after the ionic strength reduction further corroborated the weak deposition. However, an insignificant release was observed with Ca ionic strength reduction due to the strong Ca-citrate complexation and the subsequent deposition in the primary energy minimum; calculations indicated that the depth of the secondary energy minimum was only 1/10 that of the Na ion case. The natural organic matter (NOM) coating on both AgNPs and granular media resulted in approximately 6.1% greater AgNP release compared to the case without NOM coating, indicating additional weak deposition due to the reduced steric attraction between AgNPs and granular media. A modified filtration model in agreement with the experimental data provided the estimated detachment coefficient as a transient AgNP releasing capacity independent of the amount of attached AgNPs. The marginal difference between the detachment coefficients from Na ionic strength reduction and NOM coating indicates the release potential by NOM coating was possibly underestimated in the experimental study due to a lesser amount of the initially attached AgNPs. The findings provide insights into chemical factors on possible reentrainment behavior of the engineered nanoparticles in soil and groundwater contamination.
Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua
2015-08-04
Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.
Ozaki, Yuichi; Kitabata, Hironori; Tsujioka, Hiroto; Hosokawa, Seiki; Kashiwagi, Manabu; Ishibashi, Kohei; Komukai, Kenichi; Tanimoto, Takashi; Ino, Yasushi; Takarada, Shigeho; Kubo, Takashi; Kimura, Keizo; Tanaka, Atsushi; Hirata, Kumiko; Mizukoshi, Masato; Imanishi, Toshio; Akasaka, Takashi
2012-01-01
Although an intracoronary frequency-domain optical coherence tomography (FD-OCT) system overcomes several limitations of the time-domain OCT (TD-OCT) system, the former requires injection of contrast media for image acquisition. The increased total amount of contrast media for FD-OCT image acquisition may lead to the impairment of renal function. The safety and usefulness of the non-occlusion method with low-molecular-weight dextran L (LMD-L) via a guiding catheter for TD-OCT image acquisition have been reported previously. The aim of the present study was to compare the image quality and quantitative measurements between contrast media and LMD-L for FD-OCT image acquisition in coronary stented lesions. Twenty-two patients with 25 coronary stented lesions were enrolled in this study. FD-OCT was performed with the continuous-flushing method via a guiding catheter. Both contrast media and LMD-L were infused at a rate of 4 ml/s by an autoinjector. With regard to image quality, the prevalence of clear image segments was comparable between contrast media and LMD-L (97.9% vs. 96.5%, P=0.90). Furthermore, excellent correlations were observed between both flushing solutions in terms of minimum lumen area, mean lumen area, and mean stent area. The total volumes of contrast media and of LMD-L needed for OCT image acquisition were similar. FD-OCT image acquisition with LMD-L has the potential to reduce the total amount of contrast media without loss of image quality.
Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development
Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development Little is known about the vertebrate developmental toxicity of chlorinated or chloraminated drinking water (DW), iodinated X-ray contrast media (ICM, a common contaminate of DW) or how the c...
NASA Astrophysics Data System (ADS)
Ghorbani-Choghamarani, Arash; Norouzi, Masoomeh
2016-03-01
Herein, we describe a simple and efficient procedure for the preparation of 3-((3-(trisilyloxy)propyl)propionamide)-1-methylimidazolium chloride ionic liquid supported on magnetic nanoparticle (TPPA-IL-Fe3O4). The structure of this magnetic ionic liquid is fully characterized by FT-IR, TGA, XRD, VSM, SEM, EDX and DLS techniques. TPPA-IL-Fe3O4 is employed as a catalyst for the acetylation of alcohols with acetic anhydride under mild and heterogeneous conditions at room temperature with good to excellent yields. The magnetic catalyst could be readily separate from the reaction media by simple magnetic decantation, and reused several times without significant loss of its catalytic activity.
Clustering effects in ionic polymers: Molecular dynamics simulations.
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S
2015-08-01
Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. These ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Decrease in electrostatic interaction significantly enhances the mobility of the polymer.
Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi
2016-01-01
Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.
Ryu, JiHyeon; Lee, HeeYoung; Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung
2015-01-01
We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary's teaching hospital, Daejeon, Korea) from 2010-2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton's preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization-Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse reactions. The World Health Organization-Uppsala Monitoring Centre and Naranjo algorithm causality evaluation afforded similar results.
Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung
2015-01-01
Objective We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Methods Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary’s teaching hospital, Daejeon, Korea) from 2010–2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton’s preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Results Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization–Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). Conclusions We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse reactions. The World Health Organization–Uppsala Monitoring Centre and Naranjo algorithm causality evaluation afforded similar results. PMID:26544039
Aluminium Electrodeposition from Ionic Liquid: Effect of Deposition Temperature and Sonication †
Berretti, Enrico; Giaccherini, Andrea; Martinuzzi, Stefano M.; Innocenti, Massimo; Schubert, Thomas J.S.; Stiemke, Frank M.; Caporali, Stefano
2016-01-01
Since their discovery, ionic liquids (ILs) have attracted a wide interest for their potential use as a medium for many chemical processes, in particular electrochemistry. As electrochemical media they allow the electrodeposition of elements that are impossible to reduce in aqueous media. We have investigated the electrodeposition of aluminium from 1-butyl-3-methyl-imidazolium chloride ((Bmim)Cl)/AlCl3 (40/60 mol %) as concerns the effect of deposition parameters on the quality of the deposits. Thick (20 μm) aluminium coatings were electrodeposited on brass substrates at different temperatures and mixing conditions (mechanical stirring and sonication). These coatings were investigated by means of scanning electron microscope, roughness measurements, and X-ray diffraction to assess the morphology and the phase composition. Finally, electrochemical corrosion tests were carried out with the intent to correlate the deposition parameters to the anti-corrosion properties. PMID:28773839
Iodinated contrast media and the role of renal replacement therapy.
Weisbord, Steven D; Palevsky, Paul M
2011-05-01
Iodinated contrast media are among the most commonly used pharmacologic agents in medicine. Although generally highly safe, iodinated contrast media are associated with several adverse effects, most significantly the risk of acute kidney injury, particularly in patients with underlying renal dysfunction. By virtue of their pharmacokinetic characteristics, these contrast agents are efficiently cleared by hemodialysis and to a lesser extent, hemofiltration. This has led to research into the capacity for renal replacement therapies to prevent certain adverse effects of iodinated contrast. This review examines the molecular and pharmacokinetic characteristics of iodinated contrast media and critically analyzes data from past studies on the role of renal replacement therapy to prevent adverse effects of these diagnostic agents. Published by Elsevier Inc.
Neumann, Jennifer; Pawlik, Magdalena; Bryniok, Dieter; Thöming, Jorg; Stolte, Stefan
2014-01-01
Biodegradation tests with bacteria from activated sludge revealed the probable persistence of cyano-based ionic liquid anions when these leave waste water treatment plants. A possible biological treatment using bacteria capable of biodegrading similar compounds, namely cyanide and cyano-complexes, was therefore examined. With these bacteria from the genera Cupriavidus, the ionic liquid anions B(CN)₄(-), C(CN)₃(-), N(CN)₂(-) combined with alkaline cations were tested in different growth media using ion chromatography for the examination of their primary biodegradability. However, no enhanced biodegradability of the tested cyano-based ionic liquids was observed. Therefore, an in vitro enzymatic hydrolysis test was additionally run showing that all tested ionic liquid (IL) anions can be hydrolysed to their corresponding amides by nitrile hydratase, but not by nitrilase under the experimental conditions. The biological stability of the cyano-based anions is an advantage in technological application, but the occurrence of enzymes that are able to hydrolyse the parent compound gives a new perspective on future cyano-based IL anion treatment.
Development of ionic gels using thiol-based monomers in ionic liquid
NASA Astrophysics Data System (ADS)
Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu
2016-04-01
Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.
Maton, Cedric; De Vos, Nils; Roman, Bart I; Vanecht, Evert; Brooks, Neil R; Binnemans, Koen; Schaltin, Stijn; Fransaer, Jan; Stevens, Christian V
2012-09-17
A versatile and efficient method to synthesize tetrasubstituted imidazoles via a one-pot modified Debus-Radziszewski reaction and their subsequent transformation into the corresponding imidazolium ionic liquids is reported. The tetrasubstituted imidazoles were also synthesized by means of a continuous flow process. This straightforward synthetic procedure allows for a fast and selective synthesis of tetrasubstituted imidazoles on a large scale. The completely substituted imidazolium dicyanamide and bis(trifluoromethylsulfonyl)imide salts were obtained via a metathesis reaction of the imidazolium iodide salts. The melting points and viscosities are of the same order of magnitude as for their non-substituted analogues. In addition to the superior chemical stability of these novel ionic liquids, which allows them to be applied in strong alkaline media, the improved thermal and electrochemical stabilities of these compounds compared with conventional imidazolium ionic liquids is also demonstrated by thermogravimetrical analysis (TGA) and cyclic voltammetry (CV). Although increased substitution of the ionic liquids does not further increase thermal stability, a definite increase in cathodic stability is observable. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thongprayoon, Charat; Cheungpasitporn, Wisit; Podboy, Alexander J; Gillaspie, Erin A; Greason, Kevin L; Kashani, Kianoush B
2016-11-01
The goal of this systematic review was to assess the effects of contrast media volume on transcatheter aortic valve replacement-related acute kidney injury. A literature search was performed using Medline, EMbase, the Cochrane Database of Systematic Reviews, and clinicaltrials.gov from the inception of these databases through December 2015. Studies that reported relative risk, odds ratio, or hazard ratio comparing the risks of acute kidney injury following transcatheter aortic valve replacement in patients who received high contrast media volume were included. Pooled risk ratio (RR) and 95% confidence intervals (95% CI) were calculated using a random-effect, generic inverse variance method. Four cohort studies composed of 891 patients were included in the analyses to assess the risk of acute kidney injury after transcatheter aortic valve replacement in patients who received high contrast media volume. The pooled RR of acute kidney injury after transcatheter aortic valve replacement in patients who received a large volume of contrast media was 1.41 (95% CI, 0.87 to 2.28) compared with low contrast media volume. The meta-analysis was limited to studies using standard acute kidney injury definitions, and the pooled RR of acute kidney injury in patients who received high contrast media volume is 1.12 (95% CI, 0.78 to 1.62). Our meta-analysis shows no significant association between contrast media volume and risk of acute kidney injury after transcatheter aortic valve replacement. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
In Situ Local Contact Angle Measurement in a CO2-Brine-Sand System Using Microfocused X-ray CT.
Lv, Pengfei; Liu, Yu; Wang, Zhe; Liu, Shuyang; Jiang, Lanlan; Chen, Junlin; Song, Yongchen
2017-04-11
The wettability of porous media is of major interest in a broad range of natural and engineering applications. The wettability of a fluid on a solid surface is usually evaluated by the contact angle between them. While in situ local contact angle measurements are complicated by the topology of porous media, which can make it difficult to use traditional methods, recent advances in microfocused X-ray computed tomography (micro-CT) and image processing techniques have made it possible to measure contact angles on the scale of the pore sizes in such media. However, the effects of ionic strength, CO 2 phase, and flow pattern (drainage or imbibition) on pore-scale contact angle distribution are still not clear and have not been reported in detail in previous studies. In this study, we employed a micro-CT scanner for in situ investigation of local contact angles in a CO 2 -brine-sand system under various conditions. The effects of ionic strength, CO 2 phase, and flow pattern on the local contact-angle distribution were examined in detail. The results showed that the local contact angles vary over a wide range as a result of the interaction of surface contaminants, roughness, pore topology, and capillarity. The wettability of a porous surface could thus slowly weaken with increasing ionic strength, and the average contact angle could significantly increase when gaseous CO 2 (gCO 2 ) turns into supercritical CO 2 (scCO 2 ). Contact angle hysteresis also occurred between drainage and imbibition procedures, and the hysteresis was more significant under gCO 2 condition.
Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi
2016-01-01
Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701
Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue
NASA Astrophysics Data System (ADS)
Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.
2017-10-01
We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.
Allergic reactions to iodinated contrast media: premedication considerations for patients at risk.
Schopp, Jennifer G; Iyer, Ramesh S; Wang, Carolyn L; Petscavage, Jonelle M; Paladin, Angelisa M; Bush, William H; Dighe, Manjiri K
2013-08-01
The objectives of this article are to review allergy-type reactions to iodinated contrast media and the protocols utilized to prevent or reduce the occurrence of these adverse reactions in high-risk patients. We will begin by discussing the types or classifications of the adverse reactions to iodinated contrast media. We will then discuss reaction mechanisms, identify the patients at highest risk for adverse reactions, and clarify common misperceptions about the risk. Finally, we will discuss the actions of the medications used to help reduce or prevent allergy-type reactions to iodinated contrast media, the protocols used to help reduce or prevent contrast reactions in high-risk patients, and the potential side effects of these medications. We will also discuss the high-risk patient who has received premedication due to a prior index reaction and discuss the risk of having a subsequent reaction, termed "breakthrough reaction." Identifying patient at high risk for an "allergy-type" reaction to contrast media is an essential task of the radiologist. Prevention of or reduction of the risk of an adverse reaction is critical to patient safety. If an examination can be performed without contrast in a patient at high risk for an allergy-type reaction, it may be appropriate to avoid contrast. However, there are situations where contrast media is necessary, and the radiologist plays a vital role in preventing or mitigating an allergy-type reaction.
Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites
NASA Astrophysics Data System (ADS)
Bennett, Matthew; Leo, Donald
2005-05-01
Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.
Jingu, Akiko; Fukuda, Junya; Taketomi-Takahashi, Ayako; Tsushima, Yoshito
2014-10-06
Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR).The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. The protocol was applied to a total of 252 examinations (153 patients, ages 15-87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma.
2014-01-01
Background Adverse reactions to iodinated and gadolinium contrast media are an important clinical issue. Although some guidelines have proposed oral steroid premedication protocols to prevent adverse reactions, some patients may have reactions to contrast media in spite of premedication (breakthrough reaction; BTR). The purpose of this study was to assess the frequency, type and severity of BTR when following an oral steroid premedication protocol. Methods All iodinated and gadolinium contrast-enhanced radiologic examinations between August 2011 and February 2013 for which the premedication protocol was applied in our institution were assessed for BTRs. Results The protocol was applied to a total of 252 examinations (153 patients, ages 15–87 years; 63 males, 90 females). Of these, 152 were for prior acute adverse reactions to contrast media, 85 were for a history of bronchial asthma, and 15 were for other reasons. There were 198 contrast enhanced CTs and 54 contrast enhanced MRIs. There were nine BTR (4.5%) for iodinated contrast media, and only one BTR (1.9%) for gadolinium contrast media: eight were mild and one was moderate. No patient who had a mild index reaction (IR) had a severe BTR. Conclusion Incidence of BTRs when following the premedication protocol was low. This study by no means proves the efficacy of premedication, but provides some support for following a premedication protocol to improve safety of contrast-enhanced examinations when prior adverse reactions are mild, or when there is a history of asthma. PMID:25287952
Increased degradation rate of nitrososureas in media containing carbonate.
Seidegård, Janeric; Grönquist, Lena; Tuvesson, Helen; Gunnarsson, Per-Olov
2009-01-01
The stability of two nitrosoureas, tauromustine and lomustine, has been investigated in different media and buffers. All media tested, except Leibovitz's L-15 medium, significantly increased the degradation rate of the investigated nitrosoureas at pH 7.4. Sodium bicarbonate seems to be the cause of the observed increase of the degradation rate, since it provides the main buffering capacity of all the media except for Leibovitz's L-15 medium, which is based on phosphate buffer. Other ingredients in the media, such as amino acids, vitamins, and inorganic salts, or the ionic strength of a buffer, did not have any major effect on the degradation rate of the nitrosoureas. These results suggest that media containing carbonated buffer should be avoided when the anti-tumor effect of nitrosoureas is to be investigated in different cell cultures.
Rebière, Marilou; Verburg, Frederik A; Palmowski, Moritz; Krohn, Thomas; Pietsch, Hubertus; Kuhl, Christiane K; Mottaghy, Felix M; Behrendt, Florian F
2012-08-01
To evaluate the influence of multiphase CT scanning and different intravenous contrast media on contrast enhancement, attenuation correction and image quality in combined PET/CT. 140 patients were prospectively enrolled for F-18-FDG-PET/CT including a low-dose unenhanced, arterial and venous contrast enhanced CT. The first (second) 70 patients, received contrast medium with 370 (300) mg iodine/ml. The iodine delivery rate (1.3mg/s) and total iodine load (44.4g) were identical for both groups. Contrast enhancement and maximum and mean standardized FDG uptake values (SUVmax and SUVmean) were determined for the un-enhanced, arterial and venous PET/CT at multiple anatomic sites and PET reconstructions were visually evaluated. Arterial contrast enhancement was significantly higher for the 300mg/ml contrast medium compared to 370mgI/ml at all anatomic sites. Venous enhancement was not different between the two contrast media. SUVmean and SUVmax were significantly higher for the contrast enhanced compared to the non-enhanced PET/CT at all anatomic sites (all P<0.001). Tracer uptake was significantly higher in the arterial than in the venous PET/CT in the arteries using both contrast media (all P<0.001). No differences in tracer uptake were found between the contrast media (all P>0.05). Visual assessment revealed no relevant differences between the different PET reconstructions. There is no relevant qualitative influence on the PET scan from the use of different intravenous contrast media in its various phases in combined multiphase PET/CT. For quantitative analysis of tracer uptake it is required to use an identical PET/CT protocol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Delayed adverse reactions to the parenteral administration of iodinated contrast media.
Egbert, Robert E; De Cecco, Carlo N; Schoepf, U Joseph; McQuiston, Andrew D; Meinel, Felix G; Katzberg, Richard W
2014-12-01
This article presents an overview of delayed adverse reactions (DARs) to parenteral iodinated contrast media and discusses the clinical nature, risk factors, mechanisms, and potential economic implications of these DARs. DARs to contrast media are not rare but are often not recognized as being linked to contrast administration and may be falsely ascribed to other drugs. These side effects are problematic because the patient is usually without medical supervision.
Adverse Effects of Iodine-derived Intravenous Radiopaque Contrast Media.
Matthews, Eric P
2015-01-01
Although the advent of nonionic low-osmolar contrast agents has reduced the probability of a reaction to radiopaque contrast media derived from tri-iodinated benzoic acid, reactions still occur. Radiologic technologists must understand and know how to manage adverse effects of contrast media. Prompt attention to patients who exhibit the early signs of an adverse reaction can help to ensure the reaction does not progress to become severe or life-threatening.
Clustering effects in ionic polymers: Molecular dynamics simulations
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.
2015-08-18
Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing themore » electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.« less
Lozada, Mariana; Basile, Laura; Erijman, Leonardo
2007-01-01
The development of bacterial communities in replicate lab-scale-activated sludge reactors degrading a non-ionic surfactant was evaluated by statistical analysis of denaturing gradient gel electrophoresis (DGGE) fingerprints. Four sequential batch reactors were fed with synthetic sewage, two of which received, in addition, 0.01% of nonylphenol ethoxylates (NPE). The dynamic character of bacterial community structure was confirmed by the differences in species composition among replicate reactors. Measurement of similarities between reactors was obtained by pairwise similarity analysis using the Bray Curtis coefficient. The group of NPE-amended reactors exhibited the highest similarity values (Sjk=0.53+/-0.03), indicating that the bacterial community structure of NPE-amended reactors was better replicated than control reactors (Sjk=0.36+/-0.04). Replicate NPE-amended reactors taken at different times of operation clustered together, whereas analogous relations within the control reactor cluster were not observed. The DGGE pattern of isolates grown in conditioned media prepared with media taken at the end of the aeration cycle grouped separately from other conditioned and synthetic media regardless of the carbon source amendment, suggesting that NPE degradation residuals could have a role in the shaping of the community structure.
Foroutan, Masumeh; Fatemi, S Mahmood; Esmaeilian, Farshad
2017-02-01
During the past decade, the research on fluids in nanoconfined geometries has received considerable attention as a consequence of their wide applications in different fields. Several nanoconfined systems such as water and ionic liquids, together with an equally impressive array of nanoconfining media such as carbon nanotube, graphene and graphene oxide have received increasingly growing interest in the past years. Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences. Water is often considered as a highly nanoconfined system, due to its reduction to a few layers of water molecules between the extended surface of large macromolecules. The second system discussed here is ionic liquids, which have been widely studied in the modern green chemistry movement. Considering the great importance of ionic liquids in industry, and also their oil/water counterpart, nanoconfined ionic liquid system has become an important area of research with many fascinating applications. Furthermore, the method of molecular dynamics simulation is one of the major tools in the theoretical study of water and ionic liquids in nanoconfinement, which increasingly has been joined with experimental procedures. In this way, the choice of water and ionic liquids in nanoconfinement is justified by applying molecular dynamics simulation approaches in this review article.
Wang, Y J; Assaad, E; Ispas-Szabo, P; Mateescu, M A; Zhu, X X
2011-10-31
The hydration and swelling properties of the tablets made of chitosan, carboxymethyl starch, and a polyelectrolyte complex of these two polysaccharides have been studied by NMR imaging. We studied the effect of pH and ionic strength on the swelling of the tablets and on the diffusion of fluid into the tablets in water and simulated physiological fluids. The pH value of the fluids exerts a more significant effect than their ionic strengths on the swelling of the tablets. The tablets are compared also with those made of cross-linked high amylose starch. The formation of complex helps to keep the integrity of the tablets in various media and render a slow and restricted swelling similar to that of the tablets of the cross-linked high amylase starch, which is significantly lower than the swelling of chitosan and of carboxymethyl starch. The capacities to modulate the release rate of drugs in different media are discussed by comparing the matrices and evaluating the preparation process of the complex. A sustained release of less soluble drugs such as aspirin in gastrointestinal fluids can be provided by the complex, due to the ionic interaction and hydrogen bonding between the drug and the biopolymer complex. Copyright © 2011 Elsevier B.V. All rights reserved.
Federle, Michael P; Jaffe, Tracy A; Davis, Peter L; Al-Hawary, Mahmoud M; Levine, Marc S
2017-01-01
One of the significant challenges facing radiologists who perform and interpret studies of the gastrointestinal and genitourinary systems have been periodic interruptions in the availability of barium and iodinated contrast media specially formulated for gastrointestinal (GI) and genitourinary (GU) studies. These interruptions are due to the US Food and Drug Administration's recent requirement for more stringent documentation of the safety and efficacy of contrast media and the consolidation among contrast manufacturers. Therefore, radiologists may be required to recommend an alternative means of evaluation, such as computed tomography, magnetic resonance, or endoscopy, or they may need to substitute a different formulation of a contrast agent not specifically developed for GI or GU use, for example the utilization of an agent designed and marketed for vascular use. This article reviews the current status of fluoroscopic contrast media, and provides suggestions and recommendations for the optimal and alternative use of contrast media formulations.
Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.
Han, Mengwei; Espinosa-Marzal, Rosa M
2017-09-07
We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.
THEORETICAL AND EXPERIMENTAL MODELING OF MULTI-SPECIES TRANSPORT IN SOILS UNDER ELECTRIC FIELDS
Electrokinetics employs the use of electrodes implanted in soils-contaminated media. Electrodes are supplied with direct current (dc) facilitating ionic transport and subsequent removal. This project investigates the feasibility and efficiency of electrokinetic transport of lea...
Effect of physicochemical factors on transport and retention of graphene oxide in saturated media.
Chen, Chong; Shang, Jianying; Zheng, Xiaoli; Zhao, Kang; Yan, Chaorui; Sharma, Prabhakar; Liu, Kesi
2018-05-01
Fate and transport of graphene oxide (GO) have received much attention recently with the increase of GO applications. This study investigated the effect of salt concentration on the transport and retention behavior of GO particles in heterogeneous saturated porous media. Transport experiments were conducted in NaCl solutions with three concentrations (1, 20, and 50 mM) using six structurally packed columns (two homogeneous and four heterogeneous) which were made of fine and coarse grains. The results showed that GO particles had high mobility in all the homogeneous and heterogeneous columns when solution ionic strength (IS) was low. When IS was high, GO particles showed distinct transport ability in six structurally heterogeneous porous media. In homogeneous columns, decreasing ionic strength and increasing grain size increased the mobility of GO. For the column containing coarse-grained channel, the preferential flow path resulted in an early breakthrough of GO, and further larger contact area between coarse and fine grains caused a lower breakthrough peak and a stronger tailing at different IS. In the layered column, there was significant GO retention at coarse-fine grain interface where water flowed from coarse grain to fine grain. Our results indicated that the fate and transport of GO particles in the natural heterogeneous porous media was highly related to the coupled effect of medium structure and salt solution concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Individual and Co Transport Study of Titanium Dioxide NPs and Zinc Oxide NPs in Porous Media
Kumari, Jyoti; Mathur, Ankita; Rajeshwari, A.; Venkatesan, Arthi; S, Satyavati; Pulimi, Mrudula; Chandrasekaran, Natarajan; Nagarajan, R.; Mukherjee, Amitava
2015-01-01
The impact of pH and ionic strength on the mobility (individual and co-transport) and deposition kinetics of TiO2 and ZnO NPs in porous media was systematically investigated in this study. Packed column experiments were performed over a series of environmentally relevant ionic strengths with both NaCl (0.1−10 mM) and CaCl2 (0.01–0.1mM) solutions and at pH 5, 7, and 9. The transport of TiO2 NPs at pH 5 was not significantly affected by ZnO NPs in solution. At pH 7, a decrease in TiO2 NP transport was noted with co-existence of ZnO NPs, while at pH 9 an increase in the transport was observed. At pH 5 and 7, the transport of ZnO NPs was decreased when TiO2 NPs was present in the solution, and at pH 9, an increase was noted. The breakthrough curves (BTC) were noted to be sensitive to the solution chemistries; the decrease in the breakthrough plateau with increasing ionic strength was observed under all examined pH (5, 7, and 9). The retention profiles were the inverse of the plateaus of BTCs, as expected from mass balance considerations. Overall, the results from this study suggest that solution chemistries (ionic strength and pH) are likely the key factors that govern the individual and co-transport behavior of TiO2 and ZnO NPs in sand. PMID:26252479
NASA Astrophysics Data System (ADS)
Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes
2017-03-01
The extensive production and application of engineered silica nanoparticles (SiO2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO2 NP filtration.
Golder, W
2012-02-01
The synchronous use of chemically different contrast media in the same body compartment is a challenge for the radiologist, whether it is scheduled or unexpected. However, to inject contrast media containing iodine and gadolinium at the same time can be a prerequisite for the examination of several organs or organ systems. Unlike other topics of contrast-enhanced imaging procedures, the difficulties encountered with double contrast injections have been widely ignored in the literature. In the absence of reliable data from experimental and clinical studies the radiologist is dependent on case reports, information provided by the contrast media manufacturers, personal communications, mostly scanty personal experiences and a skilful time management, in order to overcome the situation. Only the combination of X-ray, computed tomography and magnetic resonance arthrography can be performed without another thought. However, the more or less synchronous vascular application of contrast media containing iodine and gadolinium requires vigilance. The more seriously ill the patient is, the more caution is advised even if the decision on the combined administration has to be reached urgently. The following overview gives a description of the properties of contrast media containing iodine and gadolinium as far as interactions following simultaneous administration are concerned. Subsequently, the clinically relevant situations and constellations are outlined and analyzed.
Liu, Tingting; Sui, Xiaoyu; Li, Li; Zhang, Jie; Liang, Xin; Li, Wenjing; Zhang, Honglian; Fu, Shuang
2016-01-15
A new approach for ionic liquid based enzyme-assisted extraction (ILEAE) of chlorogenic acid (CGA) from Eucommia ulmoides is presented in which enzyme pretreatment was used in ionic liquids aqueous media to enhance extraction yield. For this purpose, the solubility of CGA and the activity of cellulase were investigated in eight 1-alkyl-3-methylimidazolium ionic liquids. Cellulase in 0.5 M [C6mim]Br aqueous solution was found to provide better performance in extraction. The factors of ILEAE procedures including extraction time, extraction phase pH, extraction temperatures and enzyme concentrations were investigated. Moreover, the novel developed approach offered advantages in term of yield and efficiency compared with other conventional extraction techniques. Scanning electronic microscopy of plant samples indicated that cellulase treated cell wall in ionic liquid solution was subjected to extract, which led to more efficient extraction by reducing mass transfer barrier. The proposed ILEAE method would develope a continuous process for enzyme-assisted extraction including enzyme incubation and solvent extraction process. In this research, we propose a novel view for enzyme-assisted extraction of plant active component, besides concentrating on enzyme facilitated cell wall degradation, focusing on improvement of bad permeability of ionic liquids solutions. Copyright © 2015 Elsevier B.V. All rights reserved.
Callahan, Michael J; Talmadge, Jennifer M; MacDougall, Robert; Buonomo, Carlo; Taylor, George A
2016-05-01
Enteric contrast media are commonly administered for diagnostic cross-sectional imaging studies in the pediatric population. The purpose of this manuscript is to review the use of enteric contrast media for CT, MRI, and ultrasound in infants, children, and adolescents and to share our experiences at a large tertiary care pediatric teaching hospital. The use of enteric contrast material for diagnostic imaging in infants and children continues to evolve with advances in imaging technology and available enteric contrast media. Many principles of enteric contrast use in pediatric imaging are similar to those in adult imaging, but important differences must be kept in mind when imaging the gastrointestinal tract in infants and children, and practical ways to optimize the imaging examination and the patient experience should be employed where possible.
Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank
2011-01-01
The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situ STM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situ microscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).
Bid purchasing of radiopharmaceuticals and radiopaque contrast media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, D.P.; Jakubowski, D.L.; Shoup, L.K.
Use of product standardization and competitive-bid purchasing for radiopharmaceuticals and radiopaque contrast media in a 1000-bed teaching hospital is described. The hospital's use of radiopharmaceuticals was reviewed, and all agents were listed with their product specifications and order quantity or frequency. Manufacturers and wholesalers were asked to submit unit prices for each of their products. Similar procedures were followed for radiopaque contrast media; wholesalers and manufacturers were asked to submit unit prices that would be guaranteed for a 12-month contract period. A nuclear pharmacist and radiologists reviewed the submitted bids and awarded contracts, basing their decisions primarily on product acceptabilitymore » and selection criteria and then on relative costs of the agents. Annual costs were reduced 16% ($16,500) for radiopharmaceuticals and 21.3% ($66,500) for radiopaque contrast media. The program also resulted in decreased inventory of radiopaque contrast media and in faster and less expensive acquisition of emergency orders. Working with the radiology department to compile a standard list of radiopharmaceuticals and radiopaque contrast media and soliciting competitive bids by vendors of these products resulted in annual savings of more than $83,000.« less
Nonimmediate hypersensitivity reactions to iodinated contrast media.
Gómez, Enrique; Ariza, Adriana; Blanca-López, Natalia; Torres, Maria J
2013-08-01
To provide a detailed analysis of the latest findings on the mechanisms underlying the nonimmediate reactions to iodinated contrast media and comment on the recent advances in diagnosis, focusing on the roles of the skin test, drug provocation test (DPT), and lymphocyte transformation test (LTT). Several studies have reported new findings supporting an important role for T-lymphocytes in the nonimmediate reactions to iodinated contrast media. The LTT has been used as an in-vitro tool for diagnosis, but with variable results. However, the inclusion of autologous monocyte-derived dendritic cells as professional antigen-presenting cells has improved the sensitivity of this test. Regarding in-vivo diagnosis, although skin testing has been routine, it has now been shown that its sensitivity and negative predictive value are low. Recent studies have demonstrated that the DPT is a well tolerated and useful procedure that is necessary to confirm the diagnosis of nonimmediate hypersensitivity reactions to iodinated contrast media. Nonimmediate reactions to contrast media are usually T-cell mediated. Diagnosis is based on skin testing, although its sensitivity and negative predictive value are not optimal. Consequently, drug provocation testing is often needed to confirm the diagnosis and also to seek alternative contrast media that can be tolerated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jens, Sjoerd, E-mail: s.jens@amc.uva.nl; Marquering, Henk A., E-mail: h.a.marquering@amc.uva.nl; Koelemay, Mark J. W., E-mail: m.j.koelemaij@amc.uva.nl
ObjectiveTo study the feasibility of 2D perfusion imaging in critical limb ischemia (CLI).Methods/ResultsPerfusion angiography is a new technology which was tested in 18 patients with CLI of the foot. A standardized protocol was used with a catheter placed at the mid-part of the popliteal artery, and a total of 9 cc of non-ionic iodinated contrast material was injected at a rate of 3 cc/sec. The technology is based on early cardiology research where iodinated contrast agents were used for imaging of cardiac perfusion. During the first pass of the contrast, there is a significant diffusion of the contrast agents into the interstitialmore » space, particularly for non-ionic and low-molecular-weight compounds.DiscussionThe original angiography data can be used to make a time–density curve, which represents the actual perfusion of the foot in time. Angiographic perfusion imaging is a post-processing modality for which no extra contrast or radiation is needed. With this technique, it is possible to get more information about the perfusion status and microcirculation of the foot. This is a step toward functional imaging in CLI patients.« less
NASA Astrophysics Data System (ADS)
Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.
2010-12-01
In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.
Iodinated Contrast Media-Induced Thyroid Dysfunction in Euthyroid Nodular Goiter Patients.
Kornelius, Edy; Chiou, Jeng-Yuan; Yang, Yi-Sun; Lo, Shih-Chang; Peng, Chiung-Huei; Lai, Yung-Rung; Huang, Chien-Ning
2016-08-01
The risks of thyroid dysfunction after iodinated contrast media exposure in patients with euthyroid nodular goiter are largely unknown. This observational, retrospective cohort study included a random selection of one million people in Taiwan. All patients with iodinated contrast media exposure during this study period were selected. Patients with euthyroid nodular goiter were identified as cases, while patients without thyroid nodule were selected as controls. We followed these patients until the first event of thyroid dysfunction including hyperthyroidism or hypothyroidism after iodinated contrast media exposure. A total of 334 cases and 2672 matched controls were selected in this study. The mean age of cases and controls were 58.6 and 58.4 years old, and mean follow-up durations were 2.1 and 2 years respectively. After adjustment, patients with euthyroid nodular goiter had a higher risk of thyroid dysfunction (hazard ratio 5.43, [confidence interval (CI) 3.01-9.80]) compared with controls after iodinated contrast media exposure. In the subgroup analysis, the risks of hyperthyroidism and hypothyroidism in cases compared with controls were 5.77 [CI 2.64-12.62] and 4.95 [CI 2.15-11.40] respectively. Half of the euthyroid nodular goiter cases developed thyroid dysfunction within one year after iodinated contrast media exposure. Interestingly, all thyroid-related comorbidities and drug prescriptions did not increase the risk of thyroid dysfunction. Presence of euthyroid nodular goiter was associated with higher risk of thyroid dysfunction including hyperthyroidism and hypothyroidism after iodinated contrast media exposure.
Tomsick, T A; Foster, L D; Liebeskind, D S; Hill, M D; Carrozella, J; Goyal, M; von Kummer, R; Demchuk, A M; Dzialowski, I; Puetz, V; Jovin, T; Morales, H; Palesch, Y Y; Broderick, J; Khatri, P; Yeatts, S D
2015-11-01
Intracarotid arterial infusion of nonionic, low-osmolal iohexol contrast medium has been associated with increased intracranial hemorrhage in a rat middle cerebral artery occlusion model compared with saline infusion. Iso-osmolal iodixanol (290 mOsm/kg H2O) infusion demonstrated smaller infarcts and less intracranial hemorrhage compared with low-osmolal iopamidol and saline. No studies comparing iodinated radiographic contrast media in human stroke have been performed, to our knowledge. We hypothesized that low-osmolal contrast media may be associated with worse outcomes compared with iodixanol in the Interventional Management of Stroke III Trial (IMS III). We reviewed prospective iodinated radiographic contrast media data for 133 M1 occlusions treated with endovascular therapy. We compared 5 prespecified efficacy and safety end points (mRS 0-2 outcome, modified TICI 2b-3 reperfusion, asymptomatic and symptomatic intracranial hemorrhage, and mortality) between those receiving iodixanol (n = 31) or low-osmolal contrast media (n = 102). Variables imbalanced between iodinated radiographic contrast media types or associated with outcome were considered potential covariates for the adjusted models. In addition to the iodinated radiographic contrast media type, final covariates were those selected by using the stepwise method in a logistic regression model. Adjusted relative risks were then estimated by using a log-link regression model. Of baseline or endovascular therapy variables potentially linked to outcome, prior antiplatelet agent use was more common and microcatheter iodinated radiographic contrast media injections were fewer with iodixanol. Relative risk point estimates are in favor of iodixanol for the 5 prespecified end points with M1 occlusion. The percentage of risk differences are numerically greater for microcatheter injections with iodixanol. While data favoring the use of iso-osmolal iodixanol for reperfusion of M1 occlusion following IV rtPA are inconclusive, potential pathophysiologic mechanisms suggesting clinical benefit warrant further investigation. © 2015 by American Journal of Neuroradiology.
Perriot, Romain; Uberuaga, Blas P.; Zamora, Richard J.; ...
2017-09-20
Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd 2Ti 2O 7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivitymore » is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.« less
Phenotypic variations in osmotic lysis of Sahel goat erythrocytes in non-ionic glucose media.
Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi
2016-03-01
Erythrocyte osmotic lysis in deionised glucose media is regulated by glucose influx, cation efflux, and changes in cell volume after water diffusion. Transmembrane fluxes may be affected by varied expression of glucose transporter protein and susceptibility of membrane proteins to glucose-induced glycosylation and oxidation in various physiologic states. Variations in haemolysis of Sahel goat erythrocytes after incubation in hyposmotic non-ionic glucose media, associated with sex, age, late pregnancy, and lactation, were investigated. The osmotic fragility curve in glucose media was sigmoidal with erythrocytes from goats in late pregnancy (PRE) or lactation (LAC) or from kid (KGT) or middle-aged (MGT) goats. Non-sigmoidal phenotype occurred in yearlings (YGT) and old (OGT) goats. The composite fragility phenotype for males and non-pregnant dry (NPD) females was non-sigmoidal. Erythrocytes with non-sigmoidal curves were more stable than those with sigmoidal curves because of inflectional shift of the curve to the left. Erythrocytes tended to be more fragile with male than female sex, KGT and MGT than YGT and OGT, and LAC and PRE than NPD. Thus, sex, age, pregnancy, and lactation affected the haemolytic pattern of goat erythrocytes in glucose media. The physiologic state of the goat affected the in vitro interaction of glucose with erythrocytes, causing variations in osmotic stability with variants of fragility phenotype. Variations in the effect of high extracellular glucose concentrations on the functions of membrane-associated glucose transporter, aquaporins, and the cation cotransporter were presumed to be relevant in regulating the physical properties of goat erythrocytes under osmotic stress.
The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation.
Lee, Jaewoong; Bartelt-Hunt, Shannon L; Li, Yusong; Gilrein, Erica Jeanne
2016-07-01
This study investigated the aggregation of n-TiO2 in the presence of humic acid (HA) and/or 17β-estradiol (E2) under high ionic strength conditions simulating levels detected in landfill leachate. Aggregation of n-TiO2 was strongly influenced by ionic strength as well as ionic valence in that divalent cations (Ca(2+)) were more effective than monovalent (Na(+)) at the surface modification. HA or E2 enhanced aggregation of n-TiO2 in 20 mM CaCl2, however little aggregation was observed in 100 mM NaCl. Similarly, we observed only the increased aggregation of n-TiO2 in the presence of HA/E2. These results showed the critical role of particles' surface charges on the aggregation behaviors of n-TiO2 that HA plays more significantly than E2. However, the slightly increased zeta potential and aggregation of n-TiO2 in the combination of HA and E2 at both 20 mM CaCl2 and 100 mM NaCl means that E2 has influenced on the surface modification of n-TiO2 by adsorption. Based on the aggregation of n-TiO2 under high ionic strength with HA and/or E2, we simulated the mobility of aggregated n-TiO2 in porous media. As a result, we observed that the mobility distance of aggregated n-TiO2 was dramatically influenced by the surface modification with both HA and/or E2 between particles and media. Furthermore, larger mobility distance was observed with larger aggregation of n-TiO2 particles that can be explained by clean bed filtration (CFT) theory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.
Melo, Catarina I; Szczepańska, Anna; Bogel-Łukasik, Ewa; Nunes da Ponte, Manuel; Branco, Luís C
2016-05-23
The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2 ], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Richmann, Michael K.; Reed, Donald T.
2015-10-30
The degree of conservatism in the estimated sorption partition coefficients (K ds) used in a performance assessment model is being evaluated based on a complementary batch and column method. The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected at the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV).
Song, Yonghai; Chen, Jingyi; Liu, Hongyu; Li, Ping; Li, Hongbo; Wang, Li
2015-09-03
A simple, sensitive and effective method to detect glucose in ultra-low ionic strength solution containing citrate-capped silver nanoparticles (CCAgNPs) was developed by monitoring the change of solution conductance. Glucose was catalyzed into gluconic acid firstly by glucose oxidase in an O2-saturated solution accompanied by the reduction of O2 into hydrogen peroxide (H2O2). Then, CCAgNPs was oxidized by H2O2 into Ag(+) and the capping regent of citrate was released at the same time. All these resulted Ag(+), gluconic acid and the released citrate would contribute to the increase of solution ionic strength together, leading to a detectable increase of solution conductance. And a novel conductance glucose biosensor was developed with a routine linear range of 0.06-4.0 mM and a suitable detection limit of 18.0 μM. The novel glucose biosensor was further applied in energy drink sample and proven to be suitable for practical system with low ionic strength. The proposed conductance biosensor achieved a significant breakthrough of glucose detection in ultra-low ionic strength media. Copyright © 2015 Elsevier B.V. All rights reserved.
Chicaíza-Becerra, Liliana Alejandra; García-Molina, Mario; Gamboa, Óscar
2012-06-01
Contrast media can cause acute renal failure by direct toxic effects on the tubular cells and kidney ischemia. Diabetics and hospitalized patients have a greater risk of developing contrast-induced nephropathy than the general population. The cost effectiveness of iso and low-osmolality contrast media was assessed in high risk outpatients. The analysis was based on a systematic literature review comparing the nephrotoxic effects of iso- to low-osmolality contrast media. Only direct costs were considered; these were obtained from the official tariff manual. Incremental cost-effectiveness ratios, efficiency curves and acceptability curves were calculated. Univariate sensitivity analyses were performed for costs and effects, as well as probabilistic analyses. Zero and 3% discounts were applied to results. The cost-effectiveness threshold was equal to the per capita GDP per life-year gained. Alternatives with Iopamidol and Iodixanol are preferable to the others, because both reduce risk of contrast-induced nephropathy and are less costly. The incremental cost-effectiveness of the Iodixanol alternative compared to the Iopamidol alternative is US$ 14,660 per additional life year gained; this is more than twice the threshold. The low-osmolality contrast medium, Iopamidol, appears to be cost-effective when compared with Iohexol or other low-osmolality contrast media (Iopromide, Iobitridol, Iomeprol, Iopentol and Ioxilan) in contrast-induced nephropathy, high-risk outpatients. The choice of the iso-osmolality contrast medium, Iodixanol, depends on its cost per vial and on the willingness to pay.
