Surface hopping investigation of the relaxation dynamics in radical cations
Assmann, Mariana; Weinacht, Thomas; Matsika, Spiridoula
2016-01-19
Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in thesemore » systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Furthermore, examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.« less
Ishikawa, Naoto; Mizuno, Yoshifumi; Takamatsu, Satoshi; Ishikawa, Tadahiko; Koshihara, Shin-ya
2008-11-17
Chemically induced longitudinal contraction of the square-antiprism coordination polyhedron of a peripherically substituted bis(phthalocyaninato)dysprosiumate(III), a dysprosium-based single-4f-ionic single-molecule magnet having a J z = +/- (13)/ 2 Kramers doublet ground state, resulted in drastic changes in dynamical magnetism including a doubling of the energy barrier, a 2-order-of-magnitude decrease of the spin reversal rate, a significant rise of the blocking temperature, and the first observation of the emergence of a large remanent magnetization.
NASA Astrophysics Data System (ADS)
Langenberg, J. H.; Bucur, I. B.; Archirel, P.
1997-09-01
We show that in the simple case of van der Waals ionic clusters, the optimisation of orbitals within VB can be easily simulated with the help of pseudopotentials. The procedure yields the ground and the first excited states of the cluster simultaneously. This makes the calculation of potential energy surfaces for tri- and tetraatomic clusters possible, with very acceptable computation times. We give potential curves for (ArCO) +, (ArN 2) + and N 4+. An application to the simulation of the SCF method is shown for Na +H 2O.
Strong interference effects in the resonant Auger decay of atoms induced by intense x-ray fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demekhin, Philipp V.; Cederbaum, Lorenz S.
2011-02-15
The theory of resonant Auger decay of atoms in a high-intensity coherent x-ray pulse is presented. The theory includes the coupling between the ground state and the resonance due to an intense x-ray pulse, taking into account the decay of the resonance and the direct photoionization of the ground state, both populating the final ionic states coherently. The theory also considers the impact of the direct photoionization of the resonance state itself which typically populates highly excited ionic states. The combined action of the resonant decay and of the direct ionization of the ground state in the field induces amore » non-Hermitian time-dependent coupling between the ground and the ''dressed'' resonance stats. The impact of these competing processes on the total electron yield and on the 2s{sup 2}2p{sup 4}({sup 1}D)3p {sup 2}P spectator and 2s{sup 1}2p{sup 6} {sup 2}S participator Auger decay spectra of the Ne 1s{yields}3p resonance is investigated. The role of the direct photoionization of the ground state and of the resonance increases dramatically with the field intensity. This results in strong interference effects with distinct patterns in the electron spectra, which differ for the participator and spectator final states.« less
Photoelectron spectroscopy of heavy atoms and molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.G.
1979-07-01
The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target.
Mobilities of ground-state and metastable O/+/, O2/+/, O/2+/, and O2/2+/ ions in helium and neon
NASA Astrophysics Data System (ADS)
Johnsen, R.; Biondi, M. A.; Hayashi, M.
1982-09-01
The ionic mobilities of O(+), O2(+), O(2+), and O2(2+) in helium and neon have been measured using a selected-ion drift apparatus (SIDA). It is found that the mobilities of both O(+) and O2(+) ions in the metastable states (2D or 4Pi u) are measurably smaller than those of the same ions carried out by using known, state-selective ion-molecule reactions. A similar mobility differentiation of ground-state and metastable ions was not observed for the O(2+) and O2(2+) ions.
Ando, Rômulo A; Brown-Xu, Samantha E; Nguyen, Lisa N Q; Gustafson, Terry L
2017-09-20
In this work we demonstrate the use of the push-pull model system 4-(dimethylamino)benzonitrile (DMABN) as a convenient molecular probe to investigate the local solvation structure and dynamics by means of time-resolved infrared spectroscopy (TRIR). The photochemical features associated with this system provide several advantages due to the high charge separation between the ground and charge transfer states involving the characteristic nitrile bond, and an excited state lifetime that is long enough to observe the slow solvation dynamics in organic solvents and ionic liquids. The conversion from a locally excited state to an intramolecular charge transfer state (LE-ICT) in ionic liquids shows similar kinetic lifetimes in comparison to organic solvents. This similarity confirms that such conversion depends solely on the intramolecular reorganization of DMABN in the excited state, and not by the dynamics of solvation. In contrast, the relative shift of the ν(CN) vibration during the relaxation of the ICT state reveals two distinct lifetimes that are sensitive to the solvent environment. This study reveals a fast time component which is attributed to the dipolar relaxation of the solvent and a slower time component related to the rotation of the dimethylamino group of DMABN.
Fluorescent temperature sensor
Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM
2009-03-03
The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.
Zhang, Xiuyun; Ng, Man-Fai; Wang, Yanbiao; Wang, Jinlan; Yang, Shuo-Wang
2009-09-22
Europium (Eu)-cyclootetatrene (COT = C(8)H(8)) multidecker clusters (Eu(n)COT(n+1), n = 1-4) are studied by relativistic density functional theory calculations. These clusters are found to be thermodynamically stable with freely rotatable COT rings, and their total magnetic moments (MMs) increase linearly along with the number of Eu atoms. Each Eu atom contributes about 7 mu(B) to the cluster. Meanwhile, the internal COT rings have little MM contribution while the external COT rings have about 1 mu(B) MM aligned in opposite direction to that of the Eu atoms. The total MM of the Eu(n)COT(n+1) clusters can thus be generalized as 7n - 2 mu(B) where n is the number of Eu atoms. Besides, the ground states of these clusters are ferromagnetic and energetically competitive with the antiferromagnetic states, meaning that their spin states are very unstable, especially for larger clusters. More importantly, we uncover an interesting bonding characteristic of these clusters in which the interior ionic structure is capped by two hybrid covalent-ionic terminals. We suggest that such a characteristic makes the Eu(n)COT(n+1) clusters extremely stable. Finally, we reveal that for the positively charged clusters, the hybrid covalent-ionic terminals will tip further toward the interior part of the clusters to form deeper covalent-ionic caps. In contrast, the negatively charged clusters turn to pure ionic structures.
Dissociative recombination of HCl+
NASA Astrophysics Data System (ADS)
Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann
2017-08-01
The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.
Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies
Seo, Hosung; Govoni, Marco; Galli, Giulia
2016-02-15
Spin defects in wide-band gap semiconductors are promising systems for the realization of quantum bits, or qubits, in solid-state environments. To date, defect qubits have only been realized in materials with strong covalent bonds. Here, we introduce a strain-driven scheme to rationally design defect spins in functional ionic crystals, which may operate as potential qubits. In particular, using a combination of state-of-the-art ab-initio calculations based on hybrid density functional and many-body perturbation theory, we predicted that the negatively charged nitrogen vacancy center in piezoelectric aluminum nitride exhibits spin-triplet ground states under realistic uni- and bi-axial strain conditions; such states maymore » be harnessed for the realization of qubits. As a result, the strain-driven strategy adopted here can be readily extended to a wide range of point defects in other wide-band gap semiconductors, paving the way to controlling the spin properties of defects in ionic systems for potential spintronic technologies.« less
Dissociative recombination of HCl.
Larson, Åsa; Fonseca Dos Santos, Samantha; E Orel, Ann
2017-08-28
The dissociative recombination of HCl + , including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0, to the first three excited vibrational states, v = 1, v = 2, and v = 3, are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.
NASA Astrophysics Data System (ADS)
Koukounas, Constantine; Kardahakis, Stavros; Mavridis, Aristides
2004-06-01
The electronic structure of the ground and low-lying states of the diatomic fluorides TiF, VF, CrF, and MnF was examined by multireference and coupled cluster methods in conjunction with extended basis sets. For a total of 34 states we report binding energies, spectroscopic constants, dipole moments, separation energies, and charge distributions. In addition, for all states we have constructed full potential curves. The suggested ground state binding energies of TiF(X 4Φ), VF(X 5Π), CrF(X 6Σ+), and MnF(X 7Σ+) are 135, 130, 110, and 108 kcal/mol, respectively, with first excited states A 4Σ-, A 5Δ, A 6Π, and a 5Σ+ about 2, 3, 23, and 19 kcal/mol higher. In essence all our numerical findings are in harmony with experimental results. For all molecules and states studied it is clear that the in situ metal atom (M) shows highly ionic character, therefore the binding is described realistically by M+F-.
Koukounas, Constantine; Kardahakis, Stavros; Mavridis, Aristides
2004-06-22
The electronic structure of the ground and low-lying states of the diatomic fluorides TiF, VF, CrF, and MnF was examined by multireference and coupled cluster methods in conjunction with extended basis sets. For a total of 34 states we report binding energies, spectroscopic constants, dipole moments, separation energies, and charge distributions. In addition, for all states we have constructed full potential curves. The suggested ground state binding energies of TiF(X (4)Phi), VF(X (5)Pi), CrF(X (6)Sigma(+)), and MnF(X (7)Sigma(+)) are 135, 130, 110, and 108 kcal/mol, respectively, with first excited states A (4)Sigma(-), A (5)Delta, A (6)Pi, and a (5)Sigma(+) about 2, 3, 23, and 19 kcal/mol higher. In essence all our numerical findings are in harmony with experimental results. For all molecules and states studied it is clear that the in situ metal atom (M) shows highly ionic character, therefore the binding is described realistically by M(+)F(-). (c) 2004 American Institute of Physics.
Ionic migration and weathering in frozen Antarctic soils
NASA Technical Reports Server (NTRS)
Ugolini, F. C.; Anderson, D. M.
1973-01-01
Soils of continental Antarctica are forming in one of the most severe terrestrial environments. Continuously low temperatures and the scarcity of water in the liquid state result in the development of desert-type soils. In an earlier experiment to determine the degree to which radioactive Na(Cl-36) would migrate from a shallow point source in permafrost, movement was observed. To confirm this result, a similar experiment involving (Na-22)Cl was conducted. Significantly less movement of the Na-22 ion was observed. Ionic movement in the unfrozen interfacial films at mineral surfaces in frozen ground is held to be important in chemical weathering in Antarctic soils.
Resonant interatomic Coulombic decay in HeNe: Electron angular emission distributions
NASA Astrophysics Data System (ADS)
Mhamdi, A.; Trinter, F.; Rauch, C.; Weller, M.; Rist, J.; Waitz, M.; Siebert, J.; Metz, D.; Janke, C.; Kastirke, G.; Wiegandt, F.; Bauer, T.; Tia, M.; Cunha de Miranda, B.; Pitzer, M.; Sann, H.; Schiwietz, G.; Schöffler, M.; Simon, M.; Gokhberg, K.; Dörner, R.; Jahnke, T.; Demekhin, Ph. Â. V.
2018-05-01
We present a joint experimental and theoretical study of resonant interatomic Coulombic decay (RICD) in HeNe employing high resolution cold target recoil ion momentum spectroscopy and ab initio electronic structure and nuclear dynamics calculations. In particular, laboratory- and molecular-frame angular emission distributions of RICD electrons are examined in detail. The exciting-photon energy-dependent anisotropy parameter β (ω ) , measured for decay events that populate bound HeNe+ ions, is in agreement with the calculations performed for the ground ionic state X2Σ1/2 + . A contribution from the a2Π3 /2 final ionic state is found to be negligible. For the He +Ne+ fragmentation channel, the observed laboratory-frame angular distribution of RICD electrons is explained by a slow homogeneous dissociation of bound vibrational levels of the final ionic state A2Π1 /2 into vibrational continua of the lower lying states X2Σ1/2 + and a2Π3 /2 . Our calculations predict that the angular distributions of RICD electrons in the body-fixed dipole plane provide direct access to the electronic character (i.e., symmetry) of intermediate vibronic resonances. However, because of the very slow dissociation of the A2Π1 /2 state, the molecular-frame angular distributions of RICD electrons in the He +Ne+ fragmentation channel are inaccessible to our coincidence experiment.
Method for measuring surface temperature
Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM
2009-07-28
The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.
Diversity of Chemical Bonding and Oxidation States in MS 4 Molecules of Group 8 Elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wei; Jiang, Ning; Schwarz, W. H. Eugen
The geometric and electronic ground-state structures of six MS 4 molecules (M = group-8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density-functional and correlated wave-function approaches. The MS 4 species are compared to analogous MO 4 species recently investi-gated (Inorg. Chem. 2016, 55: 4616). Metal oxidation state (MOS) of high value VIII appears in low- spin singlet Td geometric species (Os,Hs)S 4 and (Ru,Os,Hs)O 4, whereas low MOS=II appears in high- spin septet D 2d species Fe(S 2) 2 and (slightly excited) metastable Fe(O 2) 2. The ground states of all other moleculesmore » have intermediate MOS values, containing S 2-, S 2 2-, S2 1- (and resp. O 2--, O 1-, O 2 2-, O 2 1-) ligands, bonded by ionic, covalent and correlative contributions.« less
Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Majdi, Youssef; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al Mogren, Muneerah Mogren; Schwell, Martin
2015-02-19
For fully understanding the light-molecule interaction dynamics at short time scales, recent theoretical and experimental studies proved the importance of accurate characterizations not only of the ground (D0) but also of the electronic excited states (e.g., D1) of molecules. While ground state investigations are currently straightforward, those of electronic excited states are not. Here, we characterized the à electronic state of ionic thymine (T(+)) DNA base using explicitly correlated coupled cluster ab initio methods and state-of-the-art synchrotron-based electron/ion coincidence techniques. The experimental spectrum is composed of rich and long vibrational progressions corresponding to the population of the low frequency modes of T(+)(Ã). This work challenges previous numerous works carried out on DNA bases using common synchrotron and VUV-based photoelectron spectroscopies. We provide hence a powerful theoretical and experimental framework to study the electronic structure of ionized DNA bases that could be generalized to other medium-sized biologically relevant systems.
USDA-ARS?s Scientific Manuscript database
Auto-fluorescent mapping of plant cell walls was used to visualize cellulose and lignin in pristine switchgrass (Panicum virgatum) stems to determine the mechanisms of biomass dissolution during ionic liquid pretreatment. The addition of ground switchgrass to the ionic liquid 1-n-ethyl-3-methylimid...
Tuning Frustration in Rare Earth Pyrochlores by Platinum Substitution
NASA Astrophysics Data System (ADS)
Hallas, Alannah; Gaudet, Jonathan; Sharma, Arzoo; Wilson, Murray; Cai, Yipeng; Tachibana, Makoto; Wiebe, Chris; Gaulin, Bruce; Luke, Graeme
A successful mechanism for exploring the rich physics of rare earth pyrochlores, R2B2O7, is to substitute the non-magnetic B-site. Varying the ionic radius of the B-site induces an internal chemical pressure. Some rare earths are robust to substitutions; for example, the holmium-based pyrochlores all exhibit a dipolar spin ice state. In the case of other rare earths such as ytterbium, the ground states are remarkably fragile to chemical pressure. In this talk, I will introduce two materials with a new non-magnetic B-site: platinum. The ionic radius of platinum is comparable to that of titanium, which occupies the B-site in the most well-studied family of pyrochlores. Thus, platinum does not induce a strong chemical pressure on the lattice. Nevertheless, using Gd2Pt2O7 and Er2Pt2O7 as examples, I will show that platinum does affect a dramatic change on the magnetic properties. We trace this effect to platinum's empty eg orbitals, which mediate superexchange pathways not available in other rare earth pyrochlores. In Gd2Pt2O7, this results in a striking 160% enhancement of TN as compared to other Gd-based pyrochlores. In Er2Pt2O7, the ordering temperature is strongly suppressed and the ground state is altered.
Two-state model based on the block-localized wave function method
NASA Astrophysics Data System (ADS)
Mo, Yirong
2007-06-01
The block-localized wave function (BLW) method is a variant of ab initio valence bond method but retains the efficiency of molecular orbital methods. It can derive the wave function for a diabatic (resonance) state self-consistently and is available at the Hartree-Fock (HF) and density functional theory (DFT) levels. In this work we present a two-state model based on the BLW method. Although numerous empirical and semiempirical two-state models, such as the Marcus-Hush two-state model, have been proposed to describe a chemical reaction process, the advantage of this BLW-based two-state model is that no empirical parameter is required. Important quantities such as the electronic coupling energy, structural weights of two diabatic states, and excitation energy can be uniquely derived from the energies of two diabatic states and the adiabatic state at the same HF or DFT level. Two simple examples of formamide and thioformamide in the gas phase and aqueous solution were presented and discussed. The solvation of formamide and thioformamide was studied with the combined ab initio quantum mechanical and molecular mechanical Monte Carlo simulations, together with the BLW-DFT calculations and analyses. Due to the favorable solute-solvent electrostatic interaction, the contribution of the ionic resonance structure to the ground state of formamide and thioformamide significantly increases, and for thioformamide the ionic form is even more stable than the covalent form. Thus, thioformamide in aqueous solution is essentially ionic rather than covalent. Although our two-state model in general underestimates the electronic excitation energies, it can predict relative solvatochromic shifts well. For instance, the intense π →π* transition for formamide upon solvation undergoes a redshift of 0.3eV, compared with the experimental data (0.40-0.5eV).
Hot N2 in Titan's upper atmosphere
NASA Astrophysics Data System (ADS)
Lavvas, P.; Yelle, R. V.; Heays, A.; Campbell, L.; Brunger, M. J.; Galand, M.; Vuitton, V.
2015-10-01
We present a detailed model for the vibrational population of all non pre-dissociating excited electronic states of N2, as well as for the ground and ionic states,in Titan's atmosphere. Our model includes the detailed energy deposition calculations presented in the past [1] as well as the more recent developments in the high resolution N2 photo-absorption cross sections that allow us to calculate photo-excitation rates for different vibrational levels of singlet nitrogen states, and provide information for their pre-dissociation yields.In addition, we consider the effect of collisions and chemical reactions in the population of the different states. Our results demonstrate that a significant population of vibrationally excited ground state N2 survives in Titan's upper atmosphere. This hot N2population can improve the agreement between models and observations for the emission of the c'4 state that is significantly affected by resonant scattering. Moreover we discuss the potential implications of the vibrationally excited population on the ionospheric densities.
First principles study of pressure induced polymorphic phase transition in KNO3
NASA Astrophysics Data System (ADS)
Yedukondalu, N.; Vaitheeswaran, G.
2015-06-01
We report the structural, elastic, electronic, and vibrational properties of polymorphic phases II and III of KNO3 based on density functional theory (DFT). Using semi-empirical dispersion correction (DFT-D2) method, we predicted the correct thermodynamic ground state of KNO3 and the obtained ground state properties of the polymorphs are in good agreement with the experiments. We further used this method to calculate the elastic constants, IR and Raman spectra, vibrational frequencies and their assignment of these polymorphs. The calculated Tran Blaha-modified Becke Johnson (TB-mBJ) electronic structure shows that both the polymorphic phases are direct band gap insulators with mixed ionic and covalent bonding. Also the TB-mBJ band gaps are improved over standard DFT functionals which are comparable with the available experiments.
Charge transfer to ground-state ions produces free electrons
You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K
2017-01-01
Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238
Suppressing Ionic Terms with Number-Counting Jastrow Factors in Real Space
Goetz, Brett Van Der; Neuscamman, Eric
2017-04-06
Here, we demonstrate that four-body real-space Jastrow factors are, with the right type of Jastrow basis function, capable of performing successful wave function stenciling to remove unwanted ionic terms from an overabundant Fermionic reference without unduly modifying the remaining components. In addition to greatly improving size consistency (restoring it exactly in the case of a geminal power), real-space wave function stenciling is, unlike its Hilbert-space predecessors, immediately compatible with diffusion Monte Carlo, allowing it to be used in the pursuit of compact, strongly correlated trial functions with reliable nodal surfaces. Furthermore, we demonstrate the efficacy of this approach in themore » context of a double bond dissociation by using it to extract a qualitatively correct nodal surface despite being paired with a restricted Slater determinant, that, due to ionic term errors, produces a ground state with a qualitatively incorrect nodal surface when used in the absence of the Jastrow.« less
Suppressing Ionic Terms with Number-Counting Jastrow Factors in Real Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetz, Brett Van Der; Neuscamman, Eric
Here, we demonstrate that four-body real-space Jastrow factors are, with the right type of Jastrow basis function, capable of performing successful wave function stenciling to remove unwanted ionic terms from an overabundant Fermionic reference without unduly modifying the remaining components. In addition to greatly improving size consistency (restoring it exactly in the case of a geminal power), real-space wave function stenciling is, unlike its Hilbert-space predecessors, immediately compatible with diffusion Monte Carlo, allowing it to be used in the pursuit of compact, strongly correlated trial functions with reliable nodal surfaces. Furthermore, we demonstrate the efficacy of this approach in themore » context of a double bond dissociation by using it to extract a qualitatively correct nodal surface despite being paired with a restricted Slater determinant, that, due to ionic term errors, produces a ground state with a qualitatively incorrect nodal surface when used in the absence of the Jastrow.« less
Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin
2016-01-28
This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.
NASA Astrophysics Data System (ADS)
Belyaev, Andrey K.; Yakovleva, Svetlana A.
2017-12-01
Aims: A simplified model is derived for estimating rate coefficients for inelastic processes in low-energy collisions of heavy particles with hydrogen, in particular, the rate coefficients with high and moderate values. Such processes are important for non-local thermodynamic equilibrium modeling of cool stellar atmospheres. Methods: The derived method is based on the asymptotic approach for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: It is found that the rate coefficients are expressed via statistical probabilities and reduced rate coefficients. It is shown that the reduced rate coefficients for neutralization and ion-pair formation processes depend on single electronic bound energies of an atomic particle, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to barium-hydrogen ionic collisions. For the first time, rate coefficients are evaluated for inelastic processes in Ba+ + H and Ba2+ + H- collisions for all transitions between the states from the ground and up to and including the ionic state. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A33
Quevillon, Michael J; Whitmer, Jonathan K
2018-01-02
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.
High-resolution threshold photoionization of N2O
NASA Technical Reports Server (NTRS)
Wiedmann, R. T.; Grant, E. R.; Tonkyn, R. G.; White, M. G.
1991-01-01
Pulsed field ionization (PFI) has been used in conjunction with a coherent VUV source to obtain high-resolution threshold photoelectron spectra for the (000), (010), (020), and (100) vibrational states of the N2O(+) cation. Simulations for the rotational profiles of each vibronic level were obtained by fitting the Buckingham-Orr-Sichel equations using accurate spectroscopic constants for the ground states of the neutral and the ion. The relative branch intensities are interpreted in terms of the partial waves of the outgoing photoelectron to which the ionic core is coupled and in terms of the angular momentum transferred to the core.
D autoionization states of He and ionic H
NASA Technical Reports Server (NTRS)
Bhatia, A. K.
1972-01-01
Positions of the lowest 1,3De autoionization states of He and H(-) below the n = 2 level of the He(+) and H were calculated variationally, using Feshbach's Q-operator formalism. The trial wave function is of the Hylleraas-type with appropriate angular momentum factors. The widths and the shifts of the states have also been calculated. The shifts are found to be positive for all the states calculated here. The results with 112 terms for most states are lower than any previously calculated. The calculated lowest autoionization states of the He and H(-) (relative to the ground states of He and H respectively) are 59.902 eV and 10.1185 eV, in good agreement with the observed values of 59.9 eV and 10.13 + or 0.015 eV.
2018-01-01
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure–constant temperature ensemble. These materials exhibit a distinct “smectic” liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications. PMID:29301305
How large are nonadiabatic effects in atomic and diatomic systems?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yubo, E-mail: yyang173@illinois.edu, E-mail: normantubman2015@u.northwestern.edu; Tubman, Norm M., E-mail: yyang173@illinois.edu, E-mail: normantubman2015@u.northwestern.edu; Ceperley, David M.
2015-09-28
With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. In this work, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. We report ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to bemore » nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei.« less
How large are nonadiabatic effects in atomic and diatomic systems?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yubo; Kylänpää, Ilkka; Tubman, Norm M.
2015-09-29
With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. Here, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. Our report shows the ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to bemore » nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christiansen, P.A.; Pitzer, K.S.
The dissociation curve for the ground state of TlH was computed using a relativistic {omega}-{omega} coupling formalism. The relativistic effects represented by the Dirac equation were introduced using effective potentials generated from atomic Dirac-Fock wave functions using a generalization of the improved effective potential formulation of Christiansen, Lee, and Pitzer. The multiconfiguration SCF treatment used is a generalization of the two-component molecular spinor formalism of Lee, Ermler, and Pitzer. Using a five configuration wave function we were able to obtain approximately 85% of the experimental dissociation energy. Our computations indicate that the bond is principally sigma in form, despite themore » large spin-orbit splitting in atomic thallium. Furthermore the bond appears to be slightly ionic (Tl{sup +}H{sup -}) with about 0.3 extra electron charge on the hydrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christiansen, P.A.; Pitzer, K.S.
The dissociation curve for the ground state of TlH was computed using a relativistic ..omega..--..omega.. coupling formalism. The relativistic effects represented by the Dirac equation were introduced using effective potentials generated from atomic Dirac--Fock wave functions using a generalization of the improved effective potential formulation of Christiansen, Lee, and Pitzer. The multiconfiguration SCF treatment used is a generalization of the two-component molecular spinor formalism of Lee, Ermler, and Pitzer. Using a five configuration wave function we were able to obtain approximately 85% of the experimental dissociation energy. Our computations indicate that the bond is principally sigma in form, despite themore » large spin--orbit splitting in atomic thallium. Furthermore the bond appears to be slightly ionic (Tl/sup +/H/sup -/) with about 0.3 extra electron charge on the hydrogen.« less
Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li 3 N structure
Nguyen, Manh Cuong; Hoang, Khang; Wang, Cai-Zhuang; ...
2016-01-07
A stable ground state structure with cubic symmetry of Li 3N (c-Li 3N) is found by ab initio initially symmetric random-generated crystal structure search method. Gibbs free energy, calculated within quasi-harmonic approximation, shows that c-Li 3N is the ground state structure for a wide range of temperature. The c-Li 3N structure has a negative thermal expansion coefficient at temperatures lower than room temperature, due mainly to two transverse acoustic phonon modes. This c-Li 3N phase is a semiconductor with an indirect band gap of 1.90 eV within hybrid density functional calculation. We also investigate the migration and energetics of nativemore » point defects in c-Li 3N, including lithium and nitrogen vacancies, interstitials, and anti-site defects. Lithium interstitials are found to have a very low migration barrier (~0.12 eV) and the lowest formation energy among all possible defects. Thus, the ionic conduction in c-Li 3N is expected to occur via an interstitial mechanism, in contrast to that in the well-known α-Li 3N phase which occurs via a vacancy mechanism.« less
NASA Astrophysics Data System (ADS)
Mahjoub, Ahmed; Hochlaf, Majdi; Poisson, Lionel; Garcia, Gustavo A.; Nahon, Laurent
2013-06-01
We studied the single-photon ionization of gas-phase 2-Piperidone (DNA basis analogue) and of its dimer using vacuum-ultraviolet (VUV) synchrotron radiation coupled to a velocity map imaging electron/ion coincidence spectrometer The slow photoelectron spectrum (SPES) of the monomer is dominated by the vibrational transitions to the ground state. These spectra are assigned with the help of theoretical calculations dealing with the equilibrium geometries, electronic-state patterns and evolutions, harmonic and anharmonic wavenumbers. After its formation, dimer is subject of intramolecular isomerization, H transfer and then unimolecular fragmentation processes. The near threshold photofragmentation pattern of the cationic 2-Piperidone cation and its dimer has been recorded. The experimental method yields the fragment intensity as a function of the internal energy deposited into the parent cation. In parallel, ab initio studies on ionic and neutral fragmentation products have been performed with the aim of determining the isomers of the ionic products observed experimentally as well as of their neutral counterparts. L. Nahon, N. De Oliveria,J. F. Gil,B. Pilette,O. Marcouillé, B. La garde and F. Polack Journal of Synchrotron Radiation {19}(4), 508-520; 2012
NASA Astrophysics Data System (ADS)
Howard, Jason; Hood, Zachary D.; Holzwarth, N. A. W.
2017-12-01
Solid-state electrolytes that are compatible with high-capacity electrodes are expected to enable the next generation of batteries. As a promising example, Li2OHCl was reported to have good ionic conductivity and to be compatible with a lithium metal anode even at temperatures above 100 ∘C . In this work, we explore the fundamental properties of Li2OHCl by comparing simulations and experiments. Using calculations based on density functional theory, including both static and dynamic contributions through the quasiharmonic approximation, we model a tetragonal ground state, which is not observed experimentally. An ordered orthorhombic low-temperature phase was also simulated, agreeing with experimental structural analysis of the pristine electrolyte at room temperature. In addition, comparison of the ordered structures with simulations of the disordered cubic phase provide insight into the mechanisms associated with the experimentally observed abrupt increase in ionic conductivity as the system changes from its ordered orthorhombic to its disordered cubic phase. A large Haven ratio for the disordered cubic phase is inferred from the computed tracer diffusion coefficient and measured ionic conductivity, suggesting highly correlated motions of the mobile Li ions in the cubic phase of Li2OHCl . We find that the OH bond orientations participate in gating the Li ion motions which might partially explain the predicted Li-Li correlations.
N2 state population in Titan's atmosphere
NASA Astrophysics Data System (ADS)
Lavvas, P.; Yelle, R. V.; Heays, A. N.; Campbell, L.; Brunger, M. J.; Galand, M.; Vuitton, V.
2015-11-01
We present a detailed model for the vibrational population of all non pre-dissociating excited electronic states of N2, as well as for the ground and ionic states, in Titan's atmosphere. Our model includes the detailed energy deposition calculations presented in the past (Lavvas, P. et al. [2011]. Icarus 213(1), 233-251) as well as the more recent developments in the high resolution N2 photo-absorption cross sections that allow us to calculate photo-excitation rates for different vibrational levels of singlet nitrogen states, and provide information for their pre-dissociation yields. In addition, we consider the effect of collisions and chemical reactions in the population of the different states. Our results demonstrate that above 600 km altitude, collisional processes are efficient only for a small sub-set of the excited states limited to the A and W(ν = 0) triplet states, and to a smaller degree to the a‧ singlet state. In addition, we find that a significant population of vibrationally excited ground state N2 survives in Titan's upper atmosphere. Our calculations demonstrate that this hot N2 population can improve the agreement between models and observations for the emission of the c4‧ state that is significantly affected by resonant scattering. Moreover we discuss the potential implications of the vibrationally excited population on the ionospheric densities.
NASA Astrophysics Data System (ADS)
Locht, R.; Leyh, B.; Dehareng, D.; Hottmann, K.; Baumgärtel, H.
2010-01-01
The threshold photoelectron spectrum (TPES) and the constant ion state (CIS) spectra of the individual ionic states of C2H3F have been recorded using synchrotron radiation. For comparison a well-resolved HeI photoelectron spectrum (HeI-PES) has also been measured and analysed in detail. The TPES has been measured between 9.5 eV and 35 eV photon energy. Numerous vibrational structures, reported for the first time, observed in the ground state and the six excited states of the cation are analysed. Quantum chemical calculations have been performed and provide strong support to the assignments. State-selected CIS spectra highlighted the major importance of autoionization for the production of almost all ionized states of C2H3F observed in this work.
NASA Astrophysics Data System (ADS)
Majzoub, E. H.; Ozoliņš, V.
2008-03-01
We have developed a procedure for crystal structure generation and prediction for ionic compounds consisting of a collection of cations and rigid complex anions. Our approach is based on global optimization of an energy functional consisting of the electrostatic and soft-sphere repulsive energies using Metropolis Monte Carlo (MMC) simulated annealing in conjunction with smoothing of the potential energy landscape via the distance scaling method. The resulting structures, or prototype electrostatic ground states (PEGS), are subsequently relaxed using first-principles density-functional theory (DFT) calculations to obtain accurate structural parameters and thermodynamic properties. This method is shown to produce the ground state structures of NaAlH4 and Mg(AlH4)2 , as well as the mixed cation alanate K2LiAlH6 . For LiAlH4 , the PEGS search produces a structure with a static DFT total energy equal to that of the experimentally observed structure; the latter is stabilized by vibrational contributions to the free energy. For mixed-valence hexa-alanates, XY AlH6 , where X=(Li,Na,K) , and Y=(Mg,Ca) , the PEGS method predicts six unsuspected structure types, which are not found in the existing structure databases. The PEGS search yields energies that are, on the average, better than the best database structures with the same number of atoms per unit cell, demonstrating the predictive power and usefulness of the PEGS structures. In addition to the recently synthesized LiMgAlH6 compound, we predict that LiCaAlH6 , NaCaAlH6 , and KCaAlH6 are also thermodynamically stable with respect to phase separation into other alanates and metal hydrides. In contrast, NaMgAlH6 and KMgAlH6 are slightly unstable (by less than 3kJ/mol ) relative to the phase separation into NaAlH4 , KAlH4 , and MgH2 . We suggest that solid-state ion-exchange reactions between X3AlH6 (X=Li,Na,K) and YCl2 (Y=Mg,Ca) could be used to synthesize the predicted mixed-valence hexa-alanates.
Importance of elastic finite-size effects: Neutral defects in ionic compounds
Burr, P. A.; Cooper, M. W. D.
2017-09-15
Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less
Importance of elastic finite-size effects: Neutral defects in ionic compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, P. A.; Cooper, M. W. D.
Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less
Importance of elastic finite-size effects: Neutral defects in ionic compounds
NASA Astrophysics Data System (ADS)
Burr, P. A.; Cooper, M. W. D.
2017-09-01
Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.
Empirical Modeling of ICMEs Using ACE/SWICS Ionic Distributions
NASA Astrophysics Data System (ADS)
Rivera, Y.; Landi, E.; Lepri, S. T.; Gilbert, J. A.
2017-12-01
Coronal Mass Ejections (CMEs) are some of the largest, most energetic events in the solar system releasing an immense amount of plasma and magnetic field into the Heliosphere. The Earth-bound plasma plays a large role in space weather, causing geomagnetic storms that can damage space and ground based instrumentation. As a CME is released, the plasma experiences heating, expansion and acceleration; however, the physical mechanism supplying the heating as it lifts out of the corona still remains uncertain. From previous work we know the ionic composition of solar ejecta undergoes a gradual transition to a state where ionization and recombination processes become ineffective rendering the ionic composition static along its trajectory. This property makes them a good indicator of thermal conditions in the corona, where the CME plasma likely receives most of its heating. We model this so-called `freeze-in' process in Earth-directed CMEs using an ionization code to empirically determine the electron temperature, density and bulk velocity. `Frozen-in' ions from an ensemble of independently modeled plasmas within the CME are added together to fit the full range of observational ionic abundances collected by ACE/SWICS during ICME events. The models derived using this method are used to estimate the CME energy budget to determine a heating rate used to compare with a variety of heating mechanisms that can sustain the required heating with a compatible timescale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zafra, José Luis; González Cano, Rafael C.; Ruiz Delgado, M. Carmen
A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing tomore » singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.« less
NASA Astrophysics Data System (ADS)
Patra, Digambara; Barakat, Christelle
2011-09-01
Hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroburate, modified the properties of aqueous surfactant solutions associated with curcumin. Because of potential pharmaceutical applications as an antioxidant, anti-inflammatory and anti-carcinogenic agent, curcumin has received ample attention as potential drug. The interaction of curcumin with various charged aqueous surfactant solutions showed it exists in deprotonated enol form in surfactant solutions. The nitro and hydroxyl groups of o-nitrophenol interact with the carbonyl and hydroxyl groups of the enol form of curcumin by forming ground state complex through hydrogen bonds and offered interesting information about the nature of the interactions between the aqueous surfactant solutions and curcumin depending on charge of head group of the surfactant. IL[bmin][BF 4] encouraged early formation of micelle in case of cationic and anionic aqueous surfactant solutions, but slightly prolonged micelle formation in the case of neutral aqueous surfactant solution. However, for curcumin IL [bmin][BF 4] favored strong association (7-fold increase) with neutral surfactant solution, marginally supported association with anionic surfactant solution and discouraged (˜2-fold decrease) association with cationic surfactant solution.
Effect of ionic liquid properties on lipase stabilization under microwave irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hua; Baker, Gary A; Song, Zhiyan
2009-01-01
Ionic liquids (ILs) as neoteric solvents and microwave irradiation as alternative energy source are becoming two important tools for many enzymatic reactions. However, it is not well understood what properties of ILs govern the enzyme stabilization, and whether the microwave irradiation could activate enzymes in ILs. To tackle these two important issues, the synthetic activities of immobilized Candida antarctica lipase B (Novozyme 435) were examined in more than twenty ILs through microwave heating. Under microwave irradiation, enhanced enzyme activities were observed when the enzyme was surrounded by a layer of water molecules. However, such enhancement diminished when the reaction systemmore » was dried. To understand the effect of IL properties, the enzyme activities under microwave irradiation were correlated with the viscosity, polarity and hydrophobicity (log P) of ILs, respectively. The initial reaction rates bear no direct relationship with the viscosity and polarity (in terms of dielectric constant and EN T ) of ILs, but have a loose correlation (a bell curve) with log P values. The enzyme stabilization by ILs was explained from aspects of hydrogen-bond basicity of anions, dissolution of the enzyme, ionic association strength of anions, and substrate ground-state stabilization by ILs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brehm, John A., E-mail: brehmj@sas.upenn.edu; Bennett, Joseph W.; Schoenberg, Michael Rutenberg
2014-06-14
We use first-principles density functional theory within the local density approximation to ascertain the ground state structure of real and theoretical compounds with the formula ABS{sub 3} (A = K, Rb, Cs, Ca, Sr, Ba, Tl, Sn, Pb, and Bi; and B = Sc, Y, Ti, Zr, V, and Nb) under the constraint that B must have a d{sup 0} electronic configuration. Our findings indicate that none of these AB combinations prefer a perovskite ground state with corner-sharing BS{sub 6} octahedra, but that they prefer phases with either edge- or face-sharing motifs. Further, a simple two-dimensional structure field map createdmore » from A and B ionic radii provides a neat demarcation between combinations preferring face-sharing versus edge-sharing phases for most of these combinations. We then show that by modifying the common Goldschmidt tolerance factor with a multiplicative term based on the electronegativity difference between A and S, the demarcation between predicted edge-sharing and face-sharing ground state phases is enhanced. We also demonstrate that, by calculating the free energy contribution of phonons, some of these compounds may assume multiple phases as synthesis temperatures are altered, or as ambient temperatures rise or fall.« less
NASA Astrophysics Data System (ADS)
Archirel, Pierre
1997-09-01
We generalise the preoptimisation of orbitals within VB (Part I of this series) through letting the orbitals delocalise on the neighbouring fragments. The method is more accurate than the local preoptimisation. The method is tested on the rare gas clusters He 2+, Ar 2+, He 3+ and Ar 3+. The results are in good agreement with previously published data on these systems. We complete these data with higher excited states. The binding energies of (ArCO) +, (ArN 2) + and N 4+ are revisited. The simulation of the SCF method is extended to Cu +H 2O.
Photodissociation spectroscopy of the dysprosium monochloride molecular ion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, Alexander, E-mail: alexander.dunning@gmail.com; Schowalter, Steven J.; Puri, Prateek
2015-09-28
We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl{sup +}. The photodissociation cross section for the photon energy range 35 500 cm{sup −1} to 47 500 cm{sup −1} is measured using an integrated ion trap and time-of-flight mass spectrometer; we observe a broad, asymmetric profile that is peaked near 43 000 cm{sup −1}. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl{sup +} is extremely complex due to the presence of multiple open electronic shells,more » including the 4f{sup 10} configuration. The molecule has nine attractive potentials with ionically bonded electrons and 99 repulsive potentials dissociating to a ground state Dy{sup +} ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between the vibrational ground state and several resolved repulsive excited states.« less
Solid-State Ionic Diodes Demonstrated in Conical Nanopores
Plett, Timothy S.; Cai, Wenjia; Le Thai, Mya; ...
2017-02-27
Ionic transport at the nanoscale features phenomena that are not observed in larger systems. Nonlinear current–voltage curves characteristic of ionic diodes as well as ion selectivity are examples of effects observed at the nanoscale. Many man-made nanopore systems are inspired by biological channels in a cell membrane, thus measurements are often performed in aqueous solutions. Consequently, much less is known about ionic transport in nonaqueous systems, especially in solid-state electrolytes. Here we show ionic transport through single pores filled with gel electrolyte of poly(methyl methacrylate) (PMMA) doped with LiClO 4 in propylene carbonate. The system has no liquid interface andmore » the ionic transport occurs through the porous gel structure. We demonstrate that a conically shaped nanopore filled with the gel rectifies the current and works as a solid-state ionic diode.« less
Nizamani, Sooraj; Kazi, Tasneem G; Afridi, Hassan I
2018-01-01
An efficient preconcentration technique based on ultrasonic-assisted ionic liquid-based dual microextraction (UA-ILDµE) method has been developed to preconcentrate the lead (Pb +2 ) in ground and stored rain water. In the current proposed method, Pb +2 was complexed with a chelating agent (dithizone), whereas an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was used for extraction purpose. The ultrasonic irradiation and electrical shaking system were applied to enhance the dispersion and extraction of Pb +2 complex in aqueous samples. For second phase, dual microextraction (DµE phase), the enriched Pb +2 complex in ionic liquid, extracted back into the acidic aqueous solution and finally determined by flame atomic absorption spectrometry. Some major analytical parameters that influenced the extraction efficiency of developed method, such as pH, concentration of ligand, volume of ionic liquid and samples, time of shaking in thermostatic electrical shaker and ultrasonic bath, effect of back extracting HNO 3 volume, matrix effect, centrifugation time and rate were optimized. At the sample volume of 25mL, the calculated preconcentration factor was 62.2. The limit of detection of proposed procedure for Pb +2 ions was found to be 0.54μgL -1 . The validation of developed method was performed by the analysis of certified sample of water SRM 1643e and standard addition method in a real water sample. The extraction recovery of Pb +2 was enhanced≥2% with shaking time of 80s in ultrasonic bath as compared to used thermostatic electrical shaker, where for optimum recovery up to 10min was required. The developed procedure was successfully used for the enrichment of Pb +2 in ground and stored rain water (surface water) samples of an endemic region of Pakistan. The resulted data indicated that the ground water samples were highly contaminated with Pb +2 , while some of the surface water samples were also have higher values of Pb +2 than permissible limit of WHO. The concentration of Pb +2 in surface and ground water samples was found in the range of 17.5-24.5 and 25.6-99.1μgL - 1 respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Butorin, Sergei M.; Kvashnina, Kristina O.; Vegelius, Johan R.; ...
2016-07-01
Applying the high-energy resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS), we were able to probe, for the first time to our knowledge, the crystalline electric field (CEF) splittings of the 5f shell directly in the HERFD-XAS spectra of actinides. Using ThO 2 as an example, data measured at the Th 3d edge were interpreted within the framework of the Anderson impurity model. Because the charge-transfer satellites were also resolved in the HERFD-XAS spectra, the analysis of these satellites revealed that ThO 2 is not an ionic compound as previously believed. The Th 6d occupancy in the ground statemore » was estimated to be twice that of the Th 5f states. Here, we demonstrate that HERFD-XAS allows for characterization of the CEF interaction and degree of covalency in the ground state of actinide compounds as it is extensively done for 3d transition metal systems.« less
Atomic Data on Inelastic Processes in Calcium–Hydrogen Collisions
NASA Astrophysics Data System (ADS)
Belyaev, A. K.; Voronov, Y. V.; Yakovleva, S. A.; Mitrushchenkov, A.; Guitou, M.; Feautrier, N.
2017-12-01
Inelastic cross sections and rate coefficients in Ca + H and Ca+ + H‑ collisions for all transitions between the 17 lowest covalent states plus one ionic molecular state are calculated based on the most recent ab initio adiabatic potentials for the 11 lowest molecular states, as well as on the model asymptotic potentials for higher-lying states, including the ground ionic molecular state. Nuclear dynamics is treated by the probability-current method and the multichannel formulas for the collision energy range 0.01–100 eV. The rates are computed for mutual neutralization, ion-pair formation, and (de-)excitation processes for the temperature range T = 1000–10,000 K. The calculations single out the partial processes with large and moderate rate coefficients. The largest rates correspond to the mutual neutralization into the {Ca}(4s5s{}3S), {Ca}(4s5p{}3P^\\circ ), {Ca}(4s5s{}1S), and {Ca}(4s5p{}{1}P^\\circ ) final states; at T = 6000 K the largest value is 5.50 × 10‑8 cm3 s‑1 for {Ca}(4s5s{}3S). Among the (de-)excitation processes, the largest rate coefficient corresponds to the {Ca}(4s5s{}1S)\\to {Ca}(4s5s{}3S) transition; at T = 6000 K, the largest rate has the value of 8.46 × 10‑9 cm3 s‑1.
NASA Astrophysics Data System (ADS)
Raithel, Georg
2017-04-01
Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).
NASA Astrophysics Data System (ADS)
Cohen, R. E.; Driver, K.; Wu, Z.; Militzer, B.; Rios, P. L.; Towler, M.; Needs, R.
2009-03-01
We have used diffusion quantum Monte Carlo (DMC) with the CASINO code with thermal free energies from phonons computed using density functional perturbation theory (DFPT) with the ABINIT code to obtain phase transition curves and thermal equations of state of silica phases under pressure. We obtain excellent agreement with experiments for the metastable phase transition from quartz to stishovite. The local density approximation (LDA) incorrectly gives stishovite as the ground state. The generalized gradient approximation (GGA) correctly gives quartz as the ground state, but does worse than LDA for the equations of state. DMC, variational quantum Monte Carlo (VMC), and DFT all give good results for the ferroelastic transition of stishovite to the CaCl2 structure, and LDA or the WC exchange correlation potentials give good results within a given silica phase. The δV and δH from the CaCl2 structure to α-PbO2 is small, giving uncertainly in the theoretical transition pressure. It is interesting that DFT has trouble with silica transitions, although the electronic structures of silica are insulating, simple closed-shell with ionic/covalent bonding. It seems like the errors in DFT are from not precisely giving the ion sizes.
Theoretical study of the potential energy surfaces and dynamics of CaNC/CaCN
NASA Astrophysics Data System (ADS)
Nanbu, Shinkoh; Minamino, Satoshi; Aoyagi, Mutsumi
1997-05-01
Potential energy surfaces for the ground and two low-lying electronically excited states of CaNC/CaCN, are calculated using the ab initio molecular orbital (MO) configuration interaction (CI) method. The absorption and emission spectra of the system are computed by performing time-dependent quantum dynamical calculations on these surfaces. The most stable geometries for the two lowest lying 12Σ+ and 12Π electronic states correspond to the calcium isocyanide (CaNC) structure. These two states are characterized by ionic bonding and the potential energy curves along the bending coordinate are relatively isotropic. The result of our wave packet dynamics shows that the characteristics of the experimental spectra observed by the laser-induced fluorescence spectroscopy can be explained by the Renner-Teller splitting.
Stopping power beyond the adiabatic approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, M.; Correa, A. A.; Artacho, E.
2017-06-01
Energetic ions traveling in solids deposit energy in a variety of ways, being nuclear and electronic stopping the two avenues in which dissipation is usually treated. This separation between electrons and ions relies on the adiabatic approximation in which ions interact via forces derived from the instantaneous electronic ground state. In a more detailed view, in which non-adiabatic effects are explicitly considered, electronic excitations alter the atomic bonding, which translates into changes in the interatomic forces. In this work, we use time dependent density functional theory and forces derived from the equations of Ehrenfest dynamics that depend instantaneously on themore » time-dependent electronic density. With them we analyze how the inter-ionic forces are affected by electronic excitations in a model of a Ni projectile interacting with a Ni target, a metallic system with strong electronic stopping and shallow core level states. We find that the electronic excitations induce substantial modifications to the inter-ionic forces, which translate into nuclear stopping power well above the adiabatic prediction. Particularly, we observe that most of the alteration of the adiabatic potential in early times comes from the ionization of the core levels of the target ions, not readily screened by the valence electrons.« less
Solid State Ionics: from Michael Faraday to green energy-the European dimension.
Funke, Klaus
2013-08-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.
Solid State Ionics: from Michael Faraday to green energy—the European dimension
Funke, Klaus
2013-01-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585
Lithium hydroxide, LiOH, at elevated densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald
2014-07-14
We discuss the high-pressure phases of crystalline lithium hydroxide, LiOH. Using first-principles calculations, and assisted by evolutionary structure searches, we reproduce the experimentally known phase transition under pressure, but we suggest that the high-pressure phase LiOH-III be assigned to a new hydrogen-bonded tetragonal structure type that is unique amongst alkali hydroxides. LiOH is at the intersection of both ionic and hydrogen bonding, and we examine the various ensuing structural features and their energetic driving mechanisms. At P = 17 GPa, we predict another phase transition to a new phase, Pbcm-LiOH-IV, which we find to be stable over a wide pressuremore » range. Eventually, at extremely high pressures of 1100 GPa, the ground state of LiOH is predicted to become a polymeric structure with an unusual graphitic oxygen-hydrogen net. However, because of its ionic character, the anticipated metallization of LiOH is much delayed; in fact, its electronic band gap increases monotonically into the TPa pressure range.« less
Kubota, Koji; Shibata, Akira; Yamaguchi, Toshikazu
2016-04-30
In spite of numerous advantages, transdermal drug delivery systems are unfeasible for most drugs because of the barrier effect of the stratum corneum. Ionic liquids were recently used to enhance transdermal drug delivery by improving drug solubility. In the present study, safe and effective ionic liquids for transdermal absorption were obtained as salts generated by a neutralization reaction between highly biocompatible aliphatic carboxylic acids (octanoic acid or isostearic acid) and aliphatic amines (diisopropanolamine or triisopropanolamine) (Medrx Co., Ltd., 2009). The mechanism of skin permeability enhancement by ionic liquids was investigated by hydrophilic phenol red and hydrophobic tulobuterol. Further, the skin permeation enhancing effect was remarkably superior in the acid excess state rather than the neutralization state. Infrared absorption spectrum analysis confirmed that ionic liquids/aliphatic carboxylic acid/aliphatic amine are coexisting at all mixing states. In the acid excess state, ionic liquids interact with aliphatic carboxylic acids via hydrogen bonds. Thus, the skin permeation enhancing effect is not caused by the ionic liquid alone. The "liquid salt mixture," referred to as a complex of ingredients coexisting with ionic liquids, forms a molecular assembly incorporating hydrophilic drug. This molecular assembly was considered an effective and safety enhancer of transdermal drug permeation. Copyright © 2016. Published by Elsevier B.V.
Anharmonic Potential Constants and Their Dependence Upon Bond Length
DOE R&D Accomplishments Database
Herschbach, D. R.; Laurie, V. W.
1961-01-01
Empirical study of cubic and quartic vibrational force constants for diatomic molecules shows them to be approximately exponential functions of internuclear distance. A family of curves is obtained, determined by the location of the bonded atoms in rows of the periodic table. Displacements between successive curves correspond closely to those in Badger's rule for quadratic force constants (for which the parameters are redetermined to accord with all data now available). Constants for excited electronic and ionic states appear on practically the same curves as those for the ground states. Predictions based on the diatomic correlations agree with the available cubic constants for bond stretching in polyatomic molecules, regardless of the type of bonding involved. Implications of these regularities are discussed. (auth)
The pure rotational spectra of the open-shell diatomic molecules PbI and SnI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk
2015-12-28
Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less
Zhang, Wei; Wang, Zhong-Sheng
2014-07-09
Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.
Low-lying Photoexcited States of a One-Dimensional Ionic Extended Hubbard Model
NASA Astrophysics Data System (ADS)
Yokoi, Kota; Maeshima, Nobuya; Hino, Ken-ichi
2017-10-01
We investigate the properties of low-lying photoexcited states of a one-dimensional (1D) ionic extended Hubbard model at half-filling. Numerical analysis by using the full and Lanczos diagonalization methods shows that, in the ionic phase, there exist low-lying photoexcited states below the charge transfer gap. As a result of comparison with numerical data for the 1D antiferromagnetic (AF) Heisenberg model, it was found that, for a small alternating potential Δ, these low-lying photoexcited states are spin excitations, which is consistent with a previous analytical study [Katsura et al.,
Creating Lithium-Ion Electrolytes with Biomimetic Ionic Channels in Metal-Organic Frameworks.
Shen, Li; Wu, Hao Bin; Liu, Fang; Brosmer, Jonathan L; Shen, Gurong; Wang, Xiaofeng; Zink, Jeffrey I; Xiao, Qiangfeng; Cai, Mei; Wang, Ge; Lu, Yunfeng; Dunn, Bruce
2018-06-01
Solid-state electrolytes are the key to the development of lithium-based batteries with dramatically improved energy density and safety. Inspired by ionic channels in biological systems, a novel class of pseudo solid-state electrolytes with biomimetic ionic channels is reported herein. This is achieved by complexing the anions of an electrolyte to the open metal sites of metal-organic frameworks (MOFs), which transforms the MOF scaffolds into ionic-channel analogs with lithium-ion conduction and low activation energy. This work suggests the emergence of a new class of pseudo solid-state lithium-ion conducting electrolytes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Casanova, David
2012-08-28
The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g)(-), 1(1)B(u)(+), 1(1)B(u)(-), and 1(3)B(u)(-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to show the possibility to use an excitation operator with any number of α-to-β electronic promotions.
Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces
NASA Astrophysics Data System (ADS)
Zutz, Amelia Marie
Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.
Sequential and direct ionic excitation in the strong-field ionization of 1-butene molecules.
Schell, Felix; Boguslavskiy, Andrey E; Schulz, Claus Peter; Patchkovskii, Serguei; Vrakking, Marc J J; Stolow, Albert; Mikosch, Jochen
2018-05-18
We study the Strong-Field Ionization (SFI) of the hydrocarbon 1-butene as a function of wavelength using photoion-photoelectron covariance and coincidence spectroscopy. We observe a striking transition in the fragment-associated photoelectron spectra: from a single Above Threshold Ionization (ATI) progression for photon energies less than the cation D0-D1 gap to two ATI progressions for a photon energy greater than this gap. For the first case, electronically excited cations are created by SFI populating the ground cationic state D0, followed by sequential post-ionization excitation. For the second case, direct sub-cycle SFI to the D1 excited cation state contributes significantly. Our experiments access ionization dynamics in a regime where strong-field and resonance-enhanced processes can interplay.
Ionic contrast terahertz near-field imaging of axonal water fluxes
Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Martin, Jean-Louis; Gallot, Guilhem
2006-01-01
We demonstrate the direct and noninvasive imaging of functional neurons by ionic contrast terahertz near-field microscopy. This technique provides quantitative measurements of ionic concentrations in both the intracellular and extracellular compartments and opens the way to direct noninvasive imaging of neurons during electrical, toxin, or thermal stresses. Furthermore, neuronal activity results from both a precise control of transient variations in ionic conductances and a much less studied water exchange between the extracellular matrix and the intraaxonal compartment. The developed ionic contrast terahertz microscopy technique associated with a full three-dimensional simulation of the axon-aperture near-field system allows a precise measurement of the axon geometry and therefore the direct visualization of neuron swelling induced by temperature change or neurotoxin poisoning. Water influx as small as 20 fl per μm of axonal length can be measured. This technique should then provide grounds for the development of advanced functional neuroimaging methods based on diffusion anisotropy of water molecules. PMID:16547134
Li, Huili; Lv, Tian; Li, Ning; Yao, Yao; Liu, Kai; Chen, Tao
2017-11-30
Hydrogels with high ionic conductivity consisting of a cross-linked polymer network swollen in water are very promising to be used as an electrolyte for all-solid-state supercapacitors. However, there are rather few flexible supercapacitors using ionic conducting hydrogel electrolytes reported to date. In this work, highly flexible and ionic conducting polyacrylamide hydrogels were synthesized through a simple approach. On using the ionic hydrogels as the electrolyte, the resulting supercapacitors not only exhibited a high specific capacitance but also showed a long self-discharge time (over 10 hours to the half of original open-circuit voltage) and a low leakage current. These newly-developed all-solid-state supercapacitors can be bent, knot, and kneaded for 5000 cycles without performance decay, suggesting excellent flexibility and mechanical stability. These all-solid-state supercapacitors can also be easily tailored into strip-like supercapacitors without a short circuit, which provides an efficient approach to fabricate wearable energy storage devices.
An adiabatic spectroscopic investigation of the CsRb system in ground and numerous excited states
NASA Astrophysics Data System (ADS)
Souissi, Hanen; Jellali, Soulef; Maha, Chaieb; Habli, Héla; Oujia, Brahim; Gadéa, Florent Xavier
2017-10-01
Via ab-initio approximations, we investigate the electronic and structural features of the CsRb molecule. Adiabatic potential energy curves of 261,3Σ+, 181,3Π and 61,3Δ electronic states with their derived spectroscopic constants as well as vibrational levels spacing have been carried out and well explained. Our approach is founded on an Effective Core Potential (ECP) describing the valence electrons of the system. Using a large Gaussian basis set, the full valence Configuration Interaction can be applied easily on the two-effective valence electrons of the CsRb system. Furthermore, a detailed analysis of the electric dipolar properties has been made through the investigation of both permanent and transition dipole moments (PDM and TDM). It is significant that the ionic character connected with electron transfer that is linked to Cs+ Rb- state has been clearly illustrated in the adiabatic permanent dipole moment.
Equations of state and transport properties of mixtures in the warm dense regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yong; Dai, Jiayu; Kang, Dongdong
2015-02-15
We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide regionmore » of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.« less
Influence of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage.
Baker, Joseph L; Furbish, Jeffrey; Lindberg, Gerrick E
2015-11-01
We examine the effect of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage and contrast these results with the behavior of Trp-cage in water. We find the ionic liquid has a dramatic effect on Trp-cage, though many similarities with aqueous Trp-cage are observed. We assess Trp-cage folding by monitoring root mean square deviation from the crystallographic structure, radius of gyration, proline cis/trans isomerization state, protein secondary structure, amino acid contact formation and distance, and native and non-native contact formation. Starting from an unfolded configuration, Trp-cage folds in water at 298 K in less than 500 ns of simulation, but has very little mobility in the ionic liquid at the same temperature, which can be ascribed to the higher ionic liquid viscosity. At 365 K, the mobility of the ionic liquid is increased and initial stages of Trp-cage folding are observed, however Trp-cage does not reach the native folded state in 2 μs of simulation in the ionic liquid. Therefore, in addition to conventional molecular dynamics, we also employ scaled molecular dynamics to expedite sampling, and we demonstrate that Trp-cage in the ionic liquid does closely approach the aqueous folded state. Interestingly, while the reduced mobility of the ionic liquid is found to restrict Trp-cage motion, the ionic liquid does facilitate proline cis/trans isomerization events that are not seen in our aqueous simulations. Copyright © 2015 Elsevier Inc. All rights reserved.
Durán-Álvarez, Agustín; Maldonado-Domínguez, Mauricio; González-Antonio, Oscar; Durán-Valencia, Cecilia; Romero-Ávila, Margarita; Barragán-Aroche, Fernando; López-Ramírez, Simón
2016-03-22
The adsorption of surfactants (DTAB, SDS, and CAPB) at the calcite-water interface was studied through surface zeta potential measurements and multiscale molecular dynamics. The ground-state polarization of surfactants proved to be a key factor for the observed behavior; correlation was found between adsorption and the hard or soft charge distribution of the amphiphile. SDS exhibits a steep aggregation profile, reaching saturation and showing classic ionic-surfactant behavior. In contrast, DTAB and CAPB featured diversified adsorption profiles, suggesting interplay between supramolecular aggregation and desorption from the solid surface and alleviating charge buildup at the carbonate surface when bulk concentration approaches CMC. This manifests as an adsorption profile with a fast initial step, followed by a metastable plateau and finalizing with a sharp decrease and stabilization of surface charge. Suggesting this competition of equilibria, elicited at the CaCO3 surface, this study provides atomistic insight into the adsorption mechanism for ionic surfactants on calcite, which is in accordance with experimental evidence and which is a relevant criterion for developing enhanced oil recovery processes.
Potential energy surfaces of the electronic states of Li{sub 2}F and Li{sub 2}F{sup −}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhowmick, Somnath; Hagebaum-Reignier, Denis, E-mail: denis.hagebaum-reignier@univ-amu.fr; Jeung, Gwang-Hi
2016-07-21
The potential energy surfaces of the ground and low-lying excited states for the insertion reaction of atomic fluorine (F) and fluoride (F{sup −}) into the dilithium (Li{sub 2}) molecule have been investigated. We have carried out explicitly correlated multi-reference configuration interaction (MRCI-F12) calculations using Dunning’s augmented correlation-consistent basis sets. For the neutral system, the insertion of F into Li{sub 2} proceeds via a harpoon-type mechanism on the ground state surface, involving a covalent state and an ionic state which avoid each other at long distance. A detailed analysis of the changes in the dipole moment along the reaction coordinate revealsmore » multiple avoided crossings among the excited states and shows that the charge-transfer processes play a pivotal role for the stabilization of the low-lying electronic states of Li{sub 2}F. For the anionic system, which is studied for the first time, the insertion of F{sup −} is barrierless for many states and there is a gradual charge transfer from F{sup −} to Li{sub 2} along the reaction path. We also report the optimized parameters and the spectroscopic properties of the five lowest states of the neutral and seven lowest states of the anionic systems, which are strongly stabilized with respect to their respective Li{sub 2} + F/F{sup −} asymptotes. The observed barrierless insertion mechanisms for both systems make them good candidates for investigation under the ultracold regime.« less
Ultrafast photochemistry of polyatomic molecules containing labile halogen atoms in solution
NASA Astrophysics Data System (ADS)
Mereshchenko, Andrey S.
Because breaking and making of chemical bonds lies at the heart of chemistry, this thesis focuses on dynamic studies of labile molecules in solutions using ultrafast transient absorption spectroscopy. Specifically, my interest is two-fold: (i) novel reaction intermediates of polyhalogenated carbon, boron and phosphorus compounds; (ii) photophysics and photochemistry of labile copper(II) halide complexes. Excitation of CH2Br2, CHBr3, BBr 3, and PBr3 into n(Br)sigma*(X-Br) states, where X=C, B, or P, leads to direct photoisomerization with formation of isomers having Br-Br bonds as well as rupture of one of X-Br bonds with the formation of a Br atom and a polyatomic radical fragment, which subsequently recombine to form similar isomer products. Nonpolar solvation stabilizes the isomers, consistent with intrinsic reaction coordinate calculations of the isomer ground state potential energy surfaces at the density functional level of theory, and consequently, the involvement of these highly energetic species on chemically-relevant time scales needs to be taken into account. Monochlorocomplexes in methanol solutions promoted to the ligand-to-metal charge transfer (LMCT) excited state predominantly undergo internal conversion via back electron transfer, giving rise to vibrationally hot ground-state parent complexes. Copper-chloride homolitical bond dissociation yielding the solvated copper(I) and Cl- atom/solvent CT complexes constitutes a minor pathway. Insights into ligand substitution mechanisms were acquired by monitoring the recovery of monochloro complexes at the expense of two unexcited dichloro- and unsubstituted forms of Cu(II) complexes also present in the solution. Detailed description of ultrafast excited-state dynamics of CuCl 42- complexes in acetonitrile upon excitation into all possible Ligand Field (LF) excited states and two most intense LMCT transitions is reported. The LF states were found to be nonreactive with lifetimes remarkably longer than those for copper(II) complexes studied so far, in particular, copper blue proteins. The highest 2A1 and lowest 2E LF states relax directly to the ground electronic state whereas the intermediate 2B1 LF state relaxes stepwise through the 2E state. The LMCT excited states are short-lived undergoing either ionic dissociation (CuCl3- + Cl-) or cascading relaxation through the manifold of vibrationally hot LF states to the ground state.
Atomistic Simulation of Interfaces in Materials of Solid State Ionics
NASA Astrophysics Data System (ADS)
Ivanov-Schitz, A. K.; Mazo, G. N.
2018-01-01
The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.
Comparative electronic structure of a lanthanide and actinide diatomic oxide: Nd versus U
NASA Astrophysics Data System (ADS)
Krauss, M.; Stevens, W. J.
2003-01-01
Using a modified version of the Alchemy electronic structure code and relativistic pseudopotentials, the electronic structure of the ground and low lying excited states of UO, NdO, and NdO + have been calculated at the Hartree-Fock (HF) and multiconfiguration self-consistent field (MCSCF) levels of theory. Including results from an earlier study of UO + this provides the information for a comparative analysis of a lanthanide and an actinide diatomic oxide. UO and NdO are both described formally as M +2 O -2 and the cations as M +3 O -2 , but the HF and MCSCF calculations show that these systems are considerably less ionic due to large charge back-transfer in the πorbitals. The electronic states putatively arise from the ligand field (oxygen anion) perturbed f 4 , sf 3 , df 3 , sdf 2 , or s 2 f 2 states of M +2 and f 3 , sf 2 or df 2 states of M +3 . Molecular orbital results show a substantial stabilization of the sf 3 or s 2 f 2 configurations relative to the f 4 or df 3 configurations that are the even or odd parity ground states in the M +2 free ion. The compact f and d orbitals are more destabilized by the anion field than the diffuse s orbital. The ground states of the neutral species are dominated by orbitals arising from the M +2 sf 3 term, and all the potential energy curves arising from this configuration are similar, which allows an estimate of the vibrational frequencies for UO and NdO of 862 cm -1 and 836 cm -1 , respectively. For NdO + and UO + the excitation energies for the Ωstates were calculated with a valence configuration interaction method using ab initio effective spin-orbit operators to couple the molecular orbital configurations. The results for NdO + are very comparable with the results for UO + , and show the vibrational and electronic states to be interleaved.
Highly Efficient Plastic Crystal Ionic Conductors for Solid-state Dye-sensitized Solar Cells
Hwang, Daesub; Kim, Dong Young; Jo, Seong Mu; Armel, Vanessa; MacFarlane, Douglas R.; Kim, Dongho; Jang, Sung-Yeon
2013-01-01
We have developed highly efficient, ambient temperature, solid-state ionic conductors (SSICs) for dye-sensitized solar cells (DSSCs) by doping a molecular plastic crystal, succinonitrile (SN), with trialkyl-substituted imidazolium iodide salts. High performance SSICs with enhanced ionic conductivity (2–4 mScm−1) were obtained. High performance solid-state DSSCs with power conversion efficiency of 7.8% were fabricated using our SSICs combined with unique hierarchically nanostructured TiO2 sphere (TiO2-SP) photoelectrodes; these electrodes have significant macroporosity, which assists penetration of the solid electrolyte into the electrode. The performance of our solid-state DSSCs is, to the best of our knowledge, the highest reported thus far for cells using plastic crystal-based SSICs, and is comparable to that of the state-of-the-art DSSCs which use ionic liquid type electrolytes. This report provides a logical strategy for the development of efficient plastic crystal-based SSICs for DSSCs and other electrochemical devices. PMID:24343425
Atomic and ionic spectrum lines below 2000A: hydrogen through argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, R.L.
1982-10-01
A critical tabulation of observed spectral lines below 2000 angstroms has been prepared from the published literature up to July 1978. It is intended principally as an aid to those physicists and astronomers who deal with the spectra of highly stripped atoms. This report includes the first 18 elements, from hydrogen (including deuterium) through argon. The tabulation is divided into two main sections: the spectrum lines by spectrum, and a finding list. The entries for each element give the ionization species, ground state term, and ionization potential, as well as the best values of vacuum wavelength, intensity, and classification. Amore » list of the pertinent references is appended at the end.« less
An Alternative to the Ionic Model
ERIC Educational Resources Information Center
Sanderson, R. T.
1975-01-01
Describes the "coordinated polymeric model," which yields more accurate energy calculations than the "ionic model" for compounds which exhibit considerable covalency. The dichotomy between ionic and covalent bonding is thus largely broken down for solids which are nonmolecular in the crystalline state. (MLH)
Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, H.; Zunger, Alex
1985-06-01
We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.
Excited-State Proton Transfer on the Surface of a Therapeutic Protein, Protamine.
Awasthi, Ankur A; Singh, Prabhat K
2017-11-16
Proton transfer reactions on biosurfaces play an important role in a myriad of biological processes. Herein, the excited-state proton transfer reaction of 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) has been investigated in the presence of an important therapeutic protein, Protamine (PrS), using ground-state absorption, steady-state, and detailed time-resolved emission measurements. HPTS forms a 1:1 complex with Protamine with a high association constant of 2.6 × 10 4 M -1 . The binding of HPTS with Protamine leads to a significant modulation in the ground-state prototropic equilibrium causing a downward shift of 1.1 unit in the acidity constant (pK a ). In contrast to a large number of reports of slow proton transfer of HPTS on biosurfaces, interestingly, HPTS registers a faster proton transfer event in the presence of Protamine as compared to that of even the bulk aqueous buffer medium. Furthermore, the dimensionality of the proton diffusion process is also significantly reduced on the surface of Protamine that is in contrast to the behavior of HPTS in the bulk aqueous buffer medium, where the proton diffusion process is three-dimensional. The effect of ionic strength on the binding of HPTS toward PrS suggests a predominant role of electrostatic interaction between anionic HPTS and cationic Protamine, which is further supported by molecular docking simulations which predict that the most preferable binding site for HPTS on the surface of Protamine is surrounded by multiple cationic arginine residues.
Dependence of Ion Transport on the Electronegativity of the Constituting Atoms in Ionic Crystals.
Zhang, Qian; Kaghazchi, Payam
2017-04-19
Ion transport in electrode and electrolyte materials is a key process in Li-based batteries. In this work, we study the mechanism and activation energy of ion transport (Ea ) in rock-salt Li-based LiX (X=Cl, Br, and I) materials. It is found that Ea at low external voltages, where Li-X Schottky pairs are the most favorable defect types, is about 0.42 times the Gibbs energy of formation of LiX compound (ΔGf ). The value of 0.42 is the slope of the electronegativity of anions of binary Li-based materials as a function of ΔGf . At high voltages, where the Fermi level is located very close to the valence band maximum (VBM), electrons can be excited from the VB to Li vacancy-induced states close to the Fermi level. Under this condition, the formation of Li vacancies that are compensated by holes is energetically more favorable than that of Li-X Schottky pairs, and therefore, the activation energies are lower in the former case. The wide range of reported experimental values of activation energies lies between calculated values at low and high voltage regimes. This work motivates further studies on the relation between the activation energy for ionic conductivity in solid materials and the intrinsic ground-state properties of their free atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solid state ionics: a Japan perspective
NASA Astrophysics Data System (ADS)
Yamamoto, Osamu
2017-12-01
The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.
Ionic Liquids as Extraction Media for Metal Ions
NASA Astrophysics Data System (ADS)
Hirayama, Naoki
In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.
First Principles Investigation of Fluorine Based Strontium Series of Perovskites
NASA Astrophysics Data System (ADS)
Erum, Nazia; Azhar Iqbal, Muhammad
2016-11-01
Density functional theory is used to explore structural, elastic, and mechanical properties of SrLiF3, SrNaF3, SrKF3 and SrRbF3 fluoroperovskite compounds by means of an ab-initio Full Potential-Linearized Augmented Plane Wave (FP-LAPW) method. Several lattice parameters are employed to obtain accurate equilibrium volume (Vo). The resultant quantities include ground state energy, elastic constants, shear modulus, bulk modulus, young's modulus, cauchy's pressure, poisson's ratio, shear constant, ratio of elastic anisotropy factor, kleinman's parameter, melting temperature, and lame's coefficient. The calculated structural parameters via DFT as well as analytical methods are found to be consistent with experimental findings. Chemical bonding is used to investigate corresponding chemical trends which authenticate combination of covalent-ionic behavior. Furthermore electron density plots as well as elastic and mechanical properties are reported for the first time which reveals that fluorine based strontium series of perovskites are mechanically stable and posses weak resistance towards shear deformation as compared to resistance towards unidirectional compression while brittleness and ionic behavior is dominated in them which decreases from SrLiF3 to SrRbF3. Calculated cauchy's pressure, poisson's ratio and B/G ratio also proves ionic nature in these compounds. The present methodology represents an effective and influential approach to calculate the whole set of elastic and mechanical parameters which would support to understand various physical phenomena and empower device engineers for implementing these materials in numerous applications.
Suda, Kayo; Terazima, Masahide; Sato, Hirofumi; Kimura, Yoshifumi
2013-10-17
Excited state intramolecular proton transfer reactions (ESIPT) of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) in ionic liquids have been studied by steady-state and time-resolved fluorescence measurements at different excitation wavelengths. Steady-state measurements show the relative yield of the tautomeric form to the normal form of DEAHF decreases as excitation wavelength is increased from 380 to 450 nm. The decrease in yield is significant in ionic liquids that have cations with long alkyl chains. The extent of the decrease is correlated with the number of carbon atoms in the alkyl chains. Time-resolved fluorescence measurements using optical Kerr gate spectroscopy show that ESIPT rate has a strong excitation wavelength dependence. There is a large difference between the spectra at a 200 ps delay from different excitation wavelengths in each ionic liquid. The difference is pronounced in ionic liquids having a long alkyl chain. The equilibrium constant in the electronic excited state obtained at a 200 ps delay and the average reaction rate are also correlated with the alkyl chain length. Considering the results of the steady-state fluorescence and time-resolved measurements, the excitation wavelength dependence of ESIPT is explained by state selective excitation due to the difference of the solvation, and the number of alkyl chain carbon atoms is found to be a good indicator of the effect of inhomogeneity for this reaction.
NASA Astrophysics Data System (ADS)
Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin
2017-03-01
The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.
Aparicio, Santiago; Atilhan, Mert
2012-08-02
Choline-based ionic liquids show very adequate environmental, toxicological, and economical profiles for their application in many different technological areas. We report in this work a computational study on the properties of choline benzoate and choline salicylate ionic liquids, as representatives of this family of compounds, in the pure state and after CO(2) adsorption. Quantum chemistry calculations using the density functional theory approach for ionic pairs and ions, CO(2) pairs, were carried out, and the results analyzed using natural bond orbital and atoms in a molecule approaches. Classical molecular dynamics simulations of ionic liquids were done as a function of pressure, temperature, and CO(2) concentration. Microscopic structuring and intermolecular forces are analyzed together with the dynamic behavior of the studied fluids.
García, Gregorio; Atilhan, Mert; Aparicio, Santiago
2015-09-17
The N-ethyl-N-(furan-2-ylmethyl)ethanaminium dihydrogen phosphate ionic liquid was studied as a model of ionic liquids which can be produced from totally renewable sources. A computational study using both molecular dynamics and density functional theory methods was carried out. The properties, structuring, and intermolecular interactions (hydrogen bonding) of this fluid in the pure state were studied as a function of pressure and temperature. Likewise, the adsorption on graphene and the confinement between graphene sheets was also studied. The solvation of single walled carbon nanotubes in the selected ionic liquid was analyzed together with the behavior of ions confined inside these nanotubes. The reported results show remarkable properties for this fluid, which show that many of the most relevant properties of ionic liquids and their ability to interact with carbon nanosystems may be maintained and even improved using new families of renewable compounds instead of classic types of ionic liquids with worse environmental, toxicological, and economical profiles.
Chronic kidney disease of unknown aetiology and ground-water ionicity: study based on Sri Lanka.
Dharma-Wardana, M W C; Amarasiri, Sarath L; Dharmawardene, Nande; Panabokke, C R
2015-04-01
High incidence of chronic kidney disease of unknown aetiology (CKDU) in Sri Lanka is shown to correlate with the presence of irrigation works and rivers that bring-in 'nonpoint source' fertilizer runoff from intensely agricultural regions. We review previous attempts to link CKDU with As, Cd and other standard toxins. Those studies (e.g. the WHO-sponsored study), while providing a wealth of data, are inconclusive in regard to aetiology. Here, we present new proposals based on increased ionicity of drinking water due to fertilizer runoff into the river system, redox processes in the soil and features of 'tank'-cascades and aquifers. The consequent chronic exposure to high ionicity in drinking water is proposed to debilitate the kidney via a Hofmeister-type (i.e. protein-denaturing) mechanism.
An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap
NASA Astrophysics Data System (ADS)
Z. Alisoy, H.; Alagoz, S.; T. Alisoy, G.; B. Alagoz, B.
2013-10-01
This paper presents analyses of ion flow characteristics and ion discharge pulses in a sphere-ground plate electrode system. As a result of variation in electric field intensity in the electrode gap, the ion flows towards electrodes generate non-uniform discharging pulses. Inspection of these pulses provides useful information on ionic stream kinetics, the effective thickness of ion cover around electrodes, and the timing of ion clouds discharge pulse sequences. A finite difference time domain (FDTD) based space-charge motion simulation is used for the numerical analysis of the spatio-temporal development of ionic flows following the first Townsend avalanche, and the simulation results demonstrate expansion of the positive ion flow and compression of the negative ion flow, which results in non-uniform discharge pulse characteristics.
Computational analysis of the solvation of coffee ingredients in aqueous ionic liquid mixtures.
Zeindlhofer, Veronika; Khlan, Diana; Bica, Katharina; Schröder, Christian
2017-01-13
In this paper, we investigate the solvation of coffee ingredients including caffeine, gallic acid as representative for phenolic compounds and quercetin as representative for flavonoids in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate [C 2 mim][OAc] at various concentrations. Due to the anisotropy of the solutes we show that classical Kirkwood-Buff theory is not appropriate to study solvation effects with increasing ionic liquid content. However, excess coordination numbers as well as the mean residence time of solvent molecules at the surface of the solutes can be determined by Voronoi tessellation. Since the volume of the hydration shells is also available by this method, solvation free energies will be discussed as a function of the ionic liquid concentration to yield a physical meaningful picture of solvation for the anisotropic solutes. Hydrogen bonding capabilities of the solutes and their relevance for experimental extraction yields from spent coffee grounds are also discussed.
The Chemical Bond and Solid-state Physics
ERIC Educational Resources Information Center
Phillips, James C.
1970-01-01
Proposes a new scale of ionicity, with which the ionic character of bonding in crystals can be predicted and measured. This new scale of ionicity has led to improved understanding of such crystalline properties as lattice structure, heats of formation, elastic constants, and nonlinear optical properties. Bibliography. (LC)
Negative thermal expansion near two structural quantum phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman
Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K formore » dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions.We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of newmaterials exhibiting negative thermal expansion« less
Negative thermal expansion near two structural quantum phase transitions
NASA Astrophysics Data System (ADS)
Occhialini, Connor A.; Handunkanda, Sahan U.; Said, Ayman; Trivedi, Sudhir; Guzmán-Verri, G. G.; Hancock, Jason N.
2017-12-01
Recent experimental work has revealed that the unusually strong, isotropic structural negative thermal expansion in cubic perovskite ionic insulator ScF3 occurs in excited states above a ground state tuned very near a structural quantum phase transition, posing a question of fundamental interest as to whether this special circumstance is related to the anomalous behavior. To test this hypothesis, we report an elastic and inelastic x-ray scattering study of a second system Hg2I2 also tuned near a structural quantum phase transition while retaining stoichiometric composition and high crystallinity. We find similar behavior and significant negative thermal expansion below 100 K for dimensions along the body-centered-tetragonal c axis, bolstering the connection between negative thermal expansion and zero-temperature structural transitions. We identify the common traits between these systems and propose a set of materials design principles that can guide discovery of new materials exhibiting negative thermal expansion.
Structure of cyano-anion ionic liquids: X-ray scattering and simulations.
Dhungana, Kamal B; Faria, Luiz F O; Wu, Boning; Liang, Min; Ribeiro, Mauro C C; Margulis, Claudio J; Castner, Edward W
2016-07-14
Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790-14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN(-), SCN(-), N(CN)2 (-), C(CN)3 (-), and B(CN)4 (-). By combining molecular dynamics simulations, high-energy X-ray scattering measurements, and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)4 (-) anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im2,1 (+)/B(CN)4 (-) is cationic.
Hirano, Tsuneo; Andaloussi, Mounir Ben Dahman; Nagashima, Umpei; Jensen, Per
2014-09-07
The three-dimensional ground-state potential energy surface of ZnOH has been calculated ab initio at the MR-SDCI+Q_DK3/[QZP ANO-RCC (Zn, O, H)] level of theory and used as basis for a study of the rovibrational properties carried out by means of the program MORBID (Morse Oscillator Rigid Bender Internal Dynamics). The electronic ground state is (2)A' (correlating with (2)Σ(+) at the linear configuration). The equilibrium structure has r(e)(Zn-O) = 1.8028 Å, r(e)(O-H) = 0.9606 Å, and ∠e(Zn-O-H) = 114.9°. The Zn-O bond is essentially ionic, with appreciable covalency. The bonding character is compared with those of FeOH (quasi-linear) and CsOH (linear). The rovibrationally averaged structural parameters, determined as expectation values over MORBID wavefunctions, are ⟨r(Zn-O)⟩0 = 1.8078 Å, ⟨r(O-H)⟩0 = 0.9778 Å, and ⟨∠(Zn-O-H)⟩0 = 117°. The Yamada-Winnewisser quasi-linearity parameter is found to be γ0 = 0.84, which is close to 1.0 as expected for a bent molecule. Since no experimental rovibrational spectrum has been reported thus far, this spectrum has been simulated from the ab initio potential energy and dipole moment surfaces. The amphoteric character of ZnOH is also discussed.
FT-IR, FT-Raman, and DFT computational studies of melaminium nitrate molecular-ionic crystal
NASA Astrophysics Data System (ADS)
Tanak, Hasan; Marchewka, Mariusz K.
2013-02-01
The experimental and theoretical vibrational spectra of melaminium nitrate were studied. The Raman and infrared (FT-IR) spectra of the melaminium nitrate and its deuterated analogue were recorded in the solid phase. Molecular geometry and vibrational frequency values of melaminium nitrate in the electronic ground state were calculated using the density functional method (B3LYP) with the 6-31++G(d,p) basis set. The calculated results show that the optimized geometry can well reproduce the crystal structure, and the theoretical vibrational frequency values show good agreement with experimental values. The NBO analysis reveals that the N-H···O and N-H···N intermolecular interactions significantly influence crystal packing in this molecule.
Neuron-Glia Interactions and Nervous System Homeostasis
1988-06-01
active neuron states, the mechanisms which glial cells and neurons use to modulate each others metabolic state and the chemical, electrical and... mechanisms by which axons/neurons and their glial cell investments communicate to actively regulate the ionic microenvironment of the nervous system and...of the glial cell in maintenance of the ionic homeostasis of the perineural environment during resting and active neuron states, the mechanisms which
Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong
2012-02-17
All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.
NASA Astrophysics Data System (ADS)
Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong
2012-02-01
All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf2]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g-1 at a current density of 2 A g-1, when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg-1 and 41 Wh kg-1, respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.
NASA Astrophysics Data System (ADS)
Raithel, Georg; Zhao, Jianming
2017-04-01
Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).
2016-09-01
TECHNICAL REPORT 3046 September 2016 GENERATION OF QUALITY PULSES FOR CONTROL OF QUBIT/QUANTUM MEMORY SPIN STATES: EXPERIMENTAL AND SIMULATION...nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and superconductor-ionic hybrid technologies. As the...pulse quality and need for development of single pulses with very high quality will impact directly the coherence time of the qubit/ memory , we present
NASA Astrophysics Data System (ADS)
Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto
2018-06-01
We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.
Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F
2012-04-07
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.
NASA Astrophysics Data System (ADS)
Choi, Eunsong
Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We conclude the study by showing an excellent agreement between the simulation and the experiment.
Ionic Liquids Beyond Simple Solvents: Glimpses at the State of the Art in Organic Chemistry.
Kuchenbuch, Andrea; Giernoth, Ralf
2015-12-01
Within the last 25 years ionic liquids have written a tremendous success story, which is documented in a nearly uncountable amount of original research papers, reviews, and numerous applications in research and industry. These days, ionic liquids can be considered as a mature class of compounds for many different applications. Frequently, they are used as neoteric solvents for chemical tansformations, and the number of reviews on this field of research is huge. In this focused review, though, we are trying to evaluate the state of the art of ionic liquid chemistry beyond using them simply as solvents for chemical transformations. It is not meant to be a comprehensive overview on the topic; the choice of emphasis and examples rather refects the authors' personal view on the field. We are especially highlighting fields in which we believe the most fundamental developments within the next five years will take place: biomass processing, (chiral) ionic liquids from natural sources, biotransformations, and organic synthesis.
Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin
2018-04-07
A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br - in PIL-M-(Br) and TFSI - in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br - and TFSI - , respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g - ¹, 40 and 48 kW·kg - ¹, and 107 and 59.9 Wh·kg - ¹ were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively.
Zeindlhofer, Veronika; Khlan, Diana; Bica, Katharina
2017-01-01
In this paper, we investigate the solvation of coffee ingredients including caffeine, gallic acid as representative for phenolic compounds and quercetin as representative for flavonoids in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate [C2mim][OAc] at various concentrations. Due to the anisotropy of the solutes we show that classical Kirkwood–Buff theory is not appropriate to study solvation effects with increasing ionic liquid content. However, excess coordination numbers as well as the mean residence time of solvent molecules at the surface of the solutes can be determined by Voronoi tessellation. Since the volume of the hydration shells is also available by this method, solvation free energies will be discussed as a function of the ionic liquid concentration to yield a physical meaningful picture of solvation for the anisotropic solutes. Hydrogen bonding capabilities of the solutes and their relevance for experimental extraction yields from spent coffee grounds are also discussed. PMID:28496974
Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review
NASA Astrophysics Data System (ADS)
Paulechka, Yauheni U.
2010-09-01
Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.
Bistable mixed-valence molecular architectures for bit storage
NASA Astrophysics Data System (ADS)
Guihery, Nathalie; Durand, Gérard; Lepetit, Marie-Bernadette
1994-05-01
The work examines the possible realization of bit storage at the molecular scale using mixed valence compounds i.e. the existence of two stable and degenerate forms associated with the 0 and 1 positions of the bit. The proposed systems are constituted of two donors (D) and acceptor (A), or one donor and two acceptors, juxtaposed in DAD or ADA architectures. Our proposals take advantage of the possibility of donor—acceptor complexes to exhibit either complete or partial charge transfer. The first system we propose has an essentially neutral ground state. However, the potential energy surface (PES) presents two degenerated minima associated with a partial charge transfer between the donor and one of the two acceptor molecules (A δ-D δ+1 A and AD δ+ A δ-). Systems presenting a complete charge transfer give rise to two stable, weakly coupled, and degenerate ionic electronic states, A - A + A and AD + A - for an ADA architecture and D + A -D and DA -D + for a DAD In these cases, the two forms differ by both their intramolecular geometries and the relative positions of their constituents. It seems rather difficult to conceive such bistable molecular systems using closed-shell molecules, while a donor radical and a closed-shell acceptor or an acceptor radical and closed-shell donor can generate very stable ionic states. It is assumed that the relative positions of the donor and acceptor molecules can be fixed using chemical bridges constituted of rigid or flexible ligands. The writing and reading processes are discussed for each system as well as the information stability when a large number of bits are juxtaposed on a surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, X.; Pereiro, J.; Strle, J.
Tungsten oxide and its associated bronzes (compounds of tungsten oxide and an alkali metal) are well known for their interesting optical and electrical characteristics. We have modified the transport properties of thin WO 3 films by electrolyte gating using both ionic liquids and polymer electrolytes. We are able to tune the resistivity of the gated film by more than five orders of magnitude, and a clear insulator-to-metal transition is observed. To clarify the doping mechanism, we have performed a series of incisive operando experiments, ruling out both a purely electronic effect (charge accumulation near the interface) and oxygen-related mechanisms. Wemore » propose instead that hydrogen intercalation is responsible for doping WO 3 into a highly conductive ground state and provide evidence that it can be described as a dense polaronic gas.« less
Structure of cyano-anion ionic liquids: X-ray scattering and simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhungana, Kamal B.; Faria, Luiz F. O.; Wu, Boning
2016-07-14
Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790–14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN-, SCN-, N(CN)-2N(CN)2-, C(CN)-3C(CN)3-, and B(CN)-4B(CN)4-. By combining molecular dynamics simulations, high-energy X-ray scattering measurements,more » and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)-4B(CN)4- anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im+2,1Im2,1+/B(CN)-4B(CN)4- is cationic.« less
Switchable solvents and methods of use thereof
Jessop, Philip G.; Eckert, Charles A.; Liotta, Charles L.; Heldebrant, David J.
2013-08-20
A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
Switchable solvents and methods of use thereof
Jessop, Philip G [Kingston, CA; Eckert, Charles A [Atlanta, GA; Liotta, Charles L [Atlanta, GA; Heldebrant, David J [Richland, WA
2011-07-19
A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
Switchable solvents and methods of use thereof
Jessop, Philip G; Eckert, Charles A; Liotta, Charles L; Heldebrant, David J
2014-04-29
A solvent that reversibly converts from a nonionic liquid mixture to an ionic liquid upon contact with a selected trigger, e.g., contact with CO.sub.2, is described. In preferred embodiments, the ionic solvent is readily converted back to the nonionic liquid mixture. The nonionic liquid mixture includes an amidine or guanidine or both, and water, alcohol, or a combination thereof. Single component amine solvents that reversibly convert between ionic and non-ionic states are also described. Some embodiments require increased pressure to convert; others convert at 1 atmosphere.
Disorder from the Bulk Ionic Liquid in Electric Double Layer Transistors
Petach, Trevor A.; Reich, Konstantin V.; Zhang, Xiao; ...
2017-07-28
Ionic liquid gating has a number of advantages over solid-state gating, especially for flexible or transparent devices and for applications requiring high carrier densities. But, the large number of charged ions near the channel inevitably results in Coulomb scattering, which limits the carrier mobility in otherwise clean systems. We develop a model for this Coulomb scattering. We then validate our model experimentally using ionic liquid gating of graphene across varying thicknesses of hexagonal boron nitride, demonstrating that disorder in the bulk ionic liquid often dominates the scattering.
NASA Astrophysics Data System (ADS)
Nawa, Kenji; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Weinert, Michael
Effective on-site Coulomb interactions (Ueff) and electron configurations in the localized d and f orbitals of metal complexes in transition-metal oxides and organometallic molecules, play a key role in the first-principles search for the true ground-state. However, wide ranges of values in the Ueff parameter of a material, even in the same ionic state, are often reported. Here, we revisit this issue from constraint density functional theory (DFT) by using the full-potential linearized augmented plane wave method. The Ueff parameters for prototypical transition-metal oxides, TMO (TM =Mn, Fe, Co, Ni), were calculated by the second derivative of the total energy functional with respect to the d occupation numbers inside the muffin-tin (MT) spheres as a function of the sphere radius. We find that the calculated Ueff values depend significantly on the MT radius, with a variation of more than 3 eV when the MT radius changes from 2.0 to 2.7 a.u., but importantly an identical valence band structure can be produced in all the cases, with an approximate scaling of Ueff. This indicates that a simple transferability of the Ueff value among different calculation methods is not allowed. We further extend the constraint DFT to treat various electron configurations of the localized d-orbitals in organometallic molecules, TMCp2 (TM =Cr, Mn, Fe, Co, Ni), and find that the calculated Ueff values can reproduce the experimentally determined ground-state electron configurations.
Polaronic and ionic conduction in NaMnO2: influence of native point defects
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.
Layered NaMnO2 has promising applications as a cathode material for sodium ion batteries. We will discuss strategies to improve the electrical performance of NaMnO2, including how to optimize the conditions of synthesis and how impurity doping affects the performance. Using hybrid density functional theory, we explored the structural, electronic, and defect properties of bulk NaMnO2. It is antiferromagnetic in the ground state with a band gap of 3.75 eV. Small hole and electron polarons can form in the bulk either through self-trapping or adjacent to point defects. We find that both Na and Mn vacancies are shallow acceptors with the induced holes trapped as small polarons, while O vacancies are deep defect centers. Cation antisites, especially MnNa, are found to have low formation energies. As a result, we expect that MnNa exists in as-grown NaMnO2 in moderate concentrations, rather than forming only at a later stage of the charging process, at which point it causes undesirable structural phase transitions. Both electronic conduction, via polaron hopping, and ionic conduction, through VNa migration, are significantly affected by the presence of point defects. This work was supported by DOE.
Solid state ionics: a Japan perspective
Yamamoto, Osamu
2017-01-01
Abstract The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term ‘solid state ionics’ was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1–xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm–1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm–1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology. PMID:28804526
Ionic effects on the temperature-force phase diagram of DNA.
Amnuanpol, Sitichoke
2017-12-01
Double-stranded DNA (dsDNA) undergoes a structural transition to single-stranded DNA (ssDNA) in many biologically important processes such as replication and transcription. This strand separation arises in response either to thermal fluctuations or to external forces. The roles of ions are twofold, shortening the range of the interstrand potential and renormalizing the DNA elastic modulus. The dsDNA-to-ssDNA transition is studied on the basis that dsDNA is regarded as a bound state while ssDNA is regarded as an unbound state. The ground state energy of DNA is obtained by mapping the statistical mechanics problem to the imaginary time quantum mechanics problem. In the temperature-force phase diagram the critical force F c (T) increases logarithmically with the Na + concentration in the range from 32 to 110 mM. Discussing this logarithmic dependence of F c (T) within the framework of polyelectrolyte theory, it inevitably suggests a constraint on the difference between the interstrand separation and the length per unit charge during the dsDNA-to-ssDNA transition.
Enzyme Active Site Interactions by Raman/FTIR, NMR, and Ab Initio Calculations
Deng, Hua
2017-01-01
Characterization of enzyme active site structure and interactions at high resolution is important for the understanding of the enzyme catalysis. Vibrational frequency and NMR chemical shift measurements of enzyme-bound ligands are often used for such purpose when X-ray structures are not available or when higher resolution active site structures are desired. This review is focused on how ab initio calculations may be integrated with vibrational and NMR chemical shift measurements to quantitatively determine high-resolution ligand structures (up to 0.001 Å for bond length and 0.01 Å for hydrogen bonding distance) and how interaction energies between bound ligand and its surroundings at the active site may be determined. Quantitative characterization of substrate ionic states, bond polarizations, tautomeric forms, conformational changes and its interactions with surroundings in enzyme complexes that mimic ground state or transition state can provide snapshots for visualizing the substrate structural evolution along enzyme-catalyzed reaction pathway. Our results have shown that the integration of spectroscopic studies with theoretical computation greatly enhances our ability to interpret experimental data and significantly increases the reliability of the theoretical analysis. PMID:24018325
Ionic Liquid Crystals: Versatile Materials.
Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen
2016-04-27
This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.
NASA Astrophysics Data System (ADS)
Samanta, Anuva; Paul, Bijan Kumar; Guchhait, N.
2011-05-01
In this report we have studied micellization process of anionic, cationic and non-ionic surfactants using N,N-dimethylaminonapthyl-(acrylo)-nitrile (DMANAN) as an external fluorescence probe. Micropolarity, microviscosity, critical micellar concentration of these micelles based on steady state absorption and fluorescence and time resolved emission spectroscopy of the probe DMANAN show that the molecule resides in the micelle-water interface for ionic micelles and in the core for the non-ionic micelle. The effect of variation of pH of the micellar solution as well as fluorescence quenching measurements of DMANAN provide further support for the location of the probe in the micelles.
High-resolution threshold photoionization of N sub 2 O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedmann, R.T.; Grant, E.R.; Tonkyn, R.G.
1991-07-15
Pulsed field ionization (PFI) has been used in conjunction with a coherent vuv source to obtain high-resolution threshold photoelectron spectra for the (000), (010), (020), and (100) vibrational states of the N{sub 2}O{sup +} cation. Simulations for the rotational profiles of each vibronic level were obtained by fitting the Buckingham--Orr--Sichel equations (A. D. Buckingham, B. J. Orr, and J. M. Sichel, Philos. Trans. R. Soc. London, Ser. A {bold 268}, 147 (1970)) using accurate spectroscopic constants for the ground states of the neutral and the ion. The relative branch intensities are interpreted in terms of the partial waves of themore » outgoing photoelectron to which the ionic core is coupled and in terms of the angular momentum transferred to the core. The PFI technique also allows us to report an improved value for the ionization potential of N{sub 2}O of 103 963{plus minus}5 cm{sup {minus}1}.« less
Electron-electron correlation in two-photon double ionization of He-like ions
NASA Astrophysics Data System (ADS)
Hu, S. X.
2018-01-01
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.
Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M
2016-02-18
We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.
NASA Astrophysics Data System (ADS)
Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.
2018-01-01
Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.
Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin
2018-01-01
A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br) and TFSI− in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively. PMID:29642456
Diversity of Chemical Bonding and Oxidation States in MS4 Molecules of Group 8 Elements.
Huang, Wei; Jiang, Ning; Schwarz, W H Eugen; Yang, Ping; Li, Jun
2017-08-04
The geometric and electronic ground-state structures of 30 isomers of six MS 4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS 4 species were compared to analogous MO 4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet T d geometric species (Os,Hs)S 4 and (Ru,Os,Hs)O 4 , whereas a low MOS of two appeared in the high-spin septet D 2d species Fe(S 2 ) 2 and (slightly excited) metastable Fe(O 2 ) 2 . The ground states of all other molecules had intermediate MOS values, with S 2- , S 2 2- , S 2 1- (and O 2- , O 1- , O 2 2- , O 2 1- ) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n-1)p core and (n-1)d and (n-2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO 4 and MS 4 species provides insight into the periodicity of oxidation states and bonding. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Takubo, Y; Sato, T; Asaoka, N; Kusaka, K; Akiyama, T; Muroo, K; Yamamoto, M
2008-01-01
The excited-state atom densities in the negative glow of a direct-current glow discharge are derived from the spectral-line intensity of radiative atoms and the resonance-fluorescence photon flux of nonradiative atoms. The discharge is operated in a helium-argon gas mixture (molar fraction ratio 91:9; total gas pressure 5 Torr) at a dc current of 0.7-1.2 mA. The observations are made in the region of the maximum luminance in the cathode region, where high-energy electrons accelerated in the cathode fall are injected into the negative glow. The emission intensities of the He I, He II, Ar I, and Ar II spectral lines are measured with a calibrated tungsten ribbon lamp as an absolute spectral-radiance standard. Fluorescence photons scattered by helium and argon atoms in the metastable state and argon atoms in the resonance state are detected by the laser-induced fluorescence (LIF) method with the Rayleigh scattering of nitrogen molecules as an absolute standard of scattering cross section. The laser absorption method is incorporated to confirm the result of the LIF measurement. Excitation energies of the measured spectral lines range from 11.6 (Ar I) to 75.6 eV (He II), where the excitation energy is measured from the ground state of the neutral atom on the assumption that, in the plasma of this study, both the neutral and the ionic lines are excited by electron impact in a single-step process from the ground state of the corresponding neutral atoms. Experimental evidence is shown for the validity of this assumption.
Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties
2014-10-31
H. Gocmez, Hydrothermal synthesis and properties of Ce1-xGdxO2-δ solid solutions // Solid State Sciences. – 2002. – Vol. 4. – P. 585-590. 19. E...J. Kilner, Ionic conductivity in the CeO2-Gd2O3 system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation // Solid State Ionics. - 2002. – Vol
State-resolved Thermal/Hyperthermal Dynamics of Atmospheric Species
2015-06-23
gas -room temperature ionic liquid (RTIL) interfaces. 2) Large scale trajectory simulations for theoretical analysis of gas - liquid scattering studies...areas: 1) Diode laser and LIF studies of hyperthermal CO2 and NO collisions at the gas -room temperature ionic liquid (RTIL) interfaces. 2) Large...scale trajectory simulations for theoretical analysis of gas - liquid scattering studies, 3) LIF data for state-resolved scattering of hyperthermal NO at
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe
Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less
NASA Technical Reports Server (NTRS)
Murty, A. N.
1976-01-01
A straightforward self-consistent method was developed to estimate solid state electrostatic potentials, fields and field gradients in ionic solids. The method is a direct practical application of basic electrostatics to solid state and also helps in the understanding of the principles of crystal structure. The necessary mathematical equations, derived from first principles, were presented and the systematic computational procedure developed to arrive at the solid state electrostatic field gradients values was given.
Influence of the ionic liquid/gas surface on ionic liquid chemistry.
Lovelock, Kevin R J
2012-04-21
Applications such as gas storage, gas separation, NP synthesis and supported ionic liquid phase catalysis depend upon the interaction of different species with the ionic liquid/gas surface. Consequently, these applications cannot proceed to the full extent of their potential without a profound understanding of the surface structure and properties. As a whole, this perspective contains more questions than answers, which demonstrates the current state of the field. Throughout this perspective, crucial questions are posed and a roadmap is proposed to answer these questions. A critical analysis is made of the field of ionic liquid/gas surface structure and properties, and a number of design rules are mined. The effects of ionic additives on the ionic liquid/gas surface structure are presented. A possible driving force for surface formation is discussed that has, to the best of my knowledge, not been postulated in the literature to date. This driving force suggests that for systems composed solely of ions, the rules for surface formation of dilute electrolytes do not apply. The interaction of neutral additives with the ionic liquid/gas surface is discussed. Particular attention is focussed upon H(2)O and CO(2), vital additives for many applications of ionic liquids. Correlations between ionic liquid/gas surface structure and properties, ionic liquid surfaces plus additives, and ionic liquid applications are given. This journal is © the Owner Societies 2012
Infrared spectroscopy of hydrated polycyclic aromatic hydrocarbon cations: naphthalene+-water.
Chatterjee, Kuntal; Dopfer, Otto
2017-12-13
Polycyclic aromatic hydrocarbons (PAHs) are suggested to occur in interstellar media and ice grains. It is important to characterize hydrated PAHs and their cations to explore their stability in interstellar and biological media. Herein, the infrared photodissociation (IRPD) spectrum of the naphthalene + -H 2 O radical cation (Np + -H 2 O) recorded in the O-H and C-H stretch range is analysed by dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level to determine its structure and intermolecular bonding. Monohydration of Np + in its 2 A u ground electronic state leads to the formation of a bifurcated CHO ionic hydrogen bond (H-bond), in which the lone pairs of H 2 O bind to two adjacent CH proton donors of the two aromatic rings. The frequency-dependent branching ratios observed for IRPD of cold Np + -H 2 O-Ar clusters allows the estimation of the dissociation energy of Np + -H 2 O as D 0 ∼ 2800 ± 300 cm -1 . The monohydration motif of Np + differs qualitatively from that of the benzene cation in both structure and binding energy, indicating the strong influence of the multiple aromatic rings on the hydration of PAH + cations. This difference is rationalized by natural bond orbital analysis of the ionic H-bond motif. Comparison with neutral Np-H 2 O reveals the large change in structure and bond strength of the hydrated PAHs upon ionization. While neutral Np-H 2 O is stabilized by weak π H-bonds (OHπ, π-stacking), strong cation-dipole forces favour a planar bifurcated CHO ionic H-bond in Np + -H 2 O.
Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces
Jeon, Seokmin; Doak, Peter W.; Sumpter, Bobby G.; ...
2016-07-26
Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions and superconducting ground states. In contrast, few of these phenomena have so far been observed in low-dimensional molecular structures, including thin films, nanoparticles and molecular blends, not in the least because most of such structures have so far been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional molecular structures of ionic molecules toward fundamental studies and potential applications. Here we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctivemore » property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of 1:1 ratio in the bulk. We propose the existence of the surface phase-diagram that controls the structures of TTF-TCNQ on the surfaces, and demonstrate phase-transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram and the corresponding phase-transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.« less
NASA Astrophysics Data System (ADS)
Chamakuri, Nagaiah; Engwer, Christian; Kunisch, Karl
2014-09-01
Optimal control for cardiac electrophysiology based on the bidomain equations in conjunction with the Fenton-Karma ionic model is considered. This generic ventricular model approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potentials. However, it is challenging due to the appearance of state-dependent discontinuities in the source terms. A computational framework for the numerical realization of optimal control problems is presented. Essential ingredients are a shape calculus based treatment of the sensitivities of the discontinuous source terms and a marching cubes algorithm to track iso-surface of excitation wavefronts. Numerical results exhibit successful defibrillation by applying an optimally controlled extracellular stimulus.
The radiation chemistry of ionic liquids: A review
Mincher, Bruce J.; Wishart, James F.
2014-07-03
Ionic liquids have received increasing attention as media for radiochemical separations. Recent literature includes examinations of the efficiencies and mechanisms of the solvent extraction of lanthanides, actinides and fission products into ionic liquid solutions. For radiochemical applications, including as replacement solvents for nuclear fuel reprocessing, a thorough understanding of the radiation chemistry of ionic liquids will be required. Such an understanding can be achieved based on a combination of steady-state radiolysis experiments coupled with post-irradiation product identification and pulse-radiolysis experiments to acquire kinetic information. These techniques allow for the elucidation of radiolytic mechanisms. This contribution reviews the current ionic liquidmore » radiation chemistry literature as it affects separations, with these considerations in mind.« less
Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier
2017-04-01
Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.
Farrar, Jerry W.
1999-01-01
This report presents the results of the U.S. Geological Survey's analytical evaluation program for seven standard reference samples -- T-155 (trace constituents), M-148 (major constituents), N-59 (nutrient constituents), N-60 (nutrient constituents), P-31 (low ionic strength constituents), GWT-4 (ground-water trace constituents), and Hg- 27 (mercury) -- which were distributed in September 1998 to 162 laboratories enrolled in the U.S. Geological Survey sponsored interlaboratory testing program. Analytical data that were received from 136 of the laboratories were evaluated with respect to overall laboratory performance and relative laboratory performance for each analyte in the seven reference samples. Results of these evaluations are presented in tabular form. Also presented are tables and graphs summarizing the analytical data provided by each laboratory for each analyte in the seven standard reference samples. The most probable value for each analyte was determined using nonparametric statistics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu; Hoffmann, Søren Vrønning, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu
New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onsetmore » has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.« less
Corresponding-states behavior of an ionic model fluid with variable dispersion interactions
NASA Astrophysics Data System (ADS)
Weiss, Volker C.
2016-06-01
Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.
Effects of Ionic Dependence of DNA Persistence Length on the DNA Condensation at Room Temperature
NASA Astrophysics Data System (ADS)
Mao, Wei; Liu, Yan-Hui; Hu, Lin; Xu, Hou-Qiang
2016-05-01
DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. A series of experiments pointed out that, in the DNA condensation process by multivalent cations, the condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in ionic concentration. At the same time, single molecule experiments carried out in solution with multivalent cations (such as spermidine, spermine) indicated that DNA persistence length strongly depends on the ionic concentration. In order to revolve the effects of ionic concentration dependence of persistence length on DNA condensation, a model including the ionic concentration dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the ionic concentration dependence of toroidal conformations. With an increase in ion concentration, the first periodic oscillation contained in the autocorrelation function shifts, the number of segment contained in the first periodic oscillation decreases gradually. According to the experiments, the average long-axis length is defined to estimate the ionic concentration dependence of condensation process further. The relation between long-axis length and ionic concentration matches the experimental results qualitatively. Supported by National Natural Science Foundation of China under Grant Nos. 11047022, 11204045, 11464004 and 31360215; The Research Foundation from Ministry of Education of China (212152), Guizhou Provincial Tracking Key Program of Social Development (SY20123089, SZ20113069); The General Financial Grant from the China Postdoctoral Science Foundation (2014M562341); The Research Foundation for Young University Teachers from Guizhou University (201311); The West Light Foundation (2015) and College Innovation Talent Team of Guizhou Province, (2014) 32
Corresponding-states behavior of an ionic model fluid with variable dispersion interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Volker C., E-mail: volker.weiss@bccms.uni-bremen.de
2016-06-21
Guggenheim’s corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroymore » and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Z{sub c}. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%–40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Z{sub c} as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.« less
A simulation study of CS2 solutions in two related ionic liquids with dications and monocations
NASA Astrophysics Data System (ADS)
Lynden-Bell, R. M.; Quitevis, E. L.
2018-05-01
Atomistic simulations of solutions of CS2 in an ionic liquid, [C8(C1im)2 ] [NTf2]2, with a divalent cation and in the corresponding ionic liquid with a monovalent cation, [C4C1im][NTf2], were carried out. The low-frequency librational density of states of the CS2 was of particular interest in view of recent optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). Compared to the monocation ionic liquid, the maximum shifts to higher frequencies in the dication ionic liquid under ambient conditions, but was found to be significantly pressure-dependent. CS2 molecules lie above and below the plane of the imidazolium rings and found to be close to the butyl tails of the monocation. The diffusion rates and embedding energies of solvent ions and CS2 in the two ionic liquids were measured.
Ionic liquids and their solid-state analogues as materials for energy generation and storage
NASA Astrophysics Data System (ADS)
Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie
2016-02-01
Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.
Insulator to metal transition in WO 3 induced by electrolyte gating
Leng, X.; Pereiro, J.; Strle, J.; ...
2017-07-03
Tungsten oxide and its associated bronzes (compounds of tungsten oxide and an alkali metal) are well known for their interesting optical and electrical characteristics. We have modified the transport properties of thin WO 3 films by electrolyte gating using both ionic liquids and polymer electrolytes. We are able to tune the resistivity of the gated film by more than five orders of magnitude, and a clear insulator-to-metal transition is observed. To clarify the doping mechanism, we have performed a series of incisive operando experiments, ruling out both a purely electronic effect (charge accumulation near the interface) and oxygen-related mechanisms. Wemore » propose instead that hydrogen intercalation is responsible for doping WO 3 into a highly conductive ground state and provide evidence that it can be described as a dense polaronic gas.« less
An Investigation of Ionic Wind Propulsion
NASA Technical Reports Server (NTRS)
Wilson, Jack; Perkins, Hugh D.; Thompson, William K.
2009-01-01
A corona discharge device generates an ionic wind and thrust, when a high voltage corona discharge is struck between sharply pointed electrodes and larger radius ground electrodes. The objective of this study was to examine whether this thrust could be scaled to values of interest for aircraft propulsion. An initial experiment showed that the thrust observed did equal the thrust of the ionic wind. Different types of high voltage electrodes were tried, including wires, knife-edges, and arrays of pins. A pin array was found to be optimum. Parametric experiments, and theory, showed that the thrust per unit power could be raised from early values of 5 N/kW to values approaching 50 N/kW, but only by lowering the thrust produced, and raising the voltage applied. In addition to using DC voltage, pulsed excitation, with and without a DC bias, was examined. The results were inconclusive as to whether this was advantageous. It was concluded that the use of a corona discharge for aircraft propulsion did not seem very practical.
Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime
NASA Astrophysics Data System (ADS)
Fu, Yongsheng; Hou, Yong; Kang, Dongdong; Gao, Cheng; Jin, Fengtao; Yuan, Jianmin
2018-01-01
We present a multi-ion molecular dynamics (MIMD) simulation and apply it to calculating the self-diffusion coefficients of ions with different charge-states in the warm dense matter (WDM) regime. First, the method is used for the self-consistent calculation of electron structures of different charge-state ions in the ion sphere, with the ion-sphere radii being determined by the plasma density and the ion charges. The ionic fraction is then obtained by solving the Saha equation, taking account of interactions among different charge-state ions in the system, and ion-ion pair potentials are computed using the modified Gordon-Kim method in the framework of temperature-dependent density functional theory on the basis of the electron structures. Finally, MIMD is used to calculate ionic self-diffusion coefficients from the velocity correlation function according to the Green-Kubo relation. A comparison with the results of the average-atom model shows that different statistical processes will influence the ionic diffusion coefficient in the WDM regime.
NASA Astrophysics Data System (ADS)
Zhang, Yunfeng; Cai, Weiwei; Rohan, Rupesh; Pan, Meize; Liu, Yuan; Liu, Xupo; Li, Cuicui; Sun, Yubao; Cheng, Hansong
2016-02-01
The ionic conductivity decay problem of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) when increase the lithium salt of the SPEs up to high concentration is here functionally overcome by the incorporation of a charge delocalized sp3 boron based single ion conducting polymer electrolyte (SIPE) with poly(ethylene oxide) to fabricate solid-state sp3 boron based SIPE membranes (S-BSMs). By characterizations, particularly differential scanning calorimeter (DSC) and ionic conductivity studies, the fabricated S-BSMs showed decreased melting points and increased ionic conductivity as steadily increase the content of sp3 boron based SIPE, which significantly improved the low temperature performance of the all-solid-state lithium batteries. The fabricated Li | S-BSMs | LiFePO4 cells exhibit highly electrochemical stability and excellent cycling at temperature below melting point of PEO, which has never been reported so far for SIPEs based all-solid-state lithium batteries.
High H⁻ ionic conductivity in barium hydride.
Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S
2015-01-01
With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.
Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D
2017-08-01
This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.
Switchable silver mirrors with long memory effects.
Park, Chihyun; Seo, Seogjae; Shin, Haijin; Sarwade, Bhimrao D; Na, Jongbeom; Kim, Eunkyoung
2015-01-01
An electrochemically stable and bistable switchable mirror was achieved for the first time by introducing (1) a thiol-modified indium tin oxide (ITO) electrode for the stabilization of the metallic film and (2) ionic liquids as an anion-blocking layer, to achieve a long memory effect. The growth of the metallic film was denser and faster at the thiol-modified ITO electrode than at a bare ITO electrode. The electrochemical stability of the metallic film on the thiol-modified ITO was enhanced, maintaining the metallic state without rupture. In the voltage-off state, the metal film maintained bistability for a long period (>2 h) when ionic liquids were introduced as electrolytes for the switchable mirror. The electrical double layer in the highly viscous ionic liquid electrolyte seemed to effectively form a barrier to the bromide ions, to protect the metal thin film from them when in the voltage-off state.
Ionic charge state measurements during He(+)-rich solar particle events
NASA Technical Reports Server (NTRS)
Hovestadt, D.; Klecker, B.; Scholer, M.; Gloeckler, G.
1984-01-01
Ionic charge state measurements of carbon, oxygen, and iron in He(+)-rich energetic particle events are presented. The data have been obtained with the Max-Planck-Institut/University of Maryland sensor system on the ISEE 3 spacecraft. The ionic charge states cannot be explained in terms of a model in which the coronal temperature determines a charge equilibrium which is subsequently frozen-in nor in terms of charge exchange during transition through coronal matter after acceleration. It is concluded that the acceleration and probably also the injection process is biased against particles with high mass-to-charge ratios. The plasma injected into the acceleration process must consist of material of cold (not greater than 8.5 x 10 to the 4th K) as well as hot (2.5 x 10 to the 6th K) origin. The cold material must be more abundant than the hot material.
Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3
NASA Astrophysics Data System (ADS)
Schmeißer, Dieter; Henkel, Karsten
2018-04-01
We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.
NASA Technical Reports Server (NTRS)
Salzmann, D.; Stein, J.; Goldberg, I. B.; Pratt, R. H.
1991-01-01
The effect of the cylindrical symmetry imposed by the nearest-neighbor ions on the ionic levels and the emission spectra of a Li-like Kr ion immersed in hot and dense plasmas is investigated using the Stein et al. (1989) two-centered model extended to include computations of the line profiles, shifts, and widths, as well as the energy-level mixing and the forbidden transition probabilities. It is shown that the cylindrical symmetry mixes states with different orbital quantum numbers l, particularly for highly excited states, and, thereby, gives rise to forbidden transitions in the emission spectrum. Results are obtained for the variation of the ionic level shifts and mixing coefficients with the distance to the nearest neighbor. Also obtained are representative computed spectra that show the density effects on the spectral line profiles, shifts, and widths, and the forbidden components in the spectrum.
A Quaternary Sodium Superionic Conductor - Na 10.8Sn 1.9PS 11.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Zhaoxin; Shang, Shun -Li; Gao, Yue
Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na 3PS 4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na 10.8Sn 1.9PS 11.8, exhibiting a high ionic conductivity of 0.67 mS cm –1 at 25 °C. This high ionic conductivity originates from the presence ofmore » a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na 10.8Sn 1.9PS 11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS 2 battery, demonstrating its potential application in all-solid-state NIBs.« less
A Quaternary Sodium Superionic Conductor - Na 10.8Sn 1.9PS 11.8
Yu, Zhaoxin; Shang, Shun -Li; Gao, Yue; ...
2018-01-31
Sulfide-based Na-ion conductors are promising candidates as solid-state electrolytes (SSEs) for fabrication of solid-state Na-ion batteries (NIBs) because of their high ionic conductivities and low grain boundary resistance. Currently, most of the sulfide-based Na-ion conductors with high conductivities are focused on Na 3PS 4 phases and its derivatives. It is desirable to develop Na-ion conductors with new composition and crystal structure to achieve superior ionic conductivities. Here we report a new quaternary Na-ion conductor, Na 10.8Sn 1.9PS 11.8, exhibiting a high ionic conductivity of 0.67 mS cm –1 at 25 °C. This high ionic conductivity originates from the presence ofmore » a large number of intrinsic Na-vacancies and three-dimensional Na-ion conduction pathways, which has been confirmed by single-crystal X-ray diffraction and first-principles calculations. In conclusion, the Na 10.8Sn 1.9PS 11.8 phase is further evaluated as an electrolyte in a Na-Sn alloy/TiS 2 battery, demonstrating its potential application in all-solid-state NIBs.« less
Song, Ying; Wu, Lijie; Lu, Chunmei; Li, Na; Hu, Mingzhu; Wang, Ziming
2014-12-01
An easy, quick, and green method, microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1-Ethy-3-methylimidazolium hexafluorophosphate, which is a solid-state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid-state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00-400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harnessing Poly(ionic liquid)s for Sensing Applications.
Guterman, Ryan; Ambrogi, Martina; Yuan, Jiayin
2016-07-01
The interest in poly(ionic liquid)s for sensing applications is derived from their strong interactions to a variety of analytes. By combining the desirable mechanical properties of polymers with the physical and chemical properties of ILs, new materials can be created. The tunable nature of both ionic liquids and polymers allows for incredible diversity, which is exemplified in their broad applicability. In this article we examine the new field of poly(ionic liquid) sensors by providing a detailed look at the current state-of-the-art sensing devices for solvents, gases, biomolecules, pH, and anions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CO2 Responsive Imidazolium-Type Poly(Ionic Liquid) Gels.
Zhang, Jing; Xu, Dan; Guo, Jiangna; Sun, Zhe; Qian, Wenjing; Zhang, Ye; Yan, Feng
2016-07-01
Poly(ionic liquid) (PIL) gels with CO2 stimulus responsiveness have been synthesized through the copolymerization of an imidazolium-type ionic liquid monomer with 2-(dimethyl amino) ethyl methacrylate. Upon bubbling with CO2 gas, the prepared PIL solution is converted to a transparent and stable gel, which can be turned back to the initial solution state after N2 bubbling. The reversible sol-gel phase transition behavior is proved by the reversible values of viscosity and ionic conductivity. The possible mechanism for such a reversible sol-gel phase transition is demonstrated by NMR, conductivity, and rheological measurements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ford, Mark S; Mackenzie, Stuart R
2005-08-22
The first results are presented of a new experiment designed both to generate and characterize spectroscopically individual isomers of transition-metal cluster cations. As a proof of concept the one-photon mass-analyzed threshold ionization (MATI) spectrum of V3 has been recorded in the region of 44,000-45,000 cm-1. This study extends the range of a previous zero-kinetic-energy (ZEKE) photoelectron study of Yang et al. [Chem. Phys. Lett. 231, 177 (1994)] with which the current results are compared. The MATI spectra reported here exhibit surprisingly high resolution (0.2 cm-1) for this technique despite the use of large discrimination and extraction fields. Analysis of the rotational profile of the origin band allows assignment of the V3 ground state as and the V3+ ground state as , both with D3h geometry, in agreement with the density-functional theory study of the V3 ZEKE spectrum by Calaminici et al. [J. Chem. Phys. 114, 4036 (2001)]. There is also some evidence in the spectrum of transitions to the low-lying excited state of the ion. The vibrational structure observed in the MATI spectrum is, however, significantly different to and less extensive than that predicted in the density-functional theory study. Possible reasons for the discrepancies are discussed and an alternative assignment is proposed which results in revised values for the vibrational wave numbers of both the neutral and ionic states. These studies demonstrate the efficient generation of cluster ions in known structural (isomeric) forms and pave the way for the study of cluster reactivity as a function of geometrical structure.
Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.
Pino, Verónica; Afonso, Ana M
2012-02-10
Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca
2016-09-01
Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.
Complete phase diagram of rare-earth nickelates from first-principles
NASA Astrophysics Data System (ADS)
Varignon, Julien; Grisolia, Mathieu N.; Íñiguez, Jorge; Barthélémy, Agnès; Bibes, Manuel
2017-12-01
The structural, electronic and magnetic properties of AMO3 perovskite oxides, where M is a 3d transition metal, are highly sensitive to the geometry of the bonds between the metal-d and oxygen-p ions (through octahedra rotations and distortions) and to their level of covalence. This is particularly true in rare-earth nickelates RNiO3 that display a metal-insulator transition with complex spin orders tunable by the rare-earth size, and are on the border line between dominantly ionic (lighter elements) and covalent characters (heavier elements). Accordingly, computing their ground state is challenging and a complete theoretical description of their rich phase diagram is still missing. Here, using first-principles simulations, we successfully describe the electronic and magnetic experimental ground state of nickelates. We show that the insulating phase is characterized by a split of the electronic states of the two Ni sites (i.e., resembling low-spin 4+ and high-spin 2+) with a concomitant shift of the oxygen-2p orbitals toward the depleted Ni cations. Therefore, from the point of view of the charge, the two Ni sites appear nearly identical whereas they are in fact distinct. Performing such calculations for several nickelates, we built a theoretical phase diagram that reproduces all their key features, namely a systematic dependence of the metal-insulator transition with the rare-earth size and the crossover between a second to first order transition for R = Pr and Nd. Finally, our results hint at strategies to control the electronic and magnetic phases of perovskite oxides by fine tuning of the level of covalence.
Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.
Shankla, Manish; Aksimentiev, Aleksei
2017-04-20
Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.
Sheng, Ouwei; Jin, Chengbin; Luo, Jianmin; Yuan, Huadong; Huang, Hui; Gan, Yongping; Zhang, Jun; Xia, Yang; Liang, Chu; Zhang, Wenkui; Tao, Xinyong
2018-05-09
High ionic conductivity, satisfactory mechanical properties, and wide electrochemical windows are crucial factors for composite electrolytes employed in solid-state lithium-ion batteries (SSLIBs). Based on these considerations, we fabricate Mg 2 B 2 O 5 nanowire enabled poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs). Notably, these SSEs have enhanced ionic conductivity and a large electrochemical window. The elevated ionic conductivity is attributed to the improved motion of PEO chains and the increased Li migrating pathway on the interface between Mg 2 B 2 O 5 and PEO-LiTFSI. Moreover, the interaction between Mg 2 B 2 O 5 and -SO 2 - in TFSI - anions could also benefit the improvement of conductivity. In addition, the SSEs containing Mg 2 B 2 O 5 nanowires exhibit improved the mechanical properties and flame-retardant performance, which are all superior to the pristine PEO-LiTFSI electrolyte. When these multifunctional SSEs are paired with LiFePO 4 cathodes and lithium metal anodes, the SSLIBs show better rate performance and higher cyclic capacity of 150, 106, and 50 mAh g -1 under 0.2 C at 50, 40, and 30 °C. This strategy of employing Mg 2 B 2 O 5 nanowires provides the design guidelines of assembling multifunctional SSLIBs with high ionic conductivity, excellent mechanical properties, and flame-retardant performance at the same time.
Romo, Tod D.; Grossfield, Alan; Pitman, Michael C.
2010-01-01
Abstract The recently solved crystallographic structures for the A2A adenosine receptor and the β1 and β2 adrenergic receptors have shown important differences between members of the class-A G-protein-coupled receptors and their archetypal model, rhodopsin, such as the apparent breaking of the ionic lock that stabilizes the inactive structure. Here, we characterize a 1.02 μs all-atom simulation of an apo-β2 adrenergic receptor that is missing the third intracellular loop to better understand the inactive structure. Although we find that the structure is remarkably rigid, there is a rapid influx of water into the core of the protein, as well as a slight expansion of the molecule relative to the crystal structure. In contrast to the x-ray crystal structures, the ionic lock rapidly reforms, although we see an activation-precursor-like event wherein the ionic lock opens for ∼200 ns, accompanied by movements in the transmembrane helices associated with activation. When the lock reforms, we see the structure return to its inactive conformation. We also find that the ionic lock exists in three states: closed (or locked), semi-open with a bridging water molecule, and open. The interconversion of these states involves the concerted motion of the entire protein. We characterize these states and the concerted motion underlying their interconversion. These findings may help elucidate the connection between key local events and the associated global structural changes during activation. PMID:20074514
Smart glass based on electrochromic polymers
NASA Astrophysics Data System (ADS)
Xu, Chunye; Kong, Xiangxing; Liu, Lu; Su, Fengyu; Kim, Sooyeun; Taya, Minoru
2006-03-01
Five-layer-structured electrochromic glass (window), containing a transparent conductive layer, an electrochromic layer, an ionic conductive layer, an ionic storage layer and a second conductive transparent layer, was fabricated. The electrochromic glass adopts the conjugated polymer, poly[3,3-dimethyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine] (PProDOT-Me2), as a blue electrochromic active layer, vanadium pentaoxide film as an ion storage layer and polymer gel electrolyte as the ionic transport layer. Dimension of smart glass up to 12 x 20 inch was developed. UV curable sealant was applied for the sealing devices. Color changing or switching speed of 12 x 20 inch smart glass from dark state to the transparent state (or vise versa) is less than 15 seconds under applied 1.5 voltages. Besides the long open circuit memory (the colored state or transparent state remains the same state after the power is off), the smart window can be adjusted easily into the intermediate state between the dark state and the transparent state by just simply turn the power on or off. No space consuming or dirt collecting shades, curtains or blinds are needed. The applications of the smart window, e.g. in the aircrafts, automobiles and architectures were discussed as well.
Ionic Association Ion-Selective Electrode Experiment.
ERIC Educational Resources Information Center
Emara, Mostafa M.; And Others
1979-01-01
Describes an experiment that, using a commercially available solid-state selective electrode in conjunction with a pH-meter, determines the stability constants of sodium sulfate while varying the ionic strength of the media using sodium chloride. Detailed reproducible procedures of both the measurements and calculations are described. (BT)
Composite mixed oxide ionic and electronic conductors for hydrogen separation
Gopalan, Srikanth [Westborough, MA; Pal, Uday B [Dover, MA; Karthikeyan, Annamalai [Quincy, MA; Hengdong, Cui [Allston, MA
2009-09-15
A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petach, Trevor A.; Reich, Konstantin V.; Zhang, Xiao
Ionic liquid gating has a number of advantages over solid-state gating, especially for flexible or transparent devices and for applications requiring high carrier densities. But, the large number of charged ions near the channel inevitably results in Coulomb scattering, which limits the carrier mobility in otherwise clean systems. We develop a model for this Coulomb scattering. We then validate our model experimentally using ionic liquid gating of graphene across varying thicknesses of hexagonal boron nitride, demonstrating that disorder in the bulk ionic liquid often dominates the scattering.
2016-02-10
potential in making high- performance solid state lithium ion batteries [1,2]. Among them, the polyethylene oxide-alkali salts systems PEO6:XPF6 (X = H...electrolytes for magnesium batteries incorporating chloro- or iodo- ionic liquids. Much of this work was done in collaboration with the experimental group...magnesium batteries incorporating chloro- or iodo- ionic liquids. Much of this work was done in collaboration with the experimental group of Prof. Vito Di
Mass-imbalanced ionic Hubbard chain
NASA Astrophysics Data System (ADS)
Sekania, Michael; Baeriswyl, Dionys; Jibuti, Luka; Japaridze, George I.
2017-07-01
A repulsive Hubbard model with both spin-asymmetric hopping (t↑≠t↓ ) and a staggered potential (of strength Δ ) is studied in one dimension. The model is a compound of the mass-imbalanced (t↑≠t↓ ,Δ =0 ) and ionic (t↑=t↓ ,Δ >0 ) Hubbard models, and may be realized by cold atoms in engineered optical lattices. We use mostly mean-field theory to determine the phases and phase transitions in the ground state for a half-filled band (one particle per site). We find that a period-two modulation of the particle (or charge) density and an alternating spin density coexist for arbitrary Hubbard interaction strength, U ≥0 . The amplitude of the charge modulation is largest at U =0 , decreases with increasing U and tends to zero for U →∞ . The amplitude for spin alternation increases with U and tends to saturation for U →∞ . Charge order dominates below a value Uc, whereas magnetic order dominates above. The mean-field Hamiltonian has two gap parameters, Δ↑ and Δ↓, which have to be determined self-consistently. For U
NASA Astrophysics Data System (ADS)
Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.
2016-08-01
Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.
Haberler, Michael; Steinhauser, Othmar
2011-10-28
The solvation of the protein ubiquitin (PDB entry "1UBQ") in hydrated molecular ionic liquids was studied for varying water content or, equivalently, a diversity of ionic strengths. The cations and anions were 1-ethyl-3-methylimidazolium and trifluoromethanesulfonate, respectively. The protein's shape and stability as well as the solvation structure, the shell dynamics and the shell resolved dielectric properties were investigated by means of molecular dynamics simulations. The respective simulation trajectories covered 200 nanoseconds. Besides the characteristic point already found for the zinc finger motif at the transition from the pure aqueous environment to the ionic solution an even more pronounced state is found where several properties show extremal behaviour (maximum or minimum). This second characteristic point occurs at the transition from the ionic solution to the hydrated ionic melt where water changes its role from a solvent to a co-solvent. Most of the data analysis presented here is based on the Voronoi decomposition of space. This journal is © the Owner Societies 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, Christian; Sadowski, Marcel; Sicolo, Sabrina
Glassy, glass–ceramic, and crystalline lithium thiophosphates have attracted interest in their use as solid electrolytes in all-solid-state batteries. Despite similar structural motifs, including PS 4 3–, P 2S 6 4–, and P 2S 7 4– polyhedra, these materials exhibit a wide range of possible compositions, crystal structures, and ionic conductivities. Here, we present a combined approach of Bragg diffraction, pair distribution function analysis, Raman spectroscopy, and 31P magic angle spinning nuclear magnetic resonance spectroscopy to study the underlying crystal structure of Li 4P 2S 6. In this work, we show that the material crystallizes in a planar structural arrangement asmore » a glass ceramic composite, explaining the observed relatively low ionic conductivity, depending on the fraction of glass content. Calculations based on density functional theory provide an understanding of occurring diffusion pathways and ionic conductivity of this Li + ionic conductor.« less
Ground and excited state dissociation dynamics of ionized 1,1-difluoroethene.
Gridelet, E; Dehareng, D; Locht, R; Lorquet, A J; Lorquet, J C; Leyh, B
2005-09-22
The kinetic energy release distributions (KERDs) for the fluorine atom loss from the 1,1-difluoroethene cation have been recorded with two spectrometers in two different energy ranges. A first experiment uses dissociative photoionization with the He(I) and Ne(I) resonance lines, providing the ions with a broad internal energy range, up to 7 eV above the dissociation threshold. The second experiment samples the metastable range, and the average ion internal energy is limited to about 0.2 eV above the threshold. In both energy domains, KERDs are found to be bimodal. Each component has been analyzed by the maximum entropy method. The narrow, low kinetic energy components display for both experiments the characteristics of a statistical, simple bond cleavage reaction: constraint equal to the square root of the fragment kinetic energy and ergodicity index higher than 90%. Furthermore, this component is satisfactorily accounted for in the metastable time scale by the orbiting transition state theory. Potential energy surfaces corresponding to the five lowest electronic states of the dissociating 1,1-C2H2F2+ ion have been investigated by ab initio calculations at various levels. The equilibrium geometry of these states, their dissociation energies, and their vibrational wavenumbers have been calculated, and a few conical intersections between these surfaces have been identified. It comes out that the ionic ground state X2B1 is adiabatically correlated with the lowest dissociation asymptote. Its potential energy curve increases in a monotonic way along the reaction coordinate, giving rise to the narrow KERD component. Two states embedded in the third photoelectron band (B2A1 at 15.95 eV and C2B2 at 16.17 eV) also correlate with the lowest asymptote at 14.24 eV. We suggest that their repulsive behavior along the reaction coordinate be responsible for the KERD high kinetic energy contribution.
A self-forming composite electrolyte for solid-state sodium battery with ultra-long cycle life
Zhang, Zhizhen; Yang, Xiao -Qing; Zhang, Qinghua; ...
2016-10-31
Replacing organic liquid electrolyte with inorganic solid electrolytes (SE) can potentially address the inherent safety problems in conventional rechargeable batteries. Furthermore, all-solid-state batteries have been plagues by the relatively low ionic conductivity of solid electrolytes and large charge-transfer resistance resulted from solid-solid interfaces between electrode materials and solid electrolytes. Here we report a new design strategy for improving the ionic conductivity of solid electrolyte by self-forming a composite material. An optimized Na + ion conducting composite electrolyte derived from the NASICON structure was successfully synthesized, yielding ultra-high ionic conductivity of 3.4 mS cm –1 at 25°C and 14 ms cmmore » –1 at 80°C.« less
Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium-Air Batteries
2014-11-01
Thangadurai V, Weppner W. Lithium lanthanum titanates: a review. Chemistry of Materials. 2003;15:3974–3990. 4. Knauth P. Inorganic solid Li ion conductors...an overview. Solid State Ionics. 2009;180:911–916. 5. Ban CW, Choi GM. The effect of sintering on the grain boundary conductivity of lithium ...lanthanum titanates. Solid State Ionics. 2001;140:285–292. 6. Inada R, Kimura K, Kusakabe K, Tojo T, Sakurai Y. Synthesis and lithium -ion conductivity
NASA Astrophysics Data System (ADS)
Baldrati, L.; Tan, A. J.; Mann, M.; Bertacco, R.; Beach, G. S. D.
2017-01-01
The magneto-ionic effect is a promising method to control the magnetic properties electrically. Charged mobile oxygen ions can easily be driven by an electric field to modify the magnetic anisotropy of a ferromagnetic layer in contact with an ionic conductor in a solid-state device. In this paper, we report on the room temperature magneto-ionic modulation of the magnetic anisotropy of ultrathin CoFeB films in contact with a GdOx layer, as probed by polar micro-Magneto Optical Kerr Effect during the application of a voltage across patterned capacitors. Both Pt/CoFeB/GdOx films with perpendicular magnetic anisotropy and Ta/CoFeB/GdOx films with uniaxial in-plane magnetic anisotropy in the as-grown state exhibit a sizable dependence of the magnetic anisotropy on the voltage (amplitude, polarity, and time) applied across the oxide. In Pt/CoFeB/GdOx multilayers, it is possible to reorient the magnetic anisotropy from perpendicular-to-plane to in-plane, with a variation of the magnetic anisotropy energy greater than 0.2 mJ m-2. As for Ta/CoFeB/GdOx multilayers, magneto-ionic effects still lead to a sizable variation of the in-plane magnetic anisotropy, but the anisotropy axis remains in-plane.
Mishra, Arpit; Ekka, Mary Krishna; Maiti, Souvik
2016-03-17
Ionic liquids (ILs) are salts with poor ionic coordination, resultantly remaining in liquid state below 100 °C and some may retain liquid state even at room temperature. ILs are known to provide a conducive environment for many biological enzymatic reactions, but their interaction with biomacromolecules are poorly understood. In the present study, we investigate the effect of various ionic liquids on DNA-small molecule interaction using calf thymus DNA (ctDNA)-ethidium bromide (EB) as a model system. The effect of various ionic liquids on these interactions is studied by an array of techniques such as circular dichroism (CD), UV melting, fluorescence exclusion and isothermal titration calorimetry. Interestingly, we observed that presence of IL increased the stability of ctDNA without altering its structure. The binding affinities Kbs for EB binding to ctDNA in the presence of 300 mM ILs are about half order of magnitude smaller than the Kbs in absence of ILs and correspond to a less favorable free energy. We noted that, when adjusted to corresponding buffer condition, the unfavorable shift in ΔG of ctDNA-EB interaction is attributed to decreased entropy in the case of ILs, whereas the same effect by NaCl was due to increased enthalpy.
Itinerant density wave instabilities at classical and quantum critical points
Feng, Yejun; van Wezel, Jasper; Wang, Jiyang; ...
2015-07-27
Charge ordering in metals is a fundamental instability of the electron sea, occurring in a host of materials and often linked to other collective ground states such as superconductivity. What is difficult to parse, however, is whether the charge order originates among the itinerant electrons or whether it arises from the ionic lattice. Here in this study we employ high-resolution X-ray diffraction, combined with high-pressure and low-temperature techniques and theoretical modelling, to trace the evolution of the ordering wavevector Q in charge and spin density wave systems at the approach to both thermal and quantum phase transitions. The non-monotonic behaviourmore » of Q with pressure and the limiting sinusoidal form of the density wave point to the dominant role of the itinerant instability in the vicinity of the critical points, with little influence from the lattice. Fluctuations rather than disorder seem to disrupt coherence.« less
First principles study on structural, lattice dynamical and thermal properties of BaCeO3
NASA Astrophysics Data System (ADS)
Zhang, Qingping; Ding, Jinwen; He, Min
2017-09-01
BaCeO3 exhibits impressive application potentials on solid oxide fuel cell electrolyte, hydrogen separation membrane and photocatalyst, owing to its unique ionic and electronic properties. In this article, the electronic structures, phonon spectra and thermal properties of BaCeO3 in orthorhombic, rhombohedral and cubic phases are investigated based on density functional theory. Comparisons with reported experimental results are also presented. The calculation shows that orthorhombic structure is both energetically and dynamically stable under ground state, which is supported by the experiment. Moreover, charge transfer between cations and anions accompanied with phase transition is observed, which is responsible for the softened phonon modes in rhombohedral and cubic phases. Besides, thermal properties are discussed. Oxygen atoms contribute most to the specific heat. The calculated entropy and specific heat at constant pressure fit well with the experimental ones within the measured temperature range.
Hu, S. X.
2018-01-18
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less
NASA Astrophysics Data System (ADS)
Medcraft, Chris; Mullaney, John C.; Walker, Nicholas R.; Legon, Anthony C.
2017-05-01
A complex of argon with silver iodide (Ar⋯Agsbnd I) has been formed in the gas phase by laser ablation of a silver iodide rod in the presence of a pulse of argon gas and its ground-state rotational spectrum has been detected by means of a chirped-pulse, F-T microwave instrument. Ar⋯Agsbnd I was characterised both by experimental properties determined from its rotational spectrum and by ab initio calculations carried out at the CCSD(T)(F12c)/cc-pVTZ-F12 explicitly correlated level of theory. The molecule was shown to be linear in the ground state, with atoms in the order shown. The Ar⋯Ag and Agsbnd I bond lengths r0(Ar⋯Ag) = 2.6759 Å and r0(Agsbnd I) = 2.5356 Å, the dissociation energy De = 16.7 kJ mol-1 for the process Ar⋯Agsbnd I = Ar + Agsbnd I, the intermolecular quadratic stretching force constant FAr⋯Ag = F22 = 20.2(8) N m-1 and the increase 0.033 in the ionicity ic of Agsbnd I when it enters the complex are reported. The opportunity has been taken to compare the way in which these properties vary along the series Ar⋯Agsbnd X (X = F, Cl, Br and I).
Large apparent electric size of solid-state nanopores due to spatially extended surface conduction.
Lee, Choongyeop; Joly, Laurent; Siria, Alessandro; Biance, Anne-Laure; Fulcrand, Rémy; Bocquet, Lydéric
2012-08-08
Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based on analogies with electric circuits, the surface conductance inside the nanopore is shown to perturb the three-dimensional electric current streamlines far outside the nanopore in order to meet charge conservation at the pore entrance. This unexpected contribution to the ionic conductance can be interpreted in terms of an apparent electric size of the solid-state nanopore, which is much larger than its geometric counterpart whenever the number of charges carried by the nanopore surface exceeds its bulk counterpart. This apparent electric size, which can reach hundreds of nanometers, can have a major impact on the electrical detection of translocation events through nanopores, as well as for ionic transport in biological nanopores.
Effect of chitosan ethers on fresh state properties of lime mortars
NASA Astrophysics Data System (ADS)
Vyšvařil, M.; Žižlavský, T.
2017-10-01
The fresh state properties of mortars are eminently important since determine the material workability and also have a great influence on its hardened state characteristics. In this paper, the behaviour of fresh lime mortars modified by etherified derivatives of chitosan (hydroxypropylchitosan (HPCH) and carboxymethylchitosan (CMCH)) is assessed with the purpose of exploring a new application of such derivatives as lime mortar admixtures. The rheological parameters (relative yield stress, consistency coefficient and fluidity index) and viscoelastic properties were correlated with flow table tests, relative density measurements, water retention abilities of mortars and air content in mortars. Results were seen to be strongly dependent on substituents of the chitosan. Non-ionic derivative (HPCH) had a plasticizing influence on the mortars; the ionic CMCH showed the thickening effect. The effect of chitosan ethers was found to be dosage-dependent. CMCH had low impact on water retention, while HPCH displayed high water retention capability. It was concluded, that the ionic derivative (CMCH) is very similar by its viscosity enhancing effect to starch ether.
Harnessing Solid-State Ionic Transport for Nanomanufacturing and Nanodevices
ERIC Educational Resources Information Center
Hsu, Keng Hao
2009-01-01
Through this work a new all-solid, ambient processing condition direct metal patterning technique has been developed and characterized. This ionic-transport-based patterning technique is capable of sub-50nm feature resolution under ambient conditions. It generates features with a rate that is comparable to conventional dry-etching techniques. A…
State-of-the-Art pH Electrode Quality Control for Measurements of Acidic, Low Ionic Strength Waters.
ERIC Educational Resources Information Center
Stapanian, Martin A.; Metcalf, Richard C.
1990-01-01
Described is the derivation of the relationship between the pH measurement error and the resulting percentage error in hydrogen ion concentration including the use of variable activity coefficients. The relative influence of the ionic strength of the solution on the percentage error is shown. (CW)
Huang, Tianpei; Xie, Zhirong; Wu, Qingyin; Yan, Wenfu
2016-03-07
A series of temperature-dependent gel-type ionic liquid compounds have been synthesized from 1-(3-sulfonic group) propyl-3-methyl imidazolium (abbreviated as MIMPS) and three vanadium-substituted heteropoly acids H5SiW11VO40, H5SiMo11VO40 and H7SiW9V3O40. The designed and synthesized gel-type polyoxometalate ionic liquids (POM-ILs) have demonstrated a tendency to exhibit a layered structure. Moreover, they can undergo a phase transformation from a viscous gel-state to a liquid-state below 100 °C, and ionic conductivity up to 10(-3) S cm(-1) was observed at 120 °C. Cyclic voltammetry was carried out to study their electrochemical properties in organic solutions, and it was found that the oxidizability of the three POM-ILs decreases in the order: [MIMPS]7SiW9V3O40 > [MIMPS]5SiMo11VO40 > [MIMPS]5SiW11VO40. This result indicates that the redox behavior can be tuned by changing the chemical composition of the heteropolyanions.
Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali
2013-11-01
The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in bound water as ionic strengths increased. Texture analysis was employed to determine the gel strength and also to explain the drug release for the diltiazem hydrochloride. This methodology can be used as a valuable tool for predicting potential ionic effects related to in vivo fed and fasted states on drug release from hydrophilic ER matrices. Copyright © 2013 Elsevier B.V. All rights reserved.
Non-haloaluminate room-temperature ionic liquids in electrochemistry--a review.
Buzzeo, Marisa C; Evans, Russell G; Compton, Richard G
2004-08-20
Some twenty-five years after they first came to prominence as alternative electrochemical solvents, room temperature ionic liquids (RTILs) are currently being employed across an increasingly wide range of chemical fields. This review examines the current state of ionic liquid-based electrochemistry, with particular focus on the work of the last decade. Being composed entirely of ions and possesing wide electrochemical windows (often in excess of 5 volts), it is not difficult to see why these compounds are seen by electrochemists as attractive potential solvents. Accordingly, an examination of the pertinent properties of ionic liquids is presented, followed by an assessment of their application to date across the various electrochemical disciplines, concluding with an outlook viewing current problems and directions.
New Polymer Electrolyte Cell Systems
NASA Technical Reports Server (NTRS)
Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.
2004-01-01
PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.
Surface effects on ionic Coulomb blockade in nanometer-size pores
NASA Astrophysics Data System (ADS)
Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano
2018-01-01
Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.
Surface effects on ionic Coulomb blockade in nanometer-size pores.
Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di
2018-01-12
Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.
Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; ...
2016-08-05
Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO 2 and SrTiO 3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~10 12 inch –2). Here, we systematicallymore » show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spiegel, G.W.
The kinetic solvent isotope effect, KSIE, (k/sub H/sub 2/O//k/sub D/sub 2/O/), at 25.0/sup 0/C and ionic strength, I, equal to 0.20 +- 0.02 M was measured for the nucleophilic displacement of iodine ion from iodomethane, iodoacetamide, and iodoacetate ion, thiophene from S-Methylthiophenium ion, and tosylate ion from methyl tosylate by bromide ion, chloride ion, acetate ion, hydroxide ion, water, ammonia, ethylenediamine, n-butylamine, piperazine, piperidine, quinuclidine, and 1,4-Diazabicyclo(2.2.2)octane (DABCO), and the monoprotonated cations of ethylenediamine, piperazine, and DABCO. By means of solvent partition measurements at 25.0/sup 0/C and I = 0.02 M between H/sub 2/O and D/sub 2/O and a commonmore » immiscible organic solvent, the ground state activity coefficients in D/sub 2/O, the solution in H/sub 2/O being chosen as the reference state, were determined for the nitrogen-containing nucleophiles (except ammonia) and the substrates methyl tosylate, iodoacetamide, and iodoacetic acid. The solubilities at 25.0/sup 0/C of the picrate and tetraphenylborate salts of the monoprotonated cationic forms of ethylenediamine, piperazine, and DABCO were measured to determine the activity coefficients in D/sub 2/O of these ions relative to an H/sub 2/O reference state. Applying the Eyring equation, the activity coefficients of the transition states in D/sub 2/O, reference state H/sub 2/O, were calculated.« less
Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources
NASA Astrophysics Data System (ADS)
Liao, Kang-Shyang; Sutto, Thomas E.; Andreoli, Enrico; Ajayan, Pulickel; McGrady, Karen A.; Curran, Seamus A.
Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1- n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm -1, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 °C, and do not begin to thermally decompose until over 300 °C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li xCoO 2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles.
Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.
Farajollahpour, T; Jafari, S A
2018-01-10
We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.
Semiconductor of spinons: from Ising band insulator to orthogonal band insulator
NASA Astrophysics Data System (ADS)
Farajollahpour, T.; Jafari, S. A.
2018-01-01
We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.
Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices.
Black, Jennifer M; Come, Jeremy; Bi, Sheng; Zhu, Mengyang; Zhao, Wei; Wong, Anthony T; Noh, Joo Hyon; Pudasaini, Pushpa R; Zhang, Pengfei; Okatan, Mahmut Baris; Dai, Sheng; Kalinin, Sergei V; Rack, Philip D; Ward, Thomas Zac; Feng, Guang; Balke, Nina
2017-11-22
Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.
Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices
Black, Jennifer M.; Come, Jeremy; Bi, Sheng; ...
2017-10-24
Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less
NASA Astrophysics Data System (ADS)
Kang, Joonhee; Chung, Habin; Doh, Chilhoon; Kang, Byoungwoo; Han, Byungchan
2015-10-01
Understanding of the fundamental mechanisms causing significant enhancement of Li-ionic conductivity by Al3+ doping to a solid LiGe2(PO4)3 (LGP) electrolyte is pursued using first principles density functional theory (DFT) calculations combined with experimental measurements. Our results indicate that partial substitution Al3+ for Ge4+ in LiGe2(PO4)3 (LGP) with aliovalent (Li1+xAlxGe2-x(PO4)3, LAGP) improves the Li-ionic conductivity about four-orders of the magnitude. To unveil the atomic origin we calculate plausible diffusion paths of Li in LGP and LAGP materials using DFT calculations and a nudged elastic band method, and discover that LAGP had additional transport paths for Li with activation barriers as low as only 34% of the LGP. Notably, these new atomic channels manifest subtle electrostatic environments facilitating cooperative motions of at least two Li atoms. Ab-initio molecular dynamics predict Li-ionic conductivity for the LAGP system, which is amazingly agreed experimental measurement on in-house made samples. Consequently, we suggest that the excess amounts of Li caused by the aliovalent Al3+ doping to LGP lead to not only enhancing Li concentration but also opening new conducting paths with substantially decreases activation energies and thus high ionic conductivity of LAGP solid-state electrolyte.
Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Jennifer M.; Come, Jeremy; Bi, Sheng
Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal–insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment andmore » theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.« less
Sulfadimethoxine and sulfaguanidine: their sorption potential on natural soils.
Białk-Bielińska, Anna; Maszkowska, Joanna; Mrozik, Wojciech; Bielawska, Agata; Kołodziejska, Marta; Palavinskas, Richard; Stepnowski, Piotr; Kumirska, Jolanta
2012-03-01
Sulfonamides (SAs) are one of the oldest groups of veterinary chemotherapeutic agents. As these compounds are not completely metabolized in animals, a high proportion of the native form is excreted in feces and urine. They are therefore released either directly to the environment in aquacultures and by grazing animals, or indirectly during the application of manure or slurry. Once released into the environment, SAs become distributed among various environmental compartments and may be transported to surface or ground waters. The physicochemical properties of SAs, dosage and nature of the matrix are the factors mainly responsible for their distribution in the natural environment. Although these rather polar compounds have been in use for over half a century, knowledge of their fate and behavior in soil ecosystems is still limited. Therefore, in this work we have determined the sorption potential of sulfadimethoxine and sulfaguanidine on various natural soils. The influence on sorption of external factors, such as ionic strength and pH, were also determined. The sorption coefficients (K(d)) obtained for the sulfonamides investigated were quite low (from 0.20 to 381.17 mL g(-1) for sulfadimethoxine and from 0.39 to 35.09 mL g(-1) for sulfaguanidine), which indicated that these substances are highly mobile and have the potential to run off into surface waters and/or infiltrate ground water. Moreover, the sorption of these pharmaceuticals was found to be influenced by OC, soil solution pH and ionic strength, with higher K(d) values for soils of higher OC and lower K(d) values with increasing pH and ionic strength. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan
The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor * Measurement of Sulfur Concentration with Zirconia-Based Electrolyte Cell in Molten Iron * Influence of SO2 on the Conductivity of Calcia Stabilized Zirconia * Reactions between YSZ and La1-xCaxMnO3 as a Cathode for SOFC * Preparation and Electrical Properties of Lithium β''-Alumina * Influence of Lithia Content on Properties of β''-Alumina Ceramics * Electrical Conductivity of Solid Solutions of Na2SO4 with Na2SeO4 * Effect of Antagonist XO42- = MoO42- and WO42- Ion Substitution on the Electrical Conductivity of Li2SO4 : Li2CO3 Eutectic System * Study on the Electrical Properties and Structure of Multicrystal Materials Li5+xGe1-xCrxV3O12 * Preliminary Study on Synthesis of Silver Zirconium Silicophosphates by Sol - Gel Process * Sodium Ion Conduction in Iron(III) Exchanged Y Zeolite * Electrical Properties of V5O9+x (x = 0, 1) and CuxV5O9.1 * Electrical Properties of the Tetragonal ZrO2 Stabilized with CeO2, CeO2 + Gd2O3 * Study of Preparation and Ionic Conduction of Doped Barium Cerate Perovskite * Preparing Fine Alumina Powder by Homogeneous Precipitation Method for Fabricating β''-Al2O3 * Amorphous Lithium Ion Conductors in Li2S-SiS2-LiBO2 System * Mixed Alkali Effect of Glass Super Ionic Conductors * Electrical Property and Phase Separation, Crystallization Behavior of A Cu+-Conducting Glass * Investigation of Phase Separation and Crystallization for 0.4CuI-0.3 Cu2O-0.3P2O5 Glass by SEM and XRD * Study on the Lithium Solid Electrolytes of Li3N-LiX(X = F, Cl, Br, I)-B2O3 Ternary Systems * Synthesis and Characterization of the Li2O : P2O5 : WO3 Glasses * The Electrochromic Properties of Electrodeposited Ni-O Films in Nonaqueous Electrolytes * All Solid-State WO3-MnO2 Based Electrochromic Window * Electrochromism in Nickel Oxide Films * E S R of X-Irradiated Melt Quenched Li2SO4 * Mixed-Alkali Effect in the Li2O-Na2O-TeO2 Glass System * Electrical and Thermal Studies on Silver Tellurite Glasses * Late Entries (Invited Papers) * Proton Conducting Polymers * Light Scattering Studies on Superionic Conductor YSZ * Development of Thin Film Surface Modified Solid State Electrochemical Gas Sensors * Author Index * List of Participants
A universal steady state I-V relationship for membrane current
NASA Technical Reports Server (NTRS)
Chernyak, Y. B.; Cohen, R. J. (Principal Investigator)
1995-01-01
A purely electrical mechanism for the gating of membrane ionic channel gives rise to a simple I-V relationship for membrane current. Our approach is based on the known presence of gating charge, which is an established property of the membrane channel gating. The gating charge is systematically treated as a polarization of the channel protein which varies with the external electric field and modifies the effective potential through which the ions migrate in the channel. Two polarization effects have been considered: 1) the up or down shift of the whole potential function, and 2) the change in the effective electric field inside the channel which is due to familiar effect of the effective reduction of the electric field inside a dielectric body because of the presence of surface charges on its surface. Both effects are linear in the channel polarization. The ionic current is described by a steady state solution of the Nernst-Planck equation with the potential directly controlled by the gating charge system. The solution describes reasonably well the steady state and peak-current I-V relationships for different channels, and when applied adiabatically, explains the time lag between the gating charge current and the rise of the ionic current. The approach developed can be useful as an effective way to model the ionic currents in axons, cardiac cells and other excitable tissues.
Ionic structure in liquids confined by dielectric interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica
2015-11-01
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.
Burov, S V; Shchekin, A K
2010-12-28
General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.
Yang, Lei; Zhao, Xiaoju; Zhu, Hong; Paul, Matthew; Zu, Yuangang; Tang, Zhonghua
2014-01-01
Trehalose (Tre) has been reported to play a critical role in plant response to salinity and the involved mechanisms remain to be investigated in detail. Here, the putative roles of Tre in regulation of ionic balance, cellular redox state, cell death were studied in Arabidopsis under high salt condition. Our results found that the salt-induced restrictions on both vegetative and reproductive growth in salt-stressed plants were largely alleviated by exogenous supply with Tre. The microprobe analysis of ionic dynamics in the leaf and stem of florescence highlighted the Tre ability to retain K and K/Na ratio in plant tissues to improve salt tolerance. The flow cytometry assay of cellular levels of reactive oxygen species and programmed cell death displayed that Tre was able to antagonized salt-induced damages in redox state and cell death and sucrose did not play the same role with Tre. By comparing ionic distribution in leaf and inflorescence stem (IS), we found that Tre was able to restrict Na transportation to IS from leaves since that the ratio of Na accumulation in leaves relative to IS was largely improved due to Tre. The marked decrease of Na ion and improved sucrose level in IS might account for the promoted floral growth when Tre was included in the saline solution. At the same time, endogenous soluble sugars and antioxidant enzyme activities in the salt-stressed plants were also elevated by Tre to counteract high salt stress. We concluded that Tre could improve Arabidopsis salt resistance with respect to biomass accumulation and floral transition in the means of regulating plant redox state, cell death, and ionic distribution. PMID:25400644
Deriving Equations of State for Specific Lakes and Inland Seas from Laboratory Measurements
NASA Astrophysics Data System (ADS)
Andrulionis, Natalia; Zavialov, Ivan; Zavialov, Peter; Osadchiev, Alexander; Kolokolova, Alexandra; Alukaeva, Alevtina; Izhitskiy, Alexander; Izhitskaya, Elena
2017-04-01
The equation of state is the dependence of water density on temperature, salinity, and pressure. It is important in many respects, in particular, for numerical modeling of marine systems. The widely used UNESCO equation of state, as well as the more recent and general TEOS-10 equation, are intended for the ocean waters. Hence, they are confined to salinities below 40 ‰ and, even more restrictively, valid only for ionic salt composition characteristic for the ocean. Both conditions do not hold for many lakes. Moreover, significant deviations of the ionic composition from the oceanic one have been documented for coastal zones, especially those exposed to river discharges. Therefore, the objective of this study was to find equations of state for areas or water bodies with non-oceanic ionic salt composition. In order to obtain the required equations, we analyzed water samples obtained in expeditions of 2014-2016 from the Black Sea, the Aral Sea, Lake Issyk-Kul and Caspian Sea. The filtered samples were submitted to high accuracy (up to 0.00001 g/cm3) density measurements in laboratory using the Anton Paar DMA 5000M in the temperature range from 1 to 29°C. The absolute salinity values of the initial samples were obtained through the dry residue method. Further, we diluted the samples by purified deionized water to produce different salinities. To control the accuracy of the dilution process, we used a reference sample of standard IAPSO-certified seawater at 35‰. The density versus salinity and temperature data obtained thereby were then approximated by a best fitting 2-order polynomial surface using the least squares method. This procedure yielded the approximate empirical equations of state for the selected marine areas (the Russian Black Sea shelf) and inland water bodies (the Aral Sea, the Lake Issyk-Kul, the Caspian Sea). The newly derived equations - even the one for the Black Sea shelf - are different from the oceanic equation significantly within the confidence intervals. We also analyzed the salt content in all samples using the ionic chromotography method and the potentiometric titration method and discussed the relations between the ionic composition on the one hand and density on the other.
NASA Astrophysics Data System (ADS)
Chandrasekhar, Prasanna; Zay, Brian J.; Barbolt, Scott; Werner, Robert; Birur, Gajanana C.; Paris, Anthony
2009-03-01
This contribution describes the fabrication, function and performance of thin-film variable emittance electrochromic skins fabricated using poly(aniline) as the conducting polymer (CP), a long-chain polymeric dopant, and an ionic liquid as electrolyte. The ionic electrolyte allows operation in space vacuum without any seals. A unique, space-durable coating applied to the external surface of the skins drastically lowers the solar absorptance of the skins, such that in their dark (highly emissive) electrochromic state, it is no more than 0.44, whilst in their light electrochromic state, it is ca. 0.3. Data presented show tailorable, variations from 0.19 to 0.90, ∀(s)<0.3, and nearly indefinite cyclability. Extended thermal vacuum, atomic-O, micrometeoroid, VUV and other studies show excellent space durability. Performance of a doughnut-shaped skin designed for a specific micro-spacecraft is also described.
New generation Li+ NASICON glass-ceramics for solid state Li+ ion battery applications
NASA Astrophysics Data System (ADS)
Sharma, Neelakshi; Dalvi, Anshuman
2018-04-01
Lithiumion conducting NASICON glass-ceramics have been prepared by a novel planetary ball milling assisted synthesis route. Structural, thermal and electrical investigations have been carried out on the novel composites composed of LiTi(PO4)3 (LTP) and 50[Li2SO4]-50[Li2O-P2O5] ionic glass reveal interesting results. Composites were prepared keeping the concentration of the ionic glass fixed at 20 wt%. X-ray diffraction and diffe rential thermal analysis confirm the glass-ceramic formation. Moreover, the structure of LTP remains intact during the glass -ceramic formation. Electrical conductivity of the glass-ceramic composite is found to be higher than that of the pristine glass (50LSLP) and LTP. The bulk and grain boundary conductivities of LTP exhibit improvement in composite. Owing to high ionic conductivity and thermal stability, novel glass -ceramic seems to be a promising candidate for all solid-state battery applications.
Design principles for solid-state lithium superionic conductors.
Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand
2015-10-01
Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.
Aga, D.S.; Thurman, E.M.; Pomes, M.L.
1994-01-01
Solid-phase extraction (SPE) and enzyme-linked immunosorbent assay (ELISA) were combined for the trace analysis of the herbicide alachlor and its major soil metabolite, ethanesulfonic acid (ESA). The anti-alachlor antibody cross-reacted with ESA, which produced false-positive detections of alachlor in water samples by immunoassay screens. Alachlor and ESA were isolated from water by SPE on a C18 resin and eluted sequentially with ethyl acetate and methanol. Alachlor is soluble in ethyl acetate while the anionic ESA is not. Thus ESA remained adsorbed on the C18 resin and was eluted later with methanol. The combination of SPE with ELISA effectivety separated and quantified both alachlor and ESA using the same antibody for two ELISA methods. The general method may have applicability for the separation of other herbicides and their ionic metabolites. The SPE-ELISA method has a, detection limit of 0.01 ??g/L for alachlor and 0.05 ??g/L for ESA, with a precision of ?? 10%. Analyses of surface and ground water samples were confirmed by gas chromatography/mass spectrometry and high-performance liquid chromatography with photodiode-array detection. Results showed widespread occurrence of ESA in surface and ground water of the midwestern United States, with concentrations ranging from 10 ??g/L.
Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids
NASA Astrophysics Data System (ADS)
Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro
2015-03-01
A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.
Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.
Yadav, Anita; Pandey, Siddharth
2017-12-07
Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py to be diffusion-controlled and to depend on the viscosity of the ionic liquid irrespective of the identity of the cation. The dependence of ionic liquid structure on cyclization dynamics to form intramolecular excimer is amply highlighted.
Series resistance compensation for whole-cell patch-clamp studies using a membrane state estimator
Sherman, AJ; Shrier, A; Cooper, E
1999-01-01
Whole-cell patch-clamp techniques are widely used to measure membrane currents from isolated cells. While suitable for a broad range of ionic currents, the series resistance (R(s)) of the recording pipette limits the bandwidth of the whole-cell configuration, making it difficult to measure rapid ionic currents. To increase bandwidth, it is necessary to compensate for R(s). Most methods of R(s) compensation become unstable at high bandwidth, making them hard to use. We describe a novel method of R(s) compensation that overcomes the stability limitations of standard designs. This method uses a state estimator, implemented with analog computation, to compute the membrane potential, V(m), which is then used in a feedback loop to implement a voltage clamp; we refer to this as state estimator R(s) compensation. To demonstrate the utility of this approach, we built an amplifier incorporating state estimator R(s) compensation. In benchtop tests, our amplifier showed significantly higher bandwidths and improved stability when compared with a commercially available amplifier. We demonstrated that state estimator R(s) compensation works well in practice by recording voltage-gated Na(+) currents under voltage-clamp conditions from dissociated neonatal rat sympathetic neurons. We conclude that state estimator R(s) compensation should make it easier to measure large rapid ionic currents with whole-cell patch-clamp techniques. PMID:10545359
McUmber, Aaron C; Randolph, Theodore W; Schwartz, Daniel K
2015-07-02
High-throughput single-molecule total internal reflection fluorescence microscopy was used to investigate the effects of pH and ionic strength on bovine serum albumin (BSA) adsorption, desorption, and interfacial diffusion at the aqueous-fused silica interface. At high pH and low ionic strength, negatively charged BSA adsorbed slowly to the negatively charged fused silica surface. At low pH and low ionic strength, where BSA was positively charged, or in solutions at higher ionic strength, adsorption was approximately 1000 times faster. Interestingly, neither surface residence times nor the interfacial diffusion coefficients of BSA were influenced by pH or ionic strength. These findings suggested that adsorption kinetics were dominated by energy barriers associated with electrostatic interactions, but once adsorbed, protein-surface interactions were dominated by short-range nonelectrostatic interactions. These results highlight the ability of single-molecule techniques to isolate elementary processes (e.g., adsorption and desorption) under steady-state conditions, which would be impossible to measure using ensemble-averaging methods.
Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph
2012-04-12
Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids.
Ionic switch controls the DNA state in phage λ
Li, Dong; Liu, Ting; Zuo, Xiaobing; Li, Tao; Qiu, Xiangyun; Evilevitch, Alex
2015-01-01
We have recently found that DNA packaged in phage λ undergoes a disordering transition triggered by temperature, which results in increased genome mobility. This solid-to-fluid like DNA transition markedly increases the number of infectious λ particles facilitating infection. However, the structural transition strongly depends on temperature and ionic conditions in the surrounding medium. Using titration microcalorimetry combined with solution X-ray scattering, we mapped both energetic and structural changes associated with transition of the encapsidated λ-DNA. Packaged DNA needs to reach a critical stress level in order for transition to occur. We varied the stress on DNA in the capsid by changing the temperature, packaged DNA length and ionic conditions. We found striking evidence that the intracapsid DNA transition is ‘switched on’ at the ionic conditions mimicking those in vivo and also at the physiologic temperature of infection at 37°C. This ion regulated on-off switch of packaged DNA mobility in turn affects viral replication. These results suggest a remarkable adaptation of phage λ to the environment of its host bacteria in the human gut. The metastable DNA state in the capsid provides a new paradigm for the physical evolution of viruses. PMID:26092697
Ionic switch controls the DNA state in phage λ
Li, Dong; Liu, Ting; Zuo, Xiaobing; ...
2015-06-19
We have recently found that DNA packaged in phage λ undergoes a disordering transition triggered by temperature, which results in increased genome mobility. This solid-to-fluid like DNA transition markedly increases the number of infectious λ particles facilitating infection. However, the structural transition strongly depends on temperature and ionic conditions in the surrounding medium. Using titration microcalorimetry combined with solution X-ray scattering, we mapped both energetic and structural changes associated with transition of the encapsidated λ-DNA. Packaged DNA needs to reach a critical stress level in order for transition to occur. We varied the stress on DNA in the capsid bymore » changing the temperature, packaged DNA length and ionic conditions. We found striking evidence that the intracapsid DNA transition is ‘switched on’ at the ionic conditions mimicking those in vivo and also at the physiologic temperature of infection at 37°C. This ion regulated on-off switch of packaged DNA mobility in turn affects viral replication. The results suggest a remarkable adaptation of phage λ to the environment of its host bacteria in the human gut. The metastable DNA state in the capsid provides a new paradigm for the physical evolution of viruses.« less
Ionic switch controls the DNA state in phage λ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dong; Liu, Ting; Zuo, Xiaobing
We have recently found that DNA packaged in phage λ undergoes a disordering transition triggered by temperature, which results in increased genome mobility. This solid-to-fluid like DNA transition markedly increases the number of infectious λ particles facilitating infection. However, the structural transition strongly depends on temperature and ionic conditions in the surrounding medium. Using titration microcalorimetry combined with solution X-ray scattering, we mapped both energetic and structural changes associated with transition of the encapsidated λ-DNA. Packaged DNA needs to reach a critical stress level in order for transition to occur. We varied the stress on DNA in the capsid bymore » changing the temperature, packaged DNA length and ionic conditions. We found striking evidence that the intracapsid DNA transition is ‘switched on’ at the ionic conditions mimicking those in vivo and also at the physiologic temperature of infection at 37°C. This ion regulated on-off switch of packaged DNA mobility in turn affects viral replication. The results suggest a remarkable adaptation of phage λ to the environment of its host bacteria in the human gut. The metastable DNA state in the capsid provides a new paradigm for the physical evolution of viruses.« less
Park, Chihyun; Seo, Seogjae; Shin, Haijin; Sarwade, Bhimrao D.; Na, Jongbeom
2015-01-01
An electrochemically stable and bistable switchable mirror was achieved for the first time by introducing (1) a thiol-modified indium tin oxide (ITO) electrode for the stabilization of the metallic film and (2) ionic liquids as an anion-blocking layer, to achieve a long memory effect. The growth of the metallic film was denser and faster at the thiol-modified ITO electrode than at a bare ITO electrode. The electrochemical stability of the metallic film on the thiol-modified ITO was enhanced, maintaining the metallic state without rupture. In the voltage-off state, the metal film maintained bistability for a long period (>2 h) when ionic liquids were introduced as electrolytes for the switchable mirror. The electrical double layer in the highly viscous ionic liquid electrolyte seemed to effectively form a barrier to the bromide ions, to protect the metal thin film from them when in the voltage-off state. PMID:28936310
NASA Astrophysics Data System (ADS)
Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang
2018-03-01
A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.
Research Update: Fast and tunable nanoionics in vertically aligned nanostructured films
NASA Astrophysics Data System (ADS)
Lee, Shinbuhm; MacManus-Driscoll, Judith L.
2017-04-01
This review provides the design principles to develop new nanoionic applications using vertically aligned nanostructured (VAN) thin films, incorporating two phases which self-assemble in one film. Tunable nanoionics has attracted great attention for energy and device applications, such as ion batteries, solid oxide fuel cells, catalysts, memories, and neuromorphic devices. Among many proposed device architectures, VAN films have strong potential for nanoionic applications since they show enhanced ionic conductivity and tunability. Here, we will review the recent progress on state-of-the-art nanoionic applications, which have been realized by using VAN films. In many VAN systems made by the inclusion of an oxygen ionic insulator, it is found that ions flow through the vertical heterointerfaces. The observation is consistent with structural incompatibility at the vertical heteroepitaxial interfaces resulting in oxygen deficiency in one of the phases and hence to oxygen ion conducting pathways. In other VAN systems where one of the phases is an ionic conductor, ions flow much faster within the ionic conducting phase than within the corresponding plain film. The improved ionic conduction coincides with much improved crystallinity in the ionically conducting nanocolumnar phase, induced by use of the VAN structure. Furthermore, for both cases Joule heating effects induced by localized ionic current flow also play a role for enhanced ionic conductivity. Nanocolumn stoichiometry and strain are other important parameters for tuning ionic conductivity in VAN films. Finally, double-layered VAN film architectures are discussed from the perspective of stabilizing VAN structures which would be less stable and hence less perfect when grown on standard substrates.
Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures.
Imaizumi, Satoru; Kato, Yuichi; Kokubo, Hisashi; Watanabe, Masayoshi
2012-04-26
Two solid polymer electrolytes, composed of a polyether-segmented polyurethaneurea (PEUU) and either a lithium salt (lithium bis(trifluoromethanesulfonyl)amide: Li[NTf2]) or a nonvolatile ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide: [C2mim][NTf2]), were prepared in order to utilize them as ionic polymer actuators. These salts were preferentially dissolved in the polyether phases. The ionic transport mechanism of the polyethers was discussed in terms of the diffusion coefficients and ionic transference numbers of the incorporated ions, which were estimated by means of pulsed-field gradient spin-echo (PGSE) NMR. There was a distinct difference in the ionic transport properties of each polymer electrolyte owing to the difference in the magnitude of interactions between the cations and the polyether. The anionic diffusion coefficient was much faster than that of the cation in the polyether/Li[NTf2] electrolyte, whereas the cation diffused faster than the anion in the polyether/[C2mim][NTf2] electrolyte. Ionic polymer actuators, which have a solid-state electric-double-layer-capacitor (EDLC) structure, were prepared using these polymer electrolyte membranes and ubiquitous carbon materials such as activated carbon and acetylene black. On the basis of the difference in the motional direction of each actuator against applied voltages, a simple model of the actuation mechanisms was proposed by taking the difference in ionic transport properties into consideration. This model discriminated the behavior of the actuators in terms of the products of transference numbers and ionic volumes. The experimentally observed behavior of the actuators was successfully explained by this model.
NASA Technical Reports Server (NTRS)
Rabenberg, Ellen; Kaukler, William; Grugel, Richard
2015-01-01
Two sets of epoxy mixtures, both containing the same ionic liquid (IL) based resin but utilizing two different curing agents, were evaluated after spending more than two years of continual space exposure outside of the International Space Station on the MISSE-8 sample rack. During this period the samples, positioned on nadir side, also experienced some 12,500 thermal cycles between approximately -40?C and +40 C. Initial examination showed some color change, a miniscule weight variance, and no cracks or de-bonding from the sample substrate. Microscopic examination of the surface reveled some slight deformities and pitting. These observations, and others, are discussed in view of the ground-based control samples. Finally, the impetus of this study in terms of space applications is presented.
π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon
NASA Astrophysics Data System (ADS)
Takabayashi, Yasuhiro; Menelaou, Melita; Tamura, Hiroyuki; Takemori, Nayuta; Koretsune, Takashi; Štefančič, Aleš; Klupp, Gyöngyi; Buurma, A. Johan C.; Nomura, Yusuke; Arita, Ryotaro; Arčon, Denis; Rosseinsky, Matthew J.; Prassides, Kosmas
2017-07-01
Molecular solids with cooperative electronic properties based purely on π electrons from carbon atoms offer a fertile ground in the search for exotic states of matter, including unconventional superconductivity and quantum magnetism. The field was ignited by reports of high-temperature superconductivity in materials obtained by the reaction of alkali metals with polyaromatic hydrocarbons, such as phenanthrene and picene, but the composition and structure of any compound in this family remained unknown. Here we isolate the binary caesium salts of phenanthrene, Cs(C14H10) and Cs2(C14H10), to show that they are multiorbital strongly correlated Mott insulators. Whereas Cs2(C14H10) is diamagnetic because of orbital polarization, Cs(C14H10) is a Heisenberg antiferromagnet with a gapped spin-liquid state that emerges from the coupled highly frustrated Δ-chain magnetic topology of the alternating-exchange spiral tubes of S = ½ (C14H10)•- radical anions. The absence of long-range magnetic order down to 1.8 K (T/J ≈ 0.02 J is the dominant exchange constant) renders the compound an excellent candidate for a spin-½ quantum-spin liquid (QSL) that arises purely from carbon π electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Richmann, Michael K.; Reed, Donald T.
2015-10-30
The degree of conservatism in the estimated sorption partition coefficients (K ds) used in a performance assessment model is being evaluated based on a complementary batch and column method. The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected at the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV).
Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P.-A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert
2011-01-01
The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity. PMID:21878634
Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere
NASA Technical Reports Server (NTRS)
Kharchenko, Vasili; Dalgarno, A.
2005-01-01
This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.
Jagannathan, Bharat; Golbeck, John H
2008-12-01
The photosynthetic reaction center from the green sulfur bacterium Chlorobium tepidum (CbRC) was solubilized from membranes using Triton X-100 and isolated by sucrose density ultra-centrifugation. The CbRC complexes were subsequently treated with 0.5 M NaCl and ultrafiltered over a 100 kDa cutoff membrane. The resulting CbRC cores did not exhibit the low-temperature EPR resonances from FA- and FB- and were unable to reduce NADP+. SDS-PAGE and mass spectrometric analysis showed that the PscB subunit, which harbors the FA and FB clusters, had become dissociated, and was now present in the filtrate. Attempts to rebind PscB onto CbRC cores were unsuccessful. Mössbauer spectroscopy showed that recombinant PscB contains a heterogeneous mixture of [4Fe-4S]2+,1+ and other types of Fe/S clusters tentatively identified as [2Fe-2S]2+,1+ clusters and rubredoxin-like Fe3+,2+ centers, and that the [4Fe-4S]2+,1+ clusters which were present were degraded at high ionic strength. Quantitative analysis confirmed that the amount of iron and sulfide in the recombinant protein was sub-stoichiometric. A heme-staining assay indicated that cytochrome c551 remained firmly attached to the CbRC cores. Low-temperature EPR spectroscopy of photoaccumulated CbRC complexes and CbRC cores showed resonances between g=5.4 and 4.4 assigned to a S=3/2 ground spin state [4Fe-4S]1+ cluster and at g=1.77 assigned to a S=1/2 ground spin state [4Fe-4S]1+ cluster, both from FX-. These results unify the properties of the acceptor side of the Type I homodimeric reaction centers found in green sulfur bacteria and heliobacteria: in both, the FA and FB iron-sulfur clusters are present on a salt-dissociable subunit, and FX is present as an interpolypeptide [4Fe-4S]2+,1+ cluster with a significant population in a S=3/2 ground spin state.
Noppadon Sathitsuksanoh; Kevin M. Holtman; Daniel J. Yelle; Trevor Morgan; Vitalie Stavila; Jeffrey Pelton; Harvey Blanch; Blake A. Simmons; Anthe George
2014-01-01
The fate of lignin from wheat straw, Miscanthus, and Loblolly pine after pretreatment by a non-toxic and recyclable ionic liquid (IL), [C2mim][OAc], followed by enzymatic hydrolysis was investigated. The lignin partitioned into six process streams, each of which was quantified and analyzed by a combination of a novel solution-state two-dimensional (2D) nuclear magnetic...
Study of Np(V) Sorption by Ionic Exchange on Na, K, Ca and Mg-Montmorillonite
NASA Astrophysics Data System (ADS)
Benedicto, A.; Begg, J.; Zhao, P.; Kersting, A. B.; Zavarin, M.
2012-12-01
The transport behavior of actinides in soil and ground water are highly influenced by clay minerals due to their ubiquity in the environment, reactivity and colloidal properties. Neptunium(V) has been introduced in the environment as a result of nuclear weapons testing [e.g. 1, 2] and is a radionuclide of potential interest for safety assessment of high level radioactive waste disposal because its long half-life and high toxicity [3]. Surface complexation and ionic exchange have been identified as Np(V) sorption mechanisms onto montmorillonite. At pH below 5, Np(V) sorption is mainly attributed to ionic exchange. This study examines Np(V) ion exchange on Na, K, Ca and Mg forms of montmorillonite. Experiments were carried out using 237Np concentrations between 2 x 10-8 M and 5 x 10-6 M at three different ionic strengths 0.1, 0.01 and 0.001M. The pH was maintained at 4.5. Np(V) sorption to montmorillonite homoionized with monovalent cations (Na and K) demonstrated a markedly different behavior to that observed for montmorillonite homoionized with divalent cations (Ca and Mg). Np sorption to Na and K-montmorillonite was greater than Np sorption to Ca and Mg-montmorillonite. Isotherms with Na and K-montmorillonite showed a strong dependence on ionic strength: the percentage of Np adsorbed was near zero at 0.1M ionic strength, but increased to 30% at 0.001 M ionic strength. This suggests ionic exchange is the main Np adsorption mechanism under the experimental conditions investigated. Dependence on ionic strength was not observed in the Np sorption isotherms for Ca and Mg-montmorillonite indicating a low exchange capacity between Np and divalent cations. Modeling of the sorption experimental data will allow determination of the Na+↔NpO2+ and K+↔NpO2+ ionic exchange constants on montmorillonite. References: [1] A. R. Felmy; K. J. Cantrell; S. D. Conradson, Phys. Chem. Earth 2010, 35, 292-297 [2] D. K. Smith; D. L. Finnegan; S. M. Bowen, J. Environ. Radioact. 2003, 67, (1), 35-51 [3] N. Kozai; T. Ohnuki; S. Muraoka, J. Nucl. Sci. Technol. 1993, 30, (11), 1153-1159 This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. A. Benedicto was supported by a Spanish Ministry of Science and Innovation 'FPI' pre-doctoral contract in CIEMAT (Spain). LLNL-ABS-570160
NASA Astrophysics Data System (ADS)
Nam, Young Jin; Oh, Dae Yang; Jung, Sung Hoo; Jung, Yoon Seok
2018-01-01
Owing to their potential for greater safety, higher energy density, and scalable fabrication, bulk-type all-solid-state lithium-ion batteries (ASLBs) employing deformable sulfide superionic conductors are considered highly promising for applications in battery electric vehicles. While fabrication of sheet-type electrodes is imperative from the practical point of view, reports on relevant research are scarce. This might be attributable to issues that complicate the slurry-based fabrication process and/or issues with ionic contacts and percolation. In this work, we systematically investigate the electrochemical performance of conventional dry-mixed electrodes and wet-slurry fabricated electrodes for ASLBs, by varying the different fractions of solid electrolytes and the mass loading. This information calls for a need to develop well-designed electrodes with better ionic contacts and to improve the ionic conductivity of solid electrolytes. As a scalable proof-of-concept to achieve better ionic contacts, a premixing process for active materials and solid electrolytes is demonstrated to significantly improve electrochemical performance. Pouch-type 80 × 60 mm2 all-solid-state LiNi0·6Co0·2Mn0·2O2/graphite full-cells fabricated by the slurry process show high cell-based energy density (184 W h kg-1 and 432 W h L-1). For the first time, their excellent safety is also demonstrated by simple tests (cutting with scissors and heating at 110 °C).
An experimental study on PEO polymer electrolyte based all-solid-state supercapacitor
NASA Astrophysics Data System (ADS)
Yijing, Yin
Supercapacitors are one of the most important electrochemical energy storage and conversion devices, however low ionic conductivity of solid state polymer electrolytes and the poor accessibility of the ions to the active sites in the porous electrode will cause low performance for all-solid-state supercapacitors and will limit their application. The objective of the dissertation is to improve the performance of all-solid-state supercapactor by improving electrolyte conductivity and solving accessibility problem of the ions to the active sites. The low ionic conductivity (10-8 S/cm) of poly(ethylene oxide) (PEO) limits its application as an electrolyte. Since PEO is a semicrystal polymer and the ion conduction take place mainly in the amorphous regions of the PEO/Lithium salt complex, improvements in the percentage of amorphous phase in PEO or increasing the charge carrier concentration and mobility could increase the ionic conductivity of PEO electrolyte. Hot pressing along with the additions of different lithium salts, inorganic fillers and plasticizers were applied to improve the ionic conductivity of PEO polymer electrolytes. Four electrode methods were used to evaluate the conductivity of PEO based polymer electrolytes. Results show that adding certain lithium salts, inorganic fillers, and plasticizers could improve the ionic conductivity of PEO electrolytes up 10-4 S/cm. Further hot pressing treatment could improve the ionic conductivity of PEO electrolytes up to 10-3 S/cm. The conductivity improvement after hot pressing treatment is elucidated as that the spherulite crystal phase is convert into the fringed micelle crystal phase or the amorphous phase of PEO electrolytes. PEO electrolytes were added into active carbon as a binder and an ion conductor, so as to provide electrodes with not only ion conduction, but also the accessibility of ion to the active sites of electrodes. The NaI/I 2 mediator was added to improve the conductivity of PEO electrolyte and provide pseudocapacitance for all-solid-state supercapacitors. Impedance, cyclic voltammetry, and gavalnostatic charge/discharge measurements were conducted to evaluate the electrochemical performance of PEO polymer electrolytes based all-solid-state supercapacitors. Results demonstrate that the conductivity of PEO electrolyte could be improved to 0.1 S/cm with a mediator concentration of 50wt%. A high conductivity in the PEO electrolyte with mediator is an indication of a high electron exchange rate between the mediator and mediator. The high electron exchange rates at mediator carbon interface and between mediator and mediator are essential in order to obtain a high response rate and high power. This automatically solves the accessibility problem. With the addition of NaI/I2 mediator, the specific capacitance increased more than 30 folds, specific power increased almost 20 folds, and specific energy increased around 10 folds. Further addition of filler to the electrodes along with the mediator could double the specific capacitor and specific power of the all-solid-state supercapacitor. The stability of the corresponded supercapacitor is good within 2000 cycles.
Estimation of electronegativity values of elements in different valence states.
Li, Keyan; Xue, Dongfeng
2006-10-05
The electronegativities of 82 elements in different valence states and with the most common coordination numbers have been quantitatively calculated on the basis of an effective ionic potential defined by the ionization energy and ionic radius. It is found that for a given cation, the electronegativity increases with increasing oxidation state and decreases with increasing coordination number. For the transition-metal cations, the electronegativity of the low-spin state is higher than that of the high-spin state. The ligand field stabilization, the first filling of p orbitals, the transition-metal contraction, and especially the lanthanide contraction are well-reflected by the relative values of our proposed electronegativity. This new scale is useful for us to estimate some quantities (e.g., the Lewis acid strength for the main group elements and the hydration free energy for the first transition series) and predict the structure and property of materials.
Bucky gel actuators optimization towards haptic applications
NASA Astrophysics Data System (ADS)
Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide
2014-03-01
An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).
DNA Sequence-Dependent Ionic Currents in Ultra-Small Solid-State Nanopores†
Comer, Jeffrey
2016-01-01
Measurements of ionic currents through nanopores partially blocked by DNA have emerged as a powerful method for characterization of the DNA nucleotide sequence. Although the effect of the nucleotide sequence on the nanopore blockade current has been experimentally demonstrated, prediction and interpretation of such measurements remain a formidable challenge. Using atomic resolution computational approaches, here we show how the sequence, molecular conformation, and pore geometry affect the blockade ionic current in model solid-state nanopores. We demonstrate that the blockade current from a DNA molecule is determined by the chemical identities and conformations of at least three consecutive nucleotides. We find the blockade currents produced by the nucleotide triplets to vary considerably with their nucleotide sequence despite having nearly identical molecular conformations. Encouragingly, we find blockade current differences as large as 25% for single-base substitutions in ultra small (1.6 nm × 1.1 nm cross section; 2 nm length) solid-state nanopores. Despite the complex dependence of the blockade current on the sequence and conformation of the DNA triplets, we find that, under many conditions, the number of thymine bases is positively correlated with the current, whereas the number of purine bases and the presence of both purine and pyrimidines in the triplet are negatively correlated with the current. Based on these observations, we construct a simple theoretical model that relates the ion current to the base content of a solid-state nanopore. Furthermore, we show that compact conformations of DNA in narrow pores provide the greatest signal-to-noise ratio for single base detection, whereas reduction of the nanopore length increases the ionic current noise. Thus, the sequence dependence of nanopore blockade current can be theoretically rationalized, although the predictions will likely need to be customized for each nanopore type. PMID:27103233
Ionic Conductivity and Air Stability of Al-Doped Li₇La₃Zr₂O₁₂ Sintered in Alumina and Pt Crucibles.
Xia, Wenhao; Xu, Biyi; Duan, Huanan; Guo, Yiping; Kang, Hongmei; Li, Hua; Liu, Hezhou
2016-03-02
Li7La3Zr2O12 (LLZO) is a promising electrolyte material for all-solid-state battery due to its high ionic conductivity and good stability with metallic lithium. In this article, we studied the effect of crucibles on the ionic conductivity and air stability by synthesizing 0.25Al doped LLZO pellets in Pt crucibles and alumina crucibles, respectively. The results show that the composition and microstructure of the pellets play important roles influencing the ionic conductivity, relative density, and air stability. Specifically, the 0.25Al-LLZO pellets sintered in Pt crucibles exhibit a high relative density (∼96%) and high ionic conductivity (4.48 × 10(-4) S cm(-1)). The ionic conductivity maintains 3.6 × 10(-4) S cm(-1) after 3-month air exposure. In contrast, the ionic conductivity of the pellets from alumina crucibles is about 1.81 × 10(-4) S cm(-1) and drops to 2.39 × 10(-5) S cm(-1) 3 months later. The large grains and the reduced grain boundaries in the pellets sintered in Pt crucibles are favorable to obtain high ionic conductivity and good air stability. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy results suggest that the formation of Li2CO3 on the pellet surface is probably another main reason, which is also closely related to the relative density and the amount of grain boundary within the pellets. This work stresses the importance of synthesis parameters, crucibles included, to obtain the LLZO electrolyte with high ionic conductivity and good air stability.
Self-Healing Behavior of Ethylene-Based Ionomers
NASA Technical Reports Server (NTRS)
Kalista, Stephen J., Jr.; Ward, Thomas C.; Oyetunji, Zainab
2004-01-01
The self-healing behavior of poly(ethylene-co-methacrylic acid) (EMAA)-based ionomers holds tremendous potential for use in a wide variety of unique applications. However, to effectively utilize this self-healing behavior and to design novel materials which possess this ability, the mechanism by which they heal must first be understood ionomers are a class of polymers that can be described as copolymers containing less than 15 mol% ionic content whereby the bulk properties are governed by ionic interactions within the polymer. These ionic groups aggregate into discrete regions known as multiplets which overlap forming clusters that act as physical cross-links profoundly influencing the bulk physical properties. These clusters possess an order-disorder transition (T(sub i)) where the clustered regions may rearrange themselves given time and stimuli. Recognizing the strong influence of these ionic regions on other well understood ionomer properties, their role in self-heating behavior will be assessed. The self-healing behavior is observed following projectile puncture. It has been suggested that during impact energy is passed to the ionomer material, heating it to the melt state. After penetration, it is proposed that the ionic regions maintain their attractions and flow together patching the hole. Thus, the importance of this ionic character and is unique interaction must be established. This will be accomplished through examination of materials with varying ionic content and through the analysis of the T(sub i). The specific ionomer systems examined include a number of ethylene-based materials. Materials of varying ionic content, including the non-ionic base copolymers, will be examined by peel tests, projectile impact and DSC analysis. The information will also be compared with some basic data on LDPE material.
Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools.
Maton, Cedric; De Vos, Nils; Stevens, Christian V
2013-07-07
The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.
Room temperature electrodeposition of actinides from ionic solutions
Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John
2017-04-25
Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.
Rohan, Amy L; Switzer, Jackson R; Flack, Kyle M; Hart, Ryan J; Sivaswamy, Swetha; Biddinger, Elizabeth J; Talreja, Manish; Verma, Manjusha; Faltermeier, Sean; Nielsen, Paul T; Pollet, Pamela; Schuette, George F; Eckert, Charles A; Liotta, Charles L
2012-11-01
Silylamine reversible ionic liquids were designed to achieve specific physical properties in order to address effective CO₂ capture. The reversible ionic liquid systems reported herein represent a class of switchable solvents where a relatively non-polar silylamine (molecular liquid) is reversibly transformed to a reversible ionic liquid (RevIL) by reaction with CO₂ (chemisorption). The RevILs can further capture additional CO₂ through physical absorption (physisorption). The effects of changes in structure on (1) the CO₂ capture capacity (chemisorption and physisorption), (2) the viscosity of the solvent systems at partial and total conversion to the ionic liquid state, (3) the energy required for reversing the CO₂ capture process, and (4) the ability to recycle the solvents systems are reported. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electric double-layer capacitance between an ionic liquid and few-layer graphene.
Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro
2013-01-01
Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.
Electric double-layer capacitance between an ionic liquid and few-layer graphene
Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro
2013-01-01
Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor. PMID:23549208
Reactivity of amino acid anions with nitrogen and oxygen atoms.
Wang, Zhe-Chen; Li, Ya-Ke; He, Sheng-Gui; Bierbaum, Veronica M
2018-02-14
For many decades, astronomers have searched for biological molecules, including amino acids, in the interstellar medium; this endeavor is important for investigating the hypothesis of the origin of life from space. The space environment is complex and atomic species, such as nitrogen and oxygen atoms, are widely distributed. In this work, the reactions of eight typical deprotonated amino acids (glycine, alanine, cysteine, proline, aspartic acid, histidine, tyrosine, and tryptophan) with ground state nitrogen and oxygen atoms are studied by experiment and theory. These amino acid anions do not react with nitrogen atoms. However, the reactions of these ions with oxygen atoms show an intriguing variety of ionic products and the reaction rate constants are of the order of 10 -10 cm 3 s -1 . Density functional calculations provide detailed mechanisms of the reactions, and demonstrate that spin conversion is essential for some processes. Our study provides important data and insights for understanding the kinetic and dynamic behavior of amino acids in space environments.
NASA Astrophysics Data System (ADS)
Farid, Behnam
1999-12-01
In this contribution we deal with a number of theoretical aspects concerning physics of systems of interacting electrons. Our discussions, although amenable to appropriate generalisations, are subject to some limitations. To name, we deal with systems of spin-less fermions — or those of spin-compensated fermions with spin —, with nondegenerate ground states, and those in which relativistic effects are negligible; we disregard ionic motions and deal with "normal" (not superconducting, for instance) systems that are in addition free from randomly distributed impurities. We restrict our considerations to the absolute zero of temperature. The Green and response functions feature in our theoretical considerations. Here we give especial attention to the analytic properties of these functions for complex values of energy. We discuss how, both fundamentally and from the practical viewpoint, ground and low-lying excited-states properties can be obtained from these correlation functions. Characterising low-lying excited states by means of elementary excitations, we deal with both those that are particle-like (the Landau quasi-particles) and those that are collective (plasmons, excitation in the total distribution of electrons). We devote some space to discussions concerning the domain of validity and breakdown of the many-body perturbation theory, specifically that for the single-particle Green function and the self-energy operator. Extensive analysis of the asymptotic behaviour of dynamic correlation functions in the limits of small and large energies reveal the significance of the Kohn-Sham-like Hamiltonians within the context of the many-body perturbation theory. In view of this, at places we pay especial attention to a number of the existing density-functional theories (including the ones for the single-particle reduced density matrix and time-dependent external potentials). We discuss in some detail a number of issues that are specific to the (phenomenological) Landau Fermi-liquid theory and their justification within the framework of the many-body perturbation theory. In doing so we touch upon a number of characteristic features specific to Fermi-liquid (as oppsed to marginal Fermi- and Luttinger-liquid) systems. Finally, we put one particular approximation scheme for the self-energy operator, known as the the GW scheme, under magnifying glass and observe it in many of its facets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, P. B., E-mail: anandputhirath@gmail.com, E-mail: jayalekshmi@cusat.ac.in; Jayalekshmi, S., E-mail: anandputhirath@gmail.com, E-mail: jayalekshmi@cusat.ac.in
2014-01-28
Nowadays polymer based solid state electrolytes for applications in rechargeable battery systems are highly sought after materials, pursued extensively by various research groups worldwide. Numerous methods are discussed in literature to improve the fundamental properties like electrical conductivity, mechanical stability and interfacial stability of polymer based electrolytes. The application of these electrolytes in Li-ion cells is still in the amateur state, due to low ionic conductivity, low lithium transport number and the processing difficulties. The present work is an attempt to study the effects of Li doping on the structural and transport properties of the polymer electrolyte, poly-ethelene oxide (PEO)more » (Molecular weight: 200,000). Li doped PEO was obtained by treating PEO with n-Butyllithium in hexane for different doping concentrations. Structural characterization of the samples was done by XRD and FTIR techniques. Impedance measurements were carried out to estimate the ionic conductivity of Li doped PEO samples. It is seen that, the crystallinity of the doped PEO decreases on increasing the doping concentration. XRD and FTIR studies support this observation. It is inferred that, ionic conductivity of the sample is increasing on increasing the doping concentration since less crystallinity permits more ionic transport. Impedance measurements confirm the results quantitatively.« less
NASA Astrophysics Data System (ADS)
Susa, Anna C.; Lippens, Jennifer L.; Xia, Zijie; Loo, Joseph A.; Campuzano, Iain D. G.; Williams, Evan R.
2018-01-01
Native mass spectrometry (native-MS) of membrane proteins typically requires a detergent screening protocol, protein solubilization in the preferred detergent, followed by protein liberation from the micelle by collisional activation. Here, submicrometer nano-ESI emitter tips are used for native-MS of membrane proteins solubilized in both nonionic and ionic detergent solutions. With the submicrometer nano-ESI emitter tips, resolved charge-state distributions of membrane protein ions are obtained from a 150 mM NaCl, 25 mM Tris-HCl with 1.1% octyl glucoside solution. The relative abundances of NaCl and detergent cluster ions at high m / z are significantly reduced with the submicrometer emitters compared with larger nano-ESI emitters that are commonly used. This technique is beneficial for significantly decreasing the abundances (by two to three orders of magnitude compared with the larger tip size: 1.6 μm) of detergent cluster ions formed from aqueous ammonium acetate solutions containing detergents that can overlap with the membrane protein ion signal. Resolved charge-state distributions of membrane protein ions from aqueous ammonium acetate solutions containing ionic detergents were obtained with the submicrometer nano-ESI emitters; this is the first report of native-MS of membrane proteins solubilized by ionic detergents. [Figure not available: see fulltext.
Susa, Anna C; Lippens, Jennifer L; Xia, Zijie; Loo, Joseph A; Campuzano, Iain D G; Williams, Evan R
2018-01-01
Native mass spectrometry (native-MS) of membrane proteins typically requires a detergent screening protocol, protein solubilization in the preferred detergent, followed by protein liberation from the micelle by collisional activation. Here, submicrometer nano-ESI emitter tips are used for native-MS of membrane proteins solubilized in both nonionic and ionic detergent solutions. With the submicrometer nano-ESI emitter tips, resolved charge-state distributions of membrane protein ions are obtained from a 150 mM NaCl, 25 mM Tris-HCl with 1.1% octyl glucoside solution. The relative abundances of NaCl and detergent cluster ions at high m /z are significantly reduced with the submicrometer emitters compared with larger nano-ESI emitters that are commonly used. This technique is beneficial for significantly decreasing the abundances (by two to three orders of magnitude compared with the larger tip size: 1.6 μm) of detergent cluster ions formed from aqueous ammonium acetate solutions containing detergents that can overlap with the membrane protein ion signal. Resolved charge-state distributions of membrane protein ions from aqueous ammonium acetate solutions containing ionic detergents were obtained with the submicrometer nano-ESI emitters; this is the first report of native-MS of membrane proteins solubilized by ionic detergents. Graphical Abstract.
Development of ionic gels using thiol-based monomers in ionic liquid
NASA Astrophysics Data System (ADS)
Ahmed, Kumkum; Naga, Naofumi; Kawakami, Masaru; Furukawa, Hidemitsu
2016-04-01
Ionic gels (IGs) using ionic liquids (ILs) can propose diverse applications in the field of optics, sensors and separation have opened wide prospects in materials science. ILs have attracted remarkable interest for gel polymer electrolytes and batteries based on their useful properties such as non-volatility, non-flammability, a wide electrochemical window, high thermal stability and a high ionic conductivity. The formation of gel in IL media makes it possible to immobilize ILs within organic or inorganic matrices and to take advantage of their unique properties in the solid state, thus eliminating some shortcomings related to shaping and risk of leakage. In this work for the first time we used multifunctional thiol monomers having uniform structure and good compatibility with the IL of our interest. Therefore we focused on developing thiol monomer-based IGs using multifunctional thiol monomers and acrylate crosslinkers utilizing thiol-ene reaction between monomer and crosslinking molecules in an IL medium and characterize their physico-chemical properties like thermal, conductive, mechanical properties etc.. This work has been focused mainly to improve the mechanical strength of IGs and make prospects of IGs in tribology and lubricants.
Bwambok, David K; Marwani, Hadi M; Fernand, Vivian E; Fakayode, Sayo O; Lowry, Mark; Negulescu, Ioan; Strongin, Robert M; Warner, Isiah M
2008-02-01
We report the synthesis and characterization of amino acid ester based chiral ionic liquids, derived from L- and D-alanine tert butyl ester chloride. The synthesis was accomplished via an anion metathesis reaction between commercially available L- and D-alanine tert butyl ester chloride using a variety of counterions such as lithium bis (trifluoromethane) sulfonimide, silver nitrate, silver lactate, and silver tetrafluoroborate. Both enantiomeric forms were obtained as confirmed by bands of opposite sign in the circular dichroism spectra. The L- and D-alanine tert butyl ester bis (trifluoromethane) sulfonimide were obtained as liquids at room temperature and intriguingly exhibited the highest thermal stability (up to 263 degrees C). In addition, the ionic liquids demonstrated enantiomeric recognition ability as evidenced by splitting of racemic Mosher's sodium salt signal using a liquid state (19)F nuclear magnetic resonance (NMR) and fluorescence spectroscopy. The L- and D-alanine tert butyl ester chloride resulted in solid salts with nitrate, lactate, and tetrafluoroborate anions. This illustrates the previously observed tunability of ionic liquid synthesis, resulting in ionic liquids of varying properties as a function of varying the anion.
Complex hydrides as room-temperature solid electrolytes for rechargeable batteries
NASA Astrophysics Data System (ADS)
de Jongh, P. E.; Blanchard, D.; Matsuo, M.; Udovic, T. J.; Orimo, S.
2016-03-01
A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible with Li-metal anodes, prevent Li dendrite formation, and eliminate risks associated with flammable organic solvents. Less than 10 years ago, LiBH4 was proposed as a solid-state electrolyte. It showed a high ionic conductivity, but only at elevated temperatures. Since then a range of other complex metal hydrides has been reported to show similar characteristics. Strategies have been developed to extend the high ionic conductivity of LiBH4 down to room temperature by partial anion substitution or nanoconfinement. The present paper reviews the recent developments in complex metal hydrides as solid electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries.
A solid-state pH sensor for nonaqueous media including ionic liquids.
Thompson, Brianna C; Winther-Jensen, Orawan; Winther-Jensen, Bjorn; MacFarlane, Douglas R
2013-04-02
We describe a solid state electrode structure based on a biologically derived proton-active redox center, riboflavin (RFN). The redox reaction of RFN is a pH-dependent process that requires no water. The electrode was fabricated using our previously described 'stuffing' method to entrap RFN into vapor phase polymerized poly(3,4-ethylenedioxythiophene). The electrode is shown to be capable of measuring the proton activity in the form of an effective pH over a range of different water contents including nonaqueous systems and ionic liquids (ILs). This demonstrates that the entrapment of the redox center facilitates direct electron communication with the polymer. This work provides a miniaturizable system to determine pH (effective) in nonaqueous systems as well as in ionic liquids. The ability to measure pH (effective) is an important step toward the ability to customize ILs with suitable pH (effective) for catalytic reactions and biotechnology applications such as protein preservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Chen, Yan; Hood, Zachary D.
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
NASA Astrophysics Data System (ADS)
Vaccaro, S. R.
2011-09-01
The voltage dependence of the ionic and gating currents of a K channel is dependent on the activation barriers of a voltage sensor with a potential function which may be derived from the principal electrostatic forces on an S4 segment in an inhomogeneous dielectric medium. By variation of the parameters of a voltage-sensing domain model, consistent with x-ray structures and biophysical data, the lowest frequency of the survival probability of each stationary state derived from a solution of the Smoluchowski equation provides a good fit to the voltage dependence of the slowest time constant of the ionic current in a depolarized membrane, and the gating current exhibits a rising phase that precedes an exponential relaxation. For each depolarizing potential, the calculated time dependence of the survival probabilities of the closed states of an alpha helical S4 sensor are in accord with an empirical model of the ionic and gating currents recorded during the activation process.
Nonconvective mixing of miscible ionic liquids.
Frost, Denzil S; Machas, Michael; Perea, Brian; Dai, Lenore L
2013-08-13
Ionic liquids (ILs) are ionic compounds that are liquid at room temperature. We studied the spontaneous mixing behavior between two ILs, ethylammonium nitrate (EAN) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), and observed notable phenomena. Experimental studies showed that the interface between the two ILs was unusually long-lived, despite the ILs being miscible with one another. Molecular dynamics (MD) simulations supported these findings and provided insight into the micromixing behavior of the ILs. We found that not only did the ions experience slow diffusion as they mix but also exhibited significant ordering into distinct regions. We suspect that this ordering disrupted concentration gradients in the direction normal to the interface, thus hindering diffusion in this direction and allowing the macroscopic interface to remain for long periods of time. Intermolecular interactions responsible for this behavior included the O-NH interaction between the EAN ions and the carbon chain-carbon chain interactions between the [BMIM](+) cations, which associate more strongly in the mixed state than in the pure IL state.
Electrodeposition of Metals in Microgravity Conditions
NASA Technical Reports Server (NTRS)
Nishikawa, K.; Homma, T.; Chassaing, E.; Rosso, M.; Fukunaka, Y.
2012-01-01
Metal electrodeposition may introduce various morphological variations depending on the electrolytic conditions including cell configurations. For liquid electrolytes, a precise study of these deposits may be complicated by convective motion due to buoyancy. Zero-gravity (0-G) condition provided by drop shaft or parabolic flight gives a straightforward mean to avoid this effect: we present here 0-G electrodeposition experiments, which we compare to ground experiments (1-G). Two electrochemical systems were studied by laser interferometry, allowing to measure the concentration variations in the electrolyte: copper deposition from copper sulfate aqueous solution and lithium deposition from an ionic liquid containing LiTFSI. For copper, concentration variations were in good agreement with theory. For lithium, an apparent induction time was observed for the concentration evolution at 1-G: due to this induction time and to the low diffusion coefficient in ionic liquid, the concentration variations were hardly measurable in the parabolic flight 0-G periods of 20 seconds.
Electronic and magnetic properties in Sr{sub 1-x}La{sub x}RuO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Renu; Pramanik, A. K., E-mail: akpramanik@mail.jnu.ac.in
2016-05-23
Here we report the structural, magnetic and transport properties in La doped SrRuO{sub 3}. The doping of La{sup 3+} modifies the ionic state of Ru by converting Ru{sup 4+} to Ru{sup +3}. However, there is modification in lattice parameters as La{sup 3+} has smaller ionic radii than that of Sr{sup 2+}. We find La doping weakens the ferromagnetic state in SrRuO{sub 3} in terms of lowering T{sub c} and decreasing the magnetic moment. The electrical resistivity shows metallic behavior in whole temperature range, however, resistivity increases with doping of La.
Constraints on CME Evolution from in situ Observations of Ionic Charge States
NASA Technical Reports Server (NTRS)
Gruesbeck, Jacob R.; Lepri, Susan T.; Zurbuchen, Thomas H.; Antiochos, Spiro K.
2010-01-01
We present a novel procedure for deriving the physical properties of Coronal Mass Ejections (CMES) in the corona. Our methodology uses in-situ measurements of ionic charge states of C, O, Si and Fe in the heliosphere and interprets them in the context of a model for the early evolution of ICME plasma, between 2 - 5 R-solar. We find that the data can be fit only by an evolution that consists of an initial heating of the plasma, followed by an expansion that ultimately results in cooling. The heating profile is consistent with a compression of coronal plasma due to flare reconnect ion jets and an expansion cooling due to the ejection, as expected from the standard CME/flare model. The observed frozen-in ionic charge states reflect this time-history and, therefore, provide important constraints for the heating and expansion time-scales, as well as the maximum temperature the CME plasma is heated to during its eruption. Furthermore, our analysis places severe limits on the possible density of CME plasma in the corona. We discuss the implications of our results for CME models and for future analysis of ICME plasma composition.
Probing Long-Range Configurations of Molecular Hydrogen
NASA Astrophysics Data System (ADS)
McCormack, Elizabeth
2011-05-01
Very long-range molecular configurations are of interest in a variety of contexts, for example, in the astro-chemistry of cold molecular clouds and in planetary atmospheres, including our own. Such states can be more than 10 times the size of the ground state and often possess energies above multiple ionization potentials and dissociation limits resulting in diverse and complex decay dynamics. Many of these configurations possess a double-well character arising from the interaction of molecular Rydberg states, repulsive doubly-excited states, and ionic states. The ion pair in hydrogen, an unusual molecular configuration consisting of one proton shrouded in a cloud of two electrons separated very far from the other proton, is notoriously difficult to create and study. We report results from on our investigation of such states using resonantly enhanced multi-photon ionization via the E,F v = 6, J = 0, 1, and 2 states to probe the H(n = 1) + H(n = 3) dissociation threshold energy region. Both molecular and atomic ion production were detected as a function of wavelength by using a time-of-flight mass spectrometer. Below threshold a series of highly excited vibrational levels of several long range states are observed. Above threshold broad resonances are observed with energies that agree well with the predictions of a mass-scaled Rydberg formula for bound states of the H+ H- ion pair. Measured linewidths, quantum defects, and rotational dependences are reported for ion pair principal quantum numbers in the range of n = 130 to 206. Our new results can be compared to recent experimental work using a different excitation scheme, which was the first spectroscopic observation of heavy Rydberg states in hydrogen, and new ab initio theoretical work. Supported by the National Science Foundation.
Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing
2017-09-04
Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure and Binding of Ionic Clusters in Th and Zr Chloride Melts
NASA Astrophysics Data System (ADS)
Akdeniz, Z.; Tosi, M. P.
2001-11-01
We discuss microscopic ionic models for the structure and the binding of small clusters which may exist as structural units in molten ThCl4 and ZrCl4 and in their mixtures with alkali halides according to Raman scattering studies of Photiadis and Papatheodorou. The models are adjusted to the two isolated tetrahedral molecules. Appreciably higher ionicity is found for ThCl4 than for ZrCl4, and this fact underlies the strikingly different behaviour of the two systems in the dense liquid state -in particular, a molecular-type structure for molten ZrCl4 against a structure including charged oligomers in molten ThCl4.
NASA Astrophysics Data System (ADS)
Maruyama, Ryo; Tanaka, Hideyasu; Yamakita, Yoshihiro; Misaizu, Fuminori; Ohno, Koichi
2000-09-01
Penning ionization electron spectra (PIES) of CO 2 clusters have been observed for the first time. An unusually fast electron band with excess kinetic energies of 1.4-2.9 eV with respect to the monomer band for the ionic X state was observed for CO 2 clusters in collision with He*(2 3S) atoms. While for PIES with Ne*(3 3P), no such unusual band was observed. The unusual band is ascribed to autoionization into stable structures of ionic clusters to which direct ionization processes are almost impossible due to very small Franck-Condon overlaps associated with a very large geometry difference between the ionic and neutral clusters.
On the origin of high ionic conductivity in Na-doped SrSiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen
Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less
NASA Astrophysics Data System (ADS)
Majkić, M. D.; Nedeljković, N. N.; Dojčilović, R. J.
2017-09-01
We consider the slow highly charged ions impinging upon a metal surface covered with a thin dielectric film, and formation of the surface nanostructures (craters) from the standpoint of the required energy. For the moderate ionic velocities, the size of the surface features depends on the deposited kinetic energy of the projectile and the ionic neutralization energy. The neutralization energy is calculated by employing the recently developed quasi-resonant two-state vector model for the intermediate Rydberg state population and the micro-staircase model for the cascade neutralization. The electron interactions with the ionic core, polarized dielectric and charge induced on the metal surface are modelled by the appropriate asymptotic expressions and the method for calculation of the effective ionic charges in the dielectric is proposed. The results are presented for the interaction of \\text{X}{{\\text{e}}Z+} ions (velocity v=0.25 a.u.; 25) with the metal surface (Co) covered with a thin dielectric film, for model values of dielectric constant inside the interaction region. In the absence of dielectric film, the neutralization energy is lower than the potential (ionization) energy due to the incomplete neutralization. The presence of dielectric film additionally decreases the neutralization energy. We calculate the projectile neutralization energy in the perturbed dielectric (perturbation is caused by the ionic motion and the surface structure formation). We correlate the neutralization energy added to the deposited kinetic energy with the experimentally obtained energy necessary for the formation of the nano-crater of a given depth.
On the origin of high ionic conductivity in Na-doped SrSiO 3
Chien, Po-Hsiu; Jee, Youngseok; Huang, Chen; ...
2016-02-17
Understanding the local structure and ion dynamics is at the heart of ion conductor research. This paper reports on high-resolution solid-state 29Si, 23Na, and 17O NMR investigation of the structure, chemical composition, and ion dynamics of a newly discovered fast ion conductor, Na-doped SrSiO 3, which exhibited a much higher ionic conductivity than most of current oxide ion conductors. Quantitative analyses reveal that with a small dose (<10 mol%) of Na, the doped Na integrates into the SrSiO 3 structure to form Na xSr 1-xSiO 3-0.5x, and with >10 mol% Na doping, phase separation occurs, leading to the formation ofmore » an amorphous phase β-Na 2Si 2O 5 and a crystalline Sr-rich phase. Variable-temperature 23Na and 17O magic-angle-spinning NMR up to 618 °C have shown significant changes in Na ion dynamics at high temperatures but little oxide ion motion, suggesting that Na ions are responsible for the observed high ionic conductivity. In addition, β-Na 2Si 2O 5 starts to crystallize at temperatures higher than 480 °C with prolonged heating, resulting in reduction in Na+ motion, and thus degradation of ionic conductivity. This study has contributed critical evidence to the understanding of ionic conduction in Na-doped SrSiO 3 and demonstrated that multinuclear high-resolution and high-temperature solid-state NMR is a uniquely useful tool for investigating ion conductors at their operating conditions.« less
Vroblesky, Don A.; Petkewich, Matthew D.; Campbell, Ted R.
2002-01-01
Field tests were performed on two types of diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. Nylon-screen samplers and dialysis samplers were tested for the collection of arsenic, calcium, chloride, iron, manganese, sulfate, and dissolved oxygen. The investigations were conducted at the Naval Industrial Reserve Ordnance Plant (NIROP), Fridley, Minnesota, and at the Naval Air Station Fort Worth Joint Reserve Base (NAS Fort Worth JRB), Texas. Data indicate that, in general, nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water that correspond to concentrations obtained by low-flow sampling. Diffusion samplers offer a potentially time-saving approach to well sampling. Particular care must be taken, however, when sampling for iron and other metals, because of the potential for iron precipitation by oxygenation and when dealing with chemically stratified sampling intervals. Simple nylon-screen jar samplers buried beneath creekbed sediment appear to be effective tools for locating discharge zones of arsenic contaminated ground water. Although the LDPE samplers have proven to be inexpensive and simple to use in wells, they are limited by their inability to provide a representative sample of ionic solutes. The success of nylon-screen samplers in sediment studies suggests that these simple samplers may be useful for collecting water samples for inorganic constituents in wells. Results using dialysis bags deployed in wells suggest that these types of samplers have the potential to provide a representative sample of both VOCs and ionic solutes from ground water (Kaplan and others, 1991; Theodore A. Ehlke, U.S. Geological Survey, written commun., 2001). The purpose of this report is to provide results of field tests investigating the potential to use diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. The investigations were performed at NIROP, Fridley, Minn. (fig. 1) and at NAS Fort Worth JRB, Texas (fig. 2). Two types of samplers were tested. One type was a nylon-screen sampler, which consisted of a 30-mL jar filled with deionized water, with its opening covered by a nylon screen. The second type was a dialysis sampler that consisted of a tube of dialysis membrane filled with deionized water. The nylon-screen samplers were deployed in wells at NIROP Fridley and NAS Fort Worth JRB and beneath the ground-water/surface water interface of a stream at NAS Fort Worth JRB. The dialysis samplers were deployed only in wells at NAS Fort Worth JRB.
NASA Astrophysics Data System (ADS)
Nykaza, Jacob Richard
In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk electrode (RDE) experiments determined the interfacial resistance imposed during cell assembly between the AEM, catalyst, and ionomer was a factor in fuel cell performance. Further RDE studies investigated the electrochemical stability of the PIL block copolymer ionomer under applied potentials, where it was determined that potential cycling increased the degradation compared to constant voltage or open circuit voltage studies. The PIL diblock copolymer was then anion exchanged to the bis(trifluoromethane)sulfonamide (TFSI-) anion form and imbibed with a lithium salt and ionic liquid solution for use as a SPE in lithium-ion batteries resulting in a maximum discharge capacity of 112 mAh g-1 at 0.1 C with a Coulombic efficiency greater than 94% over 100 cycles. PIL block copolymers have promising mechanical properties and transport properties (i.e., ion conductivity) in both the hydrated (hydrophilic anions; Br-, OH-) and dry (hydrophobic anions; TFSI-) states resulting in highly conductive, chemically/thermally stable, and mechanically robust solid-state polymer separators for use as AEMs in AFCs and as SPEs in lithium-ion batteries.
Walsh, Darren A; Lovelock, Kevin R J; Licence, Peter
2010-11-01
The high viscosity and unusual properties of room temperature ionic liquids (RTILs) present a number of challenges when performing steady-state voltammetry and scanning electrochemical microscopy in RTILs. These include difficulties in recording steady-state currents at ultramicroelectrode surfaces due to low diffusion coefficients of redox species and problems associated with unequal diffusion coefficients of oxidised and reduced species in RTILs. In this tutorial review, we highlight the recent progress in the use of RTILs as electrolytes for ultramicroelectrode voltammetry and SECM. We describe the basic principles of ultramicroelectrode voltammetry and SECM and, using examples from the recent literature, we discuss the conditions that must be met to perform steady-state voltammetry and SECM measurements in RTILs. Finally, we briefly discuss the electrochemical insights that can be obtained from such measurements.
Geotomography of a Shallow Sand Aquifer in North-Eastern Ontario
NASA Astrophysics Data System (ADS)
Bank, C.; Meadows, F.
2011-12-01
We used ground-probing radar and resistivity surveys to identify subsurface structures and topography that may correlate with strong chemical gradients in a shallow glaciofluvial sand aquifer 10km NW of Deep River, Ontario. Iron oxide springs lead to the discovery of the small aquifer, and yearly analysis of ground water chemistry at 47 Piezometers have identified persistent, localized chemical gradients of ferrous, ferric, sulfate, and sulfide ions (Ferris, 2006) and microbial organisms have been identified as the redox protagonists (Shirokova, 2011). The radargrams collected along nine profiles (200 and 400 MHz antennae, ranging from 36 to 106 m) show a subsurface layer between 0.8m and 3.4m thick, distinguishable by its many hyperbola shaped reflections, and varying topography. Resistivity values from eight lines (Wenner alpha, beta, and gamma arrays with 24 or 48 electrodes at 1m spacing) vary in general from high values (2000-6000 Ohm.m) above 1-2 m to lower values (less than 1000 Ohm.m) below 2 to a 5m depth. A permanent line of 24 electrodes spaced 1m apart and crossing the highest concentration of iron ions was monitored over 8 weeks, and weather was closely observed to see how the resistivity of the ground water varied over time. The distinguishable layer found by the GPR can be mapped to an outcrop of glacial till, and it is believed that the hyperbolas reflected are cobble and boulders in the till. Furthermore, decreases in the elevation of this layer correspond to an increase in ionic concentrations of sulfide, sulfate, ferric, and ferrous iron. The layer above the suspected till is identified to be glaciofluvial sand from outcrops along the surveys, and a paleochannel structure is observed in one GPR survey. The resistivity surveys consistently show low resistivity values in areas of high ionic concentration, and high resistivity values t the top of the vadose zone including below dry sand outcrops and within tree root systems of trees that can be seen at the surface. However there are areas at the surface with values of approx. 500 Ohm.m in areas where ionic concentrations decrease and the water table is not observed at the surface. Weather, including hot spells and torrential downpours, seem to have very little effect on resistivity values over time.
Lubach, Joseph W; Hau, Jonathan
2018-02-20
To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.
Chaban, Vitaly V; Prezhdo, Oleg V
2016-05-12
The critical point, CP (T, P), of the phase diagram quantifies the minimum amount of kinetic energy needed to prevent a substance from existing in a condensed phase. Therefore, the CP is closely related to the properties of the fluid far below the critical temperature. Approaches designed to predict thermophysical properties of a system necessarily aim to provide reliable estimates of the CP. Vice versa, CP estimation is impossible without knowledge of the vapor phase behavior. We report ab initio Born-Oppenheimer molecular dynamics (BOMD) simulations of sodium and potassium chlorides, NaCl and KCl, at and above their expected CPs. We advance the present knowledge regarding the existence of ionic species in the vapor phase by establishing significant percentages of atomic clusters: 29-30% in NaCl and 34-38% in KCl. A neutral pair of counterions is the most abundant cluster in the ionic vapors (ca. 35% of all vaporized ions exist in this form). Unexpectedly, an appreciable fraction of clusters is charged. The ionic vapor composition is determined by the vapor density, rather than the nature of the alkali ion. The previously suggested CPs of NaCl and KCl appear overestimated, based on the present simulations. The reported results offer essential insights into the ionic fluid properties and assist in development of thermodynamic theories. The ab initio BOMD method has been applied to investigate the vapor phase composition of an ionic fluid for the first time.
Neuronal networks: flip-flops in the brain.
McCormick, David A
2005-04-26
Neuronal activity can rapidly flip-flop between stable states. Although these semi-stable states can be generated through interactions of neuronal networks, it is now known that they can also occur in vivo through intrinsic ionic currents.
Ionic liquid gating reveals trap-filled limit mobility in low temperature amorphous zinc oxide
NASA Astrophysics Data System (ADS)
Bubel, S.; Meyer, S.; Kunze, F.; Chabinyc, M. L.
2013-10-01
In low-temperature solution processed amorphous zinc oxide (a-ZnO) thin films, we show the thin film transistor (TFT) characteristics for the trap-filled limit (TFL), when the quasi Fermi energy exceeds the conduction band edge and all tail-states are filled. In order to apply gate fields that are high enough to reach the TFL, we use an ionic liquid tape gate. Performing capacitance voltage measurements to determine the accumulated charge during TFT operation, we find the TFL at biases higher than predicted by the electronic structure of crystalline ZnO. We conclude that the density of states in the conduction band of a-ZnO is higher than in its crystalline state. Furthermore, we find no indication of percolative transport in the conduction band but trap assisted transport in the tail-states of the band.
Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity
NASA Astrophysics Data System (ADS)
Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.
2015-10-01
Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems. Electronic supplementary information (ESI) available: Experimental procedures, synthesis, and characterization of molecules 1, 2 and 3. Explanation of the electrochemical method for approximating nanopore diameter. Additional XPS spectra. See DOI: 10.1039/C5NR02939B
Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo
2016-06-09
A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm(-3), which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L(-1) and 549 W L(-1), based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.
Ionic Strength Modulation of the Free Energy Landscape of Aβ40 Peptide Fibril Formation.
Abelein, Axel; Jarvet, Jüri; Barth, Andreas; Gräslund, Astrid; Danielsson, Jens
2016-06-01
Protein misfolding and formation of cross-β structured amyloid fibrils are linked to many neurodegenerative disorders. Although recently developed quantitative approaches have started to reveal the molecular nature of self-assembly and fibril formation of proteins and peptides, it is yet unclear how these self-organization events are precisely modulated by microenvironmental factors, which are known to strongly affect the macroscopic aggregation properties. Here, we characterize the explicit effect of ionic strength on the microscopic aggregation rates of amyloid β peptide (Aβ40) self-association, implicated in Alzheimer's disease. We found that physiological ionic strength accelerates Aβ40 aggregation kinetics by promoting surface-catalyzed secondary nucleation reactions. This promoted catalytic effect can be assigned to shielding of electrostatic repulsion between monomers on the fibril surface or between the fibril surface itself and monomeric peptides. Furthermore, we observe the formation of two different β-structured states with similar but distinct spectroscopic features, which can be assigned to an off-pathway immature state (Fβ*) and a mature stable state (Fβ), where salt favors formation of the Fβ fibril morphology. Addition of salt to preformed Fβ* accelerates transition to Fβ, underlining the dynamic nature of Aβ40 fibrils in solution. On the basis of these results we suggest a model where salt decreases the free-energy barrier for Aβ40 folding to the Fβ state, favoring the buildup of the mature fibril morphology while omitting competing, energetically less favorable structural states.
NASA Astrophysics Data System (ADS)
Dong, Dengpan; Vatamanu, Jenel P.; Wei, Xiaoyu; Bedrov, Dmitry
2018-05-01
Atomistic molecular dynamics simulations were conducted to study the wetting states of 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)-imide ionic liquid (IL) nanodroplets on surfaces with different strengths of van der Waals (VDW) interactions and in the presence of an electric field. By adjusting the depth of Lennard-Jones potential, the van der Waals interaction between the solid surface and ionic liquid was systematically varied. The shape of the droplets was analyzed to extract the corresponding contact angle utilized to characterize wetting states of the nanodroplets. The explored range of surface-IL interactions allowed contact angles ranging from complete IL spreading on the surface to poor wettability. The effect of the external electrical field was explored by adding point charges to the surface atoms. Systems with two charge densities (±0.002 e/atom and ±0.004 e/atom) that correspond to 1.36 V/nm and 2.72 V/nm electric fields were investigated. Asymmetrical wetting states were observed for both cases. At 1.36 V/nm electric field, contributions of IL-surface VDW interactions and Coulombic interactions to the wetting state were competitive. At 2.72 V/nm field, electrostatic interactions dominate the interaction between the nanodroplet and surface, leading to enhanced wettability on all surfaces.
Ionic and Covalent Stabilization of Intermediates and Transition States in Catalysis by Solid Acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshlahra, Prashant; Carr, Robert T.; Iglesia, Enrique
Reactivity descriptors describe catalyst properties that determine the stability of kinetically relevant transition states and adsorbed intermediates. Theoretical descriptors, such as deprotonation energies (DPE), rigorously account for Brønsted acid strength for catalytic solids with known structure. Here, mechanistic interpretations of methanol dehydration turnover rates are used to assess how charge reorganization (covalency) and electrostatic interactions determine DPE and how such interactions are recovered when intermediates and transition states interact with the conjugate anion in W and Mo polyoxometalate (POM) clusters and gaseous mineral acids. Turnover rates are lower and kinetically relevant species are less stable on Mo than W POMmore » clusters with similar acid strength, and such species are more stable on mineral acids than that predicted from W-POM DPE–reactivity trends, indicating that DPE and acid strength are essential but incomplete reactivity descriptors. Born–Haber thermochemical cycles indicate that these differences reflect more effective charge reorganization upon deprotonation of Mo than W POM clusters and the much weaker reorganization in mineral acids. Such covalency is disrupted upon deprotonation but cannot be recovered fully upon formation of ion pairs at transition states. Predictive descriptors of reactivity for general classes of acids thus require separate assessments of the covalent and ionic DPE components. Here, we describe methods to estimate electrostatic interactions, which, taken together with energies derived from density functional theory, give the covalent and ionic energy components of protons, intermediates, and transition states. In doing so, we provide a framework to predict the reactive properties of protons for chemical reactions mediated by ion-pair transition states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koech, Phillip K.; Malhotra, Deepika; Heldebrant, David J.
2015-01-01
Climate change is partly attributed to global anthropogenic carbon dioxide (CO2) emission to the atmosphere. These environmental effects can be mitigated by CO2 capture, utilization and storage. Alkanolamine solvents, such as monoethanolamine (MEA), which bind CO2 as carbamates or bicarbonate salts are used for CO2 capture in niche applications. These solvents consist of approximately 30 wt% of MEA in water, exhibiting a low, CO2-rich viscosity, fast kinetics and favorable thermodynamics. However, these solvents have low CO2 capacity and high heat capacity of water, resulting in prohibitively high costs of thermal solvent regeneration. Effective capture of the enormous amounts of CO2more » produced by coal-fired plants requires a material with high CO2 capacity and low regeneration energy requirements. To this end, several water-lean transformational solvents systems have been developed in order to reduce these energy penalties. These technologies include nano-material organic hybrids (NOHMs), task-specific, protic and conventional ionic liquids, phase change solvents. As part of an ongoing program in our group, we have developed new water lean transformational solvents known as CO2 binding organic liquids (CO2BOLs) which have the potential to be energy efficient CO2 capture solvents. These solvents, also known as switchable ionic liquids meaning, are organic solvents that can reversibly transform from non- ionic to ionic form and back. The zwitterionic state in these liquids is formed when low polarity non-ionic alkanolguanidines or alkanolamidines react with CO2 or SO2 to form ionic liquids with high polarity. These polar ionic liquids can be thermally converted to the less polar non-ionic solvent by releasing CO2.« less
Toxicity prediction of ionic liquids based on Daphnia magna by using density functional theory
NASA Astrophysics Data System (ADS)
Nu’aim, M. N.; Bustam, M. A.
2018-04-01
By using a model called density functional theory, the toxicity of ionic liquids can be predicted and forecast. It is a theory that allowing the researcher to have a substantial tool for computation of the quantum state of atoms, molecules and solids, and molecular dynamics which also known as computer simulation method. It can be done by using structural feature based quantum chemical reactivity descriptor. The identification of ionic liquids and its Log[EC50] data are from literature data that available in Ismail Hossain thesis entitled “Synthesis, Characterization and Quantitative Structure Toxicity Relationship of Imidazolium, Pyridinium and Ammonium Based Ionic Liquids”. Each cation and anion of the ionic liquids were optimized and calculated. The geometry optimization and calculation from the software, produce the value of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). From the value of HOMO and LUMO, the value for other toxicity descriptors were obtained according to their formulas. The toxicity descriptor that involves are electrophilicity index, HOMO, LUMO, energy gap, chemical potential, hardness and electronegativity. The interrelation between the descriptors are being determined by using a multiple linear regression (MLR). From this MLR, all descriptors being analyzed and the descriptors that are significant were chosen. In order to develop the finest model equation for toxicity prediction of ionic liquids, the selected descriptors that are significant were used. The validation of model equation was performed with the Log[EC50] data from the literature and the final model equation was developed. A bigger range of ionic liquids which nearly 108 of ionic liquids can be predicted from this model equation.
Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao
2015-01-21
The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth.
Linear and circular dichroism characterization of thionine binding mode with DNA polynucleotides
NASA Astrophysics Data System (ADS)
Tuite, Eimer Mary; Nordén, Bengt
2018-01-01
The binding mode of thionine (3,7-diamino-5-phenothiazinium) with alternating and non-alternating DNA polynucleotides at low binding ratios was conclusively determined using linear and circular dichroism spectroscopies. The binding to [poly(dG-dC)]2 and poly(dG)·poly(dC) was purely intercalative and was insensitive to ionic strength. Intercalative binding to [poly(dA-dT)]2 is observed at low ionic strength, but a shift of some dye to an non-intercalative mode is observed as the background salt concentration increases. With poly(dA)·poly(dT), intercalative binding is unfavourable, although some dye molecules may intercalate at low ionic strength, and groove binding is strongly promoted with increasing concentration of background salt. However, stacking with bases is observed with single-stranded poly(dA) and with triplex poly(dT)*poly(dA)·poly(dT) which suggests that the unusual structure of poly(dA)·poly(dT) precludes intercalation. Thionine behaves similarly to the related dye methylene blue, and small differences may be attributed either to the ability of thionine to form H-bonds that stabilize intercalation or to its improved stacking interactions in the basepair pocket on steric grounds.
A microdot multilayer oxide device: let us tune the strain-ionic transport interaction.
Schweiger, Sebastian; Kubicek, Markus; Messerschmitt, Felix; Murer, Christoph; Rupp, Jennifer L M
2014-05-27
In this paper, we present a strategy to use interfacial strain in multilayer heterostructures to tune their resistive response and ionic transport as active component in an oxide-based multilayer microdot device on chip. For this, fabrication of strained multilayer microdot devices with sideways attached electrodes is reported with the material system Gd0.1Ce0.9O(2-δ)/Er2O3. The fast ionic conducting Gd0.1Ce0.9O(2-δ) single layers are altered in lattice strain by the electrically insulating erbia phases of a microdot. The strain activated volume of the Gd0.1Ce0.9O(2-δ) is investigated by changing the number of individual layers from 1 to 60 while keeping the microdot at a constant thickness; i.e., the proportion of strained volume was systematically varied. Electrical measurements showed that the activation energy of the devices could be altered by Δ0.31 eV by changing the compressive strain of a microdot ceria-based phase by more than 1.16%. The electrical conductivity data is analyzed and interpreted with a strain volume model and defect thermodynamics. Additionally, an equivalent circuit model is presented for sideways contacted multilayer microdots. We give a proof-of-concept for microdot contacting to capture real strain-ionic transport effects and reveal that for classic top-electrode contacting the effect is nil, highlighting the need for sideways electric contacting on a nanoscopic scale. The near order ionic transport interaction is supported by Raman spectroscopy measurements. These were conducted and analyzed together with fully relaxed single thin film samples. Strain states are described relative to the strain activated volumes of Gd0.1Ce0.9O(2-δ) in the microdot multilayer. These findings reveal that strain engineering in microfabricated devices allows altering the ionic conduction over a wide range beyond classic doping strategies for single films. The reported fabrication route and concept of strained multilayer microdots is a promising path for applying strained multilayer oxides as active new building blocks relevant for a broad range of microelectrochemical devices, e.g., resistive switching memory prototypes, resistive or electrochemical sensors, or as active catalytic solid state surface components for microfuel cells or all-solid-state batteries.
NASA Astrophysics Data System (ADS)
Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo
2016-06-01
A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02215d
Determination of wave-function functionals: The constrained-search variational method
NASA Astrophysics Data System (ADS)
Pan, Xiao-Yin; Sahni, Viraht; Massa, Lou
2005-09-01
In a recent paper [Phys. Rev. Lett. 93, 130401 (2004)], we proposed the idea of expanding the space of variations in variational calculations of the energy by considering the approximate wave function ψ to be a functional of functions χ , ψ=ψ[χ] , rather than a function. A constrained search is first performed over all functions χ such that the wave-function functional ψ[χ] satisfies a physical constraint or leads to the known value of an observable. A rigorous upper bound to the energy is then obtained via the variational principle. In this paper we generalize the constrained-search variational method, applicable to both ground and excited states, to the determination of arbitrary Hermitian single-particle operators as applied to two-electron atomic and ionic systems. We construct analytical three-parameter ground-state functionals for the H- ion and the He atom through the constraint of normalization. We present the results for the total energy E , the expectations of the single-particle operators W=∑irin , n=-2,-1,1,2 , W=∑iδ(ri) , and W=∑iδ(ri-r) , the structure of the nonlocal Coulomb hole charge ρc(rr') , and the expectations of the two particle operators u2,u,1/u,1/u2 , where u=∣ri-rj∣ . The results for all the expectation values are remarkably accurate when compared with the 1078-parameter wave function of Pekeris, and other wave functions that are not functionals. We conclude by describing our current work on how the constrained-search variational method in conjunction with quantal density-functional theory is being applied to the many-electron case.
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-09
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.
Zhou, Xuehong; Zhang, Wenqiang; Wang, Cong; Zhou, Jiadong; Liu, Linlin; Xie, Zengqi; Ma, Yuguang
2018-04-27
Ion-doped states are significant for improving the performance in organic semiconductor-based devices, which require clear characterization to understand their relationship with conductivity and charge transporting mechanisms. In this paper, Raman spectroscopy is used to track the evolution of a dianion-anion-neutral mixture in a perylene bisimide (PBI)-doped film under air, with z-scanning carried out in the confocal mode. The precise distribution for the different states along the film depth is realized within 3.5 μm. The whole film is clearly divided into three regions: the ion-poor state, transition region and ion-rich state. The ion ratio and distribution are strongly related to the film conductivity and the onset voltage shift. Changes in the distribution of the ionic species during oxidation and electrode catalysis are clearly recorded by z-scanning, which is beneficial for understanding the charge transfer properties as well as the mechanism underlying working devices. Copyright © 2018 Elsevier B.V. All rights reserved.
A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air
NASA Astrophysics Data System (ADS)
Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan
2005-05-01
The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.
Biomimetic Beetle-Inspired Flapping Air Vehicle Actuated by Ionic Polymer-Metal Composite Actuator.
Zhao, Yang; Xu, Di; Sheng, Jiazheng; Meng, Qinglong; Wu, Dezhi; Wang, Lingyun; Xiao, Jingjing; Lv, Wenlong; Chen, Qinnan; Sun, Daoheng
2018-01-01
During the last decades, the ionic polymer-metal composite (IPMC) received much attention because of its potential capabilities, such as large displacement and flexible bending actuation. In this paper, a biomimetic flapping air vehicle was proposed by combining the superiority of ionic polymer metal composite with the bionic beetle flapping principle. The blocking force was compared between casted IPMC and IPMC. The flapping state of the wing was investigated and the maximum displacement and flapping angle were measured. The flapping displacement under different voltage and frequency was tested. The flapping displacement of the wing and the support reaction force were measured under different frequency by experiments. The experimental results indicate that the high voltage and low frequency would get large flapping displacement.
NASA Astrophysics Data System (ADS)
Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.
2017-02-01
In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.
Paulechka, Yauheni U; Kabo, Gennady J; Emel'yanenko, Vladimir N
2008-12-11
Energies, geometries, and frequencies of normal vibrations have been calculated by quantum-chemical methods for different conformers of a bis(trifluoromethylsulfonyl)imide anion (NTf2-), 1-alkyl-3-methylimidazolium cations ([C(n)mim]+, n = 2, 4, 6, 8), and [C(n)mim]NTf2 ionic pairs. The assignment of frequencies for NTf2-, [C2mim]+, and [C4mim]+ in the vibrational spectra of ionic liquids have been performed. Thermodynamic properties of [C(n)mim]NTf2, [C(n)mim]+, and NTf2- in the gas state have been calculated by the statistical thermodynamic methods. The resulting entropies are in satisfactory agreement with the values obtained from the experimental data previously reported in literature.
Oliveberg, M; Fersht, A R
1996-05-28
We use in this study a novel kinetic approach to determine the H+ titration properties of a semiburied salt link in the transition state for unfolding of barnase. The approach is based on changes in the pH dependence of the kinetics upon mutation of a target residue. This makes it relatively insensitive to the absolute value of the stability and, thereby, to artifacts caused by structural rearrangements around the site of mutation. The semiburied salt bridge studied here is between Asp93 and Arg69. Mutation of either residue significantly destabilized the protein, and the pKa value of Asp93 is severely lowered in the native state to below 1 because of the ionic interaction with Arg69. The Asp93-Arg69 salt link appears to be formed early in the folding process; the pKa value of Asp93 in the transition state (approximately 1) is similar to that in the native state, and deletion of the ionic interaction with Arg69 substantially destabilizes the folding intermediate and changes the kinetic behavior from multistate to two-state or close to two-state, depending on the conditions. The results suggest that the formation of ionic interactions within clusters of hydrophobic residues can be important for early folding events and can control kinetically the folding pathway. This is not because of the inherent stability of the salt link but because the presence of two unpaired charges is very unfavorable. The data reveal also that fractional phi values are consistent with a uniformly expanded transition state or one with closely spaced energy levels and not with parallel folding pathways.
NASA Astrophysics Data System (ADS)
Yu, Shicheng; Mertens, Andreas; Gao, Xin; Gunduz, Deniz Cihan; Schierholz, Roland; Benning, Svenja; Hausen, Florian; Mertens, Josef; Kungl, Hans; Tempel, Hermann; Eichel, Rüdiger-A.
2016-09-01
A ceramic solid-state electrolyte of lithium aluminum titanium phosphate with the composition of Li1.3Al0.3Ti1.7(PO4)3 (LATP) was synthesized by a sol-gel method using a pre-dissolved Ti-source. The annealed LATP powders were subsequently processed in a binder-free dry forming method and sintered under air for the pellet preparation. Phase purity, density, microstructure as well as ionic conductivity of the specimen were characterized. The highest density (2.77gṡcm-3) with an ionic conductivity of 1.88×10-4 Sṡcm-1 (at 30∘C) was reached at a sintering temperature of 1100∘C. Conductivity of LATP ceramic electrolyte is believed to be significantly affected by both, the AlPO4 secondary phase content and the ceramic electrolyte microstructure. It has been found that with increasing sintering temperature, the secondary-phase content of AlPO4 increased. For sintering temperatures above 1000∘C, the secondary phase has only a minor impact, and the ionic conductivity is predominantly determined by the microstructure of the pellet, i.e. the correlation between density, porosity and particle size. In that respect, it has been demonstrated, that the conductivity increases with increasing particle size in this temperature range and density.
Wang, Yonggang; Wang, Qingfei; Liu, Zhenpu; ...
2015-06-10
High-performance solid electrolytes are critical for realizing all-solid-state batteries with enhance safety and cycling efficiency. However, currently available candidates (sulfides and the NASICON-typ ceramics) still suffer from drawbacks such as inflammability, high-cost and unfavorable machinability Here we present the structural manipulation approaches to improve the sodium ionic conductivity in series of affordable Na-rich antiperovskites. Experimentally, the whole solid solutions of Na 3OX (X ¼ Cl Br, I) are synthesized via a facile and timesaving route from the cheapest raw materials (Na, NaOH an NaX). The materials are nonflammable, suitable for thermoplastic processing due to low melting temperature (<300° C) withoutmore » decomposing. Notably, owing to the flexibility of perovskite-type structure it's feasible to control the local structure features by means of size-mismatch substitution an unequivalent-doping for a favorable sodium ionic diffusion pathway. Enhancement of sodium ioni conductivity by 2 magnitudes is demonstrated by these chemical tuning methods. The optimized sodiu ionic conductivity in Na 2.9Sr 0.05OBr 0.6I 0.4 bulk samples reaches 1.9 10 - 3 S/cm at 200° C and even highe at elevated temperature. Here, we believe further chemical tuning efforts on Na-rich antiperovskites wil promote their performance greatly for practical all-solid state battery applications.« less
NASA Astrophysics Data System (ADS)
Paulsen, Bryan D.; Frisbie, C. Daniel
2012-02-01
Ionic liquids, used in place of traditional gate dielectric materials, allow for the accumulation of very high 2D and 3D charge densities (>10^14 #/cm^2 and >10^21 #/cm^3 respectively) at low voltage (<5 V). Here we study the electrochemical gating of the benchmark semiconducting polymer poly(3-hexylthiophene) (P3HT) with the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([EMI][FAP]). The electrochemical stability of [EMI][FAP] allowed the reproducible accumulation of 2 x 10^21 hole/cm^3, or one hole (and stabilizing anion dopant) per every two thiophene rings. A finite potential/charge density window of high electrical conductivity was observed with hole mobility reaching a maximum of 0.86 cm^2/V s at 0.12 holes per thiophene ring. Displacement current measurements, collected versus a calibrated reference electrode, allowed the mapping of the highly structured and extremely broad density of states of the P3HT/[EMI][FAP] doped composite. Variable temperature and charge density hole transport measurements revealed hole transport to be thermally activated and non-monotonic, displaying a activation energy minimum of ˜20 meV in the region of maximum conductivity and hole mobility. To show the generality of this result, the study was extended to an additional four ionic liquids and three semiconducting polymers.
Grotthuss Transport of Iodide in EMIM/I3 Ionic Crystal.
McDaniel, Jesse G; Yethiraj, Arun
2018-01-11
Highly ionic environments can mediate unusual chemical reactions that would otherwise be considered impossible based on chemical intuition. For example, the formation of a chemical bond between two iodide anions to form a divalent polyiodide anion is seemingly prohibited due to Coulombic repulsion. Using ab initio molecular dynamics simulations, we show that in the 1-ethyl-3-methylimidazolium (EMIM)/I 3 ionic crystal, the reactive formation of divalent and even trivalent polyiodide anions occurs with extremely small energetic barriers, due to the electrostatic field of the ionic lattice. A practical consequence of this anomalous reactivity is that iodide anions are efficiently transported within the crystal through a "Grotthuss-exchange" mechanism involving bond-breaking and forming events. We characterize two distinct transport pathways, involving both I 4 2- and I 7 3- intermediates, with fast transport of iodide resulting from the release of an I - anion on the opposite side of the intermediate species from the initial bond formation. The ordered cation arrangement in the crystal provides the necessary electrostatic screening for close approach of anions, suggesting a new counterintuitive approach to obtain high ionic conductivity. This new design principle could be used to develop better solid-state electrolytes for batteries, fuel cells, and supercapacitors.
Pang, Long; Yang, Peijie; Pang, Rong; Li, Shunyi
2017-08-01
1-Hexadecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide is a solid-phase ionic organic material under ambient temperature and is considered as a kind of "frozen" ionic liquid. Because of their solid-state and ultra-hydrophobicity, "frozen" ionic liquids are able to be confined in the pores of hollow fiber, based on which a simple method was developed for the hollow-fiber solid-phase microextraction of dichlorodiphenyltrichloroethane and its main metabolites. Under optimized conditions, the proposed method results in good linearity (R 2 > 0.9965) over the range of 0.5-50 μg/L, with low limits of detection and quantification in the range of 0.33-0.38 and 1.00-1.25 μg/L, respectively. Intra- and interday precisions evaluated by relative standard deviation were 3-6 and 1-6%, respectively. The spiked recoveries of dichlorodiphenyltrichloroethane and its main metabolites from real water samples were in the range of 64-113 and 79-112%, respectively, at two different concentration levels. The results suggest that "frozen" ionic liquids are promising for use as a class of novel sorbents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki
2012-01-01
A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d54s4p 6P excited levels. The 3d54s4p 6P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.104. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.
Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo
2013-01-01
Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+)-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca(2+)-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca(2+)-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca(2+) activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca(2+)-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca(2+)-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction.
Real-time ab initio simulations of excited-state dynamics in nanostructures
NASA Astrophysics Data System (ADS)
Tomanek, David
2007-03-01
Combining time-dependent ab initio density functional calculations for electrons with molecular dynamics simulations for ions, we investigate the effect of excited-state dynamics in nanostructures. In carbon nanotubes, we find electronic excitations to last for a large fraction of a picosecond. The de-excitation process is dominated by coupling to other electronic degrees of freedom during the first few hundred femtoseconds. Later, the de-excitation process becomes dominated by coupling to ionic motion. The onset point and damping rate in that regime change with initial ion velocities, a manifestation of temperature dependent electron-phonon coupling. Considering the fact that the force field in the electronically excited state differs significantly from the ground state, as reflected in the Franck-Condon effect, atomic bonds can easily be broken or restored during the relatively long lifetime of electronic excitations. This effect can be utilized in a ``photo-surgery" of nanotubes, causing structural self-healing at vacancy sites or selective de-oxidation processes induced by photo-absorption. Also, electronic excitations are a key ingredient for the understanding of sputtering processes in nanostructures, induced by energetic collisions with ions. Yoshiyuki Miyamoto, Angel Rubio, and David Tomanek, Phys. Rev. Lett. 97, 126104 (2006). Yoshiyuki Miyamoto, Savas Berber, Mina Yoon, Angel Rubio, and David Tomanek, Chem. Phys. Lett. 392, 209 (2004). Yoshiyuki Miyamoto, Noboru Jinbo, Hisashi Nakamura, Angel Rubio, and David Tomanek, Phys. Rev. B 70, 233408 (2004). Yoshiyuki Miyamoto, Arkady Krasheninnikov, and David Tomanek (in preparation).
2015-01-01
We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement. PMID:25844072
Electrodiffusion kinetics of ionic transport in a simple membrane channel.
Valent, Ivan; Petrovič, Pavol; Neogrády, Pavel; Schreiber, Igor; Marek, Miloš
2013-11-21
We employ numerical techniques for solving time-dependent full Poisson-Nernst-Planck (PNP) equations in 2D to analyze transient behavior of a simple ion channel subject to a sudden electric potential jump across the membrane (voltage clamp). Calculated spatiotemporal profiles of the ionic concentrations and electric potential show that two principal exponential processes can be distinguished in the electrodiffusion kinetics, in agreement with original Planck's predictions. The initial fast process corresponds to the dielectric relaxation, while the steady state is approached in a second slower exponential process attributed to the nonlinear ionic redistribution. Effects of the model parameters such as the channel length, height of the potential step, boundary concentrations, permittivity of the channel interior, and ionic mobilities on electrodiffusion kinetics are studied. Numerical solutions are used to determine spatiotemporal profiles of the electric field, ionic fluxes, and both the conductive and displacement currents. We demonstrate that the displacement current is a significant transient component of the total electric current through the channel. The presented results provide additional information about the classical voltage-clamp problem and offer further physical insights into the mechanism of electrodiffusion. The used numerical approach can be readily extended to multi-ionic models with a more structured domain geometry in 2D or 3D, and it is directly applicable to other systems, such as synthetic nanopores, nanofluidic channels, and nanopipettes.
NASA Astrophysics Data System (ADS)
Tith, Rany; Dutta, Jaydeep; Jung, Kichang; Martinez-Morales, Alfredo A.
2017-05-01
LiFePO4 is a highly researched cathode material that serves as an alternative material for traditional commercial lithiumion batteries such as LiCoO2. Currently, there are a number of different methods to synthesize LiFePO4 including: hydrothermal, solid state, spray pyrolysis, and coprecipitation. Our proposed method has the potential to provide an ecologically friendly and economically competitive way to synthesize LiFePO4 by utilizing ionic liquid and water, as a composite synthesis medium. The addition of water to ionic liquid can be beneficial as it can act as a mineralizer to bring insoluble precursors to form LiFePO4 seed crystals. Furthermore, this method provides the possibility of recycling the ionic liquid for repeated synthesis processes. In this work, we study the effects of ionic liquid to water ratio on the crystallinity and morphology of the synthesized material. Our group was able to conclude a reaction medium utilizing a ratio of equal parts of 1-ethyl-3-methyl imidazolium trifluoromethane sulfonate (EMIM Otf) and water, or a slightly favored ionic liquid ratio, increases the efficacy of the synthesis route. Crystallinity and purity was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) was used to determine morphology and crystal sizes, and energy dispersion spectroscopy (EDX) was used for elemental analysis.
Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium-sulfur batteries
Fan, Frank Y.; Pan, Menghsuan Sam; Lau, Kah Chun; ...
2016-11-25
Lithium-sulfur (Li-S) batteries have high theoretical energy density and low raw materials cost compared to present lithium-ion batteries and are thus promising for use in electric transportation and other applications. A major obstacle for Li-S batteries is low rate capability, especially at the low electrolyte/sulfur (E/S) ratios required for high energy density. Herein, we investigate several potentially rate-limiting factors for Li-S batteries. We study the ionic conductivity of lithium polysulfide solutions of varying concentration and in different ether-based solvents and their exchange current density on glassy carbon working electrodes. We believe this is the first such investigation of exchange currentmore » density for lithium polysulfide in solution. Exchange current densities are measured using both electrochemical impedance spectroscopy and steady-state galvanostatic polarization. In the range of interest (1-8 M [S]), the ionic conductivity monotonically decreases with increasing sulfur concentration while exchange current density shows a more complicated relationship to sulfur concentration. The electrolyte solvent dramatically affects ionic conductivity and exchange current density. Finally, the measured ionic conductivities and exchange current densities are also used to interpret the overpotential and rate capability of polysulfide-nanocarbon suspensions; this analysis demonstrates that ionic conductivity is the rate-limiting property in the solution regime (i.e. between Li 2S 8 and Li 2S 4).« less
Rongeat, Carine; Reddy, M Anji; Witter, Raiker; Fichtner, Maximilian
2014-02-12
Batteries based on a fluoride shuttle (fluoride ion battery, FIB) can theoretically provide high energy densities and can thus be considered as an interesting alternative to Li-ion batteries. Large improvements are still needed regarding their actual performance, in particular for the ionic conductivity of the solid electrolyte. At the current state of the art, two types of fluoride families can be considered for electrolyte applications: alkaline-earth fluorides having a fluorite-type structure and rare-earth fluorides having a tysonite-type structure. As regard to the latter, high ionic conductivities have been reported for doped LaF3 single crystals. However, polycrystalline materials would be easier to implement in a FIB due to practical reasons in the cell manufacturing. Hence, we have analyzed in detail the ionic conductivity of La(1-y)Ba(y)F(3-y) (0 ≤ y ≤ 0.15) solid solutions prepared by ball milling. The combination of DC and AC conductivity analyses provides a better understanding of the conduction mechanism in tysonite-type fluorides with a blocking effect of the grain boundaries. Heat treatment of the electrolyte material was performed and leads to an improvement of the ionic conductivity. This confirms the detrimental effect of grain boundaries and opens new route for the development of solid electrolytes for FIB with high ionic conductivities.
Alves, Márcia; Vieira, Nicole S M; Rebelo, Luís Paulo N; Araújo, João M M; Pereiro, Ana B; Archer, Margarida
2017-06-30
Since the approval of recombinant human insulin by FDA in 1982, more than 200 proteins are currently available for pharmaceutical use to treat a wide range of diseases. However, innovation is still required to develop effective approaches for drug delivery. Our aim is to investigate the potential use of fluorinated ionic liquids (FILs) as drug delivery systems (DDS) for therapeutic proteins. Some initial parameters need to be assessed before further studies can proceed. This work evaluates the impact of FILs on the stability, function, structure and aggregation state of lysozyme. Different techniques were used for this purpose, which included differential scanning fluorimetry (DSF), spectrophotometric assays, circular dichroism (CD), dynamic light scattering (DLS), and scanning and transmission electron microscopy (SEM/TEM). Ionic liquids composed of cholinium-, imidazolium- or pyridinium- derivatives were combined with different anions and analysed at different concentrations in aqueous solutions (below and above the critical aggregation concentration, CAC). The results herein presented show that the addition of ionic liquids had no significant effect on the stability and hydrolytic activity of lysozyme. Moreover, a distinct behaviour was observed in DLS experiments for non-surfactant and surfactant ionic liquids, with the latter encapsulating the protein at concentrations above the CAC. These results encourage us to further study ionic liquids as promising tools for DDS of protein drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi
2016-01-13
High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.
Shiotani, Shinya; Ohara, Koji; Tsukasaki, Hirofumi; Mori, Shigeo; Kanno, Ryoji
2017-08-01
In general, the ionic conductivity of sulfide glasses decreases with their crystallization, although it increases for a few sulphide glasses owing to the crystallization of a highly conductive new phase (e.g., Li 7 P 3 S 11 : 70Li 2 S-30P 2 S 5 ). We found that the ionic conductivity of 75Li 2 S-25P 2 S 5 sulfide glass, which consists of glassy and crystalline phases, is improved by optimizing the conditions of the heat treatment, i.e., annealing. A different mechanism of high ionic conductivity from the conventional mechanism is expected in the glassy phase. Here, we report the glassy structure of 75Li 2 S-25P 2 S 5 immediately before the crystallization by using the differential pair distribution function (d-PDF) analysis of high-energy X-ray diffraction. Even though the ionic conductivity increases during the optimum annealing, the d-PDF analysis indicated that the glassy structure undergoes no structural change in the sulfide glass-ceramic electrolyte at a crystallinity of 33.1%. We observed the formation of a nanocrystalline phase in the X-ray and electron diffraction patterns before the crystallization, which means that Bragg peaks were deformed. Thus, the ionic conductivity in the mixture of glassy and crystalline phases is improved by the coexistence of the nanocrystalline phase.
Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water.
Liu, Hanbin; Sale, Kenneth L; Simmons, Blake A; Singh, Seema
2011-09-01
Some ionic liquids (ILs) have great promise as effective solvents for biomass pretreatment, and there are several that have been reported that can dissolve large amounts of cellulose. The solubilized cellulose can then be recovered by addition of antisolvents, such as water or ethanol, and this regeneration process plays an important role in the subsequent enzymatic saccharification reactions and in the recovery of the ionic liquid. To date, little is known about the fundamental intermolecular interactions that drive the dissolution and subsequent regeneration of cellulose in complex mixtures of ionic liquids, water, and cellulose. To investigate these interactions, in this work, molecular dynamics (MD) simulations were carried out to study binary and ternary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) with water and a cellulose oligomer. Simulations of a cellulose oligomer dissolved in three concentrations of binary mixtures of [C2mim][OAc] and water were used to represent the ternary system in the dissolution phase (high [C2mim][OAc] concentration) and present during the initial phase of the regeneration step (intermediate and low [C2mim][OAc] concentrations). The MD analysis of the structure and dynamics that exist in these binary and ternary mixtures provides information on the key intermolecular interactions between cellulose and [C2mim][OAc] that lead to dissolution of cellulose and the key intermolecular interactions in the intermediate states of cellulose precipitation as a function of water content in the cellulose/IL/water system. The analysis of this intermediate state provides new insight into the molecular driving forces present in this ternary system. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.
2016-05-01
A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.
Two-Term Asymptotic Approximation of a Cardiac Restitution Curve*
Cain, John W.; Schaeffer, David G.
2007-01-01
If spatial extent is neglected, ionic models of cardiac cells consist of systems of ordinary differential equations (ODEs) which have the property of excitability, i.e., a brief stimulus produces a prolonged evolution (called an action potential in the cardiac context) before the eventual return to equilibrium. Under repeated stimulation, or pacing, cardiac tissue exhibits electrical restitution: the steady-state action potential duration (APD) at a given pacing period B shortens as B is decreased. Independent of ionic models, restitution is often modeled phenomenologically by a one-dimensional mapping of the form APDnext = f(B – APDprevious). Under some circumstances, a restitution function f can be derived as an asymptotic approximation to the behavior of an ionic model. In this paper, extending previous work, we derive the next term in such an asymptotic approximation for a particular ionic model consisting of two ODEs. The two-term approximation exhibits excellent quantitative agreement with the actual restitution curve, whereas the leading-order approximation significantly underestimates actual APD values. PMID:18080006
1979-01-01
Detailed studies of steady-state ion fluxes in murine lymphocytes were used to examine for possible ionic changes generated by surface Ig, the antigen receptor of B lymphocytes. When bound by ligands, surface Ig triggered the mobilization and release of 45Ca2+ from the cell interior by a transmembrane process requiring crosslinking of the bound receptors. This ionic event was unique for two reasons: (a) it did not occur when other common lymphocyte surface macromolecules were bound with rabbit anti-lymphocyte antibodies; and (b) it was not accompanied by a general perturbation of lymphocyte ionic properties such as a change in 42K+ fluxes nor did it depend on the presence of extracellular ions. Capping of surface Ig shares the same time sequence, dose response, requirement for crosslinking, and lack of dependence on extracellular ions. These correlations suggest that mobilization of intracellular Ca2+ may represent an early ionic signal for the contractile activation of lymphocytes that generates capping of surface Ig. PMID:315942
NASA Astrophysics Data System (ADS)
Pandey, G. P.; Hashmi, S. A.
2013-12-01
Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.
Electron capture into large-l Rydberg states of multiply charged ions escaping from solid surfaces
NASA Astrophysics Data System (ADS)
Nedeljković, N.; Nedeljković, Lj.; Mirković, M.
2003-07-01
We have investigated the electron capture into large-l Rydberg states of multiply charged ionic projectiles (e.g., the core charges Z=6, 7, and 8) escaping solid surfaces with intermediate velocities (v≈1 a.u.) in the normal emergence geometry. A model of the nonresonant electron capture from the solid conduction band into the moving large angular-momentum Rydberg states of the ions is developed through a generalization of our results obtained previously for the low-l cases (l=0, 1, and 2). The model is based on the two-wave-function dynamics of the Demkov-Ostrovskii type. The electron exchange process is described by a mixed flux through a moving plane (“Firsov plane”), placed between the solid surface and the ionic projectile. Due to low eccentricities of the large-l Rydberg systems, the mixed flux must be evaluated through the whole Firsov plane. It is for this purpose that a suitable asymptotic method is developed. For intermediate ionic velocities and for all relevant values of the principal quantum number n≈Z, the population probability Pnl is obtained as a nonlinear l distribution. The theoretical predictions concerning the ions S VI, Cl VII, and Ar VIII are compared with the available results of the beam-foil experiments.
An air-stable Na 3SbS 4 superionic conductor prepared by a rapid and economic synthetic procedure
Wang, Hui; Chen, Yan; Hood, Zachary D.; ...
2016-01-01
All-solid-state sodium batteries, using abundant sodium resources and solid electrolyte, hold much promise for safe, low cost, large-scale energy storage. To realize the practical applications of all solid Na-ion batteries at ambient temperature, the solid electrolytes are required to have high ionic conductivity, chemical stability, and ideally, easy preparation. Ceramic electrolytes show higher ionic conductivity than polymers, but they often require extremely stringent synthesis conditions, either high sintering temperature above 1000 C or long-time, low-energy ball milling. Herein, we report a new synthesis route for Na 3SbS 4, a novel Na superionic conductor that needs much lower processing temperature belowmore » 200 C and easy operation. This new solid electrolyte exhibits a remarkable ionic conductivity of 1.05 mS cm -1 at 25 °C and is chemically stable under ambient atmosphere. In conclusion, this synthesis process provides unique insight into the current state-of-the-art solid electrolyte preparation and opens new possibilities for the design of similar materials.« less
Sharma, Anirban; Ghorai, Pradip Kr
2016-03-21
Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Anirban; Ghorai, Pradip Kr., E-mail: pradip@iiserkol.ac.in
2016-03-21
Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF{sub 6}]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure ILmore » but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.« less
Igbokwe, Nanacha Afifi; Igbokwe, Ikechukwu Onyebuchi
2016-11-01
Erythrocyte swelling in non-ionic sucrose media and the subsequent osmotic lysis are influenced by mechanisms of regulatory volume adjustment and osmotic water permeability. Kinetics of transmembrane water and ion fluxes in varied physiologic states may determine the phenotype of erythrocyte osmotic fragility (EOF) and affect estimates of EOF. Effects of sex, age, late pregnancy (third trimester) and lactation on the haemolysis of Sahel goat erythrocytes incubated in a series of hyposmotic non-ionic sucrose media were investigated. The fragiligram was sigmoidal in 72 (97%) out of 74 goats. Two male (3%) goats with low and high extreme median erythrocyte fragilities (MEF), had non-sigmoidal curves. The mean fragilities at osmolarities of 30-300 mosmol/L of sucrose and the mean osmolarities responsible for 10%-90% haemolysis (CH10-CH90) were not significantly different between males and non-pregnant dry (NPD) females, amongst the age groups and between pregnant or lactating and NPD female goats. The MEF (CH50) of the goats were at osmolarities of 126-252 mosmol/L (median of data: 171 mosmol/L) with a mean of 175.24±16.20 mosmol/L. Therefore, phenotypic homogeneity of EOF occurred with minor deviance, since EOF variables were not differentiated by sex, age, late pregnancy or lactation. Physiologic states of the goat did not affect EOF phenotype in non-ionic sucrose media. Sigmoidal fragility phenotype seemed to be homogeneously conserved by osmoregulatory mechanisms not partitioned by sex, age, late pregnancy or lactation, but a minor non-sigmoidal curve might have occurred due to altered erythrocyte osmotic behaviour that would require further investigation.
Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
Flury, Markus; Czigány, Szabolcs; Chen, Gang; Harsh, James B
2004-07-01
Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments. Copyright 2003 Elsevier B.V.
LiSICON-Ionic Liquid Electrolyte for Lithium Ion Battery
2011-08-15
Nat Mater, 9 (2010) 353-358. [3] B. Scrosati, J. Garche, Journal of Power Sources, 195 (2010) 2419-2430. [4] F. Mizuno, A. Hayashi , K. Tadanaga, M...Minami, A. Hayashi , M. Tatsumisago, Solid State Ionics, 179 (2008) 1282-1285. [7] G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, W. Wilcke, The...Song, K. Zaghib, K. Kinoshita, F. McLarnon, Journal of Power Sources, 97-8 (2001) 58-66. [15] S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno , Y. Mita, N
Physical Chemistry of Reaction Dynamics in Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margulis, Claudio Javier
2016-10-31
The Margulis group BES funded research at the University of Iowa is part of a broader collaborative effort that includes the groups of Blank (U. Minnesota), Castner (Rutgers U.), Maroncelli (Penn. State U.) and Wishart (BNL). The goal of this group of PIs is to better understand from an experimental and a theoretical perspective different aspects of photo-initiated electron transfer processes in a set of different room-temperature ionic-liquid systems. The Margulis contribution is theoretical and computational. Details are presented in the attached documentation.
Research on the properties and interactions of simple atomic and ionic systems
NASA Technical Reports Server (NTRS)
Novick, R.
1972-01-01
Simple ionic systems were studied, such as metastable autoionizing states of the negative He ion, two-photon decay spectrum of metastable He ion, optical excitation with low energy ions, and lifetime measurements of singly ionized Li and metastable He ion. Simple atomic systems were also investigated. Metastable autoionizing atomic energy levels in alkali elements were included, along with lifetime measurements of Cr-53, group 2A isotopes, and alkali metal atoms using level crossing and optical double resonance spectroscopy.
Fuel Cell Using the Protic Ionic Liquid and Rotator Phase Solid Electrolyte Principles
2008-07-15
appropriate host for the ionic liquid. (a) Papers published in peer-reviewed journals (N/A for none) [1] Thompson J, Dunn P, Holmes L, Belieres J-P...Names of Post Doctorates PERCENT_SUPPORTEDNAME Jean-Philippe Belieres 0.50 Xiaoguang Sun 0.50 1.00FTE Equivalent: 2Total Number: Names of Faculty...chemical shift for transferred protons (co-worker Jean-Philippe Belieres ) This is a fundamental study of the chemical state of the proton on the cation
Mazilu, I; Mazilu, D A; Melkerson, R E; Hall-Mejia, E; Beck, G J; Nshimyumukiza, S; da Fonseca, Carlos M
2016-03-01
We present exact and approximate results for a class of cooperative sequential adsorption models using matrix theory, mean-field theory, and computer simulations. We validate our models with two customized experiments using ionically self-assembled nanoparticles on glass slides. We also address the limitations of our models and their range of applicability. The exact results obtained using matrix theory can be applied to a variety of two-state systems with cooperative effects.
Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Damen, Libero; Lazzari, Mariachiara; Mastragostino, Marina
2011-10-01
A lithium-ion battery featuring graphite anode, LiFePO4-C cathode and an innovative, safe, ionic liquid-based electrolyte, was assembled and characterized in terms of specific energy and power after the USABC-DOE protocol for power-assist hybrid electric vehicle (HEV) application. The test results show that the battery surpasses the energy and power goals stated by USABC-DOE and, hence, this safe lithium-ion battery should be suitable for application in the evolving HEV market.
The mean ionic charge of silicon in 3HE-rich solar flares
NASA Technical Reports Server (NTRS)
Luhn, A.; Klecker, B.; Hovestadt, E.; Moebius, E.
1985-01-01
Mean ionic charge of iron in 3He-rich solar flares and the average mean charge of Silicon for 23 #He-rich periods during the time interval from September 1978 to October 1979 were determined. It is indicated that the value of the mean charge state of Silicon is higher than the normal flare average by approximately 3 units and in perticular it is higher then the value predicted by resonant heating models for 3He-rich solar flares.
Is the ground state of Yang-Mills theory Coulombic?
NASA Astrophysics Data System (ADS)
Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.
2008-08-01
We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.
NASA Technical Reports Server (NTRS)
Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.; Kleis, Thomas
1995-01-01
It has long been known that low-energy solar energetic particles (SEP's) are partially-ionized. For example, in large, so-called 'gradual' solar energetic particle events, at approximately 1 MeV/nucleon the measured mean ionic charge state, Q, of Fe ions is 14.1 +/- 0.2, corresponding to a plasma temperature of approximately 2 MK in the coronal or solar-wind source material. Recent studies, which have greatly clarified the origin of solar energetic particles and their relation to solar flares, suggest that ions in these SEP events are accelerated not at a flare site, but by shocks propagating through relatively low-density regions in the interplanetary medium. As a result, the partially-ionized states observed at low energies are expected to continue to higher energies. However, up to now there have been no high-energy measurements of ionic charge states to confirm this notion. We report here HIIS observations of Fe-group ions at 50-600 MeV/nucleon, at energies and fluences which cannot be explained by fully-ionized galactic cosmic rays, even in the presence of severe geomagnetic cutoff suppression. Above approximately 200 MeV/nucleon, all features of our data -- fluence, energy spectrum, elemental composition, and arrival directions -- can be explained by the large SEP events of October 1989, provided that the mean ionic charge state at these high energies is comparable to the measured value at approximately 1 MeV/nucleon. By comparing the HIIS observations with measurements in interplanetary space in October 1989, we determine the mean ionic charge state of SEP Fe ions at approximately 200-600 MeV/nucleon to be Q = 13.4 plus or minus 1.0, in good agreement with the observed value at approximately 1 MeV/nucleon. The source of the ions below approximately 200 MeV/nucleon is not yet clear. Partially-ionized ions are less effectively deflected by the Earth's magnetic field than fully-ionized cosmic rays and therefore have greatly enhanced access to low-Earth orbit. Moreover, at the high energies observed in HIIS, these ions can penetrate typical amounts of shielding. We discuss the significance of the HIIS results for estimates of the radiation hazard posed by large SEP events to satellites in low-Earth orbit, including the proposed Space Station orbit. Finally, we comment on previous reports of low-energy below-cutoff Fe-group ions, which some authors have interpreted as evidence for partially-ionized galactic cosmic rays. The LDEF flux levels are much smaller than the corresponding fluxes in these previous reports, implying that the source of these ions has an unusual solar-cycle variation and/or strongly increases with decreasing altitude.
Biomimetic Beetle-Inspired Flapping Air Vehicle Actuated by Ionic Polymer-Metal Composite Actuator
Zhao, Yang; Xu, Di; Sheng, Jiazheng; Meng, Qinglong; Wu, Dezhi; Wang, Lingyun; Xiao, Jingjing; Lv, Wenlong; Sun, Daoheng
2018-01-01
During the last decades, the ionic polymer-metal composite (IPMC) received much attention because of its potential capabilities, such as large displacement and flexible bending actuation. In this paper, a biomimetic flapping air vehicle was proposed by combining the superiority of ionic polymer metal composite with the bionic beetle flapping principle. The blocking force was compared between casted IPMC and IPMC. The flapping state of the wing was investigated and the maximum displacement and flapping angle were measured. The flapping displacement under different voltage and frequency was tested. The flapping displacement of the wing and the support reaction force were measured under different frequency by experiments. The experimental results indicate that the high voltage and low frequency would get large flapping displacement. PMID:29682006
Novel polymeric LIT and divalent cation fast ion conducting materials
NASA Astrophysics Data System (ADS)
Angell, C. A.
Solid state energy devices require a component which conducts electricity by ionic migration. The conductivity of this element of the system must be very high. Four types of materials show the promise to provide the necessary conductivity characteristics, while offering other desirable features such as the ability to distort in shape under mechanical stresses: (1) crystalline; (2) plastic crystal; (3) inorganic glassy; and (4) polymer salt solutions. This document reports on the following materials: lead halide-containing fast ion conducting glasses (LiF-PbF2-Al(PO3)3), mixed ionic electronic conduction (Na2O-V2O5-TeO2), alpha relaxation in ionic glasses, glass transition in P2O2, and conductivity transition between all-halide and all-oxide glasses.
NASA Astrophysics Data System (ADS)
Jaganathan, Maheshkumar; Ramakrishnan, C.; Velmurugan, D.; Dhathathreyan, Aruna
2015-02-01
For a conceptual understanding of how an ionic liquid stabilizes a solvated protein, in this study, using new force field parameters, a molecular dynamics simulation (MDS) of the loop and helical regions of hydrated Cytochrome c (cyt c) and its interaction with the ionic liquid ethylammonium nitrate (EAN) have been studied. For a simulation trajectory of 100 ns, the changes in network of water around the protein due to EAN and subsequent reorganization of the protein have been analyzed. The radii of gyration of solvated cyt c (13.7 Å) and cyt c + EAN (13.4 Å) at the end of the trajectory are higher than the protein in its crystalline state (12.64 Å) suggesting enhanced stability of the protein due to tightly organized assembly of EAN near the solvated cyt c. This increase in stability of the protein has been verified experimentally using fluorescence, circular dichroic spectroscopy and differential scanning calorimetry. With increasing EAN in cyt c + EAN, protein conformation shows unusually high β strand population. To check whether the beta strand is an intermediate or a local minimum state, denaturation of cyt c with urea in the presence of EAN has been undertaken. Results show that EAN helps in renaturation of the protein by forming a tightly organized assembly around the protein with the beta strand state appearing as a local minimum energy state. Thus the feasibility of using ionic liquids to form networks around the protein and their possible applications in stabilization of the proteins has been demonstrated.
The Nature of the Intramolecular Charge Transfer State in Peridinin
Wagner, Nicole L.; Greco, Jordan A.; Enriquez, Miriam M.; Frank, Harry A.; Birge, Robert R.
2013-01-01
Experimental and theoretical evidence is presented that supports the theory that the intramolecular charge transfer (ICT) state of peridinin is an evolved state formed via excited-state bond-order reversal and solvent reorganization in polar media. The ICT state evolves in <100 fs and is characterized by a large dipole moment (∼35 D). The charge transfer character involves a shift of electron density within the polyene chain, and it does not involve participation of molecular orbitals localized in either of the β-rings. Charge is moved from the allenic side of the polyene into the furanic ring region and is accompanied by bond-order reversal in the central portion of the polyene chain. The electronic properties of the ICT state are generated via mixing of the “11Bu+” ionic state and the lowest-lying “21Ag–” covalent state. The resulting ICT state is primarily 1Bu+-like in character and exhibits not only a large oscillator strength but an unusually large doubly excited character. In most solvents, two populations exist in equilibrium, one with a lowest-lying ICT ionic state and a second with a lowest-lying “21Ag–” covalent state. The two populations are separated by a small barrier associated with solvent relaxation and cavity formation. PMID:23528091
Magneto-ionic control of interfacial magnetism
NASA Astrophysics Data System (ADS)
Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L.; van Dijken, Sebastiaan; Beach, Geoffrey S. D.
2015-02-01
In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O2- migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm-2 at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.
Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries
NASA Astrophysics Data System (ADS)
Liu, Qi; Geng, Zhen; Han, Cuiping; Fu, Yongzhu; Li, Song; He, Yan-bing; Kang, Feiyu; Li, Baohua
2018-06-01
Garnet Li7La3Zr2O12 (LLZO) solid electrolytes recently have attracted tremendous interest as they have the potential to enable all solid-state lithium batteries (ASSLBs) owing to high ionic conductivity (10-3 to 10-4 S cm-1), negligible electronic transport, wide potential window (up to 9 V), and good chemical stability. Here we present the key issues and challenges of LLZO in the aspects of ion conduction property, interfacial compatibility, and stability in air. First, different preparation methods of LLZO are reviewed. Then, recent progress about the improvement of ionic conductivity and interfacial property between LLZO and electrodes are presented. Finally, we list some emerging LLZO-based solid-state batteries and provide perspectives for further research. The aim of this review is to summarize the up-to-date developments of LLZO and lead the direction for future development which could enable LLZO-based ASSLBs.
Compact Electron Gun Based on Secondary Emission Through Ionic Bombardment
Diop, Babacar; Bonnet, Jean; Schmid, Thomas; Mohamed, Ajmal
2011-01-01
We present a new compact electron gun based on the secondary emission through ionic bombardment principle. The driving parameters to develop such a gun are to obtain a quite small electron gun for an in-flight instrument performing Electron Beam Fluorescence measurements (EBF) on board of a reentry vehicle in the upper atmosphere. These measurements are useful to characterize the gas flow around the vehicle in terms of gas chemical composition, temperatures and velocity of the flow which usually presents thermo-chemical non-equilibrium. Such an instrument can also be employed to characterize the upper atmosphere if placed on another carrier like a balloon. In ground facilities, it appears as a more practical tool to characterize flows in wind tunnel studies or as an alternative to complex electron guns in industrial processes requiring an electron beam. We describe in this paper the gun which has been developed as well as its different features which have been characterized in the laboratory. PMID:22163896
Takayanagi, Toshiyuki; Nakatomi, Taiki; Yonetani, Yoshiteru
2018-04-20
We performed reaction path search calculations for the NaCl·(H 2 O) 6 cluster using the global reaction route mapping (GRRM) code to understand the atomic-level mechanisms of the NaCl → Na + + Cl - ionic dissociation induced by water solvents. Low-lying minima, transition states connecting two local minima and corresponding intrinsic reaction coordinates on the potential energy surface are explored. We found that the NaCl distances at the transitions states for the dissociation pathways were distributed in a relatively wide range of 2.7-3.7 Å and that the NaCl distance at the transition state did not correlate with the commonly used solvation coordinates. This suggests that the definition of the transition states with specific structures as well as good reaction coordinate is very difficult for the ionic dissociation process even in a small water cluster. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Lambs, L.; Loubiat, M.; Richardson, W.
2003-01-01
Before the confluence of the Tarn, the Garonne valley was the driest area in the entire south-west of France, due to the relatively low rainfall and low summer discharge of the Garonne River and its tributaries. The natural abundance of the stable isotope of oxygen (18O) and ionic charge of surface and ground water were used to estimate the water source for the Garonne River and phreatic subsurface water. We also measured these constituents in the sap of trees at several flood plain sites to better understand the source of water used by these trees. 18O signatures and conductivity in the Garonne River indicated that the predominance of water was from high altitude surface runoff from the Pyrenees Mountains. Tributary inputs had little effect on isotopic identity, but had a small effect on the conductivity. The isotopic signature and ionic conductivity of river water (??18O: -9.1??? to -9.0???, conductivity: 217-410??S/cm) was distinctly different from groundwater (??18O: -7.1??? to -6.6???, conductivity: 600-900??S/cm). Isotopic signatures from the sap of trees on the flood plain showed that the water source was shallow subsurface water (1m). Trees at both locations maintained sap with ionic charges much greater (2.3-3.7x) than that of source water. The combined use of 18O signatures and ionic conductivity appears to be a potent tool to determine water sources on geographic scales, and source and use patterns by trees at the local forest scale. These analyses also show promise for better understanding of the effects of anthropogenic land-use and water-use changes on flood plain forest dynamics.
NASA Technical Reports Server (NTRS)
Ma, Y.; Weber, R. J.; Maxwell-Meier, K.; Orsini, D. A.; Lee, Y.-N.; Huebert, B. J.; Howell, S. G.; Bertram, T.; Talbot, R. W.
2003-01-01
As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P), and the Asian Aerosol Characterization Experiment (ACEAsia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the Particle Into Liquid Sampler (PILS) for measurement of a suite of fine particle ionic compounds and a mist chamber (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and multi-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r(sup 2) of 0.95), but were systematically different by 10 +/- 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an 3 of 0.78 and a relative difference of 39% +/- 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 pm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% +/- 6% and correlated with an r(sup 2) of 0.87. Most ionic compounds were within f 30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30-40%.
NASA Astrophysics Data System (ADS)
Yeh, Mei-Ling
We have performed a parallel decomposition of the fictitious Lagrangian method for molecular dynamics with tight-binding total energy expression into the hypercube computer. This is the first time in literature that the dynamical simulation of semiconducting systems containing more than 512 silicon atoms has become possible with the electrons treated as quantum particles. With the utilization of the Intel Paragon system, our timing analysis predicts that our code is expected to perform realistic simulations on very large systems consisting of thousands of atoms with time requirements of the order of tens of hours. Timing results and performance analysis of our parallel code are presented in terms of calculation time, communication time, and setup time. The accuracy of the fictitious Lagrangian method in molecular dynamics simulation is also investigated, especially the energy conservation of the total energy of ions. We find that the accuracy of the fictitious Lagrangian scheme in small silicon cluster and very large silicon system simulations is good for as long as the simulations proceed, even though we quench the electronic coordinates to the Born-Oppenheimer surface only in the beginning of the run. The kinetic energy of electrons does not increase as time goes on, and the energy conservation of the ionic subsystem remains very good. This means that, as far as the ionic subsystem is concerned, the electrons are on the average in the true quantum ground states. We also tie up some odds and ends regarding a few remaining questions about the fictitious Lagrangian method, such as the difference between the results obtained from the Gram-Schmidt and SHAKE method of orthonormalization, and differences between simulations where the electrons are quenched to the Born -Oppenheimer surface only once compared with periodic quenching.
Polishuk, Ilya
2013-03-14
This study is the first comparative investigation of predicting the isochoric and the isobaric heat capacities, the isothermal and the isentropic compressibilities, the isobaric thermal expansibilities, the thermal pressure coefficients, and the sound velocities of ionic liquids by statistical associating fluid theory (SAFT) equation of state (EoS) models and cubic-plus-association (CPA). It is demonstrated that, taking into account the high uncertainty of the literature data (excluding sound velocities), the generalized for heavy compounds version of SAFT+Cubic (GSAFT+Cubic) appears as a robust estimator of the auxiliary thermodynamic properties under consideration. In the case of the ionic liquids the performance of PC-SAFT seems to be less accurate in comparison to ordinary compounds. In particular, PC-SAFT substantially overestimates heat capacities and underestimates the temperature and pressure dependencies of sound velocities and compressibilities. An undesired phenomenon of predicting high fictitious critical temperatures of ionic liquids by PC-SAFT should be noticed as well. CPA is the less accurate estimator of the liquid phase properties, but it is advantageous in modeling vapor pressures and vaporization enthalpies of ionic liquids. At the same time, the preliminary results indicate that the inaccuracies in predicting the deep vacuum vapor pressures of ionic liquids do not influence modeling of phase equilibria in their mixtures at much higher pressures.
Drüschler, Marcel; Borisenko, Natalia; Wallauer, Jens; Winter, Christian; Huber, Benedikt; Endres, Frank; Roling, Bernhard
2012-04-21
Ionic liquids are of high interest for the development of safe electrolytes in modern electrochemical cells, such as batteries, supercapacitors and dye-sensitised solar cells. However, electrochemical applications of ionic liquids are still hindered by the limited understanding of the interface between electrode materials and ionic liquids. In this article, we first review the state of the art in both experiment and theory. Then we illustrate some general trends by taking the interface between the extremely pure ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and an Au(111) electrode as an example. For the study of this interface, electrochemical impedance spectroscopy was combined with in situ STM and in situ AFM techniques. In addition, we present new results for the temperature dependence of the interfacial capacitance and dynamics. Since the interfacial dynamics are characterised by different processes taking place on different time scales, the temperature dependence of the dynamics can only be reliably studied by recording and carefully analysing broadband capacitance spectra. Single-frequency experiments may lead to artefacts in the temperature dependence of the interfacial capacitance. We demonstrate that the fast capacitive process exhibits a Vogel-Fulcher-Tamman temperature dependence, since its time scale is governed by the ionic conductivity of the ionic liquid. In contrast, the slower capacitive process appears to be Arrhenius activated. This suggests that the time scale of this process is determined by a temperature-independent barrier, which may be related to structural reorganisations of the Au surface and/or to charge redistributions in the strongly bound innermost ion layer. This journal is © the Owner Societies 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Renzhong; Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002; Chen, Zhenping, E-mail: xrzbotao@163.com
2015-06-15
Graphical abstract: The dielectric constant decreases monotonically with reduced RE doping ion radius and is more frequency independent compared with that of pure CCTO sample. - Highlights: • The mean grain sizes decrease monotonically with reduced RE doping ionic radius. • Doping gives rise to the monotonic decrease of ϵ{sub r} with reduced RE ionic radius. • The nonlinear coefficient and breakdown field increase with RE ionic doping. • α of all the samples is associated with the potential barrier width rather than Φ{sub b}. - Abstract: Ca{sub 1–x}R{sub x}Cu{sub 3}Ti{sub 4}O{sub 12}(R = La, Nd, Eu, Gd, Er; xmore » = 0 and 0.005) ceramics were prepared by the conventional solid-state method. The influences of rare earth (RE) ion doping on the microstructure, dielectric and electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics were investigated systematically. Single-phase formation is confirmed by XRD analyses. The mean grain size decreases monotonically with reduced RE ion radius. The EDS results reveal that RE ionic doping reduces Cu-rich phase segregation at the grain boundaries (GBs). Doping gives rise to the monotonic decrease of dielectric constant with reduced RE ionic radius but significantly improves stability with frequency. The lower dielectric loss of doped samples is obtained due to the increase of GB resistance. In addition, the nonlinear coefficient and breakdown field increase with RE ionic doping. Both the fine grains and the enhancement of potential barrier at GBs are responsible for the improvement of the nonlinear current–voltage properties in doped CCTO samples.« less
Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
Ma, Cheng; Cheng, Yongqiang; Chen, Kai; ...
2016-03-29
In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlookedmore » mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li 0.33La 0.56)TiO 3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li 0.33La 0.56)TiO 3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.« less
NASA Astrophysics Data System (ADS)
Funao, Haruki; Nagai, Shigenori; Sasaki, Aya; Hoshikawa, Tomoyuki; Tsuji, Takashi; Okada, Yasunori; Koyasu, Shigeo; Toyama, Yoshiaki; Nakamura, Masaya; Aizawa, Mamoru; Matsumoto, Morio; Ishii, Ken
2016-03-01
Various silver-coated implants have been developed to prevent implant-associated infections, and have shown dramatic effects in vitro. However, the in vivo results have been inconsistent. Recent in vitro studies showed that silver exerts antibacterial activity by mediating the generation of reactive oxygen species in the presence of oxygen. To maintain its antibacterial activity in vivo, the silver should remain in an ionic state and be stably bound to the implant surface. Here, we developed a novel bacteria-resistant hydroxyapatite film in which ionic silver is immobilized via inositol hexaphosphate chelation using a low-heat immersion process. This bacteria-resistant coating demonstrated significant antibacterial activity both in vitro and in vivo. In a murine bioluminescent osteomyelitis model, no bacteria were detectable 21 days after inoculation with S. aureus and placement of this implant. Serum interleukin-6 was elevated in the acute phase in this model, but it was significantly lower in the ionic-silver group than the control group on day 2. Serum C-reactive protein remained significantly higher in the control group than the ionic-silver group on day 14. Because this coating is produced by a low-heat immersion process, it can be applied to complex structures of various materials, to provide significant protection against implant-associated infections.
Correlation between cation conduction and ionic morphology in a PEO-based single ion conductor
NASA Astrophysics Data System (ADS)
Lin, Kan-Ju; Maranas, Janna
2011-03-01
We use molecular dynamics simulation to study ion transport and backbone mobility of a PEO-based single ion conductor. Ion mobility depends on the chemical structure and the local environment of the ions, which consequently impact ionic conductivity. We characterize the aggregation state of the ions, and assess the role of ion complexes in ionomer dynamics. In addition to solvated cations and pairs, higher order ion clusters are found. Most of the ion clusters are in string-like structure and cross-link two or more different ionomer chains through ionic binding. Ionic crosslinks decrease mobility at the ionic co-monomer; hence the mobility of the adjacent PEO segment is influenced. Na ions show slow mobility when they are inside large clusters. The hopping timescale for Na varies from 20 ns to 200. A correlation is found between Na mobility and the number of hops from one coordination site to another. Besides ether oxygens, Na ions in the ionomer also use the anion and the edge of the cluster as hopping sites. The string-like structure of clusters provide less stable sites at the two ends thus ions are more mobile in those regions. We observed Grotthus like mechanism in our ionomer, in which the positive charge migrates within the string-like cluster without the cations actually moving.
Isotopic differentiation and sublattice melting in dense dynamic ice
NASA Astrophysics Data System (ADS)
Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald
2013-12-01
The isotopes of hydrogen provide a unique exploratory laboratory for examining the role of zero point energy (ZPE) in determining the structural and dynamic features of the crystalline ices of water. There are two critical regions of high pressure: (i) near 1 TPa and (ii) near the predicted onset of metallization at around 5 TPa. At the lower pressure of the two, we see the expected small isotopic effects on phase transitions. Near metallization, however, the effects are much greater, leading to a situation where tritiated ice could skip almost entirely a phase available to the other isotopomers. For the higher pressure ices, we investigate in some detail the enthalpics of a dynamic proton sublattice, with the corresponding structures being quite ionic. The resistance toward diffusion of single protons in the ground state structures of high-pressure H2O is found to be large, in fact to the point that the ZPE reservoir cannot overcome these. However, the barriers toward a three-dimensional coherent or concerted motion of protons can be much lower, and the ensuing consequences are explored.
Titan's Ionic Species: Theoretical Treatment of N2H+ and Related Ions
NASA Astrophysics Data System (ADS)
Brites, V.; Hochlaf, M.
2009-06-01
We use different ab initio methods to compute the three-dimensional potential energy surface (3D-PES) of the ground state of N2H+. This includes the standard coupled cluster, the complete active space self-consistent field, the internally contacted multi reference configuration interaction, and the newly developed CCSD(T)-F12 methods. For the description of H and N atoms, several basis sets are tested. Then, we incorporate the 3D-PES analytical representations into variational calculations of the rovibrational spectrum of N2H+(X˜1Σ+) up to 7200 cm-1 above the zero point vibrational energy. Our data show that the CCSD(T)-F12/aug-cc-pVTZ approach represents a compromise for good description of the PES and computation cost. This technique is recommended for full dimensional PES generation of atmospheric and astrophysical relevant polyatomic systems. We applied this method to derive the rovibrational spectra of N2H+(X˜1Σ+) and of N2H++(X˜2Σ+). Finally, we discuss the existence of the N2H++(X˜2Σ+) in Titan's atmosphere.
NASA Astrophysics Data System (ADS)
Muralimohan Rao, D.; Kalidas, C.
1990-08-01
The conductance of HCl and HBr in water-dimethylformamide (DMF) mixtures of 10-80 wt % DMF at 25 ºC has been measured and discussed, using the three parameter conductance equation suggested by Fuoss et al. in 1965. The ionic conductances and Waiden products of the H + , C - and Br- ions have been determined and explained. No appreciable ion-association of these acids in these media has been found
Wang, Linlin; Zhang, Huacheng; Yang, Zhe; Zhou, Jianjun; Wen, Liping; Li, Lin; Jiang, Lei
2015-03-07
Heterogeneous nanochannel materials that endow new functionalities different to the intrinsic properties of two original nanoporous materials have wide potential applications in nanofluidics, energy conversion, and biosensors. Herein, we report novel, interesting hydrogel-composited nanochannel devices with regulatable ion rectification characteristics. The heterogeneous nanochannel devices were constructed by selectively coating the tip side, base side, or both sides of a single conical nanochannel membrane with thin agar hydrogel layers. The tunable ion current rectification of the nanochannels in the three different coating states was systematically demonstrated by current-voltage (I-V) curves. The asymmetric ionic transport property of the conical nanochannel was further strengthened in the tip-coating state and weakened in the base-coating state, whereas the conical nanochannel showed nearly symmetric ionic transport in the dual-coating state. Repeated experiments presented insight into the good stability and reversibility of the three coating states of the hydrogel-nanochannel-integrated systems. This work, as an example, may provide a new strategy to further design and develop multifunctional gel-nanochannel heterogeneous smart porous nanomaterials.
NASA Astrophysics Data System (ADS)
Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.; Morozovsky, Nicholas V.; Vasudevan, Rama K.; Strikha, Maksym V.; Kalinin, Sergei V.
2017-12-01
Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigate the role of the surface ion formation energy on the polarization states and its reversal mechanisms, domain structure, and corresponding phase diagrams of ferroelectric thin films. Using 3D finite element modeling, we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and the dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and polydomain ferroelectric, ferroionic, antiferroionic, and nonferroelectric states as a function of surface ion formation energy, film thickness, applied voltage, and temperature. We further map the analytical theory for 1D systems onto an effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. This approach allows us to perform an overview of the ferroionic system phase diagrams and explore the specifics of polarization reversal and domain evolution phenomena.
Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.; ...
2017-12-08
Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigated the role of the surface ions formation energy value on the polarization states and polarization reversal mechanisms, domain structure and corresponding phase diagrams of ferroelectric thin films. Using 3D finite elements modeling we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and poly- domain ferroelectric, ferroionic, antiferroionic and non-ferroelectric states as amore » function of surface ions formation energy, film thickness, applied voltage and temperature. We further map the analytical theory for 1D system onto effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. In conclusion, this approach allows performing the overview of the ferroionic system phase diagrams and exploring the specifics of switching and domain evolution phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.
Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigated the role of the surface ions formation energy value on the polarization states and polarization reversal mechanisms, domain structure and corresponding phase diagrams of ferroelectric thin films. Using 3D finite elements modeling we analyze the distribution and hysteresis loops of ferroelectric polarization and ionic charge, and dynamics of the domain states. These calculations performed over large parameter space delineate the regions of single- and poly- domain ferroelectric, ferroionic, antiferroionic and non-ferroelectric states as amore » function of surface ions formation energy, film thickness, applied voltage and temperature. We further map the analytical theory for 1D system onto effective Landau-Ginzburg free energy and establish the correspondence between the 3D numerical and 1D analytical results. In conclusion, this approach allows performing the overview of the ferroionic system phase diagrams and exploring the specifics of switching and domain evolution phenomena.« less
NASA Astrophysics Data System (ADS)
Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun
2016-10-01
A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.
Lin, Dingchang; Yuen, Pak Yan; Liu, Yayuan; Liu, Wei; Liu, Nian; Dauskardt, Reinhold H; Cui, Yi
2018-06-25
High-energy all-solid-state lithium (Li) batteries have great potential as next-generation energy-storage devices. Among all choices of electrolytes, polymer-based systems have attracted widespread attention due to their low density, low cost, and excellent processability. However, they are generally mechanically too weak to effectively suppress Li dendrites and have lower ionic conductivity for reasonable kinetics at ambient temperature. Herein, an ultrastrong reinforced composite polymer electrolyte (CPE) is successfully designed and fabricated by introducing a stiff mesoporous SiO 2 aerogel as the backbone for a polymer-based electrolyte. The interconnected SiO 2 aerogel not only performs as a strong backbone strengthening the whole composite, but also offers large and continuous surfaces for strong anion adsorption, which produces a highly conductive pathway across the composite. As a consequence, a high modulus of ≈0.43 GPa and high ionic conductivity of ≈0.6 mS cm -1 at 30 °C are simultaneously achieved. Furthermore, LiFePO 4 -Li full cells with good cyclability and rate capability at ambient temperature are obtained. Full cells with cathode capacity up to 2.1 mAh cm -2 are also demonstrated. The aerogel-reinforced CPE represents a new design principle for solid-state electrolytes and offers opportunities for future all-solid-state Li batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theory of polyelectrolytes in solvents.
Chitanvis, Shirish M
2003-12-01
Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian, charged chain and derive an effective short-ranged potential between the charges on the chain. This potential is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent characterizing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value obtained for second order phase transitions. For short chains, the radius of gyration varies linearly with N, the chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain length N indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable to experimental verification.
Structural Integrity of Proteins under Applied Bias during Solid-State Nanopore Translocation
NASA Astrophysics Data System (ADS)
Hasan, Mohammad R.; Khanzada, Raja Raheel; Mahmood, Mohammed A. I.; Ashfaq, Adnan; Iqbal, Samir M.
2015-03-01
The translocation behavior of proteins through solid-state nanopores can be used as a new way to detect and identify proteins. The ionic current through a nanopore that flows under applied bias gets perturbed when a biomolecule traverses the Nanopore. It is important for a protein detection scheme to know of any changes in the three-dimensional structure of the molecule during the process. Here we report the data on structural integrity of protein during translocation through nanopore under different applied biases. Nanoscale Molecular Dynamic was used to establish a framework to study the changes in protein structures as these travelled across the nanopore. The analysis revealed the contributions of structural changes of protein to its ionic current signature. As a model, thrombin protein crystalline structure was imported and positioned inside a 6 nm diameter pore in a 6 nm thick silicon nitride membrane. The protein was solvated in 1 M KCl at 295 K and the system was equilibrated for 20 ns to attain its minimum energy state. The simulation was performed at different electric fields from 0 to 1 kCal/(mol.Å.e). RMSD, radial distribution function, movement of the center of mass and velocity of the protein were calculated. The results showed linear increments in the velocity and perturbations in ionic current profile with increasing electric potential. Support Acknowledged from NSF through ECCS-1201878.
NASA Astrophysics Data System (ADS)
Hara, Akito; Awano, Teruyoshi
2017-06-01
Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.
Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo
2013-01-01
Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca2+-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca2+-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca2+-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca2+ activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca2+-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca2+-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction. PMID:23691080
Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris
Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less
Static and dynamic wetting behaviour of ionic liquids.
Delcheva, Iliana; Ralston, John; Beattie, David A; Krasowska, Marta
2015-08-01
Ionic liquids (ILs) are a unique family of molecular liquids ('molten salts') that consist of a combination of bulky organic cations coupled to inorganic or organic anions. The net result of steric hindrance and strong hydrogen bonding between components results in a material that is liquid at room temperature. One can alter the properties of ionic liquids through chemical modification of anion and cation, thus tailoring the IL for a given application. One such property that can be controlled or selected is the wettability of an IL on a particular solid substrate. However, the study of wetting of ionic liquids is complicated by the care required for accurate and reproducible measurement, due to both the susceptibility of the IL properties to water content, as well as to the sensitivity of wettability measurements to the state of the solid surface. This review deals with wetting studies of ILs to date, including both static and dynamic wetting, as well as issues concerning line tension and the formation of precursor and wetting films. Copyright © 2014 Elsevier B.V. All rights reserved.
Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors
Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris; ...
2018-04-19
Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less
Ion distributions in electrolyte confined by multiple dielectric interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei; Zwanikken, Jos W.; Jadhao, Vikram; de La Cruz, Monica
2014-03-01
The distribution of ions at dielectric interfaces between liquids characterized by different dielectric permittivities is crucial to nanoscale assembly processes in many biological and synthetic materials such as cell membranes, colloids and oil-water emulsions. The knowledge of ionic structure of these systems is also exploited in energy storage devices such as double-layer super-capacitors. The presence of multiple dielectric interfaces often complicates computing the desired ionic distributions via simulations or theory. Here, we use coarse-grained models to compute the ionic distributions in a system of electrolyte confined by two planar dielectric interfaces using Car-Parrinello molecular dynamics simulations and liquid state theory. We compute the density profiles for various electrolyte concentrations, stoichiometric ratios and dielectric contrasts. The explanations for the trends in these profiles and discuss their effects on the behavior of the confined charged fluid are also presented.
Mamidala, Venkatesh; Polavarapu, Lakshminarayana; Balapanuru, Janardhan; Loh, Kian Ping; Xu, Qing-Hua; Ji, Wei
2010-12-06
By complexion of donor and acceptor using ionic interactions, the enhanced nonlinear optical responses of donor-acceptor ionic complexes in aqueous solution were studied with 7-ns laser pulses at 532 nm. The optical limiting performance of negatively charged gold nanoparticles or graphene oxide (Acceptor) was shown to be improved significantly when they were mixed with water-soluble, positively-charged porphyrin (Donor) derivative. In contrast, no enhancement was observed when mixing with negatively-charged porphyrin. Transient absorption studies of the donor-acceptor complexes confirmed that the addition of energy transfer pathway were responsible for excited-state deactivation, which results in the observed enhancement. Fluence, angle-dependent scattering and time correlated single photon counting measurements suggested that the enhanced nonlinear scattering due to faster nonradiative decay should play a major role in the enhanced optical limiting responses.
Brünig, Thorge; Krekić, Kristijan; Bruhn, Clemens; Pietschnig, Rudolf
2016-11-02
The thermal properties of a series of twenty-four ionic liquids (ILs) have been determined by isothermal titration calorimetry (ITC) with the aim of simulating processes involving water sorption. For eleven water-free ILs, the molecular structures have been determined by X-ray crystallography in the solid state, which have been used to derive the molecular volumes of the ionic components of the ILs. Moreover, the structures reveal a high prevalence of hydrogen bonding in these compounds. A relationship between the molecular volumes and the experimentally determined energies of dilution could be established. The highest energies of dilution observed in this series were obtained for the acetate-based ILs, which underlines their potential as working fluids in sorption-based thermal energy storage systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sarkar, Souravi; Mandal, Sarthak; Ghatak, Chiranjib; Rao, Vishal Govind; Ghosh, Surajit; Sarkar, Nilmoni
2012-02-02
The photoinduced electron transfer (PET) reaction has been investigated in a room temperature imidazolium ionic liquid (RTIL), 1-ethyl-3-methylimidazolium ethyl sulfate ([Emim][EtSO(4)]) and also in [Emim][EtSO(4)]-co-solvents mixtures from N,N-dimethyl aniline (DMA) to different Coumarin dyes using steady state and time-resolved fluorescence quenching measurements. We have used water and methanol and 2-propanol as the cosolvents of RTILs for the PET study. On going from neat ionic liquid to the RTIL-co-solvents mixtures the electron transfer rate has been largely enhanced. In neat RTIL as well as in [Emim][EtSO(4)]-co-solvents mixtures, a Marcus type of inversion in the PET rate have been observed.
SEPARATION OF PLUTONIUM FROM FISSION PRODUCTS BY A COLLOID REMOVAL PROCESS
Schubert, J.
1960-05-24
A method is given for separating plutonium from uranium fission products. An acidic aqueous solution containing plutonium and uranium fission products is subjected to a process for separating ionic values from colloidal matter suspended therein while the pH of the solution is maintained between 0 and 4. Certain of the fission products, and in particular, zirconium, niobium, lanthanum, and barium are in a colloidal state within this pH range, while plutonium remains in an ionic form, Dialysis, ultracontrifugation, and ultrafiltration are suitable methods of separating plutonium ions from the colloids.
Ionically self-assembled monolayers (ISAMs)
NASA Astrophysics Data System (ADS)
Janik, John
2001-04-01
Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).
Femtosecond dynamics in ionic structures of a heart medicine
NASA Astrophysics Data System (ADS)
Gil, M.; Douhal, A.
2006-12-01
Femtosecond studies of ionic structures of milrinone - a medicine used to help the heart to recuperate its life - in acidic and alkaline water solutions show that the intramolecular charge transfer in the cation and in the anion happen in 550 fs and ˜1.2 ps, respectively. These times are longer than 100 fs, observed in the keto (inotropic) form. The transients also show a 2-3 ps component, assigned to cooling and twisting motion in the produced states. The result might be used for a better understanding of other functional molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu; Vrønning Hoffmann, Søren, E-mail: tr01@staffmail.ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@shu.edu.cn, E-mail: alberto.baiardi@sns.it, E-mail: kipeters@wsu.edu
New photoelectron (PE) and ultra violet (UV) and vacuum UV (VUV) spectra have been obtained for chlorobenzene by synchrotron study with higher sensitivity and resolution than previous work and are subjected to detailed analysis. In addition, we report on the mass-resolved (2 + 1) resonance enhanced multiphoton ionization (REMPI) spectra of a jet-cooled sample. Both the VUV and REMPI spectra have enabled identification of a considerable number of Rydberg states for the first time. The use of ab initio calculations, which include both multi-reference multi-root doubles and singles configuration interaction (MRD-CI) and time dependent density functional theoretical (TDDFT) methods, hasmore » led to major advances in interpretation of the vibrational structure of the ionic and electronically excited states. Franck-Condon (FC) analyses of the PE spectra, including both hot and cold bands, indicate much more complex envelopes than previously thought. The sequence of ionic states can be best interpreted by our multi-configuration self-consistent field computations and also by comparison of the calculated vibrational structure of the B and C ionic states with experiment; these conclusions suggest that the leading sequence is the same as that of iodobenzene and bromobenzene, namely: X{sup 2}B{sub 1}(3b{sub 1}{sup −1}) < A{sup 2}A{sub 2}(1a{sub 2}{sup −1}) < B{sup 2}B{sub 2}(6b{sub 2}{sup −1}) < C{sup 2}B{sub 1}(2b{sub 1}{sup −1}). The absorption onset near 4.6 eV has been investigated using MRD-CI and TDDFT calculations; the principal component of this band is {sup 1}B{sub 2} and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. The other low-lying absorption band near 5.8 eV is dominated by a {sup 1}A{sub 1} state, but an underlying weak {sup 1}B{sub 1} state (πσ{sup ∗}) is also found. The strongest band in the VUV spectrum near 6.7 eV is poorly resolved and is analyzed in terms of two ππ{sup ∗} states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The calculated vertical excitation energies of these two states are critically dependent upon the presence of Rydberg functions in the basis set, since both manifolds are strongly perturbed by the Rydberg states in this energy range. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene and bromobenzene.« less
2017-01-01
We report on the synthesis and structure–property relations of a novel, dual-responsive organometallic poly(ionic liquid) (PIL), consisting of a poly(ferrocenylsilane) backbone of alternating redox-active, silane-bridged ferrocene units and tetraalkylphosphonium sulfonate moieties in the side groups. This PIL is redox responsive due to the presence of ferrocene in the backbone and also exhibits a lower critical solution temperature (LCST)-type thermal responsive behavior. The LCST phase transition originates from the interaction between water molecules and the ionic substituents and shows a concentration-dependent, tunable transition temperature in aqueous solution. The PIL’s LCST-type transition temperature can also be influenced by varying the redox state of ferrocene in the polymer main chain. As the polymer can be readily cross-linked and is easily converted into hydrogels, it represents a new dual-responsive materials platform. Interestingly, the as-formed hydrogels display an unusual, strongly hysteretic volume-phase transition indicating useful thermal memory properties. By employing the dispersing abilities of this cationic PIL, CNT-hydrogel composites were successfully prepared. These hybrid conductive composite hydrogels showed bi-stable states and tunable resistance in heating–cooling cycles. PMID:28654756
Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Li, Shuai; Zhang, Yi
Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less
Enhanced ionic conductivity with Li 7O 2Br 3 phase in Li 3OBr anti-perovskite solid electrolyte
Zhu, Jinlong; Li, Shuai; Zhang, Yi; ...
2016-09-07
Cubic anti-perovskites with general formula Li 3OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li 3OBr and layered Li 7O 2Br 3, by solid state reaction routes. The results indicate that with the phase fraction of Li 7O 2Br 3 increasingmore » to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li 3OBr. Formation energy calculations revealed the meta-stable nature of Li 7O 2Br 3, which supports the great difficulty in producing phase-pure Li 7O 2Br 3 at ambient pressure. Here, methods of obtaining phase-pure Li 7O 2Br 3 will continue to be explored, including both high pressure and metathesis techniques.« less
Composite Polymer-Garnet Solid State Electrolytes
NASA Astrophysics Data System (ADS)
Villa, Andres; Oduncu, Muhammed R.; Scofield, Gregory D.; Marinero, Ernesto E.; Forbey, Scott
Solid-state electrolytes provide a potential solution to the safety and reliability issues of Li-ion batteries. We have synthesized cubic-phase Li7-xLa3Zr2-xBixO12 compounds utilizing inexpensive, scalable Sol-gel synthesis and obtained ionic conductivities 1.2 x 10-4 S/cm at RT in not-fully densified pellets. In this work we report on the fabrication of composite polymer-garnet ceramic particle electrolytes to produce flexible membranes that can be integrated with standard battery electrodes without the need for a separator. As a first step we incorporated the ceramic particles into polyethylene oxide polymers (PEO) to form flexible membranes. Early results are encouraging yielding ionic conductivity values 1.0 x 10-5 S/cm at RT. To increment the conductivity in the membranes, we are optimizing amongst other: the ceramic particle size distribution and weight load, the polymer molecular weight and chemical composition and the solvated Li-salt composition and content. Unhindered ion transport across interfaces between the composites and the battery electrode materials is paramount for battery performance. To this end, we are investigating the effect of interface morphology, its atomic composition and exploring novel electrode structures that facilitate ionic transport.
Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho
2017-10-04
We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.
Entropy of the Bose-Einstein-condensate ground state: Correlation versus ground-state entropy
NASA Astrophysics Data System (ADS)
Kim, Moochan B.; Svidzinsky, Anatoly; Agarwal, Girish S.; Scully, Marlan O.
2018-01-01
Calculation of the entropy of an ideal Bose-Einstein condensate (BEC) in a three-dimensional trap reveals unusual, previously unrecognized, features of the canonical ensemble. It is found that, for any temperature, the entropy of the Bose gas is equal to the entropy of the excited particles although the entropy of the particles in the ground state is nonzero. We explain this by considering the correlations between the ground-state particles and particles in the excited states. These correlations lead to a correlation entropy which is exactly equal to the contribution from the ground state. The correlations themselves arise from the fact that we have a fixed number of particles obeying quantum statistics. We present results for correlation functions between the ground and excited states in a Bose gas, so as to clarify the role of fluctuations in the system. We also report the sub-Poissonian nature of the ground-state fluctuations.
Kvaal, Simen; Helgaker, Trygve
2015-11-14
The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.
Quantum origins of moment fragmentation in Nd2Zr2O7
NASA Astrophysics Data System (ADS)
Benton, Owen
2016-09-01
Spin-liquid states are often described as the antithesis of magnetic order. Recently, however, it has been proposed that in certain frustrated magnets the magnetic degrees of freedom may "fragment" in such a way as to give rise to a coexistence of spin liquid and ordered phases. Recent neutron-scattering results [S. Petit, E. Lhotel, B. Canals, M. Ciomaga Hatnean, J. Ollivier, H. Muttka, E. Ressouche, A. R. Wildes, M. R. Lees, and G. Balakrishnan, Nat. Phys. 12, 746 (2016), 10.1038/nphys3710] suggest that this scenario may be realized in the pyrochlore magnet Nd2Zr2O7 . These observations show the characteristic pinch-point features of a Coulombic spin liquid occurring alongside the Bragg peaks of an "all-in-all-out" ordered state. Here we explain the quantum origins of this apparent magnetic moment fragmentation, within the framework of a quantum model of nearest-neighbor exchange, appropriate to Nd2Zr2O7 . This model is able to capture both the ground-state order and the pinch points observed at finite energy. The observed fragmentation arises due to the combination of the unusual symmetry properties of the Nd3 + ionic wave functions and the structure of equations of motion of the magnetic degrees of freedom. The results of our analysis suggest that Nd2Zr2O7 is proximate to a U (1 ) spin-liquid phase and is a promising candidate for the observation of a Higgs transition in a magnetic system.
NASA Astrophysics Data System (ADS)
Labrador, A. W.; Sollitt, L. S.; Cohen, C. M.; Cummings, A. C.; Leske, R. A.; Mason, G. M.; Mewaldt, R. A.; Stone, E.; von Rosenvinge, T. T.; Wiedenbeck, M. E.
2012-12-01
Solar energetic particle (SEP) mean ionic charge states can depend on source temperatures and populations (e.g. seed populations) and conditions during acceleration and transport such as stripping. Multi-spacecraft observations of charge states from widely separated spacecraft may reveal evidence for seed populations that vary with longitude. In this presentation, we report new estimates of inferred high energy ionic charge states using the Sollitt et al. (2008) method that fits SEP energy-dependent decay times for SEP event elements to derive mean charge states. In the method, intensity decay times during SEP events are fitted for each element for various energies, and then the energy dependence of the decay times is fitted for each element. Finally, charge-to-mass ratios relative to that of a calibration element (carbon in this case) are obtained, and when Q(C)=5.9 is assumed for calibration, mean charge states for other elements can be inferred. Previously, ACE/SIS and ACE/ULEIS data were applied to three SEP events (Nov. 6, 1997; Nov. 4, 2001; Apr. 21, 2002) with this method, and last year, we reported new results for the Dec. 6, 2006 SEP event compatible with SAMPEX/MAST results. Additional work continues to generalize and extend the software to use publicly available online data from ACE and the two STEREO spacecraft. Energy ranges are those covered by the instruments on ACE (e.g. reference element C at <.1 MeV/nuc from ULEIS to ~64 MeV/nuc from SIS) and on STEREO (e.g. C at 3.2 - 33 MeV/nuc from LET). Initial candidate SEP events for multi-spacecraft charge state estimates are those of Mar. 8, 2011, Mar. 21, 2011, Jan. 24, 2012, and Mar. 4, 2012. Results from events observed by single spacecraft may also be reported.
Equilibrium and kinetics of DNA overstretching modeled with a quartic energy landscape.
Argudo, David; Purohit, Prashant K
2014-11-04
It is well known that the dsDNA molecule undergoes a phase transition from B-DNA into an overstretched state at high forces. For some time, the structure of the overstretched state remained unknown and highly debated, but recent advances in experimental techniques have presented evidence of more than one possible phase (or even a mixed phase) depending on ionic conditions, temperature, and basepair sequence. Here, we present a theoretical model to study the overstretching transition with the possibility that the overstretched state is a mixture of two phases: a structure with portions of inner strand separation (melted or M-DNA), and an extended phase that retains the basepair structure (S-DNA). We model the double-stranded DNA as a chain composed of n segments of length l, where the transition is studied by means of a Landau quartic potential with statistical fluctuations. The length l is a measure of cooperativity of the transition and is key to characterizing the overstretched phase. By analyzing the different values of l corresponding to a wide spectrum of experiments, we find that for a range of temperatures and ionic conditions, the overstretched form is likely to be a mix of M-DNA and S-DNA. For a transition close to a pure S-DNA state, where the change in extension is close to 1.7 times the original B-DNA length, we find l ? 25 basepairs regardless of temperature and ionic concentration. Our model is fully analytical, yet it accurately reproduces the force-extension curves, as well as the transient kinetic behavior, seen in DNA overstretching experiments.
Influence of Ambient Humidity on the Voltage Response of Ionic Polymer-Metal Composite Sensor.
Zhu, Zicai; Horiuchi, Tetsuya; Kruusamäe, Karl; Chang, Longfei; Asaka, Kinji
2016-03-31
Electrical potential based on ion migration exists not only in natural systems but also in ionic polymer materials. In order to investigate the influence of ambient humidity on voltage response, classical Au-Nafion IPMC was chosen as the reference sample. Voltage response under a bending deformation was measured in two ways: first, continuous measurement of voltage response in the process of absorption and desorption of water to study the tendency of voltage variation at all water states; second, measurements at multiple fixed ambient humidity levels to characterize the process of voltage response quantitatively. Ambient humidity influences the voltage response mainly by varying water content in ionic polymer. Under a step bending, the amplitude of initial voltage peak first increases and then decreases as the ambient humidity and the inherent water content decrease. This tendency is explained semiquantitatively by mass storage capacity related to the stretchable state of the Nafion polymer network. Following the initial peak, the voltage shows a slow decay to a steady state, which is first characterized in this paper. The relative voltage decay during the steady state always decreases as the ambient humidity is lowered. It is ascribed to progressive increase of the ratio between the water molecules in the cation hydration shell to the free water. Under sinusoidal mechanical bending excitation in the range of 0.1-10 Hz, the voltage magnitude increases with frequency at high ambient humidity but decreases with frequency at low ambient humidity. The relationship is mainly controlled by the voltage decay effect and the response speed.
NASA Astrophysics Data System (ADS)
Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin
2017-12-01
Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.
Brine evolution and mineral deposition in hydrologically open evaporite basins
Sanford, W.E.; Wood, W.W.
1991-01-01
A lumped-parameter, solute mass-balance model is developed to define the role of water outflow from a well-mixed basin. A mass-balance model is analyzed with a geochemical model designed for waters with high ionic strengths. Two typical waters, seawater and a Na-HCO3 ground water, are analyzed to illustrate the control that the leakage ratio (or hydrologic openness of the basin) has on brine evolution and the suite and thicknesses of evaporite minerals deposited. The analysis suggests that brines evolve differently under different leakage conditions. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bučko, Tomáš, E-mail: bucko@fns.uniba.sk; Department of Computational Materials Physics, Fakultät für Physik and Center for Computational Materials Science, Universität Wien, Sensengasse, Wien 1090; Lebègue, Sébastien, E-mail: sebastien.lebegue@univ-lorraine.fr
2014-07-21
Recently we have demonstrated that the applicability of the Tkatchenko-Scheffler (TS) method for calculating dispersion corrections to density-functional theory can be extended to ionic systems if the Hirshfeld method for estimating effective volumes and charges of atoms in molecules or solids (AIM’s) is replaced by its iterative variant [T. Bučko, S. Lebègue, J. Hafner, and J. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)]. The standard Hirshfeld method uses neutral atoms as a reference, whereas in the iterative Hirshfeld (HI) scheme the fractionally charged atomic reference states are determined self-consistently. We show that the HI method predicts more realistic AIMmore » charges and that the TS/HI approach leads to polarizabilities and C{sub 6} dispersion coefficients in ionic or partially ionic systems which are, as expected, larger for anions than for cations (in contrast to the conventional TS method). For crystalline materials, the new algorithm predicts polarizabilities per unit cell in better agreement with the values derived from the Clausius-Mosotti equation. The applicability of the TS/HI method has been tested for a wide variety of molecular and solid-state systems. It is demonstrated that for systems dominated by covalent interactions and/or dispersion forces the TS/HI method leads to the same results as the conventional TS approach. The difference between the TS/HI and TS approaches increases with increasing ionicity. A detailed comparison is presented for isoelectronic series of octet compounds, layered crystals, complex intermetallic compounds, and hydrides, and for crystals built of molecules or containing molecular anions. It is demonstrated that only the TS/HI method leads to accurate results for systems where both electrostatic and dispersion interactions are important, as illustrated for Li-intercalated graphite and for molecular adsorption on the surfaces in ionic solids and in the cavities of zeolites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafader, Jared O.; Ray, Manisha; Jarrold, Caroline Chick, E-mail: cjarrold@indiana.edu
2015-07-21
The anion photoelectron (PE) spectra of EuH{sup −} and the PE spectrum of overlapping EuOH{sup −} and EuO{sup −} anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from {sup 8}Σ{sup −} anion ground states arising from the 4f{sup 7}σ{sub 6s}{sup 2} superconfiguration to the close-lying neutral {sup 9}Σ{sup −} and {sup 7}Σ{sup −} states arising from the 4f{sup 7}σ{sub 6s} superconfiguration are observed spaced by an energy interval similar to themore » free Eu{sup +} [4f{sup 7}6s] {sup 9}S - {sup 7}S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO{sup −} photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO{sup −} populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f{sup 7}σ{sub 6s} and 4f{sup 6}σ{sub 6s}{sup 2} configurations and the relative energies of the one-electron accessible 4f{sup 7} and 4f{sup 6}σ{sub 6s} neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f{sup 6}σ{sub 6s}{sup 2} {sup 7}Σ{sup −} and 4f{sup 7}σ{sub 6s}{sup 7}Σ{sup −} anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f{sup 6} occupancy.« less
NASA Astrophysics Data System (ADS)
Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.
2017-12-01
The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to the hundredths of a millimetre in the case of the steel-based electrode, which are relatively small corrosion rates.
NASA Astrophysics Data System (ADS)
Costa, D.; Pomeroy, J. W.; Wheater, H. S.
2017-12-01
Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.
NASA Astrophysics Data System (ADS)
Clark, M. P.; Nijssen, B.; Lundquist, J. D.; Luce, C. H.; Musselman, K. N.; Wayand, N. E.; Ou, M.; Lapo, K. E.
2016-12-01
Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.
Das, Sudhir Kumar; Sarkar, Moloy
2012-08-06
Steady-state and time-resolved fluorescence behavior of coumarin 153 (C153) is investigated in a series of 1-ethyl-3-methylimidazolium alkylsulfate ([C(2)mim][C(n)OSO(3)]) ionic liquids differing only in the length of the linear alkyl chain (n = 4, 6, and 8) in the anion. The aim of the present study is to understand the role of alkyl chain length in solute rotation and solvation dynamics of C153 in these ionic liquids. The blueshift observed in the steady-state absorption and emission maxima of C153 on going from the C(4)OSO(3) to the C(8)OSO(3) system indicates increasing nonpolar character of the microenvironment of the solute with increasing length of the alkyl side chain of the anion of the ionic liquids. The average solvation time is also found to increase on changing the substituent from butyl to octyl, and this is attributed to the increase in the bulk viscosity of the ILs. A steady blueshift of the time-zero maximum of the fluorescence spectrum with increasing alkyl chain length also indicates that the probe molecule experiences a less polar environment in the early part of the dynamics. Rotational dynamics of C153 are also analyzed by using the Stokes-Einstein-Debye (SED), Gierer-Wirtz (GW), and Dote-Kivelson-Schwartz (DKS) theories. Analyses of the results seem to suggest decoupling of the rotational motion of the probe from solvent viscosity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Chen-Yu; Hemmig, Elisa A.; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia
2015-01-01
The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules—a DNA origami plate— placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg2+ ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA. PMID:25623807
Li, Chen-Yu; Hemmig, Elisa A; Kong, Jinglin; Yoo, Jejoong; Hernández-Ainsa, Silvia; Keyser, Ulrich F; Aksimentiev, Aleksei
2015-02-24
The DNA origami technique can enable functionalization of inorganic structures for single-molecule electric current recordings. Experiments have shown that several layers of DNA molecules, a DNA origami plate, placed on top of a solid-state nanopore is permeable to ions. Here, we report a comprehensive characterization of the ionic conductivity of DNA origami plates by means of all-atom molecular dynamics (MD) simulations and nanocapillary electric current recordings. Using the MD method, we characterize the ionic conductivity of several origami constructs, revealing the local distribution of ions, the distribution of the electrostatic potential and contribution of different molecular species to the current. The simulations determine the dependence of the ionic conductivity on the applied voltage, the number of DNA layers, the nucleotide content and the lattice type of the plates. We demonstrate that increasing the concentration of Mg(2+) ions makes the origami plates more compact, reducing their conductivity. The conductance of a DNA origami plate on top of a solid-state nanopore is determined by the two competing effects: bending of the DNA origami plate that reduces the current and separation of the DNA origami layers that increases the current. The latter is produced by the electro-osmotic flow and is reversible at the time scale of a hundred nanoseconds. The conductance of a DNA origami object is found to depend on its orientation, reaching maximum when the electric field aligns with the direction of the DNA helices. Our work demonstrates feasibility of programming the electrical properties of a self-assembled nanoscale object using DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mostofian, Barmak; Cheng, Xiaolin; Smith, Jeremy C.
2014-09-02
Ionic liquids have become a popular solvent for cellulose pretreatment in biorefineries due to their efficiency in dissolution and their reusability. Understanding the interactions between cations, anions, and cellulose is key to the development of better solvents and the improvement of pretreatment conditions. While previous studies described the interactions between ionic liquids and cellulose fibers, shedding light on the initial stages of the cellulose dissolution process, we study the end state of that process by exploring the structure and dynamics of a single cellulose decamer solvated in 1-butyl-3-methyl-imidazolium chloride (BmimCl) and in water using replica-exchange molecular dynamics. In both solvents,more » global structural features of the cellulose chain are similar. However, analyses of local structural properties show that cellulose explores greater conformational variability in the ionic liquid than in water. For instance, in BmimCl the cellulose intramolecular hydrogen bond O3H'••• O5 is disrupted more often resulting in greater flexibility of the solute. Our results indicate that the cellulose chain is more dynamic in BmimCl than in water, which may play a role in the favorable dissolution of cellulose in the ionic liquid. Here, the calculation of the configurational entropy of the cellulose decamer confirms its higher conformational flexibility in BmimCl than in water at elevated temperatures.« less
Moradi, Sharif; Sharifi-Zarchi, Ali; Ahmadi, Amirhossein; Mollamohammadi, Sepideh; Stubenvoll, Alexander; Günther, Stefan; Salekdeh, Ghasem Hosseini; Asgari, Sassan; Braun, Thomas; Baharvand, Hossein
2017-12-12
Ground-state pluripotency is a cell state in which pluripotency is established and maintained through efficient repression of endogenous differentiation pathways. Self-renewal and pluripotency of embryonic stem cells (ESCs) are influenced by ESC-associated microRNAs (miRNAs). Here, we provide a comprehensive assessment of the "miRNome" of ESCs cultured under conditions favoring ground-state pluripotency. We found that ground-state ESCs express a distinct set of miRNAs compared with ESCs grown in serum. Interestingly, most "ground-state miRNAs" are encoded by an imprinted region on chromosome 12 within the Dlk1-Dio3 locus. Functional analysis revealed that ground-state miRNAs embedded in the Dlk1-Dio3 locus (miR-541-5p, miR-410-3p, and miR-381-3p) promoted pluripotency via inhibition of multi-lineage differentiation and stimulation of self-renewal. Overall, our results demonstrate that ground-state pluripotency is associated with a unique miRNA signature, which supports ground-state self-renewal by suppressing differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Taylor, G.H.; Thomas, H.E.
1936-01-01
During the past few years of drouth the importance of ground-water supplies has become more fully appreciated. During this time, because of subnormal replenishment of the ground-water reservoirs and the increased withdrawals from wells, the ground-water levels have declined in most developed areas in the State, a condition which has made the well owners acutely aware that ground water is not inexhaustible. Numerous cases of contention between well owners resulted in increased demands for adequate regulation of the appropriation and use of ground water. Realizing that more information concerning the ground water of the State was imperative, not only to administer the ground-water regulations but to prepare for the conservation and replenishment of existing supplies and development of new supplies, the State Legislature enacted, during its 1935 session, Senate Bill 206, which authorized the State Engineer to make an investigation of the ground water of the State. To provide for the expenses of the investigation, the bill allotted /$10,000 to the State Engineer, this sum to be matched by a State or Federal organization, and the investigation to be carried out co-operatively during the biennium beginning July 1, 1935. A co-operative agreement between the State Engineer and the United States Geological Survey was made on July 1, 1935.
The Use of Solid States Ionic Materials and Devices in Medical Applications
NASA Astrophysics Data System (ADS)
Linford, R. G.
2006-06-01
Electrolyte materials used in solid state polymer batteries can also be utilised in a special type of drug delivery system called an iontophoretic device. This review will describe the history, applications and limitations of iontophoretic and related systems and also the use of batteries and biofuel cells in medicine.
Quantifying short-lived events in multistate ionic current measurements.
Balijepalli, Arvind; Ettedgui, Jessica; Cornio, Andrew T; Robertson, Joseph W F; Cheung, Kin P; Kasianowicz, John J; Vaz, Canute
2014-02-25
We developed a generalized technique to characterize polymer-nanopore interactions via single channel ionic current measurements. Physical interactions between analytes, such as DNA, proteins, or synthetic polymers, and a nanopore cause multiple discrete states in the current. We modeled the transitions of the current to individual states with an equivalent electrical circuit, which allowed us to describe the system response. This enabled the estimation of short-lived states that are presently not characterized by existing analysis techniques. Our approach considerably improves the range and resolution of single-molecule characterization with nanopores. For example, we characterized the residence times of synthetic polymers that are three times shorter than those estimated with existing algorithms. Because the molecule's residence time follows an exponential distribution, we recover nearly 20-fold more events per unit time that can be used for analysis. Furthermore, the measurement range was extended from 11 monomers to as few as 8. Finally, we applied this technique to recover a known sequence of single-stranded DNA from previously published ion channel recordings, identifying discrete current states with subpicoampere resolution.
Solvent screening for a hard-to-dissolve molecular crystal.
Maiti, A; Pagoria, P F; Gash, A E; Han, T Y; Orme, C A; Gee, R H; Fried, L E
2008-09-01
Materials with a high-degree of inter- and intra-molecular hydrogen bonding generally have limited solubility in conventional organic solvents. This presents a problem for the dissolution, manipulation and purification of these materials. Using a state-of-the-art density-functional-theory based quantum chemical solvation model we systematically evaluated solvents for a known hydrogen-bonded molecular crystal. This, coupled with direct solubility measurements, uncovered a class of ionic liquids involving fluoride anions that possess more than two orders of magnitude higher solvation power as compared with the best conventional solvents. The crystal structure of one such ionic liquid, determined by X-ray diffraction spectroscopy, indicates that F- ions are stabilized through H-bonded chains with water. The presence of coordinating water in such ionic liquids seems to facilitate the dissolution process by keeping the chemical activity of the F- ions in check.
Study of Stable Cathodes and Electrolytes for High Specific Density Lithium-Air Battery
NASA Technical Reports Server (NTRS)
Hernandez-Lugo, Dionne M.; Wu, James; Bennett, William; Ming, Yu; Zhu, Yu
2015-01-01
Future NASA missions require high specific energy battery technologies, greater than 400 Wh/kg. Current NASA missions are using "state-of-the-art" (SOA) Li-ion batteries (LIB), which consist of a metal oxide cathode, a graphite anode and an organic electrolyte. NASA Glenn Research Center is currently studying the physical and electrochemical properties of the anode-electrolyte interface for ionic liquid based Li-air batteries. The voltage-time profiles for Pyr13FSI and Pyr14TFSI ionic liquids electrolytes studies on symmetric cells show low over-potentials and no dendritic lithium morphology. Cyclic voltammetry measurements indicate that these ionic liquids have a wide electrochemical window. As a continuation of this work, sp2 carbon cathode and these low flammability electrolytes were paired and the physical and electrochemical properties were studied in a Li-air battery system under an oxygen environment.
Ab-Initio analysis of TlBr: limiting the ionic current without degrading the electronic one
NASA Astrophysics Data System (ADS)
Rocha Leao, Cedric; Lordi, Vincenzo
2011-03-01
Although TlBr in principle presents all the theoretical requirements for making high resolution room temperature radiation detectors, practical applications of TlBr have proven to be nonviable due to the polarization that is observed in the crystal after relatively short periods of operation. This polarization, that is believed to be caused by accumulation of oppositely charged ionic species at the ends of the crystal, results in an electric field that opposes that of the applied bias, counter-acting its effect. In this work, we use state of the art quantum modeling to benchmark the theoretical limits for the performance of TlBr as a radiation detector, showing that the best experimental reports demonstrate near-ideal electronic characteristics. We then propose a model to inhibit the detrimental ionic current in the material without impacting the excellent properties of the electronic current. Prepared by LLNL under Contract DE-AC52-07NA27344.
Structural and electronic phase transitions of MoTe2 induced by Li ionic gating
NASA Astrophysics Data System (ADS)
Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae
2017-12-01
Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.
Manthey, A A
1998-05-01
The possibility that increases in agonist concentration beyond threshold levels may force changes in the character of high-conductance open states of skeletal muscle nicotinic acetylcholine receptor channels (nAChR) was examined by seeing whether differences in several critical ionic properties of nAChR currents could be detected with changes in agonist level. Single- and bi-ionic whole-cell currents of Na+ and Li+ in voltage-clamped frog (Rana pipiens) muscle fibers were measured during local superfusion of endplates with carbamylcholine (carb) at concentrations of 54 microm (low-carb) and 270 microM (high-carb). Three ionic properties that would be affected by changes in the open-state configuration of channel subunits were tested. First, ion-saturation characteristics. Peak Na+ and Li+ currents in low-carb trials showed sublinear dependence on ion concentrations from 0 to 60 mM with Km values of 78 (Na+) and 49 (Li+) mM and a power function slope of 0. 75 on double-log plot. In contrast, the concentration dependence of Na+ and Li+ currents in high-carb tests was linear through the origin with a power function slope of 1.02. Second, Na+/Li+ selectivity. The ratio of peak Na+ and Li+ currents in low-carb tests varied from 1.86 to 2.28 for ion concentrations of from 20 to 60 mM [mean = 2.02 +/- 0.06 (SEM)] whereas the ratio for high-carb trials ranged from only 1.29 to 1.52 [mean = 1.42 +/- 0.40 (SEM)]. Third, competitive interactions of Na+ and Li+ currents. Equimolar mixtures of Na+ and Li+ in low-carb tests produced bi-ionic inward currents which were never larger than the single-ion Na+ current alone, but bi-ionic currents at the high-carb level were always greater than the single-ion Na+ current, approximating the sum of the single-ion Na+ and Li+ currents in most cases. The results are consistent with a decrease in ion-channel binding at the high-carb level and support the possibility of agonist-induced changes in the high-conductance open-state configuration of nAChR subunits which result in a weakening of constraints on cation movements through the channel.
2016-09-01
TECHNICAL REPORT 3046 September 2016 GENERATION OF QUALITY PULSES FOR CONTROL OF QUBIT/QUANTUM MEMORY SPIN STATES: EXPERIMENTAL AND SIMULATION...control circuitry for control of electron/ nuclear spin states of qubits/quantum memory applicable to semiconductor, superconductor, ionic, and...coherence time of the qubit/ memory , we present as an example the integration of cryogenic superconductor components, including filters and
Classical many-particle systems with unique disordered ground states
NASA Astrophysics Data System (ADS)
Zhang, G.; Stillinger, F. H.; Torquato, S.
2017-10-01
Classical ground states (global energy-minimizing configurations) of many-particle systems are typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry operations). By contrast, the few previously known disordered classical ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed "perfect-glass" many-particle model [Sci. Rep. 6, 36963 (2016), 10.1038/srep36963] possesses disordered classical ground states with a zero entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we have numerically investigated, the disordered ground states are unique such that they can always be superposed onto each other or their mirror image. At low energies, the density of states obtained from simulations matches those calculated from the harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography as pseudorandom functions with tunable computational complexity.
Anodic behavior of uranium in AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid
NASA Astrophysics Data System (ADS)
Jiang, Yidong; Luo, Lizhu; Wang, Shaofei; Bin, Ren; Zhang, Guikai; Wang, Xiaolin
2018-01-01
The oxidation state of metals unambiguously affects its anodic behavior in ionic liquid. We systematically investigated the anodic behavior of uranium with different surface oxidation states by electrochemical measurements, spectroscopic methods and surface analysis techniques. In the anodic process, metal uranium can be oxidized to U3+. The corresponding products accumulated on the metal/ILs interface will form a viscous layer. The anodic behavior of uranium is also strongly dependent upon the surface oxide states including thickness and homogeneity of the oxide film. With an increase in the thickness of oxide film, it will be breached at potentials in excess of a critical value. A uniform oxide on uranium surface can be breached evenly, and then the underlying metal starts to dissolve forming a viscous layer which can facilitate uniformly stripping of oxide, thus giving an oxide-free surface. Otherwise, a nonuniform oxide can result in a severe pitted surface with residue oxygen.
Inner-shell excitation and ionic fragmentation of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchcock, A.P.; Tyliszczak, T.; Cavell, R.G.
1997-04-01
Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can revealmore » cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Guoqiang; Wu, Feng; Zhan, Chun
The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO 2, LiNi 1/3Co 1/3Mn 1/3O 2, or LiFePO 4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparentmore » glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.« less
Luo, Chao; Ji, Xiao; Chen, Ji; Gaskell, Karen J; He, Xinzi; Liang, Yujia; Jiang, Jianjun; Wang, Chunsheng
2018-05-23
Organic electrode materials are promising for green and sustainable lithium-ion batteries. However, the high solubility of organic materials in the liquid electrolyte results in the shuttle reaction and fast capacity decay. Herein, azo compounds are firstly applied in all-solid-state lithium batteries (ASSLB) to suppress the dissolution challenge. Due to the high compatibility of azobenzene (AB) based compounds to Li 3 PS 4 (LPS) solid electrolyte, the LPS solid electrolyte is used to prevent the dissolution and shuttle reaction of AB. To maintain the low interface resistance during the large volume change upon cycling, a carboxylate group is added into AB to provide 4-(phenylazo) benzoic acid lithium salt (PBALS), which could bond with LPS solid electrolyte via the ionic bonding between oxygen in PBALS and lithium ion in LPS. The ionic bonding between the active material and solid electrolyte stabilizes the contact interface and enables the stable cycle life of PBALS in ASSLB. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2011-01-01
Supporting functional molecules on crystal facets is an established technique in nanotechnology. To preserve the original activity of ionic metallorganic agents on a supporting template, conservation of the charge and oxidation state of the active center is indispensable. We present a model system of a metallorganic agent that, indeed, fulfills this design criterion on a technologically relevant metal support with potential impact on Au(III)-porphyrin-functionalized nanoparticles for an improved anticancer-drug delivery. Employing scanning tunneling microscopy and -spectroscopy in combination with photoemission spectroscopy, we clarify at the single-molecule level the underlying mechanisms of this exceptional adsorption mode. It is based on the balance between a high-energy oxidation state and an electrostatic screening-response of the surface (image charge). Modeling with first principles methods reveals submolecular details of the metal–ligand bonding interaction and completes the study by providing an illustrative electrostatic model relevant for ionic metalorganic agent molecules, in general. PMID:21736315
A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte.
Gao, Tao; Li, Xiaogang; Wang, Xiwen; Hu, Junkai; Han, Fudong; Fan, Xiulin; Suo, Liumin; Pearse, Alex J; Lee, Sang Bok; Rubloff, Gary W; Gaskell, Karen J; Noked, Malachi; Wang, Chunsheng
2016-08-16
Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite-free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg(-1) ) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx . Herein, we demonstrate the first reversible Al/S battery in ionic-liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid-state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid-state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NMR study on mechanisms of ionic polymer-metal composites deformation with water content
NASA Astrophysics Data System (ADS)
Zhu, Zicai; Chen, Hualing; Wang, Yongquan; Luo, Bin; Chang, Longfei; Li, Bo; Chen, Luping
2011-10-01
Ionic polymer-metal composites (IPMCs) exhibit a large dynamic bending deformation under exterior electric field. The states and proportions of water within the IPMCs have great effect on the IPMCs deformation properties. This letter investigates the influence of the proportion changes of different types of water on the deformation, which may disclose the working mechanisms of the IPMCs. We give a deformation trend of IPMCs with the reduction of water content firstly. Then by the method of nuclear magnetic resonance, various water types (water bonded to sulfonates, loosely bound water and free water) of IPMCs and their proportions are investigated in the drying process which corresponds to their different deformation states. It is obtained that the deformation properties of IPMCs depend strongly on their water content and the excess free water is responsible for the relaxation deformation.
Microwave Crystallization of Lithium Aluminum Germanium Phosphate Solid-State Electrolyte.
Mahmoud, Morsi M; Cui, Yuantao; Rohde, Magnus; Ziebert, Carlos; Link, Guido; Seifert, Hans Juergen
2016-06-23
Lithium aluminum germanium phosphate (LAGP) glass-ceramics are considered as promising solid-state electrolytes for Li-ion batteries. LAGP glass was prepared via the regular conventional melt-quenching method. Thermal, chemical analyses and X-ray diffraction (XRD) were performed to characterize the prepared glass. The crystallization of the prepared LAGP glass was done using conventional heating and high frequency microwave (MW) processing. Thirty GHz microwave (MW) processing setup were used to convert the prepared LAGP glass into glass-ceramics and compared with the conventionally crystallized LAGP glass-ceramics that were heat-treated in an electric conventional furnace. The ionic conductivities of the LAGP samples obtained from the two different routes were measured using impedance spectroscopy. These samples were also characterized using XRD and scanning electron microscopy (SEM). Microwave processing was successfully used to crystallize LAGP glass into glass-ceramic without the aid of susceptors. The MW treated sample showed higher total, grains and grain boundary ionic conductivities values, lower activation energy and relatively larger-grained microstructure with less porosity compared to the corresponding conventionally treated sample at the same optimized heat-treatment conditions. The enhanced total, grains and grain boundary ionic conductivities values along with the reduced activation energy that were observed in the MW treated sample was considered as an experimental evidence for the existence of the microwave effect in LAGP crystallization process. MW processing is a promising candidate technology for the production of solid-state electrolytes for Li-ion battery.
Routes to DNA accessibility: alternative pathways for nucleosome unwinding.
Schlingman, Daniel J; Mack, Andrew H; Kamenetska, Masha; Mochrie, Simon G J; Regan, Lynne
2014-07-15
The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bano, Amreen; Gaur, N. K.
2018-04-01
In this paper, we have investigated the electronic band structure, magnetic state, chemical bonding and phonon properties of intermetallic compound ScNiBi (SNB) under the effect of strain using first-principles calculations. Our results showed that at 0% strain, SNB appears to be semiconducting with 0.22 eV energy gap. As the amount of strain increases over the system, the energy gap disappears and metallic character with ionic bonding appears. Covalent bonding at 0% lattice strain is observed between Bi-6p and Ni-3{d}{z2} orbitals with small contribution of Sc-3d states, with increasing strain, this bonding becomes ionic as SNB becomes a metal. From density of states (DoS), similar occupancy of energy states in the same energy range is observed in both spin channels, i.e. spin up and spin down. Hence, no spin polarization is found. From magnetic susceptibility as a function of temperature, we conclude that magnetic state of SNB is paramagnetic. Also, from phonon dispersion curves, we find that with increasing lattice strain, the frequency gap between acoustic phonon branches and optical phonon branches reduced and instability with negative frequencies at Γ are observed.
2015-01-01
Tojo T, Sakurai Y. Synthesis and lithium - ion conductivity for perovskite-type Li3/8Sr7/16Ta3/4Zr1/4O3 solid electrolyte by powder-bed sintering...battery performance is limited by the electrolytic membrane, which needs high Li-ionic conductivity. Lithium lanthanum titanate (Li3xLa(2/3)-xTiO3, or...of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67-xLi3xTiO3 (x=0.11). Journal of Solid State Ionics. 1999;121
Electrochromic Behavior of Ionically Self-Assembled Thin Films
NASA Astrophysics Data System (ADS)
Janik, J. A.; Heflin, J. R.; Marciu, D.; Miller, M. B.; Davis, R. M.
2001-03-01
Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).
Chi, Yonggui; Gellman, Samuel H.
2009-01-01
Organocatalytic Mannich addition of aldehydes to a formaldehyde-derived iminium species catalyzed by proline-derived chiral pyrrolidines provides β-amino aldehydes with ≥ 90% ee. Mechanistic analysis of the proline-catalyzed reactions suggests that non-hydrogen-bonded ionic interactions at the Mannich reaction transition state can influence stereochemical outcome. The β-amino aldehydes from our process bear a substituent adjacent to the carbonyl and can be efficiently converted to protected β2-amino acids, which are important building blocks for β-peptide foldamers that display useful biological activities. PMID:16719457
Modeling of robotic fish propelled by an ionic polymer-metal composite caudal fin
NASA Astrophysics Data System (ADS)
Chen, Zheng; Shatara, Stephan; Tan, Xiaobo
2009-03-01
In this paper, a model is proposed for a biomimetic robotic fish propelled by an ionic polymer metal composite (IPMC) actuator with a rigid passive fin at the end. The model incorporates both IPMC actuation dynamics and the hydrodynamics, and predicts the steady-state speed of the robot under a periodic actuation voltage. Experimental results have shown that the proposed model can predict the fish motion for different tail dimensions. Since its parameters are expressed in terms of physical properties and geometric dimensions, the model is expected to be instrumental in optimal design of the robotic fish.
NASA Astrophysics Data System (ADS)
Tucker, Telpriore G.
This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases producing water vapor. Principle advantage is high-energy efficiency of up to 70% in contrast to an internal combustion engine <40%. Nafion-based fuel cells are prone to carbon monoxide catalytic poisoning and polymer membrane degradation unless heavily hydrated under cell-pressurization. This novel "SiPOH" solid-electrolytic gel (originally liquid-state) operated in the fuel cell at 121ºC yielding current and power densities high as 731mAcm-2 and 345mWcm-2, respectively. Enhanced proton conduction significantly increased H2 fuel efficiency to 89.7% utilizing only 3.1mlmin-1 under dry, unpressurized testing conditions. All these energy devices aforementioned evidently have future promise; therefore in early developmental stages.
Tripathy, Satya N; Wojnarowska, Zaneta; Knapik, Justyna; Shirota, Hideaki; Biswas, Ranjit; Paluch, Marian
2015-05-14
A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10(-1)-10(6) Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai's coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.
Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2-δS12 (M = Si, Sn).
Hori, Satoshi; Suzuki, Kota; Hirayama, Masaaki; Kato, Yuki; Saito, Toshiya; Yonemura, Masao; Kanno, Ryoji
2014-01-01
Solid solutions of the silicon and tin analogous phases of the superionic conductor Li(10)MP(2)S(12) (M = Si, Sn) were synthesized by a conventional solid-state reaction in an evacuated silica tube at 823 K. The ranges of the solid solutions were determined to be 0.20 < δ < 0.43 and -0.25 < δ < -0.01 in Li(10+δ)M(1+δ)P(2-δ)S(12) (0.525 ≤k≤ 0.60 and 0.67 ≤k≤ 0.75 in Li(4-k)M(1-k)PkS(4)) for the Si and Sn systems, respectively. The ionic conductivity of these systems varied as a function of the changing M ions: the Si and Sn systems showed lower conductivity than the Ge system, Li(10+δ)Ge(1+δ)P(2-δ)S(12). The conductivity change for different elements might be due to the lattice size and lithium content affecting the ionic conduction. The relationship between ionic conduction, structure, and lithium concentration is discussed based on the structural and electrochemical information for the silicon, germanium, and tin systems.
Wagner, R; Gonzalez, D H; Podesta, F E; Andreo, C S
1987-05-04
Phosphoenolpyruvate carboxylase from maize leaves dissociated into dimers and/or monomers when exposed to increasing ionic strength (e.g. 200-400 mM NaCl) as indicated by gel filtration experiments. Changes in the oligomerization state were dependent on pH, time of preincubation with salt and protein concentration. A dissociation into dimers and monomers was observed at pH 8, while at pH 7 dissociation into the dimeric form only was observed. Exposure of the enzyme to higher ionic strength decreased the activity in a time-dependent manner. Turnover conditions and glucose 6-phosphate protected the carboxylase from the decay in activity, which was faster at pH 7 than at pH 8. The results suggest that changes in activity of the enzyme, following exposure to high ionic strength, are the consequence of dissociation. Tetrameric and dimeric forms of the phosphoenolpyruvate carboxylase seemingly reveal different catalytic properties. We suggest that the distinct catalytic properties of the different oligomeric species of phosphoenolpyruvate carboxylase and changes in the equilibrium between them could be the molecular basis for an effective regulation of metabolite levels by this key enzyme of C4 plants.
Akaighe, Nelson; Depner, Sean W; Banerjee, Sarbajit; Sohn, Mary
2013-07-01
The transport and deposition of silver nanoparticles (AgNPs) formed from Ag(+) reduction by Suwannee River Humic Acid (SRHA) and Suwannee River Natural Organic Matter (SRNOM) utilizing a silica matrix is reported. The morphology and stability of the AgNPs was analyzed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. The percentage conversion of the initial [Ag(+)] to [AgNPs] was determined from a combination of atomic absorption (AAS) and UV-Vis spectroscopy, and centrifugation techniques. The results indicate higher AgNP transport and consequently low deposition in the porous media at basic pH conditions and low ionic strength. However, at low acidic pH and high ionic strength, especially with the divalent metallic cations, the mobility of the AgNPs in the porous media was very low, most likely due to NP aggregation. Overall, the results suggest the potential for AgNP contamination of subsurface soils and groundwater aquifers is mostly dependent on their aggregation state, controlled by the soil water and sediment ionic strength and pH. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kang, Joonhee; Han, Byungchan
2016-07-21
Using first-principles density functional theory calculations and ab initio molecular dynamics (AIMD) simulations, we demonstrate the crystal structure of the Li7P2S8I (LPSI) and Li ionic conductivity at room temperature with its atomic-level mechanism. By successively applying three rigorous conceptual approaches, we identify that the LPSI has a similar symmetry class as Li10GeP2S12 (LGPS) material and estimate the Li ionic conductivity to be 0.3 mS cm(-1) with an activation energy of 0.20 eV, similar to the experimental value of 0.63 mS cm(-1). Iodine ions provide an additional path for Li ion diffusion, but a strong Li-I attractive interaction degrades the Li ionic transport. Calculated density of states (DOS) for LPSI indicate that electrochemical instability can be substantially improved by incorporating iodine at the Li metallic anode via forming a LiI compound. Our methods propose the computational design concept for a sulfide-based solid electrolyte with heteroatom doping for high-voltage Li ion batteries.
Choi, Bong Gill; Hong, Jinkee; Park, Young Chul; Jung, Doo Hwan; Hong, Won Hi; Hammond, Paula T; Park, Hoseok
2011-06-28
The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters. The functionalized graphenes controlled the state of water by means of nanoscale manipulation of the physical geometry and chemical functionality of ionic channels. Furthermore, the confinement of bound water within the reorganized nanochannels of composite membranes was confirmed by the enhanced proton conductivity at high temperature and the low activation energy for ionic conduction through a Grotthus-type mechanism. The selectively facilitated transport behavior of composite membranes such as high proton conductivity and low methanol crossover was attributed to the confined bound water, resulting in high-performance fuel cells.
Parameswaran, V; Nallamuthu, N; Devendran, P; Manikandan, A; Nagarajan, E R
2018-06-01
Biodegradable polymer blend electrolyte based on ammonium based salt in variation composition consisting of PVA:PVP were prepared by using solution casting technique. The obtained films have been analyzed by various technical methods like as XRD, FT-IR, TG-DSC, SEM analysis and impedance spectroscopy. The XRD and FT-IR analysis exposed the amorphous nature and structural properties of the complex formation between PVA/PVP/NH4Br. Impedance spectroscopy analysis revealed the ionic conductivity and the dielectric properties of PVA/PVP/NH4Br polymer blend electrolyte films. The maximum ionic conductivity was determined to be 6.14 × 10-5 Scm-1 for the composition of 50%PVA: 50%PVP: 10% NH4Br with low activation energy 0.3457 eV at room temperature. Solid state battery is fabricated using highest ionic conducting polymer blend as electrolyte with the configuration Zn/ZnSO4 · 7H2O (anode) ∥ 50%PVA: 50%PVP: 10% NH4Br ∥ Mn2O3 (cathode). The observed open circuit voltage is 1.2 V and its performance has been studied.
Structure and electrical properties of DNA nanotubes embedded in lipid bilayer membranes
Maiti, Prabal K
2018-01-01
Abstract Engineering the synthetic nanopores through lipid bilayer membrane to access the interior of a cell is a long persisting challenge in biotechnology. Here, we demonstrate the stability and dynamics of a tile-based 6-helix DNA nanotube (DNT) embedded in POPC lipid bilayer using the analysis of 0.2 μs long equilibrium MD simulation trajectories. We observe that the head groups of the lipid molecules close to the lumen cooperatively tilt towards the hydrophilic sugar-phosphate backbone of DNA and form a toroidal structure around the patch of DNT protruding in the membrane. Further, we explore the effect of ionic concentrations to the in-solution structure and stability of the lipid-DNT complex. Transmembrane ionic current measurements for the constant electric field MD simulation provide the I-V characteristics of the water filled DNT lumen in lipid membrane. With increasing salt concentrations, the measured values of transmembrane ionic conductance of the porous DNT lumen vary from 4.3 to 20.6 nS. Simulations of the DNTs with ssDNA and dsDNA overhangs at the mouth of the pore show gating effect with remarkable difference in the transmembrane ionic conductivities for open and close state nanopores. PMID:29136243
NASA Astrophysics Data System (ADS)
Dreyse, Paulina; Alarcón, Antonia; Galdámez, Antonio; González, Iván; Cortés-Arriagada, Diego; Castillo, Francisco; Mella, Andy
2018-02-01
Quaternary alkyl 2-phenylpyridinium and 2-(2,4-difluorophenyl)pyridinium amines with iodide, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions have been fully characterized by 1H NMR, FT-IR and MALDI mass spectroscopic methods and studied by quantum chemistry calculations. The compounds with bis(trifluoromethylsulfonyl)imide anion can be classified as ionic liquids, because they melt at room temperature. The quaternary amines with iodide and hexafluorophosphate anions are solid at 25 °C. The X-ray diffraction characterization of the 2-(2,4-difluorophenyl)-1-methylphenylpyridinium hexafluorophosphate and 1-ethyl-2-(2,4-difluorophenyl)phenylpyridinium hexafluorophosphate show an extensive series of Csbnd H⋯F, Csbnd F⋯π and Psbnd F⋯π intermolecular interactions, which give rise to a supramolecular network. The relationship between the solid-state structures and the melting points is discussed by the evaluation of the thermal behavior based on experimental data from Differential Scanning Calorimetry (DSC) studies, and also using the analysis of the ion pairs binding energies. These new compounds based on phenylpyridine allow us to grow the diversity of ionic liquids and their crystalline salts, increasing the knowledge about the chemical and physical properties of these ionic species.
Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength
NASA Astrophysics Data System (ADS)
Ams, D.; Swanson, J. S.; Reed, D. T.
2010-12-01
Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic strength effects as the electronic double layer is compressed with increasing ionic strength. These results further highlight the importance of electrostatic interactions in the adsorption process between dissolved metals and bacterial surfaces. This work expands the understanding of actinide-bacteria adsorption phenomena to high ionic strength environmental conditions that are relevant as an aid to predicting Np(V) fate and transport behavior in areas such as the vicinity of salt-based nuclear waste repositories and high ionic-strength groundwaters at DOE sites.
NASA Astrophysics Data System (ADS)
Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.
2002-06-01
The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.
NASA Astrophysics Data System (ADS)
Sposetti, C. N.; Manuel, L. O.; Roura-Bas, P.
2016-08-01
The Anderson impurity model is studied by means of the self-consistent hybridization expansions in its noncrossing (NCA) and one-crossing (OCA) approximations. We have found that for the one-channel spin-1 /2 particle-hole symmetric Anderson model, the NCA results are qualitatively wrong for any temperature, even when the approximation gives the exact threshold exponents of the ionic states. Actually, the NCA solution describes an overscreened Kondo effect, because it is the same as for the two-channel infinite-U single-level Anderson model. We explicitly show that the NCA is unable to distinguish between these two very different physical systems, independently of temperature. Using the impurity entropy as an example, we show that the low-temperature values of the NCA entropy for the symmetric case yield the limit Simp(T =0 ) →ln√{2 }, which corresponds to the zero temperature entropy of the overscreened Kondo model. Similar pathologies are predicted for any other thermodynamic property. On the other hand, we have found that the OCA approach lifts the artificial mapping between the models and restores correct properties of the ground state, for instance, a vanishing entropy at low enough temperatures Simp(T =0 ) →0 . Our results indicate that the very well known NCA should be used with caution close to the symmetric point of the Anderson model.
Laboratory Rotational Spectroscopy of the Interstellar Diatomic Hydride Ion SH+ (X 3Σ-)
NASA Astrophysics Data System (ADS)
Halfen, DeWayne; Ziurys, Lucy M.
2016-06-01
Diatomic hydride are among the most common molecular species in the interstellar medium (ISM). The low molecular mass and thus moments of inertia cause their rotational spectra to lie principally in the submillimeter and far-infrared regions. Diatomic hydrides, both neutral (MH) and ionic (MH+) forms, are also basic building blocks of interstellar chemistry. In ionic form, they may be the “hidden” carriers of refractory elements in dense gas. They are therefore extremely good targets for space-borne and airborne platforms such as Herschel, SOFIA, and SAFIR. However, in order to detect these species in the ISM, their rotational spectra must first be measured in the laboratory. To date, there is very little high resolution data available for many hydride species, in particular the ionic form. Using submillimeter/THz direct absorption methods in the Ziurys laboratory, spectra of the interstellar diatomic hydride SH+ (X 3Σ-) have been recorded. Recent work has concerned measurement of all three fine structure components of the fundamental rotational transition N = 1 ← 0 in the range 345 - 683 GHz. SH+ was generated from H2S and argon in an AC discharge. The data have been analyzed, and spectroscopic constants for this species have been refined. SH+ is found in Photon Dominated Regions (PDRs) and X-ray Dominated Regions (XDRs) and is thought to trace energetic processes in the ISM. These current measurements confirm recent observations of this species at submillimeter/THz wavelengths with ALMA and other ground-based telescopes.
Dispersions of polymer ionomers: I.
Capek, Ignác
2004-12-31
The principal subject discussed in the current paper is the effect of ionic functional groups in polymers on the formation of nontraditional polymer materials, polymer blends or polymer dispersions. Ionomers are polymers that have a small amount of ionic groups distributed along a nonionic hydrocarbon chain. Specific interactions between components in a polymer blend can induce miscibility of two or more otherwise immiscible polymers. Such interactions include hydrogen bonding, ion-dipole interactions, acid-base interactions or transition metal complexation. Ion-containing polymers provide a means of modifying properties of polymer dispersions by controlling molecular structure through the utilization of ionic interactions. Ionomers having a relatively small number of ionic groups distributed usually along nonionic organic backbone chains can agglomerate into the following structures: (1) multiplets, consisting of a small number of tightly packed ion pairs; and (2) ionic clusters, larger aggregates than multiplets. Ionomers exhibit unique solid-state properties as a result of strong associations among ionic groups attached to the polymer chains. An important potential application of ionomers is in the area of thermoplastic elastomers, where the associations constitute thermally reversible cross-links. The ionic (anionic, cationic or polar) groups are spaced more or less randomly along the polymer chain. Because in this type of ionomer an anionic group falls along the interior of the chain, it trails two hydrocarbon chain segments, and these must be accommodated sterically within any domain structure into which the ionic group enters. The primary effects of ionic functionalization of a polymer are to increase the glass transition temperature, the melt viscosity and the characteristic relaxation times. The polymer microstructure is also affected, and it is generally agreed that in most ionomers, microphase-separated, ion-rich aggregates form as a result of strong ion-dipole attractions. As a consequence of this new phase, additional relaxation processes are often observed in the viscoelastic behavior of ionomers. Light functionalization of polymers can increase the glass transition temperature and gives rise to two new features in viscoelastic behavior: (1) a rubbery plateau above T(g) and (2) a second loss process at elevated temperatures. The rubbery plateau was due to the formation of a physical network. The major effect of the ionic aggregate was to increase the longer time relaxation processes. This in turn increases the melt viscosity and is responsible for the network-like behavior of ionomers above the glass transition temperature. Ionomers rich in polar groups can fulfill the criteria for the self-assembly formation. The reported phenomenon of surface micelle formation has been found to be very general for these materials.
Love, Christopher J.; Zhang, Shuguang; Mershin, Andreas
2008-01-01
It has long been known that there is a sustained electrical potential (voltage) difference between the xylem of many plants and their surrounding soil, but the mechanism behind this voltage has remained controversial. After eliminating any extraneous capacitive or inductive couplings and ground-mediated electric current flows, we have measured sustained differences of 50–200 mV between the xylem region of a Faraday-caged, intact, potted Ficus benjamina tree and its soil, as well as between its cut branches and soils and ionic solutions standardized to various pH values. Using identical platinum electrodes, no correlation between the voltage and time of day, illumination, sap flow, electrode elevation, or ionic composition of soil was found, suggesting no direct connection to simple dissimilar-metal redox reactions or transpirational activity. Instead, a clear relationship between the voltage polarity and magnitude and the pH difference between xylem and soil was observed. We attribute these sustained voltages to a biological concentration cell likely set up by the homeostatic mechanisms of the tree. Potential applications of this finding are briefly explored. PMID:18698415
NASA Astrophysics Data System (ADS)
Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir
2011-04-01
A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.
Weiss, Volker C
2015-10-14
In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.
Lodge, Timothy P; Ueki, Takeshi
2016-01-01
Room temperature ionic liquids are of great interest for many advanced applications, due to the combination of attractive physical properties with essentially unlimited tunability of chemical structure. High chemical and thermal stability, favorable ionic conductivity, and complete nonvolatility are just some of the most important physical characteristics that make ionic liquids promising candidates for emerging technologies. Examples include separation membranes, actuators, polymer gel electrolytes, supercapacitors, ion batteries, fuel cell membranes, sensors, printable plastic electronics, and flexible displays. However, in these and other applications, it is essential to solidify the ionic liquid, while retaining the liquid state properties of interest. A broadly applicable solidification strategy relies on gelation by addition of suitable triblock copolymers with the ABA architecture, producing ion gels or ionogels. In this paradigm, the A end blocks are immiscible with the ionic liquid, and consequently self-assemble into micellar cores, while some fraction of the well-solvated B midblocks bridge between micelles, forming a percolating network. The chemical structures of the A and B repeat units, the molar mass of the blocks, and the concentration of the copolymer in the ionic liquid are all independently tunable to attain desired property combinations. In particular, the modulus of the resulting ion gel can be readily varied between 100 Pa and 1 MPa, with little sacrifice of the transport properties of the ionic liquid, such as ionic conductivity or gas diffusivity. Suitable A blocks can impart thermoreversible gelation (with solidification either on heating or cooling) or even photoreversible gelation. By virtue of the nonvolatility of ionic liquids, a wide range of processing strategies can be employed directly to prepare ion gels in thin or thick film forms, including solvent casting, spin coating, aerosol jet printing, photopatterning, and transfer printing. For higher modulus ion gels it is even possible to employ a manual "cut and stick" strategy for easy device fabrication. Ion gels prepared from common triblock copolymers, for example, with A = polystyrene and B = poly(ethylene oxide) or poly(methyl methacrylate), in imidazolium based ionic liquids provide exceptional performance in membranes for separating CO 2 from N 2 or CH 4 . The same materials also are the best available gate dielectrics for printed plastic electronics, because their high capacitance endows organic transistors with milliamp output currents for sub-1 V applied bias, with switching speeds that can go well beyond 100 kHz, while being amenable to large area roll-to-roll printing. Incorporation of well-designed electroluminescent (e.g., Ru(bpy) 3 -based) or electrochromic (e.g., viologen-based) moieties into ion gels held between transparent electrodes yields flexible color displays operating with sub-1 V dc inputs.
Ion transport and softening in a polymerized ionic liquid
Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; ...
2014-11-13
Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this paper, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current–voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as themore » Wien effect). Onsager's theory of the Wien effect coupled with the Poisson–Nernst–Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. Finally, the observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.« less
Biredox ionic liquids: new opportunities toward high performance supercapacitors.
Bodin, C; Mourad, E; Zigah, D; Le Vot, S; Freunberger, S A; Favier, F; Fontaine, O
2018-01-01
Nowadays commercial supercapacitors are based on purely capacitive storage at the porous carbons that are used for the electrodes. However, the limits that capacitive storage imposes on energy density calls to investigate new materials to improve the capacitance of the device. This new type of electrodes (e.g., RuO 2 , MnO 2 …) involves pseudo-capacitive faradaic redox processes with the solid material. Ion exchange with solid materials is, however, much slower than the adsorption process in capacitive storage and inevitably leads to significant loss of power. Faradaic process in the liquid state, in contrast can be similarly fast as capacitive processes due to the fast ion transport. Designing new devices with liquid like dynamics and improved specific capacitance is challenging. We present a new approach to increase the specific capacitance using biredox ionic liquids, where redox moieties are tethered to the electrolyte ions, allowing high redox concentrations and significant pseudo-capacitive storage in the liquid state. Anions and cations are functionalized with anthraquinone (AQ) and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) moieties, respectively. Glassy carbon, carbon-onion, and commercial activated carbon electrodes that exhibit different double layer structures and thus different diffusion dynamics were used to simultaneously study the electrochemical response of biredox ionic liquids at the positive and negative electrode.
Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods
Bizarro, C. V.; Alemany, A.; Ritort, F.
2012-01-01
RNA duplex stability depends strongly on ionic conditions, and inside cells RNAs are exposed to both monovalent and multivalent ions. Despite recent advances, we do not have general methods to quantitatively account for the effects of monovalent and multivalent ions on RNA stability, and the thermodynamic parameters for secondary structure prediction have only been derived at 1M [Na+]. Here, by mechanically unfolding and folding a 20 bp RNA hairpin using optical tweezers, we study the RNA thermodynamics and kinetics at different monovalent and mixed monovalent/Mg2+ salt conditions. We measure the unfolding and folding rupture forces and apply Kramers theory to extract accurate information about the hairpin free energy landscape under tension at a wide range of ionic conditions. We obtain non-specific corrections for the free energy of formation of the RNA hairpin and measure how the distance of the transition state to the folded state changes with force and ionic strength. We experimentally validate the Tightly Bound Ion model and obtain values for the persistence length of ssRNA. Finally, we test the approximate rule by which the non-specific binding affinity of divalent cations at a given concentration is equivalent to that of monovalent cations taken at 100-fold concentration for small molecular constructs. PMID:22492710
Zhuang, Jie; McCarthy, John F; Tyner, John S; Perfect, Edmund; Flury, Markus
2007-05-01
Colloid transport may facilitate off-site transport of radioactive wastes at the Hanford site, Washington State. In this study, column experiments were conducted to examine the effect of irrigation schedule on releases of in situ colloids from two Hanford sediments during saturated and unsaturated transientflow and its dependence on solution ionic strength, irrigation rate, and sediment texture. Results show that transient flow mobilized more colloids than steady-state flow. The number of short-term hydrological pulses was more important than total irrigation volume for increasing the amount of mobilized colloids. This effect increased with decreasing ionic strength. At an irrigation rate equal to 5% of the saturated hydraulic conductivity, a transient multipulse flow in 100 mM NaNO3 was equivalent to a 50-fold reduction of ionic strength (from 100 mM to 2 mM) with a single-pulse flow in terms of their positive effects on colloid mobilization. Irrigation rate was more important for the initial release of colloids. In addition to water velocity, mechanical straining of colloids was partly responsible for the smaller colloid mobilization in the fine than in the coarse sands, although the fine sand contained much larger concentrations of colloids than the coarse sand.
Classical and quantum simulations of warm dense carbon
NASA Astrophysics Data System (ADS)
Whitley, Heather; Sanchez, David; Hamel, Sebastien; Correa, Alfredo; Benedict, Lorin
We have applied classical and DFT-based molecular dynamics (MD) simulations to study the equation of state of carbon in the warm dense matter regime (ρ = 3.7 g/cc, 0.86 eV
Bostick, David L.; Brooks, Charles L.
2009-01-01
To provide utility in understanding the molecular evolution of ion-selective biomembrane channels/transporters, globular proteins, and ionophoric compounds, as well as in guiding their modification and design, we present a statistical mechanical basis for deconstructing the impact of the coordination structure and chemistry of selective multidentate ionic complexes. The deconstruction augments familiar ideas in liquid structure theory to realize the ionic complex as an open ion-ligated system acting under the influence of an “external field” provided by the host (or surrounding medium). Using considerations derived from this basis, we show that selective complexation arises from exploitation of a particular ion's coordination preferences. These preferences derive from a balance of interactions much like that which dictates the Hofmeister effect. By analyzing the coordination-state space of small family IA and VIIA ions in simulated fluid media, we derive domains of coordinated states that confer selectivity for a given ion upon isolating and constraining particular attributes (order parameters) of a complex comprised of a given type of ligand. We demonstrate that such domains may be used to rationalize the ion-coordinated environments provided by selective ionophores and biological ion channels/transporters of known structure, and that they can serve as a means toward deriving rational design principles for ion-selective hosts. PMID:19486671
Matsuo, Takahiro; Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru
2014-01-01
Designing a lithium ion battery (LIB) with a three-dimensional device structure is crucial for increasing the practical energy storage density by avoiding unnecessary supporting parts of the cell modules. Here, we describe the superior secondary battery performance of the bulk all-solid-state LIB cell and a multilayered stacked bipolar cell with doubled cell potential of 6.5 V, for the first time. The bipolar-type solid LIB cell runs its charge/discharge cycle over 200 times in a range of 0.1–1.0 C with negligible capacity decrease despite their doubled output cell potentials. This extremely high performance of the bipolar cell is a result of the superior battery performance of the single cell; the bulk all-solid-state cell has a charge/discharge cycle capability of over 1500 although metallic lithium and LiFePO4 are employed as anodes and cathodes, respectively. The use of a quasi-solid electrolyte consisting of ionic liquid and Al2O3 nanoparticles is considered to be responsible for the high ionic conductivity and electrochemical stability at the interface between the electrodes and the electrolyte. This paper presents the effective applications of SiO2, Al2O3, and CeO2 nanoparticles and various Li+ conducting ionic liquids for the quasi-solid electrolytes and reports the best ever known cycle performances. Moreover, the results of this study show that the bipolar stacked three-dimensional device structure would be a smart choice for future LIBs with higher cell energy density and output potential. In addition, our report presents the advantages of adopting a three-dimensional cell design based on the solid-state electrolytes, which is of particular interest in energy-device engineering for mobile applications. PMID:25124398
NASA Technical Reports Server (NTRS)
Mandra, Salvatore
2017-01-01
We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.
Diffusion Monte Carlo simulations of gas phase and adsorbed D2-(H2)n clusters
NASA Astrophysics Data System (ADS)
Curotto, E.; Mella, M.
2018-03-01
We have computed ground state energies and analyzed radial distributions for several gas phase and adsorbed D2(H2)n and HD(H2)n clusters. An external model potential designed to mimic ionic adsorption sites inside porous materials is used [M. Mella and E. Curotto, J. Phys. Chem. A 121, 5005 (2017)]. The isotopic substitution lowers the ground state energies by the expected amount based on the mass differences when these are compared with the energies of the pure clusters in the gas phase. A similar impact is found for adsorbed aggregates. The dissociation energy of D2 from the adsorbed clusters is always much higher than that of H2 from both pure and doped aggregates. Radial distributions of D2 and H2 are compared for both the gas phase and adsorbed species. For the gas phase clusters, two types of hydrogen-hydrogen interactions are considered: one based on the assumption that rotations and translations are adiabatically decoupled and the other based on nonisotropic four-dimensional potential. In the gas phase clusters of sufficiently large size, we find the heavier isotopomer more likely to be near the center of mass. However, there is a considerable overlap among the radial distributions of the two species. For the adsorbed clusters, we invariably find the heavy isotope located closer to the attractive interaction source than H2, and at the periphery of the aggregate, H2 molecules being substantially excluded from the interaction with the source. This finding rationalizes the dissociation energy results. For D2-(H2)n clusters with n ≥12 , such preference leads to the desorption of D2 from the aggregate, a phenomenon driven by the minimization of the total energy that can be obtained by reducing the confinement of (H2)12. The same happens for (H2)13, indicating that such an effect may be quite general and impact on the absorption of quantum species inside porous materials.
Bohr-Sommerfeld quantization condition for Dirac states derived from an Ermakov-type invariant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thylwe, Karl-Erik; McCabe, Patrick
2013-05-15
It is shown that solutions of the second-order decoupled radial Dirac equations satisfy Ermakov-type invariants. These invariants lead to amplitude-phase-type representations of the radial spinor solutions, with exact relations between their amplitudes and phases. Implications leading to a Bohr-Sommerfeld quantization condition for bound states, and a few particular atomic/ionic and nuclear/hadronic bound-state situations are discussed.
Huang, Xiaokun; Zhang, Weiyi
2016-01-01
The misfit layered Bi2A2Co2O8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A’s ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi2Ca2Co2O8 and Bi2Sr2Co2O8 and intermediate-spin low-spin mixed-state of Bi2Ba2Co2O8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal. PMID:27901119
Huang, Xiaokun; Zhang, Weiyi
2016-11-30
The misfit layered Bi 2 A 2 Co 2 O 8 (A = Ca, Sr, Ba) compounds experience an insulator to metal transition as A's ionic radius increases. This feature is contradictory to the conventional wisdom that larger lattice constant favors insulating rather than metallic state, and is also difficult to be reconciled using the Anderson weak localization theory. In this paper, we show from the first-principles calculation that an insulator-metal transition takes place from a nonmagnetic low-spin state of Co 3+ ions to a hexagonally arranged intermediate-spin low-spin mixed-state in CoO 2 plane when ionic radius increases from Ca to Ba. The predicted low-spin state of Bi 2 Ca 2 Co 2 O 8 and Bi 2 Sr 2 Co 2 O 8 and intermediate-spin low-spin mixed-state of Bi 2 Ba 2 Co 2 O 8 are consistent not only with their measured transport properties, but also with the magnetic-field suppressed specific-heat peak observed at the transition temperature. In agreement with experiments, strong electronic correlation is required to stabilize the low-spin insulator and intermediate-spin low-spin metal.
NASA Astrophysics Data System (ADS)
Lin, Tai-Chia; Wang, Xiaoming; Wang, Zhi-Qiang
2017-10-01
Conventionally, the existence and orbital stability of ground states of nonlinear Schrödinger (NLS) equations with power-law nonlinearity (subcritical case) can be proved by an argument using strict subadditivity of the ground state energy and the concentration compactness method of Cazenave and Lions [4]. However, for saturable nonlinearity, such an argument is not applicable because strict subadditivity of the ground state energy fails in this case. Here we use a convexity argument to prove the existence and orbital stability of ground states of NLS equations with saturable nonlinearity and intensity functions in R2. Besides, we derive the energy estimate of ground states of saturable NLS equations with intensity functions using the eigenvalue estimate of saturable NLS equations without intensity function.
Symmetry-breaking dynamics of the finite-size Lipkin-Meshkov-Glick model near ground state
NASA Astrophysics Data System (ADS)
Huang, Yi; Li, Tongcang; Yin, Zhang-qi
2018-01-01
We study the dynamics of the Lipkin-Meshkov-Glick (LMG) model with a finite number of spins. In the thermodynamic limit, the ground state of the LMG model with an isotropic Hamiltonian in the broken phase breaks to a mean-field ground state with a certain direction. However, when the spin number N is finite, the exact ground state is always unique and is not given by a classical mean-field ground state. Here, we prove that when N is large but finite, through a tiny external perturbation, a localized state which is close to a mean-field ground state can be prepared, which mimics spontaneous symmetry breaking. Also, we find the localized in-plane spin polarization oscillates with two different frequencies ˜O (1 /N ) , and the lifetime of the localized state is long enough to exhibit this oscillation. We numerically test the analytical results and find that they agree very well with each other. Finally, we link the phenomena to quantum time crystals and time quasicrystals.
Optical Feshbach resonances and ground-state-molecule production in the RbHg system
NASA Astrophysics Data System (ADS)
Borkowski, Mateusz; Muñoz Rodriguez, Rodolfo; Kosicki, Maciej B.; Ciuryło, Roman; Żuchowski, Piotr S.
2017-12-01
We present the prospects for photoassociation, optical control of interspecies scattering lengths, and, finally, the production of ultracold absolute ground-state molecules in the Rb+Hg system. We use the state-of-the-art ab initio methods for the calculations of ground- [CCSD(T)] and excited-state (EOM-CCSD) potential curves. The RbHg system, thanks to the wide range of stable Hg bosonic isotopes, offers possibilities for mass tuning of ground-state interactions. The optical lengths describing the strengths of optical Feshbach resonances near the Rb transitions are favorable even at large laser detunings. Ground-state RbHg molecules can be produced with efficiencies ranging from about 20% for deeply bound to at least 50% for weakly bound states close to the dissociation limit. Finally, electronic transitions with favorable Franck-Condon factors can be found for the purposes of a STIRAP transfer of the weakly bound RbHg molecules to the absolute ground state using commercially available lasers.
NASA Astrophysics Data System (ADS)
dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.
2015-01-01
The ground state properties of Fe/N/Fe and Fe/O/Fe multilayers were investigated using the first principles calculations. The calculations were performed using the Linearized Augmented Plane Wave (LAPW) method implemented in the Wien2k code. A supercell consisting of one layer of nitride (or oxide) between two layers of Fe in the bcc structure was used to model the structure of the multilayer. The research in new materials also stimulated theoretical and experimental studies of iron-based nitrides due to their variety of structural and magnetic properties for the potential applications as in high strength steels and for high corrosion resistance. It is obvious from many reports that magnetic iron nitrides such as γ-Fe4N and α-Fe16N2 have interesting magnetic properties, among these a high magnetisation saturation and a high density crimp. However, although Fe-N films and multilayers have many potential applications, they can be produced in many ways and are being extensively studied from the theoretical point of view there is no detailed knowledge of their electronic structure. Clearly, efforts to understand the influence of the nitrogen atoms on the entire electronic structure are needed as to correctly interpret the observed changes in the magnetic properties when going from Fe-N bulk compounds to multilayer structures. Nevertheless, the N atoms are not solely responsible for electronics alterations in solid compounds. Theoretical results showed that Fe4X bulk compounds, where X is a variable atom with increasing atomic number (Z), the nature of bonding between X and adjacent Fe atoms changes from more covalent to more ionic and the magnetic moments of Fe also increase for Z=7, i.e. N. This is an indicative that atoms with a Z number higher than 7, i.e., O, can produce several new alterations in the entire magnetic properties of Fe multilayers. This paper presents the first results of an ab-initio electronic structure calculations, performed for Fe-N and Fe-O multilayers. Firstly, the formation energy and the cohesive energy of the multilayers are discussed. For optimised values, the cohesive energy of the multilayers to obtain the lattice parameters at the equilibrium ground state was used, i.e. a new methodology for this calculus was applied. Secondly, the magnetic properties and hyperfine interactions (magnetic field, electric field gradient and the isomer shift) of the iron atoms of the multilayers are discussed.
Design and synthesis of the superionic conductor Na10SnP2S12
NASA Astrophysics Data System (ADS)
Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-03-01
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm-1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.
Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D
2015-12-15
The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. Copyright © 2015 Elsevier Inc. All rights reserved.
Electronic signatures of dimerization in IrTe2
NASA Astrophysics Data System (ADS)
Dai, Jixia; Wu, Weida; Oh, Yoon Seok; Cheong, S.-W.; Yang, J. J.
2014-03-01
Recently, the mysterious phase transition around Tc ~ 260 K in IrTe2 has been intensively studied. A structural supermodulation with q =1/5 was identified below Tc. A variety of microscopic mechanisms have been proposed to account for this transition, including charge-density wave due to Fermi surface nesting, Te p-orbital driven structure instability, anionic depolymerization, ionic dimerization, and so on. However, there has not been an unified picture on the nature of this transition. To address this issue, we have performed low-temperature scanning tunneling microscopy and spectroscopy (STM/STS) experiments on IrTe2 and IrTe2-xSex. Our STM data clearly shows a strong bias dependence in both topography and local density of states (STS) maps. High resolution spectroscopic data further confirms the stripe-like electronic states modulation, which provides insight to the ionic dimerization revealed by X-ray diffraction.
A photoionization study of OH and OD from 680A to 950A: An analysis of the Rydberg series
NASA Technical Reports Server (NTRS)
Cutler, J. N.; He, Z. X.; Samson, J. A. R.
1994-01-01
The photoionization spectra of OH(+) and OD(+) have been reported from 680 to 950 A (18.23 to 13.05 eV) at a wavelength resolution of 0.07 A. Through interpretation of both spectra, the Rydberg series and their higher vibrational members have been reported for three of the excited ionic states, a(sup 1)Delta, A(sup 3)Pi(i), and b(sup 1) Sigma(sup +). A vibrational progression has also been observed in both OH(+) and OD(+) which is apparently related to a fourth excited ionic state, c(sup 1)Pi. Finally, the dissociative ionization limits, corrected to 0 K,for H2O AND D2O have been measured to be 18.11+/-0.01 and 18.21+/-0.01 eV, respectively, and shown to be in good agreement with previously reported results.
Design and synthesis of the superionic conductor Na10SnP2S12.
Richards, William D; Tsujimura, Tomoyuki; Miara, Lincoln J; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-03-17
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.
Water-gel for gating graphene transistors.
Kim, Beom Joon; Um, Soong Ho; Song, Woo Chul; Kim, Yong Ho; Kang, Moon Sung; Cho, Jeong Ho
2014-05-14
Water, the primary electrolyte in biology, attracts significant interest as an electrolyte-type dielectric material for transistors compatible with biological systems. Unfortunately, the fluidic nature and low ionic conductivity of water prevents its practical usage in such applications. Here, we describe the development of a solid state, megahertz-operating, water-based gate dielectric system for operating graphene transistors. The new electrolyte systems were prepared by dissolving metal-substituted DNA polyelectrolytes into water. The addition of these biocompatible polyelectrolytes induced hydrogelation to provide solid-state integrity to the system. They also enhanced the ionic conductivities of the electrolytes, which in turn led to the quick formation of an electric double layer at the graphene/electrolyte interface that is beneficial for modulating currents in graphene transistors at high frequencies. At the optimized conditions, the Na-DNA water-gel-gated flexible transistors and inverters were operated at frequencies above 1 MHz and 100 kHz, respectively.
Probing ‘Spin-Forbidden’ Oxygen Atom Transfer: Gas-Phase Reactions of Chromium-Porphyrin Complexes
Fornarini, Simonetta; Lanucara, Francesco; Warren, Jeffrey J.
2010-01-01
Oxygen-atom transfer reactions of metalloporphyrin species play an important role in biochemical and synthetic oxidation reactions. An emerging theme in this chemistry is that spin-state changes can play important roles, and a ‘two-state’ reactivity model has been extensively applied especially in iron-porphyrin systems. Herein we explore the gas phase oxygen-atom transfer chemistry of meso-tetrakis(pentafluorophenyl)porphyrin (TPFPP) chromium complexes, as well as some other tetradentate macrocyclic ligands. Electrospray ionization in concert with Fourier transform ion cyclotron resonance (FT-ICR) spectrometry has been used to characterize and observe reactivity of the ionic species [(TPFPP)CrIII]+ (1) and [(TPFPP)CrVO]+ (2). These are an attractive system to examine the effects of spin state change on oxygen atom transfer because the d1 CrV species are doublets while the CrIII complexes have quartet ground states with high-lying doublet excited states. In the gas phase, [(TPFPP)CrIII]+ forms adducts with a variety of neutral donors but O-atom transfer is only observed for NO2. Pyridine N-oxide adducts of 1 do yield 2 upon collision induced dissociation (CID), but the ethylene oxide, DMSO, and TEMPO analogs do not. [(TPFPP)CrVO]+ is shown by its reactivity and by CID experiments to be a terminal metal-oxo with a single vacant coordination site. It also displays limited reaction chemistry, being deoxygenated only by the very potent reductant P(OMe)3. In general, [(TPFPP)CrVO]+ species are much less reactive than the Fe and Mn analogs. Thermochemical analysis of the reactions points towards the involvement of spin issues in the lower observed reactivity of the chromium complexes. PMID:20218631
Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains
NASA Technical Reports Server (NTRS)
Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy
1989-01-01
A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.
40 CFR 141.401 - Sanitary surveys for ground water systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Sanitary surveys for ground water...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.401 Sanitary surveys for ground water systems. (a) Ground water systems must provide the State, at the State's...
Rydberg states of chloroform studied by VUV photoabsorption spectroscopy
NASA Astrophysics Data System (ADS)
Singh, Param Jeet; Shastri, Aparna; D'Souza, R.; Jagatap, B. N.
2013-11-01
The VUV photoabsorption spectra of CHCl3 and CDCl3 in the energy region 6.2-11.8 eV (50,000-95,000 cm-1) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a2, 4a1, 4e, 3e, orbitals of CHCl3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500-76,500 cm-1 have been reassigned to ν3 and combination modes of ν3+ν6 belonging to the 1a2→4p transition in contrast to earlier studies where they were assigned to a ν3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν3 and ν6 modes in the 4p Rydberg state of CHCl3 (CDCl3) are proposed to be ~454 (409) cm-1 and~130 (129) cm-1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform.
New technology innovations with potential for space applications
NASA Astrophysics Data System (ADS)
Krishen, Kumar
2008-07-01
Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.
The Submillimeter Spectrum of MnH and MnD (X7Σ+)
NASA Astrophysics Data System (ADS)
Halfen, D. T.; Ziurys, L. M.
2008-01-01
The submillimeter-wave spectrum of the MnH and MnD radicals in their 7Σ+ ground states has been measured in the laboratory using direct absorption techniques. These species were created in the gas phase by the reaction of manganese vapor, produced in a Broida-type oven, with either H2 or D2 gas in the presence of a DC discharge. The N = 0 → 1 transition of MnH near 339 GHz was recorded, which consisted of multiple hyperfine components arising from both the manganese and hydrogen nuclear spins. The N = 2 → 3 transition of MnD near 517 GHz was measured as well, but in this case only the manganese hyperfine interactions were resolved. Both data sets were analyzed with a Hund's case b Hamiltonian, and rotational, fine structure, magnetic hyperfine, and electric quadrupole constants have been determined for the two manganese species. An examination of the magnetic hyperfine constants shows that MnH is primarily an ionic species, but has more covalent character than MnF. MnH is a good candidate species for astronomical searches with Herschel, particularly toward material associated with luminous blue variable stars.
NASA Astrophysics Data System (ADS)
Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.
2018-03-01
The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.
NASA Astrophysics Data System (ADS)
Mullaney, John C.; Medcraft, Chris; Walker, Nick; Legon, Anthony
2017-06-01
Complexes of argon and water with silver iodide have been formed in the gas phase by laser ablation of a silver iodide rod and studied using a chirped-pulse Fourier transform microwave spectrometer. Ar\\cdot\\cdot\\cdotAgI was characterized by its rotational spectrum and ab initio calculations carried out at the CCSD(T)(F12c)/cc-pVTZ-F12 explicitly correlated level of theory. The molecule was shown to be linear in the ground state, with atoms in the order shown. The Ar\\cdot\\cdot\\cdotAg and Ag-I bond lengths, r_{0}(Ar\\cdot\\cdot\\cdotAg) = 2.6759 Å{} and r_{0}(Ag-I) = 2.5356 Å, were determined. Other factors such as the dissociation energy, the intermolecular quadratic stretching force constant and the change in ionicity of AgI upon forming the complex were also determined and will be discussed with comparison to the series Ar\\cdot\\cdot\\cdotAgX (X = F, Cl, Br and I). Data of the H_{2}O\\cdot\\cdot\\cdotAgI complex will also be presented with isotopic studies ongoing.
The 15 cm diameter ion thruster research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1974-01-01
The startup reliability of a 15 cm diameter mercury bombardment ion thruster which employs a pulsed high voltage tickler electrode on the main and neutralizer cathodes is examined. Startup of the thruster is achieved 100% of the time on the main cathode and 98.7% of the time on the neutralizer cathode over a 3640 cycle test. The thruster was started from a 20 C initial condition and operated for an hour at a 600 mA beam current. An energy efficiency of 75% and a propellant utilization efficiency of 77% was achieved over the complete cycle. The effect of a single cusp magnetic field thruster length on its performance is discussed. Guidelines are formulated for the shaping of magnetic field lines in thrusters. A model describing double ion production in mercury discharges is presented. The production route is shown to occur through the single ionic ground state. Photographs of the interior of an operating-hollow cathode are presented. A cathode spot is shown to be present if the cathode is free of low work-function surfaces. The spot is observed if a low work-function oxide coating is applied to the cathode insert. Results show that low work-function oxide coatings tend to migrate during thruster operation.
Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films.
Yang, C-H; Seidel, J; Kim, S Y; Rossen, P B; Yu, P; Gajek, M; Chu, Y H; Martin, L W; Holcomb, M B; He, Q; Maksymovych, P; Balke, N; Kalinin, S V; Baddorf, A P; Basu, S R; Scullin, M L; Ramesh, R
2009-06-01
Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A 'dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of approximately 1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.
Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films
NASA Astrophysics Data System (ADS)
Yang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R.
2009-06-01
Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A `dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of ~1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.
NASA Astrophysics Data System (ADS)
Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke
2016-07-01
As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.
Pizzoccaro, Marie-Alix; Drobek, Martin; Petit, Eddy; Guerrero, Gilles; Hesemann, Peter; Julbe, Anne
2016-01-01
Imidazolium bromide-based ionic liquids bearing phosphonyl groups on the cationic part were synthesized and grafted on γ-alumina (γ-Al2O3) powders. These powders were prepared as companion samples of conventional mesoporous γ-alumina membranes, in order to favor a possible transfer of the results to supported membrane materials, which could be used for CO2 separation applications. Effective grafting was demonstrated using energy dispersive X-ray spectrometry (EDX), N2 adsorption measurements, fourier transform infrared spectroscopy (FTIR), and special attention was paid to 31P and 13C solid state nuclear magnetic resonance spectroscopy (NMR). PMID:27472321
XPS studies of Mg doped GDC (Ce0.8Gd0.2O2-δ) for IT-SOFC
NASA Astrophysics Data System (ADS)
Tyagi, Deepak; Rao, P. Koteswara; Wani, B. N.
2018-04-01
Fuel Cells have gained much attention as efficient and environment friendly device for both stationary as well as mobile applications. For intermediate temperature SOFC (IT-SOFC), ceria based electrolytes are the most promising one, due to their higher ionic conductivity at relatively lower temperatures. Gd doped ceria is reported to be having the highest ionic conductivity. In the present work, Mg is codoped along with Gd and the electronic structure of the constituents is studied by XPS. XPS confirm that the Cerium is present in +4 oxidation state only which indicates that electronic conduction can be completely avoided.
Ground-state and Thermodynamic Properties of an S = 1 Kitaev Model
NASA Astrophysics Data System (ADS)
Koga, Akihisa; Tomishige, Hiroyuki; Nasu, Joji
2018-06-01
We study the ground-state and thermodynamic properties of an S = 1 Kitaev model. We first clarify the existence of global parity symmetry in addition to the local symmetry on each plaquette, which enables us to perform large-scale calculations on up to 24 sites. It is found that the ground state should be singlet, and its energy is estimated as E/N ˜ -0.65J, where J is the Kitaev exchange coupling. We find that the lowest excited state belongs to the same subspace as the ground state, and that the gap decreases monotonically with increasing system size, which suggests that the ground state of the S = 1 Kitaev model is gapless. Using the thermal pure quantum states, we clarify the finite temperature properties characteristic of the Kitaev models with S ≤ 2.
On the ground state of Yang-Mills theory
NASA Astrophysics Data System (ADS)
Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.
2011-08-01
We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.
Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12.
Sakamoto, Jeff; Rangasamy, Ezhiylmurugan; Kim, Hyunjoung; Kim, Yunsung; Wolfenstine, Jeff
2013-10-25
A solution-based process was investigated for synthesizing cubic Li7La3Zr2O12 (LLZO), which is known to exhibit the unprecedented combination of fast ionic conductivity, and stability in air and against Li. Sol-gel chemistry was developed to prepare solid metal-oxide networks consisting of 10 nm cross-links that formed the cubic LLZO phase at 600 ° C. Sol-gel LLZO powders were sintered into 96% dense pellets using an induction hot press that applied pressure while heating. After sintering, the average LLZO grain size was 260 nm, which is 13 times smaller compared to LLZO prepared using a solid-state technique. The total ionic conductivity was 0.4 mS cm(-1) at 298 K, which is the same as solid-state synthesized LLZO. Interestingly, despite the same room temperature conductivity, the sol-gel LLZO total activation energy is 0.41 eV, which 1.6 times higher than that observed in solid-state LLZO (0.26 eV). We believe the nano-scale grain boundaries give rise to unique transport phenomena that are more sensitive to temperature when compared to the conventional solid-state LLZO.
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron
NASA Astrophysics Data System (ADS)
Barklem, P. S.
2018-05-01
Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90
Welding fixture for joining bar-wound stator conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Souza, Urban J.; Rhoads, Frederick W.; Hanson, Justin
A fixture assembly for welding a plurality of stator wire end pairs may include an anvil, a movable clamp configured to translate between an unclamped state and a clamped state, a first grounding electrode, and a second grounding electrode. The movable clamp may be configured to urge the plurality of stator wire ends against the anvil when in the clamped state. The moveable clamp includes a separator feature that generally extends toward the anvil. Each of the first grounding electrode and second grounding electrodes may be configured to translate between a clamped state and an unclamped state. When in themore » clamped state, each of the first and second grounding electrodes is configured to urge a pair of the plurality of stator wire end pairs against the separator feature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boughzala, Khaled, E-mail: khaledboughzala@gmail.com; Preparatory Institute for Engineering Studies, 5000 Monastir; Debbichi, Mourad
In this paper, we report the effect of the tunnel anions on the ionic conductivity of Strontium-Lanthanum silicate apatites. The Sr{sub 4}La{sub 6}(SiO{sub 4}){sub 6}F{sub 2} and Sr{sub 4}La{sub 6}(SiO{sub 4}){sub 6}O ceramics were prepared by the solid state reaction method. X-ray diffraction, NMR spectroscopy and Raman measurements were performed to investigate the crystal structure and vibrational active modes. Moreover, the electronic structures of the crystals were evaluated by the first-principles quantum mechanical calculation based on the density functional theory. Finally, the ionic conductivity was studied according to the complex impedance method. - Graphical abstract: The relaxed primitive unit cellmore » for Sr{sub 4}La{sub 6}Fap. Display Omitted.« less
Stalking Higher Energy Conformers on the Potential Energy Surface of Charged Species.
Brites, Vincent; Cimas, Alvaro; Spezia, Riccardo; Sieffert, Nicolas; Lisy, James M; Gaigeot, Marie-Pierre
2015-03-10
Combined theoretical DFT-MD and RRKM methodologies and experimental spectroscopic infrared predissociation (IRPD) strategies to map potential energy surfaces (PES) of complex ionic clusters are presented, providing lowest and high energy conformers, thresholds to isomerization, and cluster formation pathways. We believe this association not only represents a significant advance in the field of mapping minima and transition states on the PES but also directly measures dynamical pathways for the formation of structural conformers and isomers. Pathways are unraveled over picosecond (DFT-MD) and microsecond (RRKM) time scales while changing the amount of internal energy is experimentally achieved by changing the loss channel for the IRPD measurements, thus directly probing different kinetic and isomerization pathways. Demonstration is provided for Li(+)(H2O)3,4 ionic clusters. Nonstatistical formation of these ionic clusters by both direct and cascade processes, involving isomerization processes that can lead to trapping of high energy conformers along the paths due to evaporative cooling, has been unraveled.
[A study on the bond interface between low-fusing dental porcelain and pure titanium].
Mo, A; Cen, Y; Liao, Y; Wang, J; Shi, X
2001-09-01
To evaluate the bond interface between low fusing dental porcelain and pure titanium by observing the topography and detecting the ionic diffusion in the interface area. The low fusing-porcelain La-porcelain produced by the authors or Vita Titankeramik porcelain was fused to the surfaces of pure titanium. The topography of the interface between pure titanium and porcelain, and the structure of experimental materials were observed with SEM. The state of ionic diffusion in the interface area was investigated with EPMA. Excellent permeation and diffusion of La-porcelain were observed on the surfaces of pure titanium. The diffusion of ions of stannum and silicon was discovered in the interface area. The microstructure of La-porcelain to pure titanium bond interface was finer than that of Vita Titankeramik porcelain. Excellent bond can be produced in the interface between La-porcelain and pure titanium. The bonding mechanism may involve mechanical bond and chemical bond. The ionic diffusion of stannum plays an important role in the bonding of porcelain to pure titanium.
Immobilization of yeast cells with ionic hydrogel carriers by adhesion-multiplication.
Zhaoxin, L; Fujimura, T
2000-12-01
The mixture of an ionic monomer, 2-acrylamido 2-methylpropanesulfonic acid (TBAS), and a series of poly(ethylene glycol) dimethacrylate (nG) monomers were copolymerized with 60Co gamma-rays, and the produced ionic hydrogel polymers were used for immobilization of yeast cells. The cells were adhered onto the surface of the hydrogel polymers and intruded into the interior of the polymers with growing. The immobilized yeast cells with these hydrogel polymers had higher ethanol productivity than that of free cells. The yield of ethanol with poly(TBAS-14G) carrier was the highest and increased by 3.5 times compared to the free cells. It was found that the ethanol yield increased with the increase of glycol number in poly(ethylene glycol) dimethacrylate. The state of the immobilized cells was observed with microscope, and it was also found that the difference in the ethanol productivity is mainly due to the difference in the internal structure and properties of polymer carrier, such as surface charge, hydrophilicity, and swelling ability of polymer carrier.
NASA Astrophysics Data System (ADS)
Lee, Ming-Tsung; Li, Yun-Shan; Sun, I.-Wen; Chang, Jeng-Kuei
2014-01-01
Ideal pseudocapacitive behavior of α-MnO2 electrodes over a potential range of 3 V is found in lithium bis(trifluoromethylsulfonyl)imide (LiTFSI)-doped butylmethylpyrrolidinium-dicyanamide (BMP-DCA) ionic liquid (IL), which is non-flammable and has a decomposition temperature of as high as ∼300 °C. Accordingly, this electrolyte is promising for high-energy, high-power, and high-safety supercapacitor applications. The addition of 0.01 M LiTFSI in the IL improves the oxide capacitance from 90 F g-1 to 120 F g-1, which is due to the incorporated Li+ ions promoting Mn valent state variation (between trivalent and tetravalent) during charge-discharge. However, excessive LiTFSI doping causes a capacitance decay due to reduced electrolyte ionic conductivity. In situ X-ray absorption spectroscopy is used to investigate the energy storage mechanism. A capacitance activation process of α-MnO2 in the Li+-doped BMP-DCA IL is found.
NASA Astrophysics Data System (ADS)
Ramenskaya, L. M.; Grishina, E. P.; Kudryakova, N. O.
2018-01-01
Thermochemical properties of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid [EMim]NTf2 containing moisture absorbed from the atmosphere (0.242 wt %) are investigated. The phase behavior and thermal stability relative to salt dried in vacuum are studied by means of thermogravimetry and differential scanning calorimetry at different heating and cooling rates. The glass transition, crystallization, and melting temperatures, the enthalpies of phase transitions, and the changes in heat capacity during the formation of glass are determined. It is established that the absorbed water crystallizes at a temperature of around -40.6°C and has virtually no effect on the thermal stability and phase behavior of the salt. Rapid cooling results in the ionic liquid transitioning into the glass state at -91.7 °C and the formation of three mesophases with different melting temperatures; one crystalline modification that melts at a temperature of -19.3°C forms upon slow cooling.
NASA Astrophysics Data System (ADS)
Smiatek, Jens
2017-06-01
Ionic liquids (ILs) are used in a variety of technological and biological applications. Recent experimental and simulation results reveal the influence of aqueous ionic liquids on the stability of protein and enzyme structures. Depending on different parameters like the concentration and the ion composition, one can observe distinct stabilization or denaturation mechanisms for various ILs. In this review, we summarize the main findings and discuss the implications with regard to molecular theories of solutions and specific ion effects. A preferential binding model is introduced in order to discuss protein-IL effects from a statistical mechanics perspective. The value of the preferential binding coefficient determines the strength of the ion influence and indicates a shift of the chemical equilibrium either to the native or the denatured state of the protein. We highlight the role of water in order to explain the self-association behavior of the IL species and discuss recent experimental and simulation results in the light of the observed binding effects.
NASA Astrophysics Data System (ADS)
de la Torre-Gamarra, Carmen; Appetecchi, Giovanni Battista; Ulissi, Ulderico; Varzi, Alberto; Varez, Alejandro; Passerini, Stefano
2018-04-01
Ceramic electrolytes are prepared through sintering processes which are carried out at high temperatures and require prolonged operating times, resulting unwelcome in industrial applications. We report a physicochemical characterization on hybrid, sodium conducting, electrolyte systems obtained by coating NASICON ceramic powders with the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. The goal is to realize a ceramic-IL interface with improved sodium mobility, aiming to obtain a solid electrolyte with high ion transport properties but avoiding sintering thermal treatment. The purpose of the present work, however, is showing how simply combining NASICON powder and Py14TFSI does not lead to any synergic effect on the resulting hybrid electrolyte, evidencing that an average functionalization of the ceramic powder surface and/or ionic liquid is needed. Also, the processing conditions for preparing the hybrid samples are found to affect their ion transport properties.
Application of Ionic Liquids in Pot-in-Pot Reactions.
Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin
2016-02-26
Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction.