Lin, Jin; Lü, Renqing; Wu, Chongchong; Xiao, Ye; Liang, Fei; Famakinwa, Temilola
2017-04-01
The interactions between dibenzothiophene (DBT) and N-butyl-N-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), N-butyl-N-methylmorpholinium tetrafluoroborate ([Bmmorpholinium][BF 4 ]), N-butyl-N-methylpiperdinium tetrafluoroborate ([BMPiper][BF 4 ]), N-butyl-N-methylpyrrolidinium tetrafluoroborate ([BMPyrro][BF 4 ]), and N-butylpyridinium tetrafluoroborate ([BPY][BF 4 ]) were investigated using density functional theory approach. Geometric, electron, and topological properties were analyzed using natural bond orbital, atoms in molecules theory, and noncovalent interaction methods in order to understand intermolecular interactions between DBT and ionic liquids. The result shows that hydrogen bond and van der Waals interactions are widespread in all the ionic liquids-DBT systems. Ion-π interactions between DBT and cation or anion are also observed, while π + -π interactions are only found in the [BMIM][BF 4 ]-DBT and [BPY][BF 4 ]-DBT systems. The order of interaction energy is [BPY][BF4]-DBT > [BMIM][BF 4 ]-DBT > [BMPiper][BF 4 ]-DBT > [BMPyrro][BF 4 ]-DBT > [BMmorpholinum][BF 4 ]-DBT. The energies between DBT and the two ionic liquids containing aromatic cations are significantly higher.
Inoue, Tohru; Yamakawa, Haruka
2011-04-15
Micellization behavior was investigated for polyoxyethylene-type nonionic surfactants with varying chain length (C(n)E(m)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)). Critical micelle concentration (cmc) was determined from the variation of (1)H NMR chemical shift with the surfactant concentration. The logarithmic value of cmc decreased linearly with the number of carbon atoms in the surfactant hydrocarbon chain, similarly to the case observed in aqueous surfactant solutions. However, the slope of the straight line is much smaller in bmimBF(4) than in aqueous solution. Thermodynamic parameters for micelle formation estimated from the temperature dependence of cmc showed that the micellization in bmimBF(4) is an entropy-driven process around room temperature. This behavior is also similar to the case in aqueous solution. However, the magnitude of the entropic contribution to the overall micellization free energy in bmimBF(4) is much smaller compared with that in aqueous solution. These results suggest that the micellization in bmimBF(4) proceeds through a mechanism similar to the hydrophobic interaction in aqueous surfactant solutions, although the solvophobic effect in bmimBF(4) is much weaker than the hydrophobic effect. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ramos-Rodríguez, Daniel-Apolinar; Rodríguez-Hidalgo, María-del-Rosario; Soto-Figueroa, César; Vicente, Luis
2010-03-01
This work explores the diffusivity of the drug albendazole contained in a polymeric vehicle, Styrene-Divinylbenzene (ST-DVD), when it is subject to different environments. The environments consist of water and three different ionic liquids. First, the solubility parameters of these ionic liquids, [BMIM][PF6], [HMIM][Br] and [BMIM][BF4], and albendazole were evaluated by means of molecular dynamics employing COMPASS force-field and a NPT ensemble at 298 K. Then a mesoscopic simulation using Dissipative Particle Dynamics (DPD) was used. In the presence of ionic liquids the albendazole exhibits a diffusivity in [BMIM][PF6] around ten times that shown in [BMIM][BF4] or [HMIM][Br]. This is connected with the corresponding solvent power. The results obtained from these molecular and mesoscopic simulations are consistent with reported experimental results and are useful to predict and evaluate the solvent power of ionic liquids applied to drugs of pharmaceutical use.
Inoue, Tohru; Higuchi, Yuka; Misono, Takeshi
2009-10-01
The melting behavior of polyethyleneglycol dodecyl ethers (C(12)E(6), C(12)E(7), and C(12)E(8)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), was investigated by means of differential scanning calorimetry (DSC). The melting temperature as a function of the surfactant concentration, combined with the cmc curve and cloud point curve, provided phase diagrams for the surfactant/bmimBF(4) mixtures in solvent-rich region. The characteristic feature of the mixtures is an existence of the Krafft temperature which is usually not observed with aqueous solutions of nonionic surfactants. The heat of fusion as a function of the surfactant concentration provided the interaction energy between the surfactant and bmimBF(4). The interaction energy shows a linear dependence on the length of polyoxyethylene (POE) chain of the surfactants, which suggests that the solvation takes place around the POE chain.
Jin, Kun; Huang, Xiaoying; Pan, Long; Li, Jing; Appel, Aaron; Wherland, Scot; Pang, Long
2002-12-07
Use of an ionic liquid [bmim][BF4] (bmim = 1-butyl-3-methylimidazolium) as solvent has resulted in the first extended coordination structure, the two-dimensional network [Cu(bpp)]BF4 [bpp = 1,3-bis(4-pyridyl)propane], produced via a solvothermal route.
Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template.
Yao, Chengli; Xie, Anjian; Shen, Yuhua; Zhu, Jinmiao; Li, Hongying
2015-06-01
Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shekaari, Hemayat; Zafarani-Moattar, Mohammed Taghi
2008-04-01
Apparent molar volumes, V_φ , and compressibilities, kappa _φ , of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) have been determined from precise density and speed-of-sound measurements in organic solvents, methanol (MeOH), acetonitrile (MeCN), tetrahydrofuran (THF), N, N-dimethylacetamide (DMA), and dimethylsulfoxide (DMSO) in the dilute region of the ionic liquid. Corresponding values at infinite dilution are estimated by the Redlich-Mayer and Pitzer equations. The results have been interpreted by the interaction of the [BMIm][BF4] in the organic solvents. Results show that the structure and dielectric constant of the organic solvents play an important role for the ion-solvent interactions in these mixtures. It was found that the strength of interaction between [BMIm][BF4] with the studied organic solvents has the order DMSO > DMA > MeOH > MeCN > THF.
Tsarpali, Vasiliki; Dailianis, Stefanos
2015-07-01
The main goal of this study was to investigate the toxicity of the imidazolium-based ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) and [omim][BF4] (1-octyl-3-methylimidazolium tetrafluoroborate), in battery of standard aquatic toxicity test organisms. Specifically, exposure of the algae Scenedesmus rubescens, crustaceans Thamnocephalus platyurus and Artemia franciscana, rotifers Brachionus calyciflorus and Brachionus plicatilis and bivalve Mytilus galloprovincialis to different concentrations of [bmim][BF4], [omim][BF4] and/or a binary mixture of [bmim][BF4]-[omim][BF4] (1:1) with or without acetone (carrier solvent), revealed that solvent can differentially mediate ILs' toxic profile. Acetone's ability to differentially affect ILs' cation's alkyl chain length, as well as the hydrolysis of [BF4(-)] anions was evident. Given that the toxic potency of the tested ILs seemed to be equal or even higher (in some cases) than those of conventional organic solvents, the present study revealed that the characterization of imidazolium-based ILs as "green solvents" should not be generalized, at least in case of their natural occurrence in mixtures with organic solvents, such as acetone. Copyright © 2015 Elsevier Inc. All rights reserved.
del Valle, J C; García Blanco, F; Catalán, J
2015-04-02
The empirical solvent scales for polarizability (SP), dipolarity (SdP), acidity (SA), and basicity (SB) have been successfully used to interpret the solvatochromism of compounds dissolved in organic solvents and their solvent mixtures. Providing that the published solvatochromic parameters for the ionic liquids 1-(1-butyl)-3-methylimidazolium tetrafluoroborate, [BMIM][BF4] and 1-(1-butyl)-3-methylimidazolium hexafluorophosphate, [BMIM][PF6], are excessively widespread, their SP, SdP, SA, and SB values are measured herein at temperatures from 293 to 353 K. Four key points are emphasized herein: (i) the origin of the solvatochromic solvent scales--the gas phase, that is the absence of any medium perturbation--; (ii) the separation of the polarizability and dipolarity effects; (iii) the simplification of the probing process in order to obtain the solvatochromic parameters; and (iv) the SP, SdP, SA, and SB solvent scales can probe the polarizability, dipolarity, acidity, and basicity of ionic liquids as well as of organic solvents and water-organic solvent mixtures. From the multiparameter approach using the four pure solvent scales one can draw the conclusion that (a) the solvent influence of [BMIM][BF4] parallels that of formamide at 293 K, both of them miscible with water; (b) [BMIM][PF6] shows a set of solvatochromic parameters similar to that of chloroacetonitrile, both of them water insoluble; and (c) that the corresponding solvent acidity and basicity of the ionic liquids can be explained to a great extent from the cation species by comparing the empirical parameters of [BMIM](+) with those of the solvent 1-methylimidazole. The insolubility of [BMIM][PF6] in water as compared to [BMIM][BF4] is tentatively connected to some extent to the larger molar volume of the anion [PF6](-), and to the difference in basicity of [PF6](-) and [BF4](-).
Kundu, Niloy; Banik, Debasis; Roy, Arpita; Kuchlyan, Jagannath; Sarkar, Nilmoni
2015-10-14
In this article, we have investigated the effect of a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]-BF4), on the aggregation properties of a biological surfactant, sodium deoxycholate (NaDC), in water. In solution, unlike conventional surfactants it shows stepwise aggregation and the effect of the conventional ionic liquid on the aggregation properties is rather interesting. We have observed concentration dependent dual role of the ionic liquid; at their low concentration, the aggregated structure of NaDC reorganizes itself into an elongated rod like structure. However, the aggregated network is disintegrated into small aggregates upon further addition of ionic liquid. TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy) and FLIM (Fluorescence Lifetime Imaging Microscopy) images also confirmed the structural alteration of NaDC upon varying the concentration of the ionic liquid. The proton NMR data indicate that hydrophobic as well as electrostatic interaction is solely responsible for such structural adaptation of NaDC in the presence of an ionic liquid. The host-guest interaction inside the aggregates is monitored using Coumarin-153 (C-153) and the location of C-153 is probed by varying the excitation wavelength from 375 nm to 440 nm and the two binding sites of the aggregates are affected in a different fashion in the presence of ionic liquid. Excitation in the blue region selects the fluorophores which preferably bind to the buried region of the aggregates, whereas 440 nm excitation corresponds to the guest molecules which are exposed to the solvent molecules. The average solvation time of C-153 is increased in the presence of 1.68 wt% [bmim]-BF4 at λexc = 440 nm i.e. the probe molecules relocate themselves to a more restricted region. However, the average solvation time became 2.6 times faster in the presence of 11.2 wt% [bmim]-BF4, which corresponds to a more polar and exposed region. The time resolved anisotropy measurements and polarity determined by pyrene also supported our results in addition to solvation dynamics measurements. In summary, ionic liquids can modulate the host-guest interaction of bile salt aggregates, which can be used as nanocarriers for drug delivery.
Comelles, Francesc; Ribosa, Isabel; Gonzalez, Juan José; Garcia, M Teresa
2017-03-15
Mixtures of the cationic surfactant hexadecyltrimethylammonium bromide (CTA-Br) and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF 4 ) in aqueous solutions are expected to behave as typical binary cationic surfactant system taking into account the surface activity displayed by the ionic liquid, instead of considering the IL as a water cosolvent. Surface tension and conductivity measurements have been conducted as a function of the total concentration of the mixtures at different surfactant mole fraction (α CTA-Br ) to investigate the surface active properties. Turbidity immediately appearing when the compounds are mixed in water suggests the spontaneous formation of the low soluble compound hexadecyltrimethylammonium tetrafluoroborate (CTA-BF 4 ), together with the salt formed by the respective counterions bmim + and Br - in solution. For α CTA-Br ≠0.5, furthermore of the mentioned compounds, the spare bmim-BF 4 (for α CTA-Br <0.5) or CTA-Br (for α CTA-Br >0.5), are also present in the aqueous solution. Systems containing excess of bmim-BF 4 show a low critical aggregate concentration (cac), but an unexpected high surface tension at cac (γ cac ≈53-56mN/m), as pure CTA-BF 4 . For systems containing excess of CTA-Br, cac increases but γ cac decreases up to 36mN/m. Mixtures of pure CTA-BF 4 and bmim-BF 4 or CTA-Br behave as typical binary surfactant systems. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tahara, Hironobu; Yonemura, Hiroaki; Harada, Satoko; Yamada, Sunao
2011-08-01
Magnetic field effects (MFEs) on photoelectrochemical reactions of three porphyrin-viologen linked compounds with various methylene groups [ZnP(n)V (n=4,6,8)] were examined in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) as an ionic liquid using a two-electrode cell. Stable anodic photocurrents are produced by irradiating ZnP(n)V (n=4,6,8) in [BMIM][BF4] with visible light, and the MFEs on photocurrents were clearly observed in ZnP(n)V (n=4,6,8). The MFEs on photocurrents increase with magnetic field for lower magnetic fields (B ≤200 mT) and are constant for higher magnetic fields (B > 200 mT). The magnitude of the MFEs in ZnP(n)V (n=6,8) are larger than that in ZnP(4)V. The MFEs can be explained by radical pair mechanism. The magnitude of the MFEs is larger than those in electrodes modified with ZnP(n)V (n=4,6,8) as Langmuir-Blodgett films. The results are most likely attributable to the properties of [BMIM][BF4] and the mechanism of photoelectrochemical reaction.
Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil.
Sunitha, S; Kanjilal, S; Reddy, P S; Prasad, R B N
2007-12-01
Ionic liquids, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIm][PF(6)]) and 1-ethyl-3-methyl imidazolium hexafluorophosphate ([EMIm][PF(6)]), were used for the methanolysis of sunflower oil using Candida antarctica lipase (Novozyme 435) and gave yields of fatty acid methyl esters at 98-99% within 10 h. The optimum conditions of methanolysis in hydrophobic ionic liquids are 2% (w/w) lipase, 1:1 (w/w) oil/ionic liquid and 1:8 (mol/mol) oil/methanol at 58-60 degrees C. Methanolysis using hydrophilic ionic liquids, 3-methyl imidazolium tetrafluoroborate ([HMIm][BF(4)]) and 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIm][BF(4)]), gave very poor yields. A hydrophobic ionic liquid thus protects the lipase from methanol. Recovered ionic liquids and lipase were used for four successive reaction cycles without any significant loss of activity.
Tsarpali, Vasiliki; Belavgeni, Alexia; Dailianis, Stefanos
2015-07-01
This study investigated the cytotoxic, oxidative and genotoxic effects of two commonly used imidazolium ionic liquids (ILs), [bmim][BF4] (1-butyl-3-methylimidazolium) and [omim][BF4] (1-methyl-3-octylimidazolium tetrafluoroborate), on the marine mussel Mytilus galloprovincialis, as well as whether acetone could mediate their toxic profile. In this context, mussels were firstly exposed to different concentrations of [bmim][BF4] or [omim][BF4], with or without the presence of acetone (at a final concentration of 0.06% v/v), for a period of 96h, in order to determine the concentration that causes 50% mussel mortality (LC50 values) in each case. Thereafter, mussels were exposed to sub- and non-lethal concentrations of ILs for investigating their ability to cause lysosomal membrane impairment (with the use of neutral red retention assay/NRRT), superoxide anion and lipid peroxidation byproduct (malondialdehyde/MDA) formation, as well as DNA damage and formation of nuclear abnormalities in hemocytes. The results showed that [omim][BF4] was more toxic than [bmim][BF4] in all cases, while the presence of acetone resulted in a slight attenuation of its toxicity. The different toxic behavior of ILs was further revealed by the significantly lower levels of NRRT values observed in [omim][BF4]-treated mussels, compared to those occurring in [bmim][BF4] in all cases. Similarly, [bmim][BF4]-mediated oxidative and genotoxic effects were observed only in the highest concentration tested (10mgL(-1)), while [omim][BF4]-mediated effects were enhanced at lower concentrations (0.01-0.05mgL(-1)). Overall, the present study showed that [bmim][BF4] and [omim][BF4] could induce not only lethal but also nonlethal effects on mussel M. galloprovincialis. The extent of [bmim][BF4] and/or [omim][BF4]-mediated effects could be ascribed to the length of each IL alkyl chain, as well as to their lipophilicity. Moreover, the role of acetone on the obtained toxic effects of the specific ILs was reported for the first time, giving evidence for its interaction with the ILs and the modulation of their toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
Shamim, Nabila; McKenna, Gregory B
2010-12-09
The present paper reports the results of a systematic rheological study of the dynamic moduli of 1-butyl 3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl 3-methylimidazolium hexafluorophosphate ([Bmim][PF(6)]), and 1-ethyl 3-methylimidazolium ethylsulfate ([Emim][EtSO(4)]) in the vicinity of their respective glass transition temperatures. The results show an anomalous aging in that the dynamic and the low shear rate viscosities decrease with time at temperatures near to, but above, the glass transition temperature, and this is described. The samples that are aged into equilibrium obey the time-temperature superposition principle, and the shift factors and the viscosities follow classic super-Arrhenius behaviors with intermediate fragility values as the glass transition is approached. Similar experiments using a high-purity [Bmim][BF(4)] show that using a higher purity of the ionic liquid, while changing absolute values of the properties, does not eliminate the anomalous aging response. The data are also analyzed in a fashion similar to that used for polymer melts, and we find that these ionic liquids do not follow, for example, the Cox-Merz relationship between the steady shear viscosity and the dynamic viscosity.
Jagannath, Badrinath; Muthukumar, Sriram; Prasad, Shalini
2018-08-03
We have investigated the role of kosmotropic anionic moieties and chaotropic cationic moieties of room temperature hydrophilic ionic liquids in enhancing the biosensing performance of affinity based immunochemical biosensors in human sweat. Two ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM[BF 4 ]) and choline dihydrogen phosphate (Choline[DHP]) were investigated in this study with Choline[DHP] being more kosmotropic in nature having a more protein stabilizing effect based on the hofmeister series. Non-faradaic interfacial charge transfer has been employed as the mechanism for evaluating the formation and the biosensing of capture probe antibodies in room temperature ionic liquids (RTILs)/aqueous human sweat interface. The charge of the ionic moieties were utilized to form compact electrical double layers around the antibodies for enhancing the stability of the antibody capture probes, which was evaluated through zeta potential measurements. The zeta potential measurements indicated stability of antibodies due to electrostatic repulsion of the RTIL charged moieties encompassing the antibodies, thus preventing any aggregation. Here, we report for the first time of non-faradaic electrochemical impedance spectroscopy equivalent circuit model analysis for analyzing and interpreting affinity based biosensing at hybrid electrode/ionic liquid-aqueous sweat buffer interface guided by the choice of the ionic liquid. Interleukin-6 (IL-6) and cortisol two commonly occurring biomarkers in human sweat were evaluated using this method. The limit of detection (LOD) obtained using both ionic liquids for IL-6 was 0.2 pg mL -1 with cross-reactivity studies indicating better performance of IL-6 detection using Choline[DHP] and no response to cross-reactive molecule. The LOD of 0.1 ng/mL was achieved for cortisol and the cross-reactivity studies indicated that cortisol antibody in BMIM[BF 4 ] did not show any signal response to cross-reactive molecules. Furthermore, improved sensitivity and LOD was achieved using ionic liquids as compared to capture probes in aqueous buffer. Copyright © 2018 Elsevier B.V. All rights reserved.
Ni, Xinjiong; Yu, Meijuan; Cao, Yuhua; Cao, Guangqun
2013-09-01
In this work, the influences of ionic liquid (IL) as a modifier on microemulsion microstructure and separation performance in MEEKC were investigated. Experimental results showed that synergetic effect between IL 1-butyl-3-methylimidazolium tetrafluoro-borate (BmimBF4 ) and surfactant SDS gave a decreased CMC. With increment of IL in microemulsion, negative ζ potential of the microdroplets reduced gradually. The influence of IL on the dimensions of microdroplet was complicated. At BmimBF4 less than 8 mM, IL made microemulsion droplet smaller in size. While at BmimBF4 more than 10 mM, the size increased and reached to a maximum value at 12 mM, where the microdroplets were larger than that without IL. After that, the micreodroplet size decreased again. Relative fluorescence intensity of the first vibration band of pyrene to the third one (I1 /I3 ) enhanced as IL was added to microemulsion, which indicated that this addition increased environmental polarity in the inner core of microdroplets. Prednisone, hydrocortisone, prednisolone, hydrocortisone acetate, cortisone acetate, prednisolone acetate, and triamcinolone acetonide were analyzed with MEEKC modified with IL to evaluate the separation performance. Cortisone acetate and prednisolone acetate could not be separated at all in typical microemulsion. The seven analytes could be separated by the addition of 10 mM BmimBF4 into the microemulsion system. The method has been used for analysis of corticosteroids in cosmetic samples with simple extraction; the recoveries for seven analytes were between 86 and 114%. This method provides accuracy, reproducibility, pretreatment simplicity, and could be applied to the quality control of cosmetics. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Xue; Qian, Yuting; Jiao, Yajie; Liu, Jiyang; Xi, Fengna; Dong, Xiaoping
2017-04-01
Despite complex molecular and atomic doping, efficient post-functionalization strategies for graphene quantum dots (GQDs) are of key importance to control the physicochemical properties and broaden the practical applications. With ionic liquid as specific modification agents, herein, the preparation of ionic liquid-capped GQDs (IL-GQDs) and its application as label-free fluorescent probe for direct detection of anion were reported. Hydroxyl-functionalized GQDs that could be easily gram-scale synthesized and possessed single-crystalline were chosen as the model GQDs. Also, the most commonly used ionic liquids, water-soluble 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF 4 ) was chosen as the model IL. Under the ultrasonic treatment, BMIMBF 4 easily composited with GQDs to form IL-GQDs. The synthesized IL-GQDs were characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and fluorescence (FL) spectrum. After successful combination with IL, the excitation-independent photoluminescence behavior of GQDs presented almost no change, whereas, the anion responsiveness of IL-GQDs drastically improved, which afforded the IL-GQDs a sensitive response to Fe(CN) 6 3- . Based on the strong fluorescence quench, a facile and sensitive detection of Fe(CN) 6 3- was achieved. A wide linear range of 1.0×10 -7 to 2.5×10 -3 moll -1 with a low detection limit of 40 nmol l -1 was obtained. As the composition and properties of IL and GQDs could be easily tuned by varying the structure, ionic liquids-capped GQDs might present promising potential for their applications in sensing and catalysis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, Samriti; Sandarve, Sharma, Amit K.; Sharma, Meena
2018-05-01
For the investigation of interactions of L-leucine in aqueous solutions of an ionic liquid (1-butyl-3-methylimidazolium tetra fluoroborate [Bmim][BF4]) at atmospheric pressure over a temperature range of (293.15K to 313.16K), we use the volumetric approach. By using the density data we have calculated the apparent molar volume, VΦ, limiting apparent molar volume, V0Φ, the slope, Sv, partial molar volume of transfer, V0Φ,tr. The values of these acoustical parameters have been used for the interpretation of different interactions like hydrophilic-hydrophilic, hydrophilic-hydrophobic, ion hydrophilic, solute-solvent and solute-solute interactions in the amino acid and ionic liquid solutions.
Schütte, Kai; Barthel, Juri; Endres, Manuel; Siebels, Marvin; Smarsly, Bernd M; Yue, Junpei; Janiak, Christoph
2017-02-01
Decomposition of transition-metal amidinates [M{MeC(N i Pr) 2 } n ] [M(AMD) n ; M=Mn II , Fe II , Co II , Ni II , n= 2; Cu I , n= 1) induced by microwave heating in the ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF 4 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF 6 ]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (triflate) ([BMIm][TfO]), and 1-butyl-3-methylimidazolium tosylate ([BMIm][Tos]) or in propylene carbonate (PC) gives transition-metal nanoparticles (M-NPs) in non-fluorous media (e.g. [BMIm][Tos] and PC) or metal fluoride nanoparticles (MF 2 -NPs) for M=Mn, Fe, and Co in [BMIm][BF 4 ]. FeF 2 -NPs can be prepared upon Fe(AMD) 2 decomposition in [BMIm][BF 4 ], [BMIm][PF 6 ], and [BMIm][TfO]. The nanoparticles are stable in the absence of capping ligands (surfactants) for more than 6 weeks. The crystalline phases of the metal or metal fluoride synthesized in [BMIm][BF 4 ] were identified by powder X-ray diffraction (PXRD) to exclusively Ni- and Cu-NPs or to solely MF 2 -NPs for M=Mn, Fe, and Co. The size and size dispersion of the nanoparticles were determined by transmission electron microscopy (TEM) to an average diameter of 2(±2) to 14(±4) nm for the M-NPs, except for the Cu-NPs in PC, which were 51(±8) nm. The MF 2 -NPs from [BMIm][BF 4 ] were 15(±4) to 65(±18) nm. The average diameter from TEM is in fair agreement with the size evaluated from PXRD with the Scherrer equation. The characterization was complemented by energy-dispersive X-ray spectroscopy (EDX). Electrochemical investigations of the CoF 2 -NPs as cathode materials for lithium-ion batteries were simply evaluated by galvanostatic charge/discharge profiles, and the results indicated that the reversible capacity of the CoF 2 -NPs was much lower than the theoretical value, which may have originated from the complex conversion reaction mechanism and residue on the surface of the nanoparticles.
Ionic Liquids Can Selectively Change the Conformational Free-Energy Landscape of Sugar Rings.
Jarin, Zack; Pfaendtner, Jim
2014-02-11
We investigated the conformational free energy landscape of glucose solvated in water and in the ionic liquids (ILs) 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) and 1-butyl-3-methylimidazoulim boron tetrafluoride ([Bmim][BF4]). To quantify equilibrium thermodynamic solvent effects, molecular dynamics simulations in conjunction with enhanced sampling based on the metadynamics framework were used. The results show that the solvent choice induces significant differences in the equilibrium ring structures, which may help further resolve the molecular mechanism governing IL-mediated cellulose dissolution.
Xu, Junhua; Zhao, Shen; Chen, Wei; Wang, Miao; Song, Yu-Fei
2012-04-10
Highly efficient, deep desulfurization of model oil containing dibenzothiophene (DBT), benzothiophene (BT), or 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been achieved under mild conditions by using an extraction and catalytic oxidative desulfurization system (ECODS) in which a lanthanide-containing polyoxometalate Na(7)H(2)LnW(10)O(36)⋅32 H(2)O (LnW(10); Ln = Eu, La) acts as catalyst, [bmim]BF(4) (bmim = 1-butyl-3-methylimidazolium) as extractant, and H(2)O(2) as oxidant. Sulfur removal follows the order DBT>4,6-DMDBT>BT at 30 °C. DBT can be completely oxidized to the corresponding sulfone in 25 min under mild conditions, and the LaW(10)/[bmim]BF(4) system could be recycled for ten times with only slight decrease in activity. Thus, LaW(10) in [bmim]BF(4) is one of the most efficient systems for desulfurization using ionic liquids as extractant reported so far. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil
2016-04-04
Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tao, Wenyan; Lin, Peng; Liu, Sili; Xie, Qingji; Ke, Shanming; Zeng, Xierong
2017-01-01
Breath acetone serves as a biomarker for diabetes. This article reports 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), a type of room temperature ionic liquid (RTIL), as a selective sensing material for acetone. The RTIL sensing layer was coated on a quartz crystal microbalance (QCM) for detection. The sensing mechanism is based on a decrease in viscosity and density of the [bmim][BF4] film due to the solubilization of acetone leading to a positive frequency shift in the QCM. Acetone was detected with a linear range from 7.05 to 750 ppmv. Sensitivity and limit of detection were found to be 3.49 Hz/ppmv and 5.0 ppmv, respectively. The [bmim][BF4]-modified QCM sensor demonstrated anti-interference ability to commonly found volatile organic compounds in breath, e.g., isoprene, 1,2-pentadiene, d-limonene, and dl-limonene. This technology is useful for applications in non-invasive early diabetic diagnosis. PMID:28117697
ENZYMATIC POLYMERIZATION OF PHENOLS IN ROOM TEMPERATURE IONIC LIQUIDS
Eker, Bilge; Zagorevski, Dmitri; Zhu, Guangyu; Linhardt, Robert J.; Dordick, Jonathan S.
2009-01-01
Soybean peroxidase (SBP) was used to catalyze the polymerization of phenols in room-temperature ionic liquids (RTILs). Phenolic polymers with number average molecular weights ranging from 1200 to 4100 D were obtained depending on the composition of the reaction medium and the nature of the phenol. Specifically, SBP was highly active in methylimidazolium-containing RTILs, including 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(BF4)), and 1-butyl-3-methylpyridinium tetrafluoroborate (BMPy(BF4)) with the ionic liquid content as high as 90% (v/v); the balance being aqueous buffer. Gel permeation chromatography and MALDI-TOF analysis indicated that higher molecular weight polymers can be synthesized in the presence of higher RTIL concentrations, with selective control over polymer size achieved by varying the RTIL concentration. The resulting polyphenols exhibited high thermostability and possessed thermosetting properties. PMID:20161409
NASA Astrophysics Data System (ADS)
Kanakaraju, Sankari; Prasanna, Bethanamudi; Basavoju, Srinivas; Chandramouli, G. V. P.
2012-06-01
An efficient, simple and convenient method for the one-pot multi-component synthesis of novel chromeno[2,3-d]pyrimidin-8-amine derivatives has been accomplished by starting from α-naphthol, aryl aldehydes, malononitrile and NH4Cl. The reaction has been catalyzed by 1-butyl-3-methylimidazolium tetrafluoroborate [bmim]BF4 ionic liquid. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The structure of compound 4a was confirmed by single-crystal X-ray diffraction. All the synthesized compounds were evaluated for their in vitro antibacterial activity.
Schütte, Kai; Barthel, Juri; Endres, Manuel; Siebels, Marvin; Smarsly, Bernd M.; Yue, Junpei
2016-01-01
Abstract Decomposition of transition‐metal amidinates [M{MeC(NiPr)2}n] [M(AMD)n; M=MnII, FeII, CoII, NiII, n=2; CuI, n=1) induced by microwave heating in the ionic liquids (ILs) 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([BMIm][PF6]), 1‐butyl‐3‐methylimidazolium trifluoromethanesulfonate (triflate) ([BMIm][TfO]), and 1‐butyl‐3‐methylimidazolium tosylate ([BMIm][Tos]) or in propylene carbonate (PC) gives transition‐metal nanoparticles (M‐NPs) in non‐fluorous media (e.g. [BMIm][Tos] and PC) or metal fluoride nanoparticles (MF2‐NPs) for M=Mn, Fe, and Co in [BMIm][BF4]. FeF2‐NPs can be prepared upon Fe(AMD)2 decomposition in [BMIm][BF4], [BMIm][PF6], and [BMIm][TfO]. The nanoparticles are stable in the absence of capping ligands (surfactants) for more than 6 weeks. The crystalline phases of the metal or metal fluoride synthesized in [BMIm][BF4] were identified by powder X‐ray diffraction (PXRD) to exclusively Ni‐ and Cu‐NPs or to solely MF2‐NPs for M=Mn, Fe, and Co. The size and size dispersion of the nanoparticles were determined by transmission electron microscopy (TEM) to an average diameter of 2(±2) to 14(±4) nm for the M‐NPs, except for the Cu‐NPs in PC, which were 51(±8) nm. The MF2‐NPs from [BMIm][BF4] were 15(±4) to 65(±18) nm. The average diameter from TEM is in fair agreement with the size evaluated from PXRD with the Scherrer equation. The characterization was complemented by energy‐dispersive X‐ray spectroscopy (EDX). Electrochemical investigations of the CoF2‐NPs as cathode materials for lithium‐ion batteries were simply evaluated by galvanostatic charge/discharge profiles, and the results indicated that the reversible capacity of the CoF2‐NPs was much lower than the theoretical value, which may have originated from the complex conversion reaction mechanism and residue on the surface of the nanoparticles. PMID:28168159
NASA Astrophysics Data System (ADS)
Locati, Corrado; Lafont, Ugo; Peters, Cor J.; Kelder, Erik M.
Ionic liquids (ILs) are typically molten salts at temperatures lower than 100 °C. Because of their thermal and electrochemical properties, they are good candidates to replace the state-of-the-art electrolytes used in today's Li-ion batteries. These commercial batteries often suffer from hazards caused by possible misuse. Elevated voltages and high temperatures usually lead to electrolyte degradation due to parasitic reactions with the electrodes leading to gas (mainly CO 2) evolution and may then eventually catch fire. Also, ILs are able to dissolve various gas molecules, making it possible to prevent a built-up of an overpressure inside the battery in case of undesired gas evolution. In this work, CO 2 storage in two different ionic liquids, i.e. PYR 14TFSI and [BMIm][BF4] is studied with regard to their respective Li-salt. Mixtures of ILs plus different concentrations of CO 2 were made. Phase diagrams of the pressure vs. temperature of the systems "liquid + vapour" to liquid transitions are drawn. Data points from 1.5 bar to 70 bar are collected with a Cailletet apparatus. Both of the ILs show good CO 2 dissolution ability; an increase of the temperature leads to an increase of the pressure needed to dissolve similar amounts of CO 2. The presence of a Li-salt hampers gas storage, particularly for PYR 14TFSI. A model based on the Langmuir adsorption theory is used to describe the solubility of the CO 2 in [BMIm][BF4]. The PYR 14TFSI IL does not obey the Langmuir-like solubility behaviour. Hence, the solubility then is described by the formation of discrete bonds between the CO 2 and the solvent, similarly to the concept of adspecies and surface sites.
He, Ping; Liu, Hongtao; Li, Zhiying; Liu, Yang; Xu, Xiudong; Li, Jinghong
2004-11-09
The use of room-temperature ionic liquids (RTILs) as media for electrochemical application is very attractive. In this work, the electrochemical deposition of silver was investigated at a glassy carbon electrode in hydrophobic 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) and hydrophilic 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) RTILs and in KNO3 aqueous solution by cyclic voltammetric and potentiostatic transient techniques. The voltammograms showed the presence of reduction and oxidation peaks associated with the deposition and dissolution of silver from AgBF4 in both BMIMPF6 and BMIMBF(4), resembling the redox behavior of AgNO3 in KNO3 aqueous solution. A crossover loop was observed in all the cyclic voltammograms of these electrochemical systems, indicating a nucleation process. From the analysis of the experimental current transients, it was shown that the electrochemical deposition process of silver in these media was characteristic of 3D nucleation with diffusion-controlled hemispherical growth, and the silver nucleation closely followed the response predicted for progressive nucleation in BMIMPF6 and instantaneous nucleation in KNO3 aqueous solution, respectively. Compared with these two cases, the electrochemical deposition of silver in BMIMBF4 deviated from both the instantaneous and progressive nucleation models, which could be controlled by mixed kinetics and diffusion. On the basis of the experimental results, it was shown that parameters such as viscosity and water miscibility of RTILs would affect the electrodeposition behavior of silver. Atom force microscopy was employed to probe the surface morphology of the silver deposit, and it showed that the shining electrodeposit of silver was fairly dense and separate nanoclusters of <100 nm were in evidence, corresponding to an island growth model. The strongly enhanced Raman scattering from the monolayer film of 4-mercaptobenzoic acid demonstrated that as-prepared silver nanoparticular film was surface-enhanced Raman scattering (SERS) active. The enhancement factor was calculated to be up to 9.0 x 10(5) and 1.0 x 10(6) for the silver film obtained in BMIMPF6 and BMIMBF4 RTILs, respectively.
NASA Astrophysics Data System (ADS)
Jegatheeswaran, S.; Selvam, S.; Sri Ramkumar, V.; Sundrarajan, M.
2016-05-01
A novel green route has approached for the synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin composite by the assistance of fluorine-based ionic liquid. The selected [BMIM]BF4 ionic liquid for this work plays a dual role as fluoride source and templating agent. It helps to improve the crystalline structures and the shape of the composites. The crystallinity, surface morphology, topographical studies of the synthesized composite were validated. The XRD results of the composite show typical Ag reflection peaks at 38.1°, 44.2° and 63.4°. The ionic liquid assisted composite displayed the hexagonal shaped HA particles, which are surrounded by spherical nano-Ag particles and these particles are uniformly dispersed in the β-cyclodextrin matrix in both horizontal and cross sections from surface morphology observations. The Ionic liquid assisted silver doped fluor-hydroxyapatite/β-cyclodextrin composite exhibited very good antibacterial activities against Escherichia coli, Salmonella typhi, Klebsiella pneumonia and Serratia liquefaciens pathogens. The antibacterial proficiencies were established using Confocal Laser Scanning Microscopic developed biofilms images and bacterial growth curve analysis. The cytotoxicity results of the ionic liquid assisted composite analyzed by cell proliferation in vitro studies using human osteosarcoma cell line (MG-63) and this study has shown excellent biocompatibility.
Gao, Yan'an; Li, Na; Zheng, Liqiang; Zhao, Xueyan; Zhang, Jin; Cao, Quan; Zhao, Mingwei; Li, Zhen; Zhang, Gaoyong
2007-01-01
The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) forms nonaqueous microemulsions with benzene with the aid of nonionic surfactant TX-100. The phase diagram of the ternary system was prepared, and the microstructures of the microemulsion were recognized. On the basis of the phase diagram, a series of ionic liquid-in-oil (IL/O) microemulsions were chosen and characterized by dynamic light scattering (DLS), which shows a similar swelling behavior to typical water-in-oil (W/O) microemulsions. The existence of IL pools in the IL/O microemulsion was confirmed by UV/Vis spectroscopic analysis with CoCl2 and methylene blue (MB) as the absorption probes. A constant polarity of the IL pool is observed, even if small amounts of water are added to the microemulsion, thus suggesting that the water molecules are solubilized in the polar outer shell of the microemulsion, as confirmed by FTIR spectra. 1H NMR spectroscopic analysis shows that these water molecules interact with the electronegative oxygen atoms of the oxyethylene (OE) units of TX-100 through hydrogen-bonding interactions, and the electronegative oxygen atoms of the water molecules attract the electropositive imidazolium rings of [bmim][BF4]. Hence, the water molecules are like a glue that stick the IL and OE units more tightly together and thus make the microemulsion system more stable. Considering the unique solubilization behavior of added water molecules, the IL/O microemulsion system may be used as a medium to prepare porous or hollow nanomaterials by hydrolysis reactions.
Otvagina, Ksenia V.; Mochalova, Alla E.; Sazanova, Tatyana S.; Petukhov, Anton N.; Moskvichev, Alexandr A.; Vorotyntsev, Andrey V.; Afonso, Carlos A. M.; Vorotyntsev, Ilya V.
2016-01-01
CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C. PMID:27294964
Simulation studies of ionic liquids: Orientational correlations and static dielectric properties
NASA Astrophysics Data System (ADS)
Schröder, C.; Rudas, T.; Steinhauser, O.
2006-12-01
The ionic liquids BMIM+I-, BMIM+BF4-, and BMIM+PF6- were simulated by means of the molecular dynamics method over a time period of more than 100ns. Besides the common structural analysis, e.g., radial distribution functions and three dimensional occupancy plots, a more sophisticated orientational analysis was performed. The angular correlation functions g00110(r) and g00101(r) are the first distance dependent coefficients of the pairwise orientational distribution function g(rij,Ω1,Ω2,Ω12). These functions help to interpret the three dimensional plot and reveal interesting insights into the local structure of the analyzed ionic liquids. Furthermore, the collective network of ionic liquids can be characterized by the Kirkwood factor Gκ(r ) [J. Chem. Phys. 7, 911 (1939)]. The short-range behavior (r<10Å) of this factor may be suitable to predict the water miscibility of the ionic liquid. The long-range limit of Gk∞ is below 1 which demonstrates the strongly coupled nature of the ionic liquid networks. In addition, this factor relates the orientational structure and the dielectric properties of the ionic liquids. The static dielectric constant ɛ(ω =0) for the simulated system is 8.9-9.5. Since in ionic liquids the very same molecule contributes to the total dipole moment as well as carries a net charge, a small, but significant contribution of the cross term between the total dipole moment and the electric current to ɛ(ω =0) is observed.
Liu, Yun-Kui; Zheng, Hui; Xu, Dan-Qian; Xu, Zhen-Yuan; Zhang, Yong-Min
2006-01-01
Stereoselective transformation of Baylis-Hillman acetates 1 into corresponding (Z)-allyl iodides 2 has been achieved by treatment of 1 with samarium triiodide in THF. Remarkable rate acceleration of samarium triiodide-mediated iodination of 1 was found when ionic liquid 1-n-butyl-3-methyl-imidazolium tetrafluroborate ([bmim]BF4) was used as reaction media in stead of THF. This novel approach proceeds readily at 50 °C within a few minutes to afford (Z)-allyl iodides 2 in excellent yields. A mechanism involving stereoselective iodination of the acetates of Baylis-Hillman adducts by samarium triiodide is described, in which a six-membered ring transition state played a key role in the stereoselective formation of 2. PMID:16502505
NASA Astrophysics Data System (ADS)
Chu, Weijing; Yang, Junyou; Jiang, Qinghui; Li, Xin; Xin, Jiwu
2018-05-01
The quality of interface between the electron transport layer (ETL) and perovskite is very crucial to the photovoltaic performance of a flexible perovskite solar cell fabricated under low-temperature process. This work demonstrates a room temperature ionic liquid modification strategy to the interface between ZnO layer and MAPbI3 film for high performance flexible perovskite solar cells based on a PET substrate. [BMIM]BF4 ionic liquid modification can significantly improve the surface quality and wettability of the ZnO ETL, thus greatly increase the charge mobility of ZnO ETL and improve the crystalline of perovskite film based on it. Moreover, the dipolar polarization layer among the ZnO ETL with perovskite, built by modification, can adjust the energy level between the ZnO ETL and perovskite and facilitates the charge extraction. Therefore, an overall power conversion efficiency (PCE) of 12.1% have been achieved under standard illumination, it increases by 1.4 times of the flexible perovskite solar cells on a pristine ZnO ETL.
Interaction of copper with dinitrogen tetroxide in 1-butyl-3-methylimidazolium-based ionic liquids.
Morozov, I V; Deeva, E B; Glazunova, T Yu; Troyanov, S I; Guseinov, F I; Kustov, L M
2017-03-27
Ionic liquids that are stable toward oxidation and nitration and are based on the 1-n-butyl-3-methylimidazolium cation (BMIm + ) can be used as solvents and reaction media for copper dissolution in liquid dinitrogen tetraoxide N 2 O 4 . The ionic liquid not only favors the dissociation of N 2 O 4 into NO + and NO 3 - , but also takes part in the formation of different crystalline products. Thus, NO[BF 4 ], NO[Cu(NO 3 ) 3 ] and (BMIm) 2 [Cu 2 (CF 3 COO) 6 ] were prepared using (BMIm)A, A - = [BF 4 ] - , (CF 3 SO 2 ) 2 N - , CF 3 COO - , respectively. The formation of a certain product is determined by the nature of the anion A - and the relative solubility of the reaction products in the ionic liquid. Crystals of NO[BF 4 ] were also prepared directly from a mixture of N 2 O 4 and BMImBF 4 . According to XRD single-crystal structure analysis, the structure of NO[BF 4 ] consists of tetrahedral [BF 4 ] - anions and nitrosonium NO + cations; the formation of these ions prove the heterolytic dissociation of N 2 O 4 dissolved in the ionic liquid. The crystal structure of the earlier unknown binuclear copper trifluoroacetate (BMIm) 2 [Cu 2 (CF 3 COO) 6 ] were determined by X-ray diffraction. The peculiarity of this dimer compared to the majority of known dimeric copper(ii) carboxylates is the unusually long CuCu distance (3.15 Å), with Cu(ii) ions demonstrating an atypical coordination of a distorted trigonal bipyramid formed by five O atoms of five trifluoroacetate groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Abhra; Ali, Maroof; Baker, Gary A
2009-01-01
In this work, an array of molecular-level solvent featuressincluding solute-solvent/solvent-solvent interactions, dipolarity, heterogeneity, dynamics, probe accessibility, and diffusionswere investigated across the entire composition of ambient mixtures containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], and pH 7.0 phosphate buffer, based on results assembled for nine different molecular probes utilized in a range of spectroscopic modes. These studies uncovered interesting and unusual solvatochromic probe behavior within this benchmark mixture. Solvatochromic absorbance probessa watersoluble betaine dye (betaine dye 33), N,N-diethyl-4-nitroaniline, and 4-nitroanilineswere employed to determine ET (a blend of dipolarity/polarizability and hydrogen bond donor contributions) and the Kamlet-Taft indices * (dipolarity/polarizability), R (hydrogenmore » bond donor acidity), and (hydrogen bond acceptor basicity) characterizing the [bmim][BF4] + phosphate buffer system. These parameters each showed a marked deviation from ideality, suggesting selective solvation of the individual probe solutes by [bmim][BF4]. Similar conclusions were derived from the responses of the fluorescent polarity-sensitive probes pyrene and pyrene-1-carboxaldehyde. Importantly, the fluorescent microfluidity probe 1,3-bis(1-pyrenyl)propane senses a microviscosity within the mixture that significantly exceeds expectations derived from simple interpolation of the behavior in the neat solvents. On the basis of results from this probe, a correlation between microviscosity and bulk viscosity was established; pronounced solvent-solvent hydrogen-bonding interactions were implicit in this behavior. The greatest deviation from ideal additive behavior for the probes studied herein was consistently observed to occur in the buffer-rich regime. Nitromethane-based fluorescence quenching of pyrene within the [bmim][BF4] + phosphate buffer system showed unusual compliance with a sphere-of-action quenching model, a further manifestation of the microheterogeneity of the system. Fluorescence correlation spectroscopic results for both small (BODIPY FL) and macromolecular (Texas Red-10 kDa dextran conjugate) diffusional probes provide additional evidence in support of microphase segregation inherent to aqueous [bmim][BF4].« less
NASA Astrophysics Data System (ADS)
Liu, Keke; Hu, Zhenglong; Xue, Rong; Zhang, Jianrong; Zhu, Junjie
2008-05-01
Poly(3,4-ethylenedioxythiophene) (PEDOT) has been successfully electropolymerized using a purified 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) as both the growth medium and the supporting electrolyte. The electrochemical performance of the PEDOT thin film was investigated in 1 mol L-1 H2SO4 solution. It possesses nearly ideal capacitive property, and its specific capacitance is about 130 F g-1. Compared with other conducting polymers, enhanced cycling lifetime (up to 70,000 cycles), which is close to that of active carbon materials, was observed on repetitive redox cycling.
Ban, Lu; Han, Xu; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng
2013-10-01
To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.
Barron, Christiaan C; Sponagle, Brandon J D; Arivalagan, Pugazhendhi; D'Cunha, Godwin B
2017-01-01
Phenylalanine ammonia lyase (E.C.4.3.1.24, PAL) activity of Rhodotorula glutinis yeast has been demonstrated in four commonly used ionic liquids. PAL forward reaction was carried out in 1-butyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO 4 ]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF 6 ]) and 1-butyl-3-methylimidazolium lactate ([BMIM][lactate]). Our experiments have revealed that PAL is catalytically active in ionic liquids and the enzyme activity in ([BMIM][PF 6 ]) is comparable to that obtained in aqueous buffer medium. Different conditions were optimized for maximal PAL forward activity including time of incubation (30.0min) L -phenylalanine substrate concentration (30.0mM), nature of buffer (50.0mM Tris-HCl), pH (9.0), temperature (37°C), and speed of agitation (100 rev min -1 ). Under these optimized conditions, about 83% conversion of substrate to product was obtained for the PAL forward reaction that was determined using UV spectroscopy at 290nm. PAL reverse reaction in ([BMIM][PF 6 ]) was determined spectrophotometrically at 520nm; and about 59% substrate conversion was obtained. This data provides further knowledge in enzyme biocatalysis in non-aqueous media, and may be of importance when studying the function of other oligomeric/multimeric proteins and enzymes in ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.
Gabriele, Bartolo; Mancuso, Raffaella; Veltri, Lucia; Maltese, Vito; Salerno, Giuseppe
2012-11-02
A variety of readily available 1-mercapto-3-yn-2-ols 5 were conveniently converted into the corresponding thiophenes 6 in good to high yields in MeOH as the solvent at 50-100 °C in the presence of catalytic amounts (1-2%) of PdI(2) in conjunction with KI (KI:PdI(2) molar ratio = 10). The catalyst could be made recyclable employing an ionic liquid, such as BmimBF(4), as the solvent under suitable conditions.
Wang, Ting; Wang, Lu; Tu, Jiaojiao; Xiong, Huayu; Wang, Shengfu
2013-12-01
The direct electrochemistry and electrocatalysis of heme proteins entrapped in carbon-coated nickel magnetic nanoparticle-chitosan-dimethylformamide (CNN-CS-DMF) composite films were investigated in the hydrophilic ionic liquid [bmim][BF4]. The surface morphologies of a representative set of films were characterised via scanning electron microscopy. The proteins immobilised in the composite films were shown to retain their native secondary structure using UV-vis spectroscopy. The electrochemical performance of the heme proteins-CNN-CS-DMF films was evaluated via cyclic voltammetry and chronoamperometry. A pair of stable and well-defined redox peaks was observed for the heme protein films at formal potentials of -0.151 V (HRP), -0.167 V (Hb), -0.155 V (Mb) and -0.193 V (Cyt c) in [bmim][BF4]. Moreover, several electrochemical parameters of the heme proteins were calculated by nonlinear regression analysis of the square-wave voltammetry. The addition of CNN significantly enhanced not only the electron transfer of the heme proteins but also their electrocatalytic activity toward the reduction of H2O2. Low apparent Michaelis-Menten constants were obtained for the heme protein-CNN-CS-DMF films, demonstrating that the biosensors have a high affinity for H2O2. In addition, the resulting electrodes displayed a low detection limit and improved sensitivity for detecting H2O2, which indicates that the biocomposite film can serve as a platform for constructing new non-aqueous biosensors for real detection. Copyright © 2013 Elsevier B.V. All rights reserved.
Mancuso, Raffaella; Gabriele, Bartolo
2013-09-04
A recyclable palladium-catalyzed synthesis of 2-methylene-2,3-dihydrobenzofuran-3-ols 2 by heterocyclization of 2-(1-hydroxyprop-2-ynyl)phenols 1 in an ionic liquid medium (BmimBF4) is presented. The process takes place under relatively mild conditions (100 °C, 5 h) in the presence of catalytic amounts (2 mol %) of PdI2 in conjunction with KI (5 equiv with respect to PdI2) and an organic base, such as morpholine (1 equiv with respect to 1), to give 2 in high yields (70%-86%). The PdI2-KI catalytic system could be recycled up to six times without appreciable loss of activity. Moreover, products 2 could be easily converted in a one-pot fashion into 2-hydroxymethylbenzofurans 3 (52%-71%, based on 1) and 2-methoxymethylbenzofurans 4 (52%-80%, based on 1) by acid-catalyzed allylic isomerization or allylic nucleophilic substitution.
Gong, Xiao; Yang, Xu; Zheng, Haoyue; Wu, Zucheng
2017-07-01
As a typical municipal waste landfill gas, ethanethiol can become an air pollutant because of its low odor threshold concentration and toxicity to human beings. A hybrid process of absorption combined with electrochemical oxidation to degrade ethanethiol was investigated. The ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF 4 ) was employed as an absorbent to capture ethanethiol from the air stream. Electrochemical oxidation demonstrated that ethanethiol could be oxidized on a β-PbO 2 anode modified with fluoride, while [BMIM]BF 4 was used as an electrolyte. After a reaction time of 90 min under a current density of 50 mA/cm 2 , ethanethiol could be thoroughly destructed by the successive attack of hydroxyl radicals (·OH) electrogenerated on the surface of the β-PbO 2 anode, while the sulfur atoms in ethanethiol were ultimately converted to sulfate ions [Formula: see text]. The reaction mechanism is proposed, and the operating condition is also estimated with a kinetic model. This hybrid process could be a promising way to remove thiol compounds from municipal waste landfill gases.
Effect of the physicochemical properties of binary ionic liquids on lipase activity and stability.
Yao, Peipei; Yu, Xinxin; Huang, Xirong
2015-01-01
In the present study, the lipase-catalyzed hydrolysis of p-nitrophenyl butyrate is used as a model reaction to determine the activity and stability of Candida rugosa lipase in binary ionic liquids (ILs). The binary ILs consist of hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) and a small amount of hydrophilic 1-butyl-3-methylimidazolium nitrate ([Bmim]NO3) or 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim]CF3SO3) or 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4). The activity and the stability of lipase are first correlated with the physicochemical properties of the binary ILs. In the three binary IL systems, both the hydrophilicity and the polarity of the systems increase with the increase of the content of hydrophilic ILs (HILs). At a fixed concentration of HIL, they vary in a descending order of [Bmim]PF6/[Bmim]NO3>[Bmim]PF6/[Bmim]CF3SO3>[Bmim]PF6/[Bmim]BF4. This order is in contrast with the order of the lipase conformation stability, i.e., the higher the polarity of ILs, the more unstable the lipase conformation. However, both the activity and the stability of lipase depend on the type and the content of the HIL in binary ILs, showing a complex dependency. Analysis shows that the catalytic performance of lipase in the binary ILs is affected not only by the direct influence of the ILs on lipase conformation, but also through their indirect influence on the physicochemical properties of water. The present study helps to explore binary IL mixtures suitable for lipase-based biocatalysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application
NASA Astrophysics Data System (ADS)
Dulgerbaki, Cigdem; Komur, Ali Ihsan; Nohut Maslakci, Neslihan; Kuralay, Filiz; Uygun Oksuz, Aysegul
2017-08-01
We report the first successful applications of tungsten oxide/conducting polymer hybrid nanofiber assemblies in electrochromic devices. Poly(3,4-ethylenedioxythiophene)/tungsten oxide (PEDOT/WO3) and polypyrrole/tungsten oxide (PPy/WO3) composites were prepared by an in situ chemical oxidative polymerization of monomers in different ionic liquids; 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI). Electrospinning process was used to form hybrid nanofibers from chemically synthesized nanostructures. The electrospun hybrid samples were compared from both morphological and electrochemical perspectives. Importantly, deposition of nanofibers from chemically synthesized hybrids can be achieved homogenously, on nanoscale dimensions. The morphologies of these assemblies were evaluated by SEM, whereas their electroactivity was characterized by cyclic voltammetry. Electrochromic devices made from hybrid nanofiber electrodes exhibited highest chromatic contrast of 37.66% for PEDOT/WO3/BMIMPF6, 40.42% for PPy/WO3/BMIMBF4 and show a strong electrochromic color change from transparent to light brown. Furthermore, the nanofiber devices exhibit outstanding stability when color switching proceeds, which may ensure a versatile platform for color displays, rear-view mirrors and smart windows.
Lehtimäki, Suvi; Suominen, Milla; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita; Lupo, Donald
2015-10-14
Composite films consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) were electrochemically polymerized by electrooxidation of EDOT in ionic liquid (BMIMBF4) onto flexible electrode substrates. Two polymerization approaches were compared, and the cyclic voltammetry (CV) method was found to be superior to potentiostatic polymerization for the growth of PEDOT/GO films. After deposition, incorporated GO was reduced to rGO by a rapid electrochemical method of repetitive cathodic potential cycling, without using any reducing reagents. The films were characterized in 3-electrode configuration in BMIMBF4. Symmetric supercapacitors with aqueous electrolyte were assembled from the composite films and characterized through cyclic voltammetry and galvanostatic discharge tests. It was shown that PEDOT/rGO composites have better capacitive properties than pure PEDOT or the unreduced composite film. The cycling stability of the supercapacitors was also tested, and the results indicate that the specific capacitance still retains well over 90% of the initial value after 2000 consecutive charging/discharging cycles. The supercapacitors were demonstrated as energy storages in a room light energy harvester with a printed organic solar cell and printed electrochromic display. The results are promising for the development of energy-autonomous, low-power, and disposable electronics.
Deng, Fu; Fu, Lian-Hua; Ma, Ming-Guo
2015-05-05
In this article, we try to compound cellulose/alkali earth metal fluorides (MF2, M=Ca, Mg, Sr, Ba) nanocomposites via microwave-assisted ionic liquid method, wherein cellulose/CaF2 and cellulose/MgF2 were successfully synthesized through this method while cellulose/SrF2 and cellulose/BaF2 could not be synthesized. We focused on the synthesis of cellulose/CaF2 and investigated the influences of the different time and different temperature for the synthesis of cellulose/CaF2 nanocomposites. The influence of different heating methods such as oil-bath heating method was also studied. Ionic liquid ([Bmim][BF4]) was used for dissolving microcrystalline cellulose and providing the source of fluoride ionic and the alkali earth metal nitrate (Ca(NO3)2, Mg(NO3)2, Sr(NO3)2, and Ba(NO3)2) was used as the reaction initiator. They were investigated by X-ray powder diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TG), derivative thermogravimetric (DTG), and energy-dispersive X-ray spectra (EDS). The different heating modes have influence on the morphology and property. The different temperature and heating time also have a certain influence on the morphology and crystallinity of calcium fluoride. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schütte, Kai; Doddi, Adinarayana; Kroll, Clarissa; Meyer, Hajo; Wiktor, Christian; Gemel, Christian; van Tendeloo, Gustaaf; Fischer, Roland A.; Janiak, Christoph
2014-04-01
Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)3] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)4]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively semihydrogenate 1-octyne and diphenylacetylene (tolan) to 1-octene and diphenylethylene, respectively, with a yield of about 90% and selectivities of up to 94 and 87%. Ni-NPs yield alkanes with a selectivity of 97 or 78%, respectively, under the same conditions.Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)3] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)4]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively semihydrogenate 1-octyne and diphenylacetylene (tolan) to 1-octene and diphenylethylene, respectively, with a yield of about 90% and selectivities of up to 94 and 87%. Ni-NPs yield alkanes with a selectivity of 97 or 78%, respectively, under the same conditions. Electronic supplementary information (ESI) available: Ni-Ga phase diagrams, EDX (XPS) of NP1-NP8, table of Ni : Ga ratios, TG of Ni-Ga SSPs, analysis of NP4, dec. of [Ni(GaCp*)3(PCy3)] with characterization, local resolution EDX of NP3-IL, Ni-NP characterization from Ni(COD)2 and details of (semi-)hydrogenation catalysis. See DOI: 10.1039/c4nr00111g
NASA Astrophysics Data System (ADS)
Saravanan, A. V. Sai; Abishek, B.; Anantharaj, R.
2018-04-01
The fundamental natures of the molecular level interaction and charge transfer between specific radioactive elements and ionic liquids of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([BMIM]+[NTf2]-), 1-Butyl-3-methylimidazolium ethylsulfate ([BMIM]+[ES]-) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]-) were investigated utilising HF theory and B3LYP hybrid DFT. The ambiguity in reaction mechanism of the interacting species dictates to employ Effective Core Potential (ECP) basis sets such as UGBS, SDD, and SDDAll to account for the relativistic effects of deep core electrons in the system involving potential, heavy and hazardous radioactive elements present in nuclear waste. The SCF energy convergence of each system validates the characterisation of the molecular orbitals as a linear combination of atomic orbitals utilising fixed MO coefficients and the optimized geometry of each system is visualised based on which Mulliken partial charge analysis is carried out to account for the polarising behaviour of the radioactive element and charge transfer between the IL phase by comparison with the bare IL species.
Cloud point phenomena for POE-type nonionic surfactants in a model room temperature ionic liquid.
Inoue, Tohru; Misono, Takeshi
2008-10-15
The cloud point phenomenon has been investigated for the solutions of polyoxyethylene (POE)-type nonionic surfactants (C(12)E(5), C(12)E(6), C(12)E(7), C(10)E(6), and C(14)E(6)) in 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), a typical room temperature ionic liquid (RTIL). The cloud point, T(c), increases with the elongation of the POE chain, while decreases with the increase in the hydrocarbon chain length. This demonstrates that the solvophilicity/solvophobicity of the surfactants in RTIL comes from POE chain/hydrocarbon chain. When compared with an aqueous system, the chain length dependence of T(c) is larger for the RTIL system regarding both POE and hydrocarbon chains; in particular, hydrocarbon chain length affects T(c) much more strongly in the RTIL system than in equivalent aqueous systems. In a similar fashion to the much-studied aqueous systems, the micellar growth is also observed in this RTIL solvent as the temperature approaches T(c). The cloud point curves have been analyzed using a Flory-Huggins-type model based on phase separation in polymer solutions.
NASA Astrophysics Data System (ADS)
Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun
2016-10-01
A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.
Vollmer, Christian; Redel, Engelbert; Abu-Shandi, Khalid; Thomann, Ralf; Manyar, Haresh; Hardacre, Christopher; Janiak, Christoph
2010-03-22
Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (M-NPs) have been reproducibly obtained by facile, rapid (3 min), and energy-saving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal-carbonyl precursors [M(x)(CO)(y)] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF(4)]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180-250 degrees C, 6-12 h) of [M(x)(CO)(y)] in ILs. The MWI-obtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active and easily recyclable catalysts for the biphasic liquid-liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product) (mol Ru)(-1) h(-1) and 884 (mol product) (mol Rh)(-1) h(-1) and give almost quantitative conversion within 2 h at 10 bar H(2) and 90 degrees C. Catalyst poisoning experiments with CS(2) (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of Ru-NPs.
Uniform, luminescent Eu:LuF3 nanoparticles
NASA Astrophysics Data System (ADS)
Becerro, Ana I.; Gonzalez-Mancebo, Daniel; Ocaña, Manuel
2015-01-01
A simple procedure for the synthesis of orthorhombic, uniform, LuF3 particles with two different morphologies (rhombus- and cocoon-like) and nanometer and sub-micrometer size, respectively, is reported. The method consists in the aging, at 120 °C for 2 h, a solution containing [BMIM]BF4 ionic liquid (0.5 mL) and lutetium acetate (in the case of the rhombi) or lutetium nitrate (in the case of the cocoons) (0.02 M) in ethylene glycol (total volume 10 mL). This synthesis method was also adequate for the synthesis of Eu3+-doped LuF3 particles of both morphologies, whose luminescence properties were investigated in detail. The experimental observations reported herein suggest that these materials are suitable phosphors for optoelectronic as well as in vitro biotechnological applications.
Yang, Quan; Achenie, Luke E K
2018-04-18
Ionic liquids (ILs) show brilliant performance in separating gas impurities, but few researchers have performed an in-depth exploration of the bulk and interface behavior of penetrants and ILs thoroughly. In this research, we have performed a study on both molecular dynamics (MD) simulation and quantum chemical (QC) calculation to explore the transport of acetylene and ethylene in the bulk and interface regions of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]-[BF4]). The diffusivity, solubility and permeability of gas molecules in the bulk were researched with MD simulation first. The subdiffusion behavior of gas molecules is induced by coupling between the motion of gas molecules and the ions, and the relaxation processes of the ions after the disturbance caused by gas molecules. Then, QC calculation was performed to explore the optical geometry of ions, ion pairs and complexes of ions and penetrants, and interaction potential for pairs and complexes. Finally, nonequilibrium MD simulation was performed to explore the interface structure and properties of the IL-gas system and gas molecule behavior in the interface region. The research results may be used in the design of IL separation media.
Zhao, Xu; Xing, Huabin; Yang, Qiwei; Li, Rulong; Su, Baogen; Bao, Zongbi; Yang, Yiwen; Ren, Qilong
2012-04-05
The room-temperature ionic liquids (RTILs) have potential in realizing the ethylene (C(2)H(4)) and acetylene (C(2)H(2)) separation and avoiding solvent loss and environmental pollution compared with traditional solvents. The interaction mechanisms between gases and RTILs are important for the exploration of new RTILs for gas separation; thus, they were studied by quantum chemical calculation and molecular dynamics simulation in this work. The optimized geometries were obtained for the complexes of C(2)H(4)/C(2)H(2) with anions (Tf(2)N(-), BF(4)(-), and OAc(-)), cation (bmim(+)), and their ion pairs, and the analysis for geometry, interaction energy, natural bond orbital (NBO), and atoms in molecules (AIM) was performed. The quantum chemical calculation results show that the hydrogen-bonding interaction between the gas molecule and anion is the dominant factor in determining the solubility of C(2)H(2) in RTILs. However, the hydrogen-bonding interaction, the p-π interaction in C(2)H(4)-anion, and the π-π interaction in C(2)H(4)-cation are weak and comparable, which all affect the solubility of C(2)H(4) in RTILs with comparable contribution. The calculated results for the distance of H(gas)···X (X = O or F in anions), the BSSE-corrected interaction energy, the electron density of H(gas)···X at the bond critical point (ρ(BCP)), and the relative second-order perturbation stabilization energy (E(2)) are consistent with the experimental data that C(2)H(2) is more soluble than C(2)H(4) in the same RTILs and the solubility of C(2)H(4) in RTILs has the following order: [bmim][Tf(2)N] > [bmim][OAc] > [bmim][BF(4)]. The calculated results also agree with the order of C(2)H(2) solubility in different RTILs that [bmim][OAc] > [bmim][BF(4)] > [bmim][Tf(2)N]. Furthermore, the calculation results indicate that there is strong C(2)H(2)-RTIL interaction, which cannot be negligible compared to the RTIL-RTIL interaction; thus, the regular solution theory is probably not suitable to correlate C(2)H(2) solubility in RTILs. The molecular dynamics simulation results show that the hydrogen bond between the H in C2 of the imidazolium cation and the anion will weaken the hydrogen-bonding interaction of the gas molecule and anion in a realistic solution condition, especially in the C(2)H(4)-RTIL system.
Xia, Zhaoyang; Li, Dongdong; Li, Qing; Zhang, Yan; Kang, Wenyi
2017-11-13
The conditions of heating, ionic liquid-based ultrasonic-assisted extraction combined with reverse-phase high performance liquid chromatography were optimized to simultaneously isolate and determinate brazilin and protosappanin B in Caesalpinia sappan. Ionic liquids, including [BMIM]Br, [BMIM]BF 4 , [BMIM]PF 6 and [HMIM]PF 6 , were selected as extraction solvents while methanol, acetone, acetonitrile, ethanol and water were selected as dispersants. The chromatographic column was Purospher star RP-C 18 (250 mm × 4.6 mm, 5 μm), a mixture of methanol and 0.2% phosphoric acid-water was used as mobile phase at a flow rate 0.65 mL/min. The result displayed that the extraction yields of brazilin and protosappanin B were highest when the concentration of [BMIM]Br methanol solution as extraction solvent was 0.5 mol/L and the solid-liquid ratio was 1:50 (g/mL). Under the optimal extraction conditions, the contents of brazilin showed a good linearity (r = 1.0000) within the range of 1.25-7.50 μg with the average recovery of 99.33%, the contents of protosappanin B also showed a good linearity (r = 0.9999) within the range of 0.50-3.00 μg with the average recovery of 98.31%. This experiment, which adopted environmentally friendly reagent as extraction solvent, not only improved the extraction efficiency, but also avoided the environmental pollution caused by organic solvent. Moreover, it was simple and reliable, and can be of important significance in the study of Traditional Chinese Medicine active ingredient extraction methods. The antibacterial activities of the ionic liquids and methanol extracts were determined using the paper disc diffusion method. The ionic liquid extract was found to possess antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MIC value of 37.5 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 18.8 mg crude drug/mL), but not against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa. Compared with the ionic liquid extract, the methanol extract was found to have antibacterial activity against S. aureus and methicillin-resistant S. aureus (MIC value of 75.0 mg crude drug/mL), β-Lactamase producing S. aureus (MIC values of 150.0 mg crude drug/mL). However, the same, the methanol extract did not have antibacterial activity against E. coli, Extended spectrum β-Lactamases E. coli and P. aeruginosa.
Probing Microenvironment in Ionic Liquids by Time-Resolved EPR of Photoexcited Triplets.
Ivanov, M Yu; Veber, S L; Prikhod'ko, S A; Adonin, N Yu; Bagryanskaya, E G; Fedin, M V
2015-10-22
Unusual physicochemical properties of ionic liquids (ILs) open vistas for a variety of new applications. Herewith, we investigate the influence of microviscosity and nanostructuring of ILs on spin dynamics of the dissolved photoexcited molecules. We use two most common ILs [Bmim]PF6 and [Bmim]BF4 (with its close analogue [C10mim]BF4) as solvents and photoexcited Zn tetraphenylporphyrin (ZnTPP) as a probe. Time-resolved electron paramagnetic resonance (TR EPR) is employed to investigate spectra and kinetics of spin-polarized triplet ZnTPP in the temperature range 100-270 K. TR EPR data clearly indicate the presence of two microenvironments of ZnTPP in frozen ILs at 100-200 K, being manifested in different spectral shapes and different spin relaxation rates. For one of these microenvironments TR EPR data is quite similar to those obtained in common frozen organic solvents (toluene, glycerol, N-methyl-2-pyrrolidone). However, the second one favors the remarkably slow relaxation of spin polarization, being much longer than in the case of common solvents. Additional experiments using continuous wave EPR and stable nitroxide as a probe confirmed the formation of heterogeneities upon freezing of ILs and complemented TR EPR results. Thus, TR EPR of photoexcited triplets can be effectively used for probing heterogeneities and nanostructuring in frozen ILs. In addition, the increase of polarization lifetime in frozen ILs is an interesting finding that might allow investigation of short-lived intermediates inaccessible otherwise.
Kobayashi, Takeshi; Reid, Joshua E S J; Shimizu, Seishi; Fyta, Maria; Smiatek, Jens
2017-07-26
We study the properties of residual water molecules at different mole fractions in dialkylimidazolium based ionic liquids (ILs), namely 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM/BF 4 ) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM/BF 4 ) by means of atomistic molecular dynamics (MD) simulations. The corresponding Kirkwood-Buff (KB) integrals for the water-ion and ion-ion correlation behavior are calculated by a direct evaluation of the radial distribution functions. The outcomes are compared to the corresponding KB integrals derived by an inverse approach based on experimental data. Our results reveal a quantitative agreement between both approaches, which paves a way towards a more reliable comparison between simulation and experimental results. The simulation outcomes further highlight that water even at intermediate mole fractions has a negligible influence on the ion distribution in the solution. More detailed analysis on the local/bulk partition coefficients and the partial structure factors reveal that water molecules at low mole fractions mainly remain in the monomeric state. A non-linear increase of higher order water clusters can be found at larger water concentrations. For both ILs, a more pronounced water coordination around the cations when compared to the anions can be observed, which points out that the IL cations are mainly responsible for water pairing mechanisms. Our simulations thus provide detailed insights in the properties of dialkylimidazolium based ILs and their effects on water binding.
Preparation of polyhedral oligomeric silsesquioxane based imprinted monolith.
Li, Fang; Chen, Xiu-Xiu; Huang, Yan-Ping; Liu, Zhao-Sheng
2015-12-18
Polyhedral oligomeric silsesquioxane (POSS) was successfully applied, for the first time, to prepare imprinted monolithic column with high porosity and good permeability. The imprinted monolithic column was synthesized with a mixture of PSS-(1-Propylmethacrylate)-heptaisobutyl substituted (MA 0702), naproxon (template), 4-vinylpyridine, and ethylene glycol dimethacrylate, in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4). The influence of synthesis parameters on the retention factor and imprinting effect, including the amount of MA 0702, the ratio of template to monomer, and the ratio of monomer to crosslinker, was investigated. The greatest imprinting factor on the imprinted monolithic column prepared with MA 0702 was 22, about 10 times higher than that prepared in absence of POSS. The comparisons between MIP monoliths synthesized with POSS and without POSS were made in terms of permeability, column efficiency, surface morphology and pore size distribution. In addition, thermodynamic and Van Deemter analysis were used to evaluate the POSS-based MIP monolith. Copyright © 2015 Elsevier B.V. All rights reserved.
Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide.
Schmitz, Alexa; Schütte, Kai; Ilievski, Vesko; Barthel, Juri; Burk, Laura; Mülhaupt, Rolf; Yue, Junpei; Smarsly, Bernd; Janiak, Christoph
2017-01-01
Metal-fluoride nanoparticles, (MF x -NPs) with M = Fe, Co, Pr, Eu, supported on different types of thermally reduced graphite oxide (TRGO) were obtained by microwave-assisted thermal decomposition of transition-metal amidinates, (M{MeC[N(iPr)] 2 } n ) or [M(AMD) n ] with M = Fe(II), Co(II), Pr(III), and tris(2,2,6,6-tetramethyl-3,5-heptanedionato)europium, Eu(dpm) 3 , in the presence of TRGO in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF 4 ]). The crystalline phases of the metal fluorides synthesized in [BMIm][BF 4 ] were identified by powder X-ray diffraction (PXRD) to be MF 2 for M = Fe, Co and MF 3 for M = Eu, Pr. The diameters and size distributions of MF x @TRGO were from (6 ± 2) to (102 ± 41) nm. Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) were used for further characterization of the MF x -NPs. Electrochemical investigations of the FeF 2 -NPs@TRGO as cathode material for lithium-ion batteries were evaluated by galvanostatic charge/discharge profiles. The results indicate that the FeF 2 -NPs@TRGO as cathode material can present a specific capacity of 500 mAh/g at a current density of 50 mA/g, including a significant interfacial charge storage contribution. The obtained nanomaterials show a good rate capacity as well (220 mAh/g and 130 mAh/g) at a current density of 200 and 500 mA/g, respectively.
Wang, Yanlei; Huo, Feng; He, Hongyan; Zhang, Suojiang
2018-06-20
Ionic liquid (IL) flow in graphene oxide (GO) nanochannels plays a key role in the performance of IL- and GO-based fluidics devices and other chemical separator techniques. Here, we investigate the flow behavior of ILs in GO nanochannels via molecular dynamics simulations. The quantitative relation between slip velocity and shear stress has been identified, showing that the interfacial friction coefficient can be enhanced by almost sixty times, while the slip length is reduced by about three orders of magnitude, with the fraction of hydroxylation in graphene ranging from 0% to 15%. The great change in interfacial properties can be attributed to the structural changes of IL layers near GO, which is proved by the detailed analysis of density distribution, charge distribution and radial distribution function. Besides, the viscosity will increase as a fraction of hydroxylation because of the partial breaking of coulombic ordering of confined ILs. Meanwhile, the hydroxyls have more significant effects on IL flow than water flow in GO nanochannels due to the stronger interaction networks in IL/GO interfaces. In summary, hydroxylation can be a convincing method to regulate the IL flow in nanochannels. The quantitative properties of confined ILs in GO nanochannels and their relation to the fraction of hydroxylation could deepen the understanding of ILs and benefit the applications of ILs and GO in the fields of chemical engineering and various other nanofluidic devices.
NASA Astrophysics Data System (ADS)
Hu, Zongzhi
Molecular Dynamics (MD) simulation has been performed on various Electric Double Layer Capacitors (EDLCs) systems with different Room Temperature Ionic Liquids (RTILs) as well as different structures and materials of electrodes using a computationally efficient, low cost, united atom (UA)/explicit atom (EA) force filed. MD simulation studies on two 1-butyl-3-methylimidazolium (BMIM) based RTILs, i.e., [BMIM][BF4] and [BMIM][PF6], have been conducted on both atomic flat and corrugated graphite as well as (001) and (011) gold electrode surfaces to understand the correlations between the Electric Double Layer (EDL) structure and their corresponding differential capacitance (DC). Our MD simulations have strong agreement with some experimental data. The structures of electrodes also have a strong effect on the capacitance of EDLCs. MD simulations have been conducted on RTILs of N-methyl-N- propylpyrrolidinium [pyr13] and bis(fluorosulfonyl)imide (FSI) as well as [BMIM][PF6] on both curvature electrodes (fullerenes, nanotube, nanowire) and atomic flat electrode surfaces. It turns out that the nanowire electrode systems have the largest capacitance, following by fullerene systems. Nanotube electrode systems have the smallest capacitance, but they are still larger than that of atomically flat electrode system. Also, RTILs with slightly different chemical structure such as [Cnmim], n = 2, 4, 6, and 8, FSI and bis(trifluoromethylsulfonyl)imide (TFSI), have been examined by MD simulation on both flat and nonflat graphite electrode surfaces to study the effect of cation and anion's chemical structures on EDL structure and DC. With prismatic (nonflat) graphite electrodes, a transition from a bell-shape to a camel-shape DC dependence on electrode potential was observed with increase of the cation alkyl tail length for FSI systems. In contrast, the [Cnmim][TFSI] ionic liquids generated only a camel-shape DC on the rough surface regardless of the length of alkyl tail.
Altunay, Nail; Elik, Adil; Gürkan, Ramazan
2018-02-01
Acrylamide (AAm) is a carcinogenic chemical that can form in thermally processed foods by the Maillard reaction of glucose with asparagine. AAm can easily be formed especially in frequently consumed chips and cereal-based foods depending on processing conditions. Considering these properties of AAm, a new, simple and green method is proposed for the extraction of AAm from thermally processed food samples. In this study, an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [Bmim][BF 4 ]) as extractant was used in the presence of a cationic phenazine group dye, 3,7-diamino-5-phenylphenazinium chloride (PSH + , phenosafranine) at pH 7.5 for the extraction of AAm as an ion-pair complex from selected samples. Under optimum conditions, the analytical features obtained for the proposed method were as follows; linear working range, the limits of detection (LOD, 3S b /m) and quantification (LOQ, 10S b /m), preconcentration factor, sensitivity enhancement factor, sample volume and recovery% were 2.2-350 µg kg -1 , 0.7 µg kg -1 , 2.3 µg kg -1 , 120, 95, 60 mL and 94.1-102.7%, respectively. The validity of the method was tested by analysis of two certified reference materials (CRMs) and intra-day and inter-day precision studies. Finally, the method was successfully applied to the determination of AAm levels in thermally processed foods using the standard addition method.
Lu, Lu; Huang, Xirong; Qu, Yinbo
2011-10-01
The direct electrochemistry and bioelectrocatalysis of horseradish peroxidase (HRP) in Nafion films at glassy carbon electrode (GCE) was investigated in three [BF(4)](-)-type room-temperature ionic liquids (ILs) to understand the structural effect of imidazolium cations. The three ILs are 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF(4)]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) and 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF(4)]). A small amount of water in the three ILs is indispensable for maintaining the electrochemical activity of HRP in Nafion films, and the optimum water contents decrease with the increase of alkyl chain length on imidazole ring. Analysis shows that the optimum water contents are primarily determined by the hydrophilicity of ILs used. In contrast to aqueous medium, ILs media facilitate the direct electron transfer of HRP, and the electrochemical parameters obtained in different ILs are obviously related to the nature of ILs. The direct electron transfer between HRP and GCE is a surface-confined quasi-reversible single electron transfer process. The apparent heterogeneous electron transfer rate constant decreases gradually with the increase of alkyl chain length on imidazole ring, but the changing extent is relatively small. The electrocatalytic reduction current of H(2)O(2) at the present electrode decreases obviously with the increase of alkyl chain length, and the mass transfer of H(2)O(2) via diffusion in ILs should be responsible for the change. In addition, the modified electrode has good stability and reproducibility; the ability to tolerate high levels of F(-) has been greatly enhanced due to the use of Nafion film. When an appropriate mediator is included in the sensing layer, a sensitive nonaqueous biosensor could be fabricated. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Xian-Hua; Zhang, Jing; Peng, Chao; Dong, Qian; Huang, Yan-Ping; Liu, Zhao-Sheng
2015-09-01
Three fragmental templates, including 2,4-diamino-6-methyl-1,3,5-triazine (DMT), cyromazine (CYR), and trimethoprim (TME), were used to prepare the fragment molecularly imprinted polymers (FMIPs), respectively, in polar ternary porogen which was composed of ionic liquid ([BMIM]BF4), methanol, and water. The morphology, specific surface areas, and selectivity of the obtained FMIPs for fragmental analogues were systematically characterized. The experimental results showed that the FMIPs possessed the best specific recognition ability to the relative template and the greatest imprinting factor (IF) was 5.25, 6.69, and 7.11 of DMT on DMT-MIPs, CYR on CYR-MIPs, and TME on TME-MIPs, respectively. In addition, DMT-MIPs also showed excellent recognition capability for fragmental analogues including CYR, melamine (MEL), triamterene (TAT), and TME, and the IFs were 2.08, 3.89, 2.18, and 2.60, respectively. The effects of pH and temperature on the retention of the fragmental and structural analogues were studied in detail. Van't Hoff analysis indicated that the retention and selectivity on FMIPs were an entropy-driven process, i.e., steric interaction. The resulting DMT-MIPs were used as a solid-phase extraction material to enrich CYR, MEL, TAT, and TME in different bio-matrix samples for high-performance liquid chromatography analysis. The developed method had acceptable recoveries (86.8-98.6%, n = 3) and precision (2.7-4.6%) at three spiked levels (0.05-0.5 μg g(-1)).
A Computing Method to Determine the Performance of an Ionic Liquid Gel Soft Actuator
Zhang, Chenghong; Zhou, Yanmin; Wang, Zhipeng
2018-01-01
A new type of soft actuator material—an ionic liquid gel (ILG) that consists of BMIMBF4, HEMA, DEAP, and ZrO2—is polymerized into a gel state under ultraviolet (UV) light irradiation. In this paper, we first propose that the ILG conforms to the assumptions of hyperelastic theory and that the Mooney-Rivlin model can be used to study the properties of the ILG. Under the five-parameter and nine-parameter Mooney-Rivlin models, the formulas for the calculation of the uniaxial tensile stress, plane uniform tensile stress, and 3D directional stress are deduced. The five-parameter and nine-parameter Mooney-Rivlin models of the ILG with a ZrO2 content of 3 wt% were obtained by uniaxial tensile testing, and the parameters are denoted as c10, c01, c20, c11, and c02 and c10, c01, c20, c11, c02, c30, c21, c12, and c03, respectively. Through the analysis and comparison of the uniaxial tensile stress between the calculated and experimental data, the error between the stress data calculated from the five-parameter Mooney-Rivlin model and the experimental data is less than 0.51%, and the error between the stress data calculated from the nine-parameter Mooney-Rivlin model and the experimental data is no more than 8.87%. Hence, our work presents a feasible and credible formula for the calculation of the stress of the ILG. This work opens a new path to assess the performance of a soft actuator composed of an ILG and will contribute to the optimized design of soft robots. PMID:29853999
A Computing Method to Determine the Performance of an Ionic Liquid Gel Soft Actuator.
He, Bin; Zhang, Chenghong; Zhou, Yanmin; Wang, Zhipeng
2018-01-01
A new type of soft actuator material-an ionic liquid gel (ILG) that consists of BMIMBF 4 , HEMA, DEAP, and ZrO 2 -is polymerized into a gel state under ultraviolet (UV) light irradiation. In this paper, we first propose that the ILG conforms to the assumptions of hyperelastic theory and that the Mooney-Rivlin model can be used to study the properties of the ILG. Under the five-parameter and nine-parameter Mooney-Rivlin models, the formulas for the calculation of the uniaxial tensile stress, plane uniform tensile stress, and 3D directional stress are deduced. The five-parameter and nine-parameter Mooney-Rivlin models of the ILG with a ZrO 2 content of 3 wt% were obtained by uniaxial tensile testing, and the parameters are denoted as c 10 , c 01 , c 20 , c 11 , and c 02 and c 10 , c 01 , c 20 , c 11 , c 02 , c 30 , c 21 , c 12 , and c 03 , respectively. Through the analysis and comparison of the uniaxial tensile stress between the calculated and experimental data, the error between the stress data calculated from the five-parameter Mooney-Rivlin model and the experimental data is less than 0.51%, and the error between the stress data calculated from the nine-parameter Mooney-Rivlin model and the experimental data is no more than 8.87%. Hence, our work presents a feasible and credible formula for the calculation of the stress of the ILG. This work opens a new path to assess the performance of a soft actuator composed of an ILG and will contribute to the optimized design of soft robots.
Zhang, Weiyi; Yuan, Jiayin
2016-07-01
Herein, the synthesis of a series of poly(4-alkyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid)s is reported either via straightforward free radical polymerization of their corresponding ionic liquid monomers or via anion metathesis of the polymer precursors bearing halide as counter anion. The ionic liquid monomers are first prepared via N-alkylation reaction of commercially available 1-vinyl-1,2,4-triazole with alkyl iodides, followed by anion metathesis with targeted fluorinated anions. The thermal properties and solubilities of these poly(ionic liquid)s have been systematically investigated. Interestingly, it is found that the poly(4-ethyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid) exhibited an improved loading capacity of transition metal ions in comparison with its imidazolium counterpart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Specialist gelator for ionic liquids.
Hanabusa, Kenji; Fukui, Hiroaki; Suzuki, Masahiro; Shirai, Hirofusa
2005-11-08
Cyclo(l-beta-3,7-dimethyloctylasparaginyl-L-phenylalanyl) (1) and cyclo(L-beta-2-ethylhexylasparaginyl-L-phenylalanyl) (2), prepared from L-asparaginyl-L-phenylalanine methyl ester, have been found to be specialist gelators for ionic liquids. They can gel a wide variety of ionic liquids, including imizazolium, pyridinium, pyrazolidinium, piperidinium, morpholinium, and ammonium salts. The mean minimum gel concentrations (MGCs) necessary to make gels at 25 degrees C were determined for ionic liquids. The gel strength increased at a rate nearly proportional to the concentration of added gelator. The strength of the transparent gel of 1-butylpyridinium tetrafluoroborate ([C(4)py]BF(4)), prepared at a concentration of 60 g L(-1) (gelator 1/[C(4)py]BF(4)), was ca. 1500 g cm(-2). FT-IR spectroscopy indicated that a driving force for gelation was intermolecular hydrogen bonding between amides and that the phase transition from gel to liquid upon heating was brought about by the collapse of hydrogen bonding. The gels formed from ionic liquids were very thermally stable; no melting occurs up to 140 degrees C when the gels were prepared at a concentration of 70 g L(-1) (gelator/ionic liquid). The ionic conductivities of the gels were nearly the same as those of pure ionic liquids. The gelator had electrochemical stability and a wide electrochemical window. When the gels were prepared from ionic liquids containing propylene carbonate, the ionic conductivities of the resulting gels increased to levels rather higher than those of pure ionic liquids. The gelators also gelled ionic liquids containing supporting electrolytes.
Design of Energetic Ionic Liquids (Preprint)
2008-05-07
mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining techniques. 15. SUBJECT TERMS 16. SECURITY...simulations utilizing polarizable force fields, and mesoscale-level simulations of bulk ionic liquids based upon multiscale coarse graining...Simulations of the Energetic Ionic Liquid 1-hydroxyethyl-4-amino-1, 2, 4- triazolium Nitrate (HEATN): Molecular dynamics (MD) simulations have been
Warner, Lisa; Gjersing, Erica; Follett, Shelby E; Elliott, K Wade; Dzyuba, Sergei V; Varga, Krisztina
2016-12-01
Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentration of ionic liquids, has been challenging. In the present work the 13 C, 15 N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid - protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4 -mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6 to 3.5 M, which corresponds to 10%-60% v/v). Interactions between GB1 and [C 4 -mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15 N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4 -mim]Br were assigned using 3D methods under HR-MAS conditions. Thus, HR-MAS NMR is a viable tool that could aid in elucidation of the molecular mechanism of ionic liquid - protein interactions.
Oxidative desulfurization of fuel oil by pyridinium-based ionic liquids.
Zhao, Dishun; Wang, Yanan; Duan, Erhong
2009-10-28
In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF(4) was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT) was investigated. Ionic liquids and hydrogen peroxide (30%) were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF(4) has a better desulfurization effect. The best technological conditions are: V(IL)/V(Oil) /V(H(2)O(2)) = 1:1:0.4, temperature 55 degrees C, the time 30 min. The ratio of desulfurization to thiophene and DBT reached 78.5% and 84.3% respectively, which is much higher than extraction desulfurization with simple ionic liquids. Under these conditions, the effect of desulfurization on gasoline was also investigated. The used ionic liquids can be recycled up to four times after regeneration.
Corrosion Inhibition of Cast Iron in Arabian Gulf Seawater by Two Different Ionic Liquids
Sherif, El-Sayed M.; Abdo, Hany S.; Zein El Abedin, Sherif
2015-01-01
In this paper we report on the corrosion inhibition of cast iron in Arabian Gulf seawater by two different ionic liquids namely, 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) and 1-butyl-1-methylpyrrolidinium chloride ([Py1,4]Cl). The inhibiting influence of the employed ionic liquids was investigated by weight loss, open circuit potential electrochemical impedance spectroscopy, and cyclic potentiodynamic polarization. The results show the corrosion inhibition impact of the employed ionic liquids (ILs). Compared with [Py1,4]Cl, [EMIm]Cl shows a higher inhibition efficiency at a short immersion time, for the examined ILs concentrations. However, [Py1,4]Cl exhibits a higher efficiency upon increasing the immersion time indicating the persistence of the inhibiting influence. The corrosion inhibition of the employed ionic liquids is attributed to the adsorption of the cations of the ionic liquids onto the surface of cast iron forming a corrosion barrier. PMID:28793413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Lisa; Gjersing, Erica; Follett, Shelby E.
Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid-protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6-3.5 M, whichmore » corresponds to 10-60% v/v). Interactions between GB1 and [C 4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4-mim]Br were assigned using 3D methods under HR-MAS conditions. Furthermore, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid-protein interactions.« less
Warner, Lisa; Gjersing, Erica; Follett, Shelby E.; ...
2016-08-11
Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid-protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6-3.5 M, whichmore » corresponds to 10-60% v/v). Interactions between GB1 and [C 4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4-mim]Br were assigned using 3D methods under HR-MAS conditions. Furthermore, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid-protein interactions.« less
Structure of cyano-anion ionic liquids: X-ray scattering and simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhungana, Kamal B.; Faria, Luiz F. O.; Wu, Boning
2016-07-14
Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790–14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN-, SCN-, N(CN)-2N(CN)2-, C(CN)-3C(CN)3-, and B(CN)-4B(CN)4-. By combining molecular dynamics simulations, high-energy X-ray scattering measurements,more » and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)-4B(CN)4- anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im+2,1Im2,1+/B(CN)-4B(CN)4- is cationic.« less
NASA Astrophysics Data System (ADS)
Zheng, Jianping
Various electrochemical techniques were utilized to study a wide range of electrochemical systems in this dissertation. Mainly they are grouped in three sections: 1) the conventional metal-aqueous systems for new applications in modern microelectronic devices, 2) unconventional ceramic-organic systems for applications in Li-ion batteries and 3) novel systems composed of ionic liquids and carbon series electrodes. The objects are to probe the electrochemical/chemical reactions and interfacial structures, which are the common features of the aforementioned systems. This dissertation mainly focuses on experimental aspects, however, some theories and new models used to elucidate the experiment data have also been developed and presented. Some new experimental techniques have been explored and their limitations and validity have also been discussed. Oxalic acid (OA)-based nonalkaline solutions with H2O 2 are found to support chemically mediated removal of Ta-oxide surface films on Ta. The associated surface reactions are critical for chemical mechanical planarization (CMP) of Ta barrier. In chapter 4, a Ta coupon electrode is used as a model system in abrasive-free solutions of OA and H2O 2, where the chemical component of CMP is selectively examined. In chapter 5, electrochemical impedance spectroscopy (EIS) is employed to study the competitive reactions of surface corrosion and passivating film formation on a Cu-rotating disc electrode (RDE) in pH-adjusted solutions of H2O2, acetic acid (HAc) and ammonium dodecyl sulfate (ADS). Micrometric LiMn2O4 particles are mechano-chemically modified by ball-milling to obtain a mixture of nano- and micro-scale particles. In chapter 6, this mixture is tested as a potential active cathode material for rapid-charge Li ion batteries, and also as a model system for studying the detailed kinetics of Li intercalation/de-intercalation in such electrodes. In chapter 7, cyclic voltammetry (CV) and EIS are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. In chapter 8, the electrochemical interfaces of a glassy carbon (GC) and a carbon nanotube (CNT) paper electrode have been studied in EmimBF 4 and BmimBF4 ILs using CV and EIS.
Facile EG/ionic liquid interfacial synthesis of uniform RE(3+) doped NaYF(4) nanocubes.
Zhang, Chao; Chen, Ji
2010-01-28
Uniform multicolor upconversion luminescent RE(3+) doped NaYF(4) nanocubes are fabricated through a facile ethylene glycol (EG)/ionic liquid interfacial synthesis route at 80 degrees C, with the ionic liquids acting as both reagents and templates.
Branco, Luís C; Afonso, Carlos A M
2002-12-21
The use of the solvent systems water/ionic liquid or water/ionic liquid/tert-butanol provides a recoverable, reusable, robust and simple system for the asymmetric dihydroxylation of olefins, based on the immobilization of the osmium-ligand catalyst in the ionic liquid phase.
Structure of cyano-anion ionic liquids: X-ray scattering and simulations.
Dhungana, Kamal B; Faria, Luiz F O; Wu, Boning; Liang, Min; Ribeiro, Mauro C C; Margulis, Claudio J; Castner, Edward W
2016-07-14
Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790-14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN(-), SCN(-), N(CN)2 (-), C(CN)3 (-), and B(CN)4 (-). By combining molecular dynamics simulations, high-energy X-ray scattering measurements, and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)4 (-) anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im2,1 (+)/B(CN)4 (-) is cationic.
NASA Astrophysics Data System (ADS)
Kikuchi, Kunitomo; Sakamoto, Takumi; Tsuchitani, Shigeki; Asaka, Kinji
2011-04-01
Ionic polymer metal composites (IPMCs) that can operate in air have recently been developed by incorporating an ionic liquid in ionic polymers. To understand transduction in these composites, it is important to determine the role of the ionic liquid in the ionic polymer (Nafion®), to identify the counter cation, and to investigate the interaction of IPMCs with water vapor in the air. We used Fourier-transform infrared spectroscopy to analyze three Nafion® membranes, which were soaked in mixtures of water and an ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIBF4), 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6)). The results demonstrate that only cations (EMI+ and BMI+) in the ionic liquids are taken into the Nafion® membranes as counter ions and that the water content of the membranes in air is less than ˜4% that of Nafion® swollen with water. Based on the experimental results, a transduction model is proposed for an IPMC with an ionic liquid. In this model, bending is caused by local swelling due to the volume effect of the bulky counter cations. This model can explain 30-50% of the experimentally observed bending curvature.
Dinda, Enakshi; Si, Satyabrata; Kotal, Atanu; Mandal, Tarun K
2008-01-01
A series of newly designed ascorbic acid based room temperature ionic liquids were successfully used to prepare quasi-spherical and anisotropic gold nanostructures in an aqueous medium at ambient temperature. The synthesis of these room temperature ionic liquids involves, first, the preparation of a 1-alkyl (such as methyl, ethyl, butyl, hexyl, octyl, and decyl) derivative of 3-methylimidazolium hydroxide followed by the neutralization of the derivatised product with ascorbic acid. These ionic liquids show significantly better thermal stability and their glass transition temperature (Tg) decreases with increasing alkyl chain length. The ascorbate counter anion of these ionic liquids acts as a reducing agent for HAuCl4 to produce metallic gold and the alkylated imidazolium counter cation acts as a capping/shape-directing agent. It has been found that the nature of the ionic liquids and the mole ratio of ionic liquid to HAuCl4 has a significant effect on the morphology of the formed gold nanostructures. If an equimolar mixture of ionic liquid and HAuCl4 is used, predominantly anisotropic gold nanostructures are formed and by varying the alkyl chain length attached to imidazolium cation of the ionic liquids, various particle morphologies can formed, such as quasispherical, raspberry-like, flakes or dendritic. A probable formation mechanism for such anisotropic gold nanostructures has been proposed, which is based on the results of some control experiments.
Ionic liquids as novel solvents for ionic polymer transducers
NASA Astrophysics Data System (ADS)
Bennett, Matthew D.; Leo, Donald J.
2004-07-01
The use of ionic liquids as solvents for ionic polymer (specifically, Nafion) transducers is demonstrated. Ionic liquids are attractive for this application because of their high inherent stability. Ionic liquids are salts that exist as liquids at room temperature and have no measureable vapor pressure. Therefore, the use of ionic liquids as solvents for ionic polymer transducers can eliminate the traditional problem of water evaporation in these devices. Another benefit of the use of ionic liquids in this way is the reduction or elimination of the characteristic back-relaxation common in water-solvated ionic polymer actuators. The results demonstrate that the viscosity of the ionic liquid and the degree to which the ionic liquid swells the membrane are the important physical parameters to consider. Five ionic liquids were studied, based on substituted pyrrolidinium, phosphonium, or imidazolium cations and fluoroanions. Of these five ionic liquids, transduction is demonstrated in three of them and the best results are obtained with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. This substance has an electrochemical stability window of 4.1 V, a melting point of -10 °C, and a viscosity of 35-45 cP [19]. Results demonstrate that platinum-plated Nafion transducers solvated with this ionic liquid exhibit sensing and actuation responses and that these transducers are stable in air. Endurance testing of this sample reveals a decrease in the free strain of only 25 % after 250,000 actuation cycles in air.
Prominent roles of impurities in ionic liquid for catalytic conversion of carbohydrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haibo; Brown, Heather M.; Holladay, Johnathan E.
2012-02-07
In the last two decades, ionic liquids have emerged as new and versatile solvents, and many of them are also catalysts for a broad range of catalytic reactions. Certain ionic liquids have been found to possess the unique capability of dissolving cellulosic biomass. The potential of such ionic liquids as solvent to enable catalytic conversion of cellulosic polymers was first explored and demonstrated by Zhao et al. This field of research has since experienced a rapid growth. Most ionic liquids have negligible vapor pressure and excellent thermal stability over a wide temperature range. For example, ionic liquids composed of 1-ethyl-3-methylimidazoliummore » (EMIM+) cation and Cl- anion was reported to be stable up to 285 C, while salts of the same cation with other anions such as BF4- and PF6- are thermally stable above 380 C under inert atmosphere. It is well known that presence of impurities in ionic liquids typically causes changes in physical properties, e.g. decreasing in melting point and viscosity. Addition of Lewis acidic metal chlorides, e.g. AlCl3 to 1-alkyl-3-methylimidazolium chloride, [AMIM]Cl, is an exothermic reaction and considerably reduces the melting point by forming [AMIM]AlCl4 or [AMIM]Al2Cl7 that are also ionic liquids but have much lower melting point than the parent [AMIM]Cl. While most early research on catalysis of ionic liquids involving metallohalide anions were typically conducted from stoichiometric ratio of such anions to organic cations, e.g. [AMIM]+, the use of pure ionic liquids only as a solvent to carry out catalysis by a catalytic amount of a metal halide as catalyst truly displayed the solvent property of such ionic liquids.4 In such reaction systems, catalytic amounts of metal halides were used to catalyze the conversion of glucose and cellulose.4,11,12 The metal chloride catalyst concentration was in the order of 10-3 M. The presence of another metal chloride in the ionic liquids, even in the order of 10-5 M concentration was found to bring a dramatic synergistic effect. Therefore, the catalytic performance of the metal halide catalyst for the conversion of carbohydrates in the ionic liquid systems is highly sensitive to the presence of impurities. This work presents findings on the role of impurities that were present in some commercially available ionic liquids used for the conversion of the cellulose.« less
NASA Astrophysics Data System (ADS)
Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank
2011-01-01
The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situscanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situSTM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situmicroscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situscanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situSTM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situmicroscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM). Electronic supplementary information (ESI) available: In situ image of PEDOT in [HMIm]FAP and in situ studies of PEDOT grown in [EMIm]TFSA and redox behavior of PEDOT. See DOI: 10.1039/c0nr00579g
Fang, Youxing; Jiang, Xueguang; Dai, Sheng; ...
2015-07-14
A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl 3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10 -4 S cm -1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Youxing; Jiang, Xueguang; Dai, Sheng
A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl 3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10 -4 S cm -1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.
Cao, Xiaoji; Shen, Lingxiao; Ye, Xuemin; Zhang, Feifei; Chen, Jiaoyu; Mo, Weimin
2014-04-21
An ultrasound-assisted magnetic solid-phase extraction procedure with the [C7MIM][PF6] ionic liquid-coated Fe3O4-grafted graphene nanocomposite as the magnetic adsorbent has been developed for the determination of five nitrobenzene compounds (NBs) in environmental water samples, in combination with high performance liquid chromatography-photodiode array detector (HPLC-PDA). Several significant factors that affect the extraction efficiency, such as the types of magnetic nanoparticle and ionic liquid, the volume of ionic liquid and the amount of magnetic nanoparticles, extraction time, ionic strength, and solution pH, were investigated. With the assistance of ultrasound, adsorbing nitrobenzene compounds by ionic liquid and self-aggregating ionic liquid onto the surface of the Fe3O4-grafted graphene proceeded synchronously, which made the extraction achieved the maximum within 20 min using only 144 μL [C7MIM][PF6] and 3 mg Fe3O4-grafted graphene. Under the optimized conditions, satisfactory linearities were obtained for all NBs with correlation coefficients larger than 0.9990. The mean recoveries at two spiked levels ranged from 80.35 to 102.77%. Attributed to the convenient magnetic separation, the Fe3O4-grafted graphene could be recycled many times. The proposed method was demonstrated to be feasible, simple, solvent-saving and easy to operate for the trace analysis of NBs in environmental water samples.
Kiszkiel, Ilona; Starczewska, Barbara; Leśniewska, Barbara; Późniak, Patrycja
2015-03-15
A new extraction medium was proposed for liquid-liquid extraction of the histamine H2 receptor antagonists ranitidine (RNT) and nizatidine (NZT). The ionic liquids with low vapor pressure and favorable solvating properties for a range of compounds such as 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C4mim][Tf2N] were tested for isolation of analytes. The extraction parameters of RNT and NZT, namely, amount of ionic liquid, pH of sample solution, shaking and centrifugation time were optimized. The isolation processes were performed with 1 mL of the ionic liquids. The extracted samples (pH values near 4) were shaken at 1750 rpm. The influence of interfering substances on the efficiency of extraction process was also studied. Methods for the histamine H2 receptor antagonists (ranitidine and nizatidine) determination after their separation using imidazolium ionic liquids by high performance liquid chromatography (HPLC) combined with UV spectrophotometry were developed. The application of ionic liquids in extraction step allows for selective isolation of analytes from aqueous matrices and their preconcentration. The above methods were applied to the determination of RNT and NZT in environmental samples (river water and wastewater after treatment). Copyright © 2014 Elsevier B.V. All rights reserved.
Influence of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage.
Baker, Joseph L; Furbish, Jeffrey; Lindberg, Gerrick E
2015-11-01
We examine the effect of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage and contrast these results with the behavior of Trp-cage in water. We find the ionic liquid has a dramatic effect on Trp-cage, though many similarities with aqueous Trp-cage are observed. We assess Trp-cage folding by monitoring root mean square deviation from the crystallographic structure, radius of gyration, proline cis/trans isomerization state, protein secondary structure, amino acid contact formation and distance, and native and non-native contact formation. Starting from an unfolded configuration, Trp-cage folds in water at 298 K in less than 500 ns of simulation, but has very little mobility in the ionic liquid at the same temperature, which can be ascribed to the higher ionic liquid viscosity. At 365 K, the mobility of the ionic liquid is increased and initial stages of Trp-cage folding are observed, however Trp-cage does not reach the native folded state in 2 μs of simulation in the ionic liquid. Therefore, in addition to conventional molecular dynamics, we also employ scaled molecular dynamics to expedite sampling, and we demonstrate that Trp-cage in the ionic liquid does closely approach the aqueous folded state. Interestingly, while the reduced mobility of the ionic liquid is found to restrict Trp-cage motion, the ionic liquid does facilitate proline cis/trans isomerization events that are not seen in our aqueous simulations. Copyright © 2015 Elsevier Inc. All rights reserved.
Ahmad, Shahzada; Carstens, Timo; Berger, Rüdiger; Butt, Hans-Jürgen; Endres, Frank
2011-01-01
The electropolymerization of 3,4-ethylenedioxythiophene (EDOT) to poly(3,4-ethylenedioxythiophene) (PEDOT) was investigated in the air and water-stable ionic liquids 1-hexyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate [HMIm]FAP and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide [EMIm]TFSA. In situ scanning tunnelling microscopy (STM) results show that the electropolymerization of EDOT in the ionic liquid can be probed on the nanoscale. In contrast to present understanding, it was observed that the EDOT can be oxidised in ionic liquids well below its oxidation potential and the under potential growth of polymer was visualized by in situ STM. These results serve as the first study to confirm the under potential growth of conducting polymers in ionic liquids. Furthermore, ex situ microscopy measurements were performed. Quite a high current of 670 nA was observed on the nanoscale by conductive scanning force microscopy (CSFM).
Fan, Chen; Li, Nai; Cao, Xueli
2015-05-01
In-situ ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) method was developed as a pretreatment method for the detection of six chlorophenols (CPs) in honey samples. The hydrophobic ionic liquid [C4MIM][NTf2], formed in-situ by the hydrophilic ionic liquid [C4MIM][BF4] and the ion exchange reagent LiNTf2 was used as the microextractant solvent of CPs from honey sample. Then the enriched analytes were back-extracted into 40 μL of 0.14 M NaOH solution and finally subjected to analysis by high-performance liquid chromatography. The method showed low limit of detection of CPs, 0.8-3.2 μg/L and high enrichment factor, 34-65 with the recoveries range from 91.60% to 114.33%. The method is simple, rapid, environmentally friendly and with high extraction efficiency. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent
NASA Astrophysics Data System (ADS)
Taha, Mohd F.; Atikah, N.; Chong, F. K.; Shaharun, Maizatul S.
2012-09-01
The oxidative desulfurization of dibenzothiophene (DBT) from model oil (in n-dodecane) was carried out using ionic liquid as the extractant and catalyst, and hydrogen peroxide (H2O2) in combination with acetic acid (CH3COOH) and sulphuric acid (H2SO4) as the oxidant. The ionic liquids used were 1-butyl-3-methylimidazolium octyl sulphate ([Bmim][OcSO4]) and 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]). The effect of the amounts of H2O2 on oxidative desulphurization of model oil was first investigated without the usage of ionic liquids at room temperature. The results indicate that greater amount of H2O2 give higher desulfurization and the maximum desulfurization in this study, i.e. 34 %, was occurred when the molar ratio of H2O2 to sulfur was 5:1. With the usage of ionic liquid and the molar ratio of 5:1 (H2O2:sulfur), the efficiency of DBT removal from model oil was increased significantly in terms of percent removal and removal time. Ionic liquid of [Bmim][OcSO4] performed better than [Bmim][Ac] with 72 % DBT removal. When molar ratio of H2O2 to sulphur was 5:1, volume ratio of ionic liquid to model oil was 1:1 and mixing time was 60 min at room temperature. The results indicate the potential of ionic liquids as the extractant and catalyst for oxidative desulfurization of hydrocarbon fuels.
Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2006-03-01
The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.
Ding, Xueqin; Li, Li; Wang, Yuzhi; Chen, Jing; Huang, Yanhua; Xu, Kaijia
2014-12-01
A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids were confirmed by (1)H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave-assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed-phase high-performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single-factor and L9 (3(4)) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3-tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave-assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound-assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave-assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave-assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids
NASA Astrophysics Data System (ADS)
Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro
2015-03-01
A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.
NafionxAE-based polymer actuators with ionic liquids as solvent incorporated at room temperature
NASA Astrophysics Data System (ADS)
Kikuchi, Kunitomo; Tsuchitani, Shigeki
2009-09-01
Nafion®-based ionic polymer-metal composites (IPMCs), with ionic liquids as solvent, were fabricated by exchanging counterions to ionic liquids at room temperature. Ion exchange is performed by only immersing IPMC in a mixture of de-ionized water and ionic liquids at room temperature for 48 h. The fabricated IPMCs exhibited a bending curvature the same as or larger than that of conventional IPMCs with ionic liquids, formed by ion exchange to ionic liquids at an elevated temperature up to about 100 °C, and also had long-term stability in operation in air, with a fluctuation smaller than 21% in bending curvature during a 180 min operation. The effective ion exchange to ionic liquids in the present method is probably due to an increase in diffusion speed of ionic liquids into IPMC by adsorption of water in a Nafion® membrane. It is a surprise that among IPMCs with ionic liquids 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), IPMC with water-insoluble BMIPF6 exhibited a larger bending curvature than that IPMC with water-miscible BMIBF4. This might be due to effective incorporation of BMIPF6 into IPMC, since BMIPF6 has a higher affinity with IPMC than with water in the mixture of water and BMIPF6. From measurements of complex impedance and step voltage response of the driving current of IPMCs with ionic liquid, they are expressed by an equivalent circuit of a parallel combination of a serial circuit of membrane resistance of Nafion® and electric double layer capacitance at metal electrodes, with membrane capacitance of Nafion®, in a frequency range higher than about 0.1 Hz. The difference in magnitude of bending curvature in three kinds of IPMCs with ionic liquids is mainly due to the difference in bending response speed coming from the difference in the membrane resistance.
2006-11-01
Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores
Kakinuma, Shohei; Shirota, Hideaki
2018-05-25
In this study, we have investigated the effects of cation structures on the temperature dependence of the intermolecular vibrational dynamics of ionic liquids using femtosecond Raman-induced Kerr effect spectroscopy. The ionic liquids used in this study are bis(trifluoromethylsulfonyl)amide [NTf 2 ] - salts of the cations 1-butyl-3-methylimidazolium [C 4 MIm] + , 1-butyl-1-methylpyrrolidinium [Pyrr 14 ] + , 1-butylpyridinium [C 4 Py] + , butyldiethylmethylammonium [N 1224 ] + , triethyloctylammonium [N 2228 ] + , and triethyloctylphosphonium [P 2228 ] + . All of the ionic liquids show temperature-dependent low-frequency spectra. A difference in the temperature dependence between the spectra of the aromatic and nonaromatic cation based ionic liquids is especially significant. In the case of the aromatic cation based ionic liquids [C 4 MIm][NTf 2 ] and [C 4 Py][NTf 2 ], the spectral intensities in the low-frequency region below ca. 50 cm -1 increase and the high-frequency components at ca. 80 cm -1 shift to lower frequencies with rising temperature. In contrast, the ionic liquids based on nonaromatic cations only exhibit an increase in the low-frequency region below ca. 50 cm -1 with increasing temperature, while the high-frequency region of the spectra above ca. 50 cm -1 shows little change with variation of the temperature. These results suggest that the presence or absence of aromatic rings is the main factor in determining the temperature-dependent spectral features, particularly in the high-frequency region. We also found that the alkyl chain length and central atoms of the nonaromatic quaternary cations do not have much influence on the temperature-dependent spectral features. The first moments of the aromatic cation based ionic liquids are a little more sensitive to temperature than those of the nonaromatic cation based ionic liquids. The temperature-dependent viscosities and fragilities of the ionic liquids have also been examined.
Li, Hsin-Yi; Chen, Chien-Yuan; Cheng, Hui-Ting; Chu, Yen-Ho
2016-10-13
Based on a common structural core of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5- a ]pyridine, a number of bicyclic triazolium ionic liquids 1 - 3 were designed and successfully prepared. In our hands, this optimized synthesis of ionic liquids 1 and 2 requires no chromatographic separation. Also in this work, ionic liquids 1 , 2 were shown to be efficient ionic solvents for fast synthesis of tryptanthrin natural product. Furthermore, a new affinity ionic liquid 3 was tailor-synthesized and displayed its effectiveness in chemoselective extraction of both Cu(II) ions and, for the first time, histidine-containing peptides.
Ionic liquids behave as dilute electrolyte solutions
Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.
2013-01-01
We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690
Multi-Scale Simulation of High Energy Density Ionic Liquids
2007-06-19
and simulation of ionic liquids (ILs). A polarizable model was developed to simulate ILs more accurately at the atomistic level. A multiscale coarse...propellant, 1- hydroxyethyl-4-amino-1, 2, 4-triazolium nitrate (HEATN), were studied with the all-atom polarizable model. The mechanism suggested for HEATN...with this AFOSR-supported project, a polarizable forcefield for the ionic liquids such as 1-ethyl-3-methylimidazolium nitrate (EMIM*/NO3-) was
Predictive model for ionic liquid extraction solvents for rare earth elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grabda, Mariusz; Oleszek, Sylwia; Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze
2015-12-31
The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effectivemore » extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.« less
Hg⁰ removal from flue gas by ionic liquid/H₂O₂.
Cheng, Guangwen; Bai, Bofeng; Zhang, Qiang; Cai, Ming
2014-09-15
1-Alkyl-3-methylimidazolium chloride ionic liquids ([Cnmim] Cl, n=4, 6, 8) were prepared. The ionic liquid was then mixed with hydrogen peroxide (H2O2) to form an absorbent. The Hg(0) removal performance of the absorbent was investigated in a gas/liquid scrubber using simulated flue gas. It was found that the ionic liquid/H2O2 mixture was an excellent absorbent and could be used to remove Hg(0) from flue gas. When the mass ratio of H2O2 to ionic liquid was 0.5, the absorbent showed high Hg(0) removal efficiency (up to 98%). The Hg(0) removal efficiency usually increased with the absorption temperature, while decreased with the increase of alkyl chain length in ionic liquid molecule. The Hg(0) removal mechanism involved with Hg(0) oxidation by H2O2 and Hg(2+) transfer from aqueous phase to ionic liquid phase. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tith, Rany; Dutta, Jaydeep; Jung, Kichang; Martinez-Morales, Alfredo A.
2017-05-01
LiFePO4 is a highly researched cathode material that serves as an alternative material for traditional commercial lithiumion batteries such as LiCoO2. Currently, there are a number of different methods to synthesize LiFePO4 including: hydrothermal, solid state, spray pyrolysis, and coprecipitation. Our proposed method has the potential to provide an ecologically friendly and economically competitive way to synthesize LiFePO4 by utilizing ionic liquid and water, as a composite synthesis medium. The addition of water to ionic liquid can be beneficial as it can act as a mineralizer to bring insoluble precursors to form LiFePO4 seed crystals. Furthermore, this method provides the possibility of recycling the ionic liquid for repeated synthesis processes. In this work, we study the effects of ionic liquid to water ratio on the crystallinity and morphology of the synthesized material. Our group was able to conclude a reaction medium utilizing a ratio of equal parts of 1-ethyl-3-methyl imidazolium trifluoromethane sulfonate (EMIM Otf) and water, or a slightly favored ionic liquid ratio, increases the efficacy of the synthesis route. Crystallinity and purity was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) was used to determine morphology and crystal sizes, and energy dispersion spectroscopy (EDX) was used for elemental analysis.
Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuzuki, Seiji, E-mail: s.tsuzuki@aist.go.jp; Shinoda, Wataru; Miran, Md. Shah
2013-11-07
The stabilization energies for the formation (E{sub form}) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G{sup **} level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E{sub form} for the [dema][CF{sub 3}SO{sub 3}] and [dmpa][CF{sub 3}SO{sub 3}] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative)more » than that for the [etma][CF{sub 3}SO{sub 3}] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl{sup −}, BF{sub 4}{sup −}, TFSA{sup −} anions. The anion has contact with the N–H bond of the dema{sup +} or dmpa{sup +} cations in the most stable geometries of the dema{sup +} and dmpa{sup +} complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E{sub form} for the less stable geometries for the dema{sup +} and dmpa{sup +} complexes are close to those for the most stable etma{sup +} complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA{sup −} anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF{sub 3}SO{sub 3}] ionic liquid.« less
Li, Hongping; Zhu, Wenshuai; Chang, Yonghui; Jiang, Wei; Zhang, Ming; Yin, Sheng; Xia, Jiexiang; Li, Huaming
2015-06-01
In this work, interaction nature between a group of aromatic sulfur compounds and [BMIM](+)[FeCl4](-) have been investigated by density functional theory (DFT). A coordination structure is found to be critical to the mechanism of extractive desulfurization. Interaction energy and extractive selectivity follow the order: thiophene (TH)
An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2007-04-01
This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.
Photochromism of 7-(N,N-diethylamino)-4'-hydroxyflavylium in a water-ionic liquid biphasic system.
Pina, Fernando; Parola, A Jorge; Melo, Maria João; Laia, César A T; Afonso, Carlos A M
2007-04-28
Photochromism of trans-4-(N,N-diethylamino)-2,4'-dihydroxychalcone, with formation of the photoproduct 7-(N,N-diethylamino)-4'-hydroxyflavylium, is promoted in the ionic liquid phase of a water/[bmim][PF6] biphasic system.
Han, Yehong; Yang, Chunliu; Zhou, Yang; Han, Dandan; Yan, Hongyuan
2017-03-01
A new method involving ionic liquid-hybrid molecularly imprinted material-filter solid-phase extraction coupled to high-performance liquid chromatography (IL-HIM-FSPE-HPLC) was developed for the simultaneous isolation and determination of 6-benzyladenine (6-BA) and 4-chlorophenoxyacetic acid (4-CPA) in bean sprouts. Sample preconcentration was performed using a modified filter, with the new IL-HIM as the adsorbent, which shows double adsorption. The first adsorption involves special recognition of molecular imprinting, and the second involves ion exchange and electrostatic attraction caused by the ionic liquid. This method combines the advantages of ionic liquids, hybrid materials, and molecularly imprinted polymers and was successfully applied to determine 6-BA and 4-CPA in bean sprouts. The adsorption of 6-BA to IL-HIM is based on selective imprinted recognition, whereas the adsorption of 4-CPA is mainly dependent on ion-exchange interactions.
Duan, Xiaochuan; Kim, Tongil; Li, Di; Ma, Jianmin; Zheng, Wenjun
2013-05-03
Well-dispersed ammonium aluminum carbonate hydroxide (NH4-Dw) and γ-AlOOH nanostructures with controlled morphologies have been synthesized by employing an ionic-liquid-assisted hydrothermal process. The basic strategies that were used in this work were: 1) A controllable phase transition from NH4-Dw to γ-AlOOH could be realized by increasing the reaction temperature and 2) the morphological evolution of NH4-Dw and γ-AlOOH nanostructures could be influenced by the concentration of the ionic liquid. Based on these experimental results, the main objective of this work was to clarify the effect models of the ionic liquids on the synthesis of NH4-Dw and γ-AlOOH nanostructures, which could be divided into cationic- or anionic-dominant effect models, as determined by the different surface structures of the targets. Specifically, under the cationic-dominant regime, the ionic liquids mainly showed dispersion effects for the NH4-Dw nanostructures, whereas the anionic-dominant model could induce the self-assembly of the γ-AlOOH particles to form hierarchical structures. Under the guidance of the proposed models, the effect of the ionic liquids would be optimized by an appropriate choice of cations or anions, as well as by considering the different effect models with the substrate surface. We expect that such effect models between ionic liquids and the target products will be helpful for understanding and designing rational ionic liquids that contain specific functional groups, thus open up new opportunities for the synthesis of inorganic nanomaterials with new morphologies and improved properties. In addition, these as-prepared NH4-Dw and γ-AlOOH nanostructures were converted into porous γ-Al2O3 nanostructures by thermal decomposition, whilst preserving the same morphology. By using HRTEM and nitrogen-adsorption analysis, the obtained γ-Al2O3 samples were found to have excellent porous properties and, hence, may have applications in catalysis and adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Kun; Jiang, Jia; Kang, Mingqin; Li, Dan; Zang, Shuang; Tian, Sizhu; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei
2017-04-01
The homogeneous ionic liquid microextraction combined with magnetical hollow fiber bar collection was developed for extracting triazine herbicides from water samples. These analytes were separated and determined by high performance liquid chromatography. The triazines were quickly extracted into ionic liquid microdroplets dispersed in solution, and then these microdroplets were completely collected with magnetical hollow fiber bars; the pores of which were impregnated with hydrophobic ionic liquid, which makes the phase separation simplified with no need of centrifugation. Some experimental parameters, such as the type of ionic liquid, ultrasonic immersion time of hollow fiber, pH of sample solution, volume of hydrophilic ionic liquid, amount of ion-pairing agent NH 4 PF 6 , NaCl concentration, number of magnetical hollow fiber bar, stirring rate, and collection time were investigated and optimized. When the present method was applied to the analysis of real water samples, the precision and recoveries of six triazine herbicides vary from 0.1 to 9.2% and 73.4 to 118.5%, respectively. The detection limits for terbumeton, ametryn, prometryn, terbutryn, trietazine, and dimethametryn were 0.48, 0.15, 0.15, 0.14, 0.35, and 0.16 μg L -1 , respectively.
Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph
2012-04-12
Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids.
Dong, Sheying; Li, Nan; Suo, Gaochao; Huang, Tinglin
2013-12-17
In this article, three different inorganic/organic doped carbon aerogel (CA) materials (Ni-CA, Pd-CA, and Ppy-CA) were, respectively, mixed with ionic liquid (IL) to form three stable composite films, which were used as enhanced elements for an integrated sensing platform to increase the surface area and to improve the electronic transmission rate. Subsequently, the effect of the materials performances such as adsorption, specific surface area and conductivity on electrochemistry for myoglobin (Mb) was discussed using N2 adsorption-desorption isotherm measurements, scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). Moreover, they could act as sensors toward the detection of hydrogen peroxide (H2O2) with lower detection limits (1.68 μM, 1.02 μM, and 0.85 μM, for Ni-CA/IL/Mb-CPE, Pd-CA/IL/Mb-CPE, and Ppy-CA/IL/Mb-CPE, respectively) and smaller apparent Michaelis-Menten constants KM. The results indicated that the electroconductibility of the doped CA materials would become dominant, thus playing an important role in facilitating the electron transfer. Meanwhile, the synergetic effect with [BMIm]BF4 IL improved the capability of the composite inorganic/organic doped CA/IL matrix for protein immobilization. This work demonstrates the feasibility and the potential of a series of CA-based hybrid materials as biosensors, and further research and development are required to prepare other functional CAs and make them valuable for more extensive application in biosensing.
Yao, Qingwei
2002-06-27
[reaction: see text] The combination of the ionic liquid [bmim]PF(6) and DMAP provides a most simple and practical approach to the immobilization of OsO(4) as catalyst for olefin dihydroxylation. Both the catalyst and the ionic liquid can be repeatedly recycled and reused in the dihydroxylation of a variety of olefins with only a very slight drop in catalyst activity.
New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors
Pastor, María Jesús; Sánchez, Ignacio; Schmidt, Rainer; Cano, Mercedes
2018-01-01
Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl−, BF4−, ReO4−, p-CH3-6H4SO3− (PTS) and CF3SO3− (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H2pzR(4),R(4)][ReO4]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl− and BF4−) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity. PMID:29614030
Ma, Shufeng; Hu, Liming; Ma, Chaoyang; Lv, Wenping; Wang, Hongxin
2014-09-01
A novel on-line three-dimensional liquid chromatography method was developed to separate four main flavonoids from Rhodiola rosea. Ethyl acetate/0.5 mol/L ionic liquid 1-butyl-3-methylimidazolium chloride aqueous solution was selected as the solvent system. In the first-dimension separation, the target flavonoids were entrapped and subsequently desorbed into the second-dimension high-speed countercurrent chromatographic column for separation. In the third-dimension chromatography, the residual ionic liquid in the four separated flavonoids was removed and the used ionic liquid was recovered. As a result, 35.1 mg of compound 1, 20.4 mg of compound 2, 8.5 mg of compound 3, and 10.6 mg of compound 4 were obtained from 1.53 g R. rosea extract. They were identified as rhodiosin, rhodionin, herbacetin, and kaempferol, respectively. The recovery of ionic liquid reached 99.1% of the initial amount. The results showed that this method is a powerful technology for the separation of R. rosea flavonoids and that the ionic-liquid-based solvent system has advantages over traditional solvent systems in renewable and environmentally friendly properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electropolymerized polyazulene as active material in flexible supercapacitors
NASA Astrophysics Data System (ADS)
Suominen, Milla; Lehtimäki, Suvi; Yewale, Rahul; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita
2017-07-01
We report the capacitive behavior of electrochemically polymerized polyazulene films in different ionic liquids. The ionic liquids in this study represent conventional imidazolium based ionic liquids with tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions as well as an unconventional choline based ionic liquid. The effect of different ionic liquids on the polymerization and capacitive performance of polyazulene films is demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy in a 3-electrode cell configuration. The films exhibit the highest capacitances in the lowest viscosity ionic liquid (92 mF cm-2), while synthesis in high viscosity ionic liquid shortens the conjugation length and results in lower electroactivity (25 mF cm-2). The obtained films also show good cycling stabilities retaining over 90% of their initial capacitance over 1200 p-doping cycles. We also demonstrate, for the first time, flexible polyazulene supercapacitors of symmetric and asymmetric configurations using the choline based ionic liquid as electrolyte. In asymmetric configuration, capacitance of 55 mF (27 mF cm-2) with an equivalent series resistance of 19 Ω is obtained at operating voltage of 1.5 V. Upon increasing the operating voltage up to 2.4 V, the capacitance increases to 72 mF (36 mF cm-2).
A simulation study of CS2 solutions in two related ionic liquids with dications and monocations
NASA Astrophysics Data System (ADS)
Lynden-Bell, R. M.; Quitevis, E. L.
2018-05-01
Atomistic simulations of solutions of CS2 in an ionic liquid, [C8(C1im)2 ] [NTf2]2, with a divalent cation and in the corresponding ionic liquid with a monovalent cation, [C4C1im][NTf2], were carried out. The low-frequency librational density of states of the CS2 was of particular interest in view of recent optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). Compared to the monocation ionic liquid, the maximum shifts to higher frequencies in the dication ionic liquid under ambient conditions, but was found to be significantly pressure-dependent. CS2 molecules lie above and below the plane of the imidazolium rings and found to be close to the butyl tails of the monocation. The diffusion rates and embedding energies of solvent ions and CS2 in the two ionic liquids were measured.
Clough, Matthew T.; Crick, Colin R.; Gräsvik, John; Niedermeyer, Heiko; Whitaker, Oliver P.
2015-01-01
Ionic liquids have earned the reputation of being ‘designer solvents’ due to the wide range of accessible properties and the degree of fine-tuning afforded by varying the constituent ions. Mixtures of ionic liquids offer the opportunity for further fine-tuning of properties. A broad selection of common ionic liquid cations and anions are employed to create a sample of binary and reciprocal binary ionic liquid mixtures, which are analysed and described in this paper. Physical properties such as the conductivity, viscosity, density and phase behaviour (glass transition temperatures) are examined. In addition, thermal stabilities of the mixtures are evaluated. The physical properties examined for these formulations are found to generally adhere remarkably closely to ideal mixing laws, with a few consistent exceptions, allowing for the facile prediction and control of properties of ionic liquid mixtures. PMID:29560198
Ionic liquid as an electrolyte additive for high performance lead-acid batteries
NASA Astrophysics Data System (ADS)
Deyab, M. A.
2018-06-01
The performance of lead-acid battery is improved in this work by inhibiting the corrosion of negative battery electrode (lead) and hydrogen gas evolution using ionic liquid (1-ethyl-3-methylimidazolium diethyl phosphate). The results display that the addition of ionic liquid to battery electrolyte (5.0 M H2SO4 solution) suppresses the hydrogen gas evolution to very low rate 0.049 ml min-1 cm-2 at 80 ppm. Electrochemical studies show that the adsorption of ionic liquid molecules on the lead electrode surface leads to the increase in the charge transfer resistance and the decrease in the double layer capacitance. I also notice a noteworthy improvement of battery capacity from 45 mAh g-1 to 83 mAh g-1 in the presence of ionic liquid compound. Scanning electron microscopy and energy dispersive X-ray analysis confirm the adsorption of ionic liquid molecules on the battery electrode surface.
Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors
NASA Astrophysics Data System (ADS)
Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min
2013-05-01
The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.
Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke
2014-11-01
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High energy supercapattery with an ionic liquid solution of LiClO4.
Yu, Linpo; Chen, George Z
2016-08-15
A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte.
f-Elements in ionic liquids: A synthetic, spectroscopic and electrochemical study
NASA Astrophysics Data System (ADS)
Bhatt, Anand Indravadan
This thesis reports on chemical research directed towards the utilisation of low temperature ionic liquids (LTILs) for the electrorefming of uranium and plutonium from spent nuclear fuel. Initial studies focus on evaluating the relevant physical and electrochemical properties of LTILs. One room temperature ionic liquid, [(CH[3])[3]N(n-C[4]H[9])][N(SO[2]CF[3])[2
Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Schick, Christoph; Jayaraman, Saivenkataraman; Maginn, Edward J
2012-07-14
We used DSC for determination of the reaction enthalpy of the synthesis of the ionic liquid [C(4)mim][Cl]. A combination of DSC and quantum chemical calculations presents a new, indirect way to study thermodynamics of ionic liquids. The new procedure was validated with two direct experimental measurements and MD simulations.
Lahiri, Abhishek; Li, Guozhu; Olschewski, Mark; Endres, Frank
2016-12-14
Ionic liquid-organic solvent mixtures have recently been investigated as potential battery electrolytes. However, contradictory results with these mixtures have been shown for battery performance. In this manuscript, we studied the influence of the addition of polar organic solvents into the ionic liquid electrolyte 1 M lithium bis(fluorosulfonyl)amide (LiFSI)-1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide ([Py 1,4 ]FSI) and tested it for lithium ion battery applications. From infrared and Raman spectroscopy, clear changes in the lithium solvation and cation-anion interactions in the ionic liquid were observed on addition of organic solvents. From the lithiation/delithiation studies on electrodeposited Ge, the storage capacity for the ionic liquid-highly polar organic solvent (acetonitrile) mixture was found to be the highest at low C-rates (0.425 C) compared to using an ionic liquid alone and ionic liquid-less polar solvent (dimethyl carbonate) mixtures. Furthermore, XPS and AFM were used to evaluate the solid electrolyte interphase (SEI) and to correlate its stability with Li storage capacity.
Solvent extraction separation of Th-227 and Ac-225 in room temperature ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Jason R; Boll, Rose Ann; Dai, Sheng
2012-01-01
The solvent extractions of Th-227 and Ac-225 from the aqueous phase into ionic liquids (ILs) were investigated by using N,N,N ,N - tetraoctyldiglycolamide (TODGA) or di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant. Four ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium bis(perfluoroethanesulfonyl)imide ([C4mim][BETI]), 1-butyl-2,3-trimethyleneimidazolium (trifluoromethanesulfonyl)imide [BuI5][NTf2], and 1-benzyl pyridinium bis(trifluoromethanesulfonyl)imide ([PhCH2Py][NTf2]) were used as extraction solvents for separation of Th-227 and Ac-225 in this study. Excellent extraction efficiencies and selectivities were found for Th-227/Ac-225 when HDEHP was used as an extractant in these ionic liquids. The effects of different extractant concentrations in ionic liquids and acidities of the aqueous phase on extraction efficienciesmore » and selectivities of Th-227/Ac-225 are also presented in this article.« less
Gao, Tingting; Andino, Jean M; Alvarez-Idaboy, J Raul
2010-09-07
Computational chemistry calculations were performed to investigate the interactions of ionic liquids with different classes of volatile organic compounds (VOCs), including alcohols, aldehydes, ketones, alkanes, alkenes, alkynes and aromatic compounds. At least one VOC was studied to represent each class. Initially, 1-butyl-3-methylimindazolium chloride (abbreviated as C(4)mimCl) was used as the test ionic liquid compound. Calculated interaction lengths between atoms in the ionic liquid and the VOC tested as well as thermodynamic data suggest that C(4)mimCl preferentially interacts with alcohols as compared to other classes of volatile organic compounds. The interactions of methanol with different kinds of ionic liquids, specifically 1-butyl-3-methylimidazolium bromine (C(4)mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (C(4)mimBF(4)) were also studied. In comparing C(4)mimCl, C(4)mimBr, and C(4)mimBF(4), the computational results suggest that C(4)mimCl is more likely to interact with methanol. Laboratory experiments were performed to provide further evidence for the interaction between C(4)mimCl and different classes of VOCs. Fourier transform infrared spectroscopy was used to probe the ionic liquid surface before and after exposure to the VOCs that were tested. New spectral features were detected after exposure of C(4)mimCl to various alcohols. The new features are characteristic of the alcohols tested. No new IR features were detected after exposure of the C(4)mimCl to the aldehyde, ketone, alkane, alkene, alkyne or aromatic compounds studied. In addition, after exposing the C(4)mimCl to a multi-component mixture of various classes of compounds (including an alcohol), the only new peaks that were detected were characteristic of the alcohol that was tested. These experimental results demonstrated that C(4)mimCl is selective to alcohols, even in complex mixtures. The findings in this work provide information for future gas-phase alcohol sensor design.
Electrochemistry of sulfur and polysulfides in ionic liquids.
Manan, Ninie S A; Aldous, Leigh; Alias, Yatimah; Murray, Paul; Yellowlees, Lesley J; Lagunas, M Cristina; Hardacre, Christopher
2011-12-01
The electrochemistry of elemental sulfur (S(8)) and the polysulfides Na(2)S(4) and Na(2)S(6) has been studied for the first time in nonchloroaluminate ionic liquids. The cyclic voltammetry of S(8) in the ionic liquids is different to the behavior reported in some organic solvents, with two reductions and one oxidation peak observed. Supported by in situ UV-vis spectro-electrochemical experiments, the main reduction products of S(8) in [C(4)mim][DCA] ([C(4)mim] = 1-butyl-3-methylimidazolium; DCA = dicyanamide) have been identified as S(6)(2-) and S(4)(2-), and plausible pathways for the formation of these species are proposed. Dissociation and/or disproportionation of the polyanions S(6)(2-) and S(4)(2-) appears to be slow in the ionic liquid, with only small amounts of the blue radical species S(3)(•-) formed in the solutions at r.t., in contrast with that observed in most molecular solvents. © 2011 American Chemical Society
Liu, Zhongling; Yu, Wei; Zhang, Hanqi; Gu, Fanbin; Jin, Xiangqun
2016-12-01
Salting-out homogenous extraction followed by ionic liquid/ionic liquid dispersive liquid-liquid micro-extraction system was developed and applied to the extraction of sulfonamides in blood. High-performance liquid chromatography was applied to the determination of the analytes. The blood sample was centrifuged to obtain the serum. After the proteins in the serum were removed in the presence of acetonitrile, ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, dipotassium hydrogen phosphate, ionic liquid 1-Hexyl-3-methylimidazolium hexafluorophosphate were added into the resulting solution. After the resulting mixture was ultrasonically shaken and centrifuged, the precipitate was separated. The acetonitrile was added in the precipitate and the analytes were extracted into the acetonitrile phase. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of dipotassium hydrogen phosphate, volume of dispersant, extraction time and temperature were investigated. The limits of detection of sulfamethizole (STZ), sulfachlorpyridazine (SCP), sulfamethoxazole (SMX) and Sulfisoxazole (SSZ) were 4.78, 3.99, 5.21 and 3.77μgL -1 , respectively. When the present method was applied to the analysis of real blood samples, the recoveries of analytes ranged from 90.0% to 113.0% and relative standard deviations were lower than 7.2%. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling the structure and thermodynamics of ferrocenium-based ionic liquids.
Bernardes, Carlos E S; Mochida, Tomoyuki; Canongia Lopes, José N
2015-04-21
A new force-field for the description of ferrocenium-based ionic liquids is reported. The proposed model was validated by confronting Molecular Dynamics simulations results with available experimental data-enthalpy of fusion, crystalline structure and liquid density-for a series of 1-alkyl-2,3,4,5,6,7,8,9-octamethylferrocenium bis(trifluoromethylsulfonyl)imide ionic liquids, [CnFc][NTf2] (3 ≤ n ≤ 10). The model is able to reproduce the densities and enthalpies of fusion with deviations smaller than 2.6% and 4.8 kJ mol(-1), respectively. The MD simulation trajectories were also used to compute relevant structural information for the different [CnFc][NTf2] ionic liquids. The results show that, unlike other ILs, the alkyl side chains present in the cations are able to interact directly with the ferrocenium core of other ions. Even the ferrocenium charged cores (with relatively mild charge densities) are able to form small contact aggregates. This causes the partial rupture of the polar network and precludes the formation of extended nano-segregated polar-nonpolar domains normally observed in other ionic liquids.
Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong
2017-07-04
In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Phase Transitions of Triflate-Based Ionic Liquids under High Pressure.
Faria, Luiz F O; Ribeiro, Mauro C C
2015-11-05
Raman spectroscopy has been used to study phase transitions of ionic liquids based on the triflate anion, [TfO](-), as a function of pressure or temperature. Raman spectra of ionic liquids containing the cations 1-butyl-3-methylimidazolium, [C4C1Im](+), 1-octyl-3-methylimidazolium, [C8C1Im](+), 1-butyl-2,3-dimethylimidazolium, [C4C1C1Im](+), and 1-butyl-1-methylpyrrolidinium, [C4C1Pyr](+), were compared. Vibrational frequencies and binding energy of ionic pairs were calculated by quantum chemistry methods. The ionic liquids [C4C1Im][TfO] and [C4C1Pyr][TfO] crystallize at 1.0 GPa when the pressure is increased in steps of ∼ 0.2 GPa from the atmospheric pressure, whereas [C8C1Im][TfO] and [C4C1C1Im][TfO] do not crystallize up to 2.3 GPa of applied pressure. The low-frequency range of the Raman spectrum of [C4C1Im][TfO] indicates that the system undergoes glass transition, rather than crystallization, when the pressure applied on the liquid has been increased above 2.0 GPa in a single step. Strong hysteresis of spectral features (frequency shift and bandwidth) of the high-pressure crystalline phase when the pressure was released stepwise back to the atmospheric pressure has been found .
Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes
NASA Astrophysics Data System (ADS)
Lewandowski, Andrzej; Olejniczak, Angelika; Galinski, Maciej; Stepniak, Izabela
Properties of capacitors working with the same carbon electrodes (activated carbon cloth) and three types of electrolytes: aqueous, organic and ionic liquids were compared. Capacitors filled with ionic liquids worked at a potential difference of 3.5 V, their solutions in AN and PC were charged up to the potential difference of 3 V, classical organic systems to 2.5 V and aqueous to 1 V. Cyclic voltammetry, galvanostatic charging/discharging and impedance spectroscopy were used to characterize these capacitors. The highest specific energy was recorded for the device working with ionic liquids, while the highest power is characteristic for the device filled with aqueous H 2SO 4 electrolyte. Aqueous electrolytes led to energy density an order of magnitude lower in comparison to that characteristic of ionic liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jun; Luo, Huimin
An ionic liquid composition having the following generic structural formula: ##STR00001## wherein R 1, R 2, R 3, and R 4 are equivalent and selected from hydrocarbon groups containing at least three carbon atoms, and X - is a phosphorus-containing anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base oil, wherein the ionic liquid is dissolved in the base oil. Further described are methods for applying the ionic liquid or lubricant composition onto amore » mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.« less
Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei
2017-07-01
A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Lijie; Hu, Mingzhu; Li, Zhanchao; Song, Ying; Yu, Cui; Zhang, Yupu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-02-01
A novel extraction method, dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction, was developed for the determination of triazine herbicides, including desmetryn, terbumeton, propazine, terbuthylazine, dimethametryn, and dipropetryn in fresh vegetable samples by high performance liquid chromatography (HPLC). In the developed method, 120 μL of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) was added to 10 mL of aqueous solution containing 0.3 g of NaCl to obtained the extraction solvent. Six triazines could be extracted completely within 4 min by the present method. Then, [NH4][PF6] was added into the extract to form a water-insoluble ionic liquid [C4MIM][PF6] via a simple metathesis reaction, and the analytes were enriched into the ionic liquid phase. After centrifugation and dilution with acetonitrile, the resulting solution was analyzed directly by HPLC. The effects of some experimental parameters, including type and volume of ionic liquid, volume of extraction solvent, amount of ion-pairing agent [NH4][PF6], salt concentration, microwave power, and flow rate of extraction solvent on the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 2.50-250.00 μg kg(-1), with the correlation coefficients ranging from 0.9989 to 0.9999. When the present method was applied to the analysis of vegetable samples, satisfactory recoveries were obtained in the range of 76.8%-106.9%, and relative standard deviations were lower than 9.8%.
Block Copolymers and Ionic Liquids: A New Class of Functional Nanocomposites
NASA Astrophysics Data System (ADS)
Lodge, Timothy
2009-03-01
Block copolymers provide a remarkably versatile platform for achieving desired nanostructures by self-assembly, with lengthscales varying from a few nanometers up to several hundred nanometers. Ionic liquids are an emerging class of solvents, with an appealing set of physical attributes. These include negligible vapor pressure, high chemical and thermal stability, tunable solvation properties, high ionic conductivity, and wide electrochemical windows. For various applications it will be necessary to solidify the ionic liquid into particular spatial arrangements, such as membranes or gels, or to partition the ionic liquid in coexisting phases, such as microemulsions and micelles. One example includes formation of spherical, cylindrical, and vesicular micelles by poly(butadiene-b-ethylene oxide) and poly(styrene-b-methylmethacrylate) in the common hydrophobic ionic liquids [BMI][PF6] and [EMI][TFSI]. This work has been extended to the formation of reversible micelle shuttles between ionic liquids and water, whereby entire micelles transfer from one phase to the other, reversibly, depending on temperature and solvent quality. Formation of ion gels has been achieved by self-assembly of poly(styrene-b-ethylene oxide-b-styrene) triblocks in ionic liquids, and by the thermoreversible system poly(N-isopropylacrylamide-b-ethylene oxide-b-N-isopropylacrylamide), using as little as 4% copolymer. Further, these gels have been shown to be remarkably effective as gate dielectrics in organic thin film transistors. The remarkably high capacitance of the ion gels (> 10 μF/cm^2) supports a very high carrier density in an organic semiconductor such as poly(3-hexylthiophene), leading to milliamp currents for low applied voltages. Furthermore, the rapid mobility of the ions enables switching speeds approaching 10 kHz, orders of magnitude higher than achievable with other polymer-based dielectrics such as PEO/LiClO4. Finally, we have shown that ordered nanostructures of block copolymers plus ionic liquids show the characteristic self-assembly properties of strongly-segregated systems. Prospects for anisotropic ionic conductivity are also being explored.
Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.
Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan
2017-10-19
In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.
NASA Astrophysics Data System (ADS)
Borodin, Oleg
2010-03-01
Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.
Electrodeposition of Si from an Ionic Liquid Bath at Room Temperature in the Presence of Water.
Shah, Nisarg K; Pati, Ranjan Kumar; Ray, Abhijit; Mukhopadhyay, Indrajit
2017-02-21
The electrochemical deposition of Si has been carried out in an ionic liquid medium in the presence of water in a limited dry nitrogen environment on highly oriented pyrolytic graphite (HOPG) at room temperature. It has been found that the presence of water in ionic liquids does not affect the available effective potential window to a large extent. Silicon has been successfully deposited electrochemically in the overpotential regime in two different ionic liquids, namely, BMImTf 2 N and BMImPF 6 , in the presence of water. Although a Si thin film has been obtained from BMImTf 2 N; only distinguished Si crystals protected in ionic liquid droplets have been observed from BMImPF 6 . The most important observation of the present investigation is that the Si precursor, SiCl 4 , instead of undergoing hydrolysis, even in the presence of water, coexisted with ionic liquids, and elemental Si has been successfully electrodeposited.
Thermodynamics of interaction of ionic liquids with lipid monolayer.
Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K
2018-06-01
Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.
The vapour of imidazolium-based ionic liquids: a mass spectrometry study.
Deyko, A; Lovelock, K R J; Licence, P; Jones, R G
2011-10-06
Eight common dialkylimidazolium-based ionic liquids have been successfully evaporated in ultra-high vacuum and their vapours analysed by line of sight mass spectrometry using electron ionisation. The ionic liquids investigated were 1-alkyl-3-methylimidazolium bis[(trifluoromethane)sulfonyl]imide, [C(n)C(1)Im][Tf(2)N] (where n = 2, 4, 6, 8), 1-alkyl-3-methylimidazolium tetrafluoroborate, [C(n)C(1)Im][BF(4)] (where n = 4, 8), 1-butyl-3-methylimidazolium octylsulfate, [C(4)C(1)Im][C(8)OSO(3)] and 1-butyl-3-methylimidazolium tetrachloroferrate, [C(4)C(1)Im][FeCl(4)]. All ionic liquids studied here evaporated as neutral ion pairs; no evidence of decomposition products in the vapour phase were observed. Key fragment cations of the ionised vapour of the ionic liquids are identified. The appearance energies, E(app), of the parent cation were measured and used to estimate the ionisation energies, E(i), for the vapour phase neutral ion pairs. Measured ionisation energies ranged from 10.5 eV to 13.0 eV. Using both the identity and E(app) values, the fragmentation pathways for a number of fragment cations are postulated. It will be shown that the enthalpy of vaporisation, Δ(vap)H, can successfully be measured using more than one fragment cation, although caution is required as many fragment cations can also be formed by ionisation of decomposition products.
Li, Chunying; Lu, Zhicheng; Zhao, Chunjian; Yang, Lei; Fu, Yujie; Shi, Kunming; He, Xin; Li, Zhao; Zu, Yuangang
2015-01-01
We evaluated an ionic-liquid-based ultrasound/microwave-assisted extraction method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from etiolated maize seedlings. We performed single-factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1-octyl-3-methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic-liquid-based ultrasound/microwave-assisted extraction and conventional homogenized extraction. Extraction yields of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one by the ionic-liquid-based ultrasound/microwave-assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46- and 1.32-fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic-liquid-based ultrasound/microwave-assisted extraction method is therefore an efficient and credible method for the extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize seedlings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel Nanocomposite Structures as Active and Passive Barrier Materials
2010-06-01
during the course of this ARO-funded project. The development of a novel polymer material based on a diol-functionalized room-temperature ionic liquid ...material based on a diol-functionalized room- temperature ionic liquid (RTIL) monomer led to fabrication of membranes, which were tested for their...stimulant vapor. Technical Report A polymerizable room-temperature ionic liquid (4, Figure 1) was chosen as the starting material for making poly(RTIL
Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi
2015-12-01
Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel applications of ionic liquids in materials processing
NASA Astrophysics Data System (ADS)
Reddy, Ramana G.
2009-05-01
Ionic liquids are mixtures of organic and inorganic salts which are liquids at room temperature. Several potential applications of ionic liquids in the field of materials processing are electrowinning and electrodeposition of metals and alloys, electrolysis of active metals at low temperature, liquid-liquid extraction of metals. Results using 1-butyl-3-methylimidazolium chloride with AlCl3 at low temperatures yielded high purity aluminium deposits (>99.9% pure) and current efficiencies >98%. Titanium and aluminium were co-deposited with/without the addition of TiCl4 with up to 27 wt% Ti in the deposit with current efficiencies in the range of 78-85 %. Certain ionic liquids are potential replacements for thermal oils and molten salts as heat transfer fluids in solar energy applications due to high thermal stability, very low corrosivity and substantial sensible heat retentivity. The calculated storage densities for several chloride and fluoride ionic liquids are in the range of 160-210 MJ/m3. A 3-D mathematical model was developed to simulate the large scale electrowinning of aluminium. Since ionic liquids processing results in their low energy consumption, low pollutant emissions many more materials processing applications are expected in future.
Thermophysical properties of tri-n-butylphosphate-ionic liquid mixture
NASA Astrophysics Data System (ADS)
Rout, Alok; Mishra, Satyabrata; Venkatesan, K. A.; Antony, M. P.; Pandey, N. K.
2018-04-01
Thermophysical properties such as viscosity, density, energy of activation and coefficient of thermal expansion were measured for the solvent phase composed of tri-n-butylphosphate (TBP), 1-butyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C4mim][NTf2]) and 1.1 M TBP/[C4mim][NTf2]. The results were compared with that of nitric acid equilibrated [C4mim][NTf2] and 1.1M TBP/[C4mim][NTf2]. Thermal stability of the ionic liquid phase was assessed by using differential scanning calorimetric (DSC) technique. Other important physical properties such as refractive index and surface tension of the ionic liquid phase composition were evaluated before and after acid saturation.
Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Lukasz; Luckenbach, Till; Heipieper, Hermann J
2018-01-01
Ionic liquids consisting of a combination of herbicidal anions with a quaternary ammonium cation act as efficient herbicides, which are under consideration to be used in the agriculture. In the present study, we used embryos of the zebrafish (Danio rerio) as a model to assess the toxic potential of ammonium-based ionic liquids for aquatic organisms. As we assumed interference of the partially hydrophobic ionic liquid cation with lipids, we investigated the adaptation response in the lipid composition of the zebrafish embryos, triggered by the ionic compound. Therefore, the impact of ammonium-based ionic liquids with different lengths of the alkyl chain ([C6,C6,C1,C1N][Br], [C8,C8,C1,C1N][Br]) on the phospholipid fatty acid (PLFA) profile of zebrafish embryos up to 72 hours post fertilization (hpf) was examined. Furthermore, the changes in the unsaturation index (UI) of PLFAs, as the sum parameter of membrane fluidity in eukaryotic cells, were presented. The PLFA's UI in the zebrafish embryos upon exposure to quaternary ammonium salts was compared to the UI of the embryos upon exposure to nonionic 2,4-dichlorophenol, which has a similar hydrophobicity but is structurally different to [C8,C8,C1,C1N][Br]. It was shown that for ammonium-based ionic liquid precursors non-specific mode of action occurs and the toxic effect on lipid composition of zebrafish embryos can be well predicted based on chemical properties, like hydrophobicity. Furthermore, the changes in PLFAs, expressed by the UI, can be useful to study toxic effects of organic contamination. However, for zebrafish embryos, after ionic liquids and 2,4-DCP exposure, the changes were observed at high lethal concentrations, which caused the incidence of lethality of 30 and 50% of a group of test animals.
Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Lukasz; Luckenbach, Till
2018-01-01
Ionic liquids consisting of a combination of herbicidal anions with a quaternary ammonium cation act as efficient herbicides, which are under consideration to be used in the agriculture. In the present study, we used embryos of the zebrafish (Danio rerio) as a model to assess the toxic potential of ammonium-based ionic liquids for aquatic organisms. As we assumed interference of the partially hydrophobic ionic liquid cation with lipids, we investigated the adaptation response in the lipid composition of the zebrafish embryos, triggered by the ionic compound. Therefore, the impact of ammonium-based ionic liquids with different lengths of the alkyl chain ([C6,C6,C1,C1N][Br], [C8,C8,C1,C1N][Br]) on the phospholipid fatty acid (PLFA) profile of zebrafish embryos up to 72 hours post fertilization (hpf) was examined. Furthermore, the changes in the unsaturation index (UI) of PLFAs, as the sum parameter of membrane fluidity in eukaryotic cells, were presented. The PLFA’s UI in the zebrafish embryos upon exposure to quaternary ammonium salts was compared to the UI of the embryos upon exposure to nonionic 2,4-dichlorophenol, which has a similar hydrophobicity but is structurally different to [C8,C8,C1,C1N][Br]. It was shown that for ammonium-based ionic liquid precursors non-specific mode of action occurs and the toxic effect on lipid composition of zebrafish embryos can be well predicted based on chemical properties, like hydrophobicity. Furthermore, the changes in PLFAs, expressed by the UI, can be useful to study toxic effects of organic contamination. However, for zebrafish embryos, after ionic liquids and 2,4-DCP exposure, the changes were observed at high lethal concentrations, which caused the incidence of lethality of 30 and 50% of a group of test animals. PMID:29342167
Mechanisms of the Diffusion of Nonpolar Substances in a Hydrophilic Ionic Liquid
NASA Astrophysics Data System (ADS)
Atamas', N. A.
2018-01-01
The structural-dynamic features of ionic liquid-nonpolar substance systems are studied by means of molecular dynamics using Frenkel's fundamental theory of a liquid and the phonon theory of the thermodynamics of a liquid, in combination with the DL_POLY_4.05 software package. Argon, methane, and benzene molecules serve as the dissolved substances. Model concepts are proposed and analyzed to describe the diffusion of molecules of a dissolved substance in an ionic liquid. It is shown that an increase in the mass of the molecules of a dissolved nonpolar substance correlates with their mobility in a hydrophilic ionic liquid (IL). This determines the diffusion of the components of dmim+/Cl- IL solutions and is responsible for the anomalous behavior of the solubility of nonpolar substances in them.
Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids
Luís, Andreia; Shimizu, Karina; Araújo, João M. M.; Carvalho, Pedro J.; Lopes-da-Silva, José A.; Canongia Lopes, José N.; Rebelo, Luís Paulo N.; Coutinho, João A. P.; Freire, Mara G.; Pereiro, Ana B.
2017-01-01
We have investigated, both theoretically and experimentally, the balance between the presence of alkyl and perfluoroalkyl side chains on the surface organization and surface tension of fluorinated ionic liquids (FILs). A series of ILs composed of 1-alkyl-3-methylimidazolium cations ([CnC1im] with n = 2, 4, 6, 8, 10 or 12) combined with the perfluorobutanesulfonate anion was used. The surface tensions of the investigated liquid salts are considerably lower than those reported for non-fluorinated ionic liquids. The most surprising and striking feature was the identification, for the first time, of a minimum at n = 8 in the surface tension versus the length of the IL cation alkyl side chain. Supported by molecular dynamic simulations it was found that this trend is a result of the competition between the two nonpolar domains (perfluorinated and aliphatic) on pointing towards the gas-liquid interface, a phenomenon which occurs in ionic liquids with perfluorinated anions. Furthermore, these ionic liquids present the lowest surface entropy reported to date. PMID:27218210
Ma, Xiaohong; Wang, Qiang; Li, Xiaoping; Tang, Jun; Zhang, Zhengfang
2015-11-01
Thermodynamic properties of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM] BF4) were determined via inverse gas chromatography (IGC). Two groups of solvents with different chemical natures and polarities were used to obtain information about [BMIM] BF4-solvent interactions. The specific retention volume, molar heat of sorption, weight fraction activity coefficient, Flory-Huggins interaction parameter as well as solubility parameter were also determined in a temperature range of 333 - 373 K. The results showed that the selected solvents n-C10 to n-C12, carbon tetrachloride, cyclohexane and toluene were poor solvents for [BMIM] BF4, while dichloromethane, acetone, chloroform, methyl acetate, ethanol and methanol were favorite solvents for [BMIM] BF4. In addition, the solubility parameter of [ BMIM] BF4 was determined as 23.39 (J/cm3)0.5 by the extrapolation at 298 K. The experiment proved that IGC was a simple and accurate method to obtain the thermodynamic properties of ionic liquids. This study could be used as a reference to the application and research of the ionic liquids.
NASA Astrophysics Data System (ADS)
Miskolczy, Zsombor; Biczók, László
2009-07-01
A clinically important natural isoquinoline alkaloid, berberine, was used as a fluorescent probe to study the encapsulation of 1-alkyl-3-methylimidazolium (C nMIm +) type ionic liquids in 4-sulfonato-substituted calix[4]arene (SCX4) and calix[6]arene (SCX6) at pH 2. Addition of ionic liquids to the aqueous solution of berberine-SCXn inclusion complexes brought about considerable fluorescence intensity diminution due to the extrusion of berberine from the macrocycle into the aqueous phase by the competitive inclusion of C nMIm + cation. The lengthening of the aliphatic side chain of the imidazolium moiety diminished the equilibrium constant of complexation with SCX4, but enhanced the stability of SCX6 complexes. Larger binding strength was found for SCX4.
NASA Astrophysics Data System (ADS)
Burba, Christopher M.; Chang, Hai-Chou
2018-03-01
Continued growth and development of ionic liquids requires a thorough understanding of how cation and anion molecular structure defines the liquid structure of the materials as well as the various properties that make them technologically useful. Infrared spectroscopy is frequently used to assess molecular-level interactions among the cations and anions of ionic liquids because the intramolecular vibrational modes of the ions are sensitive to the local potential energy environments in which they reside. Thus, different interaction modes among the ions may lead to different spectroscopic signatures in the vibrational spectra. Charge organization present in ionic liquids, such as 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4mim]CF3SO3), is frequently modeled in terms of a quasicrystalline structure. Highly structured quasilattices enable the dynamic coupling of vibrationally-induced dipole moments to produce optical dispersion and transverse optical-longitudinal optical (TO-LO) splitting of vibrational modes of the ionic liquid. According to dipolar coupling theory, the degree of TO-LO splitting is predicted to have a linear dependence on the number density of the ionic liquid. Both temperature and pressure will affect the number density of the ionic liquid and, therefore, the amount of TO-LO splitting for this mode. Therefore, we test these relationships through temperature- and pressure-dependent FT-IR spectroscopic studies of [C4mim]CF3SO3, focusing on the totally symmetric Ssbnd O stretching mode for the anion, νs(SO3). Increased temperature decreases the amount of TO-LO splitting for νs(SO3), whereas elevated pressure is found to increase the amount of band splitting. In both cases, the experimental observations follow the general predictions of dipolar coupling theory, thereby supporting the quasilattice model for this ionic liquid.
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Yingying; Fan, Honglei; Meng, Qinglei; Zhang, Zhaofu; Yang, Guanying; Han, Buxing
2017-08-03
We explored the oxidation reactions of lignin model compounds directly induced by ionic liquids under metal-free conditions. In this work, it was found that ionic liquid 1-octyl-3-methylimidazolium acetate as a solvent could promote the aerobic oxidation of lignin model compound 2-phenoxyacetophenone (1) and the yields of phenol and benzoic acid from 1 could be as high as 96% and 86%, respectively. A possible reaction pathway was proposed based on a series of control experiments. An acetate anion from the ionic liquid attacked the hydrogen from the β-carbon thereby inducing the cleavage of the C-O bond of the aromatic ether. Furthermore, it was found that 2-(2-methoxyphenoxy)-1-phenylethanone (4) with a methoxyl group could also be transformed into aromatic products in this simple reaction system and the yields of phenol and benzoic acid from 4 could be as high as 98% and 85%, respectively. This work provides a simple way for efficient transformation of lignin model compounds.
Exceptionally High Electric Double Layer Capacitances of Oligomeric Ionic Liquids.
Matsumoto, Michio; Shimizu, Sunao; Sotoike, Rina; Watanabe, Masayoshi; Iwasa, Yoshihiro; Itoh, Yoshimitsu; Aida, Takuzo
2017-11-15
Electric double layer (EDL) capacitors are promising as next-generation energy accumulators if their capacitances and operation voltages are both high. However, only few electrolytes can simultaneously fulfill these two requisites. Here we report that an oligomeric ionic liquid such as IL4 TFSI with four imidazolium ion units in its structure provides a wide electrochemical window of ∼5.0 V, similar to monomeric ionic liquids. Furthermore, electrochemical impedance measurements using Au working electrodes demonstrated that IL4 TFSI exhibits an exceptionally high EDL capacitance of ∼66 μF/cm 2 , which is ∼6 times as high as those of monomeric ionic liquids so far reported. We also found that an EDL-based field effect transistor (FET) using IL4 TFSI as a gate dielectric material and SrTiO 3 as a channel material displays a very sharp transfer curve with an enhanced carrier accumulation capability of ∼64 μF/cm 2 , as determined by Hall-effect measurements.
Yoon, Donhee; Lee, Dongkun; Lee, Jong-Hyeon; Cha, Sangwon; Oh, Han Bin
2015-01-30
Quantifying polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) with a conventional crystalline matrix generally suffers from poor sample-to-sample or shot-to-shot reproducibility. An ionic-liquid matrix has been demonstrated to mitigate these reproducibility issues by providing a homogeneous sample surface, which is useful for quantifying polymers. In the present study, we evaluated the use of an ionic liquid matrix, i.e., 1-methylimidazolium α-cyano-4-hydroxycinnamate (1-MeIm-CHCA), to quantify polyhexamethylene guanidine (PHMG) samples that impose a critical health hazard when inhaled in the form of droplets. MALDI-TOF mass spectra were acquired for PHMG oligomers using a variety of ionic-liquid matrices including 1-MeIm-CHCA. Calibration curves were constructed by plotting the sum of the PHMG oligomer peak areas versus PHMG sample concentration with a variety of peptide internal standards. Compared with the conventional crystalline matrix, the 1-MeIm-CHCA ionic-liquid matrix had much better reproducibility (lower standard deviations). Furthermore, by using an internal peptide standard, good linear calibration plots could be obtained over a range of PMHG concentrations of at least 4 orders of magnitude. This study successfully demonstrated that PHMG samples can be quantitatively characterized by MALDI-TOFMS with an ionic-liquid matrix and an internal standard. Copyright © 2014 John Wiley & Sons, Ltd.
Electric double-layer capacitance between an ionic liquid and few-layer graphene.
Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro
2013-01-01
Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor.
Electric double-layer capacitance between an ionic liquid and few-layer graphene
Uesugi, Eri; Goto, Hidenori; Eguchi, Ritsuko; Fujiwara, Akihiko; Kubozono, Yoshihiro
2013-01-01
Ionic-liquid gates have a high carrier density due to their atomically thin electric double layer (EDL) and extremely large geometrical capacitance Cg. However, a high carrier density in graphene has not been achieved even with ionic-liquid gates because the EDL capacitance CEDL between the ionic liquid and graphene involves the series connection of Cg and the quantum capacitance Cq, which is proportional to the density of states. We investigated the variables that determine CEDL at the molecular level by varying the number of graphene layers n and thereby optimising Cq. The CEDL value is governed by Cq at n < 4, and by Cg at n > 4. This transition with n indicates a composite nature for CEDL. Our finding clarifies a universal principle that determines capacitance on a microscopic scale, and provides nanotechnological perspectives on charge accumulation and energy storage using an ultimately thin capacitor. PMID:23549208
Khara, Dinesh Chandra; Kumar, Jaini Praveen; Mondal, Navendu; Samanta, Anunay
2013-05-02
Rotational dynamics of two dipolar solutes, 4-aminophthalimide (AP) and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), and a nonpolar solute, anthracene, have been studied in N-alkyl-N-methylmorpholinium (alkyl = ethyl, butyl, hexyl, and octyl) bis(trifluoromethansulfonyl)imide (Tf2N) ionic liquids as a function of temperature and excitation wavelength to probe the microheterogeneous nature of these ionic liquids, which are recently reported to be more structured than the imidazolium ionic liquids (Khara and Samanta, J. Phys. Chem. B2012, 116, 13430-13438). Analysis of the measured rotational time constants of the solutes in terms of the Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that with increase in the alkyl chain length attached to the cationic component of the ionic liquids, AP shows stick to superstick behavior, PRODAN rotation lies between stick and slip boundary conditions, whereas anthracene exhibits slip to sub slip behavior. The contrasting rotational dynamics of these probe molecules is a reflection of their location in distinct environments of the ionic liquids thus demonstrating the heterogeneity of these ionic liquids. The microheterogeneity of these media, in particular, those with the long alkyl chain, is further evidence from the excitation wavelength dependence study of the rotational diffusion of the dipolar probe molecules.
NASA Astrophysics Data System (ADS)
Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto
2018-06-01
We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bennett, William R.; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.
2014-01-01
We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N -methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 xLi+ 0.33) and temperature (298 K T 393 K). Structurally, Li+ is shown to be solvated by three anion neigh- bors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi+ we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi+, the contribution of Li+ to ionic conductivity increases until reach- ing a saturation doping level of xLi+ 0.10. Comparatively, the Li+ conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. Our transport results also demonstrate the necessity of long MD simulation runs ( 200 ns) required to converge transport properties at room T. The differences in Li+ transport are reflected in the residence times of Li+ with the anions (Li), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li+ transport in each liquid, we find that while the net motion of Li+ with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of transport through anion exchange (hopping) increases at high xLi+ and in liquids with large anions.
Electrostatic interactions in soft particle systems: mesoscale simulations of ionic liquids.
Wang, Yong-Lei; Zhu, You-Liang; Lu, Zhong-Yuan; Laaksonen, Aatto
2018-05-21
Computer simulations provide a unique insight into the microscopic details, molecular interactions and dynamic behavior responsible for many distinct physicochemical properties of ionic liquids. Due to the sluggish and heterogeneous dynamics and the long-ranged nanostructured nature of ionic liquids, coarse-grained meso-scale simulations provide an indispensable complement to detailed first-principles calculations and atomistic simulations allowing studies over extended length and time scales with a modest computational cost. Here, we present extensive coarse-grained simulations on a series of ionic liquids of the 1-alkyl-3-methylimidazolium (alkyl = butyl, heptyl-, and decyl-) family with Cl, [BF4], and [PF6] counterions. Liquid densities, microstructures, translational diffusion coefficients, and re-orientational motion of these model ionic liquid systems have been systematically studied over a wide temperature range. The addition of neutral beads in cationic models leads to a transition of liquid morphologies from dispersed apolar beads in a polar framework to that characterized by bi-continuous sponge-like interpenetrating networks in liquid matrices. Translational diffusion coefficients of both cations and anions decrease upon lengthening of the neutral chains in the cationic models and by enlarging molecular sizes of the anionic groups. Similar features are observed in re-orientational motion and time scales of different cationic models within the studied temperature range. The comparison of the liquid properties of the ionic systems with their neutral counterparts indicates that the distinctive microstructures and dynamical quantities of the model ionic liquid systems are intrinsically related to Coulombic interactions. Finally, we compared the computational efficiencies of three linearly scaling O(N log N) Ewald summation methods, the particle-particle particle-mesh method, the particle-mesh Ewald summation method, and the Ewald summation method based on a non-uniform fast Fourier transform technique, to calculate electrostatic interactions. Coarse-grained simulations were performed using the GALAMOST and the GROMACS packages and hardware efficiently utilizing graphics processing units on a set of extended [1-decyl-3-methylimidazolium][BF4] ionic liquid systems of up to 131 072 ion pairs.
Shahvelayati, Ashraf S; Ghazvini, Maryam; Yadollahzadeh, Khadijeh; Delbari, Akram S
2018-01-01
The development of multicomponent reactions (MCRs) in the presence of task-specific ionic liquids (ILs), used not only as environmentally benign reaction media, but also as catalysts, is a new approach that meet with the requirements of sustainable chemistry. In recent years, the use of ionic liquids as a green media for organic synthesis has become a chief study area. This is due to their unique properties such as non-volatility, non-flammability, chemical and thermal stability, immiscibility with both organic compounds and water and recyclability. Ionic liquids are used as environmentally friendly solvents instead of hazardous organic solvents. We report the condensation reaction between α-oximinoketone and dialkyl acetylene dicarboxylate in the presence of triphenylphosphine to afford substituted pyrroles under ionic liquid conditions in good yields. Densely functionalized pyrroles was easily prepared from reaction of α-oximinoketones, dialkyl acetylene dicarboxylate in the presence of triphenylphosphine in a quantitative yield under ionic liquid conditions at room temperature. In conclusion, ionic liquids are indicated as a useful and novel reaction medium for the selective synthesis of functionalized pyrroles. This reaction medium can replace the use of hazardous organic solvents. Easy work-up, synthesis of polyfunctional compounds, decreased reaction time, having easily available-recyclable ionic liquids, and good to high yields are advantages of present method. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kurata, Atsushi; Senoo, Humiya; Ikeda, Yasuyuki; Kaida, Hideaki; Matsuhara, Chiaki; Kishimoto, Noriaki
2016-07-01
An ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, was isolated from a Japanese fermented soybean paste. Strain CMW1 grew in the presence of 10 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), a commonly used ionic liquid. Additionally, strain CMW1 grew adequately in the presence of the hydrophilic ionic liquids 10 % (v/v) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM]CF3SO3) or 2.5 % (v/v) 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM]CF3SO3). Strain CMW1 produced an extracellular protease (BapIL) in the culture medium. BapIL was stable in the presence of 80 % (v/v) ionic liquids, [EMIM]CF3SO3, [BMIM]Cl, [BMIM]CF3SO3, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and functioned in 10 % (v/v) these ionic liquids. BapIL was stable at pH 4.0-12.6 or in 4004 mM NaCl solution, and exhibited activity in the presence of 50 % (v/v) hydrophilic or hydrophobic organic solvents. BapIL was completely inhibited by 1 mM PMSF and partially by 5 mM EDTA. BapIL belongs to the true subtilisins according to analysis of the deduced amino acid sequence. We showed that BapIL from the ionic liquid-tolerant B. amyloliquefaciens CMW1 exhibited tolerance to ionic liquid and halo, alkaline, and organic solvents.
Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris
Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less
Mixed Ionic Liquid Improves Electrolyte Dynamics in Supercapacitors
Osti, Naresh C.; Gallegos, Alejandro; Dyatkin, Boris; ...
2018-04-19
Well-tailored mixtures of distinct ionic liquids can act as optimal electrolytes that extend the operating electrochemical window and improve charge storage density in supercapacitors. Here, we explore two room-temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF 4). We study their electric double-layer behavior in the neat state and as binary mixtures on the external surfaces of onion-like carbon electrodes using quasielastic neutron scattering (QENS) and classical density functional theory techniques. Computational results reveal that a mixture with 4:1 EmimTFSI/EmimBF 4 volume ratio displaces the larger [TFSI –] anions with smaller [BF 4 –] ions, leading to an excessmore » adsorption of [Emim +] cations near the electrode surface. These findings are corroborated by the manifestation of nonuniform ion diffusivity change, complementing the description of structural modifications with changing composition, from QENS measurements. In conclusion, molecular-level understanding of ion packing near electrodes provides insight for design of ionic liquid formulations that enhance the performance of electrochemical energy storage devices.« less
Prabhu, Sugosh R; Dutt, G B
2014-11-20
The rotational dynamics of 1-alkyl-3-methylimidazolium-based ionic liquids has been investigated by monitoring their inherent fluorescence with the intent to unravel the characteristics of the emitting species. For this purpose, temperature-dependent fluorescence anisotropies of 1-alkyl-3-methylimidazolium (alkyl = ethyl and hexyl) ionic liquids with anions such as tris(pentafluoroethyl)trifluorophosphate ([FAP]), bis(trifluoromethylsulfonyl)imide ([Tf2N]), tetrafluoroborate ([BF4]), and hexafluorophosphate ([PF6]) have been measured. It has been observed that the reorientation times (τr) of the ionic liquids with an ethyl chain scale linearly with viscosity and were found to be independent of the nature of the anion. The experimentally measured τr values are a factor of 3 longer than the ones calculated for 1-ethyl-3-methylimidazolium cation using the Stokes-Einstein-Debye (SED) hydrodynamic theory with stick boundary condition, which suggests that the emitting species is not the imidazolium moiety but some kind of associated species. The reorientation times of ionic liquids with a hexyl chain, in contrast, follow the trend τr([FAP]) > τr([Tf2N]) = τr([BF4]) > τr([PF6]) at a given viscosity (η) and temperature (T). The ability of the ionic liquids with longer alkyl chains to form the organized structure appears to be responsible for the observed behavior considering the fact that significant deviations from linearity have been noticed in the τr versus η/T plots for strongly associating anions [BF4] and [PF6], especially at ambient temperatures.
New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors.
Pastor, María Jesús; Sánchez, Ignacio; Campo, José A; Schmidt, Rainer; Cano, Mercedes
2018-04-03
Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl - , BF₄ - , ReO₄ - , p -CH₃-₆H₄SO₃ - (PTS) and CF₃SO₃ - (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H₂pz R(4),R(4) ][ReO₄]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl - and BF₄ - ) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity.
Transports of ionic liquids in ionic polymer conductor network composite actuators
NASA Astrophysics Data System (ADS)
Liu, Yang; Liu, Sheng; Lin, Junhong; Wang, Dong; Jain, Vaibhav; Montazami, Reza; Heflin, James R.; Li, Jing; Madsen, Louis; Zhang, Q. M.
2010-04-01
We investigate the influence of ionic liquids on the electromechanical performance of Ionic Polymer Conductor Network Composite (IPCNC) bending actuators. Two imidazolium ionic liquids (ILs) with one cation, which is 1-ethyl-3- methylimidazolium ([EMI+]), and two different anions, which are tetrafluoroborate ([BF4-]) and trifluoromethanesulfonate ([Tf-]), are chosen for the study. By combining the time domain electric and electromechanical responses, we developed a new model that describes the ion transports in IPCNC actuators. The time constant of excess cation and anion migration in various composite electrodes are deduced: 6s and 25s in RuO2/Nafion; 7.9s and 36.3s in RuO2/Aquivion; 4.8s and 53s in Au/PAH, respectively. NMR is also applied to provide quantitative measures of self-diffusion coefficients independently for IL anions and cations both in pure ILs and in ILs absorved into ionomers. All the results indicate that the motion of cation, in the studied pure ionic liquids, polymer matrix and conductor network composites, is faster than that of anion. Moreover, the CNC morphology is playing a crucial role in determining the ion transport in the porous electrodes.
Ma, Yunqian; Liu, Xinpeng; Wang, Rui
2017-06-05
An innovative approach to H 2 S capture and sulfur recovery via liquid redox at high temperature has been developed using [C 4 mim] 3 PMo 12 O 40 at temperatures ranging from 80 to 180°C, which is superior to the conventional water-based system with an upper limit of working temperature normally below 60°C. The ionic liquids used as solvents include [C 4 mim]Cl, [C 4 mim]BF 4 , [C 4 mim]PF 6 and [C 4 mim]NTf 2 . Microscopic observation and turbidity measurement were used to investigate the dissolution of [C 4 mim] 3 PMo 12 O 40 in the ionic liquids. Stabilization energy between H 2 S and the anion of ionic liquid as well as H 2 O was calculated to illustrate the interaction between H 2 S and the solvents. The cavity theory can be adopted to illustrate the mechanism for H 2 S absorption: the Cl - ion with small radius can be incorporated into the cavities of [C 4 mim] 3 PMo 12 O 40 , and interact with H 2 S strongly. The underlying mechanism for sulfur formation is the redox reaction between H 2 S and PMo 12 O 40 3- . H 2 S can be oxidized to elemental sulfur and Mo 6+ is partly reduced during absorption, according to UV-vis and FTIR spectra. The [C 4 mim] 3 PMo 12 O 40 -[C 4 mim]Cl after reaction can be readily regenerated by air and thus enabling its efficient and repeatitive use. The absorbent of [C 4 mim] 3 PMo 12 O 40 -ionic liquid system provides a new approach for wet oxidation desulfurization at high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-09-01
Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inverse Coarse-Graining: A New Tool for Molecular Design
2010-12-16
simulations. When compared with the more general multiscale coarse-graining (MS-CG) method, the EF-CG method retains the transferable part of the CG...Y.; Yan, T.; Voth, G. A., A Multiscale coarse-graining study of liquid/vacuum interface of room-temperature ionic liquids with alkyl substituents of...Energetic Room Temperature Ionic Liquid 1-Hydroxyethyl-4Amino-1, 2, 4-Triazolium Nitrate (HEATN). J. Phys. Chem. B 2008, 112, 3121-3131. 6. Liu, P
Pastor, María Jesús; Cuerva, Cristián; Campo, José A.; Schmidt, Rainer; Torres, María Rosario; Cano, Mercedes
2016-01-01
Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOOR(n)pyH]+ and BF4−, ReO4−, NO3−, CF3SO3−, CuCl42− counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOOR(12)pyH][ReO4] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl42− salts exhibit the best LC properties followed by the ReO4− ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO4−, and CuCl42− families, and for the solid phase in one of the non-mesomorphic Cl− salts. The highest ionic conductivity was found for the smectic mesophase of the ReO4− containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure. PMID:28773485
Advances in the analysis of biological samples using ionic liquids.
Clark, Kevin D; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-02-12
Ionic liquids are a class of solvents and materials that hold great promise in bioanalytical chemistry. Task-specific ionic liquids have recently been designed for the selective extraction, separation, and detection of proteins, peptides, nucleic acids, and other physiologically relevant analytes from complex biological samples. To facilitate rapid bioanalysis, ionic liquids have been integrated in miniaturized and automated procedures. Bioanalytical separations have also benefited from the modification of nonspecific magnetic materials with ionic liquids or the implementation of ionic liquids with inherent magnetic properties. Furthermore, the direct detection of the extracted molecules in the analytical instrument has been demonstrated with structurally tuned ionic liquids and magnetic ionic liquids, providing a significant advantage in the analysis of low-abundance analytes. This article gives an overview of these advances that involve the application of ionic liquids and derivatives in bioanalysis. Graphical abstract Ionic liquids, magnetic ionic liquids, and ionic liquid-based sorbents are increasing the speed, selectivity, and sensitivity in the analysis of biological samples.
Efficient platinum-free counter electrodes for dye-sensitized solar cell applications.
Ahmad, Shahzada; Yum, Jun-Ho; Butt, Hans-Jürgen; Nazeeruddin, Mohammad K; Grätzel, Michael
2010-09-10
Nanoporous layers of poly(3,4-propylenedioxythiophene) (PProDOT) were fabricated by electrical-field-assisted growth using hydrophobic ionic liquids as the growing medium. A series of PProDoT layers was prepared with three different ionic liquids to control the microstructure and electrochemical properties of the resulting dye-sensitized solar cells, which were highly efficient and showed a power conversion efficiency of >9% under different sunlight intensities. The current-voltage characteristics of the counter electrodes varied depending on the ionic liquids used in the synthesis of PProDOT. The most hydrophobic ionic liquids exhibited high catalytic properties, thus resulting in high power conversion efficiency and allowing the fabrication of platinum-free, stable, flexible, and cost-effective dye-sensitized solar cells.
Sun, Jian-Nan; Chen, Juan; Shi, Yan-Ping
2014-07-01
A new mode of ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) is developed. In this work, [C6MIm][PF6] was chosen as the extraction solvent, and two kinds of hydrophilic ionic liquids, [EMIm][BF4] and [BSO3HMIm][OTf], functioned as the dispersive solvent. So in the whole extraction procedure, no organic solvent was used. With the aid of SO3H group, the acidic compound was extracted from the sample solution without pH adjustment. Two phenolic compounds, namely, 2-naphthol and 4-nitrophenol were chosen as the target analytes. Important parameters affecting the extraction efficiency, such as the type of hydrophilic ionic liquids, the volume ratio of [EMIm][BF4] to [BSO3HMIm][OTf], type and volume of extraction solvent, pH value of sample solution, sonication time, extraction time and centrifugation time were investigated and optimized. Under the optimized extraction conditions, the method exhibited good sensitivity with the limits of detection (LODs) at 5.5 μg L(-1)and 10.0 μg L(-1) for 4-nitrophenol and 2-naphthol, respectively. Good linearity over the concentration ranges of 24-384 μg L(-1) for 4-nitrophenol and 28-336 μg L(-1) for 2-naphthol was obtained with correlation coefficients of 0.9998 and 0.9961, respectively. The proposed method can directly extract acidic compound from environmental sample or even more complex sample matrix without any pH adjustment procedure. Copyright © 2014 Elsevier B.V. All rights reserved.
Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, T.; CREST/JST, Tokyo 102-0075; Baba, K.
Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changingmore » a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.« less
Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo
2018-04-25
Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.
Catalytic Ignition of Ionic Liquid Fuels by Ionic Liquids
2014-07-01
catalytically decompose hydrogen peroxide. Catalytic approach for H2O2 decomposition Distribution NOT APPROVED through STINFO process Distribution...Charts 3. DATES COVERED (From - To) July 2014- August 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER In-House Catalytic Ignition of Ionic...are highly hazardous. To gain a true advantage, a more environmentally friendly oxidizer must be considered. Hydrogen peroxide might be an attractive
Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel
2008-10-31
A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.
Wu, Feng; Zhu, Na; Bai, Ying; Liu, Libin; Zhou, Hang; Wu, Chuan
2016-08-24
Novel ionic liquid (IL) electrolytes are prepared by mixing 1-ethyl-3-methylimidazolium-bis-tetrafluoroborate (EMIBF4) with different concentrations of sodium salt (NaBF4). The as-prepared IL electrolytes display wide electrochemical windows of ∼4 V (1-5 V), which are consistent with the quantum chemical theoretical calculation. The IL electrolyte with 0.1 M NaBF4 shows excellent ionic conductivity, namely, 9.833 × 10(-3) S cm(-1) at 20 °C. In addition, nonflammability and good thermal stability are exhibited by combustion test and thermogravimetric analysis (TGA), which indicate the high safety of the IL electrolyte.
Room-Temperature Ionic Liquids for Electrochemical Capacitors
NASA Technical Reports Server (NTRS)
Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.;
2009-01-01
A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.
Functionalized ionic liquids and their applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hariprakasha, Humcha Krishnamurthy; Rangan, Krishnaswamy Kasthuri; Sudarshan, Tirumalai Srinivas
2018-01-16
Disclosure of functionalized ionic liquids. Use of disclosed ionic liquids as solvent for carbon dioxide. Use of disclosed ionic liquids as flame retardant. Use of disclosed ionic liquids for coating fabric to obtain flame retardant fabric.
Effect of dissolved LiCl on the ionic liquid-Au(111) interface: an in situ STM study
NASA Astrophysics Data System (ADS)
Borisenko, Natalia; Atkin, Rob; Lahiri, Abhishek; Zein El Abedin, Sherif; Endres, Frank
2014-07-01
The structure of the electrolyte/electrode interface plays a significant role in electrochemical processes. To date, most studies are focusing on understanding the interfacial structure in pure ionic liquids. In this paper in situ scanning tunnelling microscopy (STM) has been employed to elucidate the structure of the charged Au(111)-ionic liquid (1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, [Py1,4]FAP) interface in the presence of 0.1 M LiCl. The addition of the Li salt to the ionic liquid has a strong influence on the interfacial structure. In the first STM scan in situ measurements reveal that Au(111) undergoes the (22 \\times \\surd 3) ‘herringbone’ reconstruction in a certain potential regime, and there is strong evidence that the gold surface dissolves at negative electrode potentials in [Py1,4]FAP containing LiCl. Bulk deposition of Li is obtained at -2.9 V in the second STM scan.
Fast Ignition and Sustained Combustion of Ionic Liquids
NASA Technical Reports Server (NTRS)
Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)
2016-01-01
A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.
Cycling and rate performance of Li-LiFePO 4 cells in mixed FSI-TFSI room temperature ionic liquids
NASA Astrophysics Data System (ADS)
Lewandowski, A. P.; Hollenkamp, A. F.; Donne, S. W.; Best, A. S.
A study is conducted of the performance of lithium iron(II) phosphate, LiFePO 4, as a cathode material in a lithium secondary battery that features an ionic liquid electrolyte solution and a metallic lithium anode. The electrolyte solution comprises an ionic liquid of a N-methyl-N-alkyl-pyrrolidinium (alkyl = n-propyl or n-butyl) cation and either the bis(fluorosulfonyl)imide [(FSO 2) 2N -] or bis(trifluoromethanesulfonyl)imide [(F 3CSO 2) 2N -] anion, together with 0.5 mol kg -1 of lithium bis(trifluoromethanesulfonyl)imide salt. For N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide, coin cells discharging at rates of C/10 and 4C yield specific capacities of 153 and 110 mAh g -1, respectively, at an average coulombic efficiency of 99.8%. This performance is maintained for over 400 cycles at 50 °C and therefore indicates that these electrolyte solutions support long-term cycling of both LiFePO 4 and metallic lithium while, due to the negligible volatility of ionic liquids, surrounding the lithium in an inherently safe, non-flammable medium.
Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites
NASA Astrophysics Data System (ADS)
Bennett, Matthew; Leo, Donald
2005-05-01
Ionic liquids have shown promise as replacements for water in ionic polymer transducers. Ionic liquids are non-volatile and have a larger electrochemical stability window than water. Therefore, transducers employing ionic liquids can be operated for long periods of time in air and can be actuated with higher voltages. Furthermore, transducers based on ionic liquids do not exhibit the characteristic back relaxation that is common with water-swollen materials. However, the physics of transduction in the ionic liquid-swollen materials is not well understood. In this paper, the morphology of Nafion/ionic liquid composites is characterized using small-angle X-ray scattering (SAXS). The electromechanical transduction behavior of the composites is also investigated. For this testing, five different counterions and two ionic liquids are used. The results reveal that both the morphology and transduction performance of the composites is affected by the identity of the ionic liquid, the cation, and the swelling level of ionic liquid within the membrane. Specifically, speed of response is found to be lower for the membranes that were exchanged with the smaller lithium and potassium ions. The response speed is also found to increase with increased content of ionic liquid. Furthermore, for the two ionic liquids studied, the actuators swollen with the less viscous ionic liquid exhibited a slower response. The slower speed of response corresponds to less contrast between the ionically conductive phase and the inert phase of the polymer. This suggests that disruption of the clustered morphology in the ionic liquid-swollen membranes as compared to water-swollen membranes attenuates ion mobility within the polymer. This attenuation is attributed to swelling of the non-conductive phase by the ionic liquids.
Lithium ion conducting ionic electrolytes
Angell, C.A.; Xu, K.; Liu, C.
1996-01-16
A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.
You, Xiangwei; Chen, Xiaochu; Liu, Fengmao; Hou, Fan; Li, Yiqiang
2018-01-15
A novel and simple ionic liquid-based air-assisted liquid-liquid microextraction technique combined with high performance liquid chromatography was developed to analyze five fungicides in juice samples. In this method, ionic liquid was used instead of a volatile organic solvent as the extraction solvent. The emulsion was formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent repeatedly using a 10mL glass syringe. No organic dispersive solvent was required. Under the optimized conditions, the limits of detection (LODs) were 0.4-1.8μgL -1 at a signal-to-noise ratio of 3. The limits of quantification (LOQs) set as the lowest spiking levels with acceptable recovery in juices were 10μgL -1 , except for fludioxonil whose LOQ was 20μgL -1 . The proposed method was applied to determine the target fungicides in juice samples, and acceptable recoveries ranging from 74.9% to 115.4% were achieved. Copyright © 2017. Published by Elsevier Ltd.
Porous ionic liquids: synthesis and application.
Zhang, Shiguo; Dokko, Kaoru; Watanabe, Masayoshi
2015-07-15
Solidification of fluidic ionic liquids into porous materials yields porous ionic networks that combine the unique characteristics of ionic liquids with the common features of polymers and porous materials. This minireview reports the most recent advances in the design of porous ionic liquids. A summary of the synthesis of ordered and disordered porous ionic liquid-based nanoparticles or membranes with or without templates is provided, together with the new concept of room temperature porous ionic liquids. As a versatile platform for functional materials, porous ionic liquids have shown widespread applications in catalysis, adsorption, sensing, actuation, etc. This new research direction towards ionic liquids chemistry is still in its early stages but has great potential.
Lau, Genevieve P S; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M; Grätzel, Michael; Dyson, Paul J
2015-12-16
Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm(-2), an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability.
Haskins, Justin B; Bennett, William R; Wu, James J; Hernández, Dionne M; Borodin, Oleg; Monk, Joshua D; Bauschlicher, Charles W; Lawson, John W
2014-09-25
We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 ≤ xLi(+) ≤ 0.33) and temperature (298 K ≤ T ≤ 393 K). Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi(+) we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD simulations and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi(+), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi(+) = 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 and 0.3 mS/cm. Our transport results also demonstrate the necessity of long MD simulation runs (∼200 ns) to converge transport properties at room temperature. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions (τ(Li/-)), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li(+) transport in each liquid, we find that while the net motion of Li(+) with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of transport through anion exchange increases at high xLi(+) and in liquids with large anions.
Active chemisorption sites in functionalized ionic liquids for carbon capture.
Cui, Guokai; Wang, Jianji; Zhang, Suojiang
2016-07-25
Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.
Nanoparticles in ionic liquids: interactions and organization.
He, Zhiqi; Alexandridis, Paschalis
2015-07-28
Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.
Rohan, Amy L; Switzer, Jackson R; Flack, Kyle M; Hart, Ryan J; Sivaswamy, Swetha; Biddinger, Elizabeth J; Talreja, Manish; Verma, Manjusha; Faltermeier, Sean; Nielsen, Paul T; Pollet, Pamela; Schuette, George F; Eckert, Charles A; Liotta, Charles L
2012-11-01
Silylamine reversible ionic liquids were designed to achieve specific physical properties in order to address effective CO₂ capture. The reversible ionic liquid systems reported herein represent a class of switchable solvents where a relatively non-polar silylamine (molecular liquid) is reversibly transformed to a reversible ionic liquid (RevIL) by reaction with CO₂ (chemisorption). The RevILs can further capture additional CO₂ through physical absorption (physisorption). The effects of changes in structure on (1) the CO₂ capture capacity (chemisorption and physisorption), (2) the viscosity of the solvent systems at partial and total conversion to the ionic liquid state, (3) the energy required for reversing the CO₂ capture process, and (4) the ability to recycle the solvents systems are reported. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas; Schick, Christoph
2008-07-10
In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.
NASA Astrophysics Data System (ADS)
Shirini, Farhad; Langarudi, Mohaddeseh Safarpoor Nikoo; Daneshvar, Nader; Jamasbi, Negar; Irankhah-Khanghah, Mahsa
2018-06-01
[H2-DABCO][ClO4]2, as a novel DABCO-based ionic liquid, has been synthesized, characterized, and used as an affordable and recyclable catalyst in the synthesis of pyrimido [4,5-b]-quinoline and pyrimido [4,5-d]pyrimidine derivatives. The procedure shows several advantages over the previous methods such as simplicity, high yields, short reaction times, easy work-up, and use of a non-metal catalyst. Moreover, this paper virtually debates the impact of anions and cations on moisture-resistant property and catalytic activity in DABCO-based ionic liquids through the comparison of [DABCO](SO3H)2(Cl)2, [DABCO](SO3H)2(HSO4)2, [H2-DABCO][H2PO4]2, [H2-DABCO][HSO4]2, and [H2-DABCO][ClO4]2.
Wang, Qing; Chen, Xianbo; Qiu, Bin; Zhou, Liang; Zhang, Hui; Xie, Juan; Luo, Yan; Wang, Bin
2016-04-01
In the present study, 11 4,4'-diaminostilbene-2,2'-disulfonic acid based fluorescent whitening agents with different numbers of sulfonic acid groups were separated by using an ionic liquid as a mobile phase additive in high-performance liquid chromatography with fluorescence detection. The effects of ionic liquid concentration, pH of mobile phase B, and composition of mobile phase A on the separation of fluorescent whitening agents were systematically investigated. The ionic liquid tetrabutylammonium tetrafluoroborate is superior to tetrabutylammomnium bromide for the separation of the fluorescent whitening agents. The optimal separation conditions were an ionic liquid concentration at 8 mM and the pH of mobile phase B at 8.5 with methanol as mobile phase A. The established method exhibited low limits of detection (0.04-0.07 ng/mL) and wide linearity ranges (0.30-20 ng/mL) with high linear correlation coefficients from 0.9994 to 0.9998. The optimized procedure was applied to analyze target analytes in paper samples with satisfactory results. Eleven target analytes were quantified, and the recoveries of spiked paper samples were in the range of 85-105% with the relative standard deviations from 2.1 to 5.1%. The obtained results indicated that the method was efficient for detection of 11 fluorescent whitening agents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kapoor, Utkarsh; Shah, Jindal K
2018-01-11
Segregation of polar and nonpolar domains in ionic liquids for which either the cation or anion is responsible for inducing nonpolar domains is well understood. On the other hand, information regarding the nanoscale heterogeneities originating due to the presence of nonpolar content on both the ions is rudimentary at this point. The present contribution is aimed at addressing this question and focuses on a molecular dynamics simulation study to probe nanoscale structural and aggregation features of the 1-n-alkyl-3-methylimidazolium [C n mim] octylsulfate [C 8 SO 4 ] ionic liquid homologous series (n = 2, 4, 6, 8, 10, and 12). The objective of this work is to determine the effect of increasing alkyl chain length in the cation on nonpolar domain formation, especially when the alkyl chain lengths from both the ions participate in defining such domains. The results indicate that all the ionic liquids form nonpolar domains, morphology of which gradually changes from globular, sponge-like to layer-like structure with increase in the cationic alkyl chain length. The length of the nonpolar domains calculated from the total structure factor for [C 10 mim][C 8 SO 4 ] is considerably higher than that reported for other imidazolium-based ionic liquid containing smaller anions. The structure factor for [C 12 mim][C 8 SO 4 ] ionic liquid contains multiple intermediate peaks separating the charge alternation peak and pre-peak, which points to nonpolar domains of varying lengths, an observation that remains to be validated. Analysis of the heterogeneous order parameters and orientational correlation functions of the alkyl chains further suggests an increase in the spatial heterogeneity and long-range order along the homologous series. The origin of rich diversity of structures obtained by introducing nonpolar content on both the ions is discussed.
Paluch, Marian; Wojnarowska, Zaneta; Goodrich, Peter; Jacquemin, Johan; Pionteck, Jürgen; Hensel-Bielowka, Stella
2015-08-28
Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent γ = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent γ reported herein along with literature data for other ionic liquids, it appears that γ decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent γ may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocha, Marisa A. A., E-mail: lbsantos@fc.up.pt, E-mail: marisa.alexandra.rocha@gmail.com; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven; Coutinho, João A. P.
2014-10-07
This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids.more » The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.« less
Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].
Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T
2016-06-28
The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids.
Zhang, Doudou; Zhang, Qian; Bai, Ligai; Han, Dandan; Liu, Haiyan; Yan, Hongyuan
2018-05-01
An ionic-liquid-based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless-steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross-linking agent, and polyethylene glycol 200 and isopropanol as co-porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption-desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic-liquid-based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m 2 /g. Compared to a non-ionic-liquid-based monolith prepared under the same conditions, the ionic-liquid-based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Advances of poly (ionic liquid) materials in separation science].
Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang
2015-11-01
Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.
NASA Astrophysics Data System (ADS)
Hardacre, Christopher; Holbrey, John D.; Mullan, Claire L.; Youngs, Tristan G. A.; Bowron, Daniel T.
2010-08-01
The presence of local anisotropy in the bulk, isotropic, and ionic liquid phases—leading to local mesoscopic inhomogeneity—with nanoscale segregation and expanding nonpolar domains on increasing the length of the cation alkyl-substituents has been proposed on the basis of molecular dynamics (MD) simulations. However, there has been little conclusive experimental evidence for the existence of intermediate mesoscopic structure between the first/second shell correlations shown by neutron scattering on short chain length based materials and the mesophase structure of the long chain length ionic liquid crystals. Herein, small angle neutron scattering measurements have been performed on selectively H/D-isotopically substituted 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with butyl, hexyl, and octyl substituents. The data show the unambiguous existence of a diffraction peak in the low-Q region for all three liquids which moves to longer distances (lower Q), sharpens, and increases in intensity with increasing length of the alkyl substituent. It is notable, however, that this peak occurs at lower values of Q (longer length scale) than predicted in any of the previously published MD simulations of ionic liquids, and that the magnitude of the scattering from this peak is comparable with that from the remainder of the amorphous ionic liquid. This strongly suggests that the peak arises from the second coordination shells of the ions along the vector of alkyl-chain substituents as a consequence of increasing the anisotropy of the cation, and that there is little or no long-range correlated nanostructure in these ionic liquids.
Wu, Xuefei; Cai, Huaxue; Wu, Qingyin; Yan, Wenfu
2016-07-28
The substitution effect in a series of POM-type reversible gel-liquid phase transformation ionic liquid compounds, [MIMPS]8P2W16V2O62, [MIMPS]6H2P2W16V2O62 and [MIMPS]4H4P2W16V2O62, has been investigated. Interestingly, there is an obvious substitution effect on the physicochemical properties of these compounds. When protons are substituted in place of ammonium, both the conductivity and the thermo-stability of the compounds can be increased a lot, and more protons can enhance this tendency.
Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials
NASA Astrophysics Data System (ADS)
Hernani; Mudzakir, A.; Sumarna, O.
2017-02-01
This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.
Medina, Giselle S; Reta, Mario
2016-11-01
A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ruthenium nanoparticles in ionic liquids: structural and stability effects of polar solutes.
Salas, Gorka; Podgoršek, Ajda; Campbell, Paul S; Santini, Catherine C; Pádua, Agílio A H; Costa Gomes, Margarida F; Philippot, Karine; Chaudret, Bruno; Turmine, Mireille
2011-08-14
Ionic liquids are a stabilizing medium for the in situ synthesis of ruthenium nanoparticles. Herein we show that the addition of molecular polar solutes to the ionic liquid, even in low concentrations, eliminates the role of the ionic liquid 3D structure in controlling the size of ruthenium nanoparticles, and can induce their aggregation. We have performed the synthesis of ruthenium nanoparticles by decomposition of [Ru(COD)(COT)] in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(1)C(4)Im][NTf(2)], under H(2) in the presence of varying amounts of water or 1-octylamine. For water added during the synthesis of metallic nanoparticles, a decrease of the solubility in the ionic liquid was observed, showed by nanoparticles located at the interface between aqueous and ionic phases. When 1-octylamine is present during the synthesis, stable nanoparticles of a constant size are obtained. When 1-octylamine is added after the synthesis, aggregation of the ruthenium nanoparticles is observed. In order to explain these phenomena, we have explored the molecular interactions between the different species using (13)C-NMR and DOSY (Diffusional Order Spectroscopy) experiments, mixing calorimetry, surface tension measurements and molecular simulations. We conclude that the behaviour of the ruthenium nanoparticles in [C(1)C(4)Im][NTf(2)] in the presence of 1-octylamine depends on the interaction between the ligand and the nanoparticles in terms of the energetics but also of the structural arrangement of the amine at the nanoparticle's surface.
NASA Astrophysics Data System (ADS)
Ghorbani-Choghamarani, Arash; Norouzi, Masoomeh
2016-03-01
Herein, we describe a simple and efficient procedure for the preparation of 3-((3-(trisilyloxy)propyl)propionamide)-1-methylimidazolium chloride ionic liquid supported on magnetic nanoparticle (TPPA-IL-Fe3O4). The structure of this magnetic ionic liquid is fully characterized by FT-IR, TGA, XRD, VSM, SEM, EDX and DLS techniques. TPPA-IL-Fe3O4 is employed as a catalyst for the acetylation of alcohols with acetic anhydride under mild and heterogeneous conditions at room temperature with good to excellent yields. The magnetic catalyst could be readily separate from the reaction media by simple magnetic decantation, and reused several times without significant loss of its catalytic activity.
Mancuso, Raffaella; Pomelli, Christian S; Chiappe, Cinzia; Larock, Richard C; Gabriele, Bartolo
2014-01-28
The first example of an iodocyclisation reaction made recyclable by the use of an ionic liquid as the reaction medium is reported. Readily available 1-mercapto-3-alkyn-2-ols were smoothly converted into the corresponding 3-iodothiophenes (50-81% yields, 10 examples) when allowed to react with iodine (1-2 equiv.) in a proper ionic liquid, such as 1-ethyl-3-methylimidazolium ethyl sulfate (EmimEtSO4), as the solvent under mild reaction conditions (25 °C) and in the absence of an external base. The reaction medium can be recycled several times without significantly affecting the reaction outcome. Theoretical calculations have also been performed to investigate the role of the ionic liquid anion in the reaction.
Methods for separating medical isotopes using ionic liquids
Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng
2014-10-21
A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).
New membranes based on ionic liquids for PEM fuel cells at elevated temperatures
NASA Astrophysics Data System (ADS)
Ye, H.; Huang, J.; Xu, J. J.; Kodiweera, N. K. A. C.; Jayakody, J. R. P.; Greenbaum, S. G.
Proton exchange membrane (PEM) fuel cells operating at elevated temperature, above 120 °C, will yield significant benefits but face big challenges for the development of suitable PEMs. The objectives of this research are to demonstrate the feasibility of the concept and realize [acid/ionic liquid/polymer] composite gel-type membranes as such PEMs. Novel membranes consisting of anhydrous proton solvent H 3PO 4, the protic ionic liquid PMIH 2PO 4, and polybenzimidazole (PBI) as a matrix have been prepared and characterized for PEM fuel cells intended for operation at elevated temperature (120-150 °C). Physical and electrochemical analyses have demonstrated promising characteristics of these H 3PO 4/PMIH 2PO 4/PBI membranes at elevated temperature. The proton transport mechanism in these new membranes has been investigated by Fourier transform infrared and nuclear magnetic resonance spectroscopic methods.
Ion pair and solvation dynamics of [Bmim][BF4 ] + water system.
Cascão, João; Silva, Wagner; Ferreira, Ana S D; Cabrita, Eurico J
2018-02-01
In this work, 1-butyl-3-methylimidazolium tetrafluoroborate/water mixtures were analysed over the whole water composition (x w ) in order to study the rotational and translational behaviour of the ions. We employed a multinuclear NMR approach to determine anion/cation/water diffusion coefficients and longitudinal relaxation rates at different water content. In neat ionic liquids (IL), the cation diffuses faster than the anion, and at low x w , anions and cations share almost the same diffusion coefficient, but above a critical water concentration, the anion begins to diffuse faster than the cation. We identified this composition as approximately 10% x w where the ions share the same diffusion coefficient. We found that the water at this composition seems to have a much more dramatic effect in the rotational diffusion of the anion that decreases substantially and approaches that of the anion in the diluted IL. Translational and rotational dynamics of the ions suggest that water is first incorporated in pockets in the nanostructure of the IL allowing the ions to maintain most of the cation/anion interactions present in neat IL but already disrupting some anion/cation interactions due to preferential interaction with the anion. HOESY and NOESY data show that water displays contacts both with the cation and the anion in a positive NOE regime in contrary to the negative regime found for the cation/anion and cation/cation cross-relaxation. This is in accordance with the high relative diffusion coefficient of water and suggests that water molecules can exchange between preferential location sites that allow water to maintain contacts both with the anion and cation. Copyright © 2017 John Wiley & Sons, Ltd.
Zhang, Yan; Xiao, Jian; Lv, Qiying; Wang, Lu; Dong, Xulin; Asif, Muhammad; Ren, Jinghua; He, Wenshan; Sun, Yimin; Xiao, Fei; Wang, Shuai
2017-11-08
In this work, we develop a new type of freestanding nanohybrid paper electrode assembled from 3D ionic liquid (IL) functionalized graphene framework (GF) decorated by gold nanoflowers (AuNFs), and explore its practical application in in situ electrochemical sensing of live breast cell samples by real-time tracking biomarker H 2 O 2 released from cells. The AuNFs modified IL functionalized GF (AuNFs/IL-GF) was synthesized via a facile and efficient dopamine-assisted one-pot self-assembly strategy. The as-obtained nanohybrid assembly exhibits a typical 3D hierarchical porous structure, where the highly active electrocatalyst AuNFs are well dispersed on IL-GF scaffold. And the graft of hydrophilic IL molecules (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate, BMIMBF 4 ) on graphene nanosheets not only avoids their agglomeration and disorder stacking during the self-assembly but also endows the integrated IL-GF monolithic material with unique hydrophilic properties, which enables it to be readily dispersed in aqueous solution and processed into freestanding paperlike material. Because of the unique structural properties and the combinational advantages of different components in the AuNFs/IL-GF composite, the resultant nanohybrid paper electrode exhibits good nonenzymatic electrochemical sensing performance toward H 2 O 2 . When used in real-time tracking H 2 O 2 secreted from different breast cells attached to the paper electrode without or with radiotherapy treatment, the proposed electrochemical sensor based on freestanding AuNFs/IL-GF paper electrode can distinguish the normal breast cell HBL-100 from the cancer breast cells MDA-MB-231 and MCF-7 cells, and assess the radiotherapy effects to different breast cancer cells, which opens a new horizon in real-time monitoring cancer cells by electrochemical sensing platform.
Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.
Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu
2017-08-03
In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.
Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries
Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza
2015-01-01
Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.
Ionic liquids in chemical engineering.
Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter
2010-01-01
The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.
Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: a review.
Pandey, Shubha; Baker, Sheila N; Pandey, Siddharth; Baker, Gary A
2012-09-01
Ionic liquids display an array of useful and sometimes unconventional, solvent features and have attracted considerable interest in the field of green chemistry for the potential they hold to significantly reduce environmental emissions. Some of these points have a bearing on the chemical reactivity of these systems and have also generated interest in the physical and theoretical aspects of solvation in ionic liquids. This review presents an introduction to the field of ionic liquids, followed by discussion of investigations into the solvation properties of neat ionic liquids or mixed systems including ionic liquids as a major or minor component. The ionic liquid based multicomponent systems discussed are composed of other solvents, other ionic liquids, carbon dioxide, surfactants or surfactant solutions. Although we clearly focus on fluorescence spectroscopy as a tool to illuminate ionic liquid systems, the issues discussed herein are of general relevance to discussions of polarity and solvent effects in ionic liquids. Transient solvation measurements carried out by means of time-resolved fluorescence measurements are particularly powerful for their ability to parameterize the kinetics of the solvation process in ionic liquids and are discussed as well.
Ionic Liquids and Relative Process Design
NASA Astrophysics Data System (ADS)
Zhang, S.; Lu, X.; Zhang, Y.; Zhou, Q.; Sun, J.; Han, L.; Yue, G.; Liu, X.; Cheng, W.; Li, S.
Ionic liquids have gained increasing attention in recent years due to their significant advantages, not only as alternative solvents but also as new materials and catalysts. Until now, most research work on ionic liquids has been at the laboratory or pilot scale. In view of the multifarious applications of ionic liquids, more new knowledge is needed and more systematic work on ionic liquids should be carried out deeply and broadly in order to meet the future needs of process design. For example, knowledge of the physicochemical properties is indispensable for the design of new ionic liquids and for the development of novel processes. The synthesis and application of ionic liquids are fundamental parts of engineering science, and the toxicity and environmental assessment of ionic liquids is critical importance for their large scale applications, especially for process design. These research aspects are closely correlated to the industrial applications of ionic liquids and to sustainable processes. However, material process design in the industrial applications of ionic liquids has hardly been implemented. Therefore, this chapter reviews several essential issues that are closely related to process design, such as the synthesis, structure-property relationships, important applications, and toxicity of ionic liquids.
High CO2 absorption capacity by chemisorption at cations and anions in choline-based ionic liquids.
Bhattacharyya, Shubhankar; Filippov, Andrei; Shah, Faiz Ullah
2017-11-29
The effect of CO 2 absorption on the aromaticity and hydrogen bonding in ionic liquids is investigated. Five different ionic liquids with choline based cations and aprotic N-heterocyclic anions were synthesized. Purity and structures of the synthesized ionic liquids were characterized by 1 H and 13 C NMR spectroscopy. CO 2 capture performance was studied at 20 °C and 40 °C under three different pressures (1, 3, 6 bar). The IL [N 1,1,6,2OH ][4-Triz] showed the highest CO 2 capture capacity (28.6 wt%, 1.57 mol of CO 2 per mol of the IL, 6.48 mol of CO 2 per kg of the ionic liquid) at 20 °C and 1 bar. The high CO 2 capture capacity of the [N 1,1,6,2OH ][4-Triz] IL is due to the formation of carbonic acid (-OCO 2 H) together with carbamate by participation of the -OH group of the [N 1,1,6,2OH ] + cation in the CO 2 capture process. The structure of the adduct formed by CO 2 reaction with the IL [N 1,1,6,2OH ][4-Triz] was probed by using IR, 13 C NMR and 1 H- 13 C HMBC NMR experiments utilizing 13 C labeled CO 2 gas. 1 H and 13 C PFG NMR studies were performed before and after CO 2 absorption to explore the effect of cation-anion structures on the microscopic ion dynamics in ILs. The ionic mobility was significantly increased after CO 2 reaction due to lowering of aromaticity in the case of ILs with aromatic N-heterocyclic anions.
Gao, Jiajia; Wang, Hui; Qu, Jingang; Wang, Huili; Wang, Xuedong
2017-01-15
In traditional ionic liquids (ILs)-based microextraction, ILs are often used as extraction and dispersive solvents; however, their functional effects are not fully utilized. Herein, we developed a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]) with strong acidity. It was used as a mixed dispersive solvent with conventional [C2MIM][BF4] in "functionalized ionic liquid-based non-organic solvent microextraction (FIL-NOSM)" for determination of tetracycline antibiotics (TCs) in milk and eggs. Utilization of [C4MIM][NPA] in FIL-NOSM method increased extraction recoveries (ERs) of TCs by more than 20% and eliminated the pH adjustment step because of its strong acidity. Under optimized conditions based on central composite design, the ERs of four TCs were 94.1-102.1%, and the limitsofdetection were 0.08-1.12μgkg(-1) in milk and egg samples. This proposed method provides high extraction efficiency, less pretreatment time and requires non-organic solvents for determination of trace TC concentrations in complex animal-based food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sarkar, Souravi; Mandal, Sarthak; Ghatak, Chiranjib; Rao, Vishal Govind; Ghosh, Surajit; Sarkar, Nilmoni
2012-02-02
The photoinduced electron transfer (PET) reaction has been investigated in a room temperature imidazolium ionic liquid (RTIL), 1-ethyl-3-methylimidazolium ethyl sulfate ([Emim][EtSO(4)]) and also in [Emim][EtSO(4)]-co-solvents mixtures from N,N-dimethyl aniline (DMA) to different Coumarin dyes using steady state and time-resolved fluorescence quenching measurements. We have used water and methanol and 2-propanol as the cosolvents of RTILs for the PET study. On going from neat ionic liquid to the RTIL-co-solvents mixtures the electron transfer rate has been largely enhanced. In neat RTIL as well as in [Emim][EtSO(4)]-co-solvents mixtures, a Marcus type of inversion in the PET rate have been observed.
Amarasekara, Ananda S
2016-05-25
Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.
Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.
The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energymore » efficient manner.« less
NASA Astrophysics Data System (ADS)
Hovestadt, Maximilian; Schwegler, Johannes; Schulz, Peter S.; Hartmann, Martin
2018-05-01
A new synthesis route for the zeolitic imidazolate framework ZIF-4 using imidazolium imidazolate is reported. Additionally, the ionic liquid-derived material is compared to conventional ZIF-4 with respect to the powder X-ray diffraction pattern pattern, nitrogen uptake, particle size, and separation potential for olefin/paraffin gas mixtures. Higher synthesis yields were obtained, and the different particle size affected the performance in the separation of ethane and ethylene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.
2015-12-08
An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasaribu, Marvin H., E-mail: marvin-shady88@yahoo.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id; Wahyuningrum, Deana, E-mail: deana@chem.itb.ac.id
Lithium ion battery has been currently developed and produced because it has a longer life time, high energycapacity, and the efficient use of lithium ion battery that is suitable for storing electrical energy. However, this battery has some drawbacks such as use liquid electrolytes that are prone to leakage and flammability during the battery charging process in high temperature. In this study, an ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) containing Li{sup +} ions was synthesized and combined with chitosan polymer host as a polymer electrolyte membrane for lithium-ion batteries to solve this problems. This ionic liquid was obtained from the anionmore » metathesis reaction between EMImBr and LiBF4 salt, while EMImBr was synthesized from the reaction between 1-methylimidazole and ethyl bromide utilizing Microwave Assisted Organic Synthesis (MAOS) method. The ionic liquid obtained was characterized by microstructure analysis with using NMR and FTIR spectroscopy. The polymer electrolyte membrane was characterized by analysis functional groups (FTIR), ionic conductivity (EIS), and surface morphology (SEM). The analysis results of ion conductivity by the EIS method showed the increase the ionic conductivity value of membranes from 1.30 × 10{sup −2} S cm{sup −1} for chitosan to 1.30 × 10{sup −2} S cm{sup −1} for chitosan with EMImBF4/Li{sup +}, and this result was supported by analysis the surface morphology (SEM)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Li; Xu Shenzhi; Li Huijun
2011-03-15
A simple, efficient and low-temperature approach for the assembly of hierarchical Zinc oxide (ZnO) microstructures in ionic liquid [EMIM]{sup +}[BF{sub 4}]{sup -} is reported. The as-obtained ZnO superstructures are composed of microbundles of nanorods from the center points, with the diameter and length in the range of 100-150 nm and 2-4 {mu}m, which have been characterized by X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence spectroscopy. The ZnO microstructures exhibit significant defect-related green-yellow emission and high photodegradation of dye Methyl Orange (5x10{sup -5} mol/L) under UV excitation within 80 min. -- Graphical abstract: Easy formation of microbundles of ZnOmore » nanorods were accomplished in low temperature with [EMIM]{sup +}[BF{sub 4}]{sup -} (1-ethyl-3-methylimidazolium tetrafluoroborate) ionic liquid, which exhibit significant green-yellow photoluminescence property and high photodegradation of Methyl Orange dye. Display Omitted Research highlights: {yields} Ionic liquid assisted solid-state route was introduced into synthesis of ZnO nanorods. {yields} The distinctive microbundles ZnO nanorod assembles was evidenced by SEM and TEM. {yields} ZnO nano-material exhibited high efficiency in photodegradation of Methyl Orange.« less
Ionic Liquids Database- (ILThermo)
National Institute of Standards and Technology Data Gateway
SRD 147 NIST Ionic Liquids Database- (ILThermo) (Web, free access) IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.
Ionic liquid and nanoparticle hybrid systems: Emerging applications.
He, Zhiqi; Alexandridis, Paschalis
2017-06-01
Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.
Brotton, Stephen J; Lucas, Michael; Chambreau, Steven D; Vaghjiani, Ghanshyam L; Yu, Jiang; Anderson, Scott L; Kaiser, Ralf I
2017-12-21
The production of the next generation of hypergolic, ionic-liquid-based fuels requires an understanding of the reaction mechanisms between the ionic liquid and oxidizer. We probed reactions between a levitated droplet of 1-methyl-4-amino-1,2,4-triazolium dicyanamide ([MAT][DCA]), with and without hydrogen-capped boron nanoparticles, and the nitrogen dioxide (NO 2 ) oxidizer. The apparatus exploits an ultrasonic levitator enclosed within a pressure-compatible process chamber equipped with complementary Raman, ultraviolet-visible, and Fourier-transform infrared (FTIR) spectroscopic probes. Vibrational modes were first assigned to the FTIR and Raman spectra of droplets levitated in argon. Spectra were subsequently collected for pure and boron-doped [MAT][DCA] exposed to nitrogen dioxide. By comparison with electronic structure calculations, some of the newly formed modes suggest that the N atom of the NO 2 molecule bonds to a terminal N on the dicyanamide anion yielding [O 2 N-NCNCN] - . This represents the first spectroscopic evidence of a key reaction intermediate in the oxidation of levitated ionic liquid droplets.
Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang
2018-01-01
Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Salgado, J; Parajó, J J; Teijeira, T; Cruz, O; Proupín, J; Villanueva, M; Rodríguez-Añón, J A; Verdes, P V; Reyes, O
2017-10-01
The next generation of ionic liquids must be synthetized taking into account structures that guarantee the suitable properties for a defined application as well as ecological data. Thus, searching of the right methodologies to know, quickly and efficiently, the ecological effects of these compounds is a preliminary task. The effects of two imidazolium based ionic liquids with different anions, 1-butyl-3-methylimidazolium tetrafluoroborate, [C 4 C 1 Im][BF 4 ], and 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C 3 C 1 Im][NTf 2 ], on seedling emergence of six tree species and on the microbial behaviour of two soils were determined in this work. Results showed that the highest doses of both ionic liquids caused the total inhibition of germination for almost all the species studied and that the seeds are more sensitive to the presence of these compounds than soil microbial activity. Nevertheless, signals of stress and death are observed from the results of heat released by microorganisms after the addition of the highest doses of both ionic liquids. The novelty of this work resides in the enlargement of knowledge of toxicity of ILs on complex organisms such as arboreal species and microbial activity of soils studied for the first time through a microcalorimetric technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dielectric relaxation in ionic liquid/dipolar solvent binary mixtures: A semi-molecular theory.
Daschakraborty, Snehasis; Biswas, Ranjit
2016-03-14
A semi-molecular theory is developed here for studying dielectric relaxation (DR) in binary mixtures of ionic liquids (ILs) with common dipolar solvents. Effects of ion translation on DR time scale, and those of ion rotation on conductivity relaxation time scale are explored. Two different models for the theoretical calculations have been considered: (i) separate medium approach, where molecularities of both the IL and dipolar solvent molecules are retained, and (ii) effective medium approach, where the added dipolar solvent molecules are assumed to combine with the dipolar ions of the IL, producing a fictitious effective medium characterized via effective dipole moment, density, and diameter. Semi-molecular expressions for the diffusive DR times have been derived which incorporates the effects of wavenumber dependent orientational static correlations, ion dynamic structure factors, and ion translation. Subsequently, the theory has been applied to the binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with water (H2O), and acetonitrile (CH3CN) for which experimental DR data are available. On comparison, predicted DR time scales show close agreement with the measured DR times at low IL mole fractions (x(IL)). At higher IL concentrations (x(IL) > 0.05), the theory over-estimates the relaxation times and increasingly deviates from the measurements with x(IL), deviation being the maximum for the neat IL by almost two orders of magnitude. The theory predicts negligible contributions to this deviation from the x(IL) dependent collective orientational static correlations. The drastic difference between DR time scales for IL/solvent mixtures from theory and experiments arises primarily due to the use of the actual molecular volume (V(mol)(dip)) for the rotating dipolar moiety in the present theory and suggests that only a fraction of V(mol)(dip) is involved at high x(IL). Expectedly, nice agreement between theory and experiments appears when experimental estimates for the effective rotational volume (V(eff)(dip)) are used as inputs. The fraction, V(eff)(dip)/V(mol)(dip), sharply decreases from ∼1 at pure dipolar solvent to ∼0.01 at neat IL, reflecting a dramatic crossover from viscosity-coupled hydrodynamic angular diffusion at low IL mole fractions to orientational relaxation predominantly via large angle jumps at high x(IL). Similar results are obtained on applying the present theory to the aqueous solution of an electrolyte guanidinium chloride (GdmCl) having a permanent dipole moment associated with the cation, Gdm(+).
Chen, Hsiu-Liang; Chang, Shuo-Kai; Lee, Chia-Ying; Chuang, Li-Lin; Wei, Guor-Tzo
2012-09-12
In this study, we employed the room-temperature ionic liquid [bmim][PF(6)] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF(6)] in a relatively large amount of CH(2)Cl(2), which serves as the disperser solvent to an extraction solution. Following extraction, CH(2)Cl(2) was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L(-1), respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Influence of the ionic liquid/gas surface on ionic liquid chemistry.
Lovelock, Kevin R J
2012-04-21
Applications such as gas storage, gas separation, NP synthesis and supported ionic liquid phase catalysis depend upon the interaction of different species with the ionic liquid/gas surface. Consequently, these applications cannot proceed to the full extent of their potential without a profound understanding of the surface structure and properties. As a whole, this perspective contains more questions than answers, which demonstrates the current state of the field. Throughout this perspective, crucial questions are posed and a roadmap is proposed to answer these questions. A critical analysis is made of the field of ionic liquid/gas surface structure and properties, and a number of design rules are mined. The effects of ionic additives on the ionic liquid/gas surface structure are presented. A possible driving force for surface formation is discussed that has, to the best of my knowledge, not been postulated in the literature to date. This driving force suggests that for systems composed solely of ions, the rules for surface formation of dilute electrolytes do not apply. The interaction of neutral additives with the ionic liquid/gas surface is discussed. Particular attention is focussed upon H(2)O and CO(2), vital additives for many applications of ionic liquids. Correlations between ionic liquid/gas surface structure and properties, ionic liquid surfaces plus additives, and ionic liquid applications are given. This journal is © the Owner Societies 2012
Desulfurization of oxidized diesel using ionic liquids
NASA Astrophysics Data System (ADS)
Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul
2014-10-01
The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less
Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte
NASA Astrophysics Data System (ADS)
Li, Qin; Ardebili, Haleh
2016-01-01
The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.
The Effect of Lengthening Cation Ether Tails on Ionic Liquid Properties
Lall-Ramnarine, S.; Rodriguez, C.; Fernandez, R.; ...
2016-08-30
In order to explore the effect of multiple ether functionalities on ionic liquid properties, a series of ten pyrrolidinium ionic liquids and ten imidazolium ionic liquids bearing ether and alkyl side chains of varying lengths (4 to 10 atoms in length) were prepared for this study. Their physical properties, such as viscosity, conductivity and thermal profile were measured and compared. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILs increases there is hardly any increase inmore » the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. These results provide significant insight on the choice of starting materials for researchers designing ILs for specific applications.« less
Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang
2014-02-21
In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Jun; Yang, Xuzhao; Wu, Jinchao; Song, Hao; Zou, Wenyuan
2015-12-01
Inverse gas chromatographic (IGC) technology was used to determine the solubility parameters of three asymmetrical dicationic ionic liquids ([ PyC5Pi] [ NTf2]2, [MpC5Pi] [NTf2]2 and [PyC6Pi] [NTf2]2) at 343.15-363.15 K. Five alkanes were applied as test probes including octane (n-C8) , decane (n-C10), dodecane (n-C12), tetradecane (n-C14), hexadecane (n-C16). Some thermodynamic parameters were obtained by IGC data analysis, such as the specific retention volumes of the solvents (V0(g)), the molar enthalpies of sorption (ΔHs(1)), the partial molar enthalpies of mixing at infinite dilution (ΔH∞91)), the molar enthalpies of vaporization (ΔH)v)), the activity coefficients at infinite dilution (Ω∞(1)), and Flory-Huggins interaction parameters (χ∞(12)) between ionic liquids and probes. The solubility parameters (δ2) of the three dicationic ionic liquids at room temperature (298.15 K) were 28.52-32.66 (J x cm(-3)) ½. The solubility parameters (δ2) of cationic structure with 4-methyl morpholine are bigger than those of the cationic structure with pyridine. The bigger the solubility parameter (δ2) is, the more the carbon numbers of linking group of the ionic liquids are. The results are of great importance to the study of the solution behavior and the applications of ionic liquid.
The electrode/ionic liquid interface: electric double layer and metal electrodeposition.
Su, Yu-Zhuan; Fu, Yong-Chun; Wei, Yi-Min; Yan, Jia-Wei; Mao, Bing-Wei
2010-09-10
The last decade has witnessed remarkable advances in interfacial electrochemistry in room-temperature ionic liquids. Although the wide electrochemical window of ionic liquids is of primary concern in this new type of solvent for electrochemistry, the unusual bulk and interfacial properties brought about by the intrinsic strong interactions in the ionic liquid system also substantially influence the structure and processes at electrode/ionic liquid interfaces. Theoretical modeling and experimental characterizations have been indispensable in reaching a microscopic understanding of electrode/ionic liquid interfaces and in elucidating the physics behind new phenomena in ionic liquids. This Minireview describes the status of some aspects of interfacial electrochemistry in ionic liquids. Emphasis is placed on high-resolution and molecular-level characterization by scanning tunneling microscopy and vibrational spectroscopies of interfacial structures, and the initial stage of metal electrodeposition with application in surface nanostructuring.
Zeeb, Mohsen; Farahani, Hadi; Papan, Mohammad Kazem
2016-06-01
An efficient analytical method called ionic-liquid-based ultrasound-assisted in situ solvent formation microextraction followed by high-performance liquid chromatography was developed for the determination of atenolol in human plasma. A hydrophobic ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) was formed by the addition of a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate) to a sample solution containing an ion-pairing agent during microextraction. The analyte was extracted into the ionic liquid phase while the microextraction solvent was dispersed throughout the sample by utilizing ultrasound. The sample was then centrifuged, and the extracting phase retracted into the microsyringe and injected to liquid chromatography. After optimization, the calibration curve showed linearity in the range of 2-750 ng/mL with the regression coefficient corresponding to 0.998. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.5 and 2 ng/mL, respectively. A reasonable relative recovery range of 90-96.7% and satisfactory intra-assay (4.8-5.1%, n = 6) and interassay (5.0-5.6%, n = 9) precision along with a substantial sample clean-up demonstrated good performance of the procedure. It was applied for the determination of atenolol in human plasma after oral administration and some pharmacokinetic data were obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanical properties and XRD of Nafion modified by 2-hydroxyethylammonium ionic liquids
NASA Astrophysics Data System (ADS)
Garaev, V.; Pavlovica, S.; Reinholds, I.; Vaivars, G.
2013-12-01
In this work, the Nafion 112 membrane impregnated with 2-hydroxyethylammonium carboxylate ionic liquids have been investigated. The used ionic liquids were 2-hydroxyethylammonium formate [HEA]F, acetate [HEA]A and lactate [HEA]L. Prepared composite membranes Nafion/ionic liquid are characterized by mechanical testing, such as tensile test and creep test. It is found that ionic liquids decrease elastic modulus and creep compliance, but do not have significant effect on the tensile strength. Also, composite membranes were studied by wide angle X-ray diffraction. All ionic liquids shift the peak maximum to the lower angle. In this work, only biodegradable ionic liquids were used for composite preparation.
Dielectric study on mixtures of ionic liquids.
Thoms, E; Sippel, P; Reuter, D; Weiß, M; Loidl, A; Krohns, S
2017-08-07
Ionic liquids are promising candidates for electrolytes in energy-storage systems. We demonstrate that mixing two ionic liquids allows to precisely tune their physical properties, like the dc conductivity. Moreover, these mixtures enable the gradual modification of the fragility parameter, which is believed to be a measure of the complexity of the energy landscape in supercooled liquids. The physical origin of this index is still under debate; therefore, mixing ionic liquids can provide further insights. From the chemical point of view, tuning ionic liquids via mixing is an easy and thus an economic way. For this study, we performed detailed investigations by broadband dielectric spectroscopy and differential scanning calorimetry on two mixing series of ionic liquids. One series combines an imidazole based with a pyridine based ionic liquid and the other two different anions in an imidazole based ionic liquid. The analysis of the glass-transition temperatures and the thorough evaluations of the measured dielectric permittivity and conductivity spectra reveal that the dynamics in mixtures of ionic liquids are well defined by the fractions of their parent compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.
2016-08-14
The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binarymore » liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids’ nanostructure. It is observed that as the cationic alkyl tail length increases, the changes in the binary mixtures’ properties become more pronounced.« less
Wang, Zhibing; Hu, Jianxue; Du, Hongxia; He, Shuang; Li, Qing; Zhang, Hanqi
2016-06-05
The microwave-assisted ionic liquid homogeneous liquid-liquid microextraction (MA-IL-HLLME) coupled with high performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of anthraquinones, including aloe-emodin, emodin, chrysophanol and physcion in root of Rheum palmatum L. Several experimental parameters influencing the extraction efficiency, including amount of sample, type and volume of ionic liquid, volume and pH value of extraction medium, microwave power and extraction time, concentration of NH4PF6 as well as centrifugal condition were optimized. When 140μL of ionic liquid ([C8MIM][BF4]) was used as an extraction solvent, target analytes can be extracted from sample matrix in one minute with the help of microwave irradiation. The MA-IL-HLLME is simple and quick. The calibration curves exhibited good linear relationship (r>0.9984). The limits of detection and quantification were in the range of 0.015-0.026 and 0.051-0.088μgmL(-1), respectively. The spiked recovery for each analyte was in the range of 81.13-93.07% with relative standard deviations lower than 6.89%. The present method is free of volatile organic solvents, and represents lower expenditures of sample, extraction time and solvent, compared with ultrasonic and heat reflux extraction. The results indicated that the present method can be successfully applied to the determination of anthraquinones in medicinal plant. Copyright © 2016 Elsevier B.V. All rights reserved.
Biocatalytic transformations in ionic liquids.
van Rantwijk, Fred; Madeira Lau, Rute; Sheldon, Roger A
2003-03-01
Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems.
Adamová, Gabriela; Gardas, Ramesh L; Nieuwenhuyzen, Mark; Puga, Alberto V; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R
2012-07-21
A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, C(n)H(2n+1)Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR and group contribution methods and the crystal structure of propyl(tributyl)phosphonium chloride is detailed.
Phosphonium-based ionic liquids and their use in the capture of polluting gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Sheng; Wang, Congmin; Luo, Huimin
2017-06-06
An ionic liquid composition having the following chemical structural formula: ##STR00001## wherein R.sup.1, R.sup.2, R.sup.3, and R.sup.4 are independently selected from hydrocarbon groups containing at least 1 and up to 20 carbon atoms, and X.sup.- is a cyclic anion that possesses a negatively-charged group reactive with a gaseous electrophilic species, particularly carbon dioxide or sulfur dioxide. Methods for capturing a gaseous electrophilic species, such as CO.sub.2 or SO.sub.2, by contacting the gaseous electrophilic species with an ionic liquid according to Formula (1) are also described.
Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi
2018-05-09
Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.
NASA Astrophysics Data System (ADS)
Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko
2018-04-01
We report an organic single crystal growth technique, which uses a nonvolatile liquid thin film as a crystal growth field and supplies fine droplets containing solute from the surface of the liquid thin film uniformly and continuously by electrospray deposition. Here, we investigated the relationships between the solute concentration of the supplied solution and the morphology and size of precipitated crystals for four types of fluorescent organic low molecule material [tris(8-hydroxyquinoline)aluminum (Alq3), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), N,N‧-bis(3-methylphenyl)-N,N‧-diphenylbenzidine (TPD), and N,N-bis(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)] using an ionic liquid as the nonvolatile liquid. As the concentration of the supplied solution decreased, the morphology of precipitated crystals changed from dendritic or leaf shape to platelike one. At the solution concentration of 0.1 mg/ml, relatively large platelike single crystals with a diagonal length of over 100 µm were obtained for all types of material. In the experiment using ionic liquid and dioctyl sebacate as nonvolatile liquids, it was confirmed that there is a clear positive correlation between the maximum volume of the precipitated single crystal and the solubility of solute under the same solution supply conditions.
Direct current dielectrophoretic manipulation of the ionic liquid droplets in water.
Zhao, Kai; Li, Dongqing
2018-07-13
The ionic liquids (ILs) as the environmentally benign solvents show great potentials in microemulsion carrier systems and have been widely used in the biochemical and pharmaceutical fields. In the work, the ionic liquid-in-water microemulsions were fabricated by using two kinds of hydrophobic ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF 6 ] and 1-Hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6 ] with Tween 20. The ionic liquid droplets in water experience the dielectrophoretic (DEP) forces induced by applying electrical field via a nano-orifice and a micron orifice on the opposite channel walls of a microchannel. The dielectrophoretic behaviors of the ionic liquid-in-water emulsion droplets were investigated under direct current (DC) electric field. The positive and negative DEP behaviors of the ionic liquid-in-water droplets varying with the electrical conductivity of the suspending medium were investigated and two kinds of the ionic liquid droplets of similar sizes were separated by their different DEP behaviors. In addition, the separation of the ionic liquid-in-water droplets by size was conducted. This paper, for the first time to our knowledge, presents the DC-DEP manipulation of the ionic liquid-in-water emulsion droplets by size and by type. This method provides a platform to manipulate the ionic liquid droplets individually. Copyright © 2018 Elsevier B.V. All rights reserved.
Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan
2013-01-01
Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation.
Gabrić, Beata; Sander, Aleksandra; Cvjetko Bubalo, Marina; Macut, Dejan
2013-01-01
Liquid-liquid extraction is an alternative method that can be used for desulfurization and denitrification of gasoline and diesel fuels. Recent approaches employ different ionic liquids as selective solvents, due to their general immiscibility with gasoline and diesel, negligible vapor pressure, and high selectivity to sulfur- and nitrogen-containing compounds. For that reason, five imidazolium-based ionic liquids and one pyridinium-based ionic liquid were selected for extraction of thiophene, dibenzothiophene, and pyridine from two model solutions. The influences of hydrodynamic conditions, mass ratio, and number of stages were investigated. Increasing the mass ratio of ionic liquid/model fuel and multistage extraction promotes the desulfurization and denitrification abilities of the examined ionic liquids. All selected ionic liquids can be reused and regenerated by means of vacuum evaporation. PMID:23843736
Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen
2013-10-21
The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity.
NASA Astrophysics Data System (ADS)
Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca
2016-09-01
Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.
Poole, Colin F
2004-05-28
Room temperature ionic liquids are novel solvents with favorable environmental and technical features. Synthetic routes to over 200 room temperature ionic liquids are known but for most ionic liquids physicochemical data are generally lacking or incomplete. Chromatographic and spectroscopic methods afford suitable tools for the study of solvation properties under conditions that approximate infinite dilution. Gas-liquid chromatography is suitable for the determination of gas-liquid partition coefficients and activity coefficients as well as thermodynamic constants derived from either of these parameters and their variation with temperature. The solvation parameter model can be used to define the contribution from individual intermolecular interactions to the gas-liquid partition coefficient. Application of chemometric procedures to a large database of system constants for ionic liquids indicates their unique solvent properties: low cohesion for ionic liquids with weakly associated ions compared with non-ionic liquids of similar polarity; greater hydrogen-bond basicity than typical polar non-ionic solvents; and a range of dipolarity/polarizability that encompasses the same range as occupied by the most polar non-ionic liquids. These properties can be crudely related to ion structures but further work is required to develop a comprehensive approach for the design of ionic liquids for specific applications. Data for liquid-liquid partition coefficients is scarce by comparison with gas-liquid partition coefficients. Preliminary studies indicate the possibility of using the solvation parameter model for interpretation of liquid-liquid partition coefficients determined by shake-flask procedures as well as the feasibility of using liquid-liquid chromatography for the convenient and rapid determination of liquid-liquid partition coefficients. Spectroscopic measurements of solvatochromic and fluorescent probe molecules in room temperature ionic liquids provide insights into solvent intermolecular interactions although interpretation of the different and generally uncorrelated "polarity" scales is sometimes ambiguous. All evidence points to the ionic liquids as a unique class of polar solvents suitable for technical development. In terms of designer solvents, however, further work is needed to fill the gaps in our knowledge of the relationship between ion structures and physicochemical properties.
Physical Properties of Substituted Imidazolium Based Ionic Liquids Gel Electrolytes
NASA Astrophysics Data System (ADS)
Sutto, Thomas E.; De Long, Hugh C.; Trulove, Paul C.
2002-11-01
The physical properties of solid gel electrolytes of either polyvinylidene diflurohexafluoropropylene or a combination of polyvinylidene hexafluoropropylene and polyacrylic acid, and the molten salts 1-ethyl-3-methylimidazolium tetrafluoroborate, 1,2-dimethyl-3-n-propylimidazolium tetrafluoroborate, and the new molten salts 1,2-dimethyl-3-n-butylimidazolium tetrafluoroborate, and 1,2-dimethyl-3-n-butylimidazolium hexafluorophosphate were characterized by temperature dependent ionic conductivity measurements for both the pure molten salt and of the molten salt with 0.5 M Li+ present. Ionic conductivity data indicate that for each of the molten salts, the highest concentration of molten salt allowable in a single component polymer gel was 85%, while gels composed of 90%molten salt were possible when using both polyvinylidene hexafluorophosphate and polyacrylic acid. For polymer gel composites prepared using lithium containing ionic liquids, the optimum polymer gel composite consisted of 85% of the 0.5 M Li+/ionic liquid, 12.75% polyvinylidene hexafluoropropylene, and 2.25% poly (1-carboxyethylene). The highest ionic conductivity observed was for the gel containing 90%1-ethyl-3-methyl-imidazolium tetrafluoroborate, 9.08 mS/cm. For the lithium containing ionic liquid gels, their ionic conductivity ranged from 1.45 to 0.05 mS/cm, which is comparable to the value of 0.91 mS/cm, observed for polymer composite gels containing 0.5 M LiBF4 in propylene carbonate.
Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W
2016-12-20
The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.
Jiang, Yuehuang; Tang, Tingting; Cao, Zhen; Shi, Guoyue; Zhou, Tianshu
2015-06-01
A hydroxyl-functionalized ionic liquid, 1-hydroxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid-phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H-bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0-1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0-1000 μg/L for estriol. The detection limits were in the range of 1.7-3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aparicio, Santiago; Alcalde, Rafael; Atilhan, Mert
2010-05-06
Ionic liquids have attracted great attention, from both industry and academe, as alternative fluids for a large collection of applications. Although the term green is used frequently to describe ionic liquids in general, it is obvious that it cannot be applied to the huge quantity of possible ionic liquids, and thus, those with adequate environmental and technological profiles must be selected for further and deeper studies, from both basic science and applied approaches. In this work, 1-ethyl-3-methylimidazolium L-(+)-lactate ionic liquid is studied, because of its remarkable properties, through a wide-ranging approach considering thermophysical, spectroscopic, and computational tools, to gain a deeper insight into its complex liquid structure, both pure and mixed with water, thus implying the main factors that would control the technological applications that could be designed using this fluid. The reported results shows a strongly structured pure ionic liquid, in which hydrogen bonding, because of the hydroxyl group of the lactate anion, develops a remarkable role, together with Coulombic forces to determine the fluid's behavior. Upon mixing with water, the ionic liquid retains its structure up to very high dilution levels, with the effect of the ionic liquid on the water structure being very large, even for very low ionic liquid mole fractions. Thus, in water solution, the studied ionic liquid evolves from noninteracting ions solvated by water molecules toward large interacting structures with increasing ionic liquid content.
Dye-sensitized solar cells using ionic liquids as redox mediator
NASA Astrophysics Data System (ADS)
Denizalti, Serpil; Ali, Abdulrahman Khalaf; Ela, Çağatay; Ekmekci, Mesut; Erten-Ela, Sule
2018-01-01
In this research, the influence of ionic liquid on the conversion efficiency, incident photons to converted electrons (IPCE) and performance of fabricated solar cell was investigated using various ionic liquids. Ionic liquids with different substituents and ions were prepared and used as redox mediators in dye-sensitized solar cells (DSSCs). Ionic liquids were characterized 1H and 13C NMR spectra. We practically investigated the performance of ionic liquid salts were used as the mobile ions and found that the efficiencies of DSSCs were increased up to 40% comparing commercial electrolyte system. The ionic liquid compounds were incorporated in DSSCs to obtain an efficient charge transfer, solving the corrosion problem of platinum layer in counter electrode compared to commercial electrolyte.
Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.
Yadav, Anita; Pandey, Siddharth
2017-12-07
Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py to be diffusion-controlled and to depend on the viscosity of the ionic liquid irrespective of the identity of the cation. The dependence of ionic liquid structure on cyclization dynamics to form intramolecular excimer is amply highlighted.
Kanbayashi, Toru; Miyafuji, Hisashi
2016-09-01
Tension wood that is an abnormal part formed in angiosperms has been barely used for wood industry. In this study, to utilize the tension wood effectively by means of liquefaction using ionic liquid, we performed morphological and topochemical determination of the changes in tension wood of Japanese beech (Fagus crenata) during ionic liquid treatment at the cellular level using light microscopy, scanning electron microscopy and confocal Raman microscopy. Ionic liquid treatment induced cell wall swelling in tension wood. Changes in the tissue morphology treated with ionic liquids were different between normal wood and tension wood, moreover the types of ionic liquids. The ionic liquid 1-ethyl-3-methylimidazolium chloride liquefied gelatinous layers rapidly, whereas 1-ethylpyridinium bromide liquefied slowly but delignified selectively. These novel insights into the deconstruction behavior of tension wood cell walls during ionic liquid treatment provide better understanding of the liquefaction mechanism. The obtained knowledge will contribute to development of an effective chemical processing of tension wood using ionic liquids and lead to efficient use of wood resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meng, Xiangqian; Devemy, Julien; Verney, Vincent; Gautier, Arnaud; Husson, Pascale; Andanson, Jean-Michel
2017-04-22
Twenty ionic liquids based on tetraalkylammonium cations and carboxylate anions have been synthesized, characterized, and tested for cellulose dissolution. The amount of cellulose dissolved in these ionic liquids depends strongly on the size of the ions: from 0 to 22 wt % cellulose can be dissolved at 90 °C. The best ionic liquids are less viscous and ammonium carboxylate based ionic liquids can dissolve as much as imidazolium-based ones. The viscosity of an ionic liquid can be decreased by the addition of DMSO as a cosolvent. After the addition of cosolvent, similar amounts of cellulose per ions are reached for most ionic liquids. As observed by rheology, ionic liquids with the longest alkyl chains form a gel when a high amount of cellulose is dissolved; this drastically limits their potential. Molecular simulations and IR spectroscopy have also been used with the aim of understanding how molecular interactions differ between efficient and inefficient ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Fujii, Kenta; Kanzaki, Ryo; Takamuku, Toshiyuki; Kameda, Yasuo; Kohara, Shinji; Kanakubo, Mitsuhiro; Shibayama, Mitsuhiro; Ishiguro, Shin-ichi; Umebayashi, Yasuhiro
2011-12-01
Short- and long-range liquid structures of [CnmIm+][TFSA-] with n = 2, 4, 6, 8, 10, and 12 have been studied by high-energy x-ray diffraction (HEXRD) and small-angle neutron scattering (SANS) experiments with the aid of MD simulations. Observed x-ray structure factor, S(Q), for the ionic liquids with the alkyl-chain length n > 6 exhibited a characteristic peak in the low-Q range of 0.2-0.4 Å -1, indicating the heterogeneity of their ionic liquids. SANS profiles IH(Q) and ID(Q) for the normal and the alkyl group deuterated ionic liquids, respectively, showed significant peaks for n = 10 and 12 without no form factor component for large spherical or spheroidal aggregates like micelles in solution. The peaks for n = 10 and 12 evidently disappeared in the difference SANS profiles ΔI(Q) [=ID(Q) - IH(Q)], although that for n = 12 slightly remained. This suggests that the long-range correlations originated from the alkyl groups hardly contribute to the low-Q peak intensity in SANS. To reveal molecular origin of the low-Q peak, we introduce here a new function; x-ray structure factor intensity at a given Q as a function of r, SQpeak(r). The SQpeak(r) function suggests that the observed low-Q peak intensity depending on n is originated from liquid structures at two r-region of 5-8 and 8-15 Å for all ionic liquids examined except for n = 12. Atomistic MD simulations are consistent with the HEXRD and SANS experiments, and then we discussed the relationship between both variations of low-Q peak and real-space structure with lengthening the alkyl group of the CnmIm.
Ma, Wanwan; Row, Kyung Ho
2018-07-20
A type of magnetic ionic liquid based molecularly imprinted polymer coated on SiO 2 (Fe 3 O 4 @SiO 2 @IL-MIPs) was prepared with 1-vinyl-3-ethylimidazole ionic liquid as functional monomer, and 1,4-butane-3,3'-bis-1-ethylimidazole ionic liquid as cross linker, 4-Chlorophenol as template was successfully applied as a selective adsorbent for selective extraction of 5 chlorophenols in seawater samples by using the magnetic solid-phase extraction (MSPE) method. 11 types of Fe 3 O 4 @SiO 2 @IL-MIPs were synthesized and investigated for their different compositions of functional monomer (such as [C 2 min][Br], [C 2 min][BF 4 ], [C 2 min][PF 6 ], acrylamide, methacrylic acid and 4-vinyl pyridine) and cross-linker (such as [C 4 min 2 ][Br], [C 4 min 2 ][BF 4 ], [C 4 min 2 ][PF 6 ], divinylbenzene, and ethylene glycol dimethacrylate), respectively. The [C 2 min][BF 4 ] and [C 4 min 2 ][PF 6 ] based Fe 3 O 4 @SiO 2 @IL-MIP with the highest extraction efficiencies was applied to the optimization experiment of MSPE process (including extraction time, adsorbent mass and desorption solvents). Good linearity was obtained with correlation coefficients (R 2 ) over 0.9990 and the relative standard deviations for the intra-day and inter-day determination were less than 3.10% with the extraction recoveries ranged from 85.0% to 98.4%. The results indicated that the proposed Fe 3 O 4 @SiO 2 @IL-MIPs possesses great identification and adsorption properties, and could be used as a good sorbent for selective extraction of CPs in environment waters. Copyright © 2018 Elsevier B.V. All rights reserved.
Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming
2011-11-30
The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Tibbits, Andrew C; Yan, Yushan S; Kloxin, Christopher J
2017-07-01
Ene-functionalized ionic liquids with a range of different cationic groups and counteranions react stoichiometrically within a tetrathiol-divinyl ether formulation within 20 minutes to form thiol-ene polymers with measurable ionic conductivities via a photoinitiated polymerization and crosslinking reaction. Dynamic mechanical analysis indicates that these networks are more spatially heterogeneous and possess higher glass transition temperatures (T g ) compared with thiol-ene formulations without charge. While tuning the molar content of ionic liquid monomer is one method for adjusting the crosslink and charge densities of the thiol-ene polymeric ionic liquid networks, the presence of cation-anion interactions also plays a critical role in dictating the thermomechanical and conductive properties. Particularly, while cationic structure effects are not significant on the polymer properties, the use of a weakly coordinating hydrophobic anion (bistriflimide) instead of bromide-based networks results in an apparent decrease in hydrated ion conductivity (7.4 to 1.5 mS cm -1 ) and T g (-9.6 to -17.8 °C). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Biao; Sudre, Guillaume; Quintard, Guilhem; Serghei, Anatoli; David, Laurent; Bernard, Julien; Fleury, Etienne; Charlot, Aurélia
2017-02-10
In this study, we report on the simple and straightforward preparation of ionogels arising from the addition of guar gum (a plant-based polysaccharide) in a solution of precisely-defined poly(ionic liquid) chains (PIL) in imidazolium-based ionic liquid (IL). The development of intermolecular polar interactions (mainly hydrogen bonds) and topologic chain entanglements induces the formation of physical biohybrid ionogels, whose elastic properties can be easily tuned by varying the composition (up to 30000Pa). The combined presence of guar gum and PIL confers excellent dimensional stability to the ionogels with no IL exudation combined with high thermal properties (up to 310°C). The resulting materials are shown to exhibit gel scattering profiles and high conductivities (> 10 -4 S/cm at 30°C). The benefit linked to the formation of guar/PIL associations in IL medium enables to find a good compromise between the mechanical cohesion and the mobility ensuring the ionic transport. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ionic liquids: Promising green solvents for lignocellulosic biomass utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Chang Geun; Pu, Yunqiao; Ragauskas, Arthur J.
Ionic liquids are effective solvents/media for the utilization of lignocellulosic biomass. The unique properties of ionic liquids enable them to effectively dissolve and/or convert the biomass into various types of products. This review aims to cover the latest progress achieved in applications of ionic liquids on biomass conversion and analysis. Specifically, several recently developed approaches on how to overcome current challenges on the use of ionic liquids in the biomass conversion were highlighted. Here, recent studies addressing the potential applications of ionic liquids for the production of novel biomass-derived chemicals and materials were also discussed.
Ionic liquids: Promising green solvents for lignocellulosic biomass utilization
Yoo, Chang Geun; Pu, Yunqiao; Ragauskas, Arthur J.
2017-06-01
Ionic liquids are effective solvents/media for the utilization of lignocellulosic biomass. The unique properties of ionic liquids enable them to effectively dissolve and/or convert the biomass into various types of products. This review aims to cover the latest progress achieved in applications of ionic liquids on biomass conversion and analysis. Specifically, several recently developed approaches on how to overcome current challenges on the use of ionic liquids in the biomass conversion were highlighted. Here, recent studies addressing the potential applications of ionic liquids for the production of novel biomass-derived chemicals and materials were also discussed.
Biata, N Raphael; Nyaba, Luthando; Ramontja, James; Mketo, Nomvano; Nomngongo, Philiswa N
2017-12-15
The aim of this study was to develop a simple and fast ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction (UA-IL-DLLME) method for preconcetration of trace antimony and tin in beverage samples. The novelty of this study was based on the application of ligandless UA-IL-DLLME using low-density ionic liquid and organic solvents for preconcentration of Sb and Sn. The concentration of Sb and Sn were quantified using ICP-OES. Under the optimum conditions, the calibration graph was found to be LOQ-250µgL -1 (r 2 =0.9987) for Sb and LOQ-350µgL -1 for Sn. The LOD and LOQ of Sb and Sn ranged from 1.2to 2.5ngL -1 and 4.0 to 8.3ngL -1 , respectively, with high preconcentration factors. The precisions (%RSD) of the proposed method ranged from 2.1% to 2.5% and 3.9% to 4.7% for Sb and Sn, respectively. The proposed method was successfully applied for determination of Sb and Sn in beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Suda, Kayo; Terazima, Masahide; Sato, Hirofumi; Kimura, Yoshifumi
2013-10-17
Excited state intramolecular proton transfer reactions (ESIPT) of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) in ionic liquids have been studied by steady-state and time-resolved fluorescence measurements at different excitation wavelengths. Steady-state measurements show the relative yield of the tautomeric form to the normal form of DEAHF decreases as excitation wavelength is increased from 380 to 450 nm. The decrease in yield is significant in ionic liquids that have cations with long alkyl chains. The extent of the decrease is correlated with the number of carbon atoms in the alkyl chains. Time-resolved fluorescence measurements using optical Kerr gate spectroscopy show that ESIPT rate has a strong excitation wavelength dependence. There is a large difference between the spectra at a 200 ps delay from different excitation wavelengths in each ionic liquid. The difference is pronounced in ionic liquids having a long alkyl chain. The equilibrium constant in the electronic excited state obtained at a 200 ps delay and the average reaction rate are also correlated with the alkyl chain length. Considering the results of the steady-state fluorescence and time-resolved measurements, the excitation wavelength dependence of ESIPT is explained by state selective excitation due to the difference of the solvation, and the number of alkyl chain carbon atoms is found to be a good indicator of the effect of inhomogeneity for this reaction.
Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.
Egorova, Ksenia S; Gordeev, Evgeniy G; Ananikov, Valentine P
2017-05-24
Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.
Synthesis and characterization of new class of ionic liquids containing phenolate anion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lethesh, Kallidanthiyil Chellappan, E-mail: lethesh.chellappan@petronas.com.my; Wilfred, Cecilia Devi; Taha, M. F.
2014-10-24
In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K atmore » atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.« less
Boundary layer charge dynamics in ionic liquid-ionic polymer transducers
NASA Astrophysics Data System (ADS)
Davidson, Jacob D.; Goulbourne, N. C.
2011-01-01
Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites, are soft sensors and actuators which operate through a coupling of microscale chemical, electrical, and mechanical interactions. The use of an ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. In this work, we apply Nernst-Planck/Poisson theory to model charge transport in an ionic liquid IPT by considering a certain fraction of the ionic liquid ions as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs compared to their water-based counterparts. Numerical simulations are performed using the finite element method to examine how the introduction of another pair of mobile ions affects boundary layer charge dynamics, concentration, and charge density distributions in the electric double layer, and the overall charge transferred and current response of the IPT. Due to interactions with the Nafion ionomer, not all of the ionic liquid ions will function as mobile charge carriers; only a certain fraction will exist as "free" ions. The presence of mobile ionic liquid ions in the transducer will increase the overall charge transferred when a voltage is applied, and cause the current in the transducer to decay more slowly. The additional mobile ions also cause the ionic concentration profiles to exhibit a nonlinear dynamic response, characterized by nonmonotonic ionic concentration profiles in space and time. Although the presence of mobile ionic liquid ions increases the overall amount of charge transferred, this additional charge transfer occurs in a somewhat symmetric manner. Therefore, the additional charge transferred due to the ionic liquid ions does not greatly increase the net bending moment of the transducer; in fact, it is possible that ionic liquid ion movement actually decreases the observed bending response. This suggests that an optimal electromechanical conversion efficiency for bending actuation is achieved by using an ionic liquid where only a relatively small fraction of the ionic liquid ions exist as free ions. Conversely, if it is desired to increase the overall amount of charge transferred, an ionic liquid with a large fraction of free ions should be used. These theoretical considerations are found to be in good qualitative agreement with recent experimental results.
Ionic Liquids as Extraction Media for Metal Ions
NASA Astrophysics Data System (ADS)
Hirayama, Naoki
In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.
Cybinska, Joanna; Lorbeer, Chantal; Mudring, Anja -Verena
2015-07-08
Ln 3+-doped (Ln=Sm, Eu, Tb, Dy) nanoparticles of BiPO 4 with a particle size below 10 nm were synthesized in a straightforward manner from the appropriate mixture of the respective metal acetates and the task-specific ionic liquids choline or butylammonium dihydrogen-phosphate by conversion in a laboratory microwave (120 °C, 10 min). The ionic liquid acts not only as a solvent and microwave susceptor, but also as the reaction partner and nanoparticle stabilizer. The materials were thoroughly characterized not only with respect to their optical properties but also by PXRD, FT-IR, TEM techniques. Furthermore, depending on the lanthanide, the nanomaterial showsmore » intense luminescence of different colors such as: orange (Sm 3+), red (Eu 3+), green (Tb 3+) or even white (Dy 3+).« less
Fang, Yingtong; Li, Quan; Shao, Qian; Wang, Binghai; Wei, Yun
2017-07-21
The alkaloids from lotus (Nelumbo nucifera Gaertn) are effective in lowering hyperlipemia and level of cholesterol. However, there is not a general method for their separation. In this work, a general ionic liquid pH-zone-refining countercurrent chromatography method for isolation and purification of six alkaloids from the whole lotus plant was successfully established by using ionic liquids as the modifier of the two-phase solvent system. The conditions of ionic liquid pH-zone-refining countercurrent chromatography, involving solvent systems, concentration of retainer and eluter, types of ionic liquids, the content of ionic liquids as well as ionic liquids posttreatment, were optimized to improve extraction efficiency. Finally, the separation of these six alkaloids was performed with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water-[C 4 mim][PF 6 ] at a volume ratio of 5:2:2:8:0.1, where 10mM TEA was added to the organic stationary phase as a retainer and 3mM HCl was added to the aqueous mobile phase as an eluter. As a result, six alkaloids including N-nornuciferine, liensinine, nuciferine, isoliensinine, roemerine and neferine were successfully separated with the purities of 97.0%, 90.2%, 94.7%, 92.8%, 90.4% and 95.9%, respectively. The established general method has been respectively applied to the crude samples of lotus leaves and lotus plumules. A total of 37.3mg of liensinine, 57.7mg of isoliensinine and 179.9mg of neferine were successfully purified in one run from 1.00g crude extract of lotus plumule with the purities of 93.2%, 96.5% and 98.8%, respectively. Amount of 45.6mg N-nornuciferine, 21.6mg nuciferine and 11.7mg roemerine was obtained in one step separation from 1.05g crude extract of lotus leaves with the purity of 96.9%, 95.6% and 91.33%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Vibrational Spectroscopy of Ionic Liquids.
Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C
2017-05-24
Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.
On the chemical stabilities of ionic liquids.
Sowmiah, Subbiah; Srinivasadesikan, Venkatesan; Tseng, Ming-Chung; Chu, Yen-Ho
2009-09-25
Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitously advantageous in others is has been a problem, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.
Ionic liquid containing hydroxamate and N-alkyl sulfamate ions
Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan
2016-03-15
Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.
Liew, Chiam-Wen; Ramesh, S
2015-06-25
Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram. Copyright © 2015 Elsevier Ltd. All rights reserved.
Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids.
Khan, Amir Sada; Man, Zakaria; Bustam, Mohamad Azmi; Nasrullah, Asma; Ullah, Zahoor; Sarwono, Ariyanti; Shah, Faiz Ullah; Muhammad, Nawshad
2018-02-01
In the present research work, dicationic ionic liquids, containing 1,4-bis(3-methylimidazolium-1-yl) butane ([C 4 (Mim) 2 ]) cation with counter anions [(2HSO 4 )(H 2 SO 4 ) 0 ], [(2HSO 4 )(H 2 SO 4 ) 2 ] and [(2HSO 4 )(H 2 SO 4 ) 4 ] were synthesised. ILs structures were confirmed using 1 H NMR spectroscopy. Thermal stability, Hammett acidity, density and viscosity of ILs were determined. Various types of lignocellulosic biomass such as rubber wood, palm oil frond, bamboo and rice husk were converted into levulinic acid (LA). Among the synthesized ionic liquids, [C 4 (Mim) 2 ][(2HSO 4 )(H 2 SO 4 ) 4 ] showed higher % yield of LA up to 47.52 from bamboo biomass at 110°C for 60min, which is the better yield at low temperature and short time compared to previous reports. Surface morphology, surface functional groups and thermal stability of bamboo before and after conversion into LA were studied using SEM, FTIR and TGA analysis, respectively. This one-pot production of LA from agro-waste will open new opportunity for the conversion of sustainable biomass resources into valuable chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-01-01
A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.
Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Mendil, Durali; Soylak, Mustafa; Machado, Luana O R; Dos Santos, Walter N L; Ferreira, Sergio L C
2018-04-15
This paper proposes a simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure using pyrocatechol violet (PV) as complexing reagent and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide [C 6 MIM][Tf 2 N] as ionic liquid for the detection of tin employing electrothermal atomic absorption spectrometry (ETAAS). The optimization step was performed using a two-level full factorial design involving the following factors: pH of the working media, amount reagents, ionic liquid volume and extraction time and the chemometric response was tin recovery. The procedure allowed the determination of tin with limits of detection and quantification of 3.4 and 11.3 ng L -1 , respectively. The relative standard deviation was 4.5% for a tin solution of 0.50 µg L -1 . The validation method was confirmed by analysis of rice flour certified reference material. The method was applied for the quantification of tin in several food samples. The concentration range found varied from 0.10 to 1.50 µg g -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Oliveira, Filipe S; Cabrita, Eurico J; Todorovic, Smilja; Bernardes, Carlos E S; Lopes, José N Canongia; Hodgson, Jennifer L; MacFarlane, Douglas R; Rebelo, Luís P N; Marrucho, Isabel M
2016-01-28
In this work, we explore the interactions between the ionic liquid 1-ethyl-3-methylimidazolim acetate and different inorganic salts belonging to two different cation families, those based on ammonium and others based on sodium. NMR and Raman spectroscopy are used to screen for changes in the molecular environment of the ions in the ionic liquid + inorganic salt mixtures as compared to pure ionic liquid. The ion self-diffusion coefficients are determined from NMR data, allowing the discussion of the ionicity values of the ionic liquid + inorganic salt mixtures calculated using different methods. Our data reveal that preferential interactions are established between the ionic liquid and ammonium-based salts, as opposed to sodium-based salts. Computational calculations show the formation of aggregates between the ionic liquid and the inorganic salt, which is consistent with the spectroscopic data, and indicate that the acetate anion of the ionic liquid establishes preferential interactions with the ammonium cation of the inorganic salts, leaving the imidazolium cation less engaged in the media.
Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka
2014-01-01
The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972
Pan, Ru; Shao, Dejia; Qi, Xueyong; Wu, Yun; Fu, Wenyan; Ge, Yanru; Fu, Haizhen
2013-01-01
The effective method of ionic liquid-based aqueous two-phase extraction, which involves ionic liquid (IL) (1-butyl-3-methyllimidazolium chloride, [C4mim]Cl) and inorganic salt (K2HPO4) coupled with high-performance liquid chromatography (HPLC), has been used to extract trace tilmicosin in real water samples which were passed through a 0.45 μm filter. The effects of the different types of salts, the concentration of K2HPO4 and of ILs, the pH value and temperature of the systems on the extraction efficiencies have all been investigated. Under the optimum conditions, the average extraction efficiency is up to 95.8%. This method was feasible when applied to the analysis of tilmicosin in real water samples within the range 0.5-40 μg mL(-1). The limit of detection was found to be 0.05 μg mL(-1). The recovery rate of tilmicosin was 92.0-99.0% from the real water samples by the proposed method. This process is suggested to have important applications for the extraction of tilmicosin.
Bi, Wentao; Tian, Minglei; Row, Kyung Ho
2012-01-01
This study highlighted the application of a two-stepped extraction method for extraction and separation of oxymatrine from Sophora flavescens Ait. extract by utilizing silica-confined ionic liquids as sorbent. The optimized silica-confined ionic liquid was firstly mixed with plant extract to adsorb oxymatrine. Simultaneously, some interference, such as matrine, was removed. The obtained suspension was then added to a cartridge for solid phase extraction. Through these two steps, target compound was adequately separated from interferences with 93.4% recovery. In comparison with traditional solid phase extraction, this method accelerates loading and reduces the use of organic solvents during washing. Moreover, the optimization of loading volume was simplified as optimization of solid/liquid ratio. Copyright © 2011 Elsevier B.V. All rights reserved.
Electrolyte compositions for lithium ion batteries
Sun, Xiao-Guang; Dai, Sheng; Liao, Chen
2016-03-29
The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.
Proteins in Ionic Liquids: Current Status of Experiments and Simulations.
Schröder, Christian
2017-04-01
In the last two decades, while searching for interesting applications of ionic liquids as potent solvents, their solvation properties and their general impact on biomolecules, and in particular on proteins, gained interest. It turned out that ionic liquids are excellent solvents for protein refolding and crystallization. Biomolecules showed increased solubilities and stabilities, both operational and thermal, in ionic liquids, which also seem to prevent self-aggregation during solubilization. Biomolecules can be immobilized, e.g. in highly viscous ionic liquids, for particular biochemical processes and can be designed to some extent by the proper choice of the ionic liquid cations and anions, which can be characterized by the Hofmeister series.
Gondosiswanto, Richard; Gunawan, Christian A; Hibbert, David B; Harper, Jason B; Zhao, Chuan
2016-11-16
Lab-on-a-chip systems have gained significant interest for both chemical synthesis and assays at the micro-to-nanoscale with a unique set of benefits. However, solvent volatility represents one of the major hurdles to the reliability and reproducibility of the lab-on-a-chip devices for large-scale applications. Here we demonstrate a strategy of combining nonvolatile and functionalized ionic liquids with microcontact printing for fabrication of "wall-less" microreactors and microfluidics with high reproducibility and high throughput. A range of thiol-functionalized ionic liquids have been synthesized and used as inks for microcontact printing of ionic liquid microdroplet arrays onto gold chips. The covalent bonds formed between the thiol-functionalized ionic liquids and the gold substrate offer enhanced stability of the ionic liquid microdroplets, compared to conventional nonfunctionalized ionic liquids, and these microdroplets remain stable in a range of nonpolar and polar solvents, including water. We further demonstrate the use of these open ionic liquid microarrays for fabrication of "membrane-less" and "spill-less" gas sensors with enhanced reproducibility and robustness. Ionic-liquid-based microarray and microfluidics fabricated using the described microcontact printing may provide a versatile platform for a diverse number of applications at scale.
Transferable Coarse-Grained Models for Ionic Liquids.
Wang, Yanting; Feng, Shulu; Voth, Gregory A
2009-04-14
The effective force coarse-graining (EF-CG) method was applied to the imidazolium-based nitrate ionic liquids with various alkyl side-chain lengths. The nonbonded EF-CG forces for the ionic liquid with a short side chain were extended to generate the nonbonded forces for the ionic liquids with longer side chains. The EF-CG force fields for the ionic liquids exhibit very good transferability between different systems at various temperatures and are suitable for investigating the mesoscopic structural properties of this class of ionic liquids. The good additivity and ease of manipulation of the EF-CG force fields can allow for an inverse design methodology of ionic liquids at the coarse-grained level. With the EF-CG force field, the molecular dynamics (MD) simulation at a very large scale has been performed to check the significance of finite size effects on the structural properties. From these MD simulation results, it can be concluded that the finite size effect on the phenomenon of ionic liquid spatial heterogeneity (Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192) is small and that this phenomenon is indeed a nanostructural behavior which leads to the experimentally observed mesoscopic heterogeneous structure of ionic liquids.
Synthesis of electroactive ionic liquids for flow battery applications
Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry
2015-09-01
The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.
Kim, Ki-jeong; Yuan, Hongtao; Jang, Hoyoung; ...
2018-05-24
Ionic liquids and gels have attracted attention for a variety of energy storage applications, as well as for high performance electrolytes for batteries and super-capacitors. Although the electronic structure of ionic electrolytes in these applications is of practical importance for device design and improved performance, the understanding of the electronic structure of ionic liquids and gels is still at an early stage. Here we report soft x-ray spectroscopic measurements of the surface electronic structure of a representative ammonia-based ionic gel (DEME-TFSI with PSPMMA- PS copolymer). We observe that near the outermost surface, the area of the anion peak (1s Nmore » - core level in TFSI) is relatively larger than that of the cation peak (N + in DEME). This spontaneous ionic polarization of the electrolyte surface, which is absent for the pure ionic liquid without copolymer, can be directly tuned by the copolymer content in the ionic gel, and further results in a modulation in work function. Finally, these results shed new light on the control of surface electronic properties of ionic electrolytes, as well as a difference between their implementation in ionic liquids and gels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki-jeong; Yuan, Hongtao; Jang, Hoyoung
Ionic liquids and gels have attracted attention for a variety of energy storage applications, as well as for high performance electrolytes for batteries and super-capacitors. Although the electronic structure of ionic electrolytes in these applications is of practical importance for device design and improved performance, the understanding of the electronic structure of ionic liquids and gels is still at an early stage. Here we report soft x-ray spectroscopic measurements of the surface electronic structure of a representative ammonia-based ionic gel (DEME-TFSI with PSPMMA- PS copolymer). We observe that near the outermost surface, the area of the anion peak (1s Nmore » - core level in TFSI) is relatively larger than that of the cation peak (N + in DEME). This spontaneous ionic polarization of the electrolyte surface, which is absent for the pure ionic liquid without copolymer, can be directly tuned by the copolymer content in the ionic gel, and further results in a modulation in work function. Finally, these results shed new light on the control of surface electronic properties of ionic electrolytes, as well as a difference between their implementation in ionic liquids and gels.« less
Electrochemically stable electrolytes
Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang
1999-01-01
This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes.
Electrochemically stable electrolytes
Angell, C.A.; Zhang, S.S.; Xu, K.
1999-01-05
This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.
Thermal Decomposition Mechanism of 1-ethyl-3-methylimidazolium Bromide Ionic Liquid (Preprint)
2011-09-14
TetraethylammoniumTrifluoromentanesulfonate Ionic Liquid and Neutralized Nafion 117 for High-Temperature Fuel Cells J. Am. Chem. Soc. 2010, 132, 2183-2195. (7) Kim, S. Y.; Kim, S...bromide 5b. GRANT NUMBER ionic liquid (Preprint) 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steven D. Chambreau, Jerry A. Boatz, Ghanshyam L. Vaaghjiani...In order to better understand the volatilization process for ionic liquids , the vapor evolved from heating the ionic liquid 1-ethyl-3
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.
Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana
2016-01-01
Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and microstructures with different morphologies (0D nanoparticles, 1D nanowires, rods, 2D layers, sheets, and 3D features of molecules). ILs interact efficiently with microwave irradiation, thus even small amount of IL can be employed to increase the dielectric constant of nonpolar solvents used in the synthesis. Thus, combining the advantages of ionic liquids and ray-mediated methods resulted in the development of new ionic liquid-assisted synthesis routes. One of the recently proposed approaches of semiconductor particles preparation is based on the adsorption of semiconductor precursor molecules at the surface of micelles built of ionic liquid molecules playing a role of a soft template for growing microparticles. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Xiao; Zhang, Shaohua; Yu, Wei; Liu, Zhongling; Lei, Lei; Li, Na; Zhang, Hanqi; Yu, Yong
2014-06-01
An ionic liquid-anionic surfactant based aqueous two-phase extraction was developed and applied for the extraction of tetracycline, oxytetracycline and chloramphenicol in honey. The honey sample was mixed with Na2EDTA aqueous solution. The sodium dodecyl sulfate, ionic liquid 1-octyl-3-methylimidazolium bromide and sodium chloride were added in the mixture. After the resulting mixture was ultrasonically shaken and centrifuged, the aqueous two phase system was formed and analytes were extracted into the upper phase. The parameters affecting the extraction efficiency, such as the volume of ionic liquid, the category and amount of salts, sample pH value, extraction time and temperature were investigated. The limits of detection of tetracycline, oxytetracycline and chloramphenicol were 5.8, 8.2 and 4.2 μg kg(-1), respectively. When the present method was applied to the analysis of real honey samples, the recoveries of analytes ranged from 85.5 to 110.9% and relative standard deviations were lower than 6.9%. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanoja, Gabriel; Popere, Bhooshan; Beckingham, Bryan; Evans, Christopher; Lynd, Nathaniel; Segalman, Rachel
Elucidating the relationship between chemical structure, morphology, and ionic conductivity is essential for designing novel materials for electrochemical applications. In this work, the effect of lamellar domain spacing (d) on ionic conductivity (σ) is investigated for a model system of hydrated block copolymer based on a protic polymerized ionic liquid. We present a strategy that allows for the synthesis of a well-defined series of narrowly dispersed PS- b - PIL with constant volume fraction of ionic liquid moieties (fIL ~ 0.39). These materials self-assemble into ordered lamellar morphologies with variable domain spacing (23-59 nm) as demonstrated by SAXS. PS- b - PIL membranes exhibit ionic conductivities above 10-4 S/cm at room temperature, which are independent of domain spacing. The conductivity scaling relationship demonstrated in this work suggests that a mechanically robust membrane can be designed without compromising its ability to transport ions. In addition, PIL-based membranes exhibit lower water uptake (λ = 10) in comparison with many proton-conducting systems reported elsewhere. The low water content of these materials makes them promising candidates for solar-fuels electrochemical devices.
Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas
2016-02-10
Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.
2015-01-01
Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid-phase systems provide similar estimates of electrochemical window, while Li-doping in the liquid-phase systems results in electrochemical windows little changed from the neat systems. Pure and hybrid functionals systematically provide an upper and lower bound, respectively, to the experimental electrochemical window for the systems studied here.
Ionic liquid electrolytes for dye-sensitized solar cells.
Gorlov, Mikhail; Kloo, Lars
2008-05-28
The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.
Fiorentini, Emiliano F; Escudero, Leticia B; Wuilloud, Rodolfo G
2018-04-19
A simple, highly efficient, batch, and centrifuge-less dispersive liquid-liquid microextraction method based on a magnetic ionic liquid (MIL-DLLME) and electrothermal atomic absorption spectrometry (ETAAS) detection was developed for ultra-trace Cd determination in honey. Initially, Cd(II) was chelated with ammonium diethyldithiophosphate (DDTP) at pH 0.5 followed by its extraction with the MIL trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P 6,6,6,14 ]FeCl 4 ) and acetonitrile as dispersant. The MIL phase containing the analyte was separated from the aqueous phase using only a magnet. A back-extraction procedure was applied to recover Cd from the MIL phase using diluted HNO 3 and this solution was directly injected into the graphite furnace of ETAAS instrument. An extraction efficiency of 93% and a sensitivity enhancement factor of 112 were obtained under optimal experimental conditions. The detection limit (LOD) was 0.4 ng L -1 Cd, while the relative standard deviation (RSD) was 3.8% (at 2 μg L -1 Cd and n = 10), calculated from the peak height of absorbance signals. This work reports the first application of the MIL [P 6,6,6,14 ]FeCl 4 along with the DLLME technique for the successful determination of Cd at trace levels in different honey samples. Graphical abstract Preconcentration of ultratraces of Cd in honey using a magnetic ionic liquid and dispersive liquid-liquid microextraction technique.
Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Boning; Liang, Min; Zmich, Nicole
Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less
Beyki, Mostafa Hossein; Bayat, Mehrnoosh; Shemirani, Farzaneh
2016-10-01
Ionic liquids are considered to be a class of environmentally friendly compounds as combination of them with bioresource polymeric substances such as; cellulose, constitute emerging coating materials. Biosorption by polymeric ionic liquids exhibits an attractive green way that involves low cost and irrespective of toxicity. As a result, a novel polymeric ionic liquid has been developed by the reaction of one step synthesized Fe3O4-cellulose nanohybrid, epichlorohydrin and 1-methylimidazole and employed as a green sorbent for efficient biosorption of Congo red dye. Effective parameters on dye removing as well as their interactions were determined with response surface methodology (RSM). Congo red adsorption showed fast equilibrium time (11min) with maximum uptake of 131mgg(-1). Isotherm study revealed that Langmuir adsorption model can better describe dye adsorption behavior. Regeneration of the sorbent was performed with a mixture of methanol-acetone-NaOH (3.0molL(-1)) solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors
Wu, Boning; Liang, Min; Zmich, Nicole; ...
2018-01-29
Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less
Recent development of ionic liquid stationary phases for liquid chromatography.
Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang
2015-11-13
Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.
Charge Dynamics and Bending Actuation in Aquivion Membrane Swelled with Ionic Liquids.
Lin, Junhong; Liu, Yang; Zhang, Q M
2011-01-21
The actuation strain and speed of ionic electroactive polymer (EAP) actuators are mainly determined by the charge transport through the actuators and excess ion storage near the electrodes. We employ a recently developed theory on ion transport and storage to investigate the charge dynamics of short-side-chain Aquivion® (Hyflon®) membranes with different uptakes of ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf). The results reveal the existence of a critical uptake of ionic liquids above which the membrane exhibit a high ionic conductivity (σ>5×10(-2) mS/cm). Especially, we investigate the charge dynamics under voltages which are in the range for practical device operation (~1 volts and higher). The results show that the ionic conductivity, ionic mobility, and mobile ion concentration do not change with the applied voltage below 1 volt (and for σ below 4 volts). The results also show that bending actuation of the Aquivion membrane with 40 wt% EMI-Tf is much larger than that of Nafion, indicating that the shorter flexible side chains improve the electromechanical coupling between the excess ions and the membrane backbones, while not affect the actuation speed.
Charge Dynamics and Bending Actuation in Aquivion Membrane Swelled with Ionic Liquids
Lin, Junhong; Liu, Yang; Zhang, Q. M.
2011-01-01
The actuation strain and speed of ionic electroactive polymer (EAP) actuators are mainly determined by the charge transport through the actuators and excess ion storage near the electrodes. We employ a recently developed theory on ion transport and storage to investigate the charge dynamics of short-side-chain Aquivion® (Hyflon®) membranes with different uptakes of ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf). The results reveal the existence of a critical uptake of ionic liquids above which the membrane exhibit a high ionic conductivity (σ>5×10−2 mS/cm). Especially, we investigate the charge dynamics under voltages which are in the range for practical device operation (~1 volts and higher). The results show that the ionic conductivity, ionic mobility, and mobile ion concentration do not change with the applied voltage below 1 volt (and for σ below 4 volts). The results also show that bending actuation of the Aquivion membrane with 40 wt% EMI-Tf is much larger than that of Nafion, indicating that the shorter flexible side chains improve the electromechanical coupling between the excess ions and the membrane backbones, while not affect the actuation speed. PMID:21339839
Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air
Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin
2016-01-01
Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection. PMID:27070588
Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.
Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin
2016-04-08
Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.
Ionic-Liquid-Infused Nanostructures as Repellent Surfaces.
Galvan, Yaraset; Phillips, Katherine R; Haumann, Marco; Wasserscheid, Peter; Zarraga, Ramon; Vogel, Nicolas
2018-06-12
In order to prepare lubricant-infused repellent coatings on silica nanostructures using low vapor pressure ionic liquids as lubricants, we study the wetting behavior of a set of imidazolium-based ionic liquids with different alkyl side chains as a function of the applied surface functionalities. We take advantage of the structural color of inverse opals prepared from a colloidal coassembly technique to study the infiltration of ionic liquids into these nanoporous structures. We find that the more hydrophobic ionic liquids with butyl and hexyl side chains can completely infiltrate inverse opals functionalized with mixed self-assembled monolayers composed of imidazole groups and aliphatic hydrocarbon chains, which we introduce via silane chemistry. These molecular species reflect the chemical nature of the ionic liquid, thereby increasing the affinity between the liquid and solid surface. The mixed surface chemistry provides sufficiently small contact angles with the ionic liquid to infiltrate the nanopores while maximizing the contact angle with water. As a result, the mixed monolayers enable the design of a stable ionic liquid/solid interface that is able to repel water as a test liquid. Our results underline the importance of matching chemical affinities to predict and control the wetting behavior in complex, multiphase systems.
NASA Astrophysics Data System (ADS)
Dreyse, Paulina; Alarcón, Antonia; Galdámez, Antonio; González, Iván; Cortés-Arriagada, Diego; Castillo, Francisco; Mella, Andy
2018-02-01
Quaternary alkyl 2-phenylpyridinium and 2-(2,4-difluorophenyl)pyridinium amines with iodide, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions have been fully characterized by 1H NMR, FT-IR and MALDI mass spectroscopic methods and studied by quantum chemistry calculations. The compounds with bis(trifluoromethylsulfonyl)imide anion can be classified as ionic liquids, because they melt at room temperature. The quaternary amines with iodide and hexafluorophosphate anions are solid at 25 °C. The X-ray diffraction characterization of the 2-(2,4-difluorophenyl)-1-methylphenylpyridinium hexafluorophosphate and 1-ethyl-2-(2,4-difluorophenyl)phenylpyridinium hexafluorophosphate show an extensive series of Csbnd H⋯F, Csbnd F⋯π and Psbnd F⋯π intermolecular interactions, which give rise to a supramolecular network. The relationship between the solid-state structures and the melting points is discussed by the evaluation of the thermal behavior based on experimental data from Differential Scanning Calorimetry (DSC) studies, and also using the analysis of the ion pairs binding energies. These new compounds based on phenylpyridine allow us to grow the diversity of ionic liquids and their crystalline salts, increasing the knowledge about the chemical and physical properties of these ionic species.
Application of Ionic Liquids in Amperometric Gas Sensors.
Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek
2016-01-01
This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.
Generation and detection of the cyclohexadienyl radical in phosphonium ionic liquids.
Lauzon, J M; Arseneau, D J; Brodovitch, J C; Clyburne, J A C; Cormier, P; McCollum, B; Ghandi, K
2008-10-21
The formation of the cyclohexadienyl radical, C(6)H(6)Mu, in ionic and molecular solvents has been compared. This is the first time that a muoniated free radical is reported in an ionic liquid. In marked contrast to molecular liquids, free radical generation in ionic liquids is significantly enhanced. Comparison of the hyperfine interactions in the ionic liquid and in molecular solvents and with theoretical calculations, suggests significant and unforeseen solvent interaction with the cyclohexadienyl radical.
Zhou, Caihong; Tong, Shanshan; Chang, Yunxia; Jia, Qiong; Zhou, Weihong
2012-04-01
Ionic liquid (IL) based dispersive liquid-liquid microextraction (DLLME) with back-extraction coupled with capillary electrophoresis ultraviolet detection was developed to determine four phenolic compounds (bisphenol-A, β-naphthol, α-naphthol, 2, 4-dichlorophenol) in aqueous cosmetics. The developed method was used to preconcentrate and clean up the four phenolic compounds including two steps. The analytes were transferred into room temperature ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate, [C(8) MIM][PF(6) ]) rich-phase in the first step. In the second step, the analytes were back-extracted into the alkaline aqueous phase. The effects of extraction parameters, such as type and volume of extraction solvent, type and volume of disperser, extraction and centrifugal time, sample pH, salt addition, and concentration and volume of NaOH in back-extraction were investigated. Under the optimal experimental conditions, the preconcentration factors were 60.1 for bisphenol-A, 52.7 for β-naphthol, 49.2 for α-naphthol, and 18.0 for 2, 4-dichlorophenol. The limits of detection for bisphenol-A, β-naphthol, α-naphthol and 2, 4-dichlorophenol were 5, 5, 8, and 100 ng mL(-1), respectively. Four kinds of aqueous cosmetics including toner, soften lotion, make-up remover, and perfume were analyzed and yielded recoveries ranging from 81.6% to 119.4%. The main advantages of the proposed method are quick, easy, cheap, and effective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jun; Zhou, Yan; Luo, Huimin
The overall objective of this project are as follows: Further develop ionic liquid (IL)-additized lowviscosity engine oils meeting the GF-5/6 specifications and possessing superior lubricating characteristics; Expand the IL additive technology to rear axle lubricants; and Seek a combined improvement in the vehicle fuel economy
Chemical Kinetics Interpretation of Hypergolicity of Ionic Liquid-Based Systems
2009-04-01
acid (WFNA) mixtures 6 4. Thermochemistry of imidazoles, triazoles and tetrazoles 8 5. Thermochemistry of compounds formed...reactivity of gaseous mixtures formed above ionic liquids (ILs) when mixed with white fuming nitric acid (WFNA). After a general introduction on the...replacement for NTO is also of interest but probably less crucial. For instance, NTO could be replaced by nitric acid (or by any other suitable
Hawker, Rebecca R; Haines, Ronald S; Harper, Jason B
2018-05-09
A variety of ionic liquids, each containing the same cation but a different anion, were examined as solvents for a nucleophilic aromatic substitution reaction. Varying the proportion of ionic liquid was found to increase the rate constant as the mole fraction of ionic liquid increased demonstrating that the reaction outcome could be controlled through varying the ionic liquid. The solvent effects were correlated with the hydrogen bond accepting ability (β) of the ionic liquid anion allowing for qualitative prediction of the effect of changing this component of the solute. To determine the microscopic origins of the solvent effects, activation parameters were determined through temperature-dependent kinetic analyses and shown to be consistent with previous studies. With the knowledge of the microscopic interactions in solution, an ionic liquid was rationally chosen to maximise rate enhancement demonstrating that an ionic solvent can be selected to control reaction outcome for this reaction type.
Ionic liquids: dissecting the enthalpies of vaporization.
Köddermann, Thorsten; Paschek, Dietmar; Ludwig, Ralf
2008-03-14
We calculate the heats of vaporisation for imidazolium-based ionic liquids [C(n)mim][NTf(2)] with n=1, 2, 4, 6, 8 by means of molecular dynamics (MD) simulations and discuss their behavior with respect to temperature and the alkyl chain length. We use a force field developed recently. The different cohesive energies contributing to the overall heats of vaporisations are discussed in detail. With increasing alkyl chain length, the Coulomb contribution to the heat of vaporisation remains constant at around 80 kJ mol(-1), whereas the van der Waals interaction increases continuously. The calculated increase of about 4.7 kJ mol(-1) per CH(2)-group of the van der Waals contribution in the ionic liquid exactly coincides with the increase in the heats of vaporisation for n-alcohols and n-alkanes, respectively. The results support the importance of van der Waals interactions even in systems completely composed of ions.
Lodge, Timothy P; Ueki, Takeshi
2016-01-01
Room temperature ionic liquids are of great interest for many advanced applications, due to the combination of attractive physical properties with essentially unlimited tunability of chemical structure. High chemical and thermal stability, favorable ionic conductivity, and complete nonvolatility are just some of the most important physical characteristics that make ionic liquids promising candidates for emerging technologies. Examples include separation membranes, actuators, polymer gel electrolytes, supercapacitors, ion batteries, fuel cell membranes, sensors, printable plastic electronics, and flexible displays. However, in these and other applications, it is essential to solidify the ionic liquid, while retaining the liquid state properties of interest. A broadly applicable solidification strategy relies on gelation by addition of suitable triblock copolymers with the ABA architecture, producing ion gels or ionogels. In this paradigm, the A end blocks are immiscible with the ionic liquid, and consequently self-assemble into micellar cores, while some fraction of the well-solvated B midblocks bridge between micelles, forming a percolating network. The chemical structures of the A and B repeat units, the molar mass of the blocks, and the concentration of the copolymer in the ionic liquid are all independently tunable to attain desired property combinations. In particular, the modulus of the resulting ion gel can be readily varied between 100 Pa and 1 MPa, with little sacrifice of the transport properties of the ionic liquid, such as ionic conductivity or gas diffusivity. Suitable A blocks can impart thermoreversible gelation (with solidification either on heating or cooling) or even photoreversible gelation. By virtue of the nonvolatility of ionic liquids, a wide range of processing strategies can be employed directly to prepare ion gels in thin or thick film forms, including solvent casting, spin coating, aerosol jet printing, photopatterning, and transfer printing. For higher modulus ion gels it is even possible to employ a manual "cut and stick" strategy for easy device fabrication. Ion gels prepared from common triblock copolymers, for example, with A = polystyrene and B = poly(ethylene oxide) or poly(methyl methacrylate), in imidazolium based ionic liquids provide exceptional performance in membranes for separating CO 2 from N 2 or CH 4 . The same materials also are the best available gate dielectrics for printed plastic electronics, because their high capacitance endows organic transistors with milliamp output currents for sub-1 V applied bias, with switching speeds that can go well beyond 100 kHz, while being amenable to large area roll-to-roll printing. Incorporation of well-designed electroluminescent (e.g., Ru(bpy) 3 -based) or electrochromic (e.g., viologen-based) moieties into ion gels held between transparent electrodes yields flexible color displays operating with sub-1 V dc inputs.
Ionic liquids for addressing unmet needs in healthcare
Agatemor, Christian; Ibsen, Kelly N.; Tanner, Eden E. L.
2018-01-01
Abstract Advances in the field of ionic liquids have opened new applications beyond their traditional use as solvents into other fields especially healthcare. The broad chemical space, rich with structurally diverse ions, and coupled with the flexibility to form complementary ion pairs enables task‐specific optimization at the molecular level to design ionic liquids for envisioned functions. Consequently, ionic liquids now are tailored as innovative solutions to address many problems in medicine. To date, ionic liquids have been designed to promote dissolution of poorly soluble drugs and disrupt physiological barriers to transport drugs to targeted sites. Also, their antimicrobial activity has been demonstrated and could be exploited to prevent and treat infectious diseases. Metal‐containing ionic liquids have also been designed and offer unique features due to incorporation of metals. Here, we review application‐driven investigations of ionic liquids in medicine with respect to current status and future potential. PMID:29376130
Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.
Tomé, Liliana C; Marrucho, Isabel M
2016-05-21
During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.
Dissolution and fractionation of nut shells in ionic liquids.
Carneiro, Aristides P; Rodríguez, Oscar; Macedo, Eugénia A
2017-03-01
The aim of this work was to study the dissolution of raw peanut and chestnut shells in ionic liquids. Dissolution of raw biomass up to 7wt% was achieved under optimized operatory conditions. Quantification of polysaccharides dissolved through quantitative 13 Cq NMR revealed extractions of the cellulosic material to ionic liquids as high as 87%. Regeneration experiments using an antisolvent mixture allowed to recover the cellulosic material and the ionic liquid. The overall mass balance presented very low loss rates (<8%), recoveries of 75% and 95% of cellulosic material from peanut and chestnut shells, respectively, and the recovery of more than 95% of the ionic liquid in both cases. These results show the high potential of using nut shells and ionic liquids for biorefining purposes. Moreover, high recovery of ionic liquids favors the process from an economical point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan
2015-06-01
An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liew, Chiam-Wen; Ramesh, S
2014-05-21
Two different ionic liquid-based biopolymer electrolyte systems were prepared using a solution casting technique. Corn starch and lithium hexafluorophosphate (LiPF₆) were employed as polymer and salt, respectively. Additionally, two different counteranions of ionic liquids, viz. 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF₆) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (also known as 1-butyl-3-methylimidazolium triflate) (BmImTf) were used and studied in this present work. The maximum ionic conductivities of (1.47 ± 0.02) × 10 -4 and (3.21 ± 0.01) × 10 -4 S∙cm -1 were achieved with adulteration of 50 wt% of BmImPF₆ and 80 wt% of BmImTf, respectively at ambient temperature. Activated carbon-based electrodes were prepared and used in supercapacitor fabrication. Supercapacitors were then assembled using the most conducting polymer electrolyte from each system. The electrochemical properties of the supercapacitors were then analyzed. The supercapacitor containing the triflate-based biopolymer electrolyte depicted a higher specific capacitance with a wider electrochemical stability window compared to that of the hexafluorophosphate system.
Liew, Chiam-Wen; Ramesh, S.
2014-01-01
Two different ionic liquid-based biopolymer electrolyte systems were prepared using a solution casting technique. Corn starch and lithium hexafluorophosphate (LiPF6) were employed as polymer and salt, respectively. Additionally, two different counteranions of ionic liquids, viz. 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (also known as 1-butyl-3-methylimidazolium triflate) (BmImTf) were used and studied in this present work. The maximum ionic conductivities of (1.47 ± 0.02) × 10−4 and (3.21 ± 0.01) × 10−4 S·cm−1 were achieved with adulteration of 50 wt% of BmImPF6 and 80 wt% of BmImTf, respectively at ambient temperature. Activated carbon-based electrodes were prepared and used in supercapacitor fabrication. Supercapacitors were then assembled using the most conducting polymer electrolyte from each system. The electrochemical properties of the supercapacitors were then analyzed. The supercapacitor containing the triflate-based biopolymer electrolyte depicted a higher specific capacitance with a wider electrochemical stability window compared to that of the hexafluorophosphate system. PMID:28788662
NASA Astrophysics Data System (ADS)
Lalia, Boor Singh; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki
A binary mixture of triethylphosphate (TEP) and ethylene carbonate (EC) has been examined as a new non-flammable additive for ionic liquid-based electrolytes for lithium-ion batteries. The optimized electrolyte composition consists of 0.6 mol dm -3 (=M) LiTFSI in PP13TFSI mixed with TEP and EC in volume ratio of 80:10:10, where TFSI and PP13 denote bis(trifluoromethanesulfonyl)imide and N-methyl- N-propylpiperidinium, respectively. The ionic conductivity of PP13TFSI dissolving 0.4 M LiTFSI was improved from 8.2 × 10 -4 S cm -1 to 3.5 × 10 -3 S cm -1 (at 20 °C) with the addition of TEP and EC. The electrochemical behavior of 0.4 M LiTFSI/PP13TFSI with and without TEP and EC was studied by cyclic voltammetry, which showed no deteriorating effect by the addition of TEP and EC on the electrochemical window of PP13TFSI. The flammability of the electrolyte was tested by a direct flame test. The proposed ionic liquid-based electrolyte revealed significant improvements in the electrochemical charge-discharge characteristics for both graphite negative and LiMn 2O 4 positive electrodes.
Ding, Xueqin; Wang, Yuzhi; Wang, Ying; Pan, Qi; Chen, Jing; Huang, Yanhua; Xu, Kaijia
2015-02-25
A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized, and then magnetic chitosan graphene oxide (MCGO) composite has been prepared and coated with these functional guanidinium ionic liquids to extract protein by magnetic solid-phase extraction. MCGO-functional guanidinium ionic liquid has been characterized by vibrating sample magnetometer, field emission scanning electron microscopy, X-ray diffraction spectrometer and Fourier transform infrared spectrometer. After extraction, the concentrations of protein were determined by measuring the absorbance at 278 nm using an ultra violet visible spectrophotometer. The advantages of MCGO-functional guanidinium ionic liquid in protein extraction were compared with magnetic chitosan, graphene oxide, MCGO and MCGO-ordinary imidazolium ionic liquid. The proposed method has been applied to extract trypsin, lysozyme, ovalbumin and bovine serum albumin. A comprehensive study of the adsorption conditions such as the concentration of protein, the amount of MCGO-functional guanidinium ionic liquid, the pH, the temperature and the extraction time were also presented. Moreover, the MCGO-functional guanidinium ionic liquid can be easily regenerated, and the extraction capacity was about 94% of the initial one after being used three times. Copyright © 2015 Elsevier B.V. All rights reserved.
Jia, Man; Yang, Jian; Sun, Ya Kun; Bai, Xi; Wu, Tao; Liu, Zhao Sheng; Aisa, Haji Akber
2018-01-01
We aimed to improve the imprinting effect of ionic liquid molecularly imprinted polymers (MIPs) by use of a molecular crowding agent. The ionic liquid 1-vinyl-3-ethylimidazolium tetrafluoroborate ([VEIm][BF 4 ]) was used as the functional monomer and aesculetin was used as the template molecule in a crowding environment, which was made up of a tetrahydrofuran solution of polystyrene. The ionic liquid MIPs that were prepared in the crowding environment displayed an enhanced imprinting effect. NMR peak shifts of active hydrogen of aesculetin suggested that interaction between the functional monomer and the template could be increased by the use of a crowding agent in the self-assembly process. The retention and selectivity of aesculetin were affected greatly by high molecular crowding, the amount of high molecular weight crowding agent, and the ratio of [VEIm][BF 4 ] to aesculetin. The optimal MIPs were used as solid-phase extraction sorbents to extract aesculetin from Cichorium glandulosum. A calibration curve was obtained with aesculetin concentrations from 0.0005 to 0.05 mg mL -1 (correlation coefficient R 2 of 0.9999, y = 1519x + 0.0923). The limit of quantification was 0.12 μg mL -1 , and the limit of detection was 0.05 μg mL -1 . The absolute recovery of aesculetin was (80 ± 2)% (n = 3), and the purity of aesculetin was (92 ± 0.5)% (n = 5). As a conclusion, molecular crowding is an effective approach to obtain ionic liquid MIPs with high selectivity even in a polar solvent environment.
Egorova, Ksenia S; Ananikov, Valentine P
2014-02-01
Rapid progress in the field of ionic liquids in recent decades led to the development of many outstanding energy-conversion processes, catalytic systems, synthetic procedures, and important practical applications. Task-specific optimization emerged as a sharpening stone for the fine-tuning of structure of ionic liquids, which resulted in unprecedented efficiency at the molecular level. Ionic-liquid systems showed promising opportunities in the development of green and sustainable technologies; however, the chemical nature of ionic liquids is not intrinsically green. Many ionic liquids were found to be toxic or even highly toxic towards cells and living organisms. In this Review, we show that biological activity and cytotoxicity of ionic liquids dramatically depend on the nature of a biological system. An ionic liquid may be not toxic for particular cells or organisms, but may demonstrate high toxicity towards another target present in the environment. Thus, a careful selection of biological activity data is a must for the correct assessment of chemical technologies involving ionic liquids. In addition to the direct biological activity (immediate response), several indirect effects and aftereffects are of primary importance. The following principal factors were revealed to modulate toxicity of ionic liquids: i) length of an alkyl chain in the cation; ii) degree of functionalization in the side chain of the cation; iii) anion nature; iv) cation nature; and v) mutual influence of anion and cation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Use of ionic liquids as coordination ligands for organometallic catalysts
Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA
2009-11-10
Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.
High bulk modulus of ionic liquid and effects on performance of hydraulic system.
Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko
2014-01-01
Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.
Application of Ionic Liquids in Hydrometallurgy
Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung
2014-01-01
Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864
Liu, Xiaofei; Lu, Xin; Huang, Yong; Liu, Chengwei; Zhao, Shulin
2014-02-01
A novel nano-adsorbent, Fe3O4@ionic liquid@methyl orange nanoparticles (Fe3O4@IL@MO NPs), was prepared for magnetic solid-phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Fe3O4@IL@MO NPs were synthesized by self-assembly of the ionic liquid 1-octadecyl-3-methylimidazolium bromide (C18mimBr) and methyl orange (MO) onto the surface of Fe3O4 silica magnetic nanoparticles, as confirmed by infrared spectroscopy, ultraviolet-visible spectroscopy and superconducting quantum interface device magnetometer. The extraction performance of Fe3O4@IL@MO NPs as a nano-adsorbent was evaluated by using five PAHs, fluorene (FLu), anthracene (AnT), pyrene (Pyr), benzo(a)anthracene (BaA) and benzo(a)pyrene (BaP) as model analytes. Under the optimum conditions, detection limits in the range of 0.1-2 ng/L were obtained by high performance liquid chromatography-fluorescence detection (HPLC-FLD). This method has been successfully applied for the determination of PAHs in environmental water samples by using the MSPE-HPLC-FLD. The recoveries for the five PAHs tested in spiked real water samples were in the range of 80.4-104.0% with relative standard deviations ranging from 2.3 to 4.9%. © 2013 Published by Elsevier B.V.
Wang, Huili; Gao, Ming; Gao, Jiajia; Yu, Nana; Huang, Hong; Yu, Qing; Wang, Xuedong
2016-09-01
In conventional microextraction procedures, the disperser (organic solvent or ionic liquid) is left in the aqueous phase and discarded after finishing the microextraction process. Because the disperser is water-soluble, it results in low extraction recovery for polar compounds. In this investigation, an ionic-liquid-based microextraction (ILBME) was integrated with salting-out assisted liquid-liquid microextraction (SALLME) to build an ionic-liquid-based, salt-induced, dual microextraction (ILSDME) for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P, -1.0 to 1.0). The proposed ILSDME method incorporates a dual microextraction by converting the disperser in the ILBME to the extractor in the SALLME. Optimization of key factors was conducted by integrating single-factor experiments and central composite design. The optimized experimental parameters were 80 μL [C8MIM][PF6] as extractor, 505 μL acetone as disperser, pH = 2.0, 4.1 min extraction time, and 4.2 g of Na2SO4. Under optimized conditions, high ERs (90.6-103.2 %) and low LODs (0.07-0.61 μg kg(-1)) were determined for five FQs in swine feed. Experimental precision based on RSDs was 1.4-5.2 % for intra-day and 2.4-6.9 % for inter-day analyses. The combination of ILBME with SALLME increased FQ recoveries by 15-20 % as compared with SALLME, demonstrating that the ILSDME method can enhance extraction efficiency for polar compounds compared to single-step microextraction. Therefore, the ILSDME method developed in this study has wide application for pretreatment of moderately to highly polar pollutants in complex matrices. Graphical Abstract A dual microextraction was developed by integrating ionic-liquid-based microextraction with salting-out assisted liquid-liquid microextraction for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P = -1.0 to 1.0). The principle of dual microextraction is based on converting the remaining disperser from the first microextraction into an extractor in the second microextraction. Single-factor experiment and central composite design were applied for optimizing operational parameters using 3D response surfaces and contour lines. Under optimized conditions, the method provided high extraction recoveries and low LODs for five FQs in swine feed. The prominent advantage of the dual microextraction is rapid and highly efficient extraction of moderately to highly polar fluoroquinolones from complex matrices.
Paulechka, Yauheni U; Kabo, Andrey G; Blokhin, Andrey V
2009-11-05
The enthalpy of the 1-butyl-3-methylimidazolium bromide [C(4)mim]Br ionic liquid synthesis reaction 1-methylimidazole (liq) + 1-bromobutane (liq) --> [C(4)mim]Br (liq) was determined in a homemade small-volume isoperibol calorimeter to be Delta(r)H degrees (298) = -87.7 +/- 1.6 kJ x mol(-1). The activation energy for this reaction in a homogeneous system E(A) = 73 +/- 4 kJ x mol(-1) was found from the results of calorimetric measurements. The formation enthalpies for the crystalline and liquid [C(4)mim]Br were determined from the calorimetric data: Delta(f)H degrees (298)(cr) = -178 +/- 5 kJ x mol(-1) and Delta(f)H degrees (298)(liq) = -158 +/- 5 kJ x mol(-1). The ideal-gas formation enthalpy of this compound Delta(f)H degrees (298)(g) = 16 +/- 7 kJ x mol(-1) was calculated using the methods of quantum chemistry and statistical thermodynamics. The vaporization enthalpy of [C(4)mim]Br, Delta(vap)H degrees (298) = 174 +/- 9 kJ x mol(-1), was estimated from the experimental and calculated formation enthalpies. It was demonstrated that vapor pressure of this ionic liquid cannot be experimentally determined.
Recent developments in biocatalysis in multiphasic ionic liquid reaction systems.
Meyer, Lars-Erik; von Langermann, Jan; Kragl, Udo
2018-06-01
Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.
Highly luminescent and color-tunable salicylate ionic liquids
Campbell, Paul S.; Yang, Mei; Pitz, Demian; ...
2014-03-11
High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.
Ionic supramolecular networks fully based on chemicals coming from renewable sources.
Aboudzadeh, Ali; Fernandez, Mercedes; Muñoz, Maria Eugenia; Santamaría, Antxon; Mecerreyes, David
2014-02-01
New supramolecular ionic networks are synthesized by proton transfer reaction between a bio-based fatty diamine molecule (Priamine 1074) and a series of naturally occurring carboxylic acids such as malonic acid, citric acid, tartaric acid, and 2,5-furandicarboxylic acid. The resulting solid soft material exhibits a thermoreversible transition becoming a viscoelastic liquid at high temperatures. All the networks show an elastic behavior at low temperatures/high frequencies, with elastic modulus values ranging from 4.5 × 10(6) to 4.5 × 10(7) Pa and soft network to liquid transitions T(nl) between -10 and 60 °C. The supramolecular ionic network based on cationic Priamine 1074 and anionic citrate shows promising self-healing properties at room temperature as well as relatively high ionic conductivity values close to 10(-6) S cm(-1). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution.
Lehmann, Christian; Bocola, Marco; Streit, Wolfgang R; Martinez, Ronny; Schwaneberg, Ulrich
2014-06-01
Chemoenzymatic cellulose degradation is one of the key steps for the production of biomass-based fuels under mild conditions. An effective cellulose degradation process requires diverse physico-chemical dissolution of the biomass prior to enzymatic degradation. In recent years, "green" solvents, such as ionic liquids and, more recently, deep eutectic liquids, have been proposed as suitable alternatives for biomass dissolution by homogenous catalysis. In this manuscript, a directed evolution campaign of an ionic liquid tolerant β-1,4-endoglucanase (CelA2) was performed in order to increase its performance in the presence of choline chloride/glycerol (ChCl:Gly) or 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), as a first step to identify residues which govern ionic strength resistance and obtaining insights for employing cellulases on the long run in homogenous catalysis of lignocellulose degradation. After mutant library screening, variant M4 (His288Phe, Ser300Arg) was identified, showing a dramatically reduced activity in potassium phosphate buffer and an increased activity in the presence of ChCl:Gly or [BMIM]Cl. Further characterization showed that the CelA2 variant M4 is activated in the presence of these solvents, representing a first report of an engineered enzyme with an ionic strength activity switch. Structural analysis revealed that Arg300 could be a key residue for the ionic strength activation through a salt bridge with the neighboring Asp287. Experimental and computational results suggest that the salt bridge Asp287-Arg300 generates a nearly inactive CelA2 variant and activity is regained when ChCl:Gly or [BMIM]Cl are supplemented (~5-fold increase from 0.64 to 3.37 μM 4-MU/h with the addition ChCl:Gly and ~23-fold increase from 3.84 to 89.21 μM 4-pNP/h with the addition of [BMIM]Cl). Molecular dynamic simulations further suggest that the salt bridge between Asp287 and Arg300 in variant M4 (His288Phe, Ser300Arg) modulates the observed salt activation.
Tao, Yong; Liu, Jing-Fu; Hu, Xia-Lin; Li, Hong-Cheng; Wang, Thanh; Jiang, Gui-Bin
2009-08-28
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C(8)MIM][PF(6)] with 14% TOPO (w/v); donor phase: 4mL, pH 4.5 KH(2)PO(4) with 2M Na(2)SO(4); acceptor phase: 25microL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1-0.4microg/L, RSD
Confused ionic liquid ions--a "liquification" and dosage strategy for pharmaceutically active salts.
Bica, Katharina; Rogers, Robin D
2010-02-28
We present a strategy to expand the liquid and compositional ranges of ionic liquids, specifically pharmaceutically active ionic liquids, by simple mixing with a solid acid or base to form oligomeric ions.
NASA Astrophysics Data System (ADS)
Gélinas, Bruno; Bibienne, Thomas; Dollé, Mickael; Rochefort, Dominic
2017-12-01
In order to increase the solubility and oxidation potential of redox shuttles, electroactive ionic liquids (RILs) based on the modification of 1,4-dimethoxybenzene with triflimide anions were synthesized. We developed two synthetic routes to obtain these RILs in which the triflimide was either linked on the benzene ring or as a ether on 2,5-ditert-butyl-1,4-dimethoxybenzene (DDB). These RILs all have melting points below 100 °C, but above room temperature. The structural impact of electroactive anion was evaluated in this study by determining the redox potential and electrochemical stability. The electrochemical properties of these RILs were investigated by cyclic voltammetry and the diffusion coefficients were measured by double potential step chronoamperometry. The viscosity and ionic conductivity measurements of redox-active electrolyte were obtained at different temperatures and the RIL additives are shown to have a low impact on these electrolyte properties at concentrations up to 0.3 M. The charge-overcharge-discharge cycles of Li/LiFePO4 half-cells and Li4Ti5O12/LiFePO4 full cells with a 100% overcharge are presented using redox-active electrolyte (0.3 M concentration level) at 0.1 C rate. This study highlights the potential of electroactive ionic liquids as highly soluble and stable functional additives in Li-ion battery electrolytes.
Yang, Jie; Wang, Huiyong; Wang, Jianji; Zhang, Yue; Guo, Zhongjia
2014-12-11
A new class of cinnamate-based light-responsive ionic liquids was synthesized and characterized, and these ionic liquids with longer alkyl chains showed a remarkable increase in ionic conductivity under UV light irradiation in aqueous solutions.
Thermotropic Ionic Liquid Crystals
Axenov, Kirill V.; Laschat, Sabine
2011-01-01
The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986
Thermotropic Ionic Liquid Crystals.
Axenov, Kirill V; Laschat, Sabine
2011-01-14
The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.
Messali, Mouslim
2015-08-14
The present study reports a green synthesis of a new family of ionic liquids (ILs) based on functionalized 4-dimethylaminopyridinium derivatives. The structures of 23 newly synthesized ILs (2-24) were confirmed by FT-IR, (1)H-, (13)C-, (11)B-, (19)F-, and (31)P-NMR spectroscopy and mass spectrometry. The antimicrobial activity of all novel ILs was tested against a panel of bacteria and fungi. The results prove that all tested ILs are effective antibacterial and antifungal agents, especially 4-(dimethylamino)-1-(4-phenoxybutyl) pyridinium derivatives 5 and 19.
Tu, Wenwen; Lei, Jianping; Ju, Huangxian
2009-01-01
A functional composite of single-walled carbon nanotubes (SWNTs) with hematin, a water-insoluble porphyrin, was first prepared in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) ionic liquid. The novel composite in ionic liquid was characterized by scanning electron microscopy, ultraviolet absorption spectroscopy, and electrochemical impedance spectroscopy, and showed a pair of direct redox peaks of the Fe(III)/Fe(II) couple. The composite-[BMIM][PF(6)]-modified glassy carbon electrode showed excellent electrocatalytic activity toward the reduction of trichloroacetic acid (TCA) in neutral media due to the synergic effect among SWNTs, [BMIM][PF(6)], and porphyrin, which led to a highly sensitive and stable amperometric biosensor for TCA with a linear range from 9.0x10(-7) to 1.4x10(-4) M. The detection limit was 3.8x10(-7) M at a signal-to-noise ratio of 3. The TCA biosensor had good analytical performance, such as rapid response, good reproducibility, and acceptable accuracy, and could be successfully used for the detection of residual TCA in polluted water. The functional composite in ionic liquid provides a facile way to not only obtain the direct electrochemistry of water-insoluble porphyrin, but also construct novel biosensors for monitoring analytes in real environmental samples.
Uysal, Deniz; Karadaş, Cennet; Kara, Derya
2017-05-01
A new, simple, efficient, and environmentally friendly ionic liquid dispersive liquid-liquid microextraction method was developed for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent, and ethanol was used as the disperser solvent. The main parameters affecting the extraction efficiency, including sample pH, volume of the ionic liquid, choice of the dispersive solvent and its volume, concentration of NaCl, and extraction and centrifugation times, were investigated and optimized. The effect of interfering species on the recovery of irinotecan was also examined. Under optimal conditions, the LOD (3σ) was 48.7 μg/L without any preconcentration. Because the urine sample was diluted 10-fold, the LOD for urine would be 487 μg/L. However, this could be improved 16-fold if preconcentration using a 40 mL aliquot of the sample is used. The proposed method was successfully applied to the determination of irinotecan in tap water, river water, and urine samples spiked with 10.20 mg/L for the water samples and 8.32 mg/L for the urine sample. The average recovery values of irinotecan determined were 99.1% for tap water, 109.4% for river water, and 96.1% for urine.
Arain, Salma Aslam; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Mariam Shahzadi; Panhwar, Abdul Haleem; Khan, Naeemullah; Baig, Jameel Ahmed; Shah, Faheem
2016-04-01
A simple and rapid dispersive liquid-liquid microextraction procedure based on ionic liquid assisted microemulsion (IL-µE-DLLME) combined with cloud point extraction has been developed for preconcentration copper (Cu(2+)) in drinking water and serum samples of adolescent female hepatitits C (HCV) patients. In this method a ternary system was developed to form microemulsion (µE) by phase inversion method (PIM), using ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and nonionic surfactant, TX-100 (as a stabilizer in aqueous media). The Ionic liquid microemulsion (IL-µE) was evaluated through visual assessment, optical light microscope and spectrophotometrically. The Cu(2+) in real water and aqueous acid digested serum samples were complexed with 8-hydroxyquinoline (oxine) and extracted into IL-µE medium. The phase separation of stable IL-µE was carried out by the micellar cloud point extraction approach. The influence of of different parameters such as pH, oxine concentration, centrifugation time and rate were investigated. At optimized experimental conditions, the limit of detection and enhancement factor were found to be 0.132 µg/L and 70 respectively, with relative standard deviation <5%. In order to validate the developed method, certified reference materials (SLRS-4 Riverine water) and human serum (Sero-M10181) were analyzed. The resulting data indicated a non-significant difference in obtained and certified values of Cu(2+). The developed procedure was successfully applied for the preconcentration and determination of trace levels of Cu(2+) in environmental and biological samples. Copyright © 2015 Elsevier Inc. All rights reserved.
Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes
Kusuma, Victor A.; Macala, Megan K.; Liu, Jian; ...
2018-10-02
Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less
Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusuma, Victor A.; Macala, Megan K.; Liu, Jian
Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yang; Hu, Na; Yue, Lili
2015-02-14
An extended electronegativity equalization method/molecular mechanics (EEM/MM) model for ionic liquids is used to investigate the structures and properties of 1-alkyl-3-methylimidazolium glycine ionic liquids [C{sub n}mim][Gly] (n = 1–4) with alkyl substituents of different lengths. The EEM/MM model describes the electrostatic interactions of atoms and their changes in different ambient environments. This property is the most outstanding characteristic of the model. EEM parameters (i.e., valence electronegativities and valence hardness parameters) are calibrated using linear regression and least-squares methods, which can accurately predict the gas-phase properties of [C{sub n}mim]{sup +}, [Gly]{sup −}, and [C{sub n}mim][Gly] ion pairs. We utilize the EEM/MMmore » force field to systematically investigate the effects of polarizability on the accuracy of [C{sub n}mim][Gly] properties predicted through the molecular dynamic simulations. EEM/MM explicitly describes the atom-based polarizability of [C{sub n}mim][Gly]; thus, the densities, enthalpies of vaporization, self-diffusion coefficients, and conductivities of the [C{sub n}mim][Gly] are consistent with the experimental values. The calculated radial distribution functions provide a mechanistic understanding of the effects of polarizability on ionic aggregations in amino acid ionic liquids. The effects of alkyl chain length on the diffusion coefficient and conductivity are also discussed.« less
Comparison of Three Ionic Liquid-Tolerant Cellulases by Molecular Dynamics
Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim
2015-01-01
We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme’s secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme’s behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593
Graphene-ionic liquid composites
Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian
2016-11-01
Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.
Ionic Liquids for Advanced Materials
2008-12-01
optical clarity to completely opacity with increased amounts of ionic liquid . This transition was not previously observed in Nafion ® membranes swollen...1 IONIC LIQUIDS FOR ADVANCED MATERIALS Timothy E. Long, Sean M. Ramirez, Randy Heflin, Harry W. Gibson, Louis A. Madsen, Donald J. Leo, Nakhiah...is to develop a micromechanical model for the electrochemomechanical transduction mechanisms in newly synthesized ionic liquid polymers in order to
Laaksonen, Tiina; Helminen, Jussi K. J.; Lemetti, Laura; Långbacka, Jesper; Rico del Cerro, Daniel; Hummel, Michael; Rantamäki, Antti H.; Kakko, Tia; Kemell, Marianna L.; Wiedmer, Susanne K.; Heikkinen, Sami; Kilpeläinen, Ilkka
2017-01-01
Abstract Ionic liquids are used to dewater a suspension of birch Kraft pulp cellulose nanofibrils (CNF) and as a medium for water‐free topochemical modification of the nanocellulose (a process denoted as “WtF‐Nano”). Acetylation was applied as a model reaction to investigate the degree of modification and scope of effective ionic liquid structures. Little difference in reactivity was observed when water was removed, after introduction of an ionic liquid or molecular co‐solvent. However, the viscoelastic properties of the CNF suspended in two ionic liquids show that the more basic, but non‐dissolving ionic liquid, allows for better solvation of the CNF. Vibrio fischeri bacterial tests show that all ionic liquids in this study were harmless. Scanning electron microscopy and wide‐angle X‐ray scattering on regenerated samples show that the acetylated CNF is still in a fibrillar form. 1 D and 2 D NMR analyses, after direct dissolution in a novel ionic liquid electrolyte solution, indicate that both cellulose and residual xylan on the surface of the nanofibrils reacts to give acetate esters. PMID:29112334
NASA Technical Reports Server (NTRS)
Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.
2008-01-01
Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.
Men, Shuang; Mitchell, Daniel S; Lovelock, Kevin R J; Licence, Peter
2015-07-20
We investigate eight 1-alkylpyridinium-based ionic liquids of the form [Cn Py][A] by using X-ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake-up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic-liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8 Py][A] and analogues including 1-octyl-1-methylpyrrolidinium- ([C8 C1 Pyrr][A]), and 1-octyl-3-methylimidazolium- ([C8 C1 Im][A]) based samples, where X is common to all ionic liquids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brønsted acidity of protic ionic liquids: a modern ab initio valence bond theory perspective.
Patil, Amol Baliram; Mahadeo Bhanage, Bhalchandra
2016-09-21
Room temperature ionic liquids (ILs), especially protic ionic liquids (PILs), are used in many areas of the chemical sciences. Ionicity, the extent of proton transfer, is a key parameter which determines many physicochemical properties and in turn the suitability of PILs for various applications. The spectrum of computational chemistry techniques applied to investigate ionic liquids includes classical molecular dynamics, Monte Carlo simulations, ab initio molecular dynamics, Density Functional Theory (DFT), CCSD(t) etc. At the other end of the spectrum is another computational approach: modern ab initio Valence Bond Theory (VBT). VBT differs from molecular orbital theory based methods in the expression of the molecular wave function. The molecular wave function in the valence bond ansatz is expressed as a linear combination of valence bond structures. These structures include covalent and ionic structures explicitly. Modern ab initio valence bond theory calculations of representative primary and tertiary ammonium protic ionic liquids indicate that modern ab initio valence bond theory can be employed to assess the acidity and ionicity of protic ionic liquids a priori.
Liu, Zhiqing; Ma, Rong; Cao, Dawei; Liu, Chenjiang
2016-04-07
An efficient synthesis of novel 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) and their derivatives, using Brønsted acidic ionic liquid [C₂O₂BBTA][TFA] as a catalyst, from the condensation of aryl aldehyde, β-ketoester and urea was described. Reactions proceeded smoothly for 40 min under solvent-free conditions and gave the desirable products with good to excellent yields (up to 99%). The catalyst could be easily recycled and reused with similar efficacies for at least six cycles.
Design of Energetic Ionic Liquids
2007-06-01
associated polarizable force fields, and mesoscale-level simulations with currently usedpropellants. of bulk ionic liquids based upon multiscale coarse A...pair. The 1H,3H cation paired with perchlorate ( nitrate ) has a proton transfer barrier of 2.7 0.08w ’I (3.0) kcal/mol. /.04 - M K I 373K<[Emimlllm-l Ion...series of ion clusters [Emim+]m[Im’]mn± 4-amino- 1,2,4-triazolium nitrate (HEATN) have (m=l-3) were computed using the hybrid B3LYP density identified a
Ionic Liquids as Quasihydrostatic Pressure Media for Diamond Anvil Cell Experiments
NASA Astrophysics Data System (ADS)
Mayorga, Sierra; Moldowan, Kaela; Dan, Ioana; Forster, Paul; Iota, Valentin
2012-02-01
Ionic liquids (ILs) are salts in which the ions are poorly coordinated to the point where the eutectic mixture remains liquid at room temperature. In general, ILs exhibit high chemical and thermal stability, have extended liquid regions in the pressure-temperature domain, and can be easily obtained. Commercial ionic liquids are relatively inexpensive and custom ionic solutions can be easily synthesized by mixing common reactants. These properties make ionic liquids attractive candidates for high-pressure media in Diamond Anvil Cell (DAC) experiments. In this presentation we explore the use of ionic liquids as DAS quasihydrostatic pressure media for pressures up to 50 GPa. As a measure of hydrostaticity we monitor the splitting and peak-widths of the R1 andR 2 fluorescence lines from small ruby chips (Al2O3 :Cr^3+) imbedded in the pressure medium. We present results on a series of commercially available ionic fluids against standard pressure media: methanol-ethanol mixtures, silicone oil, sodium chloride (NaCl) and noble gases (Ar, Ne, He).
Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes
NASA Astrophysics Data System (ADS)
Hoarfrost, Megan Lane
Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene-
Ionic liquid-tolerant cellulase enzymes
Gladden, John; Park, Joshua; Singer, Steven; Simmons, Blake; Sale, Ken
2017-10-31
The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.
Tuzen, Mustafa; Pekiner, Ozlem Zeynep
2015-12-01
A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kubota, Koji; Shibata, Akira; Yamaguchi, Toshikazu
2016-04-30
In spite of numerous advantages, transdermal drug delivery systems are unfeasible for most drugs because of the barrier effect of the stratum corneum. Ionic liquids were recently used to enhance transdermal drug delivery by improving drug solubility. In the present study, safe and effective ionic liquids for transdermal absorption were obtained as salts generated by a neutralization reaction between highly biocompatible aliphatic carboxylic acids (octanoic acid or isostearic acid) and aliphatic amines (diisopropanolamine or triisopropanolamine) (Medrx Co., Ltd., 2009). The mechanism of skin permeability enhancement by ionic liquids was investigated by hydrophilic phenol red and hydrophobic tulobuterol. Further, the skin permeation enhancing effect was remarkably superior in the acid excess state rather than the neutralization state. Infrared absorption spectrum analysis confirmed that ionic liquids/aliphatic carboxylic acid/aliphatic amine are coexisting at all mixing states. In the acid excess state, ionic liquids interact with aliphatic carboxylic acids via hydrogen bonds. Thus, the skin permeation enhancing effect is not caused by the ionic liquid alone. The "liquid salt mixture," referred to as a complex of ingredients coexisting with ionic liquids, forms a molecular assembly incorporating hydrophilic drug. This molecular assembly was considered an effective and safety enhancer of transdermal drug permeation. Copyright © 2016. Published by Elsevier B.V.
Bi, Wentao; Wang, Man; Yang, Xiaodi; Row, Kyung Ho
2014-07-01
Poly(ionic liquid)-bonded magnetic nanospheres were easily synthesized and applied to the pretreatment and determination of phenolic compounds in water samples, which have detrimental effects on water quality and the health of living beings. The high affinity of poly(ionic liquid)s toward the target compounds as well as the magnetic behavior of Fe3 O4 were combined in this material to provide an efficient and simple magnetic solid-phase extraction approach. The adsorption behavior of the poly(ionic liquid)-bonded magnetic nanospheres was examined to optimize the synthesis. Different parameters affecting the magnetic solid-phase extraction of phenolic compounds were assessed in terms of adsorption and recovery. Under the optimal conditions, the proposed method showed excellent detection sensitivity with limits of detection in the range of 0.3-0.8 ng/mL and precision in the range of 1.2-3.3%. This method was also applied successfully to the analysis of real water samples; good spiked recoveries over the range of 82.5-99.2% were obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Merouani, Slimane; Hamdaoui, Oualid; Haddad, Boumediene
2018-03-01
In this work, a comparison between the temperatures/pressures within acoustic cavitation bubble in an imidazolium-based room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide ([BMIM][NTf 2 ]), and in water has been made for a wide range of cavitation parameters including frequency (140-1000kHz), acoustic intensity (0.5-1Wcm -2 ), liquid temperature (20-50°C) and external static pressure (0.7-1.5atm). The used cavitation model takes into account the liquid compressibility as well as the surface tension and the viscosity of the medium. It was found that the bubble temperatures and pressures were always much higher in the ionic liquid compared to those predicted in water. The valuable effect of [BMIM][NTf 2 ] on the bubble temperature was more pronounced at higher acoustic intensity and liquid temperature and lower frequency and external static pressure. However, confrontation between the predicted and the experimental estimated temperatures in ionic liquids showed an opposite trend as the temperatures measured in some pure ionic liquids are of the same order as those observed in water. The injection of liquid droplets into cavitation bubbles, the pyrolysis of ionic liquids at the bubble-solution interface as well as the lower number of collapsing bubbles in the ionic liquid may be the responsible for the lower measured bubble temperatures in ionic liquids, as compared with water. Copyright © 2017 Elsevier B.V. All rights reserved.
Methods of using ionic liquids having a fluoride anion as solvents
Pagoria, Philip [Livermore, CA; Maiti, Amitesh [San Ramon, CA; Gash, Alexander [Brentwood, CA; Han, Thomas Yong [Pleasanton, CA; Orme, Christine [Oakland, CA; Fried, Laurence [Livermore, CA
2011-12-06
A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.
Ionic Liquids in HPLC and CE: A Hope for Future.
Ali, Imran; Suhail, Mohd; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y
2017-07-04
The ionic liquids (ILs) are salts with melting points below 100°C. These are called as ionic fluids, ionic melts, liquid electrolytes, fused salts, liquid salts, ionic glasses, designer solvents, green solvents and solvents of the future. These have a wide range of applications, including medical, pharmaceutical and chemical sciences. Nowadays, their use is increasing greatly in separation science, especially in chromatography and capillary electrophoresis due to their remarkable properties. The present article describes the importance of ILs in high-performance liquid chromatography and capillary electrophoresis. Efforts were also made to highlight the future expectations of ILs.
Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas
2007-04-04
Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.
Ionic liquid-modified materials for solid-phase extraction and separation: a review.
Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio
2012-02-17
In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie
2018-04-15
Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.
Force microscopy of layering and friction in an ionic liquid
NASA Astrophysics Data System (ADS)
Hoth, Judith; Hausen, Florian; Müser, Martin H.; Bennewitz, Roland
2014-07-01
The mechanical properties of the ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate ([Py1,4][FAP]) in confinement between a SiOx and a Au(1 1 1) surface are investigated by means of atomic force microscopy (AFM) under electrochemical control. Up to 12 layers of ion pairs can be detected through force measurements while approaching the tip of the AFM to the surface. The particular shape of the force versus distance curve is explained by a model for the interaction between tip, gold surface and ionic liquid, which assumes an exponentially decaying oscillatory force originating from bulk liquid density correlations. Jumps in the tip-sample distance upon approach correspond to jumps of the compliant force sensor between branches of the oscillatory force curve. Frictional force between the laterally moving tip and the surface is detected only after partial penetration of the last double layer between tip and surface.
Rigual, Victoria; Santos, Tamara M; Domínguez, Juan Carlos; Alonso, M Virginia; Oliet, Mercedes; Rodriguez, Francisco
2018-03-01
The combination of autohydrolysis and ionic liquid microwave treatments of eucalyptus wood have been studied to facilitate sugar production in a subsequent enzymatic hydrolysis step. Three autohydrolysis conditions (150 °C, 175 °C and 200 °C) in combination with two ionic liquid temperatures (80 °C and 120 °C) were compared in terms of chemical composition, enzymatic digestibility and sugar production. Morphology was measured (using SEM) and the biomass surface was visualized with confocal fluorescence microscopy. The synergistic cooperation of both treatments was demonstrated, enhancing cellulose accessibility. At intermediate autohydrolysis conditions (175 °C) and low ionic liquid temperature (80 °C), a glucan digestibility of 84.4% was obtained. Using SEM micrographs, fractal dimension (as a measure of biomass complexity) and lacunarity (as a measure of homogeneity) were calculated before and after pretreatment. High fractals dimensions and low lacunarities correspond to morphologically complex and homogeneous samples, that are better digested by enzyme cocktails. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chancelier, L; Diallo, A O; Santini, C C; Marlair, G; Gutel, T; Mailley, S; Len, C
2014-02-07
The energy storage market relating to lithium based systems regularly grows in size and expands in terms of a portfolio of energy and power demanding applications. Thus safety focused research must more than ever accompany related technological breakthroughs regarding performance of cells, resulting in intensive research on the chemistry and materials science to design more reliable batteries. Formulating electrolyte solutions with nonvolatile and hardly flammable ionic liquids instead of actual carbonate mixtures could be safer. However, few definitions of thermal stability of electrolytes based on ionic liquids have been reported in the case of abuse conditions (fire, shortcut, overcharge or overdischarge). This work investigates thermal stability up to combustion of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C1C4Im][NTf2]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([PYR14][NTf2]) ionic liquids, and their corresponding electrolytes containing lithium bis(trifluoromethanesulfonyl)imide LiNTf2. Their possible routes of degradation during thermal abuse testings were investigated by thermodynamic studies under several experimental conditions. Their behaviours under fire were also tested, including the analysis of emitted compounds.
Werner, Justyna
2018-05-15
Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase was used for preconcentration of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in natural water samples prior to liquid chromatography with UV detection. In the proposed method, the ammonium pyrrolidinedithiocarbamate was used as a complexing agent and the phosphonium ionic liquid trihexyl(tetradecyl)phosphonium bis[(2,4,4-trimethyl)pentyl]phosphinate (Cyphos IL 104) was used as an extractant. Ultrasound energy was used to disperse the extractant in the aqueous phase. After microextraction, the ionic liquid and aqueous phases were separated by centrifugation. Then the aqueous phase was frozen and the lighter than water ionic liquid phase containing metal ions complexes with pyrrolidinedithiocarbamate was separated and dissolved in a small volume of methanol prior to injection into the liquid chromatograph. Several parameters including the volume of extractant, the pH of the sample, the concentration of complexing agent, the time of ultrasound energy treatment, the time and speed of centrifugation and the effect of ionic strength were optimized. Under the optimized conditions (10 µL of Cyphos IL 104, pH = 5, 0.3% w/v ammonium pyrrolidinedithiocarbamate, 60 s of ultrasound use, 5 min/5000 rpm (2516×g) of centrifugation, 2.0 mg of NaCl), preconcentration factors were 211, 210, 209, 207 and 211 for Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ and Pb 2+ respectively. Linearity was observed in the ranges 0.2-75.0 µg L -1 for Pb 2+ , Cd 2+ , Co 2+ and 0.5-100.0 µg L -1 for Cu 2+ , Ni 2+ . The limits of detection were 0.03 µg L -1 for Ni 2+ , 0.03 µg L -1 for Co 2+ , 0.03 µg L -1 for Cd 2+ , 0.02 µg L -1 for Cu 2+ , 0.02 µg L -1 for Pb 2+ , respectively. The accuracy of this method was evaluated by preconcentration and determination of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in certified reference materials (TMRAIN-04 and NIST 1643e) with the recovery values in the range of 97-102%. The presented method has been successfully applied for the determination of analytes in natural water samples (river and lake waters). Copyright © 2018 Elsevier B.V. All rights reserved.
Enzyme catalysis with small ionic liquid quantities.
Fischer, Fabian; Mutschler, Julien; Zufferey, Daniel
2011-04-01
Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed.
Ionic Liquid Fuels for Chemical Propulsion
2016-10-31
nucleophilicity in the ionic liquid is critical. Both gas -phase and condensed-phase (CPCM-GIL) density functional theory calculations support the...stability trends in dialkylimidazolium ionic liquids and could be used as a higher accuracy method than the gas -phase DFT approach for predicting thermal...stabilities of ionic liquids in general. One important finding from the comparison of the gas -phase basicities relative to the GIL condensed- phase
Angell, C Austen [Mesa, AZ; Xu, Wu [Broadview Heights, OH; Belieres, Jean-Philippe [Chandler, AZ; Yoshizawa, Masahiro [Tokyo, JP
2011-01-11
Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.
Wang, Huazi; Hu, Lu; Li, Wanzhen; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang
2016-11-04
A pretreatment method using in-syringe dispersive liquid-liquid microextraction based on the direct solidification of ionic liquids before high performance liquid chromatography analysis was developed for the determination of benzoylurea insecticides (BUs) in honey samples. The hydrophobic ionic liquid [N 4444 ][PF 6 ], formed in situ by the hydrophilic ionic liquid [N 4444 ]Cl and the ion exchange reagent KPF 6 , was used to extract the target analytes. The entire extraction procedure was performed in a syringe. The extractant was solidified at room temperature and collected using a nylon membrane filter. This technique did not require a dispersive solvent, vortex mixer, ultrasound bath, or centrifugation. The parameters affecting the extraction efficiency were investigated through an experimental design. Under the optimal conditions, the limits of detection for the four BUs varied from 0.21 to 0.42μgL -1 in solution (2.1-4.2μgkg -1 in honey). Good linearities were obtained in the range of 2-300μgL -1 , with coefficients of determination greater than 0.999. The recoveries of the four BUs ranged from 80.94% to 84.59%. The intra-day (n=3) and inter-day (n=3) relative standard deviations were less than 5.08%. Finally, the proposed method was applied to the determination of BUs in commercial honey samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.
Black, Jeffrey J; Dolan, Andrew; Harper, Jason B; Aldous, Leigh
2018-06-06
Solvate ionic liquids are a relatively new class of liquids produced by combining a coordinating solvent with a salt. They have a variety of uses and their suitability for such depends upon the ratio of salt to coordinating solvent. This work investigates the Kamlet-Taft solvent parameters of, NMR chemical shifts of nuclei in, and thermoelectrochemistry of a selected set of solvate ionic liquids produced from glymes (methyl terminated oligomers of ethylene glycol) and lithium bis(trifluoromethylsulfonyl)imide at two different compositions. The aim is to improve the understanding of the interactions occurring in these ionic liquids to help select suitable solvate ionic liquids for future applications.
Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology.
Brown, Leslie; Earle, Martyn J; Gîlea, Manuela A; Plechkova, Natalia V; Seddon, Kenneth R
2017-08-10
Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous character of ionic liquid-based solvent systems to be used in a wide variety of separations (including transition metal salts, arenes, alkenes, alkanes, bio-oils and sugars).
Das, Sudhir Kumar; Sarkar, Moloy
2012-01-12
Rotational dynamics of two neutral organic solutes, coumarin-153 (C-153) and 4-aminophthalimide (AP), with only the latter having hydrogen-bond-donating ability, has been investigated in a series of 1-ethyl-3-methylimidazolium alkyl sulfate ionic liquids as a function of temperature. The ionic liquids differ only in the length of the linear alkyl side chain (alkyl = ethyl, butyl, hexyl, and octyl) on the anionic moiety. The present study has been undertaken to examine the role of alkyl side chains on the rotational dynamics of the two solutes in these ionic liquids. Analysis of the results using Stokes-Einstein-Debye hydrodynamic theory indicates that the rotational dynamics of C-153 lies between the stick and slip boundary condition in the ethyl analogue and finally reaches subslip condition as in case of the octyl substituent. The observed rotational behavior of C-153 has been explained on the basis of an increase in the size of the solvent, which offers lower friction for solute rotation. On the other hand, AP shows superstick behavior in the ethyl system and exceeds the stick limit in the octyl derivative. Superstick behavior of AP has been attributed to the specific hydrogen-bonding interaction between AP and the sulfate moiety. Proton NMR investigation confirms the hydrogen-bonding interaction between the N-H hydrogen of AP and the ionic liquid. The decrease in rotational coupling constant values for AP with increasing length of alkyl side chains has been attributed to the decrease in the solute-solvent-specific interaction with an increase in the alkyl side chain length on the sulfate moiety.
2009-11-30
cations were obtained and isolated with a diverse group of azolate anions including nitro- substituted benzotriazolate, benzimidazolate , 1,2,4-triazolate... benzimidazolate , or benzotrizolate) have received much less attention than those containing azolium cations, although more results are now starting to...phosphonium cations combined with energetically-substituted tetrazolate, triazolate, imidazolate, benzimidazolate , and benzotriazolate anions (Figure
Kontro, Inkeri; Svedström, Kirsi; Duša, Filip; Ahvenainen, Patrik; Ruokonen, Suvi-Katriina; Witos, Joanna; Wiedmer, Susanne K
2016-12-01
The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of l-α-phosphatidylcholine (eggPC) and l-α-phosphatidylglycerol (eggPG) (80:20mol%) or eggPC, eggPG, and cholesterol (60:20:20mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ionic Liquid Confined in Mesoporous Polymer Membrane with Improved Stability for CO2/N2 Separation
Tan, Ming; Lu, Jingting; Zhang, Yang; Jiang, Heqing
2017-01-01
Supported ionic liquid membranes (SILMs) have a promising prospect of application in flue gas separation, owing to its high permeability and selectivity of CO2. However, existing SILMs have the disadvantage of poor stability due to the loss of ionic liquid from the large pores of the macroporous support. In this study, a novel SILM with high stability was developed by confining ionic liquid in a mesoporous polymer membrane. First, a mesoporous polymer membrane derived from a soluble, low-molecular-weight phenolic resin precursor was deposited on a porous Al2O3 support, and then 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]) was immobilized inside mesopores of phenolic resin, forming the SILM under vacuum. Effects of trans-membrane pressure difference on the SILM separation performance were investigated by measuring the permeances of CO2 and N2. The SILM exhibits a high ideal CO2/N2 selectivity of 40, and an actual selectivity of approximately 25 in a mixed gas (50% CO2 and 50% N2) at a trans-membrane pressure difference of 2.5 bar. Compared to [emim][BF4] supported by polyethersulfone membrane with a pore size of around 0.45 μm, the [emim][BF4] confined in a mesoporous polymer membrane exhibits an improved stability, and its separation performance remained stable for 40 h under a trans-membrane pressure difference of 1.5 bar in a mixed gas before the measurement was intentionally stopped. PMID:28961187
Taskin, Meltem; Cognigni, Alice; Zirbs, Ronald; Reimhult, Erik
2017-01-01
We report the design and synthesis of surface-active ionic liquids for application in palladium-catalyzed cross coupling reactions. A series of dodecylimidazolium-based ionic liquids were applied as additives in the Heck reaction of ethyl acrylate and iodobenzene, and high yields of >90% could be obtained in water without the addition of further ligands. Our results indicate that the ionic liquid concentration in water is the key factor affecting the formation of the catalytically active species and hence the yield. Moreover, imidazolium-based ionic liquids that are able to form a carbene species differ significantly from conventional cationic surfactants, as a concentration dependent formation of the N-heterocyclic carbene complex was observed. PMID:29308189
Zeindlhofer, Veronika; Schröder, Christian
2018-06-01
Based on their tunable properties, ionic liquids attracted significant interest to replace conventional, organic solvents in biomolecular applications. Following a Gartner cycle, the expectations on this new class of solvents dropped after the initial hype due to the high viscosity, hydrolysis, and toxicity problems as well as their high cost. Since not all possible combinations of cations and anions can be tested experimentally, fundamental knowledge on the interaction of the ionic liquid ions with water and with biomolecules is mandatory to optimize the solvation behavior, the biodegradability, and the costs of the ionic liquid. Here, we report on current computational approaches to characterize the impact of the ionic liquid ions on the structure and dynamics of the biomolecule and its solvation layer to explore the full potential of ionic liquids.
NASA Astrophysics Data System (ADS)
Liu, Yangqing; Wang, Kai; Hou, Wei; Shan, Wanjian; Li, Jing; Zhou, Yu; Wang, Jun
2018-01-01
Multi-functional mesoporous poly(ionic liquid) (MPIL) containing pyridine-based ionic liquid (IL) moieties and adjacent double sbnd COOH groups was synthesized through the free radical copolymerization of IL monomer N-propane sulfonate-4-vinylpyridine, maleic anhydride and divinylbenzene. Palladium(II) species were anchored on this MPIL support, affording the first efficient heterogeneous catalyst for the oxidative coupling of benzene to biphenyl under atmospheric oxygen at low temperature. The biphenyl yield of 15.0% (selectivity: 98.5%, turnover number: 62) was even higher than the one over the homogeneous counterpart palladium acetate. The catalyst can be facilely separated and reused. The IL moiety in the polymeric framework endowed the formation of immobilized palladium(II) species with high electrophilicity, which responds to the high performance.
High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.
Kim, Tae Young; Lee, Hyun Wook; Stoller, Meryl; Dreyer, Daniel R; Bielawski, Christopher W; Ruoff, Rodney S; Suh, Kwang S
2011-01-25
We report a high-performance supercapacitor incorporating a poly(ionic liquid)-modified reduced graphene oxide (PIL:RG-O) electrode and an ionic liquid (IL) electrolyte (specifically, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide or EMIM-NTf(2)). PIL:RG-O provides enhanced compatibility with the IL electrolyte, thereby increasing the effective electrode surface area accessible to electrolyte ions. The supercapacitor assembled with PIL:RG-O electrode and EMIM-NTf(2) electrolyte showed a stable electrochemical response up to 3.5 V operating voltage and was capable of yielding a maximum energy density of 6.5 W·h/kg with a power density of 2.4 kW/kg. These results demonstrate the potential of the PIL:RG-O material as an electrode in high-performance supercapacitors.
NASA Astrophysics Data System (ADS)
Huo, Hanyu; Zhao, Ning; Sun, Jiyang; Du, Fuming; Li, Yiqiu; Guo, Xiangxin
2017-12-01
Paramount attention has been paid on solid polymer electrolytes due to their potential in enhancement of energy density as well as improvement of safety. Herein, the composite electrolytes consisting of Li-salt-free polyethylene oxides and 200 nm-sized Li6.4La3Zr1.4Ta0.6O12 particles interfacially wetted by [BMIM]TF2N of 1.8 μL cm-2 have been prepared. Such wetted ionic liquid remains the solid state of membrane electrolytes and decreases the interface impedance between the electrodes and the electrolytes. There is no release of the liquid phase from the PEO matrix when the pressure of 5.0 × 104 Pa being applied for 24 h. The interfacially wetted membrane electrolytes show the conductivity of 2.2 × 10-4 S cm-1 at 20 °C, which is one order of magnitude greater than that of the membranes without the wetted ionic liquids. The conduction mechanism is related to a large number of lithium ions releasing from Li6.4La3Zr1.4Ta0.6O12 particles and the improved conductive paths along the ion-liquid-wetted interfaces between the polymer matrix and ceramic grains. When the membranes being used in the solid-state LiFePO4/Li and LiFe0.15Mn0.85PO4/Li cells at 25 °C, the excellent rate capability and superior cycle stability has been shown. The results provide a new prospect for solid polymer electrolytes used for room-temperature solid-state lithium batteries.
Quevillon, Michael J; Whitmer, Jonathan K
2018-01-02
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.
Chen, Xuwei; Yang, Xu; Zeng, Wanying; Wang, Jianhua
2015-08-04
Protein transfer from aqueous medium into ionic liquid is an important approach for the isolation of proteins of interest from complex biological samples. We hereby report a solid-cladding/liquid-core/liquid-cladding sandwich optical waveguide system for the purpose of monitoring the dynamic mass-transfer behaviors of hemoglobin (Hb) at the aqueous/ionic liquid interface. The optical waveguide system is fabricated by using a hydrophobic IL (1,3-dibutylimidazolium hexafluorophosphate, BBimPF6) as the core, and protein solution as one of the cladding layer. UV-vis spectra are recorded with a CCD spectrophotometer via optical fibers. The recorded spectra suggest that the mass transfer of Hb molecules between the aqueous and ionic liquid media involve accumulation of Hb on the aqueous/IL interface followed by dynamic extraction/transfer of Hb into the ionic liquid phase. A part of Hb molecules remain at the interface even after the accomplishment of the extraction/transfer process. Further investigations indicate that the mass transfer of Hb from aqueous medium into the ionic liquid phase is mainly driven by the coordination interaction between heme group of Hb and the cationic moiety of ionic liquid, for example, imidazolium cation in this particular case. In addition, hydrophobic interactions also contribute to the transfer of Hb.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiao-Di, E-mail: liuxiaodiny@126.com; Chen, Hao; Liu, Shan-Shan
2015-02-15
Highlights: • Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles with good dispersity have been synthesized via hydrothermal method. • Ionic liquid [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles. • Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K. - Abstract: Superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have been successfully synthesized under hydrothermal condition with the assistant of ionic liquid 1-hexadecyl-3-methylimidazolium chloride ([C{sub 16}mim]Cl). The structure and morphology of the sample have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM), and the results indicate thatmore » the as-synthesized inverse spinel Fe{sub 3}O{sub 4} nanoparticles have an average diameter of about 10 nm and exhibit relatively good dispersity. More importantly, it is found that [C{sub 16}mim]Cl acts as stabilizer for the Fe{sub 3}O{sub 4} nanoparticles by adsorbing on the particles surfaces to prevent the agglomeration. In addition, the obtained superparamagnetic Fe{sub 3}O{sub 4} nanoparticles have a saturation magnetization of 67.69 emu/g at 300 K.« less
Ultraslow Phase Transitions in an Anion-Anion Hydrogen-Bonded Ionic Liquid.
Faria, Luiz F O; Lima, Thamires A; Ferreira, Fabio F; Ribeiro, Mauro C C
2018-02-15
A Raman spectroscopy study of 1-ethyl-3-methylimidazolium hydrogen sulfate, [C 2 C 1 im][HSO 4 ], as a function of temperature, has been performed to reveal the role played by anion-anion hydrogen bond on the phase transitions of this ionic liquid. Anion-anion hydrogen bonding implies high viscosity, good glass-forming ability, and also moderate fragility of [C 2 C 1 im][HSO 4 ] in comparison with other ionic liquids. Heating [C 2 C 1 im][HSO 4 ] from the glassy phase results in cold crystallization at ∼245 K. A solid-solid transition (crystal I → crystal II) is barely discernible in calorimetric measurements at typical heating rates, but it is clearly revealed by Raman spectroscopy and X-ray diffraction. Raman spectroscopy indicates that crystal I has extended ([HSO 4 ] - ) n chains of hydrogen-bonded anions but crystal II has not. Raman spectra recorded at isothermal condition show the ultraslow dynamics of cold crystallization, solid-solid transition, and continuous melting of [C 2 C 1 im][HSO 4 ]. A brief comparison is also provided between [C 2 C 1 im][HSO 4 ] and [C 4 C 1 im][HSO 4 ], as Raman spectroscopy shows that the latter does not form the crystalline phase with extended anion-anion chains.
Gu, Huiyan; Chen, Fengli; Zhang, Qiang; Zang, Jing
2016-03-01
Rutin, hyperoside and hesperidin were effectively extracted from Sorbus tianschanica leaves by an ionic liquid vacuum microwave-assisted method. A series of ionic liquids with various anions and alkyl chain length of the cations were studied and the extraction was performed in [C6mim][BF4] aqueous solution. After optimization by a factorial design and response surface methodology, total extraction yield of 2.37mg/g with an error of 0.12mg/g (0.71±0.04mg/g, 1.18±0.06mg/g and 0.48±0.02 for rutin, hyperoside and hesperidin, respectively) was achieved under -0.08MPa for vacuum, 19min and 420W for microwave irradiation time and power, and 15mL/g for liquid-solid ratio. The proposed method here is more efficient and needs a shorter extraction time for rutin, hyperoside and hesperidin from S. tianschanica leaves than reference extraction techniques. In stability studies performed with standard rutin, hyperoside and hesperidin, the target analytes were stable under the optimum conditions. The proposed method had a high reproducibility and precision. In addition, separation of rutin, hyperoside and hesperidin from [C6mim][BF4] extraction solution was completed effectively by AB-8 macroporous resin adsorption and desorption process. Ionic liquid vacuum microwave-assisted extraction is a simple, rapid and efficient sample extraction technique. Copyright © 2016 Elsevier B.V. All rights reserved.
The Colloidal Stability of Magnetic Nanoparticles in Ionic Liquids
2015-08-03
Ionic Liquids 5a. CONTRACT NUMBER FA2386-14-1-4062 5b. GRANT NUMBER Grant 14IOA088 AOARD-144062 5c. PROGRAM ELEMENT NUMBER 61102F 6...NOTES 14. ABSTRACT During the reporting period the development of the ionic liquid ferrofluid (ILFF) based on EMIM-NTf2 was continued. The...ferrofluids based on other high-boiling solvents. 15. SUBJECT TERMS Electric Propulsion, Ionic liquids 16. SECURITY CLASSIFICATION
Basicity of pyridine and some substituted pyridines in ionic liquids.
Angelini, Guido; De Maria, Paolo; Chiappe, Cinzia; Fontana, Antonella; Pierini, Marco; Siani, Gabriella
2010-06-04
The equilibrium constants for ion pair formation of some pyridines have been evaluated by spectrophotometric titration with trifluoroacetic acid in different ionic liquids. The basicity order is the same in ionic liquids and in water. The substituent effect on the equilibrium constant has been discussed in terms of the Hammett equation. Pyridine basicity appears to be less sensitive to the substituent effect in ionic liquids than in water.
Computational prediction of ionic liquid 1-octanol/water partition coefficients.
Kamath, Ganesh; Bhatnagar, Navendu; Baker, Gary A; Baker, Sheila N; Potoff, Jeffrey J
2012-04-07
Wet 1-octanol/water partition coefficients (log K(ow)) predicted for imidazolium-based ionic liquids using adaptive bias force-molecular dynamics (ABF-MD) simulations lie in excellent agreement with experimental values. These encouraging results suggest prospects for this computational tool in the a priori prediction of log K(ow) values of ionic liquids broadly with possible screening implications as well (e.g., prediction of CO(2)-philic ionic liquids).
Radošević, Kristina; Železnjak, Jelena; Cvjetko Bubalo, Marina; Radojčić Redovniković, Ivana; Slivac, Igor; Gaurina Srček, Višnja
2016-09-01
With the advent of ionic liquids, much was expected concerning their applicability as an alternative to organic solvents in the chemical technology and biotechnology fields. However, the most studied and commonly used ionic liquids based on imidazolium and pyridinium were found not to be as environmentally friendly as it was first expected. Therefore, a new generation of alternative solvents named natural ionic liquids and deep eutectic solvents, composed of natural and/or renewable compounds, have come into focus in recent years. Since the number of newly synthesized chemicals increases yearly, simple and reliable methods for their ecotoxicological assessment are necessary. Permanent fish cell lines can serve as a test system for the evaluation of a chemical's cytotoxicity. This paper presents research results on the cytotoxic effects on Channel Catfish Ovary (CCO) cell line induced by fifteen cholinium-based ionic liquids and deep eutectic solvents. Based on the decrease in cell viability, the most obvious toxic effect on CCO cells was caused by ionic liquid choline oxalate, while other solvents tested exhibited low cytotoxicity. Therefore, we can conclude that cholinium-based ionic liquids and deep eutectic solvents are comparatively less toxic to CCO cells than conventional ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.
Role of Oxygen in Ionic Liquid Gating on Two-Dimensional Cr2Ge2Te6: A Non-oxide Material.
Chen, Yangyang; Xing, Wenyu; Wang, Xirui; Shen, Bowen; Yuan, Wei; Su, Tang; Ma, Yang; Yao, Yunyan; Zhong, Jiangnan; Yun, Yu; Xie, X C; Jia, Shuang; Han, Wei
2018-01-10
Ionic liquid gating can markedly modulate a material's carrier density so as to induce metallization, superconductivity, and quantum phase transitions. One of the main issues is whether the mechanism of ionic liquid gating is an electrostatic field effect or an electrochemical effect, especially for oxide materials. Recent observation of the suppression of the ionic liquid gate-induced metallization in the presence of oxygen for oxide materials suggests the electrochemical effect. However, in more general scenarios, the role of oxygen in the ionic liquid gating effect is still unclear. Here, we perform ionic liquid gating experiments on a non-oxide material: two-dimensional ferromagnetic Cr 2 Ge 2 Te 6 . Our results demonstrate that despite the large increase of the gate leakage current in the presence of oxygen, the oxygen does not affect the ionic liquid gating effect on the channel resistance of Cr 2 Ge 2 Te 6 devices (<5% difference), which suggests the electrostatic field effect as the mechanism on non-oxide materials. Moreover, our results show that ionic liquid gating is more effective on the modulation of the channel resistances compared to the back gating across the 300 nm thick SiO 2 .
Numerical modeling of ultrasonic cavitation in ionic liquids
NASA Astrophysics Data System (ADS)
Calvisi, Michael L.; Elder, Ross M.
2017-11-01
Ionic liquids have favorable properties for sonochemistry applications in which the high temperatures and pressures achieved by cavitation bubbles are important drivers of chemical processes. Two different numerical models are presented to simulate ultrasonic cavitation in ionic liquids, each with different capabilities and physical assumptions. A model based on a compressible form of the Rayleigh-Plesset equation (RPE) simulates ultrasonic cavitation of a spherical bubble with a homogeneous interior, incorporating evaporation and condensation at the bubble surface, and temperature-varying thermodynamic properties in the interior. A second, more computationally intensive model of a spherical bubble uses the finite element method (FEM) and accounts for spatial variations in pressure and temperature throughout the flow domain. This model provides insight into heat transfer across the bubble surface and throughout the bubble interior and exterior. Parametric studies are presented for sonochemistry applications involving ionic liquids as a solvent, examining a range of realistic ionic liquid properties and initial conditions to determine their effect on temperature and pressure. Results from the two models are presented for parametric variations including viscosity, thermal conductivity, water content of the ionic liquid solvent, acoustic frequency, and initial bubble pressure. An additional study performed with the FEM model examines thermal penetration into the surrounding ionic liquid during bubble oscillation. The results suggest the prospect of tuning ionic liquid properties for specific applications.
2012-05-01
fluorophenyl)sulfone (DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL... ionic liquid Q M Zhang, Gokhan Hatipoglu, Yang Liu, Ran Zhao, Mitra Yoonessi, Dean M Tigelaar, Srinivas Tadigadapa Virginia Polytechnic Institute...DPA-PS:BP) is investigated for ionic polymer actuators. The uniqueness of DPA-PS:BP is that it can have a high ionic liquid (IL) uptake and
Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models.
Ferraz, Ricardo; Pinheiro, Marina; Gomes, Ana; Teixeira, Cátia; Prudêncio, Cristina; Reis, Salette; Gomes, Paula
2017-09-01
Primaquine-based ionic liquids, obtained by acid-base reaction between parent primaquine and cinnamic acids, were recently found as triple-stage antimalarial hits. These ionic compounds displayed significant activity against both liver- and blood-stage Plasmodium parasites, as well as against stage V P. falciparum parasites. Remarkably, blood-stage activity of the ionic liquids against both chloroquine-sensitive (3D7) and resistant (Dd2) P. falciparum strains was clearly superior to those of the respective covalent (amide) analogues and of parent primaquine. Having hypothesized that such behaviour might be ascribed to an enhanced ability of the ionic compounds to permeate into Plasmodium-infected erythrocytes, we have carried out a differential scanning calorimetry-based study of the interactions between the ionic liquids and membrane models. Results provide evidence, at the molecular level, that the primaquine-derived ionic liquids may contribute to an increased permeation of the parent drug into malaria-infected erythrocytes, which has relevant implications towards novel antimalarial approaches based on ionic liquids. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Torabifard, Hedieh; Reed, Luke; Berry, Matthew T.; Hein, Jason E.; Menke, Erik; Cisneros, G. Andrés
2017-10-01
The development of Li-ion batteries for energy storage has received significant attention. The synthesis and characterization of electrolytes in these batteries are an important component of this development. Ionic liquids (ILs) have been proposed as possible electrolytes in these devices. Thus, the accurate determination of thermophysical properties for these solvents becomes important for determining their applicability as electrolytes. In this contribution, we present the synthesis and experimental/computational characterization of thermodynamic and transport properties of a pyrrolidinium based ionic liquid as a first step to investigate the possible applicability of this class of ILs for Li-ion batteries. A quantum mechanical-based force field with many-body polarizable interactions has been developed for the simulation of spirocyclic pyrrolidinium, [sPyr+], with BF4- and Li+. Molecular dynamics calculations employing intra-molecular polarization predicted larger heat of vaporization and self-diffusion coefficients and smaller densities in comparison with the model without intra-molecular polarization, indicating that the inclusion of this term can significantly effect the inter-ionic interactions. The calculated properties are in good agreement with available experimental data for similar IL pairs and isothermal titration calorimetry data for [sPyr+][BF4-].
Lipid extraction from microalgae using a single ionic liquid
Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo
2013-05-28
A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.
Membrane separation of ionic liquid solutions
Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart
2015-09-01
A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.
Kaur, Dilraj Preet; Yamada, K; Park, Jin-Soo; Sekhon, S S
2009-04-23
Room temperature ionic liquid 2,3-dimethyl-1-hexylimidazolium bis(trifluoromethane sulfonyl)imide (DMHxImTFSI) has been synthesized and used in the preparation of polymer gel electrolytes containing polymethylmethacrylate and propylene carbonate (PC). The onset of ion diffusional motion has been studied by (1)H and (19)F NMR spectroscopy and the results obtained for ionic liquid, liquid electrolytes, and polymer gel electrolytes have been correlated with the ionic conductivity results for these electrolytes in the 100-400 K temperature range. The temperature at which (1)H and (19)F NMR lines show motional narrowing and hence ion diffusional motion starts has been found to be closely related to the temperature at which a large increase in ionic conductivity has been observed for these electrolytes. Polymer gel electrolytes have high ionic conductivity over a wide range of temperatures. Thermogravimetric analysis/differential scanning calorimetry studies show that the ionic liquid (DMHxImTFSI) used in the present study is thermally stable up to 400 degrees C, whereas the addition of PC lowers the thermal stability of polymer gel electrolytes containing the ionic liquid. Different electrolytes have been observed to show high ionic conductivity in different range of temperatures, which can be helpful in the design of polymer gel electrolytes for specific applications.
Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.
Han, Mengwei; Espinosa-Marzal, Rosa M
2017-09-07
We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.
Chopade, Sujay A; Anderson, Evan L; Schmidt, Peter W; Lodge, Timothy P; Hillmyer, Marc A; Bühlmann, Philippe
2017-10-27
Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.
Hosseini, Seyed Hassan; Hosseini, Seyedeh Ameneh; Zohreh, Nasrin; Yaghoubi, Mahshid; Pourjavadi, Ali
2018-01-31
A magnetic nanocomposite was prepared by entrapment of Fe 3 O 4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.
Jiang, Wei; Yan, Tianying; Wang, Yanting; Voth, Gregory A
2008-03-13
Molecular dynamics (MD) simulations have been performed to investigate the structure and dynamics of an energetic ionic liquid, 1-hydroxyethyl-4-amino-1,2,4-triazolium nitrate (HEATN). The generalized amber force field (GAFF) was used, and an electronically polarizable model was further developed in the spirit of our previous work (Yan, T.; Burnham, C. J.; Del Popolo, M. G.; Voth, G. A. J. Phys. Chem. B 2004, 108, 11877). In the process of simulated annealing from a liquid state at 475 K down to a glassy state at 175 K, the MD simulations identify a glass-transition temperature region at around 250-275 K, in agreement with experiment. The self-intermediate scattering functions show vanishing boson peaks in the supercooled region, indicating that HEATN may be a fragile glass former. The coupling/decoupling of translational and reorientational ion motion is also discussed, and various other physical properties of the liquid state are intensively studied at 400 K. A complex hydrogen bond network was revealed with the calculation of partial radial distribution functions. When compared to the similarly sized 1-ethyl-4-methyl-1,4-imidazolium nitrate ionic liquid, EMIM+/NO3-, a hydrogen bond network directly resulting in the poorer packing efficiency of ions is observed, which is responsible for the lower melting/glass-transition point. The structural properties of the liquid/vacuum interface shows that there is vanishing layering at the interface, in accordance with the poor ion packing. The effects of electronic polarization on the self-diffusion, viscosity, and surface tension of HEATN are found to be significant, in agreement with an earlier study on EMIM+/NO3- (Yan, T.; Burnham, C. J.; Del Popolo, M. G.; Voth, G. A. J. Phys. Chem. B 2004, 108, 11877).
Werner, Justyna
2016-04-01
Task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task-specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT-TL-1, INCT-MPH-2) with the recovery values in the range of 90-104%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy
Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; ...
2015-12-17
We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra ofmore » the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.« less
Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen
2013-01-01
Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434
Mitchell, Daniel S.; Lovelock, Kevin R. J.
2015-01-01
Abstract We investigate eight 1‐alkylpyridinium‐based ionic liquids of the form [CnPy][A] by using X‐ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake‐up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic‐liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8Py][A] and analogues including 1‐octyl‐1‐methylpyrrolidinium‐ ([C8C1Pyrr][A]), and 1‐octyl‐3‐methylimidazolium‐ ([C8C1Im][A]) based samples, where X is common to all ionic liquids. PMID:25952131
Velarde, Marco V; Gallo, Marco; Alonso, P A; Miranda, A D; Dominguez, J M
2015-04-16
In this work, we evaluated the energetic interactions between imidazolium ionic liquids (ILs) and hydrofluoric acid, as well as the cation-anion interactions in ILs. We used DFT calculations that include dispersion corrections employing the PBE and M06 functionals. We tested 22 ILs, including [C4MIM][PF6], [C4MIM][NTf2], and [C4MIM][CH3COO], obtaining interaction energies in the range of -27 to -13 kcal/mol with the PBE functional. The NCI (noncovalent interaction) index developed by Yang and collaborators ( J. Am. Chem. Soc. 2010 , 132 , 6498 - 6506 ; J. Chem. Theory Comput. 2011 , 7 , 625 - 632 ) also was used for mapping the key noncovalent interactions (hydrogen bonds, van der Waals, and steric repulsions) between the anions and cations of ILs and also for interactions of ILs with hydrofluoric acid (HF). The results obtained show that the anions have a stronger effect with respect to cations in their capacity for interacting with hydrofluoric acid, and the strongest interaction energies occur in systems where the key noncovalent interactions are mainly hydrogen bonds. The [C4MIM][PF6], [C4MIM][NTf2], and [C4MIM][BF4] ionic liquids displayed the weakest cation-anion interactions.
Ionic Liquids in Polymer Design: From Energy to Health
2016-10-19
SECURITY CLASSIFICATION OF: ACS Symposium: Ionic Liquids in Polymer Design: From Energy to Health at Fall 2015 ACS Meeting in Boston, MA The...combination of ionic liquids and polymers has emerged as an active field of exploration in polymer science, where new materials have be realized for...2016 Final Report: Ionic Liquids in Polymer Design: From Energy to Health The views, opinions and/or findings contained in this report are those of
Kinetic Studies of Reactions in Solution Using Fast Mass Spectrometry
2013-08-13
dicyanamide ionic liquids Hypergolic fuels, or hypergols, can be ignited by exposure to an oxidizing agent under ambient conditions and are a common...DCA) based ionic liquids are a less volatile alternative that are less viscous than most ionic liquids ; however, ignition of these compounds...Condensates upon Hypergolic Ignition of Dicyanamide Ionic Liquids ," Angew. Chem. Int. Ed. 50, 8634–8637 (2011). (7) R. H. Perry, D. I. Bellovin, E
Catalytic Decomposition of Hydroxylammonium Nitrate Ionic Liquid: Enhancement of NO Formation
2017-04-24
Nitrate Ionic Liquid : Enhancement of NO Formation Steven D. Chambreau, Denisia M. Popolan-Vaida, Ghanshyam L. Vaghjiani, and Stephen R. Leone Air Force...Hydroxylammonium Nitrate Ionic Liquid : Enhancement of NO Formation Steven D. Chambreau,† Denisia M. Popolan-Vaida,‡,§ Ghanshyam L. Vaghjiani,*,∥ and Stephen R...nitrate (HAN)ionic liquid as a replacement for hydrazine as a spacecraft monopropellant has been of great interest recently due to the reduced toxicity
Effect of ionic liquid on activity, stability, and structure of enzymes: a review.
Naushad, Mu; Alothman, Zied Abdullah; Khan, Abbul Bashar; Ali, Maroof
2012-11-01
Ionic liquids have shown their potential as a solvent media for many enzymatic reactions as well as protein preservation, because of their unusual characteristics. It is also observed that change in cation or anion alters the physiochemical properties of the ionic liquids, which in turn influence the enzymatic reactions by altering the structure, activity, enatioselectivity, and stability of the enzymes. Thus, it is utmost need of the researchers to have full understanding of these influences created by ionic liquids before choosing or developing an ionic liquid to serve as solvent media for enzymatic reaction or protein preservation. So, in the present review, we try to shed light on effects of ionic liquids chemistry on structure, stability, and activity of enzymes, which will be helpful for the researchers in various biocatalytic applications. Copyright © 2012. Published by Elsevier B.V.
Ionic-liquid materials for the electrochemical challenges of the future.
Armand, Michel; Endres, Frank; MacFarlane, Douglas R; Ohno, Hiroyuki; Scrosati, Bruno
2009-08-01
Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
Ionic liquids and their solid-state analogues as materials for energy generation and storage
NASA Astrophysics Data System (ADS)
Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie
2016-02-01
Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.
Ionic-liquid materials for the electrochemical challenges of the future
NASA Astrophysics Data System (ADS)
Armand, Michel; Endres, Frank; Macfarlane, Douglas R.; Ohno, Hiroyuki; Scrosati, Bruno
2009-08-01
Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadeeva, Tatiana A.; DeVine, Jessalyn A.; Castner, Edward W., E-mail: ed.castner@rutgers.edu
2015-08-14
We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyzemore » the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.« less
NASA Astrophysics Data System (ADS)
Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa
2017-07-01
Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).
Gholivand, Somayeh; Lasekan, Ola; Tan, Chin Ping; Abas, Faridah; Wei, Leong Sze
2017-05-26
Developing an efficient lipophilization reaction system for phenolic derivatives could enhance their applications in food processing. Low solubility of phenolic acids reduces the efficiency of phenolic derivatives in most benign enzyme solvents. The conversion of phenolic acids through esterification alters their solubility and enhances their use as food antioxidant additives as well as their application in cosmetics. This study has shown that lipase-catalyzed esterification of dihydrocaffeic acid with hexanol in ionic liquid (1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide) was the best approach for esterification reaction. In order to achieve the maximum yield, the process was optimized by response surface methodology (RSM) based on a five-level and four independent variables such as: dosage of enzyme; hexanol/dihydrocaffeic acid mole ratio; temperature and reaction time. The optimum esterification condition (Y = 84.4%) was predicted to be obtained at temperature of 39.4 °C, time of 77.5 h dosage of enzyme at 41.6% and hexanol/dihydrocaffeic acid mole ratio of 2.1. Finally, this study has produced an efficient enzymatic esterification method for the preparation of hexyl dihydrocaffeate in vitro using a lipase in an ionic liquid system. Concentration of hexanol was the most significant (p < 0.05) independent variable that influenced the yield of hexyl dihydrocaffeate. Graphical abstract Synthesis of different Hexyl dihydrocaffeates in ionic liquid.
Liu, Yong-Qiang; Yu, Hong
2016-08-01
Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M
2018-07-20
Nine organophosphorus pesticides (OPPs) were determined in environmental waters from different origins using in situ ionic liquid dispersive liquid microextraction (IL-DLLME). This preconcentration technique was coupled to gas chromatography-mass spectrometry (GC-MS) using microvial insert thermal desorption, an approach that uses a thermal desorption injector as sample introduction system. The parameters affecting both the microextraction and sample injection steps were optimized. The proposed method showed good precision, with RSD values ranging from 4.1 to 9.7%, accuracy with recoveries in the 85-118% range, and sensitivity with DLs ranging from 5 to 16 ng L -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
Protic ionic liquid as additive on lipase immobilization using silica sol-gel.
de Souza, Ranyere Lucena; de Faria, Emanuelle Lima Pache; Figueiredo, Renan Tavares; Freitas, Lisiane dos Santos; Iglesias, Miguel; Mattedi, Silvana; Zanin, Gisella Maria; dos Santos, Onélia Aparecida Andreo; Coutinho, João A P; Lima, Álvaro Silva; Soares, Cleide Mara Faria
2013-03-05
Ionic liquids (ILs) have evolved as a new type of non-aqueous solvents for biocatalysis, mainly due to their unique and tunable physical properties. A number of recent review papers have described a variety of enzymatic reactions conducted in IL solutions, on the other hand, to improve the enzyme's activity and stability in ILs; major methods being explored include the enzyme immobilization (on solid support, sol-gel, etc.), protic ionic liquids used as an additive process. The immobilization of the lipase from Burkholderia cepacia by the sol-gel technique using protic ionic liquids (PIL) as additives to protect against inactivation of the lipase due to release of alcohol and shrinkage of the gel during the sol-gel process was investigated in this study. The influence of various factors such as the length of the alkyl chain of protic ionic liquids (monoethanolamine-based) and a concentration range between 0.5 and 3.0% (w/v) were evaluated. The resulting hydrophobic matrices and immobilized lipases were characterised with regard to specific surface area, adsorption-desorption isotherms, pore volume (V(p)) and size (d(p)) according to nitrogen adsorption and scanning electron microscopy (SEM), physico-chemical properties (thermogravimetric - TG, differential scanning calorimetry - DSC and Fourier transform infrared spectroscopy - FTIR) and the potential for ethyl ester and emulsifier production. The total activity yields (Y(a)) for matrices of immobilized lipase employing protic ionic liquids as additives always resulted in higher values compared with the sample absent the protic ionic liquids, which represents 35-fold increase in recovery of enzymatic activity using the more hydrophobic protic ionic liquids. Compared with arrays of the immobilized biocatalyst without additive, in general, the immobilized biocatalyst in the presence of protic ionic liquids showed increased values of surface area (143-245 m(2) g(-1)) and pore size (19-38 Å). Immobilization with protic ionic liquids also favoured reduced mass loss according to TG curves (always less than 42.9%) when compared to the immobilized matrix without protic ionic liquids (45.1%), except for the sample containing 3.0% protic ionic liquids (46.5%), verified by thermogravimetric analysis. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety were beneficial for recovery of the activity of the immobilized lipase. The physico-chemical characterization confirmed the presence of the enzyme and its immobilized derivatives obtained in this study by identifying the presence of amino groups, and profiling enthalpy changes of mass loss. Copyright © 2013 Elsevier Inc. All rights reserved.
Towards an all-copper redox flow battery based on a copper-containing ionic liquid.
Schaltin, Stijn; Li, Yun; Brooks, Neil R; Sniekers, Jeroen; Vankelecom, Ivo F J; Binnemans, Koen; Fransaer, Jan
2016-01-07
The first redox flow battery (RFB), based on the all-copper liquid metal salt [Cu(MeCN)4][Tf2N], is presented. Liquid metal salts (LMS) are a new type of ionic liquid that functions both as solvent and electrolyte. Non-aqueous electrolytes have advantages over water-based solutions, such as a larger electrochemical window and large thermal stability. The proof-of-concept is given that LMSs can be used as the electrolyte in RFBs. The main advantage of [Cu(MeCN)4][Tf2N] is the high copper concentration, and thus high charge and energy densities of 300 kC l(-1) and 75 W h l(-1) respectively, since the copper(i) ions form an integral part of the electrolyte. A Coulombic efficiency up to 85% could be reached.
Thermal decomposition mechanism of 1-ethyl-3-methylimidazolium bromide ionic liquid.
Chambreau, Steven D; Boatz, Jerry A; Vaghjiani, Ghanshyam L; Koh, Christine; Kostko, Oleg; Golan, Amir; Leone, Stephen R
2012-06-21
In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(‡)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(‡)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f, gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f, liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f, gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f, liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.
NASA Astrophysics Data System (ADS)
Tucker, Telpriore G.
This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases producing water vapor. Principle advantage is high-energy efficiency of up to 70% in contrast to an internal combustion engine <40%. Nafion-based fuel cells are prone to carbon monoxide catalytic poisoning and polymer membrane degradation unless heavily hydrated under cell-pressurization. This novel "SiPOH" solid-electrolytic gel (originally liquid-state) operated in the fuel cell at 121ºC yielding current and power densities high as 731mAcm-2 and 345mWcm-2, respectively. Enhanced proton conduction significantly increased H2 fuel efficiency to 89.7% utilizing only 3.1mlmin-1 under dry, unpressurized testing conditions. All these energy devices aforementioned evidently have future promise; therefore in early developmental stages.
2018-01-01
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure–constant temperature ensemble. These materials exhibit a distinct “smectic” liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications. PMID:29301305
EXPEDITIOUS SYNTHESIS OF IONIC LIQUIDS USING ULTRASOUND AND MICROWAVE IRRADIATION
Environmentally friendlier preparations of ionic liquids have been developed that proceed expeditiously under the influence of microwave or ultrasound irradiation conditions using neat reactants, alkylimidazoles and alkyl halides. A number of useful ionic liquids have been prepar...
Otero, I; Lepre, L F; Dequidt, A; Husson, P; Costa Gomes, M F
2017-10-19
The effect of the addition of a third ion to the ionic liquid 1-butyl-3-methylimidazolium acetate [C 4 C 1 Im][OAc] was studied through the measurement of the enthalpy of mixing and of the excess molar volume of its mixtures with 1-butyl-3-methylimidazolium trifluoroacetate [C 4 C 1 Im][CF 3 CO 2 ], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C 4 C 1 Im][NTf 2 ], and tetrabutylphosphonium acetate [P 4444 ][OAc]. Negative enthalpies of mixing (Δ mix H < 0) and positive excess molar volumes (V E > 0) were observed in all cases. The infrared and NMR studies of the pure ionic liquids and their mixtures show that the presence of a third ion with a weaker affinity with the common counterion contributes to prevailing the more favorable hydrogen-bond, herein always between the imidazolium cation and the acetate anion. Both radial and spatial distribution functions calculated by molecular simulation confirm this behavior. The remarkable enhancement of the viscosities of the [C 4 C 1 Im][OAc] + [P 4444 ][OAc] mixtures could be discussed in light of the calculated friction coefficients.
Costa, Luciano T; Ribeiro, Mauro C C
2006-05-14
Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.
Extraction of organic compounds with room temperature ionic liquids.
Poole, Colin F; Poole, Salwa K
2010-04-16
Room temperature ionic liquids are novel solvents with a rather specific blend of physical and solution properties that makes them of interest for applications in separation science. They are good solvents for a wide range of compounds in which they behave as polar solvents. Their physical properties of note that distinguish them from conventional organic solvents are a negligible vapor pressure, high thermal stability, and relatively high viscosity. They can form biphasic systems with water or low polarity organic solvents and gases suitable for use in liquid-liquid and gas-liquid partition systems. An analysis of partition coefficients for varied compounds in these systems allows characterization of solvent selectivity using the solvation parameter model, which together with spectroscopic studies of solvent effects on probe substances, results in a detailed picture of solvent behavior. These studies indicate that the solution properties of ionic liquids are similar to those of polar organic solvents. Practical applications of ionic liquids in sample preparation include extractive distillation, aqueous biphasic systems, liquid-liquid extraction, liquid-phase microextraction, supported liquid membrane extraction, matrix solvents for headspace analysis, and micellar extraction. The specific advantages and limitations of ionic liquids in these studies is discussed with a view to defining future uses and the need not to neglect the identification of new room temperature ionic liquids with physical and solution properties tailored to the needs of specific sample preparation techniques. The defining feature of the special nature of ionic liquids is not their solution or physical properties viewed separately but their unique combinations when taken together compared with traditional organic solvents. Copyright 2009 Elsevier B.V. All rights reserved.
Thomaz, Joseph E; Bailey, Heather E; Fayer, Michael D
2017-11-21
The structural dynamics of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C n mimNTf 2 , n = 2, 4, 6, 10: ethyl-Emim; butyl-Bmim; hexyl-Hmim; decyl-Dmim) room temperature ionic liquids confined in the pores of polyether sulfone (PES 200) membranes with an average pore size of ∼350 nm and in the bulk liquids were studied. Time correlated single photon counting measurements of the fluorescence of the fluorophore coumarin 153 (C153) were used to observe the time-dependent Stokes shift (solvation dynamics). The solvation dynamics of C153 in the ionic liquids are multiexponential decays. The multiexponential functional form of the decays was confirmed as the slowest decay component of each bulk liquid matches the slowest component of the liquid dynamics measured by optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments, which is single exponential. The fact that the slowest component of the Stokes shift matches the OHD-OKE data in all four liquids identifies this component of the solvation dynamics as arising from the complete structural randomization of the liquids. Although the pores in the PES membranes are large, confinement on the mesoscopic length scale results in substantial slowing of the dynamics, a factor of ∼4, for EmimNTf 2 , with the effect decreasing as the chain length increases. By DmimNTf 2 , the dynamics are virtually indistinguishable from those in the bulk liquid. The rotation relaxation of C153 in the four bulk liquids was also measured and showed strong coupling between the C153 probe and its environment.
NASA Astrophysics Data System (ADS)
Thomaz, Joseph E.; Bailey, Heather E.; Fayer, Michael D.
2017-11-01
The structural dynamics of a series of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (CnmimNTf2, n = 2, 4, 6, 10: ethyl—Emim; butyl—Bmim; hexyl—Hmim; decyl—Dmim) room temperature ionic liquids confined in the pores of polyether sulfone (PES 200) membranes with an average pore size of ˜350 nm and in the bulk liquids were studied. Time correlated single photon counting measurements of the fluorescence of the fluorophore coumarin 153 (C153) were used to observe the time-dependent Stokes shift (solvation dynamics). The solvation dynamics of C153 in the ionic liquids are multiexponential decays. The multiexponential functional form of the decays was confirmed as the slowest decay component of each bulk liquid matches the slowest component of the liquid dynamics measured by optical heterodyne-detected optical Kerr effect (OHD-OKE) experiments, which is single exponential. The fact that the slowest component of the Stokes shift matches the OHD-OKE data in all four liquids identifies this component of the solvation dynamics as arising from the complete structural randomization of the liquids. Although the pores in the PES membranes are large, confinement on the mesoscopic length scale results in substantial slowing of the dynamics, a factor of ˜4, for EmimNTf2, with the effect decreasing as the chain length increases. By DmimNTf2, the dynamics are virtually indistinguishable from those in the bulk liquid. The rotation relaxation of C153 in the four bulk liquids was also measured and showed strong coupling between the C153 probe and its environment.
Yang, Jiale; Fan, Chen; Kong, Dandan; Tang, Gang; Zhang, Wenbing; Dong, Hongqiang; Liang, You; Wang, Deng; Cao, Yongsong
2018-02-01
Five novel ionic liquids (ILs), 1,3-dibutylimidazolium bromide [BBMIm][Br], 1-pentyl-3-butylimidazolium bromide [BPMIm][Br], 1-hexyl-3-butylimidazolium bromide [BHMIm][Br], 1,1'-(butane-1,4-diyl)bis(3-butylimidazolium) bromide [C 4 (BMIm) 2 ][Br 2 ], and 1,1'-(butane-1,4-diyl)bis(3-methylimidazolium) bromide [C 4 (MIm) 2 ][Br 2 ], were prepared and used in situ to react with bis(trifluoromethane)sulfonamide lithium salt to extract the myclobutanil, tebuconazole, cyproconazole, and prothioconazole from water samples. The results showed that mono-cationic ILs had much better recovery than dicationic ILs, and mono-imidazolium IL bearing butyl groups at N-1 and N-3 sites had the best recovery. When the length of the alkyl substituent group was more than four carbons at N-3 site, the recovery decreased with increase of alkyl chain length of 1-butylimidazolium IL. The extraction efficiency order of triazoles from high to low was [BBMIm][Br], [BPMIm][Br], [BHMIm][Br], [BMIm][Br] (1-butyl-3-methylimidazolium bromide), [C 4 (BMIm) 2 ]Br 2 , [C 4 (MIm) 2 ]Br 2 . An in situ ionic liquid dispersive liquid-liquid microextraction combined with ultrasmall superparamagnetic Fe 3 O 4 was established as a pretreatment method for enrichment of triazole fungicides in water samples by using the synthetic [BBMIm][Br] as the cationic IL and used to detect analytes followed by high-performance liquid chromatography. Under the optimized conditions, the proposed method showed a good linearity within a range of 5-250 μg L -1 , with the determination coefficient (r 2 ) varying from 0.998 to 0.999. High mean enrichment factors were achieved ranging from 187 to 323, and the recoveries of the target analytes from real water samples at spiking levels of 10.0, 20.0, and 50.0 μg L -1 were between 70.1% and 115.0%. The limits of detection for the analytes were 0.74-1.44 μg L -1 , and the intra-day relative standard deviations varied from 5.23% to 8.65%. The proposed method can be further applied to analyze and monitor pesticides in other related samples. Graphical Abstract The scheme of the in-situ DLLME method for the determination of triazoles using the imidazolium-based ionic liquids.
Ionic Liquid Crystals: Versatile Materials.
Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen
2016-04-27
This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.
Rare earth metal-containing ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodius, Denis; Mudring, Anja-Verena
As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less
Rare earth metal-containing ionic liquids
Prodius, Denis; Mudring, Anja-Verena
2018-03-07
As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less
Properties of the Nafion membrane impregnated with hydroxyl ammonium based ionic liquids
NASA Astrophysics Data System (ADS)
Garaev, Valeriy; Kleperis, Janis; Pavlovica, Sanita; Vaivars, Guntars
2012-08-01
In this work, the Nafion 112 membrane impregnated with nine various hydroxyl ammonium based ionic liquids have been investigated. The used ionic liquids were combined from hydroxyl ammonium cations (2-hydroxyethylammonium/HEA, bis(2- hydroxyethyl)ammonium/BHEA, tris(2-hydroxyethyl)ammonium/THEA) and carboxylate anions (formate, acetate, lactate). The membranes are characterized by conductivity and thermal stability measurements. It was found, that almost all composites have 10 times higher ion conductivity than a pure Nafion 112 at 90 °C in ambient environment due to the higher thermal stability. The thermal stability of Nafion membrane was increased by all studied nine ionic liquids. In this work, only biodegradable ionic liquids were used for composite preparation.
Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko
2016-01-01
Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.
Shekibi, Youssof; Rüther, Thomas; Huang, Junhua; Hollenkamp, Anthony F
2012-04-07
Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.
Megaw, Julianne; Busetti, Alessandro; Gilmore, Brendan F.
2013-01-01
The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure. PMID:23560109
Thermal Decomposition Mechanisms of Alkylimidazolium Ionic Liquids with CN-containing Anions
2014-11-01
anion calculated at the M06/6-31+G(d,p) level of theory and using the generic ionic liquid (GIL) model to simulate the condensed phase methyl...decomposition mechanisms of alkylimidazolium ionic liquids with CN-containing anions 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...perform, display, or disclose the work. 14. ABSTRACT Due to the unusually high heats of vaporization of room-temperature ionic liquids (RTILs
2010-04-01
www.elsevier .com/locate /e lecomDevelopment of the electrochemical biosensor for organophosphate chemicals using CNT/ ionic liquid bucky gel electrode Bong...hydrolase Ionic liquid CNT Electrochemical property1388-2481/$ - see front matter 2009 Elsevier B.V. A doi:10.1016/j.elecom.2009.01.006 * Corresponding...kaist.ac.kr (S.Y. Lee), whhOrganophosphorus hydrolase (OPH) immobilized on CNT/ ionic liquid (IL) electrodes were prepared by using three different intrinsic
Zhou, Chunyan; Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu
2017-04-01
Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono-6-deoxy-6-(3-methylimidazolium)-β-cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β-cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β-cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β-cyclodextrin ionic liquid. The satisfied result demonstrated that the β-cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flieger, Jolanta; Feder-Kubis, Joanna; Tatarczak-Michalewska, Małgorzata; Płazińska, Anita; Madejska, Anna; Swatko-Ossor, Marta
2017-06-01
We present the specific cooperative effect of a semisynthetic glycopeptide antibiotic teicoplanin and chiral ionic liquids containing the (1R,2S,5R)-(-)-menthol moiety on the chiral recognition of enantiomers of mandelic acid, vanilmandelic acid, and phenyllactic acid. Experiments were performed chromatographically on an Astec Chirobiotic T chiral stationary phase applying the mobile phase with the addition of the chiral ionic liquids. The stereoselective binding of enantiomers to teicoplanin in presence of new chiral ionic liquids were evaluated applying thermodynamic measurements and the docking simulations. Both the experimental and theoretical methods revealed that the chiral recognition of enantiomers in the presence of new chiral ionic liquids was enthalpy driven. The changes of the teicoplanin conformation occurring upon binding of the chiral ionic liquids are responsible for the differences in the standard changes in Gibbs energy (ΔG 0 ) values obtained for complexes formed by the R and S enantiomers and teicoplanin. Docking simulations revealed the steric adjustment between the chiral ionic liquids cyclohexane ring (chair conformation) and the β-d-glucosamine ring of teicoplanin and additionally hydrophobic interactions between the decanoic aliphatic chain of teicoplanin and the alkyl group of the tested salts. The obtained terpene derivatives can be considered as "structural task-specific ionic liquids" responsible for enhancing the chiral resolution in synergistic systems with two chiral selectors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G
2012-08-01
A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.
Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions.
Song, Yingying; Cheng, Chen; Jing, Huanwang
2014-09-26
Aza-crown ether complex cation ionic liquids (aCECILs) were devised, fabricated, and characterized by using NMR spectroscopy, MS, thermogravimetric differential thermal analysis (TG-DTA), elemental analysis and physical properties. These new and room-temperature ILs were utilized as catalysts in various organic reactions, such as the cycloaddition reaction of CO2 to epoxides, esterification of acetic acid and alcohols, the condensation reaction of aniline and propylene carbonate, and Friedel-Crafts alkylation of indole with aldehydes were investigated carefully. In these reactions, the ionic liquid exhibited cooperative catalytic activity between the anion and cation. In addition, the aza-[18-C-6HK][HSO4]2 was the best acidic catalyst in the reactions of esterification and Friedel-Crafts alkylation under mild reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Guanyi; Kang, Shujuan; Ma, Qisheng; Chen, Weiqun; Tang, Yongchun
2014-11-01
(1)H-NMR spectrum analyses are applied to study the chemical and thermal stability of selected N-heterocyclic ionic liquids within the reaction system that can highly efficiently activate a C-H bond of methane and convert it into the C-O bond in methanol. Our results indicate that under such reaction conditions involving using a powerful Pt-based catalyst and strong acidic solvent, the aromatic ring of an imidazolium cation becomes unstable generating an ammonium ion (NH(4)(+)). Our results also suggest that the instability of the imidazolium ring is more chemically (participation in reactions) than thermally based. Modifications of the aromatic ring structure such as pyrazolium and triazolium cations can increase the chemical/thermal stability of ionic liquids under these reaction conditions. Copyright © 2014 John Wiley & Sons, Ltd.
Computer Simulation Study of Graphene Oxide Supercapacitors: Charge Screening Mechanism.
Park, Sang-Won; DeYoung, Andrew D; Dhumal, Nilesh R; Shim, Youngseon; Kim, Hyung J; Jung, YounJoon
2016-04-07
Graphene oxide supercapacitors in the parallel plate configuration are studied via molecular dynamics (MD) simulations. The full range of electrode oxidation from 0 to 100% is examined by oxidizing the graphene surface with hydroxyl groups. Two different electrolytes, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI(+)BF4(-)) as an ionic liquid and its 1.3 M solution in acetonitrile as an organic electrolyte, are considered. While the area-specific capacitance tends to decrease with increasing electrode oxidation for both electrolytes, its details show interesting differences between the organic electrolyte and ionic liquid, including the extent of decrease. For detailed insight into these differences, the screening mechanisms of electrode charges by electrolytes and their variations with electrode oxidation are analyzed with special attention paid to the aspects shared by and the contrasts between the organic electrolyte and ionic liquid.
Jin, Hui; O'Hare, Bernie; Dong, Jing; Arzhantsev, Sergei; Baker, Gary A; Wishart, James F; Benesi, Alan J; Maroncelli, Mark
2008-01-10
Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.
Forgie, John C; El Khakani, Soumia; MacNeil, Dean D; Rochefort, Dominic
2013-05-28
Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.
Fasih Ramandi, Negin; Shemirani, Farzaneh
2015-01-01
For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen
2015-09-01
A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of hetero ionic compounds using dialkylcarbonate quaternization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan
2017-09-19
Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.
Synthesis of hetero ionic compounds using dialkylcarbonate quaternization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan
2018-04-03
Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.
Lokajová, Jana; Railila, Annika; King, Alistair W T; Wiedmer, Susanne K
2013-09-20
The distribution constants of some analytes, closely connected to the petrochemical industry, between an aqueous phase and a phosphonium ionic liquid phase, were determined by ionic liquid micellar electrokinetic chromatography (MEKC). The phosphonium ionic liquids studied were the water-soluble tributyl(tetradecyl)phosphonium with chloride or acetate as the counter ion. The retention factors were calculated and used for determination of the distribution constants. For calculating the retention factors the electrophoretic mobilities of the ionic liquids were required, thus, we adopted the iterative process, based on a homologous series of alkyl benzoates. Calculation of the distribution constants required information on the phase-ratio of the systems. For this the critical micelle concentrations (CMC) of the ionic liquids were needed. The CMCs were calculated using a method based on PeakMaster simulations, using the electrophoretic mobilities of system peaks. The resulting distribution constants for the neutral analytes between the ionic liquid and the aqueous (buffer) phase were compared with octanol-water partitioning coefficients. The results indicate that there are other factors affecting the distribution of analytes between phases, than just simple hydrophobic interactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Sedov, I A; Magsumov, T I; Salikov, T M; Solomonov, B N
2017-09-27
The solvation properties of protic ionic liquids such as alkylammonium salts are still virtually uncharacterized. Both electrostatic interactions between charged particles and hydrogen bond networks in a solvent are known to hinder the solubility of apolar species. Protic ionic liquids can be a priori expected to dissolve hydrocarbons worse than aprotic ionic liquids which do not form hydrogen bonds between the ions. We measured the limiting activity coefficients of several alkanes and alkylbenzenes in propylammonium and butylammonium nitrates at 298 K. Surprisingly, we observed the tendency of higher solubility than for the same compounds in aprotic ionic liquids with a similar molar volume. The calculations of the excess Gibbs free energies using test particle insertions into the snapshots of molecular dynamics trajectories reproduced lower values in protic rather than in aprotic ionic liquids for both methane molecules and hard sphere solutes. This can be explained by the favorable solvation of apolar species in the apolar domain of nanostructured PILs. For the first time, we point out at the essential difference between the solvation properties of two types of ionic liquids and prove that it arises from the cavity formation term.
Basu, Anirban; Bhattacharya, Subhash Chandra; Kumar, Gopinatha Suresh
2018-02-01
Many proteins can abnormally fold to form pathological amyloid deposits/aggregates that are responsible for various degenerative disorders called amyloidosis. Here we have examined the anti-amyloidogenic potency of an ionic liquid, 1-butyl-3-methylimidazolium bromide, using lysozyme as a model system. Thioflavin T fluorescence assay demonstrated that the ionic liquid suppressed the formation of lysozyme fibrils significantly. This observation was further confirmed by the Congo red assay. Fluorescence microscopy, intrinsic fluorescence studies, nile red fluorescence assay, ANS binding assay and circular dichroism studies also testified diminishing of the fibrillogenesis in the presence of ionic liquid. Formation of amyloid fibrils was also characterized by α to β conformational transition. From far-UV circular dichroism studies it was observed that the β-sheet content of the lysozyme samples decreased in the presence of the ionic liquid which in turn implied that fibrillogenesis was supressed by the ionic liquid. Atomic force microscopy imaging unequivocally established that the ionic liquid attenuated fibrillogenesis in lysozyme. These results may be useful for the development of more effective therapeutics for amyloidosis. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopade, Sujay A.; Anderson, Evan L.; Schmidt, Peter W.
Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethylmore » sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.« less
Harnessing Poly(ionic liquid)s for Sensing Applications.
Guterman, Ryan; Ambrogi, Martina; Yuan, Jiayin
2016-07-01
The interest in poly(ionic liquid)s for sensing applications is derived from their strong interactions to a variety of analytes. By combining the desirable mechanical properties of polymers with the physical and chemical properties of ILs, new materials can be created. The tunable nature of both ionic liquids and polymers allows for incredible diversity, which is exemplified in their broad applicability. In this article we examine the new field of poly(ionic liquid) sensors by providing a detailed look at the current state-of-the-art sensing devices for solvents, gases, biomolecules, pH, and anions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lu, Fei; Gao, Xinpei; Xie, Shuting; Sun, Nan; Zheng, Liqiang
2014-10-21
Chemically modified Nafion composite membranes were successfully fabricated using five kinds of protic ionic liquids (PILs) with different cations, 1-butylammonium methanesulfonate (BA-MS), tributylammonium methanesulfonate (TBA-MS), 2,4,6-trimethylphenylammonium methanesulfonate (TMA-MS), butane-1,4-diammonium methanesulfonate (BDA-MS), and N-(2-aminoethyl)ethane-1,2-diammonium methanesulfonate (DETA-MS). The PIL incorporated Nafion composite membranes were characterized by impedance spectroscopy, small-angle X-ray scattering (SAXS), dynamic-mechanical analysis (DMA) and thermogravimetric analysis (TGA). In general, the Nafion/PIL composite membranes exhibit a significant increase in the ionic conductivities than Nafion under anhydrous conditions. The interactions between the Nafion ionomer and different geometric cations of PILs were also discussed by the comparison of nanostructures, dynamic-mechanical properties and thermal stabilities of the Nafion/PIL composite membranes.
Metal-air cell with performance enhancing additive
Friesen, Cody A; Buttry, Daniel
2015-11-10
Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.
Nanoarchitecture Control Enabled by Ionic Liquids
NASA Astrophysics Data System (ADS)
Murdoch, Heather A.; Limmer, Krista R.; Labukas, Joseph P.
2017-04-01
Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.
Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka
2014-02-01
The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.
Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen
2014-05-01
In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.
Safe lithium-ion battery with ionic liquid-based electrolyte for hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Damen, Libero; Lazzari, Mariachiara; Mastragostino, Marina
2011-10-01
A lithium-ion battery featuring graphite anode, LiFePO4-C cathode and an innovative, safe, ionic liquid-based electrolyte, was assembled and characterized in terms of specific energy and power after the USABC-DOE protocol for power-assist hybrid electric vehicle (HEV) application. The test results show that the battery surpasses the energy and power goals stated by USABC-DOE and, hence, this safe lithium-ion battery should be suitable for application in the evolving HEV market.
Energetic Ionic Liquids Based on Anionic Rare Earth Nitrate Complexes (Preprint)
2008-07-10
a glass transition temperature (Tg) at -46 oC. However, it is only stable in dry air, and thus must be protected from water. At 75 oC, clear weight...involved highly toxic and corrosive chemicals, N2O4 and NOCl. Ligands which coordinate via oxygen atoms to a rare earth metal ion give rise to stable...complexes. Thus higher air and thermal stabilities may be obtained by introducing rare earth metal nitrates as main components of ionic liquids. We
Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar
2007-09-07
The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.
Freitas, Flavio S; de Freitas, Jilian N; Ito, Bruno I; De Paoli, Marco-A; Nogueira, Ana F
2009-12-01
Polymer electrolytes based on mixtures of poly(ethylene oxide-co-propylene oxide) and 1-methyl-3-propyl-imidazolium iodide (MPII) were investigated, aiming at their application in dye-sensitized solar cells (DSSC). The interactions between the copolymer and the ionic liquid were analyzed by infrared spectroscopy and (1)H NMR. The results show interactions between the ether oxygen in the polymer and the hydrogen in the imidazolium cations. The ionic conductivities, electrochemical behaviors, and thermal properties of the electrolytes containing different concentrations of MPII were investigated. The electrolyte containing 70 wt % MPII presented the highest ionic conductivity (2.4 x 10(-3) S cm(-1)) and a diffusion coefficient of 1.9 x 10(-7) cm(2) s(-1). The influence of LiI addition to the electrolytes containing different concentrations of MPII was also investigated. The DSSC assembled with the electrolyte containing 70 wt % MPII showed an efficiency of 3.84% at 100 mW cm(-2). The stability of the devices for a period of 30 days was also evaluated using sealed cells. The devices assembled with the electrolyte containing less ionic liquid showed to be more stable.
Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Zhe, E-mail: tangzhe1983@163.com; Liang, Jilei, E-mail: liangjilei_httplan@126.com; Li, Xuehui, E-mail: lxhhmx@163.com
A simple and novel synthesis process, one-step ionic liquid-assisted hydrothermal synthesis route, has been developed in the work to synthesize Bohemithe (γ-AlOOH) with flower-like structure. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM). Ionic liquid [Omim]{sup +}Cl{sup −}, as a template, plays an important role in the morphology and pore structure of the products due to its strong interactions with reaction particles. With the increase in the dosage of ionic liquid [Omim]{sup +}Cl{sup −}, the morphology of the γ-AlOOH was changed from initial bundles of nanosheets (without ionic liquid) intomore » final well-developed monodispersed 3D flower-like architectures ([Omim]{sup +}Cl{sup −}=72 mmol). The pore structure was also altered gradually from initial disordered slit-like pore into final relatively ordered ink-bottle pore. Furthermore, the proposed formation mechanism and other influencing factors such as reaction temperature and urea on formation and morphology of the γ-AlOOH have also been investigated. - Graphical abstract: The flower-like γ-AlOOH architectures composed by nanosheets with narrow size distribution (1.6–2.2 μm) and uniform pore size (6.92 nm) have been synthesized via a one-step ionic liquid-assisted hydrothermal route. - Highlights: • The γ-AlOOH microflowers were synthesized via an ionic liquid-assisted hydrothermal route. • Ionic liquid plays an important role on the morphology and porous structure of the products. • Ionic liquid can be easily removed from the products and reused in recycling experiments. • A “aggregation–recrystallization–Ostwald Ripening“formation mechanism may occur.« less
Development of solvent-free ambient mass spectrometry for green chemistry applications.
Liu, Pengyuan; Forni, Amanda; Chen, Hao
2014-04-15
Green chemistry minimizes chemical process hazards in many ways, including eliminating traditional solvents or using alternative recyclable solvents such as ionic liquids. This concept is now adopted in this study for monitoring solvent-free reactions and analysis of ionic liquids, solids, and catalysts by mass spectrometry (MS), without using any solvent. In our approach, probe electrospray ionization (PESI), an ambient ionization method, was employed for this purpose. Neat viscous room-temperature ionic liquids (RTILs) in trace amounts (e.g., 25 nL) could be directly analyzed without sample carryover effect, thereby enabling high-throughput analysis. With the probe being heated, it can also ionize ionic solid compounds such as organometallic complexes as well as a variety of neat neutral solid chemicals (e.g., amines). More importantly, moisture-sensitive samples (e.g., [bmim][AlCl4]) can be successfully ionized. Furthermore, detection of organometallic catalysts (including air-sensitive [Rh-MeDuPHOS][OTf]) in ionic liquids, a traditionally challenging task due to strong ion suppression effect from ionic liquids, can be enabled using PESI. In addition, PESI can be an ideal approach for monitoring solvent-free reactions. Using PESI-MS, we successfully examined the alkylation of amines by alcohols, the conversion of pyrylium into pyridinium, and the condensation of aldehydes with indoles as well as air- and moisture-sensitive reactions such as the oxidation of ferrocene and the condensation of pyrazoles with borohydride. Interestingly, besides the expected reaction products, the reaction intermediates such as the monopyrazolylborate ion were also observed, providing insightful information for reaction mechanisms. We believe that the presented solvent-free PESI-MS method would impact the green chemistry field.
Cláudio, Ana Filipa M.; Neves, Márcia C.; Shimizu, Karina; Canongia Lopes, José N.; Freire, Mara G.; Coutinho, João A. P.
2015-01-01
Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are widely used in the formulation of drugs, cleaning and personal care products. In this work, it is shown that ionic liquids are a new class of powerful catanionic hydrotropes where both the cation and the anion synergistically contribute to increase the solubility of biomolecules in water. The effects of the ionic liquid chemical structures, their concentration and the temperature on the solubility of two model biomolecules, vanillin and gallic acid were evaluated and compared with the performance of conventional hydrotropes. The solubility of these two biomolecules was studied in the entire composition range, from pure water to pure ionic liquids, and an increase in the solubility of up to 40-fold was observed, confirming the potential of ionic liquids to act as hydrotropes. Using dynamic light scattering, NMR and molecular dynamics simulations, it was possible to infer that the enhanced solubility of the biomolecule in the IL aqueous solutions is related to the formation of ionic-liquid–biomolecules aggregates. Finally, it was demonstrated that hydrotropy induced by ionic liquids can be used to recover solutes from aqueous media by precipitation, simply by using water as an anti-solvent. The results reported here have a significant impact on the understanding of the role of ionic liquid aqueous solutions in the extraction of value-added compounds from biomass as well as in the design of novel processes for their recovery from aqueous media. PMID:26379471
Rout, Alok; Binnemans, Koen
2014-02-28
The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kellar, Michael
2015-09-01
The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to themore » typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.« less
Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; ...
2016-05-19
A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO 3 to UO 2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO 2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang
A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO 3 to UO 2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO 2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.