Coulombic interactions during advection-dominated transport of ions in porous media
NASA Astrophysics Data System (ADS)
Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo
2017-04-01
Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2 and NaBr) we report results showing the important role of Coulombic interactions in the lateral displacement of the different ionic species for steady-state transport scenarios in which the solutions are continuously injected through different portions of the flow-through chamber [1, 2]. Successively, we focus our attention on transient transport and pulse injection of the electrolytes. In these experiments high-resolution spatial and temporal monitoring of the ions' concentrations (600 samples; 1800 concentration measurements), at closely spaced outlet ports (5 mm), allowed us resolving the effects of charge interactions on the temporal breakthrough and spatial profiles of the cations and anions [3]. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion, as well as the explicit quantification of the dispersive fluxes' cross-coupling due to the Coulombic interactions between the charged species. A new 2-D simulator [4], coupling the solution of the multicomponent ionic transport problem with the geochemical code PHREEQC has been developed and used to quantitatively interpret the experimental results. References [1] Rolle M., Muniruzzaman M., Haberer C.M. and P. Grathwohl (2013). Geochim. Cosmochim. Acta 120, 195-205. [2] Muniruzzaman M., Haberer C.M., Grathwohl P. and M. Rolle (2014). Geochim. Cosmochim. Acta 141, 656-669. [3] Muniruzzaman M. and M. Rolle (2017). Water Resour. Res. (in press). [4] Muniruzzaman M. and M. Rolle (2016). Adv. Water Resour. 98, 1-15.
Terahertz Investigations of Extraordinarily Efficient Conduction in a Redox Active Ionic Liquid.
NASA Astrophysics Data System (ADS)
Thorsmolle, Verner; Brauer, Jan; Rothenberger, Guido; Kuang, Daibin; Zakeeruddin, Shaik; Grätzel, Michael; Moser, Jacques
2009-03-01
Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding expectancy for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. Applying low temperatures, we demonstrate for the first time conduction entirely due to a Grotthus bond-exchange mechanism at iodine concentrations higher than 3.9 M. The terahertz and transport results are reconciled in a model providing a quantitative description of the conduction by physical diffusion and the Grotthus bond-exchange process. These novel results are of great importance for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.
Acute kidney injury by radiographic contrast media: pathogenesis and prevention.
Andreucci, Michele; Faga, Teresa; Pisani, Antonio; Sabbatini, Massimo; Michael, Ashour
2014-01-01
It is well known that iodinated radiographic contrast media may cause kidney dysfunction, particularly in patients with preexisting renal impairment associated with diabetes. This dysfunction, when severe, will cause acute renal failure (ARF). We may define contrast-induced Acute Kidney Injury (AKI) as ARF occurring within 24-72 hrs after the intravascular injection of iodinated radiographic contrast media that cannot be attributed to other causes. The mechanisms underlying contrast media nephrotoxicity have not been fully elucidated and may be due to several factors, including renal ischaemia, particularly in the renal medulla, the formation of reactive oxygen species (ROS), reduction of nitric oxide (NO) production, and tubular epithelial and vascular endothelial injury. However, contrast-induced AKI can be prevented, but in order to do so, we need to know the risk factors. We have reviewed the risk factors for contrast-induced AKI and measures for its prevention, providing a long list of references enabling readers to deeply evaluate them both.
Acute Kidney Injury by Radiographic Contrast Media: Pathogenesis and Prevention
Faga, Teresa; Pisani, Antonio; Michael, Ashour
2014-01-01
It is well known that iodinated radiographic contrast media may cause kidney dysfunction, particularly in patients with preexisting renal impairment associated with diabetes. This dysfunction, when severe, will cause acute renal failure (ARF). We may define contrast-induced Acute Kidney Injury (AKI) as ARF occurring within 24–72 hrs after the intravascular injection of iodinated radiographic contrast media that cannot be attributed to other causes. The mechanisms underlying contrast media nephrotoxicity have not been fully elucidated and may be due to several factors, including renal ischaemia, particularly in the renal medulla, the formation of reactive oxygen species (ROS), reduction of nitric oxide (NO) production, and tubular epithelial and vascular endothelial injury. However, contrast-induced AKI can be prevented, but in order to do so, we need to know the risk factors. We have reviewed the risk factors for contrast-induced AKI and measures for its prevention, providing a long list of references enabling readers to deeply evaluate them both. PMID:25197639
Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media
NASA Astrophysics Data System (ADS)
Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.
2017-12-01
Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.
Lasnon, Charline; Quak, Elske; Briand, Mélanie; Gu, Zheng; Louis, Marie-Hélène; Aide, Nicolas
2013-01-17
The use of iodinated contrast media in small-animal positron emission tomography (PET)/computed tomography (CT) could improve anatomic referencing and tumor delineation but may introduce inaccuracies in the attenuation correction of the PET images. This study evaluated the diagnostic performance and accuracy of quantitative values in contrast-enhanced small-animal PET/CT (CEPET/CT) as compared to unenhanced small animal PET/CT (UEPET/CT). Firstly, a NEMA NU 4-2008 phantom (filled with 18F-FDG or 18F-FDG plus contrast media) and a homemade phantom, mimicking an abdominal tumor surrounded by water or contrast media, were used to evaluate the impact of iodinated contrast media on the image quality parameters and accuracy of quantitative values for a pertinent-sized target. Secondly, two studies in 22 abdominal tumor-bearing mice and rats were performed. The first animal experiment studied the impact of a dual-contrast media protocol, comprising the intravenous injection of a long-lasting contrast agent mixed with 18F-FDG and the intraperitoneal injection of contrast media, on tumor delineation and the accuracy of quantitative values. The second animal experiment compared the diagnostic performance and quantitative values of CEPET/CT versus UEPET/CT by sacrificing the animals after the tracer uptake period and imaging them before and after intraperitoneal injection of contrast media. There was minimal impact on IQ parameters (%SDunif and spillover ratios in air and water) when the NEMA NU 4-2008 phantom was filled with 18F-FDG plus contrast media. In the homemade phantom, measured activity was similar to true activity (-0.02%) and overestimated by 10.30% when vials were surrounded by water or by an iodine solution, respectively. The first animal experiment showed excellent tumor delineation and a good correlation between small-animal (SA)-PET and ex vivo quantification (r2 = 0.87, P < 0.0001). The second animal experiment showed a good correlation between CEPET/CT and UEPET/CT quantitative values (r2 = 0.99, P < 0.0001). Receiver operating characteristic analysis demonstrated better diagnostic accuracy of CEPET/CT versus UEPET/CT (senior researcher, area under the curve (AUC) 0.96 versus 0.77, P = 0.004; junior researcher, AUC 0.78 versus 0.58, P = 0.004). The use of iodinated contrast media for small-animal PET imaging significantly improves tumor delineation and diagnostic performance, without significant alteration of SA-PET quantitative accuracy and NEMA NU 4-2008 IQ parameters.
Are gadolinium-based contrast media nephrotoxic? A renal biopsy study.
Akgun, Hulya; Gonlusen, Gulfiliz; Cartwright, Joiner; Suki, Wadi N; Truong, Luan D
2006-09-01
Gadolinium-based contrast media were originally introduced as alternatives to iodinated media for magnetic resonance imaging. Although originally thought to be nonnephrotoxic, gadolinium-based contrast media have recently been reported to be associated with acute renal failure; the mechanism and the underlying renal injury are not completely understood. We report what is, to our knowledge, the first renal biopsy in this context. A 56-year-old patient underwent 2 consecutive vascular imaging procedures in conjunction with gadolinium-based contrast medium administration. A few days later, the patient developed acute renal failure. A renal biopsy showed acute tubular cell injury including patchy tubular cell necrosis, tubular cell degeneration, and marked proliferation of tubular cells, together with mild interstitial edema and interstitial inflammation, but without significant glomerular or vascular changes. During supportive therapy, renal function was partially regained. This case emphasizes the potential nephrotoxicity of gadolinium-based contrast media and suggests that the nephrotoxicity is related to potentially reversible acute tubular cell injury.
Mass diffusion coefficient measurement for vitreous humor using FEM and MRI
NASA Astrophysics Data System (ADS)
Rattanakijsuntorn, Komsan; Penkova, Anita; Sadha, Satwindar S.
2018-01-01
In early studies, the ‘contour method’ for determining the diffusion coefficient of the vitreous humor was developed. This technique relied on careful injection of an MRI contrast agent (surrogate drug) into the vitreous humor of fresh bovine eyes, and tracking the contours of the contrast agent in time. In addition, an analytical solution was developed for the theoretical contours built on point source model for the injected surrogate drug. The match between theoretical and experimental contours as a least square fit, while floating the diffusion coefficient, led to the value of the diffusion coefficient. This method had its limitation that the initial injection of the surrogate had to be spherical or ellipsoidal because of the analytical result based on the point-source model. With a new finite element model for the analysis in this study, the technique is much less restrictive and handles irregular shapes of the initial bolus. The fresh bovine eyes were used for drug diffusion study in the vitreous and three contrast agents of different molecular masses: gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA, 938 Da), non-ionic gadoteridol (Prohance, 559 Da), and bovine albumin conjugated with gadolinium (Galbumin, 74 kDa) were used as drug surrogates to visualize the diffusion process by MRI. The 3D finite element model was developed to determine the diffusion coefficients of these surrogates with the images from MRI. This method can be used for other types of bioporous media provided the concentration profile can be visualized (by methods such as MRI or fluorescence).
[Relevance of contrast ultrasound with microbubbles in vascular medecine].
Erdmann, Andreas; Ney, Barbara; Alatri, Adriano; Calanca, Luca; Mazzolai, Lucia
2016-12-07
Application of ultrasound contrast media has become a standard in diagnostic imaging in cardiology and in the characterization of focal lesions in multiple organs, especially of the liver. In the past years there was a growing body of evidence for their usefulness in vascular medicine. The development of contrast media, microbubbles with a stabilizing envelope and filled with gaz, small enough to pass through pulmonary capillaries made real-time imaging of organ perfusion possible. Ultrasound contrast media are rapidly eliminated by exhalation and can safely be administered to patients with renal failure. The objective of this review is to describe the basic principles of ultrasound contrast imaging and to inform about vascular applications of contrast ultrasound.
Off-label use of intravascular iodinated organic and MR contrast media.
Tamburrini, O; Aprile, I; Falcone, C; Console, D; Rotundo, A; Rotondo, A
2011-02-01
This paper analyses off-label prescribing of the iodinated organic and magnetic resonance (MR) contrast media used in diagnostic imaging and evaluates the liability profiles and medicolegal issues associated with such use. The term off-label generally indicates the use of known drugs for which new scientific evidence suggests use in a manner and in clinical scenarios not explicitly addressed by the drug data sheet and is outside the indications for which the medication was approved. In addition, the term also indicates the use of drugs with a different route of administration and dosage from those indicated in the information leaflet. Intravascular contrast media used in diagnostic imaging are drugs in the complete sense of the term, even though they have unique characteristics which in many ways distinguish them from other pharmacological agents. The off-label use of contrast media in diagnostic imaging is a little-investigated field and most commonly, but not exclusively, applies to gadolinium-based contrast media used in MR angiography as well as cardiac and paediatric applications. In particular, the off-label use of contrast media mostly concerns deviations from the recommended dose. As contrast media are to all effects pharmaceutical agents, their off-label use can be considered admissible within the limitations laid down by the Italian law in force (Article 3 of Law 94/98) and its interpretation, i.e. the following criteria must be present: the lack of a valid diagnostic alternative; written informed consent by the patient; the presence of scientific publications validated at the international level; assumption of responsibility by the radiologist. The use of contrast media in modern image-guided medicine is essential. In cases in which the information contained in the information leaflet is modified and updated in any way whatsoever (indications, dosage, at others), specifically if restrictions are introduced in accordance with the law in force, the pharmaceutical industry must provide formal and timely notification to radiologists. On their part as prescribers and users of contrast media, radiologists must remain up to date regarding any changes in indications, dosage and route of administration. Lastly, we propose that the radiology report includes not only the type but also the dose of contrast medium used.
Hwang, Eui Jin; Shin, Cheong-Il; Choi, Young Hun; Park, Chang Min
2018-06-06
To evaluate the frequency, outcome, and risk factors of intravenous contrast media (CM) extravasation during contrast-enhanced CT scans in a large population. After institutional review board approval, 142,651 patients (72,976 males and 69,675 females; mean age, 59.9 ± 13.0 years) who underwent contrast-enhanced CT scans with intravenous CM between January 2015 and April 2017 were retrospectively included. The frequency of CM extravasations and their clinical outcomes were investigated. Risk factors of CM extravasation were evaluated using logistic regression with generalized estimating equation analyses. In addition, the frequency and risk factors of large-volume (≥100 ml) CM extravasation were also investigated. CM extravasation occurred in 0.23% (321/142,651) of patients, all of which were of mild degree and resolved without any sequelae through conservative management. Multivariate analysis revealed that female gender [odds ratio (OR) = 1.61; p < 0.001], 60 < age ≤ 70 years (OR = 1.71; p = 0.004) or age > 70 years (OR = 2.49; p < 0.001), patients in general wards (OR = 2.71; p < 0.001) or ICUs (OR = 4.76; p < 0.001), 9.4 < CM viscosity ≤ 10.0 (OR = 1.65; p = 0.015), 10.0 < CM viscosity ≤ 10.6 (OR = 1.60; p = 0.002), and CM viscosity > 16.0 (OR = 2.55, p < 0.001) were independent risk factors for CM extravasation. CM extravasation during contrast-enhanced CT scans was uncommon with no substantial clinical consequences. Several risk factors that may have the potential to reduce the occurrence of CM extravasation were identified. • The observed frequency of contrast media extravasation during contrast-enhanced CT scans was 0.23% (321/142,651). • Significant risk factors for contrast media extravasation were female gender, age older than 60 years, patients in general wards or ICUs, and the viscosity of contrast media greater than 9.4 mPa∙s. • The main preventive action for contrast media extravasation would be to lower the viscosity of contrast media.
Fujiwara, Naoto; Tateishi, Ryosuke; Akahane, Masaaki; Taguri, Masataka; Minami, Tatsuya; Mikami, Shintaro; Sato, Masaya; Uchino, Koji; Uchino, Kouji; Enooku, Kenichiro; Kondo, Yuji; Asaoka, Yoshinari; Yamashiki, Noriyo; Goto, Tadashi; Shiina, Shuichiro; Yoshida, Haruhiko; Ohtomo, Kuni; Koike, Kazuhiko
2013-01-01
To elucidate whether repeated exposures to iodinated contrast media increase the risk of adverse reaction. We retrospectively reviewed 1,861 patients with hepatocellular carcinoma who visited authors' institution, a tertiary referral center, between 2004 and 2008. We analyzed cumulative probability of adverse reactions and risk factors. We categorized all symptoms into hypersensitivity reactions, physiologic reactions, and other reactions, according to the American College of Radiology guidelines, and evaluated each category as an event. We estimated the association between hazard for adverse reactions and the number of cumulative exposures to contrast media. We also evaluated subsequent contrast media injections and adverse reactions. There were 23,684 contrast media injections in 1,729 patients. One hundred and thirty-two patients were excluded because they were given no contrast media during the study period. Adverse reactions occurred in 196 (0.83%) patients. The cumulative incidence at 10(th), 20(th), and 30(th) examination was 7.9%, 15.2%, and 24.1%, respectively. Presence of renal impairment was found to be one of risk factors for adverse reactions. The estimated hazard of overall adverse reaction gradually decreased until around 10(th) exposure and rose with subsequent exposures. The estimated hazard of hypersensitivity showed V-shaped change with cumulative number of exposures. The estimated hazard of physiologic reaction had a tendency toward decreasing and that of other reaction had a tendency toward increasing. Second adverse reaction was more severe than the initial in only one among 130 patients receiving subsequent injections. Repeated exposures to iodinated contrast media increase the risk of adverse reaction.
Targeted Gold Nanoparticle Contrast Agent for Digital Breast Tomosynthesis and Computed Tomography
2012-03-01
bromopropionic acid (10 millimolar) was dissolved in acetonitrile (100 mL) , after which sodium azide (50 millimolar) was added to the solution. The mixture was...Transformation of the ionic X-ray contrast agent diatrizoate and related triiodinated benzoates by Trametes versicolor. Appl Environ Microbiol
Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy
Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; ...
2015-12-17
We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra ofmore » the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.« less
Comparison of Three Ionic Liquid-Tolerant Cellulases by Molecular Dynamics
Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim
2015-01-01
We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme’s secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme’s behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593
Immediate and delayed reactions to radiocontrast media: is there an allergic mechanism?
Brockow, Knut
2009-08-01
Radiocontrast media can cause immediate (1 hour) and nonimmediate (>1 hour) hypersensitivity reactions that remain unpredictable and a cause of concern for radiologists and cardiologists. Immediate hypersensitivity reactions resemble anaphylaxis, whereas nonimmediate ones clinically are predominated by exanthemas. Increasing evidence indicates that immediate reactions and nonimmediate skin exanthemas may be allergic reactions involving either contrast media-reactive IgE or T cells, respectively. Skin testing is a useful tool for the diagnosis of contrast media allergy. It may have an important role in the selection of a safe product in previous reactors, although validation data are still lacking. In vitro tests to search for contrast media-specific cell activation are currently under investigation.
Nicola, Refky; Shaqdan, Khalid Wael; Aran, Shima; Prabhakar, Anand M; Singh, Ajay Kumar; Abujudeh, Hani H
2016-01-01
Intravenous contrast administration has been of great importance in diagnostic radiology, but it is not without risks either due to the local, systemic allergic reactions or due to subcutaneous extravasation of contrast media. Subcutaneous contrast medium extravasationis an infrequent, yet a well-recognized complication. However, most incidents are minor and can be managed conservatively, but there are a few cases that require immediate surgical intervention. This article discusses the risks factors, clinical manifestations, and conservative and surgical approaches of subcutaneous contrast media extravasation for both computed tomography and magnetic resonance imaging. Copyright © 2015 Mosby, Inc. All rights reserved.
Solangi, Amber; Bond, Alan M; Burgar, Iko; Hollenkamp, Anthony F; Horne, Michael D; Rüther, Thomas; Zhao, Chuan
2011-06-02
Electrochemical studies in room temperature ionic liquids are often hampered by their relatively high viscosity. However, in some circumstances, fast exchange between participating electroactive species has provided beneficial enhancement of charge transport. The iodide (I¯)/iodine (I(2))/triiodide (I(3)¯) redox system that introduces exchange via the I¯ + I(2) ⇌ I(3)¯ process is a well documented example because it is used as a redox mediator in dye-sensitized solar cells. To provide enhanced understanding of ion movement in RTIL media, a combined electrochemical and NMR study of diffusion in the {SeCN¯-(SeCN)(2)-(SeCN)(3)¯} system has been undertaken in a selection of commonly used RTILs. In this system, each of the Se, C and N nuclei is NMR active. The electrochemical behavior of the pure ionic liquid, [C(4)mim][SeCN], which is synthesized and characterized here for the first time, also has been investigated. Voltammetric studies, which yield readily interpreted diffusion-limited responses under steady-state conditions by means of a Random Assembly of Microdisks (RAM) microelectrode array, have been used to measure electrochemically based diffusion coefficients, while self-diffusion coefficients were measured by pulsed field gradient NMR methods. The diffusivity data, derived from concentration and field gradients respectively, are in good agreement. The NMR data reveal that exchange processes occur between selenocyanate species, but the voltammetric data show the rates of exchange are too slow to enhance charge transfer. Thus, a comparison of the iodide and selenocyanate systems is somewhat paradoxical in that while the latter give RTILs of low viscosity, sluggish exchange kinetics prevent any significant enhancement of charge transfer through direct electron exchange. In contrast, faster exchange between iodide and its oxidation products leads to substantial electron exchange but this effect does not compensate sufficiently for mass transport limitations imposed by the higher viscosity of iodide RTILs.
Nardini, Andrea; Dimasi, Federica; Klepsch, Matthias; Jansen, Steven
2012-12-01
The 'ionic effect', i.e., changes in xylem hydraulic conductivity (k(xyl)) due to variation of the ionic sap composition in vessels, was studied in four Acer species growing in contrasting environments differing in water availability. Hydraulic measurements of the ionic effect were performed together with measurements on the sap electrical conductivity, leaf water potential and vessel anatomy. The low ionic effect recorded in Acer pseudoplatanus L. and Acer campestre L. (15.8 and 14.7%, respectively), which represented two species from shady and humid habitats, was associated with a low vessel grouping index, high sap electrical conductivity and least negative leaf water potential. Opposite traits were found for Acer monspessulanum L. and Acer platanoides L., which showed an ionic effect of 23.6 and 23.1%, respectively, and represent species adapted to higher irradiance and/or lower water availability. These findings from closely related species provide additional support that the ionic effect could function as a compensation mechanism for embolism-induced loss of k(xyl), either as a result of high evaporative demand or increased risk of hydraulic failure.
SPECIATION OF ORGANICS IN WATER WITH RAMAN SPECTROSCOPY: UTILITY OF IONIC STRENGTH VARIATION
We have developed and are applying an experimental and mathematical method for describing the micro-speciation of complex organic contaminants in aqueous media. For our case, micro-speciation can be defined as qualitative and quantitative identification of all discrete forms of ...
Poromechanics of compressible charged porous media using the theory of mixtures.
Huyghe, J M; Molenaar, M M; Baajens, F P T
2007-10-01
Osmotic, electrostatic, and/or hydrational swellings are essential mechanisms in the deformation behavior of porous media, such as biological tissues, synthetic hydrogels, and clay-rich rocks. Present theories are restricted to incompressible constituents. This assumption typically fails for bone, in which electrokinetic effects are closely coupled to deformation. An electrochemomechanical formulation of quasistatic finite deformation of compressible charged porous media is derived from the theory of mixtures. The model consists of a compressible charged porous solid saturated with a compressible ionic solution. Four constituents following different kinematic paths are identified: a charged solid and three streaming constituents carrying either a positive, negative, or no electrical charge, which are the cations, anions, and fluid, respectively. The finite deformation model is reduced to infinitesimal theory. In the limiting case without ionic effects, the presented model is consistent with Blot's theory. Viscous drag compression is computed under closed circuit and open circuit conditions. Viscous drag compression is shown to be independent of the storage modulus. A compressible version of the electrochemomechanical theory is formulated. Using material parameter values for bone, the theory predicts a substantial influence of density changes on a viscous drag compression simulation. In the context of quasistatic deformations, conflicts between poromechanics and mixture theory are only semantic in nature.
MS-2 and poliovirus transport in porous media: Hydrophobic effects and chemical perturbations
NASA Astrophysics Data System (ADS)
Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.
1993-04-01
In a series of pH 7 continuous-flow column experiments, removal of the bacteriophage MS-2 by attachment to silica beads had a strong, systematic dependence on the amount of hydrophobic surface present on the beads. With no hydrophobic surface, removal of phage at pH 5 was much greater than at pH 7. Release of attached phage at both pH values did occur, but was slow; breakthrough curves exhibited tailing. Poliovirus attached to silica beads at pH 5.5 much more than at pH 7.0, and attachment was also slowly reversible. Time scales for phage and poliovinis attachment were of the order of hours. The sticking efficiency factor (α), reflecting microscaie physicochemical influences on virus attachment, was in the range of 0.0007-0.02. Phage release was small but measurable under steady state conditions. Release was enhanced by lowering ionic strength and by introducing beef extract, a high-ionic-strength protein solution. Results show that viruses experience reversible attachment/detachment (sometimes termed sorption), that large chemical perturbations are needed to induce rapid virus detachment, and that viruses should be quite mobile in sandy porous media. Even small amounts of hydrophobic organic material in the porous media (≥0.001%) can retard virus transport.
NASA Astrophysics Data System (ADS)
Kluijtmans, Sebastiaan G. J. M.; de Hoog, Els H. A.; Philipse, Albert P.
1998-05-01
The influence of charge on diffusion in porous media was studied for fluorescent colloidal silica spheres diffusing in a porous glass medium. The bicontinuous porous silica glasses were optically matched with an organic solvent mixture in which both glass and tracers are negatively charged. Using fluorescence recovery after photobleaching, the long-time self-diffusion coefficient DSL of the confined silica particles was monitored in situ as a function of the ionic strength and particle to pore size ratio. At high salt concentration DSL reaches a relatively high plateau value, which depends on the particle to pore size ratio. This plateau value is unexpectedly higher than the value found for uncharged silica spheres in these porous glasses, but still significantly smaller than the free particle bulk diffusion coefficient of the silica spheres. At low salt concentration DSL reduces markedly, up to the point where colloids are nearly immobilized. This peculiar retardation probably originates from potential traps and barriers at pore intersections due to deviations from cylinder symmetry in the double layer interactions between tracers and pore walls. This indicates that diffusion of charged particles in tortuous porous media may be very different from transport in long capillaries without such intersections.
Value of MR contrast media in image-guided body interventions.
Saeed, Maythem; Wilson, Mark
2012-01-28
In the past few years, there have been multiple advances in magnetic resonance (MR) instrumentation, in vivo devices, real-time imaging sequences and interventional procedures with new therapies. More recently, interventionists have started to use minimally invasive image-guided procedures and local therapies, which reduce the pain from conventional surgery and increase drug effectiveness, respectively. Local therapy also reduces the systemic dose and eliminates the toxic side effects of some drugs to other organs. The success of MR-guided procedures depends on visualization of the targets in 3D and precise deployment of ablation catheters, local therapies and devices. MR contrast media provide a wealth of tissue contrast and allows 3D and 4D image acquisitions. After the development of fast imaging sequences, the clinical applications of MR contrast media have been substantially expanded to include pre- during- and post-interventions. Prior to intervention, MR contrast media have the potential to localize and delineate pathologic tissues of vital organs, such as the brain, heart, breast, kidney, prostate, liver and uterus. They also offer other options such as labeling therapeutic agents or cells. During intervention, these agents have the capability to map blood vessels and enhance the contrast between the endovascular guidewire/catheters/devices, blood and tissues as well as direct therapies to the target. Furthermore, labeling therapeutic agents or cells aids in visualizing their delivery sites and tracking their tissue distribution. After intervention, MR contrast media have been used for assessing the efficacy of ablation and therapies. It should be noted that most image-guided procedures are under preclinical research and development. It can be concluded that MR contrast media have great value in preclinical and some clinical interventional procedures. Future applications of MR contrast media in image-guided procedures depend on their safety, tolerability, tissue specificity and effectiveness in demonstrating success of the interventions and therapies.
Eng, John; Wilson, Renee F; Subramaniam, Rathan M; Zhang, Allen; Suarez-Cuervo, Catalina; Turban, Sharon; Choi, Michael J; Sherrod, Cheryl; Hutfless, Susan; Iyoha, Emmanuel E; Bass, Eric B
2016-03-15
Iodine contrast media are essential components of many imaging procedures. An important potential side effect is contrast-induced nephropathy (CIN). To compare CIN risk for contrast media within and between osmolality classes in patients receiving diagnostic or therapeutic imaging procedures. PubMed, EMBASE, Cochrane Library, Clinical Trials.gov, and Scopus through June 2015. Randomized, controlled trials that reported CIN-related outcomes in patients receiving low-osmolar contrast media (LOCM) or iso-osmolar contrast media for imaging. Independent study selection and quality assessment by 2 reviewers and dual extraction of study characteristics and results. None of the 5 studies that compared types of LOCM reported a statistically significant or clinically important difference among study groups, but the strength of evidence was low. Twenty-five randomized, controlled trials found a slight reduction in CIN risk with the iso-osmolar contrast media agent iodixanol compared with a diverse group of LOCM that just reached statistical significance in a meta-analysis (pooled relative risk, 0.80 [95% CI, 0.65 to 0.99]; P = 0.045). This comparison's strength of evidence was moderate. In a meta regression of randomized, controlled trials of iodixanol, no relationship was found between route of administration and comparative CIN risk. Few studies compared LOCM. Procedural details about contrast administration were not uniformly reported. Few studies specified clinical indications or severity of baseline renal impairment. No differences were found in CIN risk among types of LOCM. Iodixanol had a slightly lower risk for CIN than LOCM, but the lower risk did not exceed a criterion for clinical importance. Agency for Healthcare Research and Quality.
NASA Astrophysics Data System (ADS)
Zheng, Q.; Dickson, S.; Guo, Y.
2007-12-01
A good understanding of the physico-chemical processes (i.e., advection, dispersion, attachment/detachment, straining, sedimentation etc.) governing colloid transport in fractured media is imperative in order to develop appropriate bioremediation and/or bioaugmentation strategies for contaminated fractured aquifers, form management plans for groundwater resources to prevent pathogen contamination, and identify suitable radioactive waste disposal sites. However, research in this field is still in its infancy due to the complex heterogeneous nature of fractured media and the resulting difficulty in characterizing this media. The goal of this research is to investigate the effects of aperture field variability, flow rate and ionic strength on colloid transport processes in well characterized single fractures. A combination of laboratory-scale experiments, numerical simulations, and imaging techniques were employed to achieve this goal. Transparent replicas were cast from natural rock fractures, and a light transmission technique was employed to measure their aperture fields directly. The surface properties of the synthetic fractures were characterized by measuring the zeta-potential under different ionic strengths. A 33 (3 increased to the power of 3) factorial experiment was implemented to investigate the influence of aperture field variability, flow rate, and ionic strength on different colloid transport processes in the laboratory-scale fractures, specifically dispersion and attachment/detachment. A fluorescent stain technique was employed to photograph the colloid transport processes, and an analytical solution to the one-dimensional transport equation was fit to the colloid breakthrough curves to calculate the average transport velocity, dispersion coefficient, and attachment/detachment coefficient. The Reynolds equation was solved to obtain the flow field in the measured aperture fields, and the random walk particle tracking technique was employed to model the colloid transport experiments. The images clearly show the development of preferential pathways for colloid transport in the different aperture fields and under different flow conditions. Additionally, a correlation between colloid deposition and fracture wall topography was identified. This presentation will demonstrate (1) differential transport between colloid and solute in single fractures, and the relationship between differential transport and aperture field statistics; (2) the relationship between the colloid dispersion coefficient and aperture field statistics; and (3) the relationship between attachment/detachment, aperture field statistics, fracture wall topography, flow rate, and ionic strength. In addition, this presentation will provide insight into the application of the random walk particle tracking technique for modeling colloid transport in variable-aperture fractures.
Experimental study of ERT monitoring ability to measure solute dispersion.
Lekmine, Grégory; Pessel, Marc; Auradou, Harold
2012-01-01
This paper reports experimental measurements performed to test the ability of electrical resistivity tomography (ERT) imaging to provide quantitative information about transport parameters in porous media such as the dispersivity α, the mixing front velocity u, and the retardation factor R(f) associated with the sorption or trapping of the tracers in the pore structure. The flow experiments are performed in a homogeneous porous column placed between two vertical set of electrodes. Ionic and dyed tracers are injected from the bottom of the porous media over its full width. Under such condition, the mixing front is homogeneous in the transverse direction and shows an S-shape variation in the flow direction. The transport parameters are inferred from the variation of the concentration curves and are compared with data obtained from video analysis of the dyed tracer front. The variations of the transport parameters obtained from an inversion performed by the Gauss-Newton method applied on smoothness-constrained least-squares are studied in detail. While u and R(f) show a relatively small dependence on the inversion procedure, α is strongly dependent on the choice of the inversion parameters. Comparison with the video observations allows for the optimization of the parameters; these parameters are found to be robust with respect to changes in the flow condition and conductivity contrast. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Hybrid Perovskite Phase Transition and Its Ionic, Electrical and Optical Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Zhu, Kai
Hybrid perovskite solar cells (PSCs) under normal operation will reach a temperature above ~ 60 °C, across the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI 3). Whether the structural phase transition could result in dramatic changes of ionic, electrical and optical properties that may further impact the PSC performances should be studied. Herein, we report a structural phase transition temperature of MAPbI 3thin film at ~ 55 °C, but a striking contrast occurred at ~ 45 °C in the ionic and electrical properties of MAPbI 3due to a change of the ion activation energy from 0.7 eV tomore » 0.5 eV. The optical properties exhibited no sharp transition except for the steady increase of the bandgap with temperature. It was also observed that the activation energy for ionic migration steadily increased with increased grain sizes, and reduction of the grain boundary density reduced the ionic migration.« less
Gould, Richard; McFadden, Sonyia L; Horn, Simon; Prise, Kevin M; Doyle, Philip; Hughes, Ciara M
2016-01-01
Paediatric cardiac catheterizations may result in the administration of substantial amounts of iodinated contrast media and ionizing radiation. The aim of this work was to investigate the effect of iodinated contrast media in combination with in vitro and in vivo X-ray radiation on lymphocyte DNA. Six concentrations of iodine (15, 17.5, 30, 35, 45, and 52.5 mg of iodine per mL blood) represented volumes of iodinated contrast media used in the clinical setting. Blood obtained from healthy volunteers was mixed with iodinated contrast media and exposed to radiation doses commonly used in paediatric cardiac catheterizations (0 mGy, 70 mGy, 140 mGy, 250 mGy and 450 mGy). Control samples contained no iodine. For in vivo experimentation, pre and post blood samples were collected from children undergoing cardiac catheterization, receiving iodine concentrations of up to 51 mg of iodine per mL blood and radiation doses of up to 400 mGy. Fluorescence microscopy was performed to assess γH2AX-foci induction, which corresponded to the number of DNA double-strand breaks. The presence of iodine in vitro resulted in significant increases of DNA double-strand breaks beyond that induced by radiation for ≥ 17.5 mg/mL iodine to blood. The in vivo effects of contrast media on children undergoing cardiac catheterization resulted in a 19% increase in DNA double-strand breaks in children receiving an average concentration of 19 mg/mL iodine to blood. A larger investigation is required to provide further information of the potential benefit of lowering the amount of iodinated contrast media received during X-ray radiation investigations. Copyright © 2015 John Wiley & Sons, Ltd.
Fujiwara, Naoto; Tateishi, Ryosuke; Akahane, Masaaki; Taguri, Masataka; Minami, Tatsuya; Mikami, Shintaro; Sato, Masaya; Uchino, Kouji; Enooku, Kenichiro; Kondo, Yuji; Asaoka, Yoshinari; Yamashiki, Noriyo; Goto, Tadashi; Shiina, Shuichiro; Yoshida, Haruhiko; Ohtomo, Kuni; Koike, Kazuhiko
2013-01-01
Background To elucidate whether repeated exposures to iodinated contrast media increase the risk of adverse reaction. Materials and Methods We retrospectively reviewed 1,861 patients with hepatocellular carcinoma who visited authors’ institution, a tertiary referral center, between 2004 and 2008. We analyzed cumulative probability of adverse reactions and risk factors. We categorized all symptoms into hypersensitivity reactions, physiologic reactions, and other reactions, according to the American College of Radiology guidelines, and evaluated each category as an event. We estimated the association between hazard for adverse reactions and the number of cumulative exposures to contrast media. We also evaluated subsequent contrast media injections and adverse reactions. Results There were 23,684 contrast media injections in 1,729 patients. One hundred and thirty-two patients were excluded because they were given no contrast media during the study period. Adverse reactions occurred in 196 (0.83%) patients. The cumulative incidence at 10th, 20th, and 30th examination was 7.9%, 15.2%, and 24.1%, respectively. Presence of renal impairment was found to be one of risk factors for adverse reactions. The estimated hazard of overall adverse reaction gradually decreased until around 10th exposure and rose with subsequent exposures. The estimated hazard of hypersensitivity showed V-shaped change with cumulative number of exposures. The estimated hazard of physiologic reaction had a tendency toward decreasing and that of other reaction had a tendency toward increasing. Second adverse reaction was more severe than the initial in only one among 130 patients receiving subsequent injections. Conclusion Repeated exposures to iodinated contrast media increase the risk of adverse reaction. PMID:24098420
Safe Use of Contrast Media: What the Radiologist Needs to Know.
Beckett, Katrina R; Moriarity, Andrew K; Langer, Jessica M
2015-10-01
Iodinated and gadolinium-based contrast media are used on a daily basis in most radiology practices. These agents often are essential to providing accurate diagnoses, and are nearly always safe and effective when administered correctly. However, reactions to contrast media do occur and can be life threatening. Therefore, it is critical for faculty and staff to know how reactions to contrast agents manifest and how to treat them promptly. The decline in renal function seen occasionally after intravenous administration of iodinated contrast agents is poorly understood and likely multifactorial, and its association with the contrast medium may be overemphasized. However, it is important that radiologists be aware of current understanding and strategies to decrease the incidence of renal dysfunction. Nephrogenic systemic fibrosis, a skin disease, is an adverse reaction related to use of some gadolinium-based contrast agents in patients with chronic renal failure. The types of gadolinium most often associated with this condition and the indications for withholding gadolinium are important and are discussed in this article. The use of enteric contrast agents and contrast agents during pregnancy and nursing are reviewed briefly. Current knowledge for safe use of contrast media and key concepts that all radiologists should know are summarized in this review. © RSNA, 2015.
Marianelli, Cinzia; Petrucci, Paola; Comelli, Maria Cristina; Calderini, Gabriella
2014-01-01
This in vitro study assessed the antimicrobial properties of a novel octasilver salt of Sucrose Octasulfate (IASOS) as well as of an innovative vaginal gel containing IASOS (SilSOS Femme), against bacterial and yeast pathogens isolated from human clinical cases of symptomatic vaginal infections. In BHI and LAPT culture media, different ionic silver concentrations and different pHs were tested. IASOS exerted a strong antimicrobial activity towards all the pathogens tested in both culture media. The results demonstrated that salts and organic compounds present in the culture media influenced IASOS efficacy only to a moderate extent. Whereas comparable MBCs (Minimal Bactericidal Concentrations) were observed for G. vaginalis (10 mg/L Ag+), E. coli and E. aerogenes (25 mg/L Ag+) in both media, higher MBCs were found for S. aureus and S. agalactiae in LAPT cultures (50 mg/L Ag+ versus 25 mg/L Ag+). No minimal concentration totally inhibiting the growth of C. albicans was found. Nevertheless, in both media at the highest ionic silver concentrations (50–200 mg/L Ag+), a significant 34–52% drop in Candida growth was observed. pH differently affected the antimicrobial properties of IASOS against bacteria or yeasts; however, a stronger antimicrobial activity at pH higher than the physiological pH was generally observed. It can be therefore concluded that IASOS exerts a bactericidal action against all the tested bacteria and a clear fungistatic action against C. albicans. The antimicrobial activity of the whole vaginal gel SilSOS Femme further confirmed the antimicrobial activity of IASOS. Overall, our findings support IASOS as a valid active ingredient into a vaginal gel. PMID:24897299
Hamed, Rania; Awadallah, Areeg; Sunoqrot, Suhair; Tarawneh, Ola; Nazzal, Sami; AlBaraghthi, Tamadur; Al Sayyad, Jihan; Abbas, Aiman
2016-04-01
The objective of this study was to investigate the pH-dependent solubility and dissolution of weakly basic Biopharmaceutical Classification Systems (BCS) class II drugs, characterized by low solubility and high permeability, using carvedilol, a weak base with a pK a value of 7.8, as a model drug. A series of solubility and in vitro dissolution studies was carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH range of the GI from 1.2 to 7.8. The effect of ionic strength, buffer capacity, and buffer species of the dissolution media on the solubility and dissolution behavior of carvedilol was also investigated. The study revealed that carvedilol exhibited a typical weak base pH-dependent solubility profile with a high solubility at low pH (545.1-2591.4 μg/mL within the pH range 1.2-5.0) and low solubility at high pH (5.8-51.9 μg/mL within the pH range 6.5-7.8). The dissolution behavior of carvedilol was consistent with the solubility results, where carvedilol release was complete (95.8-98.2% released within 60 min) in media simulating the gastric fluid (pH 1.2-5.0) and relatively low (15.9-86.2% released within 240 min) in media simulating the intestinal fluid (pH 6.5-7.8). It was found that the buffer species of the dissolution media may influence the solubility and consequently the percentage of carvedilol released by forming carvedilol salts of varying solubilities. Carvedilol solubility and dissolution decreased with increasing ionic strength, while lowering the buffer capacity resulted in a decrease in carvedilol solubility and dissolution rate.
Advances in equine computed tomography and use of contrast media.
Puchalski, Sarah M
2012-12-01
Advances in equine computed tomography have been made as a result of improvements in software and hardware and an increasing body of knowledge. Contrast media can be administered intravascularly or intrathecally. Contrast media is useful to differentiate between tissues of similar density. Equine computed tomography can be used for many different clinical conditions, including lameness diagnosis, fracture identification and characterization, preoperative planning, and characterization of skull diseases. Copyright © 2012 Elsevier Inc. All rights reserved.
Brogan, Alex P S; Bui-Le, Liem; Hallett, Jason P
2018-06-25
The increasing requirement to produce platform chemicals and fuels from renewable sources means advances in biocatalysis are rapidly becoming a necessity. Biomass is widely used in nature as a source of energy and as chemical building blocks. However, recalcitrance towards traditional chemical processes and solvents provides a significant barrier to widespread utility. Here, by optimizing enzyme solubility in ionic liquids, we have discovered solvent-induced substrate promiscuity of glucosidase, demonstrating an unprecedented example of homogeneous enzyme bioprocessing of cellulose. Specifically, chemical modification of glucosidase for solubilization in ionic liquids can increase thermal stability to up to 137 °C, allowing for enzymatic activity 30 times greater than is possible in aqueous media. These results establish that through a synergistic combination of chemical biology (enzyme modification) and reaction engineering (solvent choice), the biocatalytic capability of enzymes can be intensified: a key step towards the full-scale deployment of industrial biocatalysis.
1-Butyl-3-Methyl Imidazolium-based Ionic Liquids Explored as Potential Solvents for Lipid Processing
USDA-ARS?s Scientific Manuscript database
Due to global environmental concerns, there is increasing interest in replacing the volatile solvents currently used to process commodity plant lipids. Room-temperature molten salts are one type of media receiving great attention as a possible replacement of the typical organic solvent. Molten sal...
Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity
USDA-ARS?s Scientific Manuscript database
The release and retention of in-situ colloids in aquifers play an important role in the sustainable operation of managed aquifer recharge (MAR) schemes. The processes of colloid release, retention, and associated permeability changes in consolidated aquifer sediments were studied by displacing nativ...
Contrast Media: Are There Differences in Nephrotoxicity among Contrast Media?
2014-01-01
Iodinated contrast agents are usually classified based upon their osmolality—high, low, and isosmolar. Iodinated contrast agents are also nephrotoxic in some but not all patients resulting in loss of glomerular filtration rate. Over the past 30 years, nephrotoxicity has been linked to osmolality although the precise mechanism underlying such a link has been elusive. Improvements in our understanding of the pathogenesis of nephrotoxicity and prospective randomized clinical trials have attempted to further explore the relationship between osmolality and nephrotoxicity. In this review, the basis for our current understanding that there are little if any differences in nephrotoxic potential between low and isosmolar contrast media will be detailed using data from clinical studies. PMID:24587997
Proteomic alterations induced by ionic liquids in Aspergillus nidulans and Neurospora crassa.
Martins, Isabel; Hartmann, Diego O; Alves, Paula C; Planchon, Sébastien; Renaut, Jenny; Leitão, M Cristina; Rebelo, Luís P N; Silva Pereira, Cristina
2013-12-06
This study constitutes the first attempt to understand at the proteomic level the fungal response to ionic liquid stress. Ascomycota are able to grow in media supplemented with high concentrations of an ionic liquid, which, in turn, lead to major alterations in the fungal metabolic footprint. Herein, we analysed the differential accumulation of mycelial proteins in Aspergillus nidulans and Neurospora crassa after their exposure to two of the most commonly used ionic liquids: 1-ethyl-3-methylimidazolium chloride or cholinium chloride. Data obtained showed that numerous stress-responsive proteins (e.g. anti-ROS defence proteins) as well as several critical biological processes and/or pathways were affected by either ionic liquid. Amongst other changes, these compounds altered developmental programmes in both fungi (e.g. promoting the development of Hülle cells or conidiation) and led to accumulation of osmolytes, some of which may play an important role in multiple stress responses. In particular, in N. crassa, both ionic liquids increased the levels of proteins which are likely involved in the biosynthesis of unusual metabolites. These data potentially open new perspectives on ionic liquid research, furthering their conscious design and their use to trigger production of targeted metabolites. The present study emphasises the importance of understanding ionic liquid's stress responses, crucial to further their safe large-scale usage. Knowledge of the alterations prompted at a cellular and biochemical level gives also fresh perspectives on how to employ these "novel" compounds to manipulate proteins or pathways of biotechnological value. The results presented here provide meaningful insights into the understanding of fungi stress and adaptation responses to anthropogenic chemicals used in industry. © 2013.
Controlled Synthesis of Polyions of Heavy Main-Group Elements in Ionic Liquids
Groh, Matthias F.; Wolff, Alexander; Grasser, Matthias A.; Ruck, Michael
2016-01-01
Ionic liquids (ILs) have been proven to be valuable reaction media for the synthesis of inorganic materials among an abundance of other applications in different fields of chemistry. Up to now, the syntheses have remained mostly “black boxes”; and researchers have to resort to trial-and-error in order to establish a new synthetic route to a specific compound. This review comprises decisive reaction parameters and techniques for the directed synthesis of polyions of heavy main-group elements (fourth period and beyond) in ILs. Several families of compounds are presented ranging from polyhalides over carbonyl complexes and selenidostannates to homo and heteropolycations. PMID:27598123
Canga, Ana; Kislikova, Maria; Martínez-Gálvez, María; Arias, Mercedes; Fraga-Rivas, Patricia; Poyatos, Cecilio; de Francisco, Angel L M
2014-01-01
Nephrogenic systemic fibrosis is a fibrosing disorder that affects patients with impaired renal function and is associated with the administration of gadolinium-based contrast media used in MRI. Despite being in a group of drugs that were considered safe, report about this potentially serious adverse reaction was a turning point in the administration guidelines of these contrast media. There has been an attempt to establish safety parameters to identify patients with risk factors of renal failure. The close pharmacovigilance and strict observation of current regulations, with special attention being paid to the value of glomerular filtration, have reduced the published cases involving the use of gadolinium-based contrast media. In a meeting between radiologists and nephrologists we reviewed the most relevant aspects currently and recommendations for its prevention.
A Rayleighian approach for modeling kinetics of ionic transport in polymeric media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev
2017-02-14
Here, we report a theoretical approach for analyzing impedance of ionic liquids (ILs) and charged polymers such as polymerized ionic liquids (PolyILs) within linear response. The approach is based on the Rayleigh dissipation function formalism, which provides a computational framework for a systematic study of various factors, including polymer dynamics, in affecting the impedance. We present an analytical expression for the impedance within linear response by constructing a one-dimensional model for ionic transport in ILs/PolyILs. This expression is used to extract mutual diffusion constants, the length scale of mutual diffusion, and thicknesses of a low-dielectric layer on the electrodes frommore » the broadband dielectric spectroscopy (BDS) measurements done for an IL and three PolyILs. Also, static dielectric permittivities of the IL and the PolyILs are determined. The extracted mutual diffusion constants are compared with the self diffusion constants of ions measured using pulse field gradient (PFG) fluorine nuclear magnetic resonance (NMR). For the first time, excellent agreements between the diffusivities extracted from the Electrode Polarization spectra (EPS) of IL/PolyILs and those measured using the PFG-NMR are found, which allows the use of the EPS and the PFG-NMR techniques in a complimentary manner for a general understanding of the ionic transport.« less
Basic MR relaxation mechanisms and contrast agent design.
De León-Rodríguez, Luis M; Martins, André F; Pinho, Marco C; Rofsky, Neil M; Sherry, A Dean
2015-09-01
The diagnostic capabilities of magnetic resonance imaging (MRI) have undergone continuous and substantial evolution by virtue of hardware and software innovations and the development and implementation of exogenous contrast media. Thirty years since the first MRI contrast agent was approved for clinical use, a reliance on MR contrast media persists, largely to improve image quality with higher contrast resolution and to provide additional functional characterization of normal and abnormal tissues. Further development of MR contrast media is an important component in the quest for continued augmentation of diagnostic capabilities. In this review we detail the many important considerations when pursuing the design and use of MR contrast media. We offer a perspective on the importance of chemical stability, particularly kinetic stability, and how this influences one's thinking about the safety of metal-ligand-based contrast agents. We discuss the mechanisms involved in MR relaxation in the context of probe design strategies. A brief description of currently available contrast agents is accompanied by an in-depth discussion that highlights promising MRI contrast agents in the development of future clinical and research applications. Our intention is to give a diverse audience an improved understanding of the factors involved in developing new types of safe and highly efficient MR contrast agents and, at the same time, provide an appreciation of the insights into physiology and disease that newer types of responsive agents can provide. © 2015 Wiley Periodicals, Inc.
"Basic MR Relaxation Mechanisms & Contrast Agent Design"
De León-Rodríguez, Luis M.; Martins, André F.; Pinho, Marco; Rofsky, Neil; Sherry, A. Dean
2015-01-01
The diagnostic capabilities of magnetic resonance imaging (MRI) have undergone continuous and substantial evolution by virtue of hardware and software innovations and the development and implementation of exogenous contrast media. Thirty years since the first MRI contrast agent was approved for clinical use, a reliance on MR contrast media persists largely to improve image quality with higher contrast resolution and to provide additional functional characterization of normal and abnormal tissues. Further development of MR contrast media is an important component in the quest for continued augmentation of diagnostic capabilities. In this review we will detail the many important considerations when pursuing the design and use of MR contrast media. We will offer a perspective on the importance of chemical stability, particularly kinetic stability, and how this influences one's thinking about the safety of metal-ligand based contrast agents. We will discuss the mechanisms involved in magnetic resonance relaxation in the context of probe design strategies. A brief description of currently available contrast agents will be accompanied by an in-depth discussion that highlights promising MRI contrast agents in development for future clinical and research applications. Our intention is to give a diverse audience an improved understanding of the factors involved in developing new types of safe and highly efficient MR contrast agents and, at the same time, provide an appreciation of the insights into physiology and disease that newer types of responsive agents can provide. PMID:25975847
Ionic structure in liquids confined by dielectric interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica
2015-11-01
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.
Vontobel, Jan; Possner, Mathias; Schütz, Philipp; Müller, Beat; Taramasso, Maurizio; Binder, Roland K; Haueis, Sabine; Attinger-Toller, Adrian; Maisano, Francesco; Nietlispach, Fabian
2015-01-01
The study objective was to evaluate the impact of the amount of contrast medium used for transcatheter aortic valve implantation (TAVI) on short-term outcome. Patients undergoing TAVI are exposed to repeat contrast medium application both for preprocedural screening and during the TAVI procedure itself. Whether the amount of contrast media is associated with worse outcome is unclear. A total of 257 patients were included (median age 82.7 years) and divided into two groups with preserved and reduced kidney function (glomerular filtration rate <60 ml/min/1.73 m2), respectively. Total volume of contrast media administered during and within 5 days prior to TAVI was analysed. A combined early safety endpoint at 30 days was evaluated. The early safety endpoint was reached by 31 patients and acute kidney injury occurred in 22 patients. The median total volume of contrast media administered was 144 ml (interquartile range 81-225 ml). The amount of contrast did not independently predict the early safety endpoint in the overall population (odds ratio [OR] 0.93, 95% confidence interval [CI] 0.56 to 1.53, p = 0.774) and in subgroups with preserved and reduced kidney function. Change in creatinine was an independent strong predictor of the early safety endpoint in the overall population (OR 18.13, 95% CI 4.70 to 69.99, p <0.001), as well as in subgroups with preserved and reduced kidney function. The amount of contrast did not predict a change in creatinine within 72 hours following TAVI (r = 0.02, 95% CI -0.02 to 0.07, p = 0.368). Decreased kidney function after TAVI influences outcome. When rather small amounts of contrast media are used for screening and the TAVI procedure itself, the amount of contrast media seems not to be an independent predictor of outcome, further suggesting that decreased kidney function after TAVI is multifactorial.
Influence of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage.
Baker, Joseph L; Furbish, Jeffrey; Lindberg, Gerrick E
2015-11-01
We examine the effect of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage and contrast these results with the behavior of Trp-cage in water. We find the ionic liquid has a dramatic effect on Trp-cage, though many similarities with aqueous Trp-cage are observed. We assess Trp-cage folding by monitoring root mean square deviation from the crystallographic structure, radius of gyration, proline cis/trans isomerization state, protein secondary structure, amino acid contact formation and distance, and native and non-native contact formation. Starting from an unfolded configuration, Trp-cage folds in water at 298 K in less than 500 ns of simulation, but has very little mobility in the ionic liquid at the same temperature, which can be ascribed to the higher ionic liquid viscosity. At 365 K, the mobility of the ionic liquid is increased and initial stages of Trp-cage folding are observed, however Trp-cage does not reach the native folded state in 2 μs of simulation in the ionic liquid. Therefore, in addition to conventional molecular dynamics, we also employ scaled molecular dynamics to expedite sampling, and we demonstrate that Trp-cage in the ionic liquid does closely approach the aqueous folded state. Interestingly, while the reduced mobility of the ionic liquid is found to restrict Trp-cage motion, the ionic liquid does facilitate proline cis/trans isomerization events that are not seen in our aqueous simulations. Copyright © 2015 Elsevier Inc. All rights reserved.
[Quantitative evaluation of Gd-EOB-DTPA uptake in phantom study for liver MRI].
Hayashi, Norio; Miyati, Tosiaki; Koda, Wataru; Suzuki, Masayuki; Sanada, Shigeru; Ohno, Naoki; Hamaguchi, Takashi; Matsuura, Yukihiro; Kawahara, Kazuhiro; Yamamoto, Tomoyuki; Matsui, Osamu
2010-05-20
Gd-EOB-DTPA is a new liver specific MRI contrast media. In the hepatobiliary phase, contrast media is trapped in normal liver tissue, a normal liver shows high intensity, tumor/liver contrast becomes high, and diagnostic ability improves. In order to indicate the degree of uptake of the contrast media, the enhancement ratio (ER) is calculated. The ER is obtained by calculating (signal intensity (SI) after injection-SI before injection) / SI before injection. However, because there is no linearity between contrast media concentration and SI, ER is not correctly estimated by this method. We discuss a method of measuring ER based on SI and T(1) values using the phantom. We used a column phantom, with an internal diameter of 3 cm, that was filled with Gd-EOB-DTPA diluted solution. Moreover, measurement of the T(1) value by the IR method was also performed. The ER measuring method of this technique consists of the following three components: 1) Measurement of ER based on differences in 1/T(1) values using the variable flip angle (FA) method, 2) Measurement of differences in SI, and 3) Measurement of differences in 1/T(1) values using the IR method. ER values calculated by these three methods were compared. In measurement made using the variable FA method and the IR method, linearity was found between contrast media concentration and ER. On the other hand, linearity was not found between contrast media concentration and SI. For calculation of ER using Gd-EOB-DTPA, a more correct ER is obtained by measuring the T(1) value using the variable FA method.
Mikac, Ursa; Sepe, Ana; Kristl, Julijana; Baumgartner, Sasa
2010-08-03
The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. We have selected magnetic resonance imaging (MRI) as the method of choice for visualizing the dynamic processes occurring during the swelling of xanthan tablets in a variety of media. The aims were (i) to develop a new method using MRI for accurate determination of penetration, swelling and erosion fronts, (ii) to investigate the effects of pH and ionic strength on swelling, and (iii) to study the influence of structural changes in xanthan gel on drug release. Two dimensional (2D) MRI and one dimensional single point imaging (SPI) of swollen xanthan tablets were recorded, together with T(2) mapping. The border between dry and hydrated glassy xanthan-the penetration front-was determined from 1D SPI signal intensity profiles. The erosion front was obtained from signal intensity profiles of 2D MR images. The swelling front, where xanthan is transformed from a glassy to a rubbery state (gel formation), was determined from T(2) profiles. Further, the new combination of MRI methods for swelling front determination enables to explain the appearance of the unusual "bright front" observed on 2D MR images in tablets swollen in HCl pH 1.2 media, which represents the position of swelling front. All six media studied, differing in pH and ionic strength, penetrate through the whole tablet in 4h+/-0.3h, but formation of the gel layer is significantly delayed. Unexpectedly, the position of the swelling front was the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers. The latter are seen to be the consequence of the different hydrodynamic radii of the xanthan molecules, which affect the drug release kinetics. The slowest release of pentoxifylline was observed in water where the thickest gel was formed, whereas the fastest release was observed in HCl pH 1.2, in which the gel layer was thinnest. Moreover, experiments simulating physiological conditions showed that changes of pH and ionic strength influence the xanthan gel structure relatively quickly, and consequently the drug release kinetics. It is therefore concluded that drug release is greatly influenced by changes in the xanthan molecular conformation, as reflected in changed thickness of the gel layer. A new method utilizing combination of SPI, multi-echo MRI and T(2) mapping eliminates the limitations of standard methods used in previous studies for determining moving fronts and improves current understanding of the dynamic processes involved in polymer swelling. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Tsushima, Yoshito; Ishiguchi, Tsuneo; Murakami, Takamichi; Hayashi, Hiromitsu; Hayakawa, Katsumi; Fukuda, Kunihiko; Korogi, Yukunori; Sugimoto, Hideharu; Takehara, Yasuo; Narumi, Yoshifumi; Arai, Yasuaki; Kuwatsuru, Ryohei; Yoshimitsu, Kengo; Awai, Kazuo; Kanematsu, Masayuki; Takagi, Ryo
2016-02-01
To help establish consensus on the safe use of contrast media in Japan. Questionnaires were sent to accredited teaching hospitals with radiology residency programs. The reply rate was 45.4% (329/724). For contrast-induced nephropathy (CIN), chronic and acute kidney diseases were considered a risk factor in 96.7 and 93.6%, respectively, and dehydration in 73.9%. As preventive actions, intravenous hydration (89.1%) and reduction of iodinated contrast media dose (86.9%) were commonly performed. For nephrogenic systemic fibrosis (NSF), chronic and acute kidney diseases were considered risk factors in 98.5 and 90.6%, respectively, but use of unstable gadolinium-based contrast media was considered a risk factor in only 55.6%. A renal function test was always (63.5% in iodinated; 65.7% in gadolinium) or almost always (23.1; 19.8%) performed, and estimated glomerular filtration rate (eGFR) was the parameter most frequently used (80.8; 82.6%). For the patients with risk factors for acute adverse reaction (AAR), steroid premedication or/and change of contrast medium were frequent preventive actions, but intravenous steroid administration immediately before contrast media use was still performed. Our questionnaire survey revealed that preventive actions against CIN were properly performed based on patients' eGFR. Preventive actions against NSF and AAR still lacked consensus.
Becker, Joshua; Babb, James; Serrano, Manuel
2013-04-01
The purpose of this study was to use measured glomerular filtration rate (GFR), the reference standard of renal function, to assess the deleterious effect of iodinated contrast media on renal function. Such an effect has been traditionally defined as a greater than 0.5-mg/dL increase in serum creatinine concentration or a 25% or greater increase 24-72 hours after the injection of iodinated contrast medium. This pilot investigation was focused on the consequences of clinically indicated IV injection of iodinated contrast media; intraarterial injection was excluded. One hundred thirteen patients with normal serum creatinine concentrations were enrolled in an approved protocol. At random, as chosen by one of the investigators, patients underwent imaging with one of three monomeric agents (iopamidol 300, iopromide 300, iohexol 300) and one dimeric agent (iodixanol 320). Measured GFR was determined immediately before CT and approximately 3 and 72 hours after the contrast injection for the CT examination. Iodinated contrast medium, a glomerular filtrate with no tubular excretion or reabsorption, was the GFR marker. Measured GFR was determined by x-ray fluorescence analysis with nonisotopic iodinated contrast media. Monomeric and dimeric contrast agents in diagnostic CT volumes (based on bodyweight and imaging protocol) did not induce a significant change in measured GFR (95% confidence by Wilcoxon test), suggesting that use of the evaluated contrast media will not lead to more than a 12% variation. The three monomeric agents studied and the one dimeric agent were equivalent in terms of lack of a significant effect on measured GFR when administered to patients with a normal GFR.
Avoidable errors in dealing with anaphylactoid reactions to iodinated contrast media.
Segal, Arthur J; Bush, William H
2011-03-01
Contrast reactions are much less common today than in the past. This is principally because of the current and predominant use of low and iso-osmolar contrast media compared with the prior use of high osmolality contrast media. As a result of the significantly diminished frequency, there are now fewer opportunities for physicians to recognize and appropriately treat such adverse reactions. In review of the literature combined with our own clinical and legal experience, 12 potential errors were identified and these are reviewed in detail so that they can be avoided by the physician-in-charge. Basic treatment considerations are presented along with a plan to systematize an approach to contrast reactions, simplify treatment options and plans, and schedule periodic drills.
Incorporation of metal nanoparticles into wood substrate and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rector, Kirk D; Lucas, Marcel
Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation processmore » at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.« less
The Effect of Lengthening Cation Ether Tails on Ionic Liquid Properties
Lall-Ramnarine, S.; Rodriguez, C.; Fernandez, R.; ...
2016-08-30
In order to explore the effect of multiple ether functionalities on ionic liquid properties, a series of ten pyrrolidinium ionic liquids and ten imidazolium ionic liquids bearing ether and alkyl side chains of varying lengths (4 to 10 atoms in length) were prepared for this study. Their physical properties, such as viscosity, conductivity and thermal profile were measured and compared. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILs increases there is hardly any increase inmore » the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. These results provide significant insight on the choice of starting materials for researchers designing ILs for specific applications.« less
NASA Astrophysics Data System (ADS)
Chang, Kai-Shiun; Lin, Yi-Feng; Tung, Kuo-Lun
A molecular dynamics (MD) simulation is used to reveal the grain boundary effect on the ionic transport of yttria-stabilized zirconia (YSZ). The oxygen ion displacements and diffusivities of the ideal and grain boundary-inserted YSZ models are analyzed at elevated temperatures. An optimized Y 2O 3 concentration within YSZ for the best ionic conductivity is achieved by balancing the trade-off between the increased vacancies and the decreased accessible free space. The mass transfer resistance of the grain boundary in YSZ can be more easily found at higher temperatures by observing the oxygen ion diffusivities or traveling trajectories. At lower temperatures, the grain interior and the grain boundary control the ionic transport. In contrast, the grain boundary effect on the diffusion barrier is gradually eliminated at elevated temperatures. The modeled results in this work agree well with previous experimental data.
NASA Astrophysics Data System (ADS)
Prédélus, Dieuseul; Lassabatere, Laurent; Louis, Cédric; Gehan, Hélène; Brichart, Thomas; Winiarski, Thierry; Angulo-Jaramillo, Rafael
2017-03-01
This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO2-FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10-2 M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.
NASA Astrophysics Data System (ADS)
Tu, Shu-Ju; Yang, Pei-Ying; Hong, Ji-Hong; Lo, Ching-Jung
2013-07-01
In CT planning for radiation therapy, patients may be asked to have a medical procedure of contrast agent (CA) administration as required by their physicians. CA media improve quality of CT images and assist radiation oncologists in delineation of the target or organs with accuracy. However, dosimetric discrepancy may occur between scenarios in which CA media are present in CT planning and absent in treatment delivery. In recent preclinical experiments of small animals, gold nanoparticles (AuNPs) have been identified as an excellent contrast material of x-ray imaging. In this work, we quantitatively evaluate the effect of AuNPs to be used as a potential material of contrast enhancement in radiotherapy planning with an analytical phantom and clinical case. Conray 60, an iodine-based product for contrast enhancement in clinical uses, is included as a comparison. Other additional variables such as different concentrations of CA media, radiation delivery techniques and dose calculation algorithms are included. We consider 1-field AP, 4-field box, 7-field intensity modulated radiation therapy (IMRT) and a recent technique of volumetric modulated arc therapy (VMAT). CA media of AuNPs (Conray 60) with concentrations of 10%, 20%, 30%, 40% and 50% containing 28.2, 56.4, 84.6, 112.8 and 141.0 mg of gold (iodine) per mL were prepared prior to CT scanning. A virtual phantom with a target where nanoparticle media are loaded and clinical case of gastric lymphoma in which the Conray 60 media were given to the patient prior to the CT planning are included for the study. Compared to Conray 60 media with concentration of 10%/50%, Hounsfield units for AuNP media of 10%/50% are 322/1608 higher due to the fact that atomic number of Au (Z=79) is larger than I (Z=53). In consequence, dosimetric discrepancy of AuNPs is magnified between presence and absence of contrast media. It was found in the phantom study that percent dose differences between presence and absence of CA media may be reduced by delivery techniques of 7-field IMRT or VMAT. To manage less than 3% of percent dose difference, it was suggested an upper limit of 15% (or 42.3 mg Au/mL) of AuNP media in the phantom study; 8% (or 22.5 mg Au/mL) in the specific clinical case.
Risk Predictors for Postcontrast Acute Kidney Injury.
Krause, Trudy Millard; Ukhanova, Maria; Lee Revere, Frances; Finkel, Kevin W
2018-05-22
To evaluate risk predictors of acute kidney injury (AKI) after contrast-media procedures in a broader cohort of patients than previously reported. Comprehensive medical and pharmacy commercial claims data from 2012 to 2014. Claims associated with contrast-media procedures for 2,737,020 persons between January 1, 2012 and November 30, 2014, were reviewed. The overall incidence of AKI after a contrast-media procedure was 0.85%. AKI occurred in 26% of cases that had two or more contrast procedures within 30 days, compared with 9% of non-AKI cases. Although the incidence of postcontrast AKI was low, 10% of patients who developed AKI had a recent previous episode of AKI. In cases when AKI had occurred within 180 days of contrast administration, the odds of subsequent kidney injury was 9.39. Overall, there is a low risk (0.85%) of developing an AKI after a procedure with contrast-media consistent with several recent studies. However, in adults with a recent history of AKI, physicians must consider this history as a risk factor for subsequent AKI. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Tong, Meiping; Camesano, Terri A; Johnson, William P
2005-05-15
The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes < 0.8 nN. Steric repulsion due to surface polymers was apparently responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.
Kuefner, M A; Feurle, J; Petersen, J; Uder, M; Schwelberger, H G
2014-01-01
Iodinated contrast media can cause pseudoallergic reactions associated with histamine release in significant numbers of patients. To clarify whether these adverse reactions may be aggravated by a compromised histamine catabolism we asked if radiographic contrast agents in vitro inhibit the histamine inactivating enzymes diamine oxidase (DAO) and histamine N-methyltransferase (HMT). Nine iodinated contrast agents were tested in vitro. Following pre-incubation of purified porcine kidney DAO and recombinant human HMT with 0.1-10mM of the respective contrast medium (H2O and specific inhibitors of DAO and HMT as controls) enzyme activities were determined by using radiometric micro assays. None of the contrast media irrespective of their structure showed significant inhibition of the activities of DAO and HMT. Pre-incubation of the enzymes with specific inhibitors led to complete inhibition of the respective enzymatic activity. The iodinated contrast media tested in vitro did not exhibit inhibition of histamine converting enzymes at physiologically relevant concentrations. However due to the in vitro character of this study these results do not directly reflect the in vivo situation. Copyright © 2012 SEICAP. Published by Elsevier Espana. All rights reserved.
Eliades, Theodore; Pratsinis, Harris; Kletsas, Dimitris; Eliades, George; Makou, Margarita
2004-01-01
The purpose of this study was to qualitatively and quantitatively characterize the substances released from orthodontic brackets and nickel-titanium wires and to comparatively assess the cytotoxicity of the ions released from these orthodontic alloys. Two full sets of stainless steel brackets of 20 brackets each (weight 2.1 g) and 2 groups of 0.018 x 0.025 Ni-Ti archwires of 10 wires each (weight 2.0 g) were immersed in 0.9% saline solution for a month. The immersion media were analyzed with inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the ionic content was statistically analyzed with 1-way analysis of variance (ANOVA). Human periodontal ligament fibroblasts and gingival fibroblasts were exposed to various concentrations of the 2 immersion media; nickel chloride was used as a positive control for comparison purposes. The cytotoxic or cytostatic activity of the media was investigated with the MTT and the DNA synthesis assays. The results of the cytotoxicity assay were analyzed with 2-way ANOVA and the Tukey test with solution and concentration variants as discriminating variables (alpha=0.05). The results indicated no ionic release for the nickel-titanium alloy aging solution, whereas measurable nickel and traces of chromium were found in the stainless steel bracket-aging medium. Concentrations of the nickel chloride solution greater then 2 mM were found to reduce by more than 50% the viability and DNA synthesis of fibroblasts; however, neither orthodontic materials-derived media had any effect on the survival and DNA synthesis of either cells.
Grinberg, Nelu; Albu, Florin; Fandrick, Keith; Iorgulescu, Elena; Medvedovici, Andrei
2013-03-05
Dimethyl sulfate (DMS) is frequently used in pharmaceutical manufacturing processes as an alkylating agent. Trace levels of DMS in drug substances should be carefully monitored since the compound can become an impurity which is genotoxic in nature. Derivatization of DMS with dibenzazepine leads to formation of the N-methyl derivative, which can be retained on a reversed phase column and subsequently separated from other potential impurities. Such derivatization occurs relatively slowly. However, it can be substantially speed up if ionic liquids are used as reaction media. In this paper we report the use of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (IL1) and 1-butyl-4-methylpyridinium tetrafluoroborate (IL2) as reaction media for the derivatization of DMS with dibenzazepine. It was determined that the stoichiometry between the substrate and DMS may be 1:1 or 2:1, in relation with the nature of the reaction media. An (+)ESI-MS/MS approach was used for quantitation of the derivatized product. Alternatively, DMS derivatization may be carried out with pyridine in acetonitrile (ACN). The N-methylpyridinium derivative was separated by hydrophilic interaction liquid chromatography (HILIC) and detected through (+)ESI-MS (in the SIM mode). In both cases, a limit of quantitation (LOQ) of 0.05 μg/ml DMS was achievable, with a linearity range up to 10 μg/ml. Both analytical alternatives were applied to assay DMS in 4-(2-methoxyethyl)phenol, which is used as a starting material in the synthesis of metoprolol. Copyright © 2012 Elsevier B.V. All rights reserved.
Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu0) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic...
Schmid, Isabelle; Didier, Dominique; Pfammatter, Thomas; Garachemani, Ali; Fleisch, Martin; Kirchin, Miles A; Meier, Bernhard
2007-06-12
To compare the effects on heart rate (HR), on left ventricular (LV) or arterial pressures, and the general safety of a non-ionic low-osmolar contrast medium (CM) and a non-ionic iso-osmolar CM in patients undergoing cardiac angiography (CA) or peripheral intra-arterial digital subtraction angiography (IA-DSA). Two double-blind, randomized studies were conducted in 216 patients who underwent CA (n=120) or peripheral IA-DSA (n=96). Patients referred for CA received a low-osmolar monomeric CM (iomeprol-350, n=60) or an iso-osmolar dimeric CM (iodixanol-320; n=60). HR and LV peak systolic and end-diastolic pressures were determined before and after the first injection during left and right coronary arteriography and left ventriculography. Monitoring for all types of adverse event (AE) was performed for 24 h following the procedure. t-tests were performed to compare CM for effects on HR. Patients referred for IA-DSA received iomeprol-300 (n=49) or iodixanol-320 (n=47). HR and arterial blood pressure (BP) were evaluated before and after the first 4 injections. Monitoring for AE was performed for 4 h following the procedure. Repeated-measures ANOVA was used to compare mean HR changes across the first 4 injections, whereas changes after the first injection were compared using t-tests. No significant differences were noted between iomeprol and iodixanol in terms of mean changes in HR during left coronary arteriography (p=0.8), right coronary arteriography (p=0.9), and left ventriculography (p=0.8). In patients undergoing IA-DSA, no differences between CM were noted for effects on mean HR after the first injection (p=0.6) or across the first 4 injections (p=0.2). No significant differences (p>0.05) were noted in terms of effects on arterial BP in either study or on LV pressures in patients undergoing CA. Non-serious AE considered possibly CM-related (primarily headache and events affecting the cardiovascular and digestive systems) were reported more frequently by patients undergoing CA and more frequently after iodixanol (14/60 [23.3%] and 2/47 [4.3%]; CA and IA-DSA, respectively) than iomeprol (10/60 [16.7%] and 1/49 [2%], respectively). Iomeprol and iodixanol are safe and have equally negligible effects on HR and LV pressures or arterial BP during and after selective intra-cardiac injection and peripheral IA-DSA. Iomeprol and iodixanol are safe and equally well tolerated with regard to cardiac rhythm and clinical preference should be based on diagnostic image quality alone.
Seitz, Cornelia S; Pfeuffer, Petra; Raith, Petra; Bröcker, Eva-B; Trautmann, Axel
2009-10-01
All iodinated radiocontrast media (RCM) may cause hypersensitivity reactions, either immediate-type within 5-10 min of RCM injection or delayed-type, which become apparent more than 1h after RCM exposure. Delayed-type hypersensitivity to RCM may pose a problem for future radiologic investigations because due to possible immunological cross-reactivity all iodinated RCM are usually avoided. The aim of this study was not only to identify the causal RCM for the exanthema but also to demonstrate that patients may receive alternative iodinated RCM despite a history of RCM-induced allergic exanthema. We evaluated 32 patients with a history of exanthema after RCM application using standardized patch, prick and intradermal skin testing. In case of positive skin tests intravenous challenges with skin-test-negative RCM were performed to identify non-ionic monomer RCM which are tolerated. In 6 out of 32 patients skin tests strongly suggested a delayed-type non-IgE-mediated allergic hypersensitivity to the RCM iomeprol (3x), iopromide (2x), and iopamidol. In 4 patients alternative non-ionic monomer RCM (2x iosarcol, iopromide, and iomeprol) were identified by controlled challenge tests. The evaluation of patients with RCM-associated exanthema should always include appropriate skin tests ensuring that patients with a delayed-type allergic RCM-induced exanthema are not missed. Moreover, allergologic testing may identify alternative RCM of the group of non-ionic monomers, which are tolerated in future radiologic investigations.
Effects of pH on transport properties of articular cartilages.
Loret, Benjamin; Simões, Fernando M F
2010-02-01
Articular cartilages swell and shrink depending on the ionic strength of the electrolyte they are in contact with. This electro-chemo-mechanical coupling is due to the presence of fixed electrical charges on proteoglycans (PGs). In addition, at nonphysiological pH, collagen fibers become charged. Therefore, variation of the pH of the electrolyte has strong implications on the electrical charge of cartilages and, by the same token, on their transport and mechanical properties. Articular cartilages are viewed as three-phase multi-species porous media. The constitutive framework is phrased in the theory of thermodynamics of porous media. Acid-base reactions, as well as calcium binding, are embedded in this framework. Although macroscopic in nature, the model accounts for a number of biochemical details defining collagen and PGs. The change of the electrical charge is due to the binding of hydrogen ions on specific sites of PGs and collagen. Simulations are performed mimicking laboratory experiments where either the ionic strength or the pH of the bath, the cartilage piece is in contact with, is varied. They provide the evolutions of the chemical compositions of mobile ions, of the sites of acid-base reactions and calcium binding, and of the charges of collagen and glycosaminoglycans, at constant volume fraction of water. Emphasis is laid on the effects of pH, ionic strength and calcium binding on the transport properties of cartilages, and, in particular, on the electrical conductivity and electro-osmotic coefficient.
Simulation of Charged Systems in Heterogeneous Dielectric Media via a True Energy Functional
NASA Astrophysics Data System (ADS)
Jadhao, Vikram; Solis, Francisco J.; de la Cruz, Monica Olvera
2012-11-01
For charged systems in heterogeneous dielectric media, a key obstacle for molecular dynamics (MD) simulations is the need to solve the Poisson equation in the media. This obstacle can be bypassed using MD methods that treat the local polarization charge density as a dynamic variable, but such approaches require access to a true free energy functional, one that evaluates to the equilibrium electrostatic energy at its minimum. In this Letter, we derive the needed functional. As an application, we develop a Car-Parrinello MD method for the simulation of free charges present near a spherical emulsion droplet separating two immiscible liquids with different dielectric constants. Our results show the presence of nonmonotonic ionic profiles in the dielectric with a lower dielectric constant.
Kurihara, Osamu; Takano, Masamichi; Uchiyama, Saori; Fukuizumi, Isamu; Shimura, Tetsuro; Matsushita, Masato; Komiyama, Hidenori; Inami, Toru; Murakami, Daisuke; Munakata, Ryo; Ohba, Takayoshi; Hata, Noritake; Seino, Yoshihiko; Shimizu, Wataru
2015-12-01
Contrast-induced nephropathy (CIN) is considered to result from intrarenal vasoconstriction, and occurs more frequently in impaired than in normal kidneys. It was hypothesized that iodinated contrast media would markedly change renal blood flow and vascular resistance in functionally impaired kidneys. Thirty-six patients were enrolled (32 men; mean age, 75.3 ± 7.6 years) undergoing diagnostic coronary angiography and were divided into two groups based on the presence of chronic kidney disease (CKD), defined as an estimated glomerular filtration rate (eGFR) of < 60 mL/min per 1.73 m(2) (CKD and non-CKD groups, n = 18 in both). Average peak velocity (APV) and renal artery resistance index (RI) were measured by Doppler flow wire before and after administration of the iodinated contrast media. The APV and the RI were positively and inversely correlated with the eGFR at baseline, respectively (APV, R = 0.545, P = 0.001; RI, R = -0.627, P < 0.001). Mean RI was significantly higher (P = 0.015) and APV was significantly lower (P = 0.026) in the CKD than in the non-CKD group. Both APV (P < 0.001) and RI (P = 0.002) were significantly changed following contrast media administration in the non-CKD group, but not in the CKD group (APV, P = 0.258; RI, P = 0.707). Although renal arterial resistance was higher in patients with CKD, it was not affected by contrast media administration, suggesting that patients with CKD could have an attenuated response to contrast media. © 2015 The Authors. Clinical and Experimental Pharmacology and Physiology Published by Wiley Publishing Asia Pty Ltd.
Deek, Hiba; Newton, Phillip; Sheerin, Noella; Noureddine, Samar; Davidson, Patricia M
2014-11-01
Contrast media induced nephropathy (CIN) is a sudden compromise of renal function 24-48 h after administering contrast medium during a CT scan or angiography. CIN accounts for 10% of hospital acquired renal failure and is ranked the third cause of acquiring this condition. Identifying patients at risk through proper screening can reduce the occurrence of this condition. This review paper aims to critique current evidence, provide a better understanding of CIN, inform nursing practice and make recommendations for bedside nurses and future research. An integrative review of the literature was made using the key terms: "contrast media", "nephritis", "nephropathy", "contrast media induced nephropathy scores", "acute kidney failure", "acute renal failure" and "acute kidney injury". MeSH key terms used in some databases were: "prevention and control", "acute kidney failure" and "treatment". Databases searched included Medline, CINAHL and Academic Search Complete, and references of relevant articles were also assessed. The search included all articles between the years 2000 and 2013. Sixty-seven articles were obtained as a result of the search, including RCTs, systematic reviews, and retrospective studies. Contrast media induced nephropathy is an iatrogenic complication occurring secondary to diagnostic or therapeutic procedures. At times it is unavoidable but a systematic method of risk assessment should be adopted to identify high risk patients for tailored and targeted approaches to management interventions. As the use of contrast media is increasing for diagnostic purposes, it is important that nurses be aware of the risk factors for CIN, identify and monitor high risk patients to prevent deterioration in renal function when possible. Copyright © 2014 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.
Ghalandarlaki, N; Mohammadi, T D; Agha Babaei, R; Tabasi, M A; Keyhanvar, P; Mehravi, B; Yaghmaei, P; Cohan, R A; Ardestani, M S
2014-02-01
By advancing of molecular imaging techniques, magnetic resonance imaging (MRI) is becoming an increasingly important tool in early diagnosis. Researchers have found new ways to increase contrast of MRI images.Therefore some types of drug known as contrast media are produced. Contrast media improve the visibility of internal body structures in MRI images. Gadodiamide (Omniscan®) is one of these contrast media which is produced commercially and used clinically. In this study Gadodiamide was first synthesized and then qualitative and quantitative methods were carried out to ensure the proper synthesis of this drug then to increase the efficiency of this contrast medium use dendrimer that is one kind of nano particle. This dendrimer has a polyethylene glycol (PEG) core and citric acid branches. After dendrimer attached to Gadodiamide to ensure the proper efficient connection between them the stability studies were carried out and cytotoxicity of the drug was evaluated. Finally, after ensuring the non-toxicity of the drug, in vivo studies (injected into mice) MR imaging was performed to examine the impact of synthesis drug on the resolution of image.The result obtained from this study demonstrated that the attachment of Gadodiamide to dendrimer reduces its cytotoxicity and also improved resolution of image. Also the new contrast media (Gd3+-DTPA- bis [N-methylamine] - Dendrimer) - unlike Omniscan® - is biodegradable and able to enter the HEPG2 cell line. The results confirm the hypothesis that using dendrimer to synthesize this new nano contrast medium increases its effectiveness. © Georg Thieme Verlag KG Stuttgart · New York.
Sessa, Maurizio; Rossi, Claudia; Mascolo, Annamaria; Scavone, Cristina; di Mauro, Gabriella; Grassi, Roberto; Sportiello, Liberata; Cappabianca, Salvatore; Rafaniello, Concetta
2017-01-01
The use of contrast media in Italy has exponentially increased in the past 3 decades. However, it is unknown whether there has been an increase in clinical research evaluating the risks associated with contrast media usage, especially regarding contrast-induced nephropathy. To fill this gap in knowledge, we performed a systematic review. Meta-analyses, observational studies, and clinical trials assessing contrast media-induced nephropathy as the safety outcome, in which at least one author was affiliated with an Italian university/health care structure, were eligble. Ovid MEDLINE, Ovid Embase, Cochrane Methodology Register, and Web of Science were screened. Men and women exposed to contrast media. In total, 60 original articles were retrieved with an incremental trend between 1990 and 2017. Cohort studies were the most common study design represented. In total, 45 of 60 (75.0%) studies were monocenter studies and 41 of 60 (68.3%) received no funding. In all, 91.7% of studies disclosed no conflicts of interest and 81.7% had no external collaboration. Most of the studies provided a level of evidence of III-2 (32/60; 53.3%) and II (23/60; 38.3%). In total, 50 of 60 studies (83.3%) were published in a scientific journal ranked in the first quartile of their subject area. There was an increased number of studies evaluating contrast-induced nephropathy in Italy during the last three decades. These studies covered procedures to prevent contrast-induced nephropathy or aimed to identify risk factors, biomarkers, and scores, and their related prognosis.
Ma, Zheng; Zhang, Lijuan; Lin, Lina; Ji, Ping; Guo, Xingjie
2010-12-01
An ephedrine-based chiral ionic liquid, (+)-N,N-dimethylephedrinium-bis(trifluoromethanesulfon)imidate ([DMP](+) [Tf(2) N](-) ), served as both chiral selector and background electrolyte in nonaqueous capillary electrophoresis. The enantioseparation of rabeprazole and omeprazole was achieved in acetonitrile-methanol (60:40 v/v) containing 60 mm[DMP](+) [Tf(2) N](-) . The influences of separation conditions, including the concentration of [DMP](+) [Tf(2) N](-) , the electrophoretic media and the buffer, on enantioseparation were evaluated. The mechanism of enantioseparation was investigated and discussed. Ion-pair interaction and hydrogen bonding may be responsible for the main separation mechanism. Copyright © 2010 John Wiley & Sons, Ltd.
Novel Fission-Product Separation based on Room-Temperature Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Robin D.
2004-12-31
U.S. DOE's underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive cesium-137 and strontium-90. Because the primary chemical components of alkaline supernatants are sodium nitrate and sodium hydroxide, the majority of this could be disposed of as low level waste if radioactive cesium-137 and strontium- 90 could be selectively removed. The underlying goal of this project was to investigate the application of ionic liquids as novel solvents for new solvent extraction processes for separation of cesium-137 and strontium-90 from tank wastes. Ionic liquids are a distinct sub-set of liquids, comprising only of cationsmore » and anions they are proving to be increasingly interesting fluids for application in systems from electrochemistry to energetic materials, and are also rapidly establishing their promise as viable media for synthesis and separations operations. Properties including low melting points, electrochemical conductivity, wide liquid ranges, lack of vapor-pressure, and chemical tunability have encouraged researchers to explore the uses of ILs in place of volatile organic solvents. The most promising current developments arise from control of the unique combinations of chemical and physical properties characteristic of ionic liquids.« less
NASA Astrophysics Data System (ADS)
Jing, Benxin; Lan, Nan; Zhu, Y. Elaine
2013-03-01
An explosion in the research activities using ionic liquids (ILs) as new ``green'' chemicals in several chemical and biomedical processes has resulted in the urgent need to understand their impact in term of their transport and toxicity towards aquatic organisms. Though a few experimental toxicology studies have reported that some ionic liquids are toxic with increased hydrophobicity of ILs while others are not, our understanding of the molecular level mechanism of IL toxicity remains poorly understood. In this talk, we will discuss our recent study of the interaction of ionic liquids with model cell membranes. We have found that the ILs could induce morphological change of lipid bilayers when a critical concentration is exceeded, leading to the swelling and tube-like formation of lipid bilayers. The critical concentration shows a strong dependence on the length of hydrocarbon tails and hydrophobic counterions. By SAXS, Langmuir-Blodgett (LB) and fluorescence microscopic measurement, we have confirmed that tube-like lipid complexes result from the insertion of ILs with long hydrocarbon chains to minimize the hydrophobic interaction with aqueous media. This finding could give insight to the modification and adoption of ILs for the engineering of micro-organisms.
Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Mendil, Durali; Soylak, Mustafa; Machado, Luana O R; Dos Santos, Walter N L; Ferreira, Sergio L C
2018-04-15
This paper proposes a simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure using pyrocatechol violet (PV) as complexing reagent and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide [C 6 MIM][Tf 2 N] as ionic liquid for the detection of tin employing electrothermal atomic absorption spectrometry (ETAAS). The optimization step was performed using a two-level full factorial design involving the following factors: pH of the working media, amount reagents, ionic liquid volume and extraction time and the chemometric response was tin recovery. The procedure allowed the determination of tin with limits of detection and quantification of 3.4 and 11.3 ng L -1 , respectively. The relative standard deviation was 4.5% for a tin solution of 0.50 µg L -1 . The validation method was confirmed by analysis of rice flour certified reference material. The method was applied for the quantification of tin in several food samples. The concentration range found varied from 0.10 to 1.50 µg g -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.
Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A
2007-02-15
Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was <1.5% relative to the solubility in pure water. This decrease of solubility is insufficient to account for the observed increase of sorption by K-smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.
Wang, Jian; Xiang, Bo; Lin, Hung Yu; Liu, Hongyu; Freed, Darren; Arora, Rakesh C.; Tian, Ganghong
2015-01-01
Objectives Because the distribution volume and mechanism of extracellular and intravascular MR contrast media differ considerably, the enhancement pattern of chronic myocardial infarction with extracellular or intravascular media might also be different. This study aims to investigate the differences in MR enhancement patterns of chronic myocardial infarction between extracellular and intravascular contrast media. Materials and Methods Twenty pigs with myocardial infarction underwent cine MRI, first pass perfusion MRI and delayed enhancement MRI with extracellular or intravascular media at four weeks after coronary occlusion. Myocardial blood flow (MBF) was determined with microsphere measurement. The infarction histopathological changes were evaluated by hematoxylin and eosin staining and Masson's trichrome method. Results Cine MRI revealed the reduced wall thickening in chronic infarction compared with normal myocardium. Moreover, significant wall thinning in chronic infarction was observed in cine MRI. Peak first-pass signal intensity didn’t significantly differ between chronic infarction and normal myocardium no matter what kinds of contrast media. At the following delayed enhancement phase, extracellular media-enhanced signal intensity was significantly higher in chronic infarction than in normal myocardium. Conversely, intravascular media-enhanced signal intensity was almost equivalent among chronic infarction and normal myocardium. At four weeks after infarction, MBF in chronic infarction approached to that in normal myocardium. Large thick-walled vessels were detected at peri-infarction zones. The cardiomyocytes were replaced by scar tissue consisting of dilated blood vessels and discrete fibers of collagen. Conclusions Chronic infarction was characterized by the significantly reduced wall thickening and the definite wall thinning. First-pass myocardial perfusion defect was not detected in chronic infarction with two media due to the significantly recovered MBF and well-developed collateral vessels. Infarction remodeling enlarged the extracellular compartment, which was available for extracellular media but not accessible to intravascular media. Extracellular media identified chronic infarction as the hyper-enhancement; nonetheless, intravascular media didn’t provide delayed enhancement. PMID:25816056
Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
Flury, Markus; Czigány, Szabolcs; Chen, Gang; Harsh, James B
2004-07-01
Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments. Copyright 2003 Elsevier B.V.
Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles
NASA Astrophysics Data System (ADS)
Ali, H. M.; Iedema, M.; Yu, X.-Y.; Cowin, J. P.
2014-06-01
The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium chloride (brine) particles was studied by utilizing a cross flow mini-reactor. The reaction kinetics were followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely CCSEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry's law solubility of H2O2 in brine solutions to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to, eventually, a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted using established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the dependence of the Henry's law constant of H2O2 on ionic strength.
Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Hashim M.; Iedema, Martin J.; Yu, Xiao-Ying
The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium particles was studied by utilizing a crossflow-mini reactor. The reaction kinetics was followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely SEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry’s law solubility of H2O2 to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to eventually a mixed NaHSO4 plus H2SO4more » brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted rates using previously established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the Henry’s law constant of H2O2 dependence on ionic strength.« less
Rathnayake, I V N; Megharaj, Mallavarapu; Krishnamurti, G S R; Bolan, Nanthi S; Naidu, Ravi
2013-01-01
A new minimal medium was formulated considering the limitations of the existing media for testing heavy metal sensitivity to bacteria. Toxicity of cadmium and copper to three bacteria was investigated in the new medium and compared with three other media commonly used to study the effect of the toxic metals. Based on speciation data arrived at using ion-selective electrodes, the available free-metal concentration in solution was highest in the MES-buffered medium. This finding was strongly supported by the estimated EC(50) values for the metals tested based on the toxicity bioassays. The free-ionic cadmium and copper concentrations in the medium provide more accurate determination of metal concentrations that affects the bacteria, than with most of other existing media. This will avoid doubts on other media and misleading conclusions relevant to the toxicity of heavy metals to bacteria and provides a better option for the study of metal-bacteria interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Application of oral contrast media in coregistered positron emission tomography-CT.
Dizendorf, Elena V; Treyer, Valerie; Von Schulthess, Gustav K; Hany, Thomas F
2002-08-01
Coregistration of positron emission tomography (PET) and CT images results in significantly improved localization of abnormal FDG uptake compared with PET images alone. For delineation of intestinal structures, application of oral contrast media is a standard procedure in CT. The influence of oral contrast agents in PET imaging using CT data for attenuation correction was evaluated in a comparative study on an in-line PET-CT system. Sixty patients referred for PET-CT were evaluated in two groups. One group of 30 patients received oral Gastrografin 45 min before data acquisition. The second group received no contrast medium. PET images were reconstructed, using CT data for attenuation correction. Image analysis was performed by two reviewers in consensus, using a 4-point scale comparing FDG-uptake in the gastrointestinal tract in PET images of both groups. Furthermore, correlation of FDG uptake and localization of contrast media in the intestinal tract in CT images were determined. No significant difference in FDG uptake in PET images in all regions of the gastrointestinal tract except the ascending colon was seen in both groups. No correlation was found in the location of increased FDG uptake and contrast media in the CT images. An oral contrast agent can be used for coregistered PET-CT without the introduction of artifacts in PET.
Final Report for DE-FG02-93ER14376,Ionic Transport in Electrochemical Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. W. Halley
This project was a molecular dynamics study of the relevant issues associated with the structure and transport of lithium in polymer electrolytes such as polyethylene oxide(PEO). In close collaboration with quantum chemist Larry Curtiss and neutron scatterers David Lee Price and Marie-Louise Saboungi at Argonne, we used molecular dynamics to study the local structure and dynamics and ion transport in the polymer. The studies elucidated the mechanism of Li transport in PEO, revealing that the rate limiting step is extremely sensitive to the magnitude of the torsion forces in the backbone of the polymer. Because the torsion forces are difficultmore » to manipulate chemically, this makes it easier to understand why improving the conductivity of PEO based electrolytes has proven to be very difficult. We studied the transport properties of cations in ionic liquids as possible additives to polymer membranes for batteries and fuel cells and found preliminary indications that the transport is enhanced near phase separation in acid-ionic liquid mixtures.« less
A solid-state pH sensor for nonaqueous media including ionic liquids.
Thompson, Brianna C; Winther-Jensen, Orawan; Winther-Jensen, Bjorn; MacFarlane, Douglas R
2013-04-02
We describe a solid state electrode structure based on a biologically derived proton-active redox center, riboflavin (RFN). The redox reaction of RFN is a pH-dependent process that requires no water. The electrode was fabricated using our previously described 'stuffing' method to entrap RFN into vapor phase polymerized poly(3,4-ethylenedioxythiophene). The electrode is shown to be capable of measuring the proton activity in the form of an effective pH over a range of different water contents including nonaqueous systems and ionic liquids (ILs). This demonstrates that the entrapment of the redox center facilitates direct electron communication with the polymer. This work provides a miniaturizable system to determine pH (effective) in nonaqueous systems as well as in ionic liquids. The ability to measure pH (effective) is an important step toward the ability to customize ILs with suitable pH (effective) for catalytic reactions and biotechnology applications such as protein preservation.
Inverted battery design as ion generator for interfacing with biosystems
Wang, Chengwei; Fu, Kun; Dai, Jiaqi; ...
2017-07-24
In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less
Nazar, Muhammad Faizan; Shah, Syed Sakhawat; Eastoe, Julian; Khan, Asad Muhammad; Shah, Afzal
2011-11-15
A viable cost-effective approach employing mixtures of non-ionic surfactants Triton X-114/Triton X-100 (TX-114/TX-100), and subsequent cloud point extraction (CPE), has been utilized to concentrate and recycle inorganic nanoparticles (NPs) in aqueous media. Gold Au- and palladium Pd-NPs have been pre-synthesized in aqueous phases and stabilized by sodium 2-mercaptoethanesulfonate (MES) ligands, then dispersed in aqueous non-ionic surfactant mixtures. Heating the NP-micellar systems induced cloud point phase separations, resulting in concentration of the NPs in lower phases after the transition. For the Au-NPs UV/vis absorption has been used to quantify the recovery and recycle efficiency after five repeated CPE cycles. Transmission electron microscopy (TEM) was used to investigate NP size, shape, and stability. The results showed that NPs are preserved after the recovery processes, but highlight a potential limitation, in that further particle growth can occur in the condensed phases. Copyright © 2011 Elsevier Inc. All rights reserved.
Inverted battery design as ion generator for interfacing with biosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chengwei; Fu, Kun; Dai, Jiaqi
In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As amore » proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications« less
Enzymatic hybridization of α-lipoic acid with bioactive compounds in ionic solvents.
Papadopoulou, Athena A; Katsoura, Maria H; Chatzikonstantinou, Alexandra; Kyriakou, Eleni; Polydera, Angeliki C; Tzakos, Andreas G; Stamatis, Haralambos
2013-05-01
The lipase-catalyzed molecular hybridization of α-lipoic acid (LA) with bioactive compounds pyridoxine, tyrosol and tyramine was performed in ionic solvents and deep eutectic solvents. The biocatalytic reactions were catalyzed by Candida antarctica lipase B immobilized onto various functionalized multi-walled carbon nanotubes (f-CNTs-CaLB), as well as by commercial Novozym 435. The use of f-CNTs-CaLB leads, in most cases, to higher conversion yields as compared to Novozym 435. The nature and ion composition of ionic solvents affect the performance of the biocatalytic process. The highest conversion yield was observed in (mtoa)NTf2. The high enzyme stability and the relatively low solubility of substrates in specific media account for the improved biocatalytic synthesis of molecular hybrids of LA. Principal component analysis was used to screen for potential lipoxygenase inhibitors. In vitro studies showed that the synthesized compounds exhibit up to 10-fold increased inhibitory activity on lipoxygenase mediated lipid peroxidation as compared to parent molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inverted battery design as ion generator for interfacing with biosystems
Wang, Chengwei; Fu, Kun (Kelvin); Dai, Jiaqi; Lacey, Steven D.; Yao, Yonggang; Pastel, Glenn; Xu, Lisha; Zhang, Jianhua; Hu, Liangbing
2017-01-01
In a lithium-ion battery, electrons are released from the anode and go through an external electronic circuit to power devices, while ions simultaneously transfer through internal ionic media to meet with electrons at the cathode. Inspired by the fundamental electrochemistry of the lithium-ion battery, we envision a cell that can generate a current of ions instead of electrons, so that ions can be used for potential applications in biosystems. Based on this concept, we report an ‘electron battery’ configuration in which ions travel through an external circuit to interact with the intended biosystem whereas electrons are transported internally. As a proof-of-concept, we demonstrate the application of the electron battery by stimulating a monolayer of cultured cells, which fluoresces a calcium ion wave at a controlled ionic current. Electron batteries with the capability to generate a tunable ionic current could pave the way towards precise ion-system control in a broad range of biological applications. PMID:28737174
Vörös, Eszter; Deres, László; Halmosi, Róbert; Várady, Edit; Tóth, Kálmán; Battyáni, István
2017-01-01
Iodinated contrast media (Xenetix®, Ultravist®, Omnipaque®, Visipaque® and Iomeron®) used for computed tomography (CT) may decrease fibrinolysis by recombinant tissue plasminogen activator (rt-PA). We hypothesized that receiving iodinated contrast media before rt-PA may impair thrombolysis as measured by a new model system. Whole blood from Wistar Kyoto rats (n = 10) was obtained and allowed to form blood clots. Thrombolysis was performed by placing individually the prepared clots into 15 mL tubes and adding 5 mL saline buffer, 100μg rt-PA and a different contrast media; adjusting the quantity of iodine to either 30 mg or 60 mg. The thrombolytic efficacy was quantified by measuring the optical density (OD415) of the supernatant at different time points, namely at 0, 30, 60, and 90 min. There was a significant decrease in clot lysis efficiency observed in presence of iodine containing contrast media comparing to positive control group. Moreover, when the quantity of iodine was increased from 30 mg to 60 mg; the dissolution rate downturned with additional ∼50%. In conclusion, our study suggests that high dose of iodine potentially could negatively affect the efficiency of the thrombolytic therapy performed by rt-PA.
Electrokinetic mixing at high zeta potentials: ionic size effects on cross stream diffusion.
Ahmadian Yazdi, Alireza; Sadeghi, Arman; Saidi, Mohammad Hassan
2015-03-15
The electrokinetic phenomena at high zeta potentials may show several unique features which are not normally observed. One of these features is the ionic size (steric) effect associated with the solutions of high ionic concentration. In the present work, attention is given to the influences of finite ionic size on the cross stream diffusion process in an electrokinetically actuated Y-shaped micromixer. The method consists of a finite difference based numerical approach for non-uniform grid which is applied to the dimensionless form of the governing equations, including the modified Poisson-Boltzmann equation. The results reveal that, neglecting the ionic size at high zeta potentials gives rise to the overestimation of the mixing length, because the steric effects retard liquid flow, thereby enhancing the mixing efficiency. The importance of steric effects is found to be more intense for channels of smaller width to height ratio. It is also observed that, in sharp contrast to the conditions that the ions are treated as point charges, increasing the zeta potential improves the cross stream diffusion when incorporating the ionic size. Moreover, increasing the EDL thickness decreases the mixing length, whereas the opposite is true for the channel aspect ratio. Copyright © 2014 Elsevier Inc. All rights reserved.
Prevention and Management of Adverse Reactions Induced by Iodinated Contrast Media.
Wu, Yi Wei; Leow, Kheng Song; Zhu, Yujin; Tan, Cher Heng
2016-04-01
Iodinated radiocontrast media (IRCM) is widely used in current clinical practice. Although IRCM is generally safe, serious adverse drug reactions (ADRs) may still occur. IRCM-induced ADRs may be subdivided into chemotoxic and hypersensitivity reactions. Several factors have been shown to be associated with an increased risk of ADRs, including previous contrast media reactions, history of asthma and allergic disease, etc. Contrast media with lower osmolality is generally recommended for at-risk patients to prevent ADRs. Current premedication prophylaxis in at-risk patients may reduce the risk of ADRs. However, there is still a lack of consensus on the prophylactic role of premedication. Contrast-induced nephropathy (CIN) is another component of IRCM-related ADRs. Hydration remains the mainstay of CIN prophylaxis in at-risk patients. Despite several preventive measures, ADRs may still occur. Treatment strategies for potential contrast reactions are also summarised in this article. This article summarises the pathophysiology, epidemiology and risk factors of ADRs with emphasis on prevention and treatment strategies. This will allow readers to understand the rationale behind appropriate patient preparation for diagnostic imaging involving IRCM.
Acute Respiratory Distress Syndrome after the Use of Gadolinium Contrast Media.
Park, Jihye; Byun, Il Hwan; Park, Kyung Hee; Lee, Jae-Hyun; Nam, Eun Ji; Park, Jung-Won
2015-07-01
Acute respiratory distress syndrome (ARDS) is a medical emergency that threatens life. To this day, ARDS is very rarely reported by iodine contrast media, and there is no reported case of ARDS induced by gadolinium contrast media. Here, we present a case with ARDS after the use of gadobutrol (Gadovist) as a magnetic resonance imaging (MRI) contrast medium. A 26 years old female without any medical history, including allergic diseases and without current use of drugs, visited the emergency room for abdominal pain. Her abdominopelvic computed tomography with iodine contrast media showed a right ovarian cyst and possible infective colitis. Eighty-three hours later, she underwent pelvis MRI after injection of 7.5 mL (0.1 mL/kg body weight) of gadobutrol (Gadovist) to evaluate the ovarian cyst. She soon presented respiratory difficulty, edema of the lips, nausea, and vomiting, and we could hear wheezing upon auscultation. She was treated with dexamethasone, epinephrine, and norepinephrine. Her chest X-ray showed bilateral central bat-wing consolidative appearance. Managed with mechanical ventilation, she was extubated 3 days later and discharged without complications.
Mascolo, Annamaria; Scavone, Cristina; di Mauro, Gabriella; Grassi, Roberto; Sportiello, Liberata; Cappabianca, Salvatore; Rafaniello, Concetta
2017-01-01
Background and objective The use of contrast media in Italy has exponentially increased in the past 3 decades. However, it is unknown whether there has been an increase in clinical research evaluating the risks associated with contrast media usage, especially regarding contrast-induced nephropathy. To fill this gap in knowledge, we performed a systematic review. Study eligibility criteria Meta-analyses, observational studies, and clinical trials assessing contrast media-induced nephropathy as the safety outcome, in which at least one author was affiliated with an Italian university/health care structure, were eligble. Data sources Ovid MEDLINE, Ovid Embase, Cochrane Methodology Register, and Web of Science were screened. Participants Men and women exposed to contrast media. Results In total, 60 original articles were retrieved with an incremental trend between 1990 and 2017. Cohort studies were the most common study design represented. In total, 45 of 60 (75.0%) studies were monocenter studies and 41 of 60 (68.3%) received no funding. In all, 91.7% of studies disclosed no conflicts of interest and 81.7% had no external collaboration. Most of the studies provided a level of evidence of III-2 (32/60; 53.3%) and II (23/60; 38.3%). In total, 50 of 60 studies (83.3%) were published in a scientific journal ranked in the first quartile of their subject area. Conclusion There was an increased number of studies evaluating contrast-induced nephropathy in Italy during the last three decades. These studies covered procedures to prevent contrast-induced nephropathy or aimed to identify risk factors, biomarkers, and scores, and their related prognosis. PMID:29123405
Liu, Zhimin; Song, Lei; Yu, Tong; Gao, Jun; Zhang, Qifeng; Jiang, Ling; Liu, Yong; Peng, Yun
2016-09-01
The aim of this study was to explore the feasibility of using low dose radiation and low concentration contrast media in enhanced CT examinations in children with congenital heart disease. Ninety patients with congenital heart disease were randomly divided into three groups of 30 patients each who underwent contrast-enhanced cardiac scans on a Discovery CT750 HD scanner. Group A received 270 mg I/mL iodixanol, and group B received 320 mg I/mL iodixanol contrast media and was scanned with prospective ECG triggering mode. Group C received 320 mg I/mL iodixanol and was scanned with conventional retrospective ECG gating mode. The same weight-based contrast injection protocol was used for all three groups. Images were reconstructed using a 30% adaptive statistical iterative reconstruction (ASIR) algorithm and a 50% ASIR in groups A and B and a 30% ASIR in group C. The subjective and objective image quality evaluations, diagnostic accuracies, radiation doses and amounts of contrast media in the three groups were measured and compared. All images in the three groups met the diagnostic requirements, with the same diagnostic accuracy and image quality scores greater than 3 in a 4-point scoring system. However, ventricular enhancement and the objective noise, signal-to-noise ratio, contrast-to-noise ratio and subjective image quality scores in group C were better than those in groups A and B (all P<.001). The effective radiation dose in groups A and B was 84% lower than that in group C (P<.001); group A received the lowest contrast dose (14% lower than that of groups B and C). Enhanced CT scan images with low dose radiation and low concentration contrast media can meet the diagnostic requirements for examining children with congenital heart disease while reducing the potential risk of radiation damage and contrast-induced nephropathy. © 2016 John Wiley & Sons Ltd.
Ionic Conductivity and Air Stability of Al-Doped Li₇La₃Zr₂O₁₂ Sintered in Alumina and Pt Crucibles.
Xia, Wenhao; Xu, Biyi; Duan, Huanan; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou
2016-03-02
Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10(-4) S cm(-1)). The ionic conductivity maintains 3.6 × 10(-4) S cm(-1) after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10(-4) S cm(-1) and drops to 2.39 × 10(-5) S cm(-1) 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high ionic conductivity and good air stability. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy results suggest that the formation of Li2CO3 on the pellet surface is probably another main reason, which is also closely related to the relative density and the amount of grain boundary within the pellets. This work stresses the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic conductivity and good air stability.
Lee, Suh-Young; Yang, Min Suk; Choi, Young-Hoon; Park, Chang Min; Park, Heung-Woo; Cho, Sang Heon; Kang, Hye-Ryun
2017-03-01
Although the severity of hypersensitivity reactions to iodinated contrast media varies, it is well correlated with the severity of recurrent reactions; however, prophylaxis protocols are not severity-stratified. To assess the outcomes of tailored prophylaxis according to the severity of hypersensitivity reactions to iodinated contrast media. Our premedication protocols were stratified based on the severity of previous reactions: (1) 4 mg of chlorpheniramine for mild reactions, (2) adding 40 mg of methylprednisolone for moderate reactions, and (3) adding multiple doses of 40 mg of methylprednisolone for severe index reactions. Cases of reexposure in patients with a history of hypersensitivity reactions were routinely monitored and mandatorily recorded. Among a total of 850 patients who underwent enhanced computed tomography after severity-tailored prophylaxis, breakthrough reactions occurred in 17.1%, but most breakthrough reactions (89.0%) were mild and did not require medical treatment. Additional corticosteroid use did not reduce the breakthrough reaction rate in cases with a mild index reaction (16.8% vs 17.2%, P = .70). However, underpremedication with a single dose of corticosteroid revealed significantly higher rates of breakthrough reaction than did double doses of corticosteroid in cases with a severe index reaction (55.6% vs 17.4%, P = .02). Changing the iodinated contrast media resulted in an additional reduction of the breakthrough reaction rate overall (14.9% vs 32.1%, P = .001). In a total severity-based stratified prophylaxis regimens and changing iodinated contrast media can be considered in patients with a history of previous hypersensitivity reaction to iodinated contrast media to reduce the risk of breakthrough reactions. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Electrochemistry of sulfur and polysulfides in ionic liquids.
Manan, Ninie S A; Aldous, Leigh; Alias, Yatimah; Murray, Paul; Yellowlees, Lesley J; Lagunas, M Cristina; Hardacre, Christopher
2011-12-01
The electrochemistry of elemental sulfur (S(8)) and the polysulfides Na(2)S(4) and Na(2)S(6) has been studied for the first time in nonchloroaluminate ionic liquids. The cyclic voltammetry of S(8) in the ionic liquids is different to the behavior reported in some organic solvents, with two reductions and one oxidation peak observed. Supported by in situ UV-vis spectro-electrochemical experiments, the main reduction products of S(8) in [C(4)mim][DCA] ([C(4)mim] = 1-butyl-3-methylimidazolium; DCA = dicyanamide) have been identified as S(6)(2-) and S(4)(2-), and plausible pathways for the formation of these species are proposed. Dissociation and/or disproportionation of the polyanions S(6)(2-) and S(4)(2-) appears to be slow in the ionic liquid, with only small amounts of the blue radical species S(3)(•-) formed in the solutions at r.t., in contrast with that observed in most molecular solvents. © 2011 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Li, Zhen
Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. Thesemore » observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.« less
A precision structured smart hydrogel for sensing applications
NASA Astrophysics Data System (ADS)
Menges, J.; Kleinschmidt, P.; Bart, H.-J.; Oesterschulze, E.
2017-10-01
We report on a macroinitiator based smart hydrogel film applied on a microcantilever for sensing applications. The studied hydrogel features a comparatively wide dynamic range for changes in the electrolyte's ionic strength. Furthermore, it offers a simple spin coating process for thin film deposition as well as the capability to obtain high aspect ratio microstructures by reactive ion etching. This makes the hydrogel compatible to microelectromechanical system integration. As a proof of concept, we study the response of hydrogel functionalized cantilevers in aqueous sodium chloride solutions of varying ionic strength. In contrast to the majority of hydrogel materials reported in the literature, we found that our hydrogel still responds in high ionic strength environments. This may be of future interest for sensing e.g., in sea water or physiological environments like urine.
Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes.
Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric
2016-04-15
In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH.
Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric
2016-04-01
In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1 /3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given p H .
Rode, Ulrike; Müller, Rudolf
1998-01-01
Iodinated X-ray contrast agents are considered to be nondegradable by microorganisms. The decomposition of the ionic X-ray contrast agents Diatrizoate (3,5-di(acetamido)-2,4,6-triiodobenzoic acid) and Iodipamide (3,3′-adipoyl-diimino-di(2,4,6-triiodobenzoic acid) and related triiodinated benzoates (Acetrizoate [3-acetylamino-2,4,6-triiodobenzoic acid] and Aminotrizoate [3-amino-2,4,6-triiodobenzoic acid]) by Trametes versicolor has been investigated. The fungus was able to transform all tested triiodinated benzoates cometabolically. During transformation of these compounds, iodide was released, but deiodination was not complete. T. versicolor liberated traces of 14CO2 from uniformly ring-14C-labeled Diatrizoate (3,5-di(acetamido)-2,4,6-triiodobenzoate). Various extracellular metabolites were detected during transformation of the different substances. In the transformation of Diatrizoate, the three main metabolites were identified as 3,5-di(acetamido)-2,6-diiodobenzoic acid, 3,5-di(acetamido)-2,4-diiodobenzoic acid, and 3,5-di(acetamido)-2-iodobenzoic acid, suggesting reductive deiodinations in steps as initial transformation steps. PMID:9687487
Porous media augmented with biochar for the retention of E. coli
NASA Astrophysics Data System (ADS)
Kolotouros, Christos A.; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.
2016-04-01
A significant number of epidemic outbreaks has been attributed to waterborne fecal-borne pathogenic microorganisms from contaminated ground water. The transport of pathogenic microorganisms in groundwater is controlled by physical and chemical soil properties like soil structure, texture, percent water saturation, soil ionic strength, pore-size distribution, soil and solution pH, soil surface charge, and concentration of organic carbon in solution. Biochar can increase soil productivity by improving both chemical and physical soil properties. The mixing of biochar into soils may stimulate microbial population and activate dormant soil microorganisms. Furthermore, the application of biochar into soil affects the mobility of microorganisms by altering the physical and chemical properties of the soil, and by retaining the microorganisms on the biochar surface. The aim of this study was to investigate the effect of biochar mixing into soil on the transport of Escherichia coli in saturated porous media. Initially, batch experiments were conducted at two different ionic strengths (1 and 150 mM KCl) and at varying E. coli concentrations in order to evaluate the retention of E. coli on biochar in aqueous solutions. Kinetic analysis was conducted, and three isotherm models were employed to analyze the experimental data. Column experiments were also conducted in saturated sand columns augmented with different biochar contents, in order to examine the effect of biochar on the retention of E. coli. The Langmuir model fitted better the retention experimental data, compared to Freundlich and Tempkin models. The retention of E. coli was enhanced at lower ionic strength. Finally, biochar-augmented sand columns were more capable in retaining E. coli than pure sand columns.
Ionic liquids as an electrolyte for the electro synthesis of organic compounds.
Kathiresan, Murugavel; Velayutham, David
2015-12-25
The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.
Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing
2008-07-11
Methods using reversed-phase high-performance liquid chromatography (RP-HPLC) with ELSD were investigated to quantify enzymatic reactions of flavonoids with fatty acids in the presence of diverse room temperature ionic liquids (RTILs). A buffered salt (preferably triethylamine-acetate) was found essential for separation of flavonoids from strongly polar RTILs, whereby RTILs were generally visible as two major peaks identified based on an ion-pairing/exchanging hypothesis. C8 and C12 stationary phases were optimal while mobile phase pH (3-7) had only a minor influence on separation. The method developed was successfully applied for primary screening of RTILs (>20), with in depth evaluation of substrates in 10 RTILs, for their evaluation as reaction media.
A Review: Radiographic Iodinated Contrast Media-Induced Thyroid Dysfunction
Leung, Angela M.; Braverman, Lewis E.; Brent, Gregory A.; Pearce, Elizabeth N.
2015-01-01
Context: Thyroid hormone production is dependent on adequate iodine intake. Excess iodine is generally well-tolerated, but thyroid dysfunction can occur in susceptible individuals after excess iodine exposure. Radiological iodinated contrast media represent an increasingly common source of excess iodine. Objective: This review will discuss the thyroidal response after acute exposure to excess iodine; contrast iodine-induced thyroid dysfunction; risks of iodine-induced thyroid dysfunction in vulnerable populations, such as the fetus, neonate, and patients with impaired renal function; and recommendations for the assessment and treatment of contrast iodine-induced thyroid dysfunction. Methods: Data for this review were identified by searching PubMed, Google Scholar, and references from relevant articles from 1948 to 2014. Conclusions: With the increase in the use of computed tomography scans in the United States, there is increasing risk of contrast-induced thyroid dysfunction. Patients at risk of developing iodine-induced thyroid dysfunction should be closely monitored after receiving iodinated contrast media and should be treated as needed. PMID:25375985
Park, Yu Jin; Rim, John Hoon; Yim, Jisook; Lee, Sang-Guk; Kim, Jeong-Ho
2017-08-01
The use of iodinated contrast media has grown in popularity in the past two decades, but relatively little attention has been paid to the possible interferential effects of contrast media on laboratory test results. Herein, we investigate medical contrast media interference with routine chemistry results obtained by three automated chemistry analyzers. Ten levels of pooled serum were used in the study. Two types of medical contrast media [Iopamiro (iopamidol) and Omnipaque (iohexol)] were evaluated. To evaluate the dose-dependent effects of the contrast media, iopamidol and iohexol were spiked separately into aliquots of serum for final concentrations of 1.8%, 3.6%, 5.5%, 7.3%, and 9.1%. The 28 analytes included in the routine chemistry panel were measured by using Hitachi 7600, AU5800, and Cobas c702 analyzers. We calculated the delta percentage difference (DPD) between the samples and the control, and examined dose-dependent trends. When the mean DPD values were compared with the reference cut-off criteria, the only uniformly interferential effect observed for all analyzers was in total protein with iopamidol. Two additional analytes that showed trends toward interferential effects only in few analyzers and exceeded the limits of the allowable error were the serum iron and the total CO 2 . The other combinations of analyzer and contrast showed no consistent dose-dependent propensity for change in any analyte level. Our study suggests that many of the analytes included in routine chemistry results, except total protein and serum iron, are not significantly affected by iopamidol and iohexol. These results suggest that it would be beneficial to apply a flexible medical evaluation process for patients requiring both laboratory tests and imaging studies, minimizing the need for strict regulations for sequential tests. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Change of hydrogen bonding structure in ionic liquid mixtures by anion type
NASA Astrophysics Data System (ADS)
Cha, Seoncheol; Kim, Doseok
2018-05-01
Ionic liquid mixtures have gained attention as a way of tuning material properties continuously with composition changes. For some mixture systems, physicochemical properties such as excess molar volume have been found to be significantly different from the value expected by linear interpolation, but the origin of this deviation is not well understood yet. The microstructure of the mixture, which can range from an ideal mixture of two initial consisting ionic liquids to a different structure from those of pure materials, has been suggested as the origin of the observed deviation. The structures of several different ionic liquid mixtures are studied by IR spectroscopy to confirm this suggestion, as a particular IR absorption band (νC(2)-D) for the moiety participating in the hydrogen bonding changes sensitively with the change of the anion in the ionic liquid. The absorbance of νC(2)-D changes proportionally with the composition, and a relatively small excess molar volume is observed for the mixtures containing an electronegative halide anion. By contrast, the absorbance changes nonlinearly, and the excess molar volumes are larger for the mixtures of which one of the anions has multiple interaction sites.
Various media compositions (phosphate 1-50 mM; ionic strength 2.8-150 meq/L) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics determined by Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient 37-490...
ERIC Educational Resources Information Center
Bowles, Robby D.; Saroka, James M.; Archer, Shivaun D.; Bonassar, Lawrence J.
2012-01-01
Because of cost and time, it is difficult to relate to students how fundamental chemical principles are involved in cutting edge biomedical breakthroughs being reported in the national media. The laboratory exercise presented here is aimed at high school chemistry students and uses alginate hydrogels, a common material used in tissue engineering,…
Voltammetric Perspectives on the Acidity Scale and H+/H2 Process in Ionic Liquid Media.
Bentley, Cameron L; Bond, Alan M; Zhang, Jie
2018-03-19
Nonhaloaluminate ionic liquids (ILs) have received considerable attention as alternatives to molecular solvents in diverse applications spanning the fields of physical, chemical, and biological science. One important and often overlooked aspect of the implementation of these designer solvents is how the properties of the IL formulation affect (electro)chemical reactivity. This aspect is emphasized herein, where recent (voltammetric) studies on the energetics of proton (H + ) transfer and electrode reaction mechanisms of the H + H 2 process in IL media are highlighted and discussed. The energetics of proton transfer, quantified using the pK 3 a (minus logarithm of acidity equilibrium constant, K a ) formalism, is strongly governed by the constituent IL anion, and to a lesser extent, the IL cation. The H + /H 2 process, a model inner-sphere reaction, also displays electrochemical characteristics that are strongly IL-dependent. Overall, these studies highlight the need to carry out systematic investigations to resolve IL structure and function relationships in order to realize the potential of these diverse and versatile solvents. Expected final online publication date for the Annual Review of Analytical Chemistry Volume 11 is June 12, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
MR contrast media for myocardial viability, microvascular integrity and perfusion.
Saeed, M; Wendland, M F; Watzinger, N; Akbari, H; Higgins, C B
2000-06-01
Cardiovascular imaging requires an appreciation of rapidly evolving MR imaging sequences as well as careful utilization of intravascular, extracellular and intracellular MR contrast media. At the present time, clinical studies are restricted to the use of extracellular MR contrast media. MR imaging has the potential to noninvasively measure multiple parameters of the cardiovascular system in a single imaging session. Recent advances in fast and ultrafast MR imaging have considerably enhanced the capability of this technique, beyond the assessment of left ventricular wall motion and morphology into visualization of the coronary arteries and measurement of blood flow. During the course of the last several years, multiple strategies for imaging viable myocardium have been developed and validated using MR contrast media. Contrast enhanced dynamic MR imaging provides information regarding microvascular integrity and perfusion. Because these information can be provided noninvasively by MR imaging, repeated measurements can be performed in longitudinal studies to monitor the progression or regression of myocardial injury. Similar studies are needed to examine the effects of newly developed cardioprotective therapeutics. Development of suitable intravascular MR contrast medium may be essential for visualization of the coronary arteries and interventional therapies. MR imaging may emerge as one-stop-shop for evaluating the heart and coronary system. This capability will make MR imaging cost-effective in the first decade of this millennium.
Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines.
Stacul, Fulvio; van der Molen, Aart J; Reimer, Peter; Webb, Judith A W; Thomsen, Henrik S; Morcos, Sameh K; Almén, Torsten; Aspelin, Peter; Bellin, Marie-France; Clement, Olivier; Heinz-Peer, Gertraud
2011-12-01
The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN). Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic measures used to reduce the incidence of CIN, and the management of patients receiving metformin. Key Points • Definition, risk factors and prevention of contrast medium induced nephropathy are reviewed. • CIN risk is lower with intravenous than intra-arterial iodinated contrast medium. • eGFR of 45 ml/min/1.73 m (2) is CIN risk threshold for intravenous contrast medium. • Hydration with either saline or sodium bicarbonate reduces CIN incidence. • Patients with eGFR ≥ 60 ml/min/1.73 m (2) receiving contrast medium can continue metformin normally.
Contrast medium extravasation injury: guidelines for prevention and management.
Bellin, Marie-France; Jakobsen, Jarl A; Tomassin, Isabelle; Thomsen, Henrik S; Morcos, Sameh K; Thomsen, H S; Morcos, S K; Almén, T; Aspelin, P; Bellin, M F; Clauss, W; Flaten, H; Grenier, N; Ideé, J-M; Jakobsen, J A; Krestin, G P; Stacul, F; Webb, J A W
2002-11-01
Extravasation of contrast material is a well-recognized complication of contrast-enhanced imaging studies. The management of this complication is contentious; therefore, the Contrast Media Safety Committee of The European Society of Urogenital Radiology decided to review the literature and issue guidelines. A comprehensive literature search was carried out. The resulting report was discussed at the 8th European Symposium on Urogenital Radiology in Genoa, Italy. Automated power injection may result in extravasation of large volumes and may or can lead to severe tissue damage. Infants, young children and unconscious and debilitated patients are particularly at risk of extravasation during contrast media injection. Fortunately, most extravasations result in minimal swelling or erythema, with no long-term sequelae; however, severe skin necrosis and ulceration may occur. Large volumes of high osmolar contrast media are known to induce significant tissue damage. Compartment syndrome may be seen associated with extravasation of large volumes. Conservative management is often adequate, but in serious cases the advice of a plastic surgeon is recommended. Based on the review simple guidelines for prophylaxis and management of contrast medium extravasation injuries are proposed.
Myths and misconceptions concerning contrast media-induced anaphylaxis: a narrative review.
Böhm, Ingrid; Morelli, John; Nairz, Knud; Silva Hasembank Keller, Patricia; Heverhagen, Johannes T
2017-03-01
Contrast-enhanced radiological examinations are an increasingly important diagnostic tool in modern medicine. All approved and available contrast media (iodinated and gadolinium-based) are safe compounds that are well-tolerated by most patients. However, a small percentage of patients exhibit contrast medium-induced adverse drug reactions that are dose-dependent and predictable (type A) or an even smaller cohort experience so-called type B (dose-independent, non-predictable). To increase patients' safety, recommendations/guidelines have been put forth in the literature and advice passed down informally by radiologists in practice to ensure contrast media safety. Through these, both reasonable suggestions as well as misinterpretations and myths (such as the misleading terms "allergy-like" reactions, and "iodine-allergy", the wrong assumption that the initial contact to a contrast medium could not induce an allergy, the estimation that an anti-allergy premedication could suppress all possible adverse reactions, and interleukin-2 as a risk/trigger for contrast medium adverse events) have arisen. Since the latter are not only unhelpful but also potentially reduce patients' safety, such myths and misconceptions are the focus of this review.
Manfra, L; Rotini, A; Bergami, E; Grassi, G; Faleri, C; Corsi, I
2017-11-01
The impact of nanoplastics using model polystyrene nanoparticles (PS NPs), anionic (PS-COOH) and cationic (PS-NH 2 ), has been investigated on the marine rotifer Brachionus plicatilis, a major component of marine zooplanktonic species. The role of different surface charges in affecting PS NP behaviour and toxicity has been considered in high ionic strength media. To this aim, the selected media were standardized reconstituted seawater (RSW) and natural sea water (NSW), the latter resembling more natural exposure scenarios. Hatched rotifer larvae were exposed for 24h and 48h to both PS NPs in the range of 0.5-50μg/ml using PS NP suspensions made in RSW and NSW. No effects on lethality upon exposure to anionic NPs were observed despite a clear gut retention was evident in all exposed rotifers. On the contrary, cationic NPs caused lethality to rotifer larvae but LC 50 values resulted lower in rotifers exposed in RSW (LC 50 =2.75±0.67µg/ml) compared to those exposed in NSW (LC 50 =6.62±0.87µg/ml). PS NPs showed similar pattern of aggregation in both high ionic strength media (RSW and NSW) but while anionic NPs resulted in large microscale aggregates (Z-average 1109 ± 128nm and 998±67nm respectively), cationic NP aggregates were still in nano-size forms (93.99 ± 11.22nm and 108.3 ± 12.79nm). Both PDI and Z-potential of PS NPs slightly differed in the two media suggesting a role of their different surface charges in affecting their behaviour and stability. Our findings confirm the role of surface charges in nanoplastic behaviour in salt water media and provide a first evidence of a different toxicity in rotifers using artificial media (RSW) compared to natural one (NSW). Such evidence poses the question on how to select the best medium in standardized ecotoxicity assays in order to properly assess their hazard to marine life in natural environmental scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.
Application of contrast media in post-mortem imaging (CT and MRI).
Grabherr, Silke; Grimm, Jochen; Baumann, Pia; Mangin, Patrice
2015-09-01
The application of contrast media in post-mortem radiology differs from clinical approaches in living patients. Post-mortem changes in the vascular system and the absence of blood flow lead to specific problems that have to be considered for the performance of post-mortem angiography. In addition, interpreting the images is challenging due to technique-related and post-mortem artefacts that have to be known and that are specific for each applied technique. Although the idea of injecting contrast media is old, classic methods are not simply transferable to modern radiological techniques in forensic medicine, as they are mostly dedicated to single-organ studies or applicable only shortly after death. With the introduction of modern imaging techniques, such as post-mortem computed tomography (PMCT) and post-mortem magnetic resonance (PMMR), to forensic death investigations, intensive research started to explore their advantages and limitations compared to conventional autopsy. PMCT has already become a routine investigation in several centres, and different techniques have been developed to better visualise the vascular system and organ parenchyma in PMCT. In contrast, the use of PMMR is still limited due to practical issues, and research is now starting in the field of PMMR angiography. This article gives an overview of the problems in post-mortem contrast media application, the various classic and modern techniques, and the issues to consider by using different media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunlade, Olumide, E-mail: o.ogunlade@ucl.ac.uk; Beard, Paul
2015-01-15
Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substancemore » to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type. Conclusions: It is concluded that gadolinium based contrast agents, iron oxide particles, and single walled carbon nanotubes have little intrinsic merit as thermoacoustic contrast agents. Simple electrolytes such as saline which yield high contrast based on ionic conductivity provide much higher dielectric contrast per unit solute concentration and are likely to be significantly more effective as contrast agents.« less
NASA Astrophysics Data System (ADS)
Kowsari, Elaheh; Abdpour, Soheil
2017-12-01
A novel mesoporous structure of zinc oxide was synthesized in hydrothermal autocalve in the presence of a functional ionic liquid (FIL) {[CH2CH2] O2 (mm)2}. This FIL with ether groups was used simultaneously as a designer templating agent and a source of the hydroxyl radical. The presence of this ionic liquid led to producing ethylene glycol in the reaction media, which adsorb on the surface of mesoporous hexagonal ZnO plates. These mesoporous structures can adsorb pollutant gases and increase photocatalytic oxidation of pollutant gases in compare with commercial ZnO nanoparticles and agglomerated nanoparticles synthesized in this work. XPS data confirmed ethylene glycol production by the ionic liquid, which could prove a role for ionic liquids as designers. The estimated BET surface area values of ZnO hexagonal mesoporous plates and agglomerated particles were 84 m2/g and 12 m2/g respectively. Optical properties of the mesoporous structures were analyzed by photoluminescence spectroscopy and diffuse reflectance UV-visible spectroscopy. The performance of these structures as efficient photocatalysts was further demonstrated by their removal of NOx, SO2, and CO under UV irradiation. The removal of NOx, SO2, and CO under UV irradiation was 56%, 81%, and 35% respectively, after 40 min of irradiation time. Reusability of the photocatalyst was determined; the results show no significant decrease of activity of photocatalyst. after five cycles.
NASA Astrophysics Data System (ADS)
Kubin, M.; Ofner, B.; Holzgruber, H.; Schneider, R.; Enzenhofer, D.; Filzwieser, A.; Konetschnik, S.
2016-07-01
One of the main benefits of the ESR process is to obtain an ingot surface which is smooth and allows a subsequent forging operation without any surface dressing. The main influencing factor on surface quality is the precise controlling of the process such as melt rate and electrode immersion depth. However, the relatively strong cooling effect of water as a cooling medium can result in the solidification of the meniscus of the liquid steel on the boundary liquid steel and slag which is most likely the origin of surface defects. The usage of different cooling media like ionic liquids, a salt solution which can be heated up to 250°C operating temperature might diminish the meniscus solidification phenomenon. This paper shows the first results of the usage of an ionic liquid as a mould cooling medium. In doing so, 210mm diameter ESR ingots were produced with the laboratory scale ESR furnace at the university of applied science using an ionic liquid cooling device developed by the company METTOP. For each trial melt different inlet and outlet temperatures of the ionic liquid were chosen and the impact on the surface appearance and internal quality were analyzed. Furthermore the influence on the energy balance is also briefly highlighted. Ultimately, an effect of the usage of ionic liquids as a cooling medium could be determined and these results will be described in detail within the scope of this paper.
Tu, Wenwen; Lei, Jianping; Ju, Huangxian
2009-01-01
A functional composite of single-walled carbon nanotubes (SWNTs) with hematin, a water-insoluble porphyrin, was first prepared in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the Fe(III)/Fe(II) couple. The composite-[BMIM][PF(6)]-modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF(6)], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0x10(-7) to 1.4x10(-4) M. The detection limit was 3.8x10(-7) M at a signal-to-noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water-insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.
Application of Ionic Liquids in Pot-in-Pot Reactions.
Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin
2016-02-26
Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction.
Chen, Yuehua; Wang, Huiyong; Wang, Jianji
2014-05-01
Thermodynamic dissociation constants of the Brønsted acidic ionic liquids (ILs) are important for their catalytic and separation applications. In this work, a series of imidazolium bromides with one carboxylic acid substitute group in their alkyl chain ([{(CH2)nCOOH}mim]Br, n = 1,3,5,7) have been synthesized, and their dissociation constants (pKa) at different ionic strengths have been determined in aqueous and aqueous organic solvents at 0.1 mole fraction (x) of ethanol, glycol, iso-propanol, and dimethyl sulfoxide by potentiometric titrations at 298.2 K. The standard thermodynamic dissociation constants (pKa(T)) of the ILs in these solvents were calculated from the extended Debye-Hückel equation. It was found that the pKa values increased with the increase of ionic strength of the media and of the addition of organic solvent in water. The pKa(T) values also increased with the increase of the alkyl chain length of cations of the ILs. In addition, the effect of solvent nature on pKa(T) values is interpreted from solvation of the dissociation components and their Gibbs energy of transfer from water to aqueous organic solutions.
Speck, Ulrich; Scheller, Bruno; Rutsch, Wolfgang; Laule, Michael; Stangl, Verena
2011-05-01
Our initial investigations into restenosis inhibition by local drug delivery were prompted by reports on an improved outcome of coronary interventions, including a lower rate of target lesion revascularisation, when the intervention was performed with an ionic instead of non-ionic contrast medium. Although this was not confirmed in an animal study, the short exposure of the vessel wall to paclitaxel dissolved in contrast agent or coated on balloons proved to be efficacious. A study comparing three methods of local drug delivery to the coronary artery in pigs indicated the following order of efficacy in inhibiting neointimal proliferation: paclitaxel-coated balloons > sirolimus-eluting stents, sustained drug release > paclitaxel in contrast medium. Cell culture experiments confirmed that cell proliferation can be inhibited by very short exposure to the drug. Shorter exposure times require higher drug concentrations. Effective paclitaxel concentrations in porcine arteries are achieved when the drug is dissolved in contrast medium or coated on balloons. Paclitaxel is an exceptional drug in that it stays in the treated tissue for a long time. This may explain the long-lasting efficacy of paclitaxel-coated balloons, but does not disprove the hypothesis that the agent blocks a process initiating long-lasting excessive neointimal proliferation, which occurs early after vessel injury.
NASA Astrophysics Data System (ADS)
Mesbahi, Asghar; Famouri, Fatemeh; Ahar, Mohammad Johari; Ghaffari, Maryam Olade; Ghavami, Seyed Mostafa
2017-03-01
Aim: In the current study, some imaging characteristics of AuNPs were quantitatively analyzed and compared with two conventional contrast media (CM) including Iodine and Gadolinium by using of a cylindrical phantom. Methods: AuNPs were synthesized with the mean diameter of 16 nm and were equalized to the concentration of 0.5, 1, 2 and 4 mg/mL in the same volumes. A cylindrical phantom resembling the head and neck was fabricated and drilled to contain small tubes filled with Iodine, Gadolinium, and AuNPs as contrast media. The phantom was scanned in different exposure techniques and CT numbers of three studied contrast media inside test tubes were measured in terms of Hounsfield Unit (HU). The imaging parameters of the noise and contrast to noise ratios (CNR) were calculated for all studied CMs. Results: AuNPs showed 128% and 166% higher CT number in comparison with Iodine and Gadolinium respectively. Also, Iodine had a greater CT number than Gadolinium for the same exposure techniques and concentration. The maximum CT number for AuNPs and studied contrast materials was obtained at the highest mAs and the lowest tube potential. The maximum CT number were 1033±11 (HU) for AuNP, 565±10 (HU) for Iodine, 458±11 for Gadolinium. Moreover, the maximum CNRs of 433±117, 203±53, 145±37 were found for AuNPs, Iodine and Gadolinium respectively. Conclusion: The contrast agent based on AuNPs showed higher imaging quality in terms of contrast and noise relative to other iodine and gadolinium based contrast media in X-ray computed tomography. Application of the AuNPs as a contrast medium in x-ray CT is recommended.
Effect of ionic strength and presence of serum on lipoplexes structure monitorized by FRET
Madeira, Catarina; Loura, Luís MS; Prieto, Manuel; Fedorov, Aleksander; Aires-Barros, M Raquel
2008-01-01
Background Serum and high ionic strength solutions constitute important barriers to cationic lipid-mediated intravenous gene transfer. Preparation or incubation of lipoplexes in these media results in alteration of their biophysical properties, generally leading to a decrease in transfection efficiency. Accurate quantification of these changes is of paramount importance for the success of lipoplex-mediated gene transfer in vivo. Results In this work, a novel time-resolved fluorescence resonance energy transfer (FRET) methodology was used to monitor lipoplex structural changes in the presence of phosphate-buffered saline solution (PBS) and fetal bovine serum. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/pDNA lipoplexes, prepared in high and low ionic strength solutions, are compared in terms of complexation efficiency. Lipoplexes prepared in PBS show lower complexation efficiencies when compared to lipoplexes prepared in low ionic strength buffer followed by addition of PBS. Moreover, when serum is added to the referred formulation no significant effect on the complexation efficiency was observed. In physiological saline solutions and serum, a multilamellar arrangement of the lipoplexes is maintained, with reduced spacing distances between the FRET probes, relative to those in low ionic strength medium. Conclusion The time-resolved FRET methodology described in this work allowed us to monitor stability and characterize quantitatively the structural changes (variations in interchromophore spacing distances and complexation efficiencies) undergone by DOTAP/DNA complexes in high ionic strength solutions and in presence of serum, as well as to determine the minimum amount of potentially cytotoxic cationic lipid necessary for complete coverage of DNA. This constitutes essential information regarding thoughtful design of future in vivo applications. PMID:18302788
Gyamerah, M; Ampaw-Asiedu, M; Mackey, J; Menezes, B; Woldesenbet, S
2018-06-01
The potential of large-scale lignocellulosic biomass hydrolysis to fermentable sugars using ionic liquids has increased interest in this green chemistry route to fermentation for fuel-ethanol production. The ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride compared to other reported ionic liquids has the advantage of hydrolysing lignocellulosic biomass to reducing sugars at catalytic concentrations (≤0·032 mol l -1 ) in a single step. However, effects of this ionic liquid on co-fermentation of glucose, xylose and arabinose to ethanol by recombinant Zymomonas mobilisAX101 has not been studied. Authentic glucose, xylose and arabinose were used to formulate fermentation media at varying catalytic 1-(1-propylsulfonic)-3-methylimidazolium chloride concentrations for batch co-fermentation of the sugars using Z. mobilisAX101. The results showed that at 0·008, 0·016 and 0·032 mol l -1 ionic liquid in the culture medium, cell growth decreased by 10, 27 and 67% respectively compared to the control. Ethanol yields were 62·6, 61·8, 50·5 and 23·1% for the control, 0·008, 0·016 and 0·032 mol l -1 ionic liquid respectively. The results indicate that lignocellulosic biomass hydrolysed using 0·008 mol l -1 of 1-(1-propylsulfonic)-3-methylimidazolium chloride would eliminate an additional separation step and provide a ready to use fermentation substrate. This is the first reported study of the effect of the Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilisAX101 in batch culture. Growth on and co-fermentation of the sugars by Z. mobilisAX 101 with no significant inhibition by the ionic liquid at the same catalytic amounts of 0·008 mol l -1 used to hydrolyse lignocellulosic biomass to reducing sugars overcome two major hurdles that adversely affect the process economics of large-scale industrial cellulosic fuel ethanol production; the energy-intensive hydrolysis and ionic liquid separation steps. © 2018 The Society for Applied Microbiology.
Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes
Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric
2016-01-01
In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH. PMID:27127970
Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Mechanism.
Park, Sang-Won; DeYoung, Andrew D; Dhumal, Nilesh R; Shim, Youngseon; Kim, Hyung J; Jung, YounJoon
2016-04-07
Graphene oxide supercapacitors in the parallel plate configuration are studied via molecular dynamics (MD) simulations. The full range of electrode oxidation from 0 to 100% is examined by oxidizing the graphene surface with hydroxyl groups. Two different electrolytes, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI(+)BF4(-)) as an ionic liquid and its 1.3 M solution in acetonitrile as an organic electrolyte, are considered. While the area-specific capacitance tends to decrease with increasing electrode oxidation for both electrolytes, its details show interesting differences between the organic electrolyte and ionic liquid, including the extent of decrease. For detailed insight into these differences, the screening mechanisms of electrode charges by electrolytes and their variations with electrode oxidation are analyzed with special attention paid to the aspects shared by and the contrasts between the organic electrolyte and ionic liquid.
Ion distributions in electrolyte confined by multiple dielectric interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei; Zwanikken, Jos W.; Jadhao, Vikram; de La Cruz, Monica
2014-03-01
The distribution of ions at dielectric interfaces between liquids characterized by different dielectric permittivities is crucial to nanoscale assembly processes in many biological and synthetic materials such as cell membranes, colloids and oil-water emulsions. The knowledge of ionic structure of these systems is also exploited in energy storage devices such as double-layer super-capacitors. The presence of multiple dielectric interfaces often complicates computing the desired ionic distributions via simulations or theory. Here, we use coarse-grained models to compute the ionic distributions in a system of electrolyte confined by two planar dielectric interfaces using Car-Parrinello molecular dynamics simulations and liquid state theory. We compute the density profiles for various electrolyte concentrations, stoichiometric ratios and dielectric contrasts. The explanations for the trends in these profiles and discuss their effects on the behavior of the confined charged fluid are also presented.
Mamidala, Venkatesh; Polavarapu, Lakshminarayana; Balapanuru, Janardhan; Loh, Kian Ping; Xu, Qing-Hua; Ji, Wei
2010-12-06
By complexion of donor and acceptor using ionic interactions, the enhanced nonlinear optical responses of donor-acceptor ionic complexes in aqueous solution were studied with 7-ns laser pulses at 532 nm. The optical limiting performance of negatively charged gold nanoparticles or graphene oxide (Acceptor) was shown to be improved significantly when they were mixed with water-soluble, positively-charged porphyrin (Donor) derivative. In contrast, no enhancement was observed when mixing with negatively-charged porphyrin. Transient absorption studies of the donor-acceptor complexes confirmed that the addition of energy transfer pathway were responsible for excited-state deactivation, which results in the observed enhancement. Fluence, angle-dependent scattering and time correlated single photon counting measurements suggested that the enhanced nonlinear scattering due to faster nonradiative decay should play a major role in the enhanced optical limiting responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.
Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra
2017-12-01
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.
NASA Astrophysics Data System (ADS)
Tavolaro, Palmira; Catalano, Silvia; Martino, Guglielmo; Tavolaro, Adalgisa
2016-09-01
The design, preparation and selection of inorganic materials useful as functional scaffolds for cell adhesion is a complex question based both on the understanding of the chemical behavior of the materials and individual cells, and on their interactions. Pure zeolite membranes formed from synthetic crystals offer chemically-capable being modulated silanolic surfaces that are amenable to adhesion and growth of fibroblasts. We report the facile preparation of reusable, very longlasting, biocompatible, easily sterilized synthetic scaffolds in a zeolite membrane configuration, which are very stable in aqueous media (apart from ionic strength and pH values), able to adsorb pollutant species and to confine undesired toxic ions (present in culture media). This may ultimately lead to the development of cell supports for economic antibiotic-free culture media.
Thompson, Ronald W; Latypov, Ramil F; Wang, Ying; Lomakin, Aleksey; Meyer, Julie A; Vunnum, Suresh; Benedek, George B
2016-11-14
Colloidal stability of IgG antibody solutions is important for pharmaceutical and medicinal applications. Solution pH and ionic strength are two key factors that affect the colloidal stability of protein solutions. In this work, we use a method based on the PEG-induced liquid-liquid phase separation to examine the effects of pH and ionic strength on the colloidal stability of IgG solutions. We found that at high ionic strength (≥0.25M), the colloidal stability of most of our IgGs is insensitive to pH, and at low ionic strength (≤0.15M), all IgG solutions are much more stable at pH 5 than at pH 7. In addition, the PEG-induced depletion force is less efficient in causing phase separation at pH 5 than at pH 7. In contrast to the native inter-protein interaction of IgGs, the effect of depletion force on phase separation of the antibody solutions is insensitive to ionic strength. Our results suggest that the long-range electrostatic inter-protein repulsion at low ionic strength stabilizes the IgG solutions at low pH. At high ionic strength, the short-range electrostatic interactions do not make a significant contribution to the colloidal stability for most IgGs with a few exceptions. The weaker effect of depletion force at lower pH indicates a reduction of protein concentration in the condensed phase. This work advances our basic understanding of the colloidal stability of IgG solutions and also introduces a practical approach to measuring protein colloidal stability under various solution conditions.
Saade, Charbel; Al-Hamra, Salam; Al-Mohiy, Hussain; El-Merhi, Fadi
2016-05-01
A patient with a history of mitral valve prolapse and regurgitation that was corrected with a mitral ring repair 15 years earlier received a diagnosis of anomalous left coronary artery arising from the pulmonary artery and underwent repair. Coronary computed tomography angiography (CTA) was employed to image the patient before surgical intervention. Synchronizing contrast media administration to opacify the right coronary artery in the arterial phase and the left coronary artery in the venous phase required a test-bolus approach. Matching compromised cardiovascular dynamics with patient-specific contrast media administration protocols was improved considerably with the use of a test-bolus technique during electrocardiography-gated coronary CTA.
Pseudo-hemothorax at computed tomography due to residual contrast media.
Romero, Matías; Bächler, Pablo
2014-01-01
Pleural effusion is a clinical problem that has many causes, with hemothorax being one of them. Computed tomography readily characterizes pleural fluid with determination of the attenuation value, helping to distinguish hemothorax from other types of effusion. Herein, we report the case of a 67-year-old man with end-stage renal disease in which a high-density pleural effusion due to residual contrast media was misinterpreted as hemothorax. Radiologists should consider the possibility of contrast media retention when interpreting a high-density pleural effusion in patients with end-stage renal disease. Recognition of this entity is crucial to avoid misdiagnosis, which might lead to unnecessary testing or procedures. Copyright © 2014 Elsevier Inc. All rights reserved.
Spasojević-Dimitrijeva, Brankica; Kotur-Stevuljević, Jelena; Đukić, Milan; Paripović, Dušan; Miloševski-Lomić, Gordana; Spasojević-Kalimanovska, Vesna; Pavićević, Polina; Mitrović, Jadranka; Kostić, Mirjana
2017-01-01
Background New renal biomarkers such as neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) show promise in early diagnosis of contrast media induced acute kidney injury (CI-AKI). The purpose of our study was to compare the subclinical nephrotoxicity (a condition without changes in standard renal biomarkers) of gadolinium-based contrast media (Gd-DTPA, gadopentetate dimeglumine) and iodinated-based contrast media (iopromide) in pediatric patients with normal kidney function. Material/Methods The first group (n=58) of patients included in the study were undergoing angiography with iopromide, and the second group (n=65) were undergoing magnetic resonance (MR) angiography/urography with Gd-DTPA administration. The concentrations of NGAL and KIM-1 were measured four times in the urine (pre-contrast, then at four hours, 24 hours, and 48 hours after contrast administration), and serum NGAL was measured at 0 (baseline), 24 hours, and 48 hours after contrast exposure. Results After 24 hours, serum NGAL increase of ≥25% was noticed in 32.6% of the patients in the iopromide group and in 25.45% of the patients in the gadolinium group, with significantly higher average percent of this increase in first group (62.23% vs. 36.44%, p=0.002). In the Gd-DTPA group, we observed a statistically significant increase in urinary KIM-1 24 hours after the procedure. Normalized urinary KIM-1, 24 hours after contrast exposure, was a better predictive factor for CI-AKI than other biomarkers (AUC 0.757, cut off 214 pg/mg, sensitivity 83.3%, specificity 54.2%, p=0.035). Conclusions In children with normal renal function, exposure to iodinated-based and gadolinium-based media might lead to subclinical nephrotoxicity, which could be detected using serum NGAL and urinary KIM-1. PMID:28874655
Transcatheter aortic-valve implantation with one single minimal contrast media injection.
Arrigo, Mattia; Maisano, Francesco; Haueis, Sabine; Binder, Ronald K; Taramasso, Maurizio; Nietlispach, Fabian
2015-06-01
Performing transcatheter aortic valve implantation (TAVI) with the use of minimal contrast in patients at high-risk for acute kidney injury (AKI). Contrast-induced nephropathy (CIN) is a major cause of AKI following TAVI and is associated with increased morbidity and mortality. The amount of contrast media used increases the risk for CIN. Computed tomography was omitted during the screening process. For the procedure transfemoral access was default. The self-expanding CoreValve prosthesis was chosen in all patients to minimize the risk of annular rupture in case of oversizing. Valve sizing was based on echocardiography, aortography, calcification on fluoroscopy, as well as weight and height of the patient. A single contrast injection was performed to confirm correct position of the pigtail catheter at the level of the annulus. The pigtail then served as the marker for the device landing zone. Intraprocedural assessment of the implantation result relied on echocardiography and hemodynamics. Five patients with severe aortic stenosis and at high risk for developing CIN were included. Device success was achieved in all patients and no major complications occurred. The median dose of injected contrast media was 8 ml (4-9). All but one patient had improved renal function after the intervention compared to baseline. Our study shows feasibility of performing TAVI with a single minimal contrast media injection, using a self-expandable valve. This technique has the potential to reduce the incidence of CIN. © 2015 Wiley Periodicals, Inc.
High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media
Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Roman, Brian B.; Jansen, Sanaz A.; Macleod, Kay; Conzen, Suzanne D.; Karczmar, Gregory S.
2014-01-01
The purpose of this study was to use high resolution 3D MRI to study mouse mammary gland ductal architecture based on intra-ductal injection of contrast agents. Female FVB/N mice age 12–20 weeks (n = 12), were used in this study. A 34G, 45° tip Hamilton needle with a 25uL Hamilton syringe was inserted into the tip of the nipple. Approximately 20–25uL of a Gadodiamide/Trypan blue/saline solution was injected slowly over one minute into the nipple and duct. To prevent washout of contrast media from ducts due to perfusion, and maximize the conspicuity of ducts on MRI, mice were sacrificed one minute after injection. High resolution 3D T1-weighted images were acquired on a 9.4T Bruker scanner after sacrifice to eliminate motion artifacts and reduce contrast media leakage from ducts. Trypan blue staining was well distributed throughout the ductal tree. MRI showed the mammary gland ductal structure clearly. In spoiled gradient echo T1-weighted images, the signal-to-noise ratio of regions identified as enhancing mammary ducts following contrast injection was significantly higher than that of muscle (p < 0.02) and significantly higher than that of contralateral mammary ducts that were not injected with contrast media (p < 0.0001). The methods described here could be adapted for injection of specialized contrast agents to measure metabolism or target receptors in normal ducts and ducts with in situ cancers. PMID:25179139
Iodinated X-ray contrast media (ICMs), used in medical imaging, are poorly metabolized by humans and enter wastewater. As they are incompletely removed during wastewater treatment, ICMs are released to the aquatic environment and have been detected in drinking water sources. ICMs...
Nasrollah, Jabbari; Mikaeil, Molazadeh; Omid, Esnaashari; Mojtaba, Seyed Siahi; Ahad, Zeinali
2014-01-01
The impact of intravenous (IV) contrast media (CM) on radiation dose calculations must be taken into account in treatment planning. The aim of this study is to evaluate the effect of an intravenous contrast media on dose calculations in three-dimensional conformal radiation therapy (3D-CRT) for lower esophageal and rectal cancers. Seventeen patients with lower esophageal tumors and 12 patients with rectal cancers were analyzed. At the outset, all patients were planned for 3D-CRT based on the computed tomography (CT) scans with IV contrast media. Subsequently, all the plans were copied and replaced on the scans without intravenous CM. The radiation doses calculated from the two sets of CTs were compared. The dose differences between the planning image set using intravenous contrast and the image set without contrast showed an average increase in Monitor Units (MUs) in the lower esophageal region that was 1.28 and 0.75% for 6 and 15 MV photon beams, respectively. There was no statistical significant difference in the rectal region between the two sets of scans in the 3D-CRT plans. The results showed that the dose differences between the plans for the CT scans with and without CM were small and clinically tolerable. However, the differences in the lower esophageal region were significant in the statistical analysis.
Ionic liquid-based green processes for energy production.
Zhang, Suojiang; Sun, Jian; Zhang, Xiaochun; Xin, Jiayu; Miao, Qingqing; Wang, Jianji
2014-11-21
To mitigate the growing pressure on resource depletion and environment degradation, the development of green processes for the production of renewable energy is highly required. As a class of novel and promising media, ionic liquids (ILs) have shown infusive potential applications in energy production. Aiming to offer a critical overview regarding the new challenges and opportunities of ILs for developing green processes of renewable energy, this article emphasises the role of ILs as catalysts, solvents, or electrolytes in three broadly interesting energy production processes from renewable resources, such as CO2 conversion to fuels and fuel additives, biomass pretreatment and conversion to biofuels, as well as solar energy and energy storage. It is expected that this article will stimulate a generation of new ideas and new technologies in IL-based renewable energy production.
[BMIM][PF(6)] promotes the synthesis of halohydrin esters from diols using potassium halides.
Oromí-Farrús, Mireia; Eras, Jordi; Villorbina, Gemma; Torres, Mercè; Llopis-Mestre, Veronica; Welton, Tom; Canela, Ramon
2008-10-01
Haloesterification of diverse diols with various carboxylic acids was achieved using potassium halides (KX) as the only halide source in ionic liquids. The best yield was obtained in [BMIM][PF(6)] when 1,2-octanediol, palmitic acid and KBr were used. This yield was 85% and the regioisomer with the bromine in primary position was present in a 75:25 ratio. The regioisomeric ratio could be improved using either KCl or some phenylcarboxylic acids. [BMIM][PF(6)] acts as both reaction media and catalyst of the reaction. To the best of our knowledge, this type of combined reaction using an ionic liquid is unprecedented. The other solvents tested did not lead either to the same yield or to the same regioisomeric ratio.
Liu, Yun-Kui; Zheng, Hui; Xu, Dan-Qian; Xu, Zhen-Yuan; Zhang, Yong-Min
2006-01-01
Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 °C within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2. PMID:16502505
Leroux, Lionel; Dijos, Marina; Dos Santos, Pierre
2013-12-01
Severe anaphylactoid reaction after the use of iodinated contrast media are rare but can contraindicate the use of contrast agent. It was the case of a 53-year-old woman suffering from symptomatic severe aortic stenosis, recused for cardiac surgery because of deleterious effects of chest-wall irradiation, with porcelain aorta. We decided to implant a 23-mm Edwards(®) SAPIEN(®) transcatheter aortic valve via a femoral route without using any contrast media. The implantation was successful after surgical approach of the femoral artery, transesophageal echocardiography guiding, and localization of native leaflets and coronary trunk with catheters. Immediate and one month post-interventional follow-up was favorable and echocardiography showed a good functioning of the aortic bioprosthesis. Although conventional angiography is the best way to visualize the good positioning of the valve before deployment, our case suggests that, in special situations, transfemoral implantation of an Edwards(®) SAPIEN(®) aortic bioprosthesis is feasible without any contrast injection. Copyright © 2012 Wiley Periodicals, Inc.
Ventura, Sónia P M; E Silva, Francisca A; Quental, Maria V; Mondal, Dibyendu; Freire, Mara G; Coutinho, João A P
2017-05-24
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.
2017-01-01
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid–liquid extractions, IL-based liquid–liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations. PMID:28151648
Sarkar, Souravi; Pramanik, Rajib; Ghatak, Chiranjib; Rao, Vishal Govind; Sarkar, Nilmoni
2011-02-21
In this study we have characterized a ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl- sulfonyl)imide containing ternary nonaqueous microemulsion ([Emim][Tf(2)N]∕∕TX-100∕cyclo- hexane). The phase behavior and dynamic light scattering study show that the [Emim][Tf(2)N]∕TX-100∕cyclohexane three component system can form microemulsion with [Emim][Tf(2)N] as polar core at suitable condition. We have investigated photoinduced electron transfer (PET) using dimethyl aniline as electron donor and several Coumarin dyes as electron acceptor molecules at two different R values (R = [ionic liquid]∕[surfactant]) to observe how the dynamics of the PET rate is affected in this type of confined microenvironment compared to that of the PET dynamics in neat ionic liquid and other pure solvent media. The plot of observed k(q) values with the free energy change (ΔG(0)) for electron transfer reaction shows an apparent inversion in the observed rate as predicted by the Marcus theory.
Iodinated contrast media can induce long-lasting oxidative stress in hemodialysis patients.
Hwang, Seun Deuk; Kim, Yoon Ji; Lee, Sang Heun; Cho, Deok Kyu; Cho, Yun Hyeong; Moon, Sung Jin; Lee, Sang Choel; Yoon, Soo Young
2013-11-01
Due to their comorbidities, dialysis patients have many chances to undergo radiologic procedures using iodinated contrast media. We aimed to assess time-sequenced blood oxidative stress level after contrast exposure in hemodialysis (HD) patients compared to those in the non-dialysis population. We included 21 anuric HD patients [HD-coronary angiography (CAG) group] and 23 persons with normal renal function (nonHD-CAG group) scheduled for CAG, and assessed 4 oxidative stress markers [advanced oxidation protein products (AOPP); catalase; 8-hydroxydeoxyguanosine; and malondialdehyde] before and after CAG, and subsequently up to 28 days. In the nonHD-CAG group, only AOPP increased immediately after CAG and returned to baseline within one day. However, in the HD-CAG group, all four oxidative stress markers were significantly increased starting one day after CAG, and remained elevated longer than those in the nonHD-CAG group. Especially, AOPP level remained elevated for a month after contrast exposure. Our study showed that iodinated contrast media induces severe and prolonged oxidative stress in HD patients.
Simulation and source identification of X-ray contrast media in the water cycle of Berlin.
Knodel, J; Geissen, S-U; Broll, J; Dünnbier, U
2011-11-01
This article describes the development of a model to simulate the fate of iodinated X-ray contrast media (XRC) in the water cycle of the German capital, Berlin. It also handles data uncertainties concerning the different amounts and sources of input for XRC via source densities in single districts for the XRC usage by inhabitants, hospitals, and radiologists. As well, different degradation rates for the behavior of the adsorbable organic iodine (AOI) were investigated in single water compartments. The introduced model consists of mass balances and includes, in addition to naturally branched bodies of water, the water distribution network between waterways and wastewater treatment plants, which are coupled to natural surface waters at numerous points. Scenarios were calculated according to the data uncertainties that were statistically evaluated to identify the scenario with the highest agreement among the provided measurement data. The simulation of X-ray contrast media in the water cycle of Berlin showed that medical institutions have to be considered as point sources for congested urban areas due to their high levels of X-ray contrast media emission. The calculations identified hospitals, represented by their capacity (number of hospital beds), as the most relevant point sources, while the inhabitants served as important diffusive sources. Deployed for almost inert substances like contrast media, the model can be used for qualitative statements and, therefore, as a decision-support tool. Copyright © 2011 Elsevier Ltd. All rights reserved.
Keuffel, Eric; McCullough, Peter A; Todoran, Thomas M; Brilakis, Emmanouil S; Palli, Swetha R; Ryan, Michael P; Gunnarsson, Candace
2018-04-01
To determine the net economic impact of switching from low-osmolar contrast media (LOCM) to iso-osmolar contrast media (IOCM; iodixanol) in patients undergoing inpatient coronary or peripheral angioplasty in the United States (US). A budget impact model (BIM) was developed from a hospital perspective. Nationally representative procedural and contrast media prevalence rates, along with MARCE (major adverse renal cardiovascular event) incidence and episode-related cost data were derived from Premier Hospital Data (October 2014 to September 2015). A previously estimated relative risk reduction in MARCE associated with IOCM usage (9.3%) was applied. The higher cost of IOCM was included when calculating the net impact estimates at the aggregate, hospital type, and per hospital levels. One-way (±25%) and probabilistic sensitivity analyses identified the model's most important inputs. Based on weighted analysis, 513,882 US inpatient angioplasties and 35,610 MARCE cases were estimated annually. Switching to an "IOCM only" strategy from a "LOCM only" strategy increases contrast media cost, but prevents 2,900 MARCE events. The annual budget impact was an estimated saving of $30.71 million, aggregated across all US hospitals, $6,316 per hospital, or $60 per procedure. Net savings were maintained across all univariate sensitivity analyses. While MARCE/event-free cost differential was the most important factor driving total net savings for hospitals in the Northeast and West, procedural volume was important in the Midwest and rural locations. Switching to an "IOCM only" strategy from a "LOCM only" approach yields substantial net global savings to hospitals, both at the national level and within hospital sub-groups. Hospital administrators should maintain awareness of the factors that are likely to be more influential for their hospital and recognize that purchasing on the basis of lower contrast media cost may result in higher overall costs for patients undergoing inpatient angioplasty.
Infrared spectroscopy of hydrated polycyclic aromatic hydrocarbon cations: naphthalene+-water.
Chatterjee, Kuntal; Dopfer, Otto
2017-12-13
Polycyclic aromatic hydrocarbons (PAHs) are suggested to occur in interstellar media and ice grains. It is important to characterize hydrated PAHs and their cations to explore their stability in interstellar and biological media. Herein, the infrared photodissociation (IRPD) spectrum of the naphthalene + -H 2 O radical cation (Np + -H 2 O) recorded in the O-H and C-H stretch range is analysed by dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level to determine its structure and intermolecular bonding. Monohydration of Np + in its 2 A u ground electronic state leads to the formation of a bifurcated CHO ionic hydrogen bond (H-bond), in which the lone pairs of H 2 O bind to two adjacent CH proton donors of the two aromatic rings. The frequency-dependent branching ratios observed for IRPD of cold Np + -H 2 O-Ar clusters allows the estimation of the dissociation energy of Np + -H 2 O as D 0 ∼ 2800 ± 300 cm -1 . The monohydration motif of Np + differs qualitatively from that of the benzene cation in both structure and binding energy, indicating the strong influence of the multiple aromatic rings on the hydration of PAH + cations. This difference is rationalized by natural bond orbital analysis of the ionic H-bond motif. Comparison with neutral Np-H 2 O reveals the large change in structure and bond strength of the hydrated PAHs upon ionization. While neutral Np-H 2 O is stabilized by weak π H-bonds (OHπ, π-stacking), strong cation-dipole forces favour a planar bifurcated CHO ionic H-bond in Np + -H 2 O.
Shu, X Z; Zhu, K J
2002-02-21
By adopting a novel chitosan cross-linked method, i.e. chitosan/gelatin droplet coagulated at low temperature and then cross-linked by anions (sulfate, citrate and tripolyphosphate (TPP)), the chitosan beads were prepared. Scanning electron microscopy (SEM) observation showed that sulfate/chitosan and citrate/chitosan beads usually had a spherical shape, smooth surface morphology and integral inside structure. Cross-sectional analysis indicated that the cross-linking process of sulfate and citrate to chitosan was much faster than that of TPP due to their smaller molecular size. But, once completely cross-linked, TPP/chitosan beads possessed much better mechanical strength and the force to break the beads was approximately ten times higher than that of sulfate/chitosan or citrate/chitosan beads. Release media pH and ionic strength seriously influenced the controlled drug release properties of the beads, which related to the strength of electrostatic interaction between anions and chitosan. Sulfate and citrate cross-linked chitosan beads swelled and even dissociated in simulated gastric fluid (SGF) and hence, model drug (riboflavin) released completely in 5 h; while in simulated intestinal fluid (SIF), beads remained in a shrinkage state and drug released slowly (release % usually <70% in 24 h). However, swelling and drug release of TPP/chitosan bead was usually insensitive to media pH. Chitosan beads, cross-linked by a combination of TPP and citrate (or sulfate) together, not only had a good shape, but also improved pH-responsive drug release properties. Salt weakened the interaction of citrate, especially sulfate with chitosan and accelerated beads swelling and hence drug release rate, but it was insensitive to that of TPP/chitosan. These results indicate that ionically cross-linked chitosan beads may be useful in stomach specific drug delivery.
Fox-Powell, Mark G; Cockell, Charles S
2018-01-01
Current knowledge of life in hypersaline habitats is mostly limited to sodium and chloride-dominated environments. This narrow compositional window does not reflect the diversity of brine environments that exist naturally on Earth and other planetary bodies. Understanding the limits of the microbial biosphere and predicting extraterrestrial habitability demands a systematic effort to characterize ionic specificities of organisms from a representative range of saline habitats. Here, we investigated a strain of Marinococcus isolated from the magnesium and sulfate-dominated Basque Lakes (British Columbia, Canada). This organism was the sole isolate obtained after exposure to exceptionally high levels of Mg 2+ and SO 4 2- ions (2.369 and 2.840 M, respectively), and grew at extremes of ionic strength not normally encountered in Na + /Cl - brines (12.141 mol liter -1 ). Its association at the 16S rDNA level with bacterial halophiles suggests that ancestral halophily has allowed it to adapt to a different saline habitat. Growth was demonstrated in media dominated by NaCl, Na 2 SO 4 , MgCl 2 , and MgSO 4 , yet despite this plasticity the strain was still restricted; requiring either Na + or Cl - to maintain short doubling times. Water activity could not explain growth rate differences between media, demonstrating the importance of ionic composition for dictating microbial growth windows. A new framework for understanding growth in brines is required, that accounts for the geochemical history of brines as well as the various stresses that ions impose on microbes. Studies such as this are required to gain a truly universal understanding of the limits of biological ion tolerance.
Silver Nanowire Exposure Results in Internalization and Toxicity to Daphnia Magna
Scanlan, Leona D.; Reed, Robert B.; Loguinov, Alexandre V.; Antczak, Philipp; Tagmount, Abderrahmane; Aloni, Shaul; Nowinski, Daniel Thomas; Luong, Pauline; Tran, Christine; Karunaratne, Nadeeka; Pham, Don; Lin, Xin Xin; Falciani, Francesco; Higgins, Chris P.; Ranville, James F.; Vulpe, Chris D.; Gilbert, Benjamin
2013-01-01
Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physico-chemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within one-hour following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry (spICPMS) distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy (SEM) imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. PMID:24099093
NASA Astrophysics Data System (ADS)
Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens
2018-05-01
We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.
The binding of glucose to yeast hexokinase monomers is independent of ionic strength.
Mayes, E L; Hoggett, J G; Kellett, G L
1982-05-01
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.
The binding of glucose to yeast hexokinase monomers is independent of ionic strength.
Mayes, E L; Hoggett, J G; Kellett, G L
1982-01-01
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer. PMID:7052060
NASA Astrophysics Data System (ADS)
Aihara, Yuichi; Sugimoto, Kyoko; Price, William S.; Hayamizu, Kikuko
2000-08-01
The Debye-Hückel-Onsager and Nernst-Einstein equations, which are based on two different conceptual approaches, constitute the most widely used equations for relating ionic conduction to ionic mobility. However, both of these classical (simple) equations are predictive of ionic conductivity only at very low salt concentrations. In the present work the ionic conductivity of four organic solvent-lithium salt-based electrolytes were measured. These experimental conductivity values were then contrasted with theoretical values calculated using the translational diffusion (also known as self-diffusion or intradiffusion) coefficients of all of the species present obtained using pulsed-gradient spin-echo (1H, 19F and 7Li) nuclear magnetic resonance self-diffusion measurements. The experimental results verified the applicability of both theoretical approaches at very low salt concentrations for these particular systems as well as helping to clarify the reasons for the divergence between theory and experiment. In particular, it was found that the correspondence between the Debye-Hückel-Onsager equation and experimental values could be improved by using the measured solvent self-diffusion values to correct for salt-induced changes in the solution viscosity. The concentration dependence of the self-diffusion coefficients is discussed in terms of the Jones-Dole equation.
Kakinuma, Shohei; Shirota, Hideaki
2018-05-25
In this study, we have investigated the effects of cation structures on the temperature dependence of the intermolecular vibrational dynamics of ionic liquids using femtosecond Raman-induced Kerr effect spectroscopy. The ionic liquids used in this study are bis(trifluoromethylsulfonyl)amide [NTf 2 ] - salts of the cations 1-butyl-3-methylimidazolium [C 4 MIm] + , 1-butyl-1-methylpyrrolidinium [Pyrr 14 ] + , 1-butylpyridinium [C 4 Py] + , butyldiethylmethylammonium [N 1224 ] + , triethyloctylammonium [N 2228 ] + , and triethyloctylphosphonium [P 2228 ] + . All of the ionic liquids show temperature-dependent low-frequency spectra. A difference in the temperature dependence between the spectra of the aromatic and nonaromatic cation based ionic liquids is especially significant. In the case of the aromatic cation based ionic liquids [C 4 MIm][NTf 2 ] and [C 4 Py][NTf 2 ], the spectral intensities in the low-frequency region below ca. 50 cm -1 increase and the high-frequency components at ca. 80 cm -1 shift to lower frequencies with rising temperature. In contrast, the ionic liquids based on nonaromatic cations only exhibit an increase in the low-frequency region below ca. 50 cm -1 with increasing temperature, while the high-frequency region of the spectra above ca. 50 cm -1 shows little change with variation of the temperature. These results suggest that the presence or absence of aromatic rings is the main factor in determining the temperature-dependent spectral features, particularly in the high-frequency region. We also found that the alkyl chain length and central atoms of the nonaromatic quaternary cations do not have much influence on the temperature-dependent spectral features. The first moments of the aromatic cation based ionic liquids are a little more sensitive to temperature than those of the nonaromatic cation based ionic liquids. The temperature-dependent viscosities and fragilities of the ionic liquids have also been examined.
Ca$sup 45$ UPTAKE BY DOG ERYTHROCYTES SUSPENDED IN SODIUM AND POTASSIUM CHLORIDE SOLUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omachi, A.; Markel, R.P.; Hegarty, H.
1961-04-01
The disappearance of Ca/sup 4//sup 5/ from the medium was greater when washed dog erythrocytes were suspended in isotonic KCl rather than in isotonic NaCl. Cells stored in a refrigerator for 24 hr or more took up even greater quantities of Ca/sup 4//sup 5/ when incubated in KCl but cells suspended in NaCl did not show any difference from fresh cells. This result is consistent with the view that competition takes place between Ca and Na ions for binding sites as a consequence of the similarity in ionic radii. Acid-citrate-dextrose and, to a certain extent, heparin appeared to delay themore » increased uptake by stored cells. Addition of glucose, adenosine, or Nembutal to stored blood had no effect. Fresh cells hemolyzed by saponin or by hypotonic media took up no more Ca than unhemolyzed fresh cells. Calcium uptake in KCl was -dependent upon pH, greater amounts being taken up at alkaline pH. In contrast to dog red cells, human and cat erythrocytes did not show differences in uptake in NaCl and in KCl, before or after storage. (auth)« less
NASA Astrophysics Data System (ADS)
Crum, Ryan; Pagan, Darren; Lind, Jon; Homel, Michael; Hurley, Ryan; Herbold, Eric; Akin, Minta
Granular systems are ubiquitous in our everyday world and play a central role in many dynamic scientific problems including mine blasting, projectile penetration, astrophysical collisions, explosions, and dynamic compaction. An understanding of granular media's behavior under various loading conditions is an ongoing scientific grand challenge. This is partly due to the intricate interplay between material properties, loading conditions, grain geometry, and grain connectivity. Previous dynamic studies in granular media predominantly utilize the macro-scale analyses VISAR or PDV, diagnostics that are not sensitive to the many degrees of freedom and their interactions, focusing instead on their aggregate effect. Results of a macro-scale analysis leave the principal interactions of these degrees of freedom too entangled to elucidate. To isolate the significance of grain geometry, this study probes various geometries of granular media subjected to gas gun generated waves via in-situ X-ray analysis. Analyses include evaluating displacement fields, grain fracture, inter- and intra-granular densification, and wave front motion. Phase Contrast Imaging (PCI) and PDV analyses feed directly into our concurrent meso-scale granular media modeling efforts to enhance our predictive capabilities.
Extravasation of radiographic contrast media: prevention, diagnosis, and treatment.
Tonolini, Massimo; Campari, Alessandro; Bianco, Roberto
2012-01-01
Contrast media extravasation represents a not unusual problem in radiological practice. Incidence, patient-, and procedure-related risk factors, pathogenesis, and clinical manifestations of extravasation injuries are discussed with a review of recent literature, and a practical preventive approach is proposed. A diagnostic and therapeutic protocol, to be applied whenever contrast extravasation is detected, includes radiographic assessment of compartmentalization, antidote application, local care, and clinical follow-up; indications for surgical consultation and adverse event reporting are provided. Copyright © 2012 Mosby, Inc. All rights reserved.
Self-expandable CoreValve implantation without contrast media.
Bruschi, Giuseppe; Colombo, Paola; De Marco, Federico; Barosi, Alberto; Mauri, Silvia; Klugmann, Silvio
2016-09-01
Transcatheter aortic valve implantation has been designed to treat high-risk surgical patients affected by severe aortic stenosis, many of whom are affected by chronic kidney disease. To perform transcatheter self-expandable valve implantation, multiple contrast injections are required to monitor the procedure, so these patients are at increased risk of acute kidney injury. We described self-expandable transcatheter aortic valve implantation without contrast media in an 80-year-old man affected by severe aortic stenosis and endstage chronic kidney disease. © The Author(s) 2015.
Physicochemical properties of radiographic contrast media, potential nephrotoxicity and prophylaxis.
Hogstrom, Barry; Ikei, Nobuhiro
2015-12-01
Contrast induced nephropathy (CIN) remains a controversial topic. The clinical relevance of changes in laboratory parameters has been challenged; some authors have even suggested that CIN simply reflects natural fluctuations. Other areas of controversy include the pathophysiology of CIN, effectiveness of prophylactic approaches and differences in nephrotoxicity between individual contrast media (CM). The aim of this review is to summarize the current understanding of laboratory findings and explore its relationship to CM toxicity. © 2015 Wiley Publishing Asia Pty Ltd.
Liu, Xu; Ma, Xiangyu; Kun, Eucharist; Guo, Xiaodi; Yu, Zhongxue; Zhang, Feng
2018-06-05
This study examines the preparation of sustained-release lidocaine polyelectrolyte complex using reactive melt extrusion. Eudragit L100-55 was selected as the ionic polymer. The influence of drug forms (freebase vs. hydrochloride salt) on lidocaine-Eudragit L100-55 interactions, physical stability, and dissolution properties of extrudates was investigated. It was confirmed by DSC, FT-IR and Raman spectroscopy that polyelectrolyte could only form via the acid-base reaction between Eudragit L100-55 and lidocaine freebase. Due to this ionic interaction, the lidocaine extrudate was physically more stable than the lidocaine hydrochloride extrudate during the storage under stressed condition. Drug release from lidocaine extrudate was a function of drug solubility, polymer solubility, drug-polymer interaction, and drug-induced microenvironment pH. At 30% drug loading, extrudate exhibited sustained release in aqueous media at pH 1.2 and 4.5. Due to the alkaline microenvironment pH induced by dissolved lidocaine, Eudragit L100-55 was solubilized and sustained-release was not achieved in water and aqueous media at pH 5.5. In comparison, lidocaine hydrochloride induced an acidic microenvironment. Drug release of lidocaine hydrochloride extrudate was similar at pH 1.2, 4.5, 5.5 and water with drug being released over 10 h. The release of lidocaine hydrochloride from the extrudates in these media was primarily controlled by microenvironment pH. It is concluded that different forms of lidocaine resulted in different drug-polymer interactions and distinctive physicochemical properties of extrudates. Copyright © 2018. Published by Elsevier B.V.
[Iodinated contrast media and iodine allergy: myth or reality?].
Meunier, B; Joskin, J; Damas, F; Meunier, P
2013-09-01
The term "iodine allergy" is an old phrase that refers to a reaction to iodinated contrast media. After a brief review of definitions, pathophysiological mechanisms and risk factors of this clinical entity, management is urged immediate and delayed according to the most recent recommendations from the literature. We underline that iodine allergy, as such, does not really exist.
NASA Astrophysics Data System (ADS)
Chakraborty, Brotati; Basu, Samita
2010-02-01
Photoinduced electron transfer (PET) between proflavin (PF +) and two aromatic amines viz., dimethylaniline (DMA) and 4,4'-bis(dimethylamino)diphenylmethane (DMDPM) is studied in homogeneous and heterogeneous media using steady-state as well as time-resolved fluorescence spectroscopy and laser flash photolysis with an associated magnetic field. Ionic micelles have been used to study the effect of charge of proflavin on PET with amines. Magnetic field effect on PET reactions reveals that the parent spin-state of precursors of PET for DMA-PF + system is singlet while for DMDPM-PF + system is triplet, implying that the dynamics of PET is influenced by the structure of the donor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.
NASA Astrophysics Data System (ADS)
Thakur, Punam; Xiong, Yongliang; Borkowski, Marian; Choppin, Gregory R.
2014-05-01
The dissociation constants of ethylenediaminetetraacetic acid (H4EDTA), and the stability constants of Am3+, Cm3+and Eu3+ with EDTA4- have been determined at 25 °C, over a range of concentration varying from 0.1 to 6.60 m NaClO4 using potentiometric titration and an extraction technique, respectively. The formation of only 1:1 complex, M(EDTA)-, where (M = Am3+, Cm3+ and Eu3+), was observed under the experimental conditions. The observed ionic strength dependencies of the dissociation constants and the stability constants have been described successfully over the entire ionic strength range using the Pitzer model. The thermodynamic stability constant: logβ1010=20.55±0.18 for Am3+, logβ1010=20.43±0.20 for Cm3+ and logβ1010=20.65±0.19 for Eu3+ were calculated by extrapolation of data to zero ionic strength in an NaClO4 medium. In addition, logβ1010 of 20.05 ± 0.40 for Am3+ was obtained by simultaneously modeling data both in NaCl and NaClO4 media. For all stability constants, the Pitzer model gives an excellent representation of the data using interaction parameters β(0), β(1), and Cϕ determined in this work. The improved model presented in this work would enable researchers to model accurately the potential mobility of actinides (III) and light rare earth elements to ionic strength of 6.60 m in low temperature environments in the presence of EDTA.
Motoyoshiya, Jiro; Takigawa, Setsuko
2014-11-01
The effect of several surfactants on peroxyoxalate chemiluminescence (PO-CL) using oligophenylenevinylene fluorophores was investigated. Among several oligophenylenevinylenes consisting of stilbene units, linearly conjugated ones, such as distyrylbenzene and distyrylstilbene, effectively enhanced PO-CL efficiency. Various effects of anionic, cationic, amphoteric and non-ionic surfactants on the CL efficiency of PO-CL were determined using three oxalates and the distyrylbenzene fluorophore. Anionic and non-ionic surfactants effectively enhanced CL efficiency, in contrast to the negative effect of cationic and amphoteric surfactants. Non-ionic surfactants were also effective in CL reactions of oxalates bearing dodecyl ester groups by the hydrophobic interaction between their alkyl chains. Considering these results, the surfactants not only increase the concentrations of water-insoluble interacting species in the hydrophobic micelle cores, but also control rapid degradation of the oxalates by alkaline hydrolysis. Copyright © 2014 John Wiley & Sons, Ltd.
Effect of gas type on foam film permeability and its implications for foam flow in porous media.
Farajzadeh, R; Muruganathan, R M; Rossen, W R; Krastev, R
2011-10-14
The aim of this paper is to provide a perspective on the effect of gas type on the permeability of foam films stabilized by different types of surfactant and to present a critical overview of the tracer gas experiments, which is the common approach to determine the trapped fraction of foam in porous media. In these experiments some part of the gas is replaced by a "tracer gas" during the steady-state stage of the experiments and trapped fraction of foam is determined by fitting the effluent data to a capacitance mass-transfer model. We present the experimental results on the measurement of the gas permeability of foam films stabilized with five surfactants (non-ionic, anionic and cationic) and different salt concentrations. The salt concentrations assure formation of either common black (CBF) or Newton black films (NBF). The experiments are performed with different single gasses. The permeability of the CBF is in general higher than that of the NBF. This behavior is explained by the higher density of the surfactant molecules in the NBF compared to that of CBF. It is also observed that the permeability coefficient, K(cm/s), of CBF and NBF for non-ionic and cationic surfactants are similar and K is insensitive to film thickness. Compared to anionic surfactants, the films made by the non-ionic surfactant have much lower permeability while the films made by the cationic surfactant have larger permeability. This conclusion is valid for all gasses. For all types of surfactant the gas permeability of foam film is largely dependent on the dissolution of gas in the surfactant solution and increases with increasing gas solubility in the bulk liquid. The measured values of K are consistent with rapid diffusion of tracer gasses through trapped gas adjacent to flowing gas in porous media, and difficulties in interpreting the results of tracer-foam experiments with conventional capacitance models. The implications of the results for foam flow in porous media and factors leading to difficulties in the modeling of trapped fraction of foam are discussed in detail. To avoid complications in the interpretation of the results, the best tracer would be one with a permeability close to the permeability of the gas in the foam. This puts a lower limit on the effective diffusion coefficient for tracer in an experiment. Copyright © 2011 Elsevier B.V. All rights reserved.
Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength
NASA Astrophysics Data System (ADS)
Ams, D.; Swanson, J. S.; Reed, D. T.
2010-12-01
Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic strength effects as the electronic double layer is compressed with increasing ionic strength. These results further highlight the importance of electrostatic interactions in the adsorption process between dissolved metals and bacterial surfaces. This work expands the understanding of actinide-bacteria adsorption phenomena to high ionic strength environmental conditions that are relevant as an aid to predicting Np(V) fate and transport behavior in areas such as the vicinity of salt-based nuclear waste repositories and high ionic-strength groundwaters at DOE sites.
Transport of viruses through saturated and unsaturated columns packed with sand
Anders, R.; Chrysikopoulos, C.V.
2009-01-01
Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.
High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media.
Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Roman, Brian B; Jansen, Sanaz A; Macleod, Kay; Conzen, Suzanne D; Karczmar, Gregory S
2015-01-01
The purpose of this study was to use high resolution three-dimensional (3D) magnetic resonance imaging (MRI) to study mouse mammary gland ductal architecture based on intra-ductal injection of contrast agents. Female FVB/N mice age 12-20 weeks (n=12), were used in this study. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple. Approximately 20-25μL of a Gadodiamide/Trypan blue/saline solution was injected slowly over one minute into the nipple and duct. To prevent washout of contrast media from ducts due to perfusion, and maximize the conspicuity of ducts on MRI, mice were sacrificed one minute after injection. High resolution 3D T1-weighted images were acquired on a 9.4T Bruker scanner after sacrifice to eliminate motion artifacts and reduce contrast media leakage from ducts. Trypan blue staining was well distributed throughout the ductal tree. MRI showed the mammary gland ductal structure clearly. In spoiled gradient echo T1-weighted images, the signal-to-noise ratio of regions identified as enhancing mammary ducts following contrast injection was significantly higher than that of muscle (p<0.02) and significantly higher than that of contralateral mammary ducts that were not injected with contrast media (p<0.0001). The methods described here could be adapted for injection of specialized contrast agents to measure metabolism or target receptors in normal ducts and ducts with in situ cancers. Copyright © 2014 Elsevier Inc. All rights reserved.
Biondi-Zoccai, Giuseppe; Lotrionte, Marzia; Thomsen, Henrik S; Romagnoli, Enrico; D'Ascenzo, Fabrizio; Giordano, Arturo; Frati, Giacomo
2014-03-15
Contrast-induced nephropathy (CIN) may be a severe complication to the administration of iodine-based contrast media for diagnostic or interventional procedure using radiation exposure. Whether there is a difference in nephrotoxic potential between the various agents is uncertain. We aimed to perform a systematic review and network meta-analysis of randomized trials on iodine-based contrast agents. Randomized trials of low-osmolar or iso-osmolar contrast media were searched in CENTRAL, Google Scholar, MEDLINE/PubMed, and Scopus. Risk of CIN was appraised within a hierarchical Bayesian model computing absolute rates (AR) and odds ratios (OR) with 95% credibility intervals, and probability of being best (Pbest) for each agent. A total of 42 trials (10048 patients) were included focusing on 7 different iodine-based contrast media. Risk of CIN was similarly low with iodixanol (AR=5.7% [2.2%-13.9%], Pbest=18.8%), iomeprol (AR=6.0% [2.2%-15.4%], Pbest=24.8%), iopamidol (AR=6.1% [2.2%-15.5%], Pbest=21.5%), and ioversol (AR=6.0% [2.1%-16.4%], Pbest=31.3%). Conversely, CIN was twice as common with iohexol (AR=11.2% [4.1%-29.5%], Pbest=0.1%) and ioxaglate (AR=11.0% [4.0%-26.9%], Pbest<0.1%), with both proving less safe than iodixanol (respectively OR=2.18 [1.22-3.92] and 2.05 [1.26-3.29]), iomeprol (OR=2.08 [1.04-4.17] and 1.96 [1.06-3.48]) and iopamidol (OR=2.04 [1.15-3.85] and 1.92 [1.06-3.45]). Data on iopromide were less conclusive (AR=6.9% [2.6%-17.1%], Pbest=3.6%). Iodixanol, iomeprol, iopamidol and ioversol are iodine-based contrast media with a similar renal safety profile. Iohexol and ioxaglate have a poorer renal safety profile, whereas further data may be required on iopromide. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel†
Zhao, Hua; Baker, Gary A.; Holmes, Shaletha
2012-01-01
The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation–anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym® 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol® oil 812 with methanol, catalyzed by Novozym® 435 in choline acetate/glycerol (1 : 1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel. PMID:21283901
Emulsification of oil in water as affected by different parameters.
Baloch, Musa Kaleem; Hameed, Gulzar
2005-05-15
The aim of this investigation was to develop a basic understanding of the emulsification process by considering simple systems such as n-hexane, n-heptane, n-decane, and kerosene oil in water. The technique employed for the purpose was ultrasonification. The effect of ultrasonification time, chain length, viscosity, surface tension, oil content, and ionic strength of the media on the quality of emulsion has been studied. The emulsions were viewed through microscope to measure the number, size, and size distribution of droplets. Quantification of turbidity and viscosity was also used to characterize the emulsions. It has been found that the number and size of the droplets vary with the time of ultrasonification, contents of oils, molecular mass of the oils, and ionic strength of the media, and hence the quality of the emulsion is influenced by these parameters. The droplet size decreases, whereas the number of drops increases with the time of emulsification, approaching an optimum distribution at about 15 min of ultrasonification. Further, the increase in the molecular mass of the oil increases the size of the droplets and hence decreases the stability of the emulsion. The addition of electrolytes encourages coalescence and enhances the instability in the system. The results are in accord with the equations proposed by us.
Shinde, Sandip S; Patil, Sunil N
2014-12-07
The tert-alcohol and ionic liquid solvents in one molecule [mim-(t)OH][OMs] was immobilized on polystyrene and reported to be a highly efficient catalyst in aliphatic nucleophilic substitution using alkali metal salts. Herein, we investigated the catalytic activity of a new structurally modified polymer-supported tert-alcohol functionalized imidazolium salt catalyst in nucleophilic substitution of 2-(3-methanesulfonyloxypropyoxy)naphthalene as a model substrate with various metal nucleophiles. The tert-alcohol moiety of the ionic liquid with a hexyl chain distance from polystyrene had a better catalytic activity compared to the other resin which lacked an alkyl linker and tert-alcohol moiety. We found that the maximum [mim-(t)OH][OMs] loading had the best catalytic efficacy among the tested polystyrene-based ionic liquids (PSILs) in nucleophilic fluorination. The catalytic efficiency of the PS[him-(t)OH][OMs] as a phase transfer catalyst (PTC) was determined by carrying out various nucleophilic substitutions using the corresponding alkali metal salts from the third to sixth periodic in CH3CN or tert-BuOH media. The scope of this protocol with primary and secondary polar substrates containing many heteroatoms is also reported. This PS[him-(t)OH][OMs] catalyst not only enhances the reactivity of alkali metal salts and reduces the formation of by-products but also affords high yield with easy isolation.
Barron, Christiaan C; Sponagle, Brandon J D; Arivalagan, Pugazhendhi; D'Cunha, Godwin B
2017-01-01
Phenylalanine ammonia lyase (E.C.4.3.1.24, PAL) activity of Rhodotorula glutinis yeast has been demonstrated in four commonly used ionic liquids. PAL forward reaction was carried out in 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO 4 ]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF 6 ]) and 1-butyl-3-methylimidazolium lactate ([BMIM][lactate]). Our experiments have revealed that PAL is catalytically active in ionic liquids and the enzyme activity in ([BMIM][PF 6 ]) is comparable to that obtained in aqueous buffer medium. Different conditions were optimized for maximal PAL forward activity including time of incubation (30.0min) L -phenylalanine substrate concentration (30.0mM), nature of buffer (50.0mM Tris-HCl), pH (9.0), temperature (37°C), and speed of agitation (100 rev min -1 ). Under these optimized conditions, about 83% conversion of substrate to product was obtained for the PAL forward reaction that was determined using UV spectroscopy at 290nm. PAL reverse reaction in ([BMIM][PF 6 ]) was determined spectrophotometrically at 520nm; and about 59% substrate conversion was obtained. This data provides further knowledge in enzyme biocatalysis in non-aqueous media, and may be of importance when studying the function of other oligomeric/multimeric proteins and enzymes in ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.
Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick
2016-01-01
The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection. Copyright © 2015 John Wiley & Sons, Ltd.
Interference of medical contrast media on laboratory testing.
Lippi, Giuseppe; Daves, Massimo; Mattiuzzi, Camilla
2014-01-01
The use of contrast media such as organic iodine molecules and gadolinium contrast agents is commonplace in diagnostic imaging. Although there is widespread perception that side effects and drug interactions may be the leading problems caused by these compounds, various degrees of interference with some laboratory tests have been clearly demonstrated. Overall, the described interference for iodinate contrast media include inappropriate gel barrier formation in blood tubes, the appearance of abnormal peaks in capillary zone electrophoresis of serum proteins, and a positive bias in assessment of cardiac troponin I with one immunoassay. The interference for gadolinium contrast agents include negative bias in calcium assessment with ortho-cresolphthalein colorimetric assays and occasional positive bias using some Arsenazo reagents, negative bias in measurement of angiotensin converting enzyme (ACE) and zinc (colorimetric assay), as well as positive bias in creatinine (Jaffe reaction), total iron binding capacity (TIBC, ferrozine method), magnesium (calmagite reagent) and selenium (mass spectrometry) measurement. Interference has also been reported in assessment of serum indices, pulse oximetry and methaemoglobin in samples of patients receiving Patent Blue V. Under several circumstances the interference was absent from manufacturer-supplied information and limited to certain type of reagents and/or analytes, so that local verification may be advisable to establish whether or not the test in use may be biased. Since the elimination half-life of these compounds is typically lower than 2 h, blood collection after this period may be a safer alternative in patients who have received contrast media for diagnostic purposes.
Interference of medical contrast media on laboratory testing
Lippi, Giuseppe; Daves, Massimo; Mattiuzzi, Camilla
2014-01-01
The use of contrast media such as organic iodine molecules and gadolinium contrast agents is commonplace in diagnostic imaging. Although there is widespread perception that side effects and drug interactions may be the leading problems caused by these compounds, various degrees of interference with some laboratory tests have been clearly demonstrated. Overall, the described interference for iodinate contrast media include inappropriate gel barrier formation in blood tubes, the appearance of abnormal peaks in capillary zone electrophoresis of serum proteins, and a positive bias in assessment of cardiac troponin I with one immunoassay. The interference for gadolinium contrast agents include negative bias in calcium assessment with ortho-cresolphthalein colorimetric assays and occasional positive bias using some Arsenazo reagents, negative bias in measurement of angiotensin converting enzyme (ACE) and zinc (colorimetric assay), as well as positive bias in creatinine (Jaffe reaction), total iron binding capacity (TIBC, ferrozine method), magnesium (calmagite reagent) and selenium (mass spectrometry) measurement. Interference has also been reported in assessment of serum indices, pulse oximetry and methaemoglobin in samples of patients receiving Patent Blue V. Under several circumstances the interference was absent from manufacturer-supplied information and limited to certain type of reagents and/or analytes, so that local verification may be advisable to establish whether or not the test in use may be biased. Since the elimination half-life of these compounds is typically lower than 2 h, blood collection after this period may be a safer alternative in patients who have received contrast media for diagnostic purposes. PMID:24627717
Prospects of molybdenum and rhenium octahedral cluster complexes as X-ray contrast agents.
Krasilnikova, Anna A; Shestopalov, Michael A; Brylev, Konstantin A; Kirilova, Irina A; Khripko, Olga P; Zubareva, Kristina E; Khripko, Yuri I; Podorognaya, Valentina T; Shestopalova, Lidiya V; Fedorov, Vladimir E; Mironov, Yuri V
2015-03-01
Investigation of new X-ray contrast media for radiography is an important field of science since discovering of X-rays in 1895. Despite the wide diversity of available X-ray contrast media the toxicity, especially nephrotoxicity, is still a big problem to be solved. The octahedral metal-cluster complexes of the general formula [{M6Q8}L6] can be considered as quite promising candidates for the role of new radiocontrast media due to the high local concentration of heavy elements, high tuning ability of ligand environment and low toxicity. To exemplify this, the X-ray computed tomography experiments for the first time were carried out on some octahedral cluster complexes of molybdenum and rhenium. Based on the obtained data it was proposed to investigate the toxicological proprieties of cluster complex Na2H8[{Re6Se8}(P(CH2CH2CONH2)(CH2CH2COO)2)6]. Observed low cytotoxic and acute toxic effects along with rapid renal excretion of the cluster complex evidence its perspective as an X-ray contrast media for radiography. Copyright © 2014 Elsevier Inc. All rights reserved.
Active imaging with the aids of polarization retrieve in turbid media system
NASA Astrophysics Data System (ADS)
Tao, Qiangqiang; Sun, Yongxuan; Shen, Fei; Xu, Qiang; Gao, Jun; Guo, Zhongyi
2016-01-01
We propose a novel active imaging based on the polarization retrieve (PR) method in turbid media system. In our simulations, the Monte Carlo (MC) algorithm has been used to investigate the scattering process between the incident photons and the scattering particles, and the visually concordant object but with different polarization characteristics in different regions, has been selected as the original target that is placed in the turbid media. Under linearly and circularly polarized illuminations, the simulation results demonstrate that the corresponding polarization properties can provide additional information for the imaging, and the contrast of the polarization image can also be enhanced greatly compared to the simplex intensity image in the turbid media. Besides, the polarization image adjusted by the PR method can further enhance the visibility and contrast. In addition, by PR imaging method, with the increasing particles' size in Mie's scale, the visibility can be enhanced, because of the increased forward scattering effect. In general, in the same circumstance, the circular polarization images can offer a better contrast and visibility than that of linear ones. The results indicate that the PR imaging method is more applicable to the scattering media system with relatively larger particles such as aerosols, heavy fog, cumulus, and seawater, as well as to biological tissues and blood media.
Drüschler, Marcel; Borisenko, Natalia; Wallauer, Jens; Winter, Christian; Huber, Benedikt; Endres, Frank; Roling, Bernhard
2012-04-21
Ionic liquids are of high interest for the development of safe electrolytes in modern electrochemical cells, such as batteries, supercapacitors and dye-sensitised solar cells. However, electrochemical applications of ionic liquids are still hindered by the limited understanding of the interface between electrode materials and ionic liquids. In this article, we first review the state of the art in both experiment and theory. Then we illustrate some general trends by taking the interface between the extremely pure ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and an Au(111) electrode as an example. For the study of this interface, electrochemical impedance spectroscopy was combined with in situ STM and in situ AFM techniques. In addition, we present new results for the temperature dependence of the interfacial capacitance and dynamics. Since the interfacial dynamics are characterised by different processes taking place on different time scales, the temperature dependence of the dynamics can only be reliably studied by recording and carefully analysing broadband capacitance spectra. Single-frequency experiments may lead to artefacts in the temperature dependence of the interfacial capacitance. We demonstrate that the fast capacitive process exhibits a Vogel-Fulcher-Tamman temperature dependence, since its time scale is governed by the ionic conductivity of the ionic liquid. In contrast, the slower capacitive process appears to be Arrhenius activated. This suggests that the time scale of this process is determined by a temperature-independent barrier, which may be related to structural reorganisations of the Au surface and/or to charge redistributions in the strongly bound innermost ion layer. This journal is © the Owner Societies 2012
Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.
Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana
2016-01-01
Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and microstructures with different morphologies (0D nanoparticles, 1D nanowires, rods, 2D layers, sheets, and 3D features of molecules). ILs interact efficiently with microwave irradiation, thus even small amount of IL can be employed to increase the dielectric constant of nonpolar solvents used in the synthesis. Thus, combining the advantages of ionic liquids and ray-mediated methods resulted in the development of new ionic liquid-assisted synthesis routes. One of the recently proposed approaches of semiconductor particles preparation is based on the adsorption of semiconductor precursor molecules at the surface of micelles built of ionic liquid molecules playing a role of a soft template for growing microparticles. Copyright © 2015 Elsevier B.V. All rights reserved.
Furfural production from Eucalyptus wood using an Acidic Ionic Liquid.
Peleteiro, Susana; Santos, Valentín; Garrote, Gil; Parajó, Juan Carlos
2016-08-01
Eucalyptus globulus wood samples were treated with hot, compressed water to separate hemicelluloses (as soluble saccharides) from a solid phase mainly made up of cellulose and lignin. The liquid phase was dehydrated, and the resulting solids (containing pentoses as well as poly- and oligo- saccharides made up of pentoses) were dissolved and reacted in media containing an Acidic Ionic Liquid (1-butyl-3-methylimidazolium hydrogen sulfate) and a co-solvent (dioxane). The effects of the reaction time on the product distribution were studied at temperatures in the range 120-170°C for reaction times up to 8h, and operational conditions leading to 59.1% conversion of the potential substrates (including pentoses and pentose structural units in oligo- and poly- saccharides) into furfural were identified. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of ionic liquid in liquid phase microextraction technology.
Han, Dandan; Tang, Baokun; Lee, Yu Ri; Row, Kyung Ho
2012-11-01
Ionic liquids (ILs) are novel nonmolecular solvents. Their unique properties, such as high thermal stability, tunable viscosity, negligible vapor pressure, nonflammability, and good solubility for inorganic and organic compounds, make them excellent candidates as extraction media for a range of microextraction techniques. Many physical properties of ILs can be varied, and the structural design can be tuned to impart the desired functionality and enhance the analyte extraction selectivity, efficiency, and sensitivity. This paper provides an overview of the applications of ILs in liquid phase microextraction technology, such as single-drop microextraction, hollow fiber based liquid phase microextraction, and dispersive liquid-liquid microextraction. The sensitivity, linear calibration range, and detection limits for a range of target analytes in the methods were analyzed to determine the advantages of ILs in liquid phase microextraction. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Akhmetshina, Alsu A; Davletbaeva, Ilsiya M; Grebenschikova, Ekaterina S; Sazanova, Tatyana S; Petukhov, Anton N; Atlaskin, Artem A; Razov, Evgeny N; Zaripov, Ilnaz I; Martins, Carla F; Neves, Luísa A; Vorotyntsev, Ilya V
2015-12-30
Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF₆]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf₂N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N₂, NH₃, H₂S, and CO₂ gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF₆] and [emim][Tf₂N]. The modification of SILMs by nanosize silica particles leads to an increase of NH₃ separation relatively to CO₂ or H₂S.
Modelling technological process of ion-exchange filtration of fluids in porous media
NASA Astrophysics Data System (ADS)
Ravshanov, N.; Saidov, U. M.
2018-05-01
Solution of an actual problem related to the process of filtration and dehydration of liquid and ionic solutions from gel particles and heavy ionic compounds is considered in the paper. This technological process is realized during the preparation and cleaning of chemical solutions, drinking water, pharmaceuticals, liquid fuels, products for public use, etc. For the analysis, research, determination of the main parameters of the technological process and operating modes of filter units and for support in managerial decision-making, a mathematical model is developed. Using the developed model, a series of computational experiments on a computer is carried out. The results of numerical calculations are illustrated in the form of graphs. Based on the analysis of numerical experiments, the conclusions are formulated that serve as the basis for making appropriate managerial decisions.
Prevention of Contrast-Induced Nephropathy through a Knowledge of Its Pathogenesis and Risk Factors
Faga, Teresa; Pisani, Antonio; Russo, Domenico; Michael, Ashour
2014-01-01
Contrast-induced nephropathy (CIN) is an iatrogenic acute renal failure (ARF) occurring after the intravascular injection of iodinated radiographic contrast media. During the past several years, in many patients undergoing computed tomography, iodinated contrast media have not been used for the fear of ARF, thereby compromising the diagnostic procedure. But recent studies have demonstrated that CIN is rarely occurring in patients with normal renal function and that preexisting chronic renal failure and/or diabetes mellitus represent(s) predisposing condition(s) for its occurrence. After the description of CIN and its epidemiology and pathophysiology, underlying the important role played by dehydration and salt depletion, precautions for prevention of CIN are listed, suggested, and discussed. Maximum priority has to be given to adequate hydration and volume expansion prior to radiographic procedures. Other important precautions include the need for monitoring renal function before, during, and after contrast media injection, discontinuation of potentially nephrotoxic drugs, use of either iodixanol or iopamidol at the lowest dosage possible, and administration of antioxidants. A long list of references is provided that will enable readers a deep evaluation of the topic. PMID:25525625
Iodinated Contrast Media Can Induce Long-Lasting Oxidative Stress in Hemodialysis Patients
Hwang, Seun Deuk; Kim, Yoon Ji; Lee, Sang Heun; Cho, Deok Kyu; Cho, Yun Hyeong; Moon, Sung Jin; Lee, Sang Choel
2013-01-01
Purpose Due to their comorbidities, dialysis patients have many chances to undergo radiologic procedures using iodinated contrast media. We aimed to assess time-sequenced blood oxidative stress level after contrast exposure in hemodialysis (HD) patients compared to those in the non-dialysis population. Materials and Methods We included 21 anuric HD patients [HD-coronary angiography (CAG) group] and 23 persons with normal renal function (nonHD-CAG group) scheduled for CAG, and assessed 4 oxidative stress markers [advanced oxidation protein products (AOPP); catalase; 8-hydroxydeoxyguanosine; and malondialdehyde] before and after CAG, and subsequently up to 28 days. Results In the nonHD-CAG group, only AOPP increased immediately after CAG and returned to baseline within one day. However, in the HD-CAG group, all four oxidative stress markers were significantly increased starting one day after CAG, and remained elevated longer than those in the nonHD-CAG group. Especially, AOPP level remained elevated for a month after contrast exposure. Conclusion Our study showed that iodinated contrast media induces severe and prolonged oxidative stress in HD patients. PMID:24142649
Camera, Luigi; Romano, Federica; Liccardo, Immacolata; Liuzzi, Raffaele; Imbriaco, Massimo; Mainenti, Pier Paolo; Pizzuti, Laura Micol; Segreto, Sabrina; Maurea, Simone; Brunetti, Arturo
2015-11-01
As both contrast and radiation dose affect the quality of CT images, a constant image quality in abdominal contrast-enhanced multidetector computed tomography (CE-MDCT) could be obtained balancing radiation and contrast media dose according to the age of the patients. Seventy-two (38 Men; 34 women; aged 20-83 years) patients underwent a single-pass abdominal CE-MDCT. Patients were divided into three different age groups: A (20-44 years); B (45-65 years); and C (>65 years). For each group, a different noise index (NI) and contrast media dose (370 mgI/mL) was selected as follows: A (NI, 15; 2.5 mL/kg), B (NI, 12.5; 2 mL/kg), and C (NI, 10; 1.5 mL/kg). Radiation exposure was reported as dose-length product (DLP) in mGy × cm. For quantitative analysis, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated for both the liver (L) and the abdominal aorta (A). Statistical analysis was performed with a one-way analysis of variance. Standard imaging criteria were used for qualitative analysis. Although peak hepatic enhancement was 152 ± 16, 128 ± 12, and 101 ± 14 Hounsfield units (P < .001) for groups A, B, and C, respectively, no significant differences were observed in the corresponding SNRL with 9.2 ± 1.4, 9.1 ± 1.2, and 9.2 ± 3. Radiation (mGy × cm) and contrast media dose (mL) administered were 476 ± 147 and 155 ± 27 for group A, 926 ± 291 and 130 ± 16 for group B, and 1981 ± 451 and 106 ± 15 for group C, respectively (P < .001). None of the studies was graded as poor or inadequate by both readers, and the prevalence-adjusted bias-adjusted kappa ranged between 0.48 and 0.93 for all but one criteria. A constant image quality in CE-MDCT can be obtained balancing radiation and contrast media dose administered to patients of different age. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes
NASA Astrophysics Data System (ADS)
Hoarfrost, Megan Lane
Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene-
NASA Astrophysics Data System (ADS)
Yusob, Diana; Zukhi, Jihan; Aziz Tajuddin, Abd; Zainon, Rafidah
2017-05-01
The aim of this study was to evaluate the efficacy of metal artefact reduction using contrasts media in Computed Tomography (CT) imaging. A water-based abdomen phantom of diameter 32 cm (adult body size) was fabricated using polymethyl methacrylate (PMMA) material. Three different contrast agents (iodine, barium and gadolinium) were filled in small PMMA tubes and placed inside a water-based PMMA adult abdomen phantom. The orthopedic metal screw was placed in each small PMMA tube separately. These two types of orthopedic metal screw (stainless steel and titanium alloy) were scanned separately. The orthopedic metal crews were scanned with single-energy CT at 120 kV and dual-energy CT at fast kV-switching between 80 kV and 140 kV. The scan modes were set automatically using the current modulation care4Dose setting and the scans were set at different pitch and slice thickness. The use of the contrast media technique on orthopedic metal screws were optimised by using pitch = 0.60 mm, and slice thickness = 5.0 mm. The use contrast media can reduce the metal streaking artefacts on CT image, enhance the CT images surrounding the implants, and it has potential use in improving diagnostic performance in patients with severe metallic artefacts. These results are valuable for imaging protocol optimisation in clinical applications.
Socher, M; Kuntz, J; Sawall, S; Bartling, S; Kachelrieß, M
2014-04-01
Cardiac perfusion studies using computed tomography are a common tool in clinical practice. Recent technical advances and the availability of dedicated small animal scanners allow the transfer of these techniques to the preclinical sector in general and to mouse models of cardiac diseases in particular. This necessitates new requirements for contrast injection techniques as a rapid transport of contrast media from the intravenous access to the animal heart. Clinical contrast agents containing high iodine concentrations are used within small animal studies although they exhibit a high viscosity which might limit their transport within the vasculature. The authors provide a comparison of the transport of contrast media following an injection into the lateral tail vein and an injection into the retrobulbar sinus and discuss the anatomy involved. The temporal evolution of a contrast bolus and its in vivo distribution is visualized. It is demonstrated that injecting contrast agents into the lateral tail vein of mice results in a retrograde blood flow to the liver veins and therefore does not deliver a detectable contrast bolus to the heart, and thus it cannot be used for cardiac perfusion studies. By contrast, boli injected into the retrobulbar sinus are rapidly transported to the heart and provide ventricular contrast enabling perfusion studies similar to those in human patients. The results demonstrate that an injection into the retrobulbar sinus is superior to an injection into the lateral tail vein for the delivery of contrast boli to the animal heart, while all drawbacks of an injection into the lateral tail vein are overcome.
Realism and Romance: The Study of Media Effects.
ERIC Educational Resources Information Center
Tuchman, Gaye
1993-01-01
Compares and contrasts two studies representing diametrical approaches (Romanticism versus Realism) toward the issue of agency and media effects: P. Willis's "Common Culture" and W. A. Gamson's "Talking Politics." Argues that both studies find that people make their own uses of media. (SR)
Acceptability of oral iodinated contrast media: a head-to-head comparison of four media.
Pollentine, A; Ngan-Soo, E; McCoubrie, P
2013-05-01
To assess the palatability of iodinated oral contrast media commonly used in abdominopelvic CT and CT colonography (CTC). 80 volunteers assessed the palatability of a 20-ml sample of a standard 30 mg ml(-1) dilution of Omnipaque® (iohexol; GE Healthcare, Cork, Ireland), Telebrix® (meglumine ioxithalamate; Guerbet, Aulnay-sous-Bois, France), Gastromiro® (iopamidol; Bracco, High Wycombe, UK) and Gastrografin® (sodium diatrizoate and meglumine diatrizoate; Bayer, Newbury, UK) in a computer-generated random order. Gastrografin is rated significantly less palatable than the remaining media (p<0.005). Omnipaque and Telebrix are significantly more palatable than Gastromiro. No difference existed between Omnipaque and Telebrix. 39% of participants would refuse to consume the quantities of Gastrografin required for a CTC examination compared with Telebrix (7%) and Omnipaque (9%) (p<0.05). Omnipaque and Telebrix are significantly more palatable than both Gastromiro and Gastrografin, with participants more willing to ingest them in larger quantities as well as being less expensive. Omnipaque and Telebrix are significantly more palatable iodinated oral contrast media than both Gastromiro and Gastrografin, which has potential implications in compliance with both abdominopelvic CT and CTC.
Acceptability of oral iodinated contrast media: a head-to-head comparison of four media
Ngan-Soo, E; McCoubrie, P
2013-01-01
Objective: To assess the palatability of iodinated oral contrast media commonly used in abdominopelvic CT and CT colonography (CTC). Methods: 80 volunteers assessed the palatability of a 20-ml sample of a standard 30 mg ml−1 dilution of Omnipaque® (iohexol; GE Healthcare, Cork, Ireland), Telebrix® (meglumine ioxithalamate; Guerbet, Aulnay-sous-Bois, France), Gastromiro® (iopamidol; Bracco, High Wycombe, UK) and Gastrografin® (sodium diatrizoate and meglumine diatrizoate; Bayer, Newbury, UK) in a computer-generated random order. Results: Gastrografin is rated significantly less palatable than the remaining media (p<0.005). Omnipaque and Telebrix are significantly more palatable than Gastromiro. No difference existed between Omnipaque and Telebrix. 39% of participants would refuse to consume the quantities of Gastrografin required for a CTC examination compared with Telebrix (7%) and Omnipaque (9%) (p<0.05). Conclusion: Omnipaque and Telebrix are significantly more palatable than both Gastromiro and Gastrografin, with participants more willing to ingest them in larger quantities as well as being less expensive. Advances in knowledge: Omnipaque and Telebrix are significantly more palatable iodinated oral contrast media than both Gastromiro and Gastrografin, which has potential implications in compliance with both abdominopelvic CT and CTC. PMID:23564884
Activist Media in Native AIDS Organizing: Theorizing the Colonial Conditions of AIDS
ERIC Educational Resources Information Center
Morgensen, Scott
2008-01-01
In this article, the author examines how activist media by Native AIDS organizers promoted anticolonial analyses of AIDS, gender, and sexuality as a contribution to scholarship on Native responses to AIDS. His discussion centers on the organizers who created media as authorities on and in their media. In contrast to recent accounts that popularize…
NASA Astrophysics Data System (ADS)
Hwang, G.; Gomez-Flores, A.; Choi, S.; Han, Y., , Dr; Kim, H.
2017-12-01
The influence of humic acid, ionic strength and ionic species on the aggregation and dispersion of carboxyl-functionalized carbon black nanoparticles (CB-NPs) was systemically investigated in aqueous media. The experimental conditions of stability tests were selected to the changes in the solution chemistry (0.1-10 mM NaCl and 0.01-1 mM CaCl2) and in the presence/absence of humic acid (1 and 5 mg L-1) in an aquatic environment. The CB-NPs suspension was more rapidly settled in NaCl solution than in CaCl2. Specifically, in the case of NaCl, the aggregation rate of CB-NPs increased with ionic strength. Contrary, CB-NPs dispersed in CaCl2 were insensitive to the aggregation as the ionic strength increased; that was because specific adsorption of the divalent cation Ca2+ occurred since the zeta potential of the CB-NPs is reversed to a positive charge with increasing of the ionic strength. It was confirmed that humic acid greatly influences the stability of the CB-NPs. In particular, the dispersion of CB-NPs was improved in the whole range of ionic strengths of NaCl as well as of CaCl2. To support the results, the interaction energy between CB-NPs was calculated for each condition by using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and modified-DLVO theories. In the presence of humic acid, the improved stability of CB-NPs is attributed to the steric repulsive force.This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020766), the Ministry of Education (MOE) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (2015H1C1A1035930) and Korea Energy and Mineral Resources Engineering Program (KEMREP).
Effects of pH on nano-bubble stability and transport in saturated porous media
NASA Astrophysics Data System (ADS)
Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku
2018-01-01
An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition.
Effects of pH on nano-bubble stability and transport in saturated porous media.
Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku
2018-01-01
An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition. Copyright © 2017 Elsevier B.V. All rights reserved.
Prabhu, Sugosh R; Dutt, G B
2014-11-20
The rotational dynamics of 1-alkyl-3-methylimidazolium-based ionic liquids has been investigated by monitoring their inherent fluorescence with the intent to unravel the characteristics of the emitting species. For this purpose, temperature-dependent fluorescence anisotropies of 1-alkyl-3-methylimidazolium (alkyl = ethyl and hexyl) ionic liquids with anions such as tris(pentafluoroethyl)trifluorophosphate ([FAP]), bis(trifluoromethylsulfonyl)imide ([Tf2N]), tetrafluoroborate ([BF4]), and hexafluorophosphate ([PF6]) have been measured. It has been observed that the reorientation times (τr) of the ionic liquids with an ethyl chain scale linearly with viscosity and were found to be independent of the nature of the anion. The experimentally measured τr values are a factor of 3 longer than the ones calculated for 1-ethyl-3-methylimidazolium cation using the Stokes-Einstein-Debye (SED) hydrodynamic theory with stick boundary condition, which suggests that the emitting species is not the imidazolium moiety but some kind of associated species. The reorientation times of ionic liquids with a hexyl chain, in contrast, follow the trend τr([FAP]) > τr([Tf2N]) = τr([BF4]) > τr([PF6]) at a given viscosity (η) and temperature (T). The ability of the ionic liquids with longer alkyl chains to form the organized structure appears to be responsible for the observed behavior considering the fact that significant deviations from linearity have been noticed in the τr versus η/T plots for strongly associating anions [BF4] and [PF6], especially at ambient temperatures.
Solubility of CO2 and N2O in an Imidazolium-Based Lipidic Ionic Liquid.
Langham, Jacob V; O'Brien, Richard A; Davis, James H; West, Kevin N
2016-10-13
Imidazolium-based ionic liquids have been extensively studied for their ability to dissolve a wide variety of gases and for their potential to be used as separation agents in industrial processes. For many short chain 1-alkyl-3-methylimidazolium bistriflimde salts, CO 2 and N 2 O solublities are very similar. In this work, the solubility of CO 2 and N 2 O has been measured in the lipidic ionic liquid 1-methyl-3-(Z-octadec-9-enyl)imidazolium bistriflimide ([oleyl-mim][NTf 2 ]) at 298 K, 310 and 323 K up to ∼2 MPa. N 2 O was found to have higher solubility than CO 2 under the same conditions, similar to the behavior observed when olive oil, a natural lipid, was the liquid solvent. However, the solubility of each gas on a mole fraction basis is lower in the ionic liquid than in olive oil. Comparison of the gas solubilities on a mass fraction basis demonstrates that CO 2 solubility is nearly identical in both liquids; N 2 O solubility is higher than CO 2 for both liquids, but more so in the olive oil. The difference is attributed to the high mass fraction of the olive oil that is lipid-like in character. The differential solubility of N 2 O/CO 2 in this ionic liquid, in contrast to that of shorter chain 1-alkyl-3-methylimidazolium bistriflimide salts, gives physical insight into the solvent properties of this class of ionic liquids and provides further support for their lipid-like character.
Interaction of copper with dinitrogen tetroxide in 1-butyl-3-methylimidazolium-based ionic liquids.
Morozov, I V; Deeva, E B; Glazunova, T Yu; Troyanov, S I; Guseinov, F I; Kustov, L M
2017-03-27
Ionic liquids that are stable toward oxidation and nitration and are based on the 1-n-butyl-3-methylimidazolium cation (BMIm + ) can be used as solvents and reaction media for copper dissolution in liquid dinitrogen tetraoxide N 2 O 4 . The ionic liquid not only favors the dissociation of N 2 O 4 into NO + and NO 3 - , but also takes part in the formation of different crystalline products. Thus, NO[BF 4 ], NO[Cu(NO 3 ) 3 ] and (BMIm) 2 [Cu 2 (CF 3 COO) 6 ] were prepared using (BMIm)A, A - = [BF 4 ] - , (CF 3 SO 2 ) 2 N - , CF 3 COO - , respectively. The formation of a certain product is determined by the nature of the anion A - and the relative solubility of the reaction products in the ionic liquid. Crystals of NO[BF 4 ] were also prepared directly from a mixture of N 2 O 4 and BMImBF 4 . According to XRD single-crystal structure analysis, the structure of NO[BF 4 ] consists of tetrahedral [BF 4 ] - anions and nitrosonium NO + cations; the formation of these ions prove the heterolytic dissociation of N 2 O 4 dissolved in the ionic liquid. The crystal structure of the earlier unknown binuclear copper trifluoroacetate (BMIm) 2 [Cu 2 (CF 3 COO) 6 ] were determined by X-ray diffraction. The peculiarity of this dimer compared to the majority of known dimeric copper(ii) carboxylates is the unusually long CuCu distance (3.15 Å), with Cu(ii) ions demonstrating an atypical coordination of a distorted trigonal bipyramid formed by five O atoms of five trifluoroacetate groups.
New recommendations for measuring collagen solubility.
Latorre, María E; Lifschitz, Adrian L; Purslow, Peter P
2016-08-01
The heat-solubility of intramuscular collagen is usually conducted in 1/4 Ringer's solution at pH7.4, despite this ionic strength and pH being inappropriate for post-rigor meat. The current work studied the percentage of soluble collagen and hydrothermal isometric tension characteristics of perimysial strips on bovine semitendinosus muscles in either 1/4 Ringer's solution, distilled water, PBS, or a solution of the same salt concentration as 1/4 Ringer's but at pH5.6. Values of % soluble collagen were lower at pH7.4 than 5.6. Increasing ionic strength reduced % soluble collagen. The maximum perimysial isometric tension was independent of the bathing medium, but the percent relaxation was higher at pH7.4 than at pH5.6, and increased with ionic strength of the media. It is recommended that future measurements of collagen solubility and tests on connective tissue components of post-rigor meat should be carried out in a solution of concentrations NaCl and KCl equivalent to those in 1/4 Ringer's, but at pH5.6, a pH relevant to post-rigor meat. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of Phase-Stable Photon Upconverters for Efficient Solar Energy Utilization
NASA Astrophysics Data System (ADS)
Murakami, Yoichi
Photon upconversion based on triplet-triplet annihilation (TTA) of excited triplet molecules is drawing attention due to its applicability for weak incident light, possessing a potential for improving efficiencies of solar energy conversion devices. Since energy transfer between triplet levels of different molecules and TTA are based on the Dexter mechanism, inter-molecular collision is necessary and hence the majority of previous studies have been done with organic solvents, which are volatile and flammable. This paper presents the development and characterization of phase-stable photon upconverters fabricated with ionic liquids, which are room temperature molten salts with negligible vapor pressure and high thermal stability. The employed aromatic molecules, which are carrier of photo-created energies and are non-polar (or weakly polar) molecules, are found to be stable in the polar environment of ionic liquids, contrary to expectation. The mechanism of the stable solvation is proposed. The upconversion quantum yields are found to rapidly saturate as the excitation light power increases. An analytical model was developed and compared with the experimental data. It is shown that ionic liquids are not viscous media for the purpose of TTA-based upconversion.
Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides
NASA Astrophysics Data System (ADS)
Gopalakrishnan, K.; Moses, Kota; Govindaraj, A.; Rao, C. N. R.
2013-12-01
Nitrogen-doped reduced graphene oxide (RGO) samples with different nitrogen content, prepared by two different methods, as well as nitrogen-doped few-layer graphene have been investigated as supercapacitor electrodes. Two electrode measurements have been carried out both in aqueous (6M KOH) and in ionic liquid media. Nitrogen-doped reduced graphene oxides exhibit satisfactory specific capacitance, the values reaching 126F/g at a scan rate of 10mV/s in aqueous medium. Besides providing supercapacitor characteristics, the study has shown the nitrogen content and surface area to be important factors. High surface-area borocarbonitrides, BxCyNz, prepared by the urea route appear to be excellent supercapacitor electrode materials. Thus, BC4.5N exhibits a specific capacitance of 169F/g at a scan rate of 10mV/s in aqueous medium. In an ionic liquid medium, nitrogen-doped RGO and BC4.5N exhibit specific capacitance values of 258F/g and 240F/g at a scan rate of 5mV/s. The ionic liquid enables a larger operating voltage range of 0.0-2.5V compared to 0.0-1V in aqueous medium.
Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M.
2004-01-01
The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.
Lozano, Pedro; Bernal, Juana M; Nieto, Susana; Gomez, Celia; Garcia-Verdugo, Eduardo; Luis, Santiago V
2015-12-21
The greenness of chemical processes turns around two main axes: the selectivity of catalytic transformations, and the separation of pure products. The transfer of the exquisite catalytic efficiency shown by enzymes in nature to chemical processes is an important challenge. By using appropriate reaction systems, the combination of biopolymers with supercritical carbon dioxide (scCO2) and ionic liquids (ILs) resulted in synergetic and outstanding platforms for developing (multi)catalytic green chemical processes, even under flow conditions. The stabilization of biocatalysts, together with the design of straightforward approaches for separation of pure products including the full recovery and reuse of enzymes/ILs systems, are essential elements for developing clean chemical processes. By understanding structure-function relationships of biopolymers in ILs, as well as for ILs themselves (e.g. sponge-like ionic liquids, SLILs; supported ionic liquids-like phases, SILLPs, etc.), several integral green chemical processes of (bio)catalytic transformation and pure product separation are pointed out (e.g. the biocatalytic production of biodiesel in SLILs, etc.). Other developments based on DNA/ILs systems, as pathfinder studies for further technological applications in the near future, are also considered.
Pivovarov, Sergey
2009-04-01
This work presents a simple solution for the diffuse double layer model, applicable to calculation of surface speciation as well as to simulation of ionic adsorption within the diffuse layer of solution in arbitrary salt media. Based on Poisson-Boltzmann equation, the Gaines-Thomas selectivity coefficient for uni-bivalent exchange on clay, K(GT)(Me(2+)/M(+))=(Q(Me)(0.5)/Q(M)){M(+)}/{Me(2+)}(0.5), (Q is the equivalent fraction of cation in the exchange capacity, and {M(+)} and {Me(2+)} are the ionic activities in solution) may be calculated as [surface charge, mueq/m(2)]/0.61. The obtained solution of the Poisson-Boltzmann equation was applied to calculation of ionic exchange on clays and to simulation of the surface charge of ferrihydrite in 0.01-6 M NaCl solutions. In addition, a new model of acid-base properties was developed. This model is based on assumption that the net proton charge is not located on the mathematical surface plane but diffusely distributed within the subsurface layer of the lattice. It is shown that the obtained solution of the Poisson-Boltzmann equation makes such calculations possible, and that this approach is more efficient than the original diffuse double layer model.
Ionic Control of the Reversal Response of Cilia in Paramecium caudatum
Naitoh, Yutaka
1968-01-01
The duration of ciliary reversal of Paramecium caudatum in response to changes in external ionic factors was determined with various ionic compositions of both equilibration and stimulation media. The reversal response was found to occur when calcium ions bound by an inferred cellular cation exchange system were liberated in exchange for externally applied cations other than calcium. Factors which affect the duration of the response were (a) initial amount of calcium bound by the cation exchange system, (b) final amount of calcium bound by the system after equilibration with the stimulation medium, and (c) concentration of calcium ions in the stimulation medium. An empirical equation is presented which relates the duration of the response to these three factors. On the basis of these and previously published data, the following hypothesis is proposed for the mechanism underlying ciliary reversal in response to cationic stimulation: Ca++ liberated from the cellular cation exchange system activates a contractile system which is energized by ATP. Contraction of this component results in the reversal of effective beat direction of cilia by a mechanism not yet understood. The duration of reversal in live paramecia is related to the time course of bound calcium release. PMID:4966766
Wobser, Hella; Gunesch, Agnetha; Klebl, Frank
2017-01-13
Patients with biliary obstruction are at high risk to develop septic complications after endoscopic retrograde cholangiography (ERC). We evaluated the benefits of local application of antimicrobial agents into ERC contrast media in preventing post-ERC infectious complications in a high-risk study population. Patients undergoing ERC at our tertiary referral center were retrospectively included. Addition of vancomycin, gentamicin and fluconazol into ERC contrast media was evaluated in a case-control design. Outcomes comprised infectious complications within 3 days after ERC. In total, 84 ERC cases were analyzed. Primarily indications for ERC were sclerosing cholangitis (75%) and malignant stenosis (9.5%). Microbial testing of collected bile fluid in the treatment group was positive in 91.4%. Detected organisms were sensitive to the administered antimicrobials in 93%. The use of antimicrobials in contrast media was associated with a significant decrease in post-ERC infectious complications compared to non-use (14.3% vs. 33.3%; odds ratio [OR]: 0.33, 95% confidence interval [CI]: 0.114-0.978). After adjusting for the variables acute cholangitis prior to ERC and incomplete biliary drainage, the beneficial effect of intraductal antibiotic prophylaxis was even more evident (OR = 0.153; 95% CI: 0.039-0.598, p = 0.007). Patients profiting most obviously from intraductal antimicrobials were those with secondary sclerosing cholangitis. Local application of a combination of antibiotic and antimycotic agents to ERC contrast media efficiently reduced post-ERC infectious events in patients with biliary obstruction. This is the first study that evaluates ERC-related infectious complications in patients with secondary sclerosing cholangitis. Our first clinical results should now be prospectively evaluated in a larger patient cohort to improve the safety of ERC, especially in patients with secondary sclerosing cholangitis.
Jung, Seung Chai; Cho, Jeong Yeon
2011-01-01
Objective To determine the optimal iodine concentration of contrast media for kidney multidetector computed tomography (MDCT) by comparing the degree of renal parenchymal enhancement and the severity of the renal streak artifact with contrast media of different iodine concentrations. Materials and Methods A 16-row MDCT was performed in 15 sedated rabbits by injection of 2 mL contrast media/kg body weight at a rate of 0.3 mL/sec. Monomeric nonionic contrast media of 250, 300, and 370 mg iodine/mL were injected at 1-week intervals. Mean attenuation values were measured in each renal structure with attenuation differences among the structures. The artifact was evaluated by CT window width/level and three grading methods. The values were compared with iodine concentrations. Results The 370 mg iodine/mL concentration showed significantly higher cortical enhancement than 250 mg iodine/mL in all phases (p < 0.05). There was however no significant difference in the degree of enhancement between the 300 mg iodine/mL and 370 mg iodine/mL concentrations in all phases. There is a significant difference in attenuation for the cortex-outer medulla between 250 mg iodine/mL and 300 mg iodine/mL (p < 0.05). The artifact was more severe with a medium of 370 mg iodine/mL than with 250 mg iodine/mL by all grading methods (p < 0.05). Conclusion The 300 mg iodine/mL is considered to be the most appropriate iodine concentration in an aspect of the enhancement and artifact on a kidney MDCT scan. PMID:22043154
Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury.
Liu, Yupin P; Song, Rui; Liang, Chang hong; Chen, Xin; Liu, Bo
2012-08-15
A multitude of evidence suggests that iodinated contrast material causes nephrotoxicity; however, there have been no previous studies that use arterial spin labeling (ASL) blood flow functional magnetic resonance imaging (fMRI) to investigate the alterations in effective renal plasma flow between normointensive and hypertensive rats following injection of contrast media. We hypothesized that FAIR-SSFSE arterial spin labeling MRI may enable noninvasive and quantitative assessment of regional renal blood flow abnormalities and correlate with disease severity as assessed by histological methods. Renal blood flow (RBF) values of the cortex and medulla of rat kidneys were obtained from ASL images postprocessed at ADW4.3 workstation 0.3, 24, 48, and 72 h before and after injection of iodinated contrast media (6 ml/kg). The H&E method for morphometric measurements was used to confirm the MRI findings. The RBF values of the outer medulla were lower than those of the cortex and the inner medulla as reported previously. Iodinated contrast media treatment resulted in decreases in RBF in the outer medulla and cortex in spontaneously hypertensive rats (SHR), but only in the outer medulla in normotensive rats. The iodinated contrast agent significantly decreased the RBF value in the outer medulla and the cortex in SHR compared with normotensive rats after injection of the iodinated contrast media. Histological observations of kidney morphology were also consistent with ASL perfusion changes. These results demonstrate that the RBF value can reflect changes of renal perfusion in the cortex and medulla. ASL-MRI is a feasible and accurate method for evaluating nephrotoxic drugs-induced kidney damage.
Electrode Reactions in Slowly Relaxing Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matyushov, Dmitry V.; Newton, Marshall D.
Here, standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate preexponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamicallymore » freeze on the reaction time-scale and do not contribute to the activation barrier. In this paper, we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing electrode overpotential speeds electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends of the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation, but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. Finally, this result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.« less
Electrode Reactions in Slowly Relaxing Media
Matyushov, Dmitry V.; Newton, Marshall D.
2017-11-17
Here, standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate preexponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamicallymore » freeze on the reaction time-scale and do not contribute to the activation barrier. In this paper, we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing electrode overpotential speeds electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends of the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation, but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. Finally, this result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.« less
Kuruvilla, Merin; Khan, David A
2015-05-01
Drug-induced anaphylaxis is a common cause of anaphylaxis and a leading cause of fatal anaphylaxis. Antibiotics, radiocontrast, and nonsteroidal anti-inflammatory drugs are commonly implicated drugs. Vocal cord dysfunction can mimic anaphylaxis and is often overlooked. β-Lactams are a common cause of anaphylaxis; however, skin testing and drug challenge can usually determine tolerability of other classes of β-lactams. Nonionic contrast agents cause anaphylaxis less frequently than ionic contrast, and immunoglobulin E-mediated mechanisms may have a role in some of these reactions. Skin testing with radiocontrast may have a role in evaluating patients with anaphylaxis to nonionic contrast. Copyright © 2015 Elsevier Inc. All rights reserved.
Anaphylactoid reactions to the nonvascular administration of water-soluble iodinated contrast media.
Davis, Peter L
2015-06-01
Anaphylactoidlike reactions occur during the nonvascular administration of iodinated contrast media. Many of these reactions have been severe. These reactions have occurred with many procedures, including gastrointestinal imaging, cystography, sialography, and hysterosalpingography. This article reviews reports of these reactions. It also reviews what the literature recommends concerning how to deal with individuals undergoing these procedures who are at a higher risk for anaphylactoidlike reactions.
Kim, Sue Min; Cook, Kyung Hoon; Lee, Il Jae; Park, Dong Ha; Park, Myong Chul
2017-04-01
In our hospital, an adverse event reporting system was initiated that alerts the plastic surgery department immediately after suspecting contrast media extravasation injury. This system is particularly important for a large volume of extravasation during power injector use. Between March 2011 and May 2015, a retrospective chart review was performed on all patients experiencing contrast media extravasation while being treated at our hospital. Immediate treatment by squeezing with multiple slit incisions was conducted for a portion of these patients. Eighty cases of extravasation were reported from approximately 218 000 computed tomography scans. The expected extravasation volume was larger than 50 ml, or severe pressure was felt on the affected limb in 23 patients. They were treated with multiple slit incisions followed by squeezing. Oedema of the affected limb disappeared after 1-2 hours after treatment, and the skin incisions healed within a week. We propose a set of guidelines for the initial management of contrast media extravasation injuries for a timely intervention. For large-volume extravasation cases, immediate management with multiple slit incisions is safe and effective in reducing the swelling quickly, preventing patient discomfort and decreasing skin and soft tissue problems. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Patterson, Mark S; Dirksen, Maurits T; Ijsselmuiden, Alexander J; Amoroso, Giovanni; Slagboom, Ton; Laarman, Gerrit-Jan; Schultz, Carl; van Domburg, Ron T; Serruys, Patrick W; Kiemeneij, Ferdinand
2011-06-01
Aims Comparison of magnetic guidewire navigation in percutaneous coronary intervention (MPCI) vs. conventional percutaneous coronary intervention (CPCI) for the treatment of acute myocardial infarction. Methods and results We compared 65 sequential patients (mean age 61 ± 15 years) undergoing primary MPCI with those of 405 patients undergoing CPCI (mean age 61 ± 13 years). The major endpoint was contrast media use. Technical success and procedural outcomes were evaluated. Clinical demographics and angiographic characteristics of the two groups were similar, except for fewer patients with previous coronary artery bypass grafting (CABG) and hypertension in the CPCI group and fewer patients with diabetes in the MPCI group. The technical success rate was high in both the MPCI and CPCI groups (95.4 vs. 98%). There was significantly less contrast media usage in the MPCI compared with the CPCI group, median reduction of contrast media of 30 mL with an OR = 0.41 (0.21-0.81). Fluoroscopy times were significantly reduced for MPCI compared with CPCI, median reduction of 7.2 min with an OR = 0.42 (0.20-0.79). Conclusion This comparison indicates the feasibility and non-inferiority of magnetic navigation in performing primary PCI and suggests the possibility of reductions in contrast media use and fluoroscopy time compared with CPCI.
Demi, L; van Dongen, K W A; Verweij, M D
2011-03-01
Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation. © 2011 Acoustical Society of America
Implications of iodinated contrast media extravasation in the emergency department.
Sonis, Jonathan D; Gottumukkala, Ravi V; Glover, McKinley; Yun, Brian J; White, Benjamin A; Kalra, Mannudeep K; Otrakji, Alexi; Raja, Ali S; Prabhakar, Anand M
2018-02-01
To characterize the management, outcomes, and emergency department (ED) length of stay (LOS) following iodinated contrast media extravasation events in the ED. All ED patients who developed iodinated contrast media extravasation following contrast-enhanced CT (CECT) from October 2007-December 2016 were retrospectively identified. Medical records were reviewed and management, complications, frequency of surgical consultation, and ED LOS were quantified using descriptive statistics. The Wilcoxon rank sum test was used to compare ED LOS in patients who did and did not receive surgical consultation. A total of 199 contrast extravasation episodes occurred in ED patients during the 9-year study period. Of these, 42 patients underwent surgical consultation to evaluate the contrast extravasation event. No patient developed progressive symptoms, compartment syndrome, or tissue necrosis, and none received treatment beyond supportive care (warm/cold packs, elevation, compression). Median ED LOS for patients who did and did not receive surgical consultation was 11.3h versus 9.0h, respectively (p<0.01). Close observation and supportive care are sufficient for contrast extravasation events in the ED without concerning symptoms (progressive pain/swelling, altered tissue perfusion, sensory changes, or blistering/ulceration). Routine surgical consultation is likely unnecessary in the absence of these symptoms - concordant with the current American College of Radiology guidelines - and may be associated with longer ED LOS without impacting management. Copyright © 2017 Elsevier Inc. All rights reserved.
Early renal dysfunction after contrast media administration despite prophylactic hydration.
Burchardt, Pawel; Guzik, Przemyslaw; Tabaczewski, Piotr; Synowiec, Tomasz; Bogdan, Monika; Faner, Paula; Chmielarz-Sobocińska, Anna; Palasz, Anna
2013-06-01
The actual incidence of renal dysfunction after contrast media administration seems to be underestimated, especially in the context of epidemiological data. There are only few data concerning the monitoring of impaired kidney function within a few hours after iodine contrast medium application. Hence, the purpose of this study is to observe the incidence of early renal function deterioration within 12-18 h after administration of iodine contrast media in patients scheduled for elective coronary angiography, who were intravenously and orally hydrated. In addition, the project aims to reclassify the contrast induced nephropathy phenomenon, by identification of early markers of renal dysfunction. Morphology, electrolytes, blood urea nitrogen (BUN), creatinine, low-density lipoprotein cholesterol, triglycerides, high-density lipoprotein, and total cholesterol levels were assessed with the use of typical laboratory techniques in 319 patients referred for coronary angiography. We demonstrated that early deterioration of renal function in patients 12-18 h after administration of contrast during imaging tests (even when appropriate prophylactic hydration was used), may occurred just as an increase (or no change) of serum creatinine level and BUN level and a decrease of creatinine clearance and glomerular filtration rate. Depending on the parameter, the phenomenon can be found in 13-28 % of all respondents. Early renal function impairment defined as above was almost 2 and 2.22 × 10(3) times (respectively) more frequently observed in our study than contrast induced nephropathy defined by current definitions.
Cross-linked high amylose starch derivatives for drug release III. Diffusion properties.
Mulhbacher, Jérôme; Mateescu, Mircea Alexandru
2005-06-13
Acetate (Ac-), aminoethyl (AE-) and carboxymethyl (CM-) derivatives of cross-linked high amylose starch (HASCL-6) were previously shown to control the release of drugs over 20 h from highly loaded (up to 60% drug) monolithic tablets. This report presents a diffusion analysis, aimed to facilitate a better understanding of the mechanisms involved in the control of the drug release from these hydrogels. The diffusion was found to depend on the molecular weight of the diffusant, whereas the partition coefficient depended on the affinities of the diffusant for the polymers and for the dissolution media via attractive or repulsive ionic interactions. The diffusion was also affected by the swelling of CM-HASCL-6, which, unexpectedly, increased with the decrease of the ionic strength. This diffusion analysis completes the swelling studies of HASCL-6 and of its derivatives, allowing the prediction of release kinetics of various active agents.
Akhmetshina, Alsu A.; Davletbaeva, Ilsiya M.; Grebenschikova, Ekaterina S.; Sazanova, Tatyana S.; Petukhov, Anton N.; Atlaskin, Artem A.; Razov, Evgeny N.; Zaripov, Ilnaz I.; Martins, Carla F.; Neves, Luísa A.; Vorotyntsev, Ilya V.
2015-01-01
Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S. PMID:26729177
Li, Dandan; Zhang, Xiwen; Tian, Yaoqi
2016-05-01
Biosynthesis of octenyl succinic anhydride (OSA) starch was investigated using ionic liquids (ILs) as reaction media. Waxy maize starch was pretreated in 1-butyl-3-methylimidazolium chlorine and then esterified with OSA in 1-octyl-3-methylimidazolium nitrate by using Novozyme 435 as catalyst. The degree of substitution of OSA starch reached 0.0130 with 5 wt% starch concentration and 1 wt% lipase dosage based on ILs weight at 50 °C for 3h. The formation of OSA starch was confirmed by fourier transform infrared spectroscopy. Scanning electron microscopy and X-ray diffraction revealed that the morphology and crystal structure of starch were significantly destroyed. Thermogravimetric analysis showed that esterification decreased the thermal stability of starch. The successful lipase-catalyzed synthesis of OSA starch in ILs suggests that ILs are potential replacement of traditional organic solvents for starch ester biosynthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrostatic Debye layer formed at a plasma-liquid interface
NASA Astrophysics Data System (ADS)
Rumbach, Paul; Clarke, Jean Pierre; Go, David B.
2017-05-01
We construct an analytic model for the electrostatic Debye layer formed at a plasma-liquid interface by combining the Gouy-Chapman theory for the liquid with a simple parabolic band model for the plasma sheath. The model predicts a nonlinear scaling between the plasma current density and the solution ionic strength, and we confirmed this behavior with measurements using a liquid-anode plasma. Plots of the measured current density as a function of ionic strength collapse the data and curve fits yield a plasma electron density of ˜1019m-3 and an electric field of ˜104V /m on the liquid side of the interface. Because our theory is based firmly on fundamental physics, we believe it can be widely applied to many emerging technologies involving the interaction of low-temperature, nonequilibrium plasma with aqueous media, including plasma medicine and various plasma chemical synthesis techniques.
Micro-rheology on (polymer-grafted) colloids using optical tweezers.
Gutsche, C; Elmahdy, M M; Kegler, K; Semenov, I; Stangner, T; Otto, O; Ueberschär, O; Keyser, U F; Krueger, M; Rauscher, M; Weeber, R; Harting, J; Kim, Y W; Lobaskin, V; Netz, R R; Kremer, F
2011-05-11
Optical tweezers are experimental tools with extraordinary resolution in positioning (± 1 nm) a micron-sized colloid and in the measurement of forces (± 50 fN) acting on it-without any mechanical contact. This enables one to carry out a multitude of novel experiments in nano- and microfluidics, of which the following will be presented in this review: (i) forces within single pairs of colloids in media of varying concentration and valency of the surrounding ionic solution, (ii) measurements of the electrophoretic mobility of single colloids in different solvents (concentration, valency of the ionic solution and pH), (iii) similar experiments as in (i) with DNA-grafted colloids, (iv) the nonlinear response of single DNA-grafted colloids in shear flow and (v) the drag force on single colloids pulled through a polymer solution. The experiments will be described in detail and their analysis discussed.
Liu, Runqiang; Zhang, Yijun; Bai, Lianyang; Huang, Mingxian; Chen, Jun; Zhang, Yuping
2014-04-11
A chiral selector of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) (CBDMPC) was synthesized by reacting 3,5-dimethylphenyl isocyanate with microcrystalline cellulose dissolved in an ionic liquid of 1-allyl-3-methyl-imidazolium chloride (AMIMCl). The obtained chiral selector was effectively characterized by infrared spectroscopy, elemental analysis and 1H NMR. The selector was reacted with 3-aminopropylsilanized silica gel and the CBDMPC bonded chiral stationary phase (CSP) was obtained. Chromatographic evaluation of the prepared CSPs was conducted by high performance liquid chromatographic (HPLC) and baseline separation of three typical fungicides including hexaconazole, metalaxyl and myclobutanil was achieved using n-hexane/isopropanol as the mobile phase with a flow rate 1.0 mL/min. Experimental results also showed that AMIMCl could be recycled easily and reused in the preparation of CSPs as an effective reaction media.
Liu, Runqiang; Zhang, Yijun; Bai, Lianyang; Huang, Mingxian; Chen, Jun; Zhang, Yuping
2014-01-01
A chiral selector of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) (CBDMPC) was synthesized by reacting 3,5-dimethylphenyl isocyanate with microcrystalline cellulose dissolved in an ionic liquid of 1-allyl-3-methyl-imidazolium chloride (AMIMCl). The obtained chiral selector was effectively characterized by infrared spectroscopy, elemental analysis and 1H NMR. The selector was reacted with 3-aminopropylsilanized silica gel and the CBDMPC bonded chiral stationary phase (CSP) was obtained. Chromatographic evaluation of the prepared CSPs was conducted by high performance liquid chromatographic (HPLC) and baseline separation of three typical fungicides including hexaconazole, metalaxyl and myclobutanil was achieved using n-hexane/isopropanol as the mobile phase with a flow rate 1.0 mL/min. Experimental results also showed that AMIMCl could be recycled easily and reused in the preparation of CSPs as an effective reaction media. PMID:24733066
Bolognese, Leonardo; Falsini, Giovanni; Grotti, Simone; Limbruno, Ugo; Liistro, Francesco; Carrera, Arcangelo; Angioli, Paolo; Picchi, Andrea; Ducci, Kenneth; Pierli, Carlo
2010-03-01
Contrast-induced acute kidney injury (CI-AKI) is a complex syndrome of acute renal failure occurring after the administration of contrast media and contributing to prolonged hospital stay and mortality. The risk of CI-AKI is higher among patients undergoing primary percutaneous coronary interventions for acute myocardial infarction (AMI), but its clinical relevance in such setting has only been evaluated by small sample size single-center studies and retrospective or observational analyses. Furthermore, whereas high-osmolar contrast media was shown to have direct nephrotoxicity, the role of low-osmolar and iso-osmolar agents is still debated. The CONTRAST-AMI study is a prospective, multicenter, controlled, randomized, single-blind, parallel-group trial, designed to show the noninferiority of the effects of iopromide (low-osmolar) compared with iodixanol (iso-osmolar) contrast media on the incidence of CI-AKI and tissue-level perfusion in patients with AMI. All consecutive patients admitted to participating centers for ST-segment elevation AMI undergoing primary percutaneous coronary intervention will be enrolled. All patients will be treated with high-dose N-acetylcysteine (1200 mg intravenously during the procedure and 1200 mg orally two times daily for the next 48 h after percutaneous coronary intervention) and hydration according to a standardized protocol. The primary endpoint is the proportion of patients with a relative increase in serum creatinine (sCr) of at least 25% from baseline to 72 h after agent administration. The secondary endpoints are absolute and relative increases in sCr of at least 50%, thrombolysis in myocardial infarction (TIMI) perfusion grade, and major adverse cardiac events at 1, 6, and 12 months. The CONTRAST-AMI study will provide information on the effects of iodixanol and iopromide on the incidence of CI-AKI and tissue-level perfusion in patients with AMI.
Quadratic electromechanical strain in silicon investigated by scanning probe microscopy
NASA Astrophysics Data System (ADS)
Yu, Junxi; Esfahani, Ehsan Nasr; Zhu, Qingfeng; Shan, Dongliang; Jia, Tingting; Xie, Shuhong; Li, Jiangyu
2018-04-01
Piezoresponse force microscopy (PFM) is a powerful tool widely used to characterize piezoelectricity and ferroelectricity at the nanoscale. However, it is necessary to distinguish microscopic mechanisms between piezoelectricity and non-piezoelectric contributions measured by PFM. In this work, we systematically investigate the first and second harmonic apparent piezoresponses of a silicon wafer in both vertical and lateral modes, and we show that it exhibits an apparent electromechanical response that is quadratic to the applied electric field, possibly arising from ionic electrochemical dipoles induced by the charged probe. As a result, the electromechanical response measured is dominated by the second harmonic response in the vertical mode, and its polarity can be switched by the DC voltage with the evolving coercive field and maximum amplitude, in sharp contrast to typical ferroelectric materials we used as control. The ionic activity in silicon is also confirmed by the scanning thermo-ionic microscopy measurement, and the work points toward a set of methods to distinguish true piezoelectricity from the apparent ones.
Large apparent electric size of solid-state nanopores due to spatially extended surface conduction.
Lee, Choongyeop; Joly, Laurent; Siria, Alessandro; Biance, Anne-Laure; Fulcrand, Rémy; Bocquet, Lydéric
2012-08-08
Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based on analogies with electric circuits, the surface conductance inside the nanopore is shown to perturb the three-dimensional electric current streamlines far outside the nanopore in order to meet charge conservation at the pore entrance. This unexpected contribution to the ionic conductance can be interpreted in terms of an apparent electric size of the solid-state nanopore, which is much larger than its geometric counterpart whenever the number of charges carried by the nanopore surface exceeds its bulk counterpart. This apparent electric size, which can reach hundreds of nanometers, can have a major impact on the electrical detection of translocation events through nanopores, as well as for ionic transport in biological nanopores.
Investigation of Zn2+ and Cd2+ Adsorption Performanceby Different Weathering Basalts
NASA Astrophysics Data System (ADS)
Xue, Q.; Shuo, Q.; Chen, H.
2016-12-01
Geological barriers play an important role in preventing pollution of groundwater. Basalts are common geological media; however, there have not been any studies that report the effect of basalt type on the metal ion adsorption performance. In this study, we explored the metal ion (Zn2+ and Cd2+) adsorption ability of two kinds of weathering basalts: the origin weathering basalt (WB) and the eluvial deposit (ED), both of which were derived from same basaltic formation. Characteristics of the sediments were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Barrett-Joyner-Halenda (BJH) measurement and the rapid potentiometric titration (RPT) method. Batch experiments were performed to evaluate the Zn2+ and Cd2+ adsorption performance of WB and ED and how adsorption was affected by contact time, initial metal ion concentration, pH and ionic strength. Despite WB and ED having similar chemical compositions, WB exhibited better adsorption than ED likely due to the fact that WB was rougher and had more small-sized spherical structures and stronger electrostatic forces. The adsorption process fit the Freundlich isotherm model well. The adsorption efficiency decreased with a decrease of pH (from 4 to 2) and with increasing ionic strength. These results suggest that a geological barrier composed of WB media might be able to effectively sequester metallic contaminants to prevent them from reaching groundwater.
Manna, Anamika; Sahoo, Dibakar; Chakravorti, Sankar
2012-03-01
We report an interesting pH-tunable energy transfer between an acceptor ionic styryl dye 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide and a donor charge-transfer dye 1,8-naphthalimide in a vesicular medium. The polyethylene-b-polyethylene glycol block copolymer intercalates with the sodium dodecyl sulfate anionic surfactant to form self-aggregated nanocomposites. These nanocomposites interact with the donor molecules in aqueous solution to form "vesicles", and the donor molecules become attached on the outer wall by hydrogen bonding. The acceptor molecules are observed to be loaded in the vesicular interior. By controlling the spectral overlap of the donor and acceptor molecules by changing the pH of the medium, the energy-transfer efficiency in vesicles has been studied. The efficiency of energy transfer in vesicular media (55%) is found to be less compared to that in aqueous media (80%) at pH 7. The fall in efficiency has been attributed to the perturbation imparted by the vesicular wall due to the good matching of the donor-acceptor distance with the wall thickness. At low pH, the efficiency shows an abrupt increase (95%) due to the release of the acceptor molecules from the vesicular medium causing subsequent reduction of donor-acceptor separation and an increase of the spectral overlap at that pH.
Understanding structure-stability relationships of Candida antartica lipase B in ionic liquids.
De Diego, Teresa; Lozano, Pedro; Gmouh, Said; Vaultier, Michel; Iborra, José L
2005-01-01
Two different water-immiscible ionic liquids (ILs), 1-ethyl-3-methylimidizolium bis(trifluoromethylsulfonyl)imide and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, were used for butyl butyrate synthesis from vinyl butyrate catalyzed by Candida antarctica lipase B (CALB) at 2% (v/v) water content and 50 degrees C. Both the synthetic activity and stability of the enzyme in these ILs were enhanced as compared to those in hexane. Circular dichroism and intrinsic fluorescence spectroscopic techniques have been used over a period of 4 days to determine structural changes in the enzyme associated with differences in its stability for each assayed medium. CALB showed a loss in residual activity higher than 75% after 4 days of incubation in both water and hexane media at 50 degrees C, being related to great changes in both alpha-helix and beta-strand secondary structures. The stabilization of CALB, which was observed in the two ILs studied, was associated with both the maintenance of the 50% of initial alpha-helix content and the enhancement of beta-strands. Furthermore, intrinsic fluorescence studies clearly showed how a classical enzyme unfolding was occurring with time in both water and hexane media. However, the structural changes associated with the incubation of the enzyme in both ILs might be attributed to a compact and active enzyme conformation, resulting in an enhancement of the stability in these nonaqueous environments.
Fisher, M.; Pick, U.; Zamir, A.
1994-01-01
The halotolerant alga Dunaliella salina grows in saline conditions as varied as 0.5 and 5 M NaCl, maintaining throughout this range a low intracellular ion concentration. To discover factors potentially involved in ionic homeostasis, we grew cells in media with different salinities or osmolarities and compared their protein profiles. The comparisons indicated that the amount of a 60-kD protein, p60, greatly increased with an increase in salinity and was moderately enhanced when NaCl was substituted with iso-osmotic glycerol. Cells transferred from low to high NaCl or from high glycerol to iso-osmotic NaCl media transiently ceased to grow, and resumption of growth coincided approximately with an increase in p60. The protein, extracted from a plasma membrane fraction, was purified to homogeneity. Anti-p60 antibodies cross-reacted with a 60-kD protein in Dunaliella bardawil. Immunoelectron microscopy of D. salina cell sections indicated that p60 was exclusively located in the plasma membrane. Its induction by salt, the correlation between its accumulation and growth resumption in high concentrations of salt, and its plasma membrane localization suggest the possibility that p60 could play a role in ionic homeostasis in conditions of high salinity, although different types of function could also be considered. PMID:12232413
Effect of Four Commonly Used Dissolution Media Surfactants on Pancreatin Proteolytic Activity.
Guncheva, Maya; Stippler, Erika
2017-05-01
Proteolytic enzymes are often used in dissolution testing of cross-linked gelatin capsules that do not conform to the dissolution specification. Their catalytic activity, however, can be affected when they are added to a dissolution media containing solubility enhancers, such as surfactants. The aim of this study was to assess the activity of pancreatic proteases in presence of four commonly used surfactants. We found that pancreatin exhibits remarkable proteolytic activity in the presence of Tween 80, even at the concentrations as high as 250 times its critical micelle concentration (cmc) in water, whereas, Triton X-100 enhanced the proteolytic activity of pancreatin when added at concentrations above its cmc in water. Both surfactants are non-ionic surfactants. On the other hand, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), which are ionic surfactants, have a detrimental effect on the proteolytic activity of pancreatin. For example, a 50% reduction of the pancreatin activity was found in samples which contain a minor amount of SDS (0.05% w/v) in comparison to a surfactant-free reaction. Additionally, no activity was observed for the pancreatin-SDS samples which were incubated for 30 min at 40°C prior to testing. CTAB had an impact on pancreatin activity at concentrations higher than its cmc. Data from this manuscript can be used as a benchmark for optimization of the dissolution procedures that require use of both surfactants and enzymes.
Social Media in the Curriculum and Co-Curriculum: Pre-Service Teachers and Their Collegiate Peers
ERIC Educational Resources Information Center
Heiberger, Greg A.
2013-01-01
Although use of social media by students has been shown to be nearly ubiquitous, many K-12 school systems have banned its use on their campuses or use between their teachers and students. In contrast, many collegiate faculty have utilized social media in their teaching. Social media has been shown to assist faculty in engaging with students,…
2016-06-01
media sources on the public discourse. This research compares and contrasts the roles and importance of traditional and social media in the public...alternative media , social media 15. NUMBER OF PAGES 73 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY...importance of traditional and social media in the public sphere today, as evidenced by the coverage of concealed-carry laws and related stories. The
Beyer, Lukas Philipp; Wassermann, Florian; Pregler, Benedikt; Michalik, Katharina; Rennert, Janine; Wiesinger, Isabel; Stroszczynski, Christian; Wiggermann, Philipp; Jung, Ernst Michael
2017-12-01
The purpose of this study was to compare contrast-enhanced ultrasound (CEUS), magnetic resonance imaging (MRI) using liver-specific contrast agent and a combination of both for the characterization of focal liver lesions (FLL). 83 patients with both benign and malignant liver lesions were examined using CEUS and MRI after the intravenous administration of liver-specific contrast media. All patients had inconclusive results from prior imaging examinations. Histopathological specimens could be obtained in 53 patients. Ultrasound was performed using a multi-frequency curved probe (1 - 6 MHz) after the injection of 1 - 2.4 ml ultrasound contrast media. The sensitivity, specificity, positive predictive value and negative predictive value of CEUS, MRI and a combination of both (CEUS + MRI) were compared. The sensitivity, specificity, positive and negative predictive values regarding lesion classification were 90.9 %, 70.6 %, 92.3 % and 66.6 %, respectively, for CEUS; 90.9 %, 82.4 %, 95.2 % and 70.0 %, respectively, for MRI; and 96.9 %, 70.6 %, 92.7 % and 85.7 % respectively, for CEUS + MRI. There were no statistically significant differences. 6 malignant lesions were missed using CEUS or MRI alone (false negatives). The use of both modalities combined reduced the false-negative results to 2. CEUS and MRI with liver-specific contrast media are very reliable and of equal informative value in the characterization of focal liver lesions. The number of false-negative results can be decreased using a combination of the two methods. © Georg Thieme Verlag KG Stuttgart · New York.
Al Fagih, Ahmed; Al Ghamdi, Saleh; El Tayeb, Areeg; Dagriri, Khaled
2010-09-01
Rotational angiography is one of the latest angiographic modalities to map the coronary venous tree anatomy. It provides a significant reduction in both contrast agent usage and radiation dose (up to 30%), without compromising the clinical utility of images. Hence, the present study was conducted to describe a new technique to minimize the amount of contrast media used during cardiac resynchronization therapy (CRT) implantation. The SL3 sheath was inserted into the right atrium via the femoral vein followed by withdrawal of the dilator. The tip of the sheath was manipulated to the vicinity of the coronary sinus (CS) ostium (OS). The CS was entered using a deflated balloon catheter. The sheath was then advanced gently beyond the CS OS. Occlusive venography was performed using 5-8 ml of contrast media in a rotational view starting from 45 degrees LAO to 0 degrees AP while holding the inflated balloon for a few seconds. Data from 30 consecutive patients who underwent CRT implantation were analyzed. The feasibility of rotational angiography, while occluding the CS with a specialized long, preshaped sheath and using an ordinary cath-lab imaging machine, was supported by the correctly delineated CS anatomy of all patients without any complications and death related to the placement of the CS catheters or sheaths. The mean contrast dose used for the entire procedure in all patients undergoing CRT was 14.76 +/- 6.8 ml. Use of rotational CS occlusive venography utilizing an ordinary cath-lab X-ray machine minimizes the use of contrast media during CRT implantation without compromising the visualized anatomy.
Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
Torkzaban, Saeed; Bradford, Scott A; Vanderzalm, Joanne L; Patterson, Bradley M; Harris, Brett; Prommer, Henning
2015-10-01
The release and retention of in-situ colloids in aquifers play an important role in the sustainable operation of managed aquifer recharge (MAR) schemes. The processes of colloid release, retention, and associated permeability changes in consolidated aquifer sediments were studied by displacing native groundwater with reverse osmosis-treated (RO) water at various flow velocities. Significant amounts of colloid release occurred when: (i) the native groundwater was displaced by RO-water with a low ionic strength (IS), and (ii) the flow velocity was increased in a stepwise manner. The amount of colloid release and associated permeability reduction upon RO-water injection depended on the initial clay content of the core. The concentration of released colloids was relatively low and the permeability reduction was negligible for the core sample with a low clay content of about 1.3%. In contrast, core samples with about 6 and 7.5% clay content exhibited: (i) close to two orders of magnitude increase in effluent colloid concentration and (ii) more than 65% permeability reduction. Incremental improvement in the core permeability was achieved when the flow velocity increased, whereas a short flow interruption provided a considerable increase in the core permeability. This dependence of colloid release and permeability changes on flow velocity and colloid concentration was consistent with colloid retention and release at pore constrictions due to the mechanism of hydrodynamic bridging. A mathematical model was formulated to describe the processes of colloid release, transport, retention at pore constrictions, and subsequent permeability changes. Our experimental and modeling results indicated that only a small fraction of the in-situ colloids was released for any given change in the IS or flow velocity. Comparison of the fitted and experimentally measured effluent colloid concentrations and associated changes in the core permeability showed good agreement, indicating that the essential physics were accurately captured by the model. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Jing; Frauenkron-Machedjou, Victorine Josiane; Fulton, Alexander; Zhu, Leilei; Davari, Mehdi D; Jaeger, Karl-Erich; Schwaneberg, Ulrich; Bocola, Marco
2018-04-04
Understanding of the structural and dynamic properties of enzymes in non-aqueous media (e.g., ionic liquids, ILs) is highly attractive for protein engineers and synthetic biochemists. Despite a growing number of molecular dynamics (MD) simulation studies on the influence of different ILs on wild-type enzymes, the effects of various amino acid substitutions on the stability and activity of enzymes in ILs remain to be unraveled at the molecular level. Herein, we selected fifty previously reported Bacillus subtilis lipase A (BSLA) variants with increased resistance towards an IL (15 vol% 1-butyl-3-methylimidazolium trifluoromethanesulfonate; [Bmim][TfO]), and also ten non-resistant BSLA variants for a MD simulation study to identify the underlying molecular principles. Some important properties differentiating resistant and non-resistant BSLA variants from wild-type were elucidated. Results show that, in 15 vol% [Bmim][TfO] aqueous solution, 40% and 60% of non-resistant variants have lower and equal probabilities to form a catalytically important hydrogen bond between S77 and H156 compared to wild-type, whereas 36% and 56% of resistant variants show increased and equal probabilities, respectively. Introducing positively charged amino acids close to the substrate-binding cleft for instance I12R is beneficial for the BSLA resistance towards 15 vol% [Bmim][TfO], likely due to the reduced probability of [Bmim]+ cations clustering near the cleft. In contrast, substitution with a large hydrophobic residue like I12F can block the cleft through hydrophobic interaction with a neighboring nonpolar loop 134-137 or/and an attractive π-π interaction with [Bmim]+ cations. In addition, the resistant variants having polar substitutions on the surface show higher ability to stabilize the surface water molecule network in comparison to non-resistant variants. This study can guide experimentalists to rationally design promising IL-resistant enzymes, and contribute to a deeper understanding of protein-IL interactions at the molecular level.
Lu, Lu; Huang, Xirong; Qu, Yinbo
2011-10-01
The direct electrochemistry and bioelectrocatalysis of horseradish peroxidase (HRP) in Nafion films at glassy carbon electrode (GCE) was investigated in three [BF(4)](-)-type room-temperature ionic liquids (ILs) to understand the structural effect of imidazolium cations. The three ILs are 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF(4)]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) and 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF(4)]). A small amount of water in the three ILs is indispensable for maintaining the electrochemical activity of HRP in Nafion films, and the optimum water contents decrease with the increase of alkyl chain length on imidazole ring. Analysis shows that the optimum water contents are primarily determined by the hydrophilicity of ILs used. In contrast to aqueous medium, ILs media facilitate the direct electron transfer of HRP, and the electrochemical parameters obtained in different ILs are obviously related to the nature of ILs. The direct electron transfer between HRP and GCE is a surface-confined quasi-reversible single electron transfer process. The apparent heterogeneous electron transfer rate constant decreases gradually with the increase of alkyl chain length on imidazole ring, but the changing extent is relatively small. The electrocatalytic reduction current of H(2)O(2) at the present electrode decreases obviously with the increase of alkyl chain length, and the mass transfer of H(2)O(2) via diffusion in ILs should be responsible for the change. In addition, the modified electrode has good stability and reproducibility; the ability to tolerate high levels of F(-) has been greatly enhanced due to the use of Nafion film. When an appropriate mediator is included in the sensing layer, a sensitive nonaqueous biosensor could be fabricated. Copyright © 2011 Elsevier B.V. All rights reserved.
Prucek, Robert; Tuček, Jiří; Kolařík, Jan; Hušková, Ivana; Filip, Jan; Varma, Rajender S; Sharma, Virender K; Zbořil, Radek
2015-02-17
The removal efficiency of heavy metal ions (cadmium(II), Cd(II); cobalt(II), Co(II); nickel(II), Ni(II); copper(II), Cu(II)) by potassium ferrate(VI) (K2FeO4, Fe(VI)) was studied as a function of added amount of Fe(VI) (or Fe) and varying pH. At pH = 6.6, the effective removal of Co(II), Ni(II), and Cu(II) from water was observed at a low Fe-to-heavy metal ion ratio (Fe/M(II) = 2:1) while a removal efficiency of 70% was seen for Cd(II) ions at a high Fe/Cd(II) weight ratio of 15:1. The role of ionic radius and metal valence state was explored by conducting similar removal experiments using Al(III) ions. The unique combination of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), in-field Mössbauer spectroscopy, and magnetization measurements enabled the delineation of several distinct mechanisms for the Fe(VI)-prompted removal of metal ions. Under a Fe/M weight ratio of 5:1, Co(II), Ni(II), and Cu(II) were removed by the formation of MFe2O4 spinel phase and partially through their structural incorporation into octahedral positions of γ-Fe2O3 (maghemite) nanoparticles. In comparison, smaller sized Al(III) ions got incorporated easily into the tetrahedral positions of γ-Fe2O3 nanoparticles. In contrast, Cd(II) ions either did not form the spinel ferrite structure or were not incorporated into the lattic of iron(III) oxide phase due to the distinct electronic structure and ionic radius. Environmentally friendly removal of heavy metal ions at a much smaller dosage of Fe than those of commonly applied iron-containing coagulants and the formation of ferrimagnetic species preventing metal ions leaching back into the environment and allowing their magnetic separation are highlighted.
Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast
NASA Astrophysics Data System (ADS)
Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.
2014-11-01
Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.
NASA Astrophysics Data System (ADS)
Romanos, G. E.; Stefanopoulos, K. L.; Vangeli, O. C.; Mergia, K.; Beltsios, K. G.; Kanellopoulos, N. K.; Lairez, D.
2012-02-01
In the present study, [bmim][PF6] ionic liquid (IL) was introduced into the pores of two ordered mesoporous silicas (MCM-41 and SBA-15) having different pore sizes by means of two different processes: a) with physical imbibition from a methanol solution under high vacuum and b) by chemically immobilising the IL with silanisation of the pore surface followed by reaction with butyl-methyl imidazolium chloride and anion exchange with PF6, the process termed as the "grafting to" method. Both the extent of IL entrapment and the structural properties of the IL phase under confinement were investigated by SANS, contrast-matching SANS, XRD and nitrogen adsorption measurements. The results show that the pores of chemically prepared samples are not totally filled by IL and also suggest for ordering of the silylated IL phase. On the other hand, the physically prepared samples are almost or totally filled with IL whereas no evidence for ordering of the confined IL phase was observed.
Zhang, Xiuyun; Ng, Man-Fai; Wang, Yanbiao; Wang, Jinlan; Yang, Shuo-Wang
2009-09-22
Europium (Eu)-cyclootetatrene (COT = C(8)H(8)) multidecker clusters (Eu(n)COT(n+1), n = 1-4) are studied by relativistic density functional theory calculations. These clusters are found to be thermodynamically stable with freely rotatable COT rings, and their total magnetic moments (MMs) increase linearly along with the number of Eu atoms. Each Eu atom contributes about 7 mu(B) to the cluster. Meanwhile, the internal COT rings have little MM contribution while the external COT rings have about 1 mu(B) MM aligned in opposite direction to that of the Eu atoms. The total MM of the Eu(n)COT(n+1) clusters can thus be generalized as 7n - 2 mu(B) where n is the number of Eu atoms. Besides, the ground states of these clusters are ferromagnetic and energetically competitive with the antiferromagnetic states, meaning that their spin states are very unstable, especially for larger clusters. More importantly, we uncover an interesting bonding characteristic of these clusters in which the interior ionic structure is capped by two hybrid covalent-ionic terminals. We suggest that such a characteristic makes the Eu(n)COT(n+1) clusters extremely stable. Finally, we reveal that for the positively charged clusters, the hybrid covalent-ionic terminals will tip further toward the interior part of the clusters to form deeper covalent-ionic caps. In contrast, the negatively charged clusters turn to pure ionic structures.
Romo, Tod D.; Grossfield, Alan; Pitman, Michael C.
2010-01-01
Abstract The recently solved crystallographic structures for the A2A adenosine receptor and the β1 and β2 adrenergic receptors have shown important differences between members of the class-A G-protein-coupled receptors and their archetypal model, rhodopsin, such as the apparent breaking of the ionic lock that stabilizes the inactive structure. Here, we characterize a 1.02 μs all-atom simulation of an apo-β2 adrenergic receptor that is missing the third intracellular loop to better understand the inactive structure. Although we find that the structure is remarkably rigid, there is a rapid influx of water into the core of the protein, as well as a slight expansion of the molecule relative to the crystal structure. In contrast to the x-ray crystal structures, the ionic lock rapidly reforms, although we see an activation-precursor-like event wherein the ionic lock opens for ∼200 ns, accompanied by movements in the transmembrane helices associated with activation. When the lock reforms, we see the structure return to its inactive conformation. We also find that the ionic lock exists in three states: closed (or locked), semi-open with a bridging water molecule, and open. The interconversion of these states involves the concerted motion of the entire protein. We characterize these states and the concerted motion underlying their interconversion. These findings may help elucidate the connection between key local events and the associated global structural changes during activation. PMID:20074514
Ionogels, ionic liquid based hybrid materials.
Le Bideau, Jean; Viau, Lydie; Vioux, André
2011-02-01
The current interest in ionic liquids (ILs) is motivated by some unique properties, such as negligible vapour pressure, thermal stability and non-flammability, combined with high ionic conductivity and wide electrochemical stability window. However, for material applications, there is a challenging need for immobilizing ILs in solid devices, while keeping their specific properties. In this critical review, ionogels are presented as a new class of hybrid materials, in which the properties of the IL are hybridized with those of another component, which may be organic (low molecular weight gelator, (bio)polymer), inorganic (e.g. carbon nanotubes, silica etc.) or hybrid organic-inorganic (e.g. polymer and inorganic fillers). Actually, ILs act as structuring media during the formation of inorganic ionogels, their intrinsic organization and physicochemical properties influencing the building of the solid host network. Conversely, some effects of confinement can modify some properties of the guest IL, even though liquid-like dynamics and ion mobility are preserved. Ionogels, which keep the main properties of ILs except outflow, while allowing easy shaping, considerably enlarge the array of applications of ILs. Thus, they form a promising family of solid electrolyte membranes, which gives access to all-solid devices, a topical industrial challenge in domains such as lithium batteries, fuel cells and dye-sensitized solar cells. Replacing conventional media, organic solvents in lithium batteries or water in proton-exchange-membrane fuel cells (PEMFC), by low-vapour-pressure and non flammable ILs presents major advantages such as improved safety and a higher operating temperature range. Implementation of ILs in separation techniques, where they benefit from huge advantages as well, relies again on the development of supported IL membranes such as ionogels. Moreover, functionalization of ionogels can be achieved both by incorporation of organic functions in the solid matrix, and by encapsulation of molecular species (from metal complexes to enzymes) in the immobilized IL phase, which opens new routes for designing advanced materials, especially (bio)catalytic membranes, sensors and drug release systems (194 references).
Sun, Yintao; Wollenberg, Alexander L; O'Shea, Timothy Mark; Cui, Yanxiang; Zhou, Z Hong; Sofroniew, Michael V; Deming, Timothy J
2017-10-25
Synthetic diblock copolypeptides were designed to incorporate oppositely charged ionic segments that form β-sheet-structured hydrogel assemblies via polyion complexation when mixed in aqueous media. The observed chain conformation directed assembly was found to be required for efficient hydrogel formation and provided distinct and useful properties to these hydrogels, including self-healing after deformation, microporous architecture, and stability against dilution in aqueous media. While many promising self-assembled materials have been prepared using disordered or liquid coacervate polyion complex (PIC) assemblies, the use of ordered chain conformations in PIC assemblies to direct formation of new supramolecular morphologies is unprecedented. The promising attributes and unique features of the β-sheet-structured PIC hydrogels described here highlight the potential of harnessing conformational order derived from PIC assembly to create new supramolecular materials.
Application of classical thermodynamics to the conductivity in non-polar media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gourdin-Bertin, S.; Chassagne, C.
Electrical conductivity in non-polar media is a subject which recently regained interest. If most of experiments and theoretical developments were done more than 50 years ago, new experiments and theories have been recently published. As the electrical conductivity describes, at low field, the equilibrium state of a system, it is natural to apply theories based on equilibrium thermodynamics. In this article, well-established classical thermodynamics and solvations models are applied to recently published data. This enables to get a new insight in intriguing phenomena, such as the linear dependence of the conductivity on the concentration of ionic surfactant and the evaluationmore » of conductivity for the mixture of two miscible fluids, such as alcohol and alcane, which have very different conductivities.« less
Computers, Mass Media, and Schooling: Functional Equivalence in Uses of New Media.
ERIC Educational Resources Information Center
Lieberman, Debra A.; And Others
1988-01-01
Presents a study of 156 California eighth grade students which contrasted their recreational and intellectual computer use in terms of academic performance and use of other media. Among the conclusions were that recreational users watched television heavily and performed poorly in school, whereas intellectual users watched less television,…
Biologically Inspired Electronic, Photovoltaic and Microfluidic Devices Based on Aqueous Soft Matter
NASA Astrophysics Data System (ADS)
Koo, Hyung Jun
Hydrogels are a water-based soft material where three dimensional networks of hydrophilic polymer retain large amounts of water. We developed hydrogel based devices with new functionalities inspired by materials, structures and processes in nature. The advantages, such as softness, biocompatibility and high ionic conductivity, could enable hydrogels to be novel materials for biomimetic devices operated by ionic current. Moreover, microfluidic patterns are easily embedded in moldable hydrogels and allow for unique convective/diffusive transport mechanism in porous gel to be used for uniform delivery of reagent solution. We first developed and characterized a device with unidirectional ionic current flow across a SiO2/Gel junction, which showed highly efficient rectification of the ionic current by non-linear conductivity of SiO2 films. Addition of polyelectrolytes and salt to the gel layer significantly improved the performance of the new diode device because of the enhanced gel conductance. A soft matter based diode composed of hydrogel and liquid metal (eutectic gallium indium, EGaIn) was also presented. The ability to control the thickness, and thus resistivity, of an insulating oxide skin on the metal enables the current rectification. The effect of ionic conductivity and pH on the formation of the insulating oxide was investigated in a simple model system with liquid metal/electrolyte solution or hydrogel/Pt interfaces. Finally, we present a diode composed entirely of soft materials by replacing the platinum electrode with a second liquid metal electrode. A new type of hydrogel-based photovoltaic systems (HGPVs) was constructed. Two photosensitive ionized molecules embedded in aqueous gel served as photoactive species. The HGPVs showed performance comparable with or higher than those of some other biomimetic or ionic photovoltaic systems reported recently. We suggest a provisional mechanism of the device operation, based on a synergetic effect of the two dye molecules. To reduce the fabrication cost without efficiency loss, we found an inexpensive replacement of the expensive Pt counter-electrode with copper coated with carbon materials. Biologically derived photoactive molecules, such as Chlorophyll and Photosystem II, were successfully operated in the aqueous gel of such HGPVs. As a proof of demonstration of biomimetic structures, a light driven biomimetic reactor was developed by using hydrogel media with embedded photocatalytic TiO2 nanoparticles. Uniform supply of the reactants and extraction of the products was accomplished via a microfluidic channel network, broadly similar to the vein structure of live leaves. The dyes were transported in the gel between the microchannels and degraded by photocatalytic oxidation by the illuminated TiO2 particles. Quantitative analysis of the photocatalytic degradation rate of the injected dyes revealed that the microvascular reactor has high quantum efficiency per catalyst mass. Numerical modeling was performed to explore how a soluble reagent could be supplied rapidly and efficiently through microfluidic channel networks embedded in hydrogels. The computational model takes into account the fluid transport in porous media and the solute convection and diffusion, to simulate the solute distribution and outflux with time in microfluidic hydrogel media. The effect of the channel dimensions and shapes on mass transport rapidity and efficiency was quantitatively evaluated. Experimental data proved the validity of the time dependent concentration profile calculated by the simulation. Lastly, a microfluidic hydrogel solar cell with biomimetic regeneration functionality was demonstrated as a result of the above experimental and modeling studies. A new concept of open and replenishable photovoltaics was constructed on the basis of dye-sensitized solar cells. Photovoltaic reagents, dyes and redox electrolytes, were uniformly delivered via microfluidic networks embedded in a hydrogel, resulting in increase of photocurrent generation. The regeneration process was established, based on the pH dependence of adsorption/desorption kinetics of the dye molecules on a TiO2 photoanode. Complete and reliable recovery of the photocurrent after an accelerated photodegradation in the biomimetic photovoltaics was demonstrated.
Mihl, Casper; Wildberger, Joachim E; Jurencak, Tomas; Yanniello, Michael J; Nijssen, Estelle C; Kalafut, John F; Nalbantov, Georgi; Mühlenbruch, Georg; Behrendt, Florian F; Das, Marco
2013-11-01
Both iodine delivery rate (IDR) and iodine concentration are decisive factors for vascular enhancement in computed tomographic angiography. It is unclear, however, whether the use of high-iodine concentration contrast media is beneficial to lower iodine concentrations when IDR is kept identical. This study evaluates the effect of using different iodine concentrations on intravascular attenuation in a circulation phantom while maintaining a constant IDR. A circulation phantom with a low-pressure venous compartment and a high-pressure arterial compartment simulating physiological circulation parameters was used (heart rate, 60 beats per minute; stroke volume, 60 mL; blood pressure, 120/80 mm Hg). Maintaining a constant IDR (2.0 g/s) and a constant total iodine load (20 g), prewarmed (37°C) contrast media with differing iodine concentrations (240-400 mg/mL) were injected into the phantom using a double-headed power injector. Serial computed tomographic scans at the level of the ascending aorta (AA), the descending aorta (DA), and the left main coronary artery (LM) were obtained. Total amount of contrast volume (milliliters), iodine delivery (grams of iodine), peak flow rate (milliliter per second), and intravascular pressure (pounds per square inch) were monitored using a dedicated data acquisition program. Attenuation values in the AA, the DA, and the LM were constantly measured (Hounsfield unit [HU]). In addition, time-enhancement curves, aortic peak enhancement, and time to peak were determined. All contrast injection protocols resulted in similar attenuation values: the AA (516 [11] to 531 [37] HU), the DA (514 [17] to 531 [32] HU), and the LM (490 [10] to 507 [17] HU). No significant differences were found between the AA, the DA, and the LM for either peak enhancement (all P > 0.05) or mean time to peak (AA, 19.4 [0.58] to 20.1 [1.05] seconds; DA, 21.1 [1.0] to 21.4 [1.15] seconds; LM, 19.8 [0.58] to 20.1 [1.05] seconds). This phantom study demonstrates that constant injection parameters (IDR, overall iodine load) lead to robust enhancement patterns, regardless of the contrast material used. Higher iodine concentration itself does not lead to higher attenuation levels. These results may stimulate a shift in paradigm toward clinical usage of contrast media with lower iodine concentrations (eg, 240 mg iodine/mL) in individual tailored contrast protocols. The use of low-iodine concentration contrast media is desirable because of the lower viscosity and the resulting lower injection pressure.
Bolognese, Leonardo; Falsini, Giovanni; Schwenke, Carsten; Grotti, Simone; Limbruno, Ugo; Liistro, Francesco; Carrera, Arcangelo; Angioli, Paolo; Picchi, Andrea; Ducci, Kenneth; Pierli, Carlo
2012-01-01
Conflicting data have been reported on the effects of low-osmolar and iso-osmolar contrast media on contrast-induced acute kidney injury (CI-AKI). In particular, no clinical trial has yet focused on the effect of contemporary contrast media on CI-AKI, epicardial flow, and microcirculatory function in patients with ST-segment elevation acute myocardial infarction who undergo primary percutaneous coronary intervention. The Contrast Media and Nephrotoxicity Following Coronary Revascularization by Angioplasty for Acute Myocardial Infarction (CONTRAST-AMI) trial is a prospective, randomized, single-blind, parallel-group, noninferiority study aiming to evaluate the effects of the low-osmolar contrast medium iopromide compared to the iso-osmolar agent iodixanol on CI-AKI and tissue-level perfusion in patients with ST-segment elevation acute myocardial infarction. Four hundred seventy-five consecutive, unselected patients who underwent primary percutaneous coronary intervention were randomized to iopromide (n = 239) or iodixanol (n = 236). All patients received high-dose N-acetylcysteine and hydration. The primary end point was the proportion of patients with serum creatinine (sCr) increases ≥25% from baseline to 72 hours. Secondary end points were Thrombolysis In Myocardial Infarction (TIMI) myocardial perfusion grade, increase in sCr ≥50%, increase in sCr ≥0.5 or ≥1 mg/dl, and 1-month major adverse cardiac events. The primary end point occurred in 10% of the iopromide group and in 13% of the iodixanol group (95% confidence interval -9% to 3%, p for noninferiority = 0.0002). A TIMI myocardial perfusion grade of 0 or 1 was present in 14% of patients in the 2 groups. No differences between the 2 groups were found in any of the secondary analyses of sCr increase. No significant difference in 1-month major adverse cardiac events was found (8% vs 6%, p = 0.37). In conclusion, in a population of unselected patients with ST-segment elevation acute myocardial infarction who underwent primary percutaneous coronary intervention, iopromide was not inferior to iodixanol in the occurrence of CI-AKI; no significant differences were found in terms of tissue-level reperfusion and major adverse cardiac events between the 2 contrast agents. Copyright © 2012 Elsevier Inc. All rights reserved.
Hypersensitivity to contrast media and dyes.
Brockow, Knut; Sánchez-Borges, Mario
2014-08-01
This article updates current knowledge on hypersensitivity reactions to diagnostic contrast media and dyes. After application of a single iodinated radiocontrast medium (RCM), gadolinium-based contrast medium, fluorescein, or a blue dye, a hypersensitivity reaction is not a common finding; however, because of the high and still increasing frequency of those procedures, patients who have experienced severe reactions are nevertheless frequently encountered in allergy departments. Evidence on allergologic testing and management is best for iodinated RCM, limited for blue dyes, and insufficient for fluorescein. Skin tests can be helpful in the diagnosis of patients with hypersensitivity reactions to these compounds. Copyright © 2014 Elsevier Inc. All rights reserved.
Tissue specific MR contrast media role in the differential diagnosis of cirrhotic liver nodules.
Lupescu, Ioana Gabriela; Capsa, Razvan A; Gheorghe, Liana; Herlea, Vlad; Georgescu, Serban A
2008-09-01
State-of-the-art magnetic resonance (MR) imaging using tissue specific contrast media facilitates detection and characterization in most cases of hepatic nodules. According to the currently used nomenclature, in liver cirrhosis there are only two major types of hepatocellular nodular lesions: regenerative lesions and dysplastic or neoplastic lesions. The purpose of this clinical imaging review is to provide information on the properties of tissue-specific MR contrast agents and on their usefulness in the demonstration of the pathologic changes that take place at the level of the hepatobiliary and reticuloendothelial systems during the carcinogenesis in liver cirrhosis.
Ab initio calculations of ionic hydrocarbon compounds with heptacoordinate carbon.
Wang, George; Rahman, A K Fazlur; Wang, Bin
2018-04-25
Ionic hydrocarbon compounds that contain hypercarbon atoms, which bond to five or more atoms, are important intermediates in chemical synthesis and may also find applications in hydrogen storage. Extensive investigations have identified hydrocarbon compounds that contain a five- or six-coordinated hypercarbon atom, such as the pentagonal-pyramidal hexamethylbenzene, C 6 (CH 3 ) 6 2+ , in which a hexacoordinate carbon atom is involved. It remains challenging to search for further higher-coordinated carbon in ionic hydrocarbon compounds, such as seven- and eight-coordinated carbon. Here, we report ab initio density functional calculations that show a stable 3D hexagonal-pyramidal configuration of tropylium trication, (C 7 H 7 ) 3+ , in which a heptacoordinate carbon atom is involved. We show that this tropylium trication is stable against deprotonation, dissociation, and structural deformation. In contrast, the pyramidal configurations of ionic C 8 H 8 compounds, which would contain an octacoordinate carbon atom, are unstable. These results provide insights for developing new molecular structures containing hypercarbon atoms, which may have potential applications in chemical synthesis and in hydrogen storage. Graphical abstract Possible structural transformations of stable configurations of (C 7 H 7 ) 3+ , which may result in the formation of the pyramidal structure that involves a heptacoordinate hypercarbon atom.
Toba, Faustino A.; Visai, Livia; Trivedi, Sheetal; Lowy, Franklin D.
2012-01-01
Staphylococcus epidermidis infections are common complications of prosthetic device implantation. SdrF, a surface protein, appears to play a critical role in the initial colonization step by adhering to type I collagen and Dacron™. The role of ionic interactions in S. epidermidis adherence to prosthetic material was examined. SdrF was cloned and expressed in Lactococcus lactis. The effect of pH, cation concentration and detergents on adherence to different types of plastic surfaces was assessed by crystal violet staining and bacterial cell counting. SdrF, in contrast with controls and other S. epidermidis surface proteins, bound to hydrophobic materials such as polystyrene. Binding was an ionic interaction and was affected by surface charge of the plastic, pH and cation concentration. Adherence of the SdrF construct was increased to positively charged plastics and was reduced by increasing concentrations of Ca2+ and Na+. Binding was optimal at pH 7.4. Kinetic studies demonstrated that the SdrF B domain, as well as one of the B subdomains was sufficient to mediate binding. The SdrF construct also bound more avidly to Goretex™ than the lacotococcal control. SdrF is a multifunctional protein that contributes to prosthetic devices infections by ionic, as well as specific receptor-ligand interactions. PMID:23039791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arendt, Dustin L.; Volkova, Svitlana
Analyzing and visualizing large amounts of social media communications and contrasting short-term conversation changes over time and geo-locations is extremely important for commercial and government applications. Earlier approaches for large-scale text stream summarization used dynamic topic models and trending words. Instead, we rely on text embeddings – low-dimensional word representations in a continuous vector space where similar words are embedded nearby each other. This paper presents ESTEEM,1 a novel tool for visualizing and evaluating spatiotemporal embeddings learned from streaming social media texts. Our tool allows users to monitor and analyze query words and their closest neighbors with an interactive interface.more » We used state-of- the-art techniques to learn embeddings and developed a visualization to represent dynamically changing relations between words in social media over time and other dimensions. This is the first interactive visualization of streaming text representations learned from social media texts that also allows users to contrast differences across multiple dimensions of the data.« less
Saade, Charbel; Mohamad, May; Kerek, Racha; Hamieh, Nadine; Alsheikh Deeb, Ibrahim; El-Achkar, Bassam; Tamim, Hani; Abdul Razzak, Farah; Haddad, Maurice; Abi-Ghanem, Alain S; El-Merhi, Fadi
The aim of this article was to investigate the opacification of the renal vasculature and the urogenital system during computed tomography urography by using a quadruple-phase contrast media in a triphasic scan protocol. A total of 200 patients with possible urinary tract abnormalities were equally divided between 2 protocols. Protocol A used the conventional single bolus and quadruple-phase scan protocol (pre, arterial, venous, and delayed), retrospectively. Protocol B included a quadruple-phase contrast media injection with a triphasic scan protocol (pre, arterial and combined venous, and delayed), prospectively. Each protocol used 100 mL contrast and saline at a flow rate of 4.5 mL. Attenuation profiles and contrast-to-noise ratio of the renal arteries, veins, and urogenital tract were measured. Effective radiation dose calculation, data analysis by independent sample t test, receiver operating characteristic, and visual grading characteristic analyses were performed. In arterial circulation, only the inferior interlobular arteries in both protocols showed a statistical significance (P < 0.05). Venously, the inferior vena cava, proximal and distal renal veins demonstrated a significant opacification reduction in protocol B than in protocol A (P < 0.001). Protocol B showed a significantly higher mean contrast-to-noise ratio than protocol A (protocol B: 22.68 ± 13.72; protocol A: 14.75 ± 5.76; P < 0.001). Radiation dose was significantly reduced in protocol B (7.38 ± 2.22 mSv) than in protocol A (12.28 ± 2.72 mSv) (P < 0.001). Visual grading characteristic (P < 0.027) and receiver operating characteristic (P < 0.0001) analyses demonstrated a significant preference for protocol B. In computed tomography urography, augmented quadruple-phase contrast media and triphasic scan protocol usage increases the image quality at a reduced radiation dose.
Sadeghi, Mohsen Mirmohammad; Gharipour, Mojgan; Nilforoush, Peiman; Shamsolkotabi, Hamid; Sadeghi, Hamid Mirmohammad; Kiani, Amjad; Sadeghi, Pouya Mirmohammad; Farahmand, Niloufar
2011-04-01
There is limited data about the influence of timing of cardiac surgery in relation to diagnostic angiography and/or the impact of the amount of contrast media used during angiography on the occurance of acute renal failure (ARF). Therefore, in the present study the effect of the time interval between diagnostic angiography and cardiac surgery and also the amount of contrast media used during the diagnostic procedure on the incidence of ARF after cardiac surgery was investigated. Data of 1177 patients who underwent different types of cardiac surgeries after cardiac catheterization were prospectively examined. The influence of time interval between cardiac catheterization and surgery as well as the amount of contrast agent on postoperative ARF were assessed using multivariable logistic regression. The patients who progressed to ARF were more likely to have received a higher dose of contrast agent compared to the mean dose. However, the time interval between cardiac surgery and last catheterization was not significantly different between the patients with and without ARF (p = 0.05). Overall, postoperative peak creatinine was highest on day 0, then decreased and remained significantly unchanged after this period. Overall prevalence of acute renal failure during follow-up period had a changeable trend and had the highest rates in days 1 (53.57%) and 6 (52.17%) after surgery. Combined coronary bypass and valve surgery were the strongest predictor of postoperative ARF (OR: 4.976, CI = 1.613-15.355 and p = 0.002), followed by intra-aortic balloon pump insertion (OR: 6.890, CI = 1.482-32.032 and p = 0.009) and usage of higher doses of contrast media agent (OR: 1.446, CI = 1.033-2.025 and p = 0.031). Minimizing the amount of contrast agent has a potential role in reducing the incidence of postoperative ARF in patients undergoing cardiac surgery, but delaying cardiac surgery after exposure to these agents might not have this protective effect.
Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.
Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong
2014-09-01
X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.
Abnormal gel flotation caused by contrast media during adrenal vein sampling.
Lima-Oliveira, Gabriel; Lippi, Giuseppe; Salvagno, Gian Luca; Gelati, Matteo; Bassi, Antonella; Contro, Alberto; Pizzolo, Francesca; Guidi, Gian Cesare
2016-10-15
During adrenal venous sampling (AVS) procedure, radiologists administer a contrast agent via the catheter to visualize the proper catheter position. A patient with primary aldosteronism diagnostic-hypothesis was admitted for AVS. A venogram was performed to confirm the catheter's position with 2mL of Iopamidol 300 mg/mL. Samples were collected with syringe connected to a hydrophilic coated catheter by low-pressure aspiration from each of the four collection sites: inferior vena cava in the suprarenal portion, inferior vena cava in the infrarenal portion, left adrenal vein, and right adrenal vein; then immediately transferred from syringe to tubes with gel separator. All tubes were centrifuged at 1200 x g for 10 minutes. At the end of centrifugation process, primary blood tubes containing blood from inferior vena cava and left adrenal vein exhibited the standard gel separator barrier, while tubes from right adrenal vein showed abnormal flotation of gel separator. The radiologist confirmed the usage of 2.6 mL instead of 2.0 mL of Iopamidol 300 mg/mL. This iodinated contrast media, with 1.33 g/cm 3 of density, was used close to the right adrenal vein due to some difficulty to access it. The abnormal flotation of gel separator in samples taken from right adrenal vein can be explained by the usage of the iodinated contrast media. We suggest using plain-tubes (without gel separator) for AVS in order to avoid preanalytical nonconformities. Moreover, a blood volume equivalent to twice the catheter extension should be discarded to eliminate residual contrast media before collection of samples for laboratory assays.
2017-05-12
were resolved by a technical approach that included three well-integrated experimental tasks follows: Task A: Quantify the impact of time- dependent ...aggregate breakdown and colloid dispersion depending on the extent of Fe(III) reduction and altered the pore structure and chemical reactivity of the porous...have significant effect on the transport of molecular and colloidal tracers (but not on the ionic tracer Br-) and colloid generation depending on
Effects of diatrizoate and iopamidol on spermatogenesis.
Yaghmai, V; Harapanhalli, R S; Patel, Y D; Baker, S R; Rao, D V
1993-12-01
The biological effects of iodinated contrast media were examined by using spermatogenesis in mouse testis as the experimental model. Spermhead survival and abnormality assays were used as the biological end points. Diatrizoate meglumine/diatrizoate sodium and iopamidol were administered intravenously at equal rates and concentrations. Testicular uptake and clearance of these contrast agents were examined by high-performance liquid chromatography techniques. Appropriate mannitol solutions were employed as osmolality controls. Intravenous administration of the contrast agent or its respective mannitol control resulted in approximately a 30% decrease in spermhead count. A dose-related experiment with mannitol demonstrated that the spermhead count decreased rapidly until 600 mOsm/kg was reached, beyond which this decrease was minimal. Clearance of both contrast media was complete in approximately 4 hours. No significant increase in the induction of spermhead abnormalities was observed. Osmotic substances, such as iodinated contrast agents, affect the process of spermatogenesis.
Cardoso-Leite, Pedro; Kludt, Rachel; Vignola, Gianluca; Ma, Wei Ji; Green, C Shawn; Bavelier, Daphne
2016-01-01
Technology has the potential to impact cognition in many ways. Here we contrast two forms of technology usage: (1) media multitasking (i.e., the simultaneous consumption of multiple streams of media, such a texting while watching TV) and (2) playing action video games (a particular subtype of video games). Previous work has outlined an association between high levels of media multitasking and specific deficits in handling distracting information, whereas playing action video games has been associated with enhanced attentional control. Because these two factors are linked with reasonably opposing effects, failing to take them jointly into account may result in inappropriate conclusions as to the impacts of technology use on attention. Across four tasks (AX-continuous performance, N-back, task-switching, and filter tasks), testing different aspects of attention and cognition, we showed that heavy media multitaskers perform worse than light media multitaskers. Contrary to previous reports, though, the performance deficit was not specifically tied to distractors, but was instead more global in nature. Interestingly, participants with intermediate levels of media multitasking sometimes performed better than both light and heavy media multitaskers, suggesting that the effects of increasing media multitasking are not monotonic. Action video game players, as expected, outperformed non-video-game players on all tasks. However, surprisingly, this was true only for participants with intermediate levels of media multitasking, suggesting that playing action video games does not protect against the deleterious effect of heavy media multitasking. Taken together, these findings show that media consumption can have complex and counterintuitive effects on attentional control.
Cardoso-Leite, Pedro; Kludt, Rachel; Vignola, Gianluca; Ma, Wei Ji; Green, C. Shawn; Bavelier, Daphne
2015-01-01
Technology has the potential to impact cognition in many ways. Here we contrast two forms of technology usage: 1) media multitasking (i.e., the simultaneous consumption of multiple streams of media, such a texting while watching TV) and 2) playing action video games (a particular sub-type of video game). Previous work has outlined an association between high levels of media multitasking and specific deficits in handling distracting information, while playing action video games has been associated with enhanced attentional control. As these two factors are linked with reasonably opposing effects, failing to take them jointly into account may result in inappropriate conclusions as to the impact of technology use on attention. Across four experiments (AX-CPT, N-back, Task-switching and Filter task), testing different aspects of attention and cognition, we show that heavy media multitaskers perform worse than light media multitaskers. Contrary to previous reports though, the performance deficit was not specifically tied to distractors, but was instead more global in nature. Interestingly, participants with intermediate levels of media multitasking occasionally performed better than both light and heavy media multitaskers suggesting that the effects of increasing media multitasking are not monotonic. Action video game players, as expected, outperformed non-video game players on all tasks. However, surprisingly this was true only for participants with intermediate levels of media multitasking, suggesting that playing action video games does not protect against the deleterious effect of heavy media multitasking. Taken together this study shows that media consumption can have complex and counter-intuitive effects on attentional control. PMID:26474982
Celik, Omer; Ozturk, Derya; Akin, Fatih; Ayca, Burak; Yalcın, Ahmet Arif; Erturk, Mehmet; Bıyık, Ismail; Ayaz, Ahmet; Akturk, Ibrahim Faruk; Enhos, Asım; Aslan, Serkan
2015-07-01
We hypothesized that contrast media volume-estimated glomerular filtration rate (CV-e-GFR) ratio may be a predictor of contrast media-induced acute kidney injury (CI-AKI). We investigated the associations between CV-e-GFR ratio and CI-AKI in 597 patients undergoing primary percutaneous coronary intervention (pPCI). An absolute ≥0.3 mg/dL increase in serum creatinine compared with baseline levels within 48 hours after the procedure was considered as CI-AKI; 78 (13.1%) of the 597 patients experienced CI-AKI. The amount of contrast during procedure was higher in the CI-AKI group than in those without CI-AKI (153 vs 135 mL, P = .003). The CV-e-GFR ratio was significantly higher in patients with CI-AKI than without (2.3 vs 1.5, P < .001). In multivariate analysis, independent predictors of CI-AKI were low left ventricular ejection fraction (P = .018, odds ratio [OR] = 0.966), e-GFR <60 mL/min (P = .012, OR = 2.558), and CV-e-GFR >2 (P < .001, OR = 5.917). In conclusion, CV-e-GFR ratio is significantly associated with CI-AKI after pPCI. © The Author(s) 2014.
Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells.
Zhao, Fang; Malayev, Vyacheslav; Rao, Venkatramana; Hussain, Munir
2004-01-01
Sodium lauryl sulfate (SLS) is a commonly used surfactant in dissolution media for poorly water soluble drugs. However, it has occasionally been observed that SLS negatively impacts the dissolution of drug products formulated in gelatin capsules. This study investigated the effect of SLS on the dissolution of hard gelatin capsule shells. The USP paddle method was used with online UV monitoring at 214 nm (peptide bond). Empty size #0 capsule shells were held to the bottom of the dissolution vessel by magnetic three-prong sinkers. SLS significantly slowed down the dissolution of gelatin shells at pH < 5. Visually, the gelatin shells transformed into some less-soluble precipitate under these conditions. This precipitate was found to contain a higher sulfur content than the gelatin control sample by elemental analysis, indicating that SLS is part of the precipitate. Additionally, the slowdown of capsule shell dissolution was shown to be dependent on the SLS concentration and the ionic strength of the media. SLS interacts with gelatin to form a less-soluble precipitate at pH < 5. The use of SLS in dissolution media at acidic pH should be carefully evaluated for gelatin capsule products.
Schlick, M Christian; Kapernaum, Nadia; Neidhardt, Manuel M; Wöhrle, Tobias; Stöckl, Yannick; Laschat, Sabine; Giesselmann, Frank
2018-06-06
The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10 -11 m V -2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ferreira, L A; Chervenak, A; Placko, S; Kestranek, A; Madeira, P P; Zaslavsky, B Y
2014-11-14
Solubilities of 17 polar organic compounds in aqueous solutions of Na2SO4, NaCl, NaClO4, and NaSCN at the salt concentrations of up to 1.0-2.0 M were determined and the Setschenow constant, ksalt, values were estimated. It was found that NaClO4 may display both salting-in and salting-out effects depending on the particular compound structure. The Setschenow constant values for all the polar compounds examined in different salt solutions are found to be interrelated. Similar relationships were observed for partition coefficients of nonionic organic compounds in aqueous polyethylene glycol-sodium sulfate two-phase systems in the presence of different salt additives reported previously [Ferreira et al., J. Chromatogr. A, 2011, 1218, 5031], and for the effects of different salts on optical rotation of amino acids reported by Rossi et al. [J. Phys. Chem. B, 2007, 111, 10510]. In order to explain the observed relationships it is suggested that all the effects observed originate as responses of the compounds to the presence of a given ionic environment and its interaction with the compounds by forming direct or solvent-separated ionic pairs. The response is compound-specific and its strength is determined by the compound structure and the type (and concentration) of ions inducing the response.
New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel.
Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe; Cowins, Janet V
2010-09-01
Ionic liquids (ILs) are being explored as solvents for the enzymatic methanolysis of triglycerides. However, most available ILs (especially hydrophobic ones) have poor capability in dissolving lipids, while hydrophilic ILs tend to cause enzyme inactivation. Recently, we synthesized a new type of ether-functionalized ionic liquids (ILs) carrying anions of acetate or formate; they are capable of dissolving a variety of substrates and are also lipase-compatible (Green Chem., 2008, 10, 696-705). In the present study, we carried out the lipase-catalyzed transesterifications of Miglyol oil 812 and soybean oil in these novel ILs. These ILs are capable of dissolving oils at the reaction temperature (50 degrees C); meanwhile, lipases maintained high catalytic activities in these media even in high concentrations of methanol (up to 50% v/v). High conversions of Miglyol oil were observed in mixtures of IL and methanol (70/30, v/v) when the reaction was catalyzed by a variety of lipases and different enzyme preparations (free and immobilized), especially with the use of two alkylammonium ILs 2 and 3. The preliminary study on the transesterification of soybean oil in IL/methanol mixtures further confirms the potential of using oil-dissolving and lipase-stabilizing ILs in the efficient production of biodiesels.
Water Lone Pair Delocalization in Classical and Quantum Descriptions of the Hydration of Model Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remsing, Richard C.; Duignan, Timothy T.; Baer, Marcel D.
Understanding the nature of ionic hydration at a fundamental level has eluded scientists despite intense interest for nearly a century. In particular, the microscopic origins of the asymmetry of ion solvation thermodynamics with respect to the sign of the ionic charge remains a mystery. Here, we determine the response of accurate quantum mechanical water models to strong nanoscale solvation forces arising from excluded volumes and ionic electrostatic fields. This is compared to the predictions of two important limiting classes of classical models of water with fixed point changes, differing in their treatment of "lone-pair" electrons. Using the quantum water modelmore » as our standard of accuracy, we find that a single fixed classical treatment of lone pair electrons cannot accurately describe solvation of both apolar and cationic solutes, underlining the need for a more flexible description of local electronic effects in solvation processes. However, we explicitly show that all water models studied respond to weak long-ranged electrostatic perturbations in a manner that follows macroscopic dielectric continuum models, as would be expected. We emphasize the importance of these findings in the context of realistic ion models, using density functional theory and empirical models, and discuss the implications of our results for quantitatively accurate reduced descriptions of solvation in dielectric media.« less
Ma, Manman; Xu, Zhenli
2014-12-28
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media
NASA Astrophysics Data System (ADS)
Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie
2016-10-01
Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30-40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks.