Sample records for ionic radii effect

  1. Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds.

    PubMed

    Berenov, A; Le Goupil, F; Alford, N

    2016-06-21

    A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed.

  2. Bonded Radii and the Contraction of the Electron Density of the Oxygen Atom by Bonded Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.

    2013-02-21

    The bonded radii for more than 550 bonded pairs of atoms, comprising more than 50 crystals, determined from experimental and theoretical electron density distributions, are compared with the effective ionic, ri(M), and crystal radii, rc(M), for metal atoms, M, bonded to O atoms. At odds with the fixed ionic radius of 1.40 Å, assumed for the O atom in the compilation of the ionic radii, the bonded radius for the atom, rb(O), is not fixed but displays a relatively wide range of values as the O atom is progressively polarized by the M-O bonded interactions: as such, rb(O) decreases systematicallymore » from 1.40 Å (the Pauling radius of the oxide anion) as bond lengths decrease when bonded to an electropositive atom like sodium, to 0.64 Å (Bragg’s atomic radius of the O atom) when bonded to an electronegative atom like nitrogen. Both rb(M) and rb(O) increase in tandum with the increasing coordination number of the M atom. The bonded radii of the M atoms are highly correlated with both ri(M) and rc(M), but they both depart systematically from rb(M) and become smaller as the electronegativity of the M atom increases and the M-O bond length decreases. The well-developed correlations between both sets of radii and rb(M) testifies to the relative precision of both sets of radii and the fact that both sets are highly correlated the M-O bond 1 lengths. On the other hand, the progressive departure of rb(O) from the fixed ionic radius of the O atom with the increasing electronegativity of the bonded M atom indicates that any compilation of sets of ionic radii, assuming that the radius for the oxygen atom is fixed in value, is problematical and impacts on the accuracy of the resulting sets of ionic and crystal radii thus compiled. The assumption of a fixed O atom radius not only results in a negative ionic radii for several atoms, but it also results in values of rb(M) that are much as ~ 0.6 Å larger than the ri(M) and rc(M) values, respectively, particularly for the more electronegative M atoms. On the other hand, the ionic radii are in closer agreement with rb(M) for the more electropositive atoms. Notwithstanding that ionic radii are typically smaller than bonded radii, particularly for the more electronegative atoms, they have been used with considerable success in understanding and rationalizing problems and properties in crystal chemistry primarily because both ionic and crystal radii are highly correlated on a one-to-one basis with both the bonded radii and the associated M-O bond lengths. The lack of agreement between the effective ionic and crystal radii and the bonded radii for the more shared bonded interactions is ascribed to the progressive increase in the polarization of the O atom by the bonded atoms with a concomitant decrease in its radius, a factor that was neglected in the compilation of ionic and crystal radii for fluorides, oxides, sulfides and nitrides. This accounts for ionic radii for these materials being smaller than the bonded radii for the more electronegative atoms.« less

  3. Specific anion effects on copper surface through electrochemical treatment: Enhanced photoelectrochemical CO2 reduction activity of derived nanostructures induced by chaotropic anions

    NASA Astrophysics Data System (ADS)

    Navaee, Aso; Salimi, Abdollah

    2018-05-01

    Copper derivatives are the most prominent CO2 reduction electrocatalyst. Herein, the metallic copper has been electrochemically treated with some of common ionic salts such as N3bar, HPO2bar, S2bar, Fbar, Clbar, Brbar and Ibar based on the dissolution of a metallic working electrode in an aqueous solution to derive the surface roughness incorporated with nanostructures. Diverse surface morphology can be obtained when the ionic radii of anions are changed. Surface study reveals various roughness shapes based on the size and polarity of the anions, where the ions with higher ionic radii have higher impact on the Cu surface. In comparison, polyatomic oxyanion such as HPO2bar even with large ionic radii do not have enough strength to create the surface roughness than that of oxygen-free anions with large ionic radii. The photoelectrochemical behavior of the modified surfaces toward CO2 reduction is studied at a wide potential window in bicarbonate aqueous solution. Based on our investigations, treated surfaces by Ibar, Clbar and S2bargive a more surface roughness, while Ibar and N3bar offer higher catalytic activity toward CO2 reduction due to possible complexing ability of these anions with Cu cations, followed by formation of the co-catalyst semiconductor and facilitate electron transfer. This methodology can be applied to investigate the effect of ions on transition metals along with obtaining different surface morphologies tailored to different applications.

  4. Effects of ionic radius of redox-inactive bio-related metal ions on the radical-scavenging activity of flavonoids evaluated using photometric titration.

    PubMed

    Waki, Tsukasa; Kobayashi, Shigeki; Matsumoto, Ken-ichiro; Ozawa, Toshihiko; Kamada, Tadashi; Nakanishi, Ikuo

    2013-10-28

    Mg(2+) enhanced the scavenging activity of (+)-catechin and quercetin against the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙), while Al(3+) decreased their activity. Such effects of Mg(2+) and Al(3+) were not observed for kaempferol. Na(+) and Ca(2+) with large ionic radii showed little effect on the DPPH˙-scavenging activity of these three flavonoids.

  5. Size and Charge Dependence of Ion Transport in Human Nail Plate

    PubMed Central

    Baswan, Sudhir M.; Li, S. Kevin; LaCount, Terri D.; Kasting, Gerald B.

    2016-01-01

    The electrical properties of human nail plate are poorly characterized, yet are a key determinate of the potential to treat nail diseases such as onychomycosis using iontophoresis. In order to address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of −1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were three-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upwards of 5 Å (approximately MW ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. PMID:26886342

  6. The effect of dopants on the microwave dielectric properties of Ba(Mg{sub 0.33}Ta{sub 0.67})O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surendran, Kuzhichalil P.; Sebastian, Mailadil T.; Mohanan, Pezholil

    2005-11-01

    The effect of dopants with different valencies and ionic radii on the densification, structural ordering, and microwave dielectric properties of Ba(Mg{sub 1/3}Ta{sub 2/3})O{sub 3} (BMT) is investigated. It is found that dopants such as Sb{sub 2}O{sub 5}, MnO, ZrO{sub 2}, WO{sub 3}, and ZnO improve the microwave dielectric properties of BMT. Addition of trivalent dopants is detrimental to the cation ordering and dielectric properties of BMT. A correlation between the microwave dielectric properties of BMT and ionic radii of the dopant has been established. The variation of the dielectric properties of pure and doped BMT at cryogenic temperatures is alsomore » discussed.« less

  7. Size and Charge Dependence of Ion Transport in Human Nail Plate.

    PubMed

    Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D; Kasting, Gerald B

    2016-03-01

    The electrical properties of human nail plate are poorly characterized yet are a key determinate of the potential to treat nail diseases, such as onychomycosis, using iontophoresis. To address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of -1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were 3-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upward of 5 Å (molecular weight, ca. ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons

    DOE PAGES

    Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin; ...

    2018-04-26

    The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.« less

  9. Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Zarkadoula, Eva; Ou, Xin

    The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A 2B 2O 7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb 2Ti 2O 7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. Wemore » also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A 2B 2O 7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. Furthermore, these results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.« less

  10. Studies of ionic current rectification using polyethyleneimines coated glass nanopipettes.

    PubMed

    Liu, Shujuan; Dong, Yitong; Zhao, Wenbo; Xie, Xiang; Ji, Tianrong; Yin, Xiaohong; Liu, Yun; Liang, Zhongwei; Momotenko, Dmitry; Liang, Dehai; Girault, Hubert H; Shao, Yuanhua

    2012-07-03

    The modification of glass nanopipettes with polyethyleneimines (PEIs) has been successfully achieved by a relatively simple method, and the smallest tip opening is around 3 nm. Thus, in a much wider range of glass pipettes with radii from several nanometers to a few micrometers, the ion current rectification (ICR) phenomenon has been observed. The influences of different KCl concentrations, pH values, and tip radii on the ICR are investigated in detail. The sizes of PEIs have been determined by dynamic light scattering, and the effect of the sizes of PEIs for the modification, especially for a few nanometer-pipettes in radii, is also discussed. These findings systemically confirm and complement the theoretical model and provide a platform for possible selectively molecular detection and mimic biological ion channels.

  11. Atomic and Ionic Radii of Elements 1-96.

    PubMed

    Rahm, Martin; Hoffmann, Roald; Ashcroft, N W

    2016-10-04

    Atomic and cationic radii have been calculated for the first 96 elements, together with selected anionic radii. The metric adopted is the average distance from the nucleus where the electron density falls to 0.001 electrons per bohr(3) , following earlier work by Boyd. Our radii are derived using relativistic all-electron density functional theory calculations, close to the basis set limit. They offer a systematic quantitative measure of the sizes of non-interacting atoms, commonly invoked in the rationalization of chemical bonding, structure, and different properties. Remarkably, the atomic radii as defined in this way correlate well with van der Waals radii derived from crystal structures. A rationalization for trends and exceptions in those correlations is provided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Light scattering measurements supporting helical structures for chromatin in solution.

    PubMed

    Campbell, A M; Cotter, R I; Pardon, J F

    1978-05-01

    Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.

  13. Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements.

    PubMed

    Brik, Mikhail G; Suchocki, Andrzej; Kamińska, Agata

    2014-05-19

    A thorough consideration of the relation between the lattice parameters of 185 binary and ternary spinel compounds, on one side, and ionic radii and electronegativities of the constituting ions, on the other side, allowed for establishing a simple empirical model and finding its linear equation, which links together the above-mentioned quantities. The derived equation gives good agreement between the experimental and modeled values of the lattice parameters in the considered group of spinels, with an average relative error of about 1% only. The proposed model was improved further by separate consideration of several groups of spinels, depending on the nature of the anion (oxygen, sulfur, selenium/tellurium, nitrogen). The developed approach can be efficiently used for prediction of lattice constants for new isostructural materials. In particular, the lattice constants of new hypothetic spinels ZnRE2O4, CdRE2S4, CdRE2Se4 (RE = rare earth elements) are predicted in the present Article. In addition, the upper and lower limits for the variation of the ionic radii, electronegativities, and their certain combinations were established, which can be considered as stability criteria for the spinel compounds. The findings of the present Article offer a systematic overview of the structural properties of spinels and can serve as helpful guides for synthesis of new spinel compounds.

  14. Electrochemical sensing of modified ABO3 perovskite: LaFe0.8 R0.2O3(R= Cr, Co, Al)

    NASA Astrophysics Data System (ADS)

    Vidya Rajan, N.; Alexander, L. K.

    2017-06-01

    Perovskite LaFeO3 with orthorhombic structure has been synthesized by citric acid mediated solution method. The effectiveness of ionic radii and Oxidation state of the doping material on ionic conductivity of the host matrix was evaluated by B-site (Fe) doping on LaFeO3 with Cr, Co and Al, resulting LaFe0.8 R0.2O3 (R = Cr, Co, Al). XRD with Rietveld refinement and Raman spectroscopic analysis demonstrate successful synthesis. The effect of the 20% B site doping on electrochemical activity is reported. The doped materials exhibit a decrease in sensing activity towards the non enzymatic detection of H2O2.

  15. Synthesis-property relationship in thermoelectric Sr1-xYbxTiO3-δ ceramics

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Mehdizadeh Dehkordi, A.; Alshareef, H. N.; Tritt, T. M.

    2014-09-01

    The electronic transport properties of a series of Sr1-xYbxTiO3-δ(x = 0.05, 0.1) ceramics are investigated as a function of solid-state reaction (SSR) parameters, specifically calcination steps. It was found that the electrical conductivity (σ) increases almost by a factor of 6, through the optimization of SSR parameters. The enhancement in the electrical conductivity leads to an enhancement in the thermoelectric power factor by a factor of 3. In addition, the lattice thermal conductivity (κL) of the Sr1-xYbxTiO3-δ ceramics is suppressed with increasing Yb-doping, supposedly due to heavier atomic mass of Yb substituted at the Sr site and a smaller ionic radii of Yb+3 with respect to Sr+2 ions. However, our model calculations indicate that strain-field effect, which occurs due to the difference in ionic radii, is the more prominent phonon scattering mechanism in the Yb-doped SrTiO3. This work is an extension of our previous study on the underlying phonon scattering mechanisms in the Y-doped SrTiO3, which would provide new insight into thermal transport in doped SrTiO3 and could be used as a guideline for more effective material synthesis.

  16. Relativistic Corrections to the Properties of the Alkali Fluorides

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Partridge, Harry

    1993-01-01

    Relativistic corrections to the bond lengths, dissociation energies and harmonic frequencies of KF, RbF and CsF have been obtained at the self-consistent field level by dissociating to ions. The relativistic corrections to the bond lengths, harmonic frequencies and dissociation energies to the ions are very small, due to the ionic nature of these molecules and the similarity of the relativistic and nonrelativistic ionic radii.

  17. Distribution coefficients of rare earth ions in cubic zirconium dioxide

    NASA Astrophysics Data System (ADS)

    Romer, H.; Luther, K.-D.; Assmus, W.

    1994-08-01

    Cubic zirconium dioxide crystals are grown with the skull melting technique. The effective distribution coefficients for Nd(exp 3+), Sm(exp 3+) and Er(sup 3+) as dopants are determined experimentally as a function of the crystal growth velocity. With the Burton-Prim-Slichter theory, the equilibrium distribution coefficients can be calculated. The distribution coefficients of all other trivalent rare earth ions can be estimated by applying the correlation towards the ionic radii.

  18. Prediction of apatite lattice constants from their constituent elemental radii and artificial intelligence methods.

    PubMed

    Wu, P; Zeng, Y Z; Wang, C M

    2004-03-01

    Lattice constants (LCs) of all possible 96 apatite compounds, A(5)(BO(4))(3)C, constituted by A[double bond]Ba(2+), Ca(2+), Cd(2+), Pb(2+), Sr(2+), Mn(2+); B[double bond]As(5+), Cr(5+), P(5+), V(5+); and C[double bond]F(1-), Cl(1-), Br(1-), OH(1-), are predicted from their elemental ionic radii, using pattern recognition (PR) and artificial neural networks (ANN) techniques. In particular, by a PR study it is demonstrated that ionic radii predominantly govern the LCs of apatites. Furthermore, by using ANN techniques, prediction models of LCs a and c are developed, which reproduce well the measured LCs (R(2)=0.98). All the literature reported on 30 pure and 22 mixed apatite compounds are collected and used in the present work. LCs of all possible 66 new apatites (assuming they exist) are estimated by the developed ANN models. These proposed new apatites may be of interest to biomedical research especially in the design of new apatite biomaterials for bone remodeling. Similarly these techniques may also be applied in the study of interface growth behaviors involving other biomaterials.

  19. The geometry of the ionic chànnel lumen formed by alpha-latroinsectotoxin from black widow spider venom in the bilayer lipid membranes.

    PubMed

    Shatursky, Oleg Ya; Volkova, Tatyana M; Himmelreich, Nina H; Grishin, Eugene V

    2007-11-01

    The dependence of single channel conductance formed by alpha-latroinsectotoxin (alpha-LIT) from black widow spider venom in the planar phospholipid membrane on the hydrodynamic radii of different nonelectrolytes allowed to determine the geometry of alpha-LIT water lumen. It was found that the cis- and trans-entrances of alpha-LIT channel had the same effective radii of 0.55-0.58 nm. Relatively small conductance of alpha-LIT channel (23.5+3.7 pS) in a symmetrical membrane bathing solution of 100 mM KCl (pH 7.4) may result from the constriction inside the channel with apparent radius of 0.37 nm located 32.5% of channel length away from the cis-entrance.

  20. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects.

    PubMed

    Xia, Tianjiao; Qi, Yu; Liu, Jing; Qi, Zhichong; Chen, Wei; Wiesner, Mark R

    2017-01-17

    Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na + < K + < Cs + , and those of alkaline earth metal ions followed the order of Mg 2+ < Ca 2+ < Ba 2+ . With batch adsorption experiments and microscopic data, we verified that cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs + and divalent Ca 2+ and Ba 2+ , which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.

  1. On the validity of Stokes-Einstein and Stokes-Einstein-Debye relations in ionic liquids and ionic-liquid mixtures.

    PubMed

    Köddermann, Thorsten; Ludwig, Ralf; Paschek, Dietmar

    2008-09-15

    Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations in the neat ionic liquid (IL) [C(2)mim][NTf(2)] and IL/chloroform mixtures are studied by means of molecular dynamics (MD) simulations. For this purpose, we simulate the translational diffusion coefficients of the cations and anions, the rotational correlation times of the C(2)--H bond in the cation C(2)mim(+), and the viscosities of the whole system. We find that the SE and SED relations are not valid for the pure ionic liquid, nor for IL/chloroform mixtures down to the miscibility gap (at 50 wt % IL). The deviations from both relations could be related to dynamical heterogeneities described by the non-Gaussian parameter alpha(t). If alpha(t) is close to zero, at a concentration of 1 wt % IL in chloroform, both relations become valid. Then, the effective radii and volumes calculated from the SE and SED equations can be related to the structures found in the MD simulations, such as aggregates of ion pairs. Overall, similarities are observed between the dynamical properties of supercooled water and those of ionic liquids.

  2. Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection.

    PubMed

    Astefanei, Alina; Kok, Wim Th; Bäuerlein, Patrick; Núñez, Oscar; Galceran, Maria Teresa; de Voogt, Pim; Schoenmakers, Peter J

    2015-08-21

    Fullerenes are carbon nanoparticles with widespread biomedical, commercial and industrial applications. Attributes such as their tendency to aggregate and aggregate size and shape impact their ability to be transported into and through the environment and living tissues. Knowledge of these properties is therefore valuable for their human and environmental risk assessment as well as to control their synthesis and manufacture. In this work, asymmetrical flow-field flow fractionation (AF4) coupled to multi-angle light scattering (MALS) was used for the first time to study the size distribution of surface modified fullerenes with both polyhydroxyl and carboxyl functional groups in aqueous solutions having different pH (6.5-11) and ionic strength values (0-200mM) of environmental relevance. Fractionation key parameters such as flow rates, flow programming, and membrane material were optimized for the selected fullerenes. The aggregation of the compounds studied appeared to be indifferent to changes in solution pH, but was affected by changes in the ionic strength. Polyhydroxy-fullerenes were found to be present mostly as 4nm aggregates in water without added salt, but showed more aggregation at high ionic strength, with an up to 10-fold increase in their mean hydrodynamic radii (200mM), due to a decrease in the electrostatic repulsion between the nanoparticles. Carboxy-fullerenes showed a much stronger aggregation degree in water (50-100nm). Their average size and recoveries decreased with the increase in the salt concentration. This behavior can be due to enhanced adsorption of the large particles to the membrane at high ionic strength, because of their higher hydrophobicity and much larger particle sizes compared to polyhydroxy-fullerenes. The method performance was evaluated by calculating the run-to-run precision of the retention time (hydrodynamic radii), and the obtained RSD values were lower than 1%. MALS measurements showed aggregate sizes that were in good agreement with the AF4 data. A comparison of the scattering radii from the MALS with the hydrodynamic radii obtained from the retention times in AF4 indicated that the aggregate shapes are far from spherical. TEM images of the fullerenes in the dry state also showed branched and irregular clusters. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Modelos estereoquimicos na quimica de coordenacao e organometalica de lantanideos e actinideos: aplicacoes a complexos de torio (iv) com boratos de polipirazolilo (Stereochemical models in lanthanide and actinide coordination and organometallic chemistry: Applications to thorium (IV) complexes with polypyrazolylborates). Doctoral thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, J.C.M.

    1990-01-01

    A detailed analysis is made of two stereochemical models commonly used in lanthanide and actinide coordination and organometallic chemistry. Li Xing-fu's Cone Packing Model and K. N. Raymond's Ionic Model. Corrections are introduced in the first model as a basis to discuss the stability and structure of known complexes. A Steric Coordination Number is defined for the second model, based on the solid angle to correlate metal-ligand distances in complexes with the ionic radii of the elements and to assign effective radii to the ligands, related to the donating power of the coordinating atoms. As an application of the models,more » the syntheses and characterizations of thorium(IV) complexes with polypyrazolylborates. (HBPz3) {sup -1} and (HB(3.5-Me2Pz)3) {sup -1}, and alkoxides, aryloxides, carboxylates, amides, thiolates, alkyls and cyclopentadienyl are described and their stabilities discussed. The geometries of the complexes in the solid and in solution are discussed and a mechanism is proposed to explain the fluxionality in solution of the complexes with (HBPz3) {sup -1}.« less

  4. Mixing Halogens To Assemble an All-Inorganic Layered Perovskite with Warm White-Light Emission.

    PubMed

    Li, Xianfeng; Wang, Sasa; Zhao, Sangen; Li, Lina; Li, Yanqiang; Zhao, Bingqing; Shen, Yaoguo; Wu, Zhenyue; Shan, Pai; Luo, Junhua

    2018-05-01

    Most of single-component white-light-emitting materials focus on organic-inorganic hybrid perovskites, metal-organic frameworks, as well as all-inorganic semiconductors. In this work, we successfully assembled an all-inorganic layered perovskite by mixing two halogens of distinct ionic radii, namely, Rb 2 CdCl 2 I 2 , which emits "warm" white light with a high color rendering index of 88. To date, Rb 2 CdCl 2 I 2 is the first single-component white-light-emitting material with an all-inorganic layered perovskite structure. Furthermore, Rb 2 CdCl 2 I 2 is thermally highly stable up to 575 K. A series of luminescence measurements show that the white-light emission arises from the lattice deformation, which are closely related to the [CdCl 4 I 2 ] 2- octahedra with high distortion from the distinct ionic radii of Cl and I. The first-principles calculations reveal that both the Cl and I components make significant contributions to the electronic band structures of Rb 2 CdCl 2 I 2 . These findings indicate that mixing halogens is an effective route to design and synthesize new single-component white-light-emitting materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of Ionic Correlations on the Surface Forces in Thin Liquid Films: Influence of Multivalent Coions and Extended Theory

    PubMed Central

    Danov, Krassimir D.; Basheva, Elka S.; Kralchevsky, Peter A.

    2016-01-01

    Experimental data for the disjoining pressure of foam films stabilized by anionic surfactant in the presence of 1:1, 1:2, 1:3, and 2:2 electrolytes: NaCl, Na2SO4, Na3Citrate, and MgSO4 are reported. The disjoining pressure predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory coincides with the experimental data in the case of a 1:1 electrolyte, but it is considerably greater than the measured pressure in all other cases. The theory is extended to account for the effects of ionic correlations and finite ionic radii. Original analytical expressions are derived for the local activity coefficient, electrostatic disjoining pressure, and asymptotic screening parameter. With the same parameter of counterion binding as for a 1:1 electrolyte, the curves predicted by the extended theory are in perfect agreement with the experimental data for 1:2 and 1:3 electrolytes. In comparison with the DLVO theory, the effect of ionic correlations leads to more effective screening of electrostatic interactions, and lower electric potential and counterion concentrations in the film’s midplane, resulting in lower disjoining pressure, as experimentally observed. The developed theory is applicable to both multivalent coions and multivalent counterions. Its application could remove some discrepancies between theory and experiment observed in studies with liquid films from electrolyte solutions. PMID:28773269

  6. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions.

    PubMed

    Kuechler, Erich R; Giese, Timothy J; York, Darrin M

    2016-04-28

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.

  7. Scalable Graphene-Based Membranes for Ionic Sieving with Ultrahigh Charge Selectivity.

    PubMed

    Hong, Seunghyun; Constans, Charlotte; Surmani Martins, Marcos Vinicius; Seow, Yong Chin; Guevara Carrió, Juan Alfredo; Garaj, Slaven

    2017-02-08

    Nanostructured graphene-oxide (GO) laminate membranes, exhibiting ultrahigh water flux, are excellent candidates for next generation nanofiltration and desalination membranes, provided the ionic rejection could be further increased without compromising the water flux. Using microscopic drift-diffusion experiments, we demonstrated the ultrahigh charge selectivity for GO membranes, with more than order of magnitude difference in the permeabilities of cationic and anionic species of equivalent hydration radii. Measuring diffusion of a wide range of ions of different size and charge, we were able to clearly disentangle different physical mechanisms contributing to the ionic sieving in GO membranes: electrostatic repulsion between ions and charged chemical groups; and the compression of the ionic hydration shell within the membrane's nanochannels, following the activated behavior. The charge-selectivity allows us to rationally design membranes with increased ionic rejection and opens up the field of ion exchange and electrodialysis to the GO membranes.

  8. Negative pressure driven phase transformation in Sr doped SmCoO₃.

    PubMed

    Arshad Farhan, M; Javed Akhtar, M

    2010-02-24

    Atomistic computer simulation techniques based on energy minimization procedures are utilized for the structural investigation of perovskite-type SmCoO(3). A reliable potential model is derived which reproduces both cubic as well as orthorhombic phases of SmCoO(3). We observe a negative chemical pressure induced structural phase transformation from distorted perovskite (orthorhombic) to perfect perovskite (cubic) due to the substitution of Sr(2 + ) at the Sm(3 + ) sites. However, external hydrostatic pressure shows isotropic compression and no pressure-induced structural transformation is observed up to 100 GPa. To maintain the electroneutrality of the system, charge compensation is through oxygen vacancies which results in the brownmillerite-type structure. A defect model is proposed, which is consistent with experimental results. The solution energies for divalent and trivalent cations are also calculated. These results show that the cations having ionic radii less than 0.75 Å will occupy the Co sites and those with ionic radii larger than 0.75 Å will substitute at the Sm sites.

  9. Phase relationships and cation disorder in RE{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7+{delta}}, RE = Pr, Nd, Sm, Gd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, M.J.; Wu, H.; Dennis, K.W.

    1995-12-31

    Unlike Y123 which forms only a stoichiometric compound, the light arare earth elements (LRE) form a solid solution LRE{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7+{delta}} (LRE123ss), with increasing substitution of the LRE{sup 3+} for the Ba{sup 2+} as the ionic radii of the LRE increases. The sub-solidus phase relationships around the LRE123ss change for La, Pr and Nd, but are similar for Sm and Gd. However, the solubility limit decreases with decreasing ionic radii. In addition, the solubility limits for Sm and Gd are strongly influenced by PO{sub 2} during high temperature annealing. The range of solubility is, for any given LREmore » system, strongly dependent on the oxygen partial pressure (PO{sub 2}) providing a new means by which to control the microstructure in the RE123 system.« less

  10. Shell structures in aluminum nanocontacts at elevated temperatures

    PubMed Central

    2012-01-01

    Aluminum nanocontact conductance histograms are studied experimentally from room temperature up to near the bulk melting point. The dominant stable configurations for this metal show a very early crossover from shell structures at low wire diameters to ionic subshell structures at larger diameters. At these larger radii, the favorable structures are temperature-independent and consistent with those expected for ionic subshell (faceted) formations in face-centered cubic geometries. When approaching the bulk melting temperature, these local stability structures become less pronounced as shown by the vanishing conductance histogram peak structure. PMID:22325572

  11. Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Guang; Jiang, Deen; Cummings, Peter T

    Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulationsmore » reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.« less

  12. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiskó, Mónika; Boda, Dezső, E-mail: boda@almos.vein.hu

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependencemore » of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.« less

  13. Separation of both fibrous and globular proteins on the basis of molecular weight using high-performance size exclusion chromatography.

    PubMed

    Barden, J A

    1983-11-01

    A high-performance size exclusion liquid chromatographic system has been used to separate proteins with different shapes solely on the basis of their molecular weights. After the effects of ionic and hydrophobic interactions with the stationary phase have been overcome, protein elution is normally governed by their effective size in solution. Conditions are described under which proteins, with isoelectric points within the normal operating pH range of the columns, are eluted independent of their Stokes' radii. Even fibrous proteins with axial ratios of 50 elute according to their known molecular weights over the range 2000-2,000,000.

  14. Doping effect in layer structured SrBi2Nb2O9 ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wu, Yun; Forbess, Mike J.; Seraji, Seana; Limmer, Steven J.; Chou, Tammy P.; Nguyen, Carolyn; Cao, Guozhong

    2001-11-01

    This article reports a systematic study of doping effects on the crystal structure, microstructure, dielectric, and electrical properties of layer-structured strontium bismuth niobate, SrBi2Nb2O9 (SBN), ferroelectrics. Substitution in both the A site (Sr2+ by Ca2+ and Ba2+) and B site (Nb5+ by V5+) up to 30 at % were studied. It was found that crystal lattice constant, dielectric, and electrical properties of SBN ferroelectrics varied appreciably with the type and amount of dopants. The relationships among the ionic radii, structural constraint imposed by [Bi2O2]2+ interlayers, and properties were discussed.

  15. Characterization of gold nanoparticles with different hydrophilic coatings via capillary electrophoresis and Taylor dispersion analysis. Part I: determination of the zeta potential employing a modified analytic approximation.

    PubMed

    Pyell, Ute; Jalil, Alaa H; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J

    2015-07-15

    Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta potentials in a matrix of exactly known composition and the calibration-free determination of number-weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta potential for colloidal nanoparticles with ζ>25 mV requires to take the relaxation effect into account. Because of the requirement to avoid particle-wall interactions, a solution of disodiumtetraborate decahydrate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the electrophoretic mobility at different ionic strength and application of the analytic approximation developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theoretical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the number-weighted mean hydrodynamic radius) provides additional information on the type and width of the number-weighted particle distribution. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Electronic and magnetic properties in Sr{sub 1-x}La{sub x}RuO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Renu; Pramanik, A. K., E-mail: akpramanik@mail.jnu.ac.in

    2016-05-23

    Here we report the structural, magnetic and transport properties in La doped SrRuO{sub 3}. The doping of La{sup 3+} modifies the ionic state of Ru by converting Ru{sup 4+} to Ru{sup +3}. However, there is modification in lattice parameters as La{sup 3+} has smaller ionic radii than that of Sr{sup 2+}. We find La doping weakens the ferromagnetic state in SrRuO{sub 3} in terms of lowering T{sub c} and decreasing the magnetic moment. The electrical resistivity shows metallic behavior in whole temperature range, however, resistivity increases with doping of La.

  17. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    ERIC Educational Resources Information Center

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  18. Highly transparent and lower resistivity of yttrium doped ZnO thin films grown on quartz glass by sol-gel method

    NASA Astrophysics Data System (ADS)

    Kaur, Narinder; Sharma, Sanjeev K.; Kim, Deuk Young; Singh, Narinder

    2016-11-01

    We prepared highly transparent yttrium-doped ZnO (YZO) thin films on quartz glass by a sol-gel method, and then annealed them at 600 °C in vacuum. All samples showed hexagonal wurtzite structure with a preferential orientation along the (002) direction. We observed the average grain size of Y: 2 at% thin film to be in the range of 15-20 nm. We observed blue shift in the optical bandgap (3.29 eV→3.32 eV) by increasing the Y concentration (0-2 at%), due to increasing the number of electrons, and replacing the di-valent (Zn2+) with tri-valent (Y3+) dopants. Replacing the higher ionic radii (Y3+) with smaller ionic radii (Zn2+) expanded the local volume of the lattice, which reduced the lattice defects, and increased the intensity ratio of NBE/DLE emission (INBE/IDLE). We also observed the lowest (172 meV) Urbach energy of Y: 2 at% thin film, and confirmed the high structural quality. Incorporation of the appropriate Y concentration (2 at%) improved the crystallinity of YZO thin films, which led to less carrier scattering and lower resistivity.

  19. Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study

    NASA Astrophysics Data System (ADS)

    Mansuri, Amantulla; Mishra, Ashutosh

    2016-10-01

    In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431; Giese, Timothy J.

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational,more » produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.« less

  1. Cation radius effects on the helix-coil transition of DNA. Cryptates and other large cations.

    PubMed Central

    Trend, B L; Knoll, D A; Ueno, M; Evans, D F; Bloomfield, V A

    1990-01-01

    Most polyelectrolyte theories of the effect of ions on the thermal melting of DNA assume that the predominant influence of the cations comes through their charge. Ion size and structure are treated, for analytic convenience, as negligible variables. We have examined the validity of this assumption by measuring the melting temperature of calf thymus DNA as a function of salt concentration with four univalent cations of different hydrated radii. These are K+ (3.3 A), (n-Pr)4N+ (4.5 A), (EtOH)4N+ (4.5 A), and C222-K+ (5 A). C222-K+ is a complex of cryptand C222 with K+. With K+ as the sole cation, Tm varies linearly with the log of ionic strength over the range 0.001-0.1 M. With all the K+ sequestered by an equimolar amount of C222, Tm is depressed by 10-20 degrees C and the slope of Tm vs. ionic strength is lower. At low ionic strength, an even greater reduction in Tm is achieved with (n-Pr)4N+; but the similar-sized (EtOH)4N+ gives a curve more similar to K+. Theoretical modeling, taking into account cation size through the Poisson-Boltzmann equation for cylindrical polyelectrolytes, predicts that larger cations should be less effective in stabilizing the double helix; but the calculated effect is less than observed experimentally. These results show that valence, cation size, and specific solvation effects are all important in determining the stability of the double-helical form of DNA. PMID:2344467

  2. Understanding Energy Absorption Behaviors of Nanoporous Materials

    DTIC Science & Technology

    2008-05-23

    induced liquid infiltration in nanopores. J. Appl. Phys. 100, 014308.1-3 (2006). 26. Surani, F. B. and Qiao, Y. Energy absorption of a polyacrylic ...that the infiltration pressure decreases as the cation size increases (Fig.K-2). The ionic radii of cesium, potassium , sodium and lithium are...REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 Public Reporting burden for this collection of information is estimated to average 1 hour

  3. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium.

    PubMed

    Ding, Shiyuan; Yang, Yu; Huang, Haiou; Liu, Hengchen; Hou, Li-an

    2015-08-30

    The objective of this study was to identify the removal mechanisms of radionuclides by reverse osmosis (RO) membranes under conditions relevant to full-scale water treatment. For this purpose, the effects of feed solution chemistry on the removal of Cs and Sr by a low pressure RO system was investigated by systematically varying membrane surface charge, ionic composition, and organic matter concentrations. The results showed that the effects of solution chemistry on the filtration of Cs and Sr were related to their hydrated ionic radius, resulting in the predominance of the Donnan's effect and electrostatic interactions, respectively. Consequently, the rejection of Cs increased more pronouncedly than Sr with the increases of feed concentration. Due to the Donnan's effect, different anions decreased the rejection of Cs to different extents in accordance to the order of anions' radii as SO4(2-)>Cl(-)>NO3(-)>F(-). The variations in Sr rejection were influenced by the electrostatic interactions between Sr(2+) and the membrane. In addition, humic acid (HA) lowered the rejection of Cs and caused significant membrane flux decline, but did not change the rejection of Sr. Sr also aggravated HA fouling of the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Long-living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions.

    PubMed

    Bunkin, Nikolai F; Ninham, Barry W; Ignatiev, Pavel S; Kozlov, Valery A; Shkirin, Alexey V; Starosvetskij, Artem V

    2011-03-01

    Results of experiments combining laser modulation interference microscopy and Mueller matrix scatterometry show that macroscopic scatterers of light are present in liquids free of external solid impurities. Experimental data on distilled water and aqueous NaCl solutions of various concentrations as well as physiological saline solution are reported. The experimental data can be interpreted by using a model of micron-scale clusters composed of polydisperse air nanobubbles having effective radii of 70-100 nm. Their concentration increases with the growth of ionic content. We hypothesize that under certain conditions those clusters of nanobubbles can affect the erythrocyte structure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-24

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  6. [Characteristics of the aggregative state of the substrate in the reaction of 5-lipoxygenase oxidation of linoleic acid].

    PubMed

    Butovich, I A; Kharchenko, O V; Paboka, Iu N; Kazachkov, M G

    2001-01-01

    5-lipoxygenase (EC 1.13.11.12) oxidizes polyunsaturated fatty acids by molecular oxygen. The enzyme acts in close contact with the cell membranes, which main components are ionic and non-ionic lipids. In order to investigate the kinetic parameters of 5-lipoxygenase reaction in vitro, extremely hydrophobic fatty acid substrate (linoleic acid) should be solubilized in the reaction mixture. We used Lubrol PX ("Sigma" Chem. Co), as a non-ionic detergent consisted of oligoethylene glycol and fatty alcohol. Linoleic acid and Lubrol PX formed mixed micelles thus solubilizing the fatty acid substrate in a buffer with appropriate pH. We have studied the sizes and shapes of mixed micelles Lubrol PX/linoleic acid (aggregates type 1) and Lubrol PX/linoleic acid/SDS (aggregates type 2; SDS was an effective activator of potato tuber 5-lipoxygenase) by means of gel-filtration and laser light scattering techniques. The parameters under investigation were molecular weights, Stocks radii and shapes of the mixed micelles. The average molecular weights and Stocks radii of the mixed micelles type 1 determined by mean of gel-filtration on Sephadex G-200 were 95,142 +/- 5184 Da and 3.45 +/- 0.11 nm, respectively. The same parameters for the mixed micelles type 2 were 73,694 +/- 893 Da and 3.02 +/- 0.02 nm, respectively. The strong similarity in physicochemical parameters for both types of mixed micelles indicated that SDS did not influence the size and shape of mixed micelles of Lubrol PX and linoleic acid. The activatory action of SDS on potato tuber lipoxygenase may be a result of electrostatic effect or direct participation of SDS in enzymatic catalysis. The laser light scattering technique allowed to determine two main fraction of particles in type 1 system with hydrodynamic diameters 2.6 and 5.7 nm and relative contribution to light scattering 13 and 87%, respectively. The particles with d = 5.7 nm were interpreted as the mixed micelles. The particles with d = 2.6 nm were interpreted as isolated molecules of Lubrol PX, linoleic acid and (or) their premicellar aggregates. The data obtained are to be used in creation of reliable physical and mathematical models of 5-lipoxygenase.

  7. Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Fu, Yongsheng; Hou, Yong; Kang, Dongdong; Gao, Cheng; Jin, Fengtao; Yuan, Jianmin

    2018-01-01

    We present a multi-ion molecular dynamics (MIMD) simulation and apply it to calculating the self-diffusion coefficients of ions with different charge-states in the warm dense matter (WDM) regime. First, the method is used for the self-consistent calculation of electron structures of different charge-state ions in the ion sphere, with the ion-sphere radii being determined by the plasma density and the ion charges. The ionic fraction is then obtained by solving the Saha equation, taking account of interactions among different charge-state ions in the system, and ion-ion pair potentials are computed using the modified Gordon-Kim method in the framework of temperature-dependent density functional theory on the basis of the electron structures. Finally, MIMD is used to calculate ionic self-diffusion coefficients from the velocity correlation function according to the Green-Kubo relation. A comparison with the results of the average-atom model shows that different statistical processes will influence the ionic diffusion coefficient in the WDM regime.

  8. Surface structure in simple liquid metals: An orbital-free first-principles study

    NASA Astrophysics Data System (ADS)

    González, D. J.; González, L. E.; Stott, M. J.

    2006-07-01

    Molecular dynamics simulations of the liquid-vapor interfaces in simple sp-bonded liquid metals have been performed using first-principles methods. Results are presented for liquid Li, Na, K, Rb, Cs, Mg, Ba, Al, Tl, and Si at thermodynamic conditions near their respective triple points, for samples of 2000 particles in a slab geometry. The longitudinal ionic density profiles exhibit a pronounced stratification extending several atomic diameters into the bulk, which is a feature already experimentally observed in liquid K, Ga, In, Sn, and Hg. The wavelength of the ionic oscillations shows a good scaling with the radii of the associated Wigner-Seitz spheres. The structural rearrangements at the interface are analyzed in terms of the transverse pair correlation function, the coordination number, and the bond-angle distribution between nearest neighbors. The valence electronic density profile also shows (weaker) oscillations whose phase, with respect to those of the ionic profile, changes from opposite phase in the alkalis to almost in-phase for Si.

  9. The distribution of Sr and REE between diopside and silicate liquid. [Rare Earth Elements

    NASA Technical Reports Server (NTRS)

    Grutzeck, M.; Kridelbaugh, S.; Weill, D.

    1974-01-01

    Experimental determination of the distribution coefficients in diopside-liquid pairs for strontium and nine rare-earth elements in the system CaMgSi2O6-NaAlSi3O8-CaAl2Si2O8. In experiments in air at 1265 C it is found that most of the Sr(2+), Eu(2+), and RE(3+) ions substitute for Ca(2+) and, in addition, a coupled substitution of Al(3+) for Si(4+) occurs. All of the trace ions considered are found to be excluded from the diopside lattice relative to the liquid. In the case of the trivalent ions the exclusion is much more pronounced for La and Ce, which have ionic radii larger than that of Ca(2+) in 8-fold oxygen coordination. Divalent Sr and Eu with even larger radii are also strongly excluded.

  10. 73Ge, 119Sn and 207Pb: general cooperative effects of single atom ligands on the NMR signals observed in tetrahedral [MXnY4-n] (M = Ge, Sn, Pb; 1 ≤ n ≤ 4; X, Y = Cl, Br, I) coordination compounds of heavier XIV group elements.

    PubMed

    Benedetti, M; De Castro, F; Fanizzi, F P

    2017-02-28

    An inverse linear relationship between 73 Ge, 119 Sn and 207 Pb NMR chemical shifts and the overall sum of ionic radii of coordinated halido ligands has been discovered in tetrahedral [MX n Y 4-n ] (M = Ge, Sn, Pb; 1 ≤ n ≤ 4; X, Y = Cl, Br, I) coordination compounds. This finding is consistent with a previously reported correlation found in octahedral, pentacoordinate and square planar platinum complexes. The effect of the coordinated halido ligands acting on the metal as shielding conducting rings is therefore confirmed also by 73 Ge, 119 Sn and 207 Pb NMR spectroscopy.

  11. The Production of Cold Gas Within Galaxy Outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Evan

    2017-03-01

    I present a suite of three-dimensional simulations of the evolution of initially hot material ejected by starburst-driven galaxy outflows. The simulations are conducted in a comoving frame that moves with the material, tracking atomic/ionic cooling, Compton cooling, and dust cooling and destruction. Compton cooling is the most efficient of these processes, while the main role of atomic/ionic cooling is to enhance density inhomogeneities. Dust, on the other hand, has little effect on the outflow evolution, and is rapidly destroyed in all the simulations except for the case with the smallest mass flux. I use the results to construct a simplemore » steady-state model of the observed UV/optical emission from each outflow. The velocity profiles in this case are dominated by geometric effects, and the overall luminosities are extremely strong functions of the properties of the host system, as observed in ultra-luminous infrared galaxies (ULIRGs). Furthermore the luminosities and maximum velocities in several models are consistent with emission-line observations of ULIRGs, although the velocities are significantly greater than observed in absorption-line studies. It may be that absorption line observations of galaxy outflows probe entrained cold material at small radii, while emission-line observations probe cold material condensing from the initially hot medium at larger distances.« less

  12. Video imaging analysis of the plasma membrane permeabilizing effects of Bacillus thuringiensis insecticidal toxins in Sf9 cells.

    PubMed

    Villalon, M; Vachon, V; Brousseau, R; Schwartz, J L; Laprade, R

    1998-01-05

    The size and ionic selectivity of the pores formed by the insecticidal crystal protein Cry1C from Bacillus thuringiensis in the plasma membrane of Sf9 cells, an established cell line derived from the fall armyworm Spodoptera frugiperda, were analyzed with a video imaging technique. Changes in the permeability of the membrane were estimated from the rate of osmotic swelling of the cells. In the presence of Cry1C, which is toxic to Sf9 cells, the permeability of the cell membrane to KCl and glucose increased in a dose-dependent manner. In contrast, Cry1Aa, Cry1Ab and Cry1Ac, toxins to which Sf9 cells are not susceptible, had no detectable effect. Pores formed by Cry1C allowed the diffusion of sucrose, but were impermeable to the trisaccharide raffinose. On the basis of the hydrodynamic radii of these substances, the diameter of the pores was estimated to be 1.0-1.2 nm. In the presence of salts, the rate of swelling of cells exposed to Cry1C was about equally influenced by the size of the anion as by that of the cation, indicating that the ionic selectivity of the pores is low.

  13. A controllable molecular sieve for Na+ and K+ ions.

    PubMed

    Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

    2010-02-17

    The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems. Molecular sieves for ions can be achieved by steric and electrical effects. However, the radii of Na(+) and K(+) are quite similar; they both carry a positive charge, making them difficult to separate. Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K(+) or Na(+) across the cell membrane. However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e.g., KcsA). Our molecular dynamics simulations show that the remarkable selectivity is attributed to the hydration structure of Na(+) or K(+) confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms. The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water.

  14. Single-crystal diffraction at megabar conditions by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Merlini, Marco; Hanfland, Michael

    2013-08-01

    Crystal structure determination at extreme pressures is currently possible at synchrotron beamlines optimized for such a purpose. We report the description of the experimental setup available at European Synchrotron Radiation Facility ID09 beamline (Grenoble, France) and, with two examples, we illustrate the state-of-the-art experiments currently performed at third-generation synchrotrons. The first example concerns the determination of the equation of state and the structural behavior of low-spin Fe-bearing siderite in the megabar pressure range. Siderite, in fact, undergoes a first-order isosymmetric transition at 45 GPa, and, above this pressure, it features Fe2+ in electronic low-spin configuration. The local configuration of Fe coordination polyhedra, determined by structural refinements, significantly deviates from a regular octahedron. Nevertheless, no further structural transition is detected up to the maximum pressure reached in our experiments, 135 GPa. The analysis of the Fe-O bond length extrapolated to ambient pressure, which indicates that the difference in ionic radii between the high- and the low-spin state of Fe2+ is 0.172 Å, in excellent agreement with the tabulated data by Shannon and Prewitt [Effective ionic radii in oxides and fluorides. Acta Crystallogr. 1969;B25:925-946]. The second example concerns the determination and refinement of the oP8 structure adopted by sodium in the pressure interval 118-125 GPa, using an experimental dataset collected at 118 GPa. The orthorhombic [a=4.7687(15) Å, b=3.0150(6) Å, c=5.2423(7) Å, V=75.4(3) Å3] oP8 structure is topologically related to the MnP structure, with two non-equivalent atoms in the unit cell. Despite the weak scattering factor of Na atoms, the quality of the data also allows meaningful displacement parameters refinements (R1=4.6%, 14 parameters, 190 diffractions, and 105 unique) demonstrating that the current accuracy of diffraction data at extreme pressures can be comparable with ambient condition measurements.

  15. Boric acid flux synthesis, structure and magnetic property of MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dingfeng; Cong, Rihong; Gao, Wenliang, E-mail: gaowl@cqu.edu.cn

    2013-05-01

    Three new borates MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) have been synthesized by boric acid flux methods, which are isotypic to NiB₁₂O₁₄(OH)₁₀. Single-crystal XRD was performed to determine the crystal structures in detail. They all crystallize in the monoclinic space group P2₁/c. The size of MO{sub 6} (M=Mg, Mn, Fe, Co, Ni, Zn) octahedron shows a good agreement with the Shannon effective ionic radii of M²⁺. Magnetic measurements indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. The values of its magnetic superexchange constants were evaluated by DFT calculations, which explain the observed magnetic behavior. The UV–vis diffuse reflectancemore » spectrum of ZnB₁₂O₁₄(OH)₁₀ suggests a band gap ~4.6 eV. DFT calculations indicate it has a direct band gap 4.9 eV. The optical band gap is contributed by charge transfers from the occupied O 2p to the unoccupied Zn 4s states. - Graphical abstract: Experimental and theoretical studies indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering. DFT calculations show ZnB₁₂O₁₄(OH)₁₀ has a direct band gap of 4.9 eV. Highlights: • MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) are synthesized by two-step boric acid flux method. • Single-crystal XRD was performed to determine the crystal structures in detail. • Size of MO₆ (M=Mg, Mn, Fe, Co, Ni, Zn) agrees with the effective ionic radii. • MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. • DFT calculations indicate ZnB₁₂O₁₄(OH)₁₀ has a direct band gap 4.9 eV.« less

  16. Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors.

    PubMed

    Becker, Markus; Klüner, Thorsten; Wark, Michael

    2017-03-14

    The development of hybrid organic-inorganic perovskite solar cells is one of the most rapidly growing fields in the photovoltaic community and is on its way to challenge polycrystalline silicon and thin film technologies. High power conversion efficiencies can be achieved by simple processing with low cost. However, due to the limited long-term stability and environmental toxicity of lead in the prototypic CH 3 NH 3 PbI 3 , there is a need to find alternative ABX 3 constitutional combinations in order to promote commercialization. The Goldschmidt tolerance factor and the octahedral factor were found to be necessary geometrical concepts to evaluate which perovskite compounds can be formed. It was figured out that the main challenge lies in estimating an effective ionic radius for the molecular cation. We calculated tolerance factors and octahedral factors for 486 ABX 3 monoammonium-metal-halide combinations, where the steric size of the molecular cation in the A-position was estimated concerning the total charge density. A thorough inquiry about existing mixed organic-inorganic perovskites was undertaken. Our results are in excellent agreement with the reported hybrid compounds and indicate the potential existence of 106 ABX 3 combinations hitherto not discussed in the literature, giving hints for more intense research on prospective individual candidates.

  17. [Relation between location of elements in periodic table and affinity for the malignant tumor (author's transl)].

    PubMed

    Ando, A; Hisada, K; Ando, I

    1977-10-01

    Affinity of many inorganic compounds for the malignant tumor was examined, using the rats which were subcutaneously transplanted with Yoshida sarcoma. And the relations between the uptake rate into the malignant tumor and in vitro binding power to the protein were investigated in these compounds. In these experiments, the bipositive ions and anions had not affinity for the tumor tissue with a few exceptions. On the other hand, Hg, Au and Bi, which have strong binding power to the protein, showed high uptake rate into the malignant tumor. As Hg++, Au+ and Bi+++ are soft acids according to classification of Lewis acids, it was thought that these elements would bind strongly to soft base (R-SH, R-S-) present in the tumor tissue. In many hard acids (according to classification of Lewis acids), the uptake rate into the tumor was shown as a function of ionic potentials (valency/ionic radii) of the metal ions. It is presumed that the chemical bond of these hard acids in the tumor tissue is ionic bond to hard base (R-COO-, R-PO3(2-), R-SO3-, R-NH2).

  18. Relation between the location of elements in the periodic table and tumor-uptake rate.

    PubMed

    Ando, A; Ando, I; Hiraki, T; Hisada, K

    1985-01-01

    The bipositive ions and anions, with few exceptions, indicated a low tumor uptake rate. On the other hand, compounds of Hg, Au and Bi, which have a strong binding power to protein, showed a high tumor uptake rate. As Hg2+, Au+ and Bi3+ are soft acids according to the classification of Lewis acids, it was thought that these ions would bind strongly to soft bases (R-SH, R-S-) present in tumor tissue. For many hard acids such as 85Sr2+, 67Ga3+, 181Hf4+, and 95Nb5+, tumor uptake rates are shown as a function of ionic potentials (valency/ionic radii) of the metal ions. Considering the present data and previously reported results, it was presumed that hard acids of trivalence, quadrivalence and pentavalence would replace calcium in the calcium salts of hard bases (calcium salts of acid mucopolysaccharides, etc.). Ionic potentials of alkaline metals and Tl were small, but the tumor-uptake rate of these elements indicated various values. As Ge and Sb are bound by covalent bonds to chloride, GeCl4 and SbCl3 behaved differently from many metallic compounds in tumor tissue.

  19. Preparation of Some Novel Copper(I) Complexes and their Molar Conductances in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Gill, Dip Singh; Rana, Dilbag

    2009-04-01

    Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system

  20. Experimental observation of charge-shift bond in fluorite CaF2.

    PubMed

    Stachowicz, Marcin; Malinska, Maura; Parafiniuk, Jan; Woźniak, Krzysztof

    2017-08-01

    On the basis of a multipole refinement of single-crystal X-ray diffraction data collected using an Ag source at 90 K to a resolution of 1.63 Å -1 , a quantitative experimental charge density distribution has been obtained for fluorite (CaF 2 ). The atoms-in-molecules integrated experimental charges for Ca 2+ and F - ions are +1.40 e and -0.70 e, respectively. The derived electron-density distribution, maximum electron-density paths, interaction lines and bond critical points along Ca 2+ ...F - and F - ...F - contacts revealed the character of these interactions. The Ca 2+ ...F - interaction is clearly a closed shell and ionic in character. However, the F - ...F - interaction has properties associated with the recently recognized type of interaction referred to as `charge-shift' bonding. This conclusion is supported by the topology of the electron localization function and analysis of the quantum theory of atoms in molecules and crystals topological parameters. The Ca 2+ ...F - bonded radii - measured as distances from the centre of the ion to the critical point - are 1.21 Å for the Ca 2+ cation and 1.15 Å for the F - anion. These values are in a good agreement with the corresponding Shannon ionic radii. The F - ...F - bond path and bond critical point is also found in the CaF 2 crystal structure. According to the quantum theory of atoms in molecules and crystals, this interaction is attractive in character. This is additionally supported by the topology of non-covalent interactions based on the reduced density gradient.

  1. Prediction of Osmotic Pressure of Ionic Liquids Inside a Nanoslit by MD Simulation and Continuum Approach

    NASA Astrophysics Data System (ADS)

    Moon, Gi Jong; Yang, Yu Dong; Oh, Jung Min; Kang, In Seok

    2017-11-01

    Osmotic pressure plays an important role in the processes of charging and discharging of lithium batteries. In this work, osmotic pressure of the ionic liquids confined inside a nanoslit is calculated by using both MD simulation and continuum approach. In the case of MD simulation, an ionic liquid is modeled as singly charged spheres with a short-ranged repulsive Lennard-Jones potential. The radii of the spheres are 0.5nm, reflecting the symmetry of ion sizes for simplicity. The simulation box size is 11nm×11nm×7.5nm with 1050 ion pairs. The concentration of ionic liquid is about 1.922mol/L, and the total charge on an individual wall varies from +/-60e(7.944 μm/cm2) to +/-600e(79.44 μm/cm2) . In the case of continuum approach, we classify the problems according to the correlation length and steric factor, and considered the four separate cases: 1) zero correlation length and zero steric factor, 2) zero correlation length and non-zero steric factor, 3) non-zero correlation length and zero steric factor, and 4) non-zero correlation and non-zero steric factor. Better understanding of the osmotic pressure of ionic liquids confined inside a nanoslit can be achieved by comparing the results of MD simulation and continuum approach. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP: Ministry of Science, ICT & Future Planning) (No. 2017R1D1A1B05035211).

  2. Structural characterization combined with the first principles simulations of barium/strontium cobaltite/ferrite as promising material for solid oxide fuel cells cathodes and high-temperature oxygen permeation membranes.

    PubMed

    Gangopadhayay, Shruba; Inerbaev, Talgat; Masunov, Artëm E; Altilio, Deanna; Orlovskaya, Nina

    2009-07-01

    Mixed ionic-electronic conducting perovskite type oxides with a general formula ABO(3) (where A = Ba, Sr, Ca and B = Co, Fe, Mn) often have high mobility of the oxygen vacancies and exhibit strong ionic conductivity. They are key materials that find use in several energy related applications, including solid oxide fuel cell (SOFC), sensors, oxygen separation membranes, and catalysts. Barium/strontium cobaltite/ferrite (BSCF) Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-delta) was recently identified as a promising candidate for cathode material in intermediate temperature SOFCs. In this work, we perform experimental and theoretical study of the local atomic structure of BSFC. Micro-Raman spectroscopy was performed to characterize the vibrational properties of BSCF. The Jahn-Teller distortion of octahedral coordination around Co(4+) cations was observed experimentally and explained theoretically. Different cations and oxygen vacancies ordering are examined using plane wave pseudopotential density functional theory. We find that cations are completely disordered, whereas oxygen vacancies exhibit a strong trend for aggregation in L-shaped trimer and square tetramer structure. On the basis of our results, we suggest a new explanation for BSCF phase stability. Instead of linear vacancy ordering, which must take place before the phase transition into brownmillerite structure, the oxygen vacancies in BSCF prefer to form the finite clusters and preserve the disordered cubic structure. This structural feature could be found only in the first-principles simulations and can not be explained by the effect of the ionic radii alone.

  3. Crystal Chemical Substitutions of YBa2Cu3O7-d to Enhance Flux Pinning (Postprint)

    DTIC Science & Technology

    2012-02-01

    ionic radii (1.42 A for 8-fold coordination), specifically including larger RE ions La, Pr, and Nd and Ca 2+ and Sr +2. Note also that Pm is normal1y...ng is especially critical for the larger RE ions or mixtures with these ions , which pre vents partial substitution of these RE io ns for Ba ...similar 123 phase can be formed with th e composition ThSr2Cu2•7Meo 30?. This 123 p hase can be formed by substituting Sr for Ba an d a small amount of

  4. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    PubMed

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  5. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xueming; Duan, Yonghao; He, Lilin

    A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porositymore » after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.« less

  6. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering.

    PubMed

    Yuan, Xueming; Duan, Yonghao; He, Lilin; Singh, Seema; Simmons, Blake; Cheng, Gang

    2017-05-01

    A systematic study was performed to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110°C for 3h at biomass loadings of 5, 10, 15, 20 and 25wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ∼25 to 625Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Lanthanide contraction effect on crystal structures, magnetic, and dielectric properties in ordered double perovskites LnPbCoSbO{sub 6} (Ln = La, Pr, Nd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L.; Yao, C. G.; Meng, J. L.

    The crystal structures, magnetic, and dielectric properties for the ordered double perovskites LnPbCoSbO{sub 6} (Ln = La, Pr, Nd) have been investigated. The crystal structure has been solved by Rietveld refinements of X-ray diffraction data in the monoclinic space group P2{sub 1}/n (No. 14). The Co{sup 2+} and Sb{sup 5+} ions are almost fully ordered over the B-site, and the octahedral framework displays significant tilting distortion according to the Glazer's tilt system a{sup –}a{sup –}c{sup +}. As the result of lanthanide contraction from La{sup 3+} to Nd{sup 3+}, the B-site sublattice distortions become stronger accompanying with the reduction of themore » tolerance factor and coordination number. The magnetization measurements show an antiferromagnetic ordering with large effective magnetic moments (μ{sub eff}) suggesting that the orbital component is significant. The maximum values of isothermal magnetization increase with the decrease in radii of rare earth ions, which is attributed to the weakening of antiferromagnetic interaction via Co{sup 2+}–O–Sb{sup 5+}–O–Co{sup 2+} paths. The dielectric constants present frequency dependence and monotonically decrease with the ionic radii reduction from La{sup 3+} to Nd{sup 3+} due to the suppression of electron transfer. These results indicate that the magnetic and dielectric properties can be tuned by controlling the degree of lattice distortion, which is realized by introducing different Ln{sup 3+} ions at the A-site.« less

  8. Mechanisms of combustion synthesis and magnetic response of high-surface-area hexaboride compounds.

    PubMed

    Kanakala, Raghunath; Escudero, Roberto; Rojas-George, Gabriel; Ramisetty, Mohan; Graeve, Olivia A

    2011-04-01

    We present an analysis of the combustion synthesis mechanisms for the preparation of hexaboride materials using three compounds as model systems: EuB(6), YbB(6), and YB(6). These three hexaborides were chosen because of the differences in ionic radii between Eu(3+), Yb(3+), and Y(3+), which is a factor in their stability. The powders were prepared using metal nitrates, carbohydrazide, and two different boron precursor powders. The resulting materials were analyzed by X-ray diffraction, which showed that combustion synthesis is effective for the synthesis of EuB(6), since the Eu(3+) ion has an ionic radius greater than ∼1 Å. The synthesis of YbB(6) and YB(6) is not as effective because of the small size of the Yb(3+) and Y(3+) ions, making the hexaborides of these metals less stable and resulting in the synthesis of borates due to the presence of oxygen during the combustion process. Scanning electron microscopy and dynamic light scattering of the EuB(6) powders shows that the particle size of the hexaboride product is dependent on the particle size of the boron precursor. The magnetic susceptibility of our EuB(6) powders manifests irreversible behavior at low applied fields, which disappears at higher fields. This behavior can be attributed to the increase in size and number of magnetic polarons with increasing magnetic field. © 2011 American Chemical Society

  9. Quantum and Classical Molecular Dynamics of Ionic Liquid Electrolytes for Na/Li-based Batteries: Molecular Origins of the Conductivity Behavior.

    PubMed

    Vicent-Luna, Jose Manuel; Ortiz-Roldan, Jose Manuel; Hamad, Said; Tena-Zaera, Ramon; Calero, Sofia; Anta, Juan Antonio

    2016-08-18

    Compositional effects on the charge-transport properties of electrolytes for batteries based on room-temperature ionic liquids (RTILs) are well-known. However, further understanding is required about the molecular origins of these effects, in particular regarding the replacement of Li by Na. In this work, we investigate the use of RTILs in batteries, by means of both classical molecular dynamics (MD), which provides information about structure and molecular transport, and ab initio molecular dynamics (AIMD), which provides information about structure. The focus has been placed on the effect of adding either Na(+) or Li(+) to 1-methyl-1-butyl-pyrrolidinium [C4 PYR](+) bis(trifluoromethanesulfonyl)imide [Tf2 N](-) . Radial distribution functions show excellent agreement between MD and AIMD, which ensures the validity of the force fields used in the MD. This is corroborated by the MD results for the density, the diffusion coefficients, and the total conductivity of the electrolytes, which reproduce remarkably well the experimental observations for all studied Na/Li concentrations. By extracting partial conductivities, it is demonstrated that the main contribution to the conductivity is that of [C4 PYR](+) and [Tf2 N](-) . However, addition of Na(+) /Li(+) , although not significant on its own, produces a dramatic decrease in the partial conductivities of the RTIL ions. The origin of this indirect effect can be traced to the modification of the microscopic structure of the liquid as observed from the radial distribution functions, owing to the formation of [Na(Tf2 N)n ]((n-1)-) and [Li(Tf2 N)n ]((n-1)-) clusters at high concentrations. This formation hinders the motion of the large ions, hence reducing the total conductivity. We demonstrate that this clustering effect is common to both Li and Na, showing that both ions behave in a similar manner at a microscopic level in spite of their distinct ionic radii. This is an interesting finding for extending Li-ion and Li-air technologies to their potentially cheaper Na-based counterparts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure.

    PubMed

    Yang, Yu; Jin, Shu; Medvedeva, Julia E; Ireland, John R; Metz, Andrew W; Ni, Jun; Hersam, Mark C; Freeman, Arthur J; Marks, Tobin J

    2005-06-22

    A series of yttrium-doped CdO (CYO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates at 410 degrees C by metal-organic chemical vapor deposition (MOCVD), and their phase structure, microstructure, electrical, and optical properties have been investigated. XRD data reveal that all as-deposited CYO thin films are phase-pure and polycrystalline, with features assignable to a cubic CdO-type crystal structure. Epitaxial films grown on single-crystal MgO(100) exhibit biaxial, highly textured microstructures. These as-deposited CYO thin films exhibit excellent optical transparency, with an average transmittance of >80% in the visible range. Y doping widens the optical band gap from 2.86 to 3.27 eV via a Burstein-Moss shift. Room temperature thin film conductivities of 8,540 and 17,800 S/cm on glass and MgO(100), respectively, are obtained at an optimum Y doping level of 1.2-1.3%. Finally, electronic band structure calculations are carried out to systematically compare the structural, electronic, and optical properties of the In-, Sc-, and Y-doped CdO systems. Both experimental and theoretical results reveal that dopant ionic radius and electronic structure have a significant influence on the CdO-based TCO crystal and band structure: (1) lattice parameters contract as a function of dopant ionic radii in the order Y (1.09 A) < In (0.94 A) < Sc (0.89 A); (2) the carrier mobilities and doping efficiencies decrease in the order In > Y > Sc; (3) the dopant d state has substantial influence on the position and width of the s-based conduction band, which ultimately determines the intrinsic charge transport characteristics.

  11. [Effect of Radii barrier sleeves on cure depth of composite resin].

    PubMed

    Wang, Binping; DU, Yongxiu

    2009-01-01

    To explore the effect of Radii barrier sleeves on the cure depth of composite resin. Cylinder mold was prepared, and the resin was filled strictly into the mold. The surface was flattened and then cured with plastic engraver's knife.The depth of composite resin which was cured by QHL75TM with or without Radii barrier sleeves was compared. The cure depth of composite resin which were cured by QHL75TM with or without Radii barrier sleeves of photo-curing machine was 4.38 mm and 4.27 mm respectively,with no statistical difference. The cure depth of composite resin is not influenced by Radii barrier sleeves under the same light condition.

  12. Minor elements incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave (SE-France)

    NASA Astrophysics Data System (ADS)

    Bourdin, C.; Douville, E.; Genty, D.

    2009-12-01

    A multi-elemental study focusing on earth-alkalis (Mg, Ca, Sr and Ba), uranium and rare-earth elements (REE) in the calcite of a stalagmite from the Chauvet Cave (SE of France) has been achieved by ICP-MS. The Chau-stm6 stalagmite which grew from 33 to 11.5 ky had already been dated and the published d13C and d18O profile is used as a paleoclimatic benchmark. Ba and Sr profiles show an abrupt concentration increase at the beginning of the last deglaciation whereas U and Mg feature a decreasing trend. REY (REE+yttrium) concentrations decrease markedly during early deglaciation (between 15 and 14.5 ky). The transition corresponds to a change from a slow to a fast growth rate. These variations can be explained by the crystallographic control of ionic radii of the minor elements: incorporation of small ions compared to Ca such as U, Mg, heavy REE are favoured during slow growth period (i.e. glacial) whereas large ions such as Ba, Sr and light REE are preferentially precipitated during fast growth period (i.e. Bolling-Allerod). This crystallographic effect seems to be dominant here because the soil above the cave is sparse. And may not have played a major role on the opposite to the water-limestone interaction.

  13. Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.

    PubMed Central

    Williams, S P; Langmore, J P

    1991-01-01

    Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators. Images FIGURE 1 PMID:2049522

  14. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.

    PubMed

    Amiri, Hasti; Shepard, Kenneth L; Nuckolls, Colin; Hernández Sánchez, Raúl

    2017-02-08

    Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy-Chapman theory. We find that the single-walled carbon nanotubes preferentially transported cations and that the cation permeability is size-dependent. The ionic conductance increases as the absolute hydration enthalpy decreases for monovalent cations with similar solid-state radii, hydrated radii, and bulk mobility. Charge screening experiments using either the addition of cationic or anionic polymers, divalent metal cations, or changes in pH reveal the enormous impact of the negatively charged carboxylates at the entrance of the single-walled carbon nanotubes. These observations were modeled in the low-to-medium concentration range (0.1-2.0 M) by an electrostatic mechanism that mimics the behavior observed in many biological ion channel-forming proteins. Moreover, multi-ion conduction in the high concentration range (>2.0 M) further reinforces the similarity between single-walled carbon nanotubes and protein ion channels.

  15. Structural analysis of emerging ferrite: Doped nickel zinc ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajinder; Kumar, Hitanshu; Singh, Ragini Raj

    2015-08-28

    Ni{sub 0.6-x}Zn{sub 0.4}Co{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.033, 0.264) nanoparticles were synthesized by sol-gel method and annealed at 900°C. Structural properties of all prepared samples were examined with X-ray diffraction (XRD). The partial formation of hematite (α-Fe{sub 2}O{sub 3}) secondary phase with spinel phase cubic structure of undoped and cobalt doped nickel zinc ferrite was found by XRD peaks. The variation in crystallite size and other structural parameters with cobalt doping has been calculated for most prominent peak (113) of XRD and has been explained on the basis of cations ionic radii difference.

  16. Rietveld refinement and FTIR analysis of bulk ceramic Co3-xMnxO4 compositions

    NASA Astrophysics Data System (ADS)

    Meena, P. L.; Kumar, Ravi; Sreenivas, K.

    2013-02-01

    Co3-xMnxO4 (x = 0.0, 0.6, 1.2) prepared by solid state reaction method and characterized by powder X-ray diffraction (XRD) and Fourier transform infrared (FTIR). Lattice parameters (a), oxygen parameter (u), and ionic radii of cations have been determined through Rietveld analysis. Both a and u parameters are related to expansion of octahedral site as Mn content in Co3O4. Analysis of XRD data show that Mn (x ≤ 1.2) is accommodated at the octahedral site, while retaining the cubic spinel structure. FTIR results also confirm the same and signify strong interactions due to overlapping of Co and Mn octahedra.

  17. The Observational and Theoretical Tidal Radii of Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  18. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    PubMed

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  19. Synchrotron X-ray diffraction and Raman spectroscopy of Ln{sub 3}NbO{sub 7} (Ln=La, Pr, Nd, Sm-Lu) ceramics obtained by molten-salt synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siqueira, K.P.F.; Soares, J.C.; Granado, E.

    2014-01-15

    Ln{sub 3}NbO{sub 7} (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) ceramics were obtained by molten-salt synthesis and their structures were systematically investigated by synchrotron X-ray diffraction (SXRD), second harmonic generation (SHG) and Raman spectroscopy. It was observed that ceramics with the largest ionic radii (La, Pr, Nd) crystallized into the Pmcn space group, while the ceramics with intermediate ionic radii (Sm-Gd) exhibited a different crystal structure belonging to the Ccmm space group. For this last group of ceramics, this result was corroborated by SHG and Raman scattering and ruled out any possibility formore » the non-centrosymmetric C 222{sub 1} space group, solving a recent controversy in the literature. Finally, according to SXRD, Tb-Lu containing samples exhibited an average defect fluorite structure (Fm3{sup ¯}m space group). Nonetheless, broad scattering at forbidden Bragg reflections indicates the presence of short-range domains with lower symmetry. Vibrational spectroscopy showed the presence of six Raman-active modes, inconsistent with the average cubic fluorite structure, and in line with the existence of lower-symmetry nano-domains immersed in the average fluorite structure of these ceramics. - Graphical abstract: Raman spectrum for Sm{sub 3}NbO{sub 7} ceramics showing their 27 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. Display Omitted - Highlights: • Ln{sub 3}NbO{sub 7} ceramics were obtained by molten-salt synthesis. • SXRD, SHG and Raman scattering confirmed orthorhombic and cubic structures. • Ccmm instead of C222{sub 1} is the correct structure for Sm–Gd ceramics. • Pmcn space group was confirmed for La-, Pr- and Nd-based ceramics. • For Tb–Lu ceramics, ordered domains of a pyrochlore structure were observed.« less

  20. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Huifang; Xu, David C.; Wang, Yifeng

    Quantitative understanding of reactivity and stability for a chemical species is fundamental to chemistry. The concept has undergone many changes and additions throughout the history of chemistry, stemming from the ideas such as Lewis acids and bases. For a given complexing ligand (Lewis base) and a group of isovalent metal cations (Lewis acids), the stability constants of metal–ligand (ML) complexes can simply correlate to the known properties of metal ions [ionic radii (r Mn+), Gibbs free energy of formation (ΔG° f,Mn+), and solvation energy (ΔG° s,Mn+)] by 2.303RT log K ML = (α* MLΔG° f,Mn+ – β* MLr Mn+ +more » γ* MLΔG° s,Mn+ – δ* ML), where the coefficients (α* ML, β* ML, γ* ML, and intercept δ* ML) are determined by fitting the equation to the existing experimental data. Coefficients β* ML and γ* ML have the same sign and are in a linear relationship through the origin. Gibbs free energies of formation of cations (ΔG° f,Mn+) are found to be natural indices for the softness or hardness of metal cations, with positive values corresponding to soft acids and negative values to hard acids. The coefficient α* ML is an index for the softness or hardness of a complexing ligand. Proton (H +) with the softness index of zero is a unique acid that has strong interactions with both soft and hard bases. The stability energy resulting from the acid–base interactions is determined by the term α* MLΔG° f,Mn+; a positive product of α* ML and ΔG° f,Mn+ indicates that the acid–base interaction between the metal cation and the complexing ligand stabilizes the complex. The terms β* MLr Mn+ and γ* MLΔG° s,Mn+, which are related to ionic radii of metal cations, represent the steric and solvation effects of the cations. The new softness indices proposed here will help to understand the interactions of ligands (Lewis bases) with metal cations (Lewis acids) and provide guidelines for engineering materials with desired chemical reactivity and selectivity. As a result, the new correlation can also enhance our ability for predicting the speciation, mobility, and toxicity of heavy metals in the earth environments and biological systems.« less

  1. Natural Indices for the Chemical Hardness/Softness of Metal Cations and Ligands

    DOE PAGES

    Xu, Huifang; Xu, David C.; Wang, Yifeng

    2017-10-26

    Quantitative understanding of reactivity and stability for a chemical species is fundamental to chemistry. The concept has undergone many changes and additions throughout the history of chemistry, stemming from the ideas such as Lewis acids and bases. For a given complexing ligand (Lewis base) and a group of isovalent metal cations (Lewis acids), the stability constants of metal–ligand (ML) complexes can simply correlate to the known properties of metal ions [ionic radii (r Mn+), Gibbs free energy of formation (ΔG° f,Mn+), and solvation energy (ΔG° s,Mn+)] by 2.303RT log K ML = (α* MLΔG° f,Mn+ – β* MLr Mn+ +more » γ* MLΔG° s,Mn+ – δ* ML), where the coefficients (α* ML, β* ML, γ* ML, and intercept δ* ML) are determined by fitting the equation to the existing experimental data. Coefficients β* ML and γ* ML have the same sign and are in a linear relationship through the origin. Gibbs free energies of formation of cations (ΔG° f,Mn+) are found to be natural indices for the softness or hardness of metal cations, with positive values corresponding to soft acids and negative values to hard acids. The coefficient α* ML is an index for the softness or hardness of a complexing ligand. Proton (H +) with the softness index of zero is a unique acid that has strong interactions with both soft and hard bases. The stability energy resulting from the acid–base interactions is determined by the term α* MLΔG° f,Mn+; a positive product of α* ML and ΔG° f,Mn+ indicates that the acid–base interaction between the metal cation and the complexing ligand stabilizes the complex. The terms β* MLr Mn+ and γ* MLΔG° s,Mn+, which are related to ionic radii of metal cations, represent the steric and solvation effects of the cations. The new softness indices proposed here will help to understand the interactions of ligands (Lewis bases) with metal cations (Lewis acids) and provide guidelines for engineering materials with desired chemical reactivity and selectivity. As a result, the new correlation can also enhance our ability for predicting the speciation, mobility, and toxicity of heavy metals in the earth environments and biological systems.« less

  2. Roles of Bi, M and VO{sub 4} tetrahedron in photocatalytic properties of novel Bi{sub 0.5}M{sub 0.5}VO{sub 4} (M=La, Eu, Sm and Y) solid solutions for overall water splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Hui; Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, shanghai 200240; Faculty of Engineering Sciences, Kyushu University, Fukuoka 816-8580

    2012-02-15

    Novel Bi{sub 0.5}M{sub 0.5}VO{sub 4} (BMV; M=La, Eu, Sm and Y) solid solutions were prepared and studied in this paper. All the samples were proved to produce H{sub 2} and O{sub 2} simultaneously from pure water under the irradiation of UV light. M-O bond lengths were proved to increase with M cations by refining cell parameters and atomic positions. Besides, band gaps, energy gaps and photocatalytic activities of BMV also changed with M cations. Both of M-O and V-O bond lengths were suggested to account for this phenomenon. Inactive A{sub 0.5}Y{sub 0.5}VO{sub 4} (A=La, Ce) for water splitting proved incorporationmore » of Bi rather than distortion of VO{sub 4} tetrahedron was a critical factor for improving efficiency of overall water splitting by facilitating the generation of electron and hole with lighter effective masses. Replacement of Bi by M cations not only gave indirect effect on band structure but also raised position of conduction band minimum to meet requirement of H{sub 2} production. - Graphical abstract: Novel Bi{sub 0.5}M{sub 0.5}VO{sub 4} (M=La, Eu, Sm and Y) solid solutions showed the high and stable photocatalytic activities for overall water splitting with their crystal radii of M elements. Highlights: Black-Right-Pointing-Pointer BMV solid solutions were novel highly efficient V-based photocatalysts for overall water splitting. Black-Right-Pointing-Pointer Photocatalytic activity of BMV solid solution related to the effective ionic radii of M cations. Black-Right-Pointing-Pointer Incorporation of Bi is one of key factors for the highly efficient activity of BMV solid solution. Black-Right-Pointing-Pointer Incorporation of Y is dispensable for H{sub 2} production.« less

  3. Sticky ions in biological systems.

    PubMed Central

    Collins, K D

    1995-01-01

    Aqueous gel sieving chromatography on Sephadex G-10 of the Group IA cations (Li+, Na+, K+, Rb+, Cs+) plus NH4+ as the Cl- salts, in combination with previous results for the halide anions (F-, Cl-, Br-, I-) as the Na+ salts [Washabaugh, M.W. & Collins, K.D. (1986) J. Biol. Chem. 261, 12477-12485], leads to the following conclusions. (i) The small monovalent ions (Li+, Na+, F-) flow through the gel with water molecules attached, whereas the large monovalent ions (K+, Rb+, Cs+, Cl-, Br-, I-) adsorb to the nonpolar surface of the gel, a process requiring partial dehydration of the ion and implying that these ions bind the immediately adjacent water molecules weakly. (ii) The transition from strong to weak hydration occurs at a radius of about 1.78 A for the monovalent anions, compared with a radius of about 1.06 A for the monovalent cations (using ionic radii), indicating that the anions are more strongly hydrated than the cations for a given charge density. (iii) The anions show larger deviations from ideal behavior (an elution position corresponding to the anhydrous molecular weight) than do the cations and dominate the chromatographic behavior of the neutral salts. These results are interpreted to mean that weakly hydrated ions (chaotropes) are "pushed" onto weakly hydrated surfaces by strong water-water interactions and that the transition from strong ionic hydration to weak ionic hydration occurs where the strength of ion-water interactions approximately equals the strength of water-water interactions in bulk solution. PMID:7539920

  4. Understanding ethylammonium nitrate stabilized cytochrome c - Molecular dynamics and experimental approach

    NASA Astrophysics Data System (ADS)

    Jaganathan, Maheshkumar; Ramakrishnan, C.; Velmurugan, D.; Dhathathreyan, Aruna

    2015-02-01

    For a conceptual understanding of how an ionic liquid stabilizes a solvated protein, in this study, using new force field parameters, a molecular dynamics simulation (MDS) of the loop and helical regions of hydrated Cytochrome c (cyt c) and its interaction with the ionic liquid ethylammonium nitrate (EAN) have been studied. For a simulation trajectory of 100 ns, the changes in network of water around the protein due to EAN and subsequent reorganization of the protein have been analyzed. The radii of gyration of solvated cyt c (13.7 Å) and cyt c + EAN (13.4 Å) at the end of the trajectory are higher than the protein in its crystalline state (12.64 Å) suggesting enhanced stability of the protein due to tightly organized assembly of EAN near the solvated cyt c. This increase in stability of the protein has been verified experimentally using fluorescence, circular dichroic spectroscopy and differential scanning calorimetry. With increasing EAN in cyt c + EAN, protein conformation shows unusually high β strand population. To check whether the beta strand is an intermediate or a local minimum state, denaturation of cyt c with urea in the presence of EAN has been undertaken. Results show that EAN helps in renaturation of the protein by forming a tightly organized assembly around the protein with the beta strand state appearing as a local minimum energy state. Thus the feasibility of using ionic liquids to form networks around the protein and their possible applications in stabilization of the proteins has been demonstrated.

  5. Crystal chemistry and the role of ionic radius in rare earth tetrasilicates: Ba2RE2Si4O12F2 (RE = Er3+-Lu3+) and Ba2RE2Si4O13 (RE = La3+-Ho3+).

    PubMed

    Fulle, Kyle; Sanjeewa, Liurukara D; McMillen, Colin D; Kolis, Joseph W

    2017-10-01

    Structural variations across a series of barium rare earth (RE) tetrasilicates are studied. Two different formulas are observed, namely those of a new cyclo-silicate fluoride, BaRE 2 Si 4 O 12 F 2 (RE = Er 3+ -Lu 3+ ) and new compounds in the Ba 2 RE 2 Si 4 O 13 (RE = La 3+ -Ho 3+ ) family, covering the whole range of ionic radii for the rare earth ions. The Ba 2 RE 2 Si 4 O 13 series is further subdivided into two polymorphs, also showing a dependence on rare earth ionic radius (space group P{\\overline 1} for La 3+ -Nd 3+ , and space group C2/c for Sm 3+ -Ho 3+ ). Two of the structure types identified are based on dinuclear rare earth units that differ in their crystal chemistries, particularly with respect to the role of fluorine as a structural director. The broad study of rare earth ions provides greater insight into understanding structural variations within silicate frameworks and the nature of f-block incorporation in oxyanion frameworks. The single crystals are grown from high-temperature (ca 953 K) hydrothermal fluids, demonstrating the versatility of the technique to access new phases containing recalcitrant rare earth oxides, enabling the study of structural trends.

  6. Recovery of gold from electronic waste using chemical assisted microbial biosorption (hybrid) technique.

    PubMed

    Sheel, Anvita; Pant, Deepak

    2018-01-01

    The aim of present study was to develop a modified method of gold recovery from e-waste. Selective biosorption of gold from contact point of printed circuit board was achieved by using the combination of ammonium thiosulfate (AT) and Lactobacillus acidophilus (LA).Improvement in biosorption was due to the π-π interaction and resultant change in amide absorption bond between AT and LA, as evidenced by infrared spectroscopy. Selection was justified by some basic postulates of ionic radii and confirmed by inductively coupled plasma atomic emission spectroscopy. This methodology provides a unique leaching-sorption method for gold recovery and 85% of gold was recovered (from AT leachant) by the proposed combination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Asymmetric epoxidation of unsaturated ketones catalyzed by heterobimetallic rare earth-lithium complexes bearing phenoxy-functionalized chiral diphenylprolinolate ligand.

    PubMed

    Qian, Qinqin; Tan, Yufang; Zhao, Bei; Feng, Tao; Shen, Qi; Yao, Yingming

    2014-09-05

    Four novel heterobimetallic complexes [REL2]{[(THF)3Li]2(μ-Cl)} stabilized by chiral phenoxy-functionalized prolinolate (RE = Yb (1), Y (2), Sm (3), Nd (4), H2L = (S)-2,4-di-tert-butyl-6-[[2-(hydroxydiphenylmethyl)pyrrolidin-1-yl]methyl]phenol have been synthesized and characterized. These readily available complexes are highly active in catalyzing the epoxidation of α,β-unsaturated ketones, while the enantioselectivity varies according to the ionic radii of the rare earth center. A series of chalcone derivatives were converted to chiral epoxides in 80 → 99% ee at 0 °C using TBHP as the oxidant in the presence of 10 mol % of 1.

  8. Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors.

    PubMed

    Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J

    2013-07-24

    In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.

  9. Progress in Visualizing Atomic Size Effects with DFT-Chemical Pressure Analysis: From Isolated Atoms to Trends in AB5 Intermetallics.

    PubMed

    Berns, Veronica M; Engelkemier, Joshua; Guo, Yiming; Kilduff, Brandon J; Fredrickson, Daniel C

    2014-08-12

    The notion of atomic size poses an important challenge to chemical theory: empirical evidence has long established that atoms have spatial requirements, which are summarized in tables of covalent, ionic, metallic, and van der Waals radii. Considerations based on these radii play a central role in the design and interpretation of experiments, but few methods are available to directly support arguments based on atomic size using electronic structure methods. Recently, we described an approach to elucidating atomic size effects using theoretical calculations: the DFT-Chemical Pressure analysis, which visualizes the local pressures arising in crystal structures from the interactions of atomic size and electronic effects. Using this approach, a variety of structural phenomena in intermetallic phases have already been understood in terms that provide guidance to new synthetic experiments. However, the applicability of the DFT-CP method to the broad range of the structures encountered in the solid state is limited by two issues: (1) the difficulty of interpreting the intense pressure features that appear in atomic core regions and (2) the need to divide space among pairs of interacting atoms in a meaningful way. In this article, we describe general solutions to these issues. In addressing the first issue, we explore the CP analysis of a test case in which no core pressures would be expected to arise: isolated atoms in large boxes. Our calculations reveal that intense core pressures do indeed arise in these virtually pressure-less model systems and allow us to trace the issue to the shifts in the voxel positions relative to atomic centers upon expanding and contracting the unit cell. A compensatory grid unwarping procedure is introduced to remedy this artifact. The second issue revolves around the difficulty of interpreting the pressure map in terms of interatomic interactions in a way that respects the size differences of the atoms and avoids artificial geometrical constraints. In approaching this challenge, we have developed a scheme for allocating the grid pressures to contacts inspired by the Hirshfeld charge analysis. Here, each voxel is allocated to the contact between the two atoms whose free atom electron densities show the largest values at that position. In this way, the differing sizes of atoms are naturally included in the division of space without resorting to empirical radii. The use of the improved DFT-CP method is illustrated through analyses of the applicability of radius ratio arguments to Laves phase structures and the structural preferences of AB5 intermetallics between the CaCu5 and AuBe5 structure types.

  10. High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye

    2017-01-28

    In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less

  11. The effect of starspots on the radii of low-mass pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Jeffries, R. D.

    2014-07-01

    A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M < 0.5 M⊙), pre-main-sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1 - β)-N compared to unspotted stars of the same luminosity, where β is the equivalent covering fraction of dark starspots and N ≃ 0.45 ± 0.05. This is a much stronger inflation than predicted by Spruit & Weiss for main-sequence stars with the same β, where N ˜ 0.2-0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally locked, low-mass eclipsing binary components. The binary components and zero-age main-sequence K-dwarfs have radii inflated by ˜10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrically measured radii; low-mass M-type PMS stars, that are still on their Hayashi tracks, are inflated by up to ˜40 per cent. If this were attributable to starspots alone, we estimate that an effective spot coverage of 0.35 < β < 0.51 is required. Alternatively, global inhibition of convective flux transport by dynamo-generated fields may play a role. However, we find greater consistency with the starspot models when comparing the loci of active young stars and inactive field stars in colour-magnitude diagrams, particularly for the highly inflated PMS stars, where the large, uniform temperature reduction required in globally inhibited convection models would cause the stars to be much redder than observed.

  12. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses A 2O–2MO–4SiO 2 with molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-05-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observedmore » that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.« less

  13. Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina

    NASA Astrophysics Data System (ADS)

    Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya

    Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.

  14. Impact of concomitant Y and Mn substitution on superconductivity in La1 -yYyFe1 -xMnxAsO0.89F0.11

    NASA Astrophysics Data System (ADS)

    Kappenberger, Rhea; Hammerath, Franziska; Rousse, Pierre; Afrassa, Mesfin Asfaw; Haghighi, M. Hossein; Kamusella, Sirko; Prando, Giacomo; Lamura, Gianrico; Wolter, Anja U. B.; Moroni, Matteo; Sanna, Samuele; Carretta, Pietro; Hess, Christian; Grafe, Hans-Joachim; Klauss, Hans-Henning; Wurmehl, Sabine; Büchner, Bernd

    2018-02-01

    We discuss the impact of concomitant substitution of Fe by Mn and La by Y in optimally F-doped LaFeAsO0.89F0.11 . Mn has a known poisoning effect on superconductivity which is particularly strong in the La1111 system, where 0.2% of Mn were reported to completely suppress superconductivity. Through isovalent substitution of La by the much smaller Y we are able to inflict chemical pressure on the structure, which we show is stabilizing the superconducting state, resulting in a drastically larger amount of Mn needed to completely quench superconductivity. Interestingly, we find that the lattice parameter c changes significantly even for small amounts of Mn substitution within a series, which is unexpected taking only the differences between ionic radii into account. We discuss our findings in the light of electron localization caused by small amounts of paramagnetic Mn impurities in La1 -yYyFe1 -xMnxAsO0.89F0.11 also indicated by resistivity and Mößbauer measurements.

  15. Partition coefficients for REE between garnets and liquids - Implications of non-Henry's Law behaviour for models of basalt origin and evolution

    NASA Technical Reports Server (NTRS)

    Harrison, W. J.

    1981-01-01

    An experimental investigation of Ce, Sm and Tm rare earth element (REE) partition coefficients between coexisting garnets (both natural and synthetic) and hydrous liquids shows that Henry's Law may not be obeyed over a range of REE concentrations of geological relevance. Systematic differences between the three REE and the two garnet compositions may be explained in terms of the differences between REE ionic radii and those of the dodecahedral site into which they substitute, substantiating the Harrison and Wood (1980) model of altervalent substitution. Model calculations demonstrate that significant variation can occur in the rare earth contents of melts produced from a garnet lherzolite, if Henry's Law partition coefficients do not apply for the garnet phase.

  16. Lanthanum(III) and Lutetium(III) in Nitrate-Based Ionic Liquids: A Theoretical Study of Their Coordination Shell.

    PubMed

    Bodo, Enrico

    2015-09-03

    By using ab initio molecular dynamics, we investigate the solvent shell structure of La(3+) and Lu(3+) ions immersed in two ionic liquids, ethylammonium nitrate (EAN) and its hydroxy derivative (2-ethanolammonium nitrate, HOEAN). We provide the first study of the coordination properties of these heavy metal ions in such a highly charged nonacqueous environment. We find, as expected, that the coordination in the liquid is mainly due to nitrate anions and that, due to the bidentate nature of the ligand, the complexation shell of the central ion has a nontrivial geometry and a coordination number in terms of nitrate molecules that apparently violates the decrease of ionic radii along the lanthanides series, since the smaller Lu(3+) ion seems to coordinate six nitrate molecules and the La(3+) ion only five. A closer inspection of the structural features obtained from our calculations shows, instead, that the first shell of oxygen atoms is more compact for Lu(3+) than for La(3+) and that the former coordinates 8 oxygen atoms while the latter 10 in accord with the typical lanthanide's trend along the series and that their first solvation shells have a slight irregular and complex geometrical pattern. When moving to the HOEAN solutions, we have found that the solvation of the central ion is possibly also due to the cation itself through the oxygen atom on the side chain. Also, in this liquid, the coordination numbers in terms of oxygen atoms in both solvents is 10 for La(3+) and 8 for Lu(3+).

  17. Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oka, Yurie, E-mail: ok-yu@fuji.waseda.jp; Yanao, Tomohiro, E-mail: yanao@waseda.jp; Koon, Wang Sang, E-mail: koon@cds.caltech.edu

    2015-04-07

    This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internalmore » centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.« less

  18. Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters

    NASA Astrophysics Data System (ADS)

    Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang

    2015-04-01

    This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions.

  19. Role of phonon scattering by elastic strain field in thermoelectric Sr1-xYxTiO3-δ

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Mehdizadeh Dehkordi, A.; Tennakoon, S.; Adebisi, R.; Gladden, J. R.; Darroudi, T.; Alshareef, H. N.; Tritt, T. M.

    2014-06-01

    Perovskite-type SrTiO3-δ ceramics are multifunctional materials with significant potential as n-type thermoelectric (TE) materials. The electronic and thermal transport properties of spark plasma sintered polycrystalline Sr1-xYxTiO3-δ (x = 0.05, 0.075, 0.1) ceramics are systematically investigated from (15-800) K. The Sr0.9Y0.1TiO3-δ simultaneously exhibits a large Seebeck coefficient, α > -80 μV/K and moderately high electrical resistivity, ρ ˜ 0.8 mΩ-cm at a carrier concentration of ˜1021 cm-3 at 300 K resulting in a high TE power factor defined herein as (α2σT) ˜ 0.84 W/m-K at 760 K. Despite the similar atomic masses of Sr (87.6 g/mol) and Y (88.9 g/mol), the lattice thermal conductivity (κL) of Sr1-xYxTiO3-δ is significantly reduced with increased Y-doping, owing to the smaller ionic radii of Y3+ (˜1.23 Å, coordination number 12) compared to Sr2+ (˜1.44 Å, coordination number 12) ions. In order to understand the thermal conductivity reduction mechanism, the κL in the Sr1-xYxTiO3-δ series are phenomenologically modeled with a modified Callaway's equation from 30-600 K. Phonon scattering by elastic strain field due to ionic radii mismatch is found to be the prominent scattering mechanism in reducing κL of these materials. In addition, the effect of Y-doping on the elastic moduli of Sr1-xYxTiO3-δ (x = 0, 0.1) is investigated using resonant ultrasound spectroscopy, which exhibits an anomaly in x = 0.1 in the temperature range 300-600 K. As a result, the phonon mean free path is found to be further reduced in the Sr0.9Y0.1TiO3-δ compared to that of SrTiO3-δ, resulting in a considerably low thermal conductivity κ ˜ 2.7 W/m-K at 760 K. Finally, we report a thermoelectric figure of merit (ZT) ˜ 0.3 at 760 K in the Sr0.9Y0.1TiO3-δ, the highest ZT value reported in the Y-doped SrTiO3 ceramics thus far.

  20. Development of ATHENA mirror modules

    NASA Astrophysics Data System (ADS)

    Collon, Maximilien J.; Vacanti, Giuseppe; Barrière, Nicolas M.; Landgraf, Boris; Günther, Ramses; Vervest, Mark; van der Hoeven, Roy; Dekker, Danielle; Chatbi, Abdel; Girou, David; Sforzini, Jessica; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Fransen, Sebastiaan; Shortt, Brian; Haneveld, Jeroen; Koelewijn, Arenda; Booysen, Karin; Wijnperle, Maurice; van Baren, Coen; Eigenraam, Alexander; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Massahi, Sonny; Christensen, Finn E.; Della Monica Ferreira, Desirée.; Valsecchi, Giuseppe; Oliver, Paul; Checquer, Ian; Ball, Kevin; Zuknik, Karl-Heinz

    2017-08-01

    Silicon Pore Optics (SPO), developed at cosine with the European Space Agency (ESA) and several academic and industrial partners, provides lightweight, yet stiff, high-resolution x-ray optics. This technology enables ATHENA to reach an unprecedentedly large effective area in the 0.2 - 12 keV band with an angular resolution better than 5''. After developing the technology for 50 m and 20 m focal length, this year has witnessed the first 12 m focal length mirror modules being produced. The technology development is also gaining momentum with three different radii under study: mirror modules for the inner radii (Rmin = 250 mm), outer radii (Rmax = 1500 mm) and middle radii (Rmid = 737 mm) are being developed in parallel.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baines, Ellyn K.; Armstrong, J. Thomas; Schmitt, Henrique R.

    Using the Navy Precision Optical Interferometer, we measured the angular diameters of 10 stars that have previously measured solar-like oscillations. Our sample covered a range of evolutionary stages but focused on evolved subgiant and giant stars. We combined our angular diameters with Hipparcos parallaxes to determine the stars' physical radii, and used photometry from the literature to calculate their bolometric fluxes, luminosities, and effective temperatures. We then used our results to test the scaling relations used by asteroseismology groups to calculate radii and found good agreement between the radii measured here and the radii predicted by stellar oscillation studies. Themore » precision of the relations is not as well constrained for giant stars as it is for less evolved stars.« less

  2. A new model to study the phase transition from microstructures to nanostructures in ionic/ionic surfactants mixture.

    PubMed

    Sohrabi, Beheshteh; Gharibi, Hussein; Javadian, Soheila; Hashemianzadeh, Majid

    2007-08-30

    The phase behavior and aggregate structures of mixtures of the oppositely charged surfactants cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) are explored at high dilution by pulsed field gradient stimulated echo (PFG-STE) NMR. The aggregation numbers and hydrodynamic radii of vesicles and mixed micelles were determined by a combination of viscosity and self-diffusion coefficient measurements. The average size of the mixed micelles was larger than that of micelles containing uniformly charged head groups. Analysis of the variations of the self-diffusion coefficient and viscosity with changing concentration of CTAB or SDS in the cationic-rich and anionic-rich regions revealed a phase transition from vesicles to mixed micelles. Differences in the lengths of the CTAB and SDS hydrophobic chains stabilize vesicles relative to other microstructures (e.g., liquid crystalline and precipitate phase), and vesicles form spontaneously over a wide range of compositions in both cationic-rich and anionic-rich solutions. The results obtained from conductometry measurements confirmed this transition. Finally, according to the capacitor model, a new model was developed for estimating the surface potentials and electrostatic free energy (g(elec)). Then we investigated the variations of electrostatic and transfer free energy in phase transition between mixed micelle and vesicle.

  3. A formulation of convection for stellar structure and evolution calculations without the mixing-length theory approximations. II - Application to Alpha Centauri A and B

    NASA Technical Reports Server (NTRS)

    Lydon, Thomas J.; Fox, Peter A.; Sofia, Sabatino

    1993-01-01

    We have constructed a series of models of Alpha Centauri A and Alpha Centauri B for the purposes of testing the effects of convection modeling both by means of the mixing-length theory (MLT), and by means of parameterization of energy fluxes based upon numerical simulations of turbulent compressible convection. We demonstrate that while MLT, through its adjustable parameter alpha, can be used to match any given values of luminosities and radii, our treatment of convection, which lacks any adjustable parameters, makes specific predictions of stellar radii. Since the predicted radii of the Alpha Centauri system fall within the errors of the observed radii, our treatment of convection is applicable to other stars in the H-R diagram in addition to the sun. A second set of models is constructed using MLT, adjusting alpha to yield not the 'measured' radii but, instead, the radii predictions of our revised treatment of convection. We conclude by assessing the appropriateness of using a single value of alpha to model a wide variety of stars.

  4. A new approach combining different MRI methods to provide detailed view on swelling dynamics of xanthan tablets influencing drug release at different pH and ionic strength.

    PubMed

    Mikac, Ursa; Sepe, Ana; Kristl, Julijana; Baumgartner, Sasa

    2010-08-03

    The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. We have selected magnetic resonance imaging (MRI) as the method of choice for visualizing the dynamic processes occurring during the swelling of xanthan tablets in a variety of media. The aims were (i) to develop a new method using MRI for accurate determination of penetration, swelling and erosion fronts, (ii) to investigate the effects of pH and ionic strength on swelling, and (iii) to study the influence of structural changes in xanthan gel on drug release. Two dimensional (2D) MRI and one dimensional single point imaging (SPI) of swollen xanthan tablets were recorded, together with T(2) mapping. The border between dry and hydrated glassy xanthan-the penetration front-was determined from 1D SPI signal intensity profiles. The erosion front was obtained from signal intensity profiles of 2D MR images. The swelling front, where xanthan is transformed from a glassy to a rubbery state (gel formation), was determined from T(2) profiles. Further, the new combination of MRI methods for swelling front determination enables to explain the appearance of the unusual "bright front" observed on 2D MR images in tablets swollen in HCl pH 1.2 media, which represents the position of swelling front. All six media studied, differing in pH and ionic strength, penetrate through the whole tablet in 4h+/-0.3h, but formation of the gel layer is significantly delayed. Unexpectedly, the position of the swelling front was the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers. The latter are seen to be the consequence of the different hydrodynamic radii of the xanthan molecules, which affect the drug release kinetics. The slowest release of pentoxifylline was observed in water where the thickest gel was formed, whereas the fastest release was observed in HCl pH 1.2, in which the gel layer was thinnest. Moreover, experiments simulating physiological conditions showed that changes of pH and ionic strength influence the xanthan gel structure relatively quickly, and consequently the drug release kinetics. It is therefore concluded that drug release is greatly influenced by changes in the xanthan molecular conformation, as reflected in changed thickness of the gel layer. A new method utilizing combination of SPI, multi-echo MRI and T(2) mapping eliminates the limitations of standard methods used in previous studies for determining moving fronts and improves current understanding of the dynamic processes involved in polymer swelling. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. The measurement of dynamic radii for passenger car tyre

    NASA Astrophysics Data System (ADS)

    Anghelache, G.; Moisescu, R.

    2017-10-01

    The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.

  6. Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.

    2015-01-01

    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.

  7. Optical study of Tm-doped solid solution (Sc0.5Y0.5)2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Shi, Jiaojiao; Liu, Bin; Zheng, Lihe; Wang, Qingguo; Tang, Huili; Liu, Junfang; Su, Liangbi; Wu, Feng; Zhao, Hengyu; He, Nuotian; Li, Na; Li, Qiu; Guo, Chao; Xu, Jun; Yang, Kejian; Xu, Xiaodong; Ryba-Romanowski, Witold; Lisiecki, Radosław; Solarz, Piotr

    2018-04-01

    Tm-doped (Sc0.5Y0.5)2SiO5 (SYSO) crystals were grown by Czochralski method. The UV-VIR-NIR absorption spectra and the near-infrared emission spectra were measured and analysed by the Judd-Ofelt approach. Temperature influence on both absorption and emission spectra has been determined from the data recorded at room temperature and 10 K. It has been found that the structural disorder resulting from dissimilar ionic radii of Sc3+ and Y3+ in the solid solution (Sc0.5Y0.5)2SiO5 crystal brings about a strong inhomogeneous broadening of Tm3+ ions spectra. However, it affects the excited state relaxation dynamics inherent to thulium-doped Y2SiO5 and Sc2SiO5 hosts weakly.

  8. Micro structural analysis and magnetic characteristics of rare earth substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Tapdiya, Swati; Singh, Sarika; Kulshrestha, Shobha; Shrivastava, A. K.

    2018-05-01

    A series of ultrafine nanoparticles of Gd3+ doped Co-ferrites CoGdxFe2-xO4 (x=0.0, 0.05 and 0.10) were prepared by wet chemical co-precipitation method using nitrates of respective metal ions. Structural and morphology studies were performed using XRD, SEM and EDAX. Indexed XRD patterns confirm the formation of cubic spinel phase. Average crystallite sizes found to be decreases with trivalent rare earth ion substitution. Lattice constant (a) and lattice strain increases with increase in Gd3+ concentration due to large ionic radii (0.94nm) of Gd3+ replacing Fe3+ (0.64nm). SEM images show the spherical morphology and uniform growth of nanoparticles. Magnetic studies show that magnetization (Ms), decreases with increase in Gd3+ concentration from 50.16 emu/gm to 31.26 emu/gm.

  9. Impact of Lu/Gd ratio and activator concentration on structure and scintillation properties of LGSO:Ce crystals

    NASA Astrophysics Data System (ADS)

    Sidletskiy, O.; Bondar, V.; Grinyov, B.; Kurtsev, D.; Baumer, V.; Belikov, K.; Katrunov, K.; Starzhinsky, N.; Tarasenko, O.; Tarasov, V.; Zelenskaya, O.

    2010-02-01

    We have studied the dependence of structural and scintillation characteristics of Lu 2 xGd 2-2 xSiO 5:Ce (LGSO:Ce) crystals on cation composition. LGSO:Ce crystals at x=0-1 have been obtained by the Czochralski method. We report here a strong correlation between ionic radii of trivalent cations and their distribution between non-equivalent sites in lattice. By choosing the optimal Lu/Gd ratio and Ce concentration we were able to obtain the light output by˜70%, as compared to LSO:Ce crystals, and energy resolution ˜7 at% 662 KeV ( 137Cs); the afterglow level was decreased by 1-3 orders of magnitude as compared to LSO:Ce. We also discuss the possible mechanisms of control on scintillation characteristics of mixed orthosilicates.

  10. Particle-number fluctuations and neutron-proton pairing effects on proton and neutron radii of even-even N Almost-Equal-To Z nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douici, M.; Allal, N. H.; Fellah, M.

    The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.

  11. Problems with the Baade-Wesselink method

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, E.; Garnavich, P.; Lawler, M.; Mena-Werth, J.; Morgan, S.

    1989-01-01

    The discrepancy noted in radii obtained by the Baade-Wesselink method when different colors are used to determine the effective temperatures is explored. The discrepancy is found to be due to an inconsistency in the applied temperature-color calibrations. The assumption of the maximum likelihood method that beta (the effective temperature + 0.1 times the bolometric correction) is a linear function of the color is valid for the B-V and V-I colors, but not for the V-R colors. It is suggested that the errors introduced by the nonlinearity in the relation between beta and the V-R colors will produce radii which are too large. The radii derived from the V-B colors appear to be too small.

  12. The California- Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, John Asher; Cargile, Phillip A.; Sinukoff, Evan

    We present stellar and planetary properties for 1305 Kepler Objects of Interest hosting 2025 planet candidates observed as part of the California- Kepler Survey. We combine spectroscopic constraints, presented in Paper I, with stellar interior modeling to estimate stellar masses, radii, and ages. Stellar radii are typically constrained to 11%, compared to 40% when only photometric constraints are used. Stellar masses are constrained to 4%, and ages are constrained to 30%. We verify the integrity of the stellar parameters through comparisons with asteroseismic studies and Gaia parallaxes. We also recompute planetary radii for 2025 planet candidates. Because knowledge of planetarymore » radii is often limited by uncertainties in stellar size, we improve the uncertainties in planet radii from typically 42% to 12%. We also leverage improved knowledge of stellar effective temperature to recompute incident stellar fluxes for the planets, now precise to 21%, compared to a factor of two when derived from photometry.« less

  13. Pauling Electronegativity On/Off Effects Assessed by 13 C and 29 Si NMR Spectroscopic Analysis.

    PubMed

    Benedetti, Michele; De Castro, Federica; Fanizzi, Francesco P

    2017-11-27

    In carbon and silicon tetrahalide compounds, the experimental 13 C and 29 Si NMR chemical-shift values are known to increase or decrease on increasing the overall sum of the ionic radii of the bonded halides Σ(r h ) (normal and inverse halogen dependence (NHD and IHD, respectively)). Herein, we extrapolate the main factors responsible for such NMR chemical shifts. Intriguingly, we found a characteristic value for the overall sum of the Pauling electronegativities of the bonded halides Σ(χ h ), which works as a triggering factor to determine the transition from the NHD to IHD. Below this Σ(χ h ) value, the chemical shift of the central atom was strictly related to only the Σ(r h ) value, thus producing a NHD trend. Conversely, above this value, the chemical shift of the central atom was dependent on both the Σ(r h ) and Σ(χ h ) values, thus producing a IHD trend. A simple model, in which the effect of the Σ(χ h ) value on 13 C and 29 Si NMR chemical shifts is related to an apparent increase in the Σ(r h ) value, is deduced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Precision Stellar and Planetary Astrophysics with TESS and Gaia

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel J.; KELT Collaboration

    2018-01-01

    There is an ever-present need for precise and accurate stellar parameters, particularly for low-mass stars. For example, some fraction of measured M dwarf radii are inflated and have effective temperatures that are suppressed relative to predictions from models, but the physical cause of these effects is still uncertain. This is exacerbated by the fact that only a handful of M dwarfs -- all from double-lined eclipsing binaries (EBs) -- have both masses and radii measured to 3% or better. In the Gaia era, we can now measure model-independent masses and radii for single-lined EBs, thus expanding the sample of stars with precisely measured parameters by at least an order of magnitude, in principle. I will illustrate how one can combine Gaia parallaxes and broad-band stellar fluxes with the eclipse and radial velocity data to provide model-independent masses and radii. I will present our expected achievable constraints on the masses and radii of single-lined EBs. I will discuss both our current effort to turn several dozens of single-lined EBs discovered by the KELT and HATNet surveys into a catalog of exquisitely characterized stars and exoplanets as well as the prospects for achieving similar science for a much larger number of systems with TESS.

  15. Mean-Field Description of Ionic Size Effects with Non-Uniform Ionic Sizes: A Numerical Approach

    PubMed Central

    Zhou, Shenggao; Wang, Zhongming; Li, Bo

    2013-01-01

    Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, i.e., there is no explicit, Boltzmann type distributions. This work begins with a variational formulation of the continuum electrostatics of an ionic solution with such non-uniform ionic sizes as well as multiple ionic valences. An augmented Lagrange multiplier method is then developed and implemented to numerically solve the underlying constrained optimization problem. The method is shown to be accurate and efficient, and is applied to ionic systems with non-uniform ionic sizes such as the sodium chloride solution. Extensive numerical tests demonstrate that the mean-field model and numerical method capture qualitatively some significant ionic size effects, particularly those for multivalent ionic solutions, such as the stratification of multivalent counterions near a charged surface. The ionic valence-to-volume ratio is found to be the key physical parameter in the stratification of concentrations. All these are not well described by the classical Poisson–Boltzmann theory, or the generalized Poisson–Boltzmann theory that treats uniform ionic sizes. Finally, various issues such as the close packing, limitation of the continuum model, and generalization of this work to molecular solvation are discussed. PMID:21929014

  16. Dependence of Fusion Barrier Heights on the Difference of Proton and Neutron Radii

    NASA Astrophysics Data System (ADS)

    Dobrowolski, A.; Pomorski, K.; Bartel, J.

    2005-04-01

    Using the Skyrme effective nucleon--nucleon interaction together with the semiclassical Extended Thomas--Fermi approach (ETF) we investigate the relative change of the fusion barrier heights for the reaction 16O+208Pb as function of the nuclear proton or neutron radii of the colliding nuclei.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chunya; Skelton, Adam A.; Chen, Mingjun

    Here the binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg 2+, Ca 2+, or Sr 2+) or monovalent (Na +, K +, or Rb +) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na + > K + >more » Rb + shows a “reverse” lyotropic trend, while the divalent cations on the same surface exhibit a “regular” lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr 2+ > Ca 2+ > Mg 2+). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO – group and the rutile, helping to “trap” the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO– group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.« less

  18. Metal Cations in G-Quadruplex Folding and Stability

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-09-01

    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  19. Effects of Mo-doping on microstructure and near-infrared shielding performance of hydrothermally prepared tungsten bronzes

    NASA Astrophysics Data System (ADS)

    Wang, Qingjuan; Li, Can; Xu, Wenai; Zhao, Xiaolin; Zhu, Jingxin; Jiang, Haiwei; Kang, Litao; Zhao, Zhe

    2017-03-01

    Both Mo and W belong to VIB-sub-group, and possess similar ionic radii, electronegativity and oxide lattice configuration. Herein, Mo-doped (0-80 at.%) tungsten bronzes, MxWO3, were hydrothermally prepared to systematically explore the influence of Mo-doping on their micro-structure and optical performance. The products adopted a hexagonal structure within 6 at.% Mo-doping, and transformed into a monoclinic phase with higher Mo-doping content. Further tests suggested that 1.5 at.% Mo-doping is beneficial for the formation of pure hexagonal phase and uniform nano-rod morphology. Optical measures showed that all samples exhibited high and comparable visible transmittance (70-80%), but a very different near infrared (NIR) shielding ability. The sample doped with 1.5 at.% Mo demonstrated the best NIR shielding ability with a transmittance minimum of 20% at 1300 nm. Further increase of Mo-doping dosage remarkably deteriorated NIR shielding ability by depressing the absorption of localized surface plasmon resonance (LSPR). However, the optical absorption from small-polaron was less influenced by the introduction of Mo. As a result, Mo-doping caused an evident blue shift of the infrared absorption peaks from 1350 to 750 nm.

  20. Sorption of metals on humic acid

    NASA Astrophysics Data System (ADS)

    Kerndorff, H.; Schnitzer, M.

    1980-11-01

    The sorption on humic acid (HA) of metals from an aqueous solution containing Hg(II). Fe(III), Pb, Cu, Al, Ni, Cr(III), Cd, Zn, Co and Mn, was investigated with special emphasis on effects of pH, metal concentration and HA concentration. The sorption efficiency tended to increase with rise in pH, decrease in metal concentration and increase in HA concentration of the equilibrating solution. At pH 2.4. the order of sorption was: Hg≫ Fe≫ Pb≫ CuAl ≫ Ni ≫ CrZnCdCoMn. At pH 3.7. the order was: Hg and Fe were always most readily removed, while Co and Mn were sorbed least readily. There were indications of competition for active sites (CO 2H and phenolic OH groups) on the HA between the different metals. We were unable to find correlations between the affinities of the eleven metals to sorb on HA and their atomic weights, atomic numbers, valencies, and crystal and hydrated ionic radii. The sorption of the eleven metals on the HA could be described by the equation Y = 100/[1 + exp - (A + BX)], where Y = % metal removed by HA; X = mgHA; and A and B are empirical constants.

  1. Ca$sup 45$ UPTAKE BY DOG ERYTHROCYTES SUSPENDED IN SODIUM AND POTASSIUM CHLORIDE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omachi, A.; Markel, R.P.; Hegarty, H.

    1961-04-01

    The disappearance of Ca/sup 4//sup 5/ from the medium was greater when washed dog erythrocytes were suspended in isotonic KCl rather than in isotonic NaCl. Cells stored in a refrigerator for 24 hr or more took up even greater quantities of Ca/sup 4//sup 5/ when incubated in KCl but cells suspended in NaCl did not show any difference from fresh cells. This result is consistent with the view that competition takes place between Ca and Na ions for binding sites as a consequence of the similarity in ionic radii. Acid-citrate-dextrose and, to a certain extent, heparin appeared to delay themore » increased uptake by stored cells. Addition of glucose, adenosine, or Nembutal to stored blood had no effect. Fresh cells hemolyzed by saponin or by hypotonic media took up no more Ca than unhemolyzed fresh cells. Calcium uptake in KCl was -dependent upon pH, greater amounts being taken up at alkaline pH. In contrast to dog red cells, human and cat erythrocytes did not show differences in uptake in NaCl and in KCl, before or after storage. (auth)« less

  2. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length.

    PubMed

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-10-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.

  3. Ionic Size Effects: Generalized Boltzmann Distributions, Counterion Stratification, and Modified Debye Length

    PubMed Central

    Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao

    2013-01-01

    Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes. PMID:24465094

  4. Dynamic mechanical control of local vacancies in NiO thin films

    NASA Astrophysics Data System (ADS)

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V.; Kim, Yunseok

    2018-07-01

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  5. Dynamic mechanical control of local vacancies in NiO thin films.

    PubMed

    Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Kim, Yunseok

    2018-07-06

    The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.

  6. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C.

    2017-12-01

    Temperature may play an important role in controlling graphene oxide (GO) stability in aqueous solutions, but it has been overlooked in the literature. In this work, laboratory experiments were conducted to determine the effects of temperature (6, 25, and 40 °C) on GO aggregation kinetics under different combinations of ionic strength, cation type, humic acid (HA) concentration by monitoring GO hydrodynamic radii and attachment efficiencies. The results showed that, without HA, temperature increase promoted GO aggregation in both monovalent (Na+ and K+) and divalent (Ca2+) solutions. This phenomenon might be caused by multiple processes including enhanced collision frequency, enhanced cation dehydration, and reduced electrostatic repulsion. The presence of HA introduced steric repulsion forces that enhanced GO stability and temperature showed different effects GO aggregation kinetics in monovalent and divalent electrolytes. In monovalent electrolytes, cold temperature diminished the steric repulsion of HA-coated GO. As a result, the fastest increasing rate of GO hydrodynamic radius and the smallest critical coagulation concentration value appeared at the lowest temperature (6 °C). Conversely, in divalent electrolyte solutions with HA, high temperate favored GO aggregation, probably because the interactions between Ca2+ and HA increased with temperature resulting in lower HA coating on GO. Findings of this work emphasized the importance of temperature as well as solution chemistry on the stability and fate of GO nanoparticles in aquatic environment.

  7. Testing asteroseismic radii of dwarfs and subgiants with Kepler and Gaia

    NASA Astrophysics Data System (ADS)

    Sahlholdt, C. L.; Silva Aguirre, V.; Casagrande, L.; Mosumgaard, J. R.; Bojsen-Hansen, M.

    2018-05-01

    We test asteroseismic radii of Kepler main-sequence and subgiant stars by deriving their parallaxes which are compared with those of the first Gaia data release. We compute radii based on the asteroseismic scaling relations as well as by fitting observed oscillation frequencies to stellar models for a subset of the sample, and test the impact of using effective temperatures from either spectroscopy or the infrared flux method. An offset of 3 per cent, showing no dependency on any stellar parameters, is found between seismic parallaxes derived from frequency modelling and those from Gaia. For parallaxes based on radii from the scaling relations, a smaller offset is found on average; however, the offset becomes temperature dependent which we interpret as problems with the scaling relations at high stellar temperatures. Using the hotter infrared flux method temperature scale, there is no indication that radii from the scaling relations are inaccurate by more than about 5 per cent. Taking the radii and masses from the modelling of individual frequencies as reference values, we seek to correct the scaling relations for the observed temperature trend. This analysis indicates that the scaling relations systematically overestimate radii and masses at high temperatures, and that they are accurate to within 5 per cent in radius and 13 per cent in mass for main-sequence stars with temperatures below 6400 K. However, further analysis is required to test the validity of the corrections on a star-by-star basis and for more evolved stars.

  8. The effect of varying the anion of an ionic liquid on the solvent effects on a nucleophilic aromatic substitution reaction.

    PubMed

    Hawker, Rebecca R; Haines, Ronald S; Harper, Jason B

    2018-05-09

    A variety of ionic liquids, each containing the same cation but a different anion, were examined as solvents for a nucleophilic aromatic substitution reaction. Varying the proportion of ionic liquid was found to increase the rate constant as the mole fraction of ionic liquid increased demonstrating that the reaction outcome could be controlled through varying the ionic liquid. The solvent effects were correlated with the hydrogen bond accepting ability (β) of the ionic liquid anion allowing for qualitative prediction of the effect of changing this component of the solute. To determine the microscopic origins of the solvent effects, activation parameters were determined through temperature-dependent kinetic analyses and shown to be consistent with previous studies. With the knowledge of the microscopic interactions in solution, an ionic liquid was rationally chosen to maximise rate enhancement demonstrating that an ionic solvent can be selected to control reaction outcome for this reaction type.

  9. Structure-substitution limit correlation study on Cr{sup 3+} substituted polycrystalline yttrium iron garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modi, K. B.; Saija, K. G.; Sharma, P. U.

    2016-05-06

    Polycrystalline samples of Cr{sup 3+} - substituted yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) system with general chemical formula, Y{sub 3}Fe{sub 5-x}Cr{sub x}O{sub 12}, x = 0.0, 0.2, 0.4 and 0.6 were synthesized by double sintering ceramic technique and characterized by X-ray powder diffractometry. The Rietveld fitted X-ray diffraction patterns analysis revealed mono phase formation for x = 0.0 - 0.4 compositions while x = 0.6 composition possesses mixed phase character. The observed substitution limit has been discussed in the light of ionic size of substituent, electrostatic energy, electronic configuration and synthesis parameters. These observations strongly suggest that the electronicmore » configuration of Cr{sup 3+}, which is favorable to the formation of d2sp3 (octahedral) type bonds, must be important. In the case of Cr{sup 3+}, the substitution does not appear to proceed well for x much greater than 0.5, this limitation probably is a consequence of the strong preference of a smaller ion Cr{sup 3+}, for a larger octahedral site which quickly leads to a condition not comparable with the requirement of the structure. The distribution of cations, mean ionic radii and theoretical lattice constant values have been determined.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, S. A.; Harris, V. G.; Hamdeh, H. H.

    The cation site occupancy of a mechanically activated nanocrystalline zinc ferrite powder was determined as (Zn{sub 0.55}{sup 2+}Fe{sub 0.18}{sup 3+}){sub tet}[Zr{sub 0.45}{sup 2+}Fe{sub 1.82}{sup 3+}]{sub oct}O{sub 4} through analysis of extended x-ray absorption fine structure measurements, showing a large redistribution of cations between sites compared to normal zinc ferrite samples. The overpopulation of cations in the octahedral sites was attributed to the ascendance in importance of the ionic radii over the crystal energy and bonding coordination in determining which interstitial sites are occupied in this structurally disordered powder. Slight changes are observed in the local atomic environment about the zincmore » cations, but not the iron cations, with respect to the spinel structure. The presence of Fe{sup 3+} on both sites is consistent with the measured room temperature magnetic properties. (c) 2000 American Institute of Physics.« less

  11. 155Gd Mössbauer Spectroscopic Study of GdM(CN)6 · 4H2O (M = CrIII, FeIII and CoIII) and KGdM(CN)6 · 3H2O (M = FeII and RuII)

    NASA Astrophysics Data System (ADS)

    Wang, Junhu; Abe, Junko; Kitazawa, Takafumi; Takahashi, Masashi; Takeda, Masuo

    2002-07-01

    155Gd Mössbauer spectroscopic studies of the title complexes have been performed. Although the 155Gd isomer shifts (d) varied scarcely, the quadrupole coupling constants (e2qQ) changed in the range 4.07-4.81 mm s-1. The e2qQ values of KGdM(CN)6 · 3H2O (M = FeII and RuII) are larger than those of GdM(CN)6 · 4H2O (M = CrIII, FeIII, and CoIII), these values increasing with increasing orthorhombic distortion of the crystal structures. A relationship between the e2qQ values and the ionic radii of the transition metal ions has also been recognized

  12. Minor elements in Keweenawan lavas, Michigan

    USGS Publications Warehouse

    Cornwall, H.R.; Rose, H.J.

    1957-01-01

    The distribution of minor elements in three basaltic flows of the Keweenawan series, of Michigan, is related to differentiation in the flows. Thus, nickel is most abundant in the early differentiates; nickel, chromium, and barium are generally deficient in the pegmatites, which formed late; whereas copper, vanadium, yttrium, and other minor elements are concentrated in the pegmatites. The minor-element content of individual minerals in the Greenstone flow varies markedly from one mineral to another and seems to depend primarily on the presence or absence in the minerals of major elements for which the minor elements can substitute. Minor elements have substituted most readily for those major elements with similar ionic radii. Valence and electronegativity also seem to influence the ease of substitution. The distribution of other minor elements in copper-bearing lodes of the Michigan copper district shows no apparent relation to copper mineralization. ?? 1957.

  13. Multisite occupation of divalent dopants in barium and strontium titanates

    NASA Astrophysics Data System (ADS)

    Zulueta, Yohandys A.; Nguyen, Minh Tho

    2018-10-01

    Based on recent experimental and theoretical proofs of calcium multisite occupation in barium titanate, we investigated a mixed incorporation mechanism for divalent dopants in barium and strontium titanates (BaTiO3 and SrTiO3). Our present theoretical results demonstrated the multisite occupation of divalent dopants in both perovskite structures. We determined the dependences of the solution, binding energies, and final solution energies with respect to the ionic radii of the dopants. Calculated results obtained based on classical simulations showed that the divalent dopants can occupy both A- and Ti- cation sites in ATiO3 perovskite structures. Such a multisite occupation has direct implications for other experimental findings regarding BaTiO3, such as non-stabilization of the tetragonal phase, shifts in the Curie temperature, intensification of the diffuse phase transition, and shifts in the absorption of ultraviolet light to the visible range in photocatalytic applications related to solar cells for producing energy.

  14. Role of Bi3+ substitution on structural, magnetic and optical properties of cobalt spinel ferrite

    NASA Astrophysics Data System (ADS)

    Anjum, Safia; Sehar, Fatima; Awan, M. S.; Zia, Rehana

    2016-04-01

    Bismuth-doped cobalt ferrite CoBi x Fe(2- x)O4 with x = 0, 0.1,0.2, 0.3, 0.4, 0.5 have been prepared using powder metallurgy route. The structural, morphological, elemental, magnetic and optical properties have been investigated using X-ray diffractometer, Fourier transform infrared spectroscopy, scanning electron microscope, energy dispersive X-rays, vibrating sample magnetometer and ultraviolet-visible spectrometer, respectively. X-ray diffractometer analysis confirms the formation of single-phase cubic spinel structure. As the substitution of larger ionic radii Bi3+ ions increases in cobalt ferrite which is responsible to increase the lattice parameters and decrease the crystallite size. SEM micrographs revealed the spherical shape of the particles with the nonuniform grain boundaries. The saturation magnetization decreases and bandgap energy increases as the concentration of non-magnetic Bi3+ ions increases.

  15. Electron pitch angle distributions throughout the magnetosphere as observed on Ogo 5.

    NASA Technical Reports Server (NTRS)

    West, H. I., Jr.; Buck, R. M.; Walton, J. R.

    1973-01-01

    A survey of the equatorial pitch angle distributions of energetic electrons is provided for all local times out to radial distances of 20 earth radii on the night side of the earth and to the magnetopause on the day side of the earth. In much of the inner magnetosphere and in the outer magnetosphere on the day side of the earth, the normal loss cone distribution prevails. The effects of drift shell splitting - i.e., the appearance of pitch angle distributions with minimums at 90 deg, called butterfly distributions - become apparent in the early afternoon magnetosphere at extended distances, and the distribution is observed in to 5.5 earth radii in the nighttime magnetosphere. Inside about 9 earth radii the pitch angle effects are quite energy-dependent. Beyond about 9 earth radii in the premidnight magnetosphere during quiet times the butterfly distribution is often observed. It is shown that these electrons cannot survive a drift to dawn without being considerably modified. The role of substorm activity in modifying these distributions is identified.

  16. Electronegativity effects and single covalent bond lengths of molecules in the gas phase.

    PubMed

    Lang, Peter F; Smith, Barry C

    2014-06-07

    This paper discusses in detail the calculation of internuclear distances of heteronuclear single bond covalent molecules in the gaseous state. It reviews briefly the effect of electronegativity in covalent bond length. A set of single bond covalent radii and electronegativity values are proposed. Covalent bond lengths calculated by an adapted form of a simple expression (which calculated internuclear separation of different Group 1 and Group 2 crystalline salts to a remarkable degree of accuracy) show very good agreement with observed values. A small number of bond lengths with double bonds as well as bond lengths in the crystalline state are calculated using the same expression and when compared with observed values also give good agreement. This work shows that covalent radii are not additive and that radii in the crystalline state are different from those in the gaseous state. The results also show that electronegativity is a major influence on covalent bond lengths and the set of electronegativity scale and covalent radii proposed in this work can be used to calculate covalent bond lengths in different environments that have not yet been experimentally measured.

  17. Resolving Size Distribution of Black Carbon Internally Mixed With Snow: Impact on Snow Optical Properties and Albedo

    NASA Astrophysics Data System (ADS)

    He, Cenlin; Liou, Kuo-Nan; Takano, Yoshi

    2018-03-01

    We develop a stochastic aerosol-snow albedo model that explicitly resolves size distribution of aerosols internally mixed with various snow grains. We use the model to quantify black carbon (BC) size effects on snow albedo and optical properties for BC-snow internal mixing. Results show that BC-induced snow single-scattering coalbedo enhancement and albedo reduction decrease by a factor of 2-3 with increasing BC effective radii from 0.05 to 0.25 μm, while polydisperse BC results in up to 40% smaller visible single-scattering coalbedo enhancement and albedo reduction compared to monodisperse BC with equivalent effective radii. We further develop parameterizations for BC size effects for application to climate models. Compared with a realistic polydisperse assumption and observed shifts to larger BC sizes in snow, respectively, assuming monodisperse BC and typical atmospheric BC effective radii could lead to overestimates of 24% and 40% in BC-snow albedo forcing averaged over different BC and snow conditions.

  18. U(SMes*)n, (n = 3, 4) and Ln(SMes*)3 (Ln = La, Ce, Pr, Nd): lanthanide(III)/actinide(III) differentiation in agostic interactions and an unprecedented eta3 ligation mode of the arylthiolate ligand, from X-ray diffraction and DFT analysis.

    PubMed

    Roger, Mathieu; Barros, Noémi; Arliguie, Thérèse; Thuéry, Pierre; Maron, Laurent; Ephritikhine, Michel

    2006-07-12

    Reaction of U(NEt(2))(4) with HS-2,4,6-(t)Bu(3)C(6)H(2) (HSMes) gave U(SMes)(3)(NEt(2))(py) (1), whereas similar treatment of U[N(SiMe(3))SiMe(2)CH(2)][N(SiMe(3))(2)](2) afforded U(SMes)[N(SiMe(3))(2)](3) (2) and U(SMes)(3)[N(SiMe(3))(2)]. The first neutral homoleptic uranium(IV) thiolate to have been crystallographically characterized, U(SMes)(4) (4), was isolated from the reaction of U(BH(4))(4) and KSMes. The first homoleptic thiolate complex of uranium(III), U(SMes)(3) (5), was synthesized by protonolysis of U[N(SiMe(3))(2)](3) with HSMes in cyclohexane. The crystal structure of 5 exhibits the novel eta(3) ligation mode for the arylthiolate ligand. Comparison of the crystal structure of 5 with those of the isomorphous lanthanide congeners Ln(SMes)(3) (Ln = La, Ce, Pr, and Nd) indicates that the U-S, U-C(ipso)(), and U-C(ortho)() bond lengths are shorter than the corresponding ones in the 4f-element analogues, when taking into account the variation in the ionic radii of the metals. The distance between the uranium and the carbon atoms involved in the U...H-C epsilon agostic interaction of each thiolate ligand is shorter, by approximately 0.05 A, than that expected from a purely ionic bonding model. The lanthanide(III)/actinide(III) differentiation was analyzed by density functional theory (DFT). The nature of the M-S bond is shown to be ionic strongly polarized at the sulfur for M = U and iono-covalent (i.e. strongly ionic with low orbital interaction), for M = Ln. The strength of the U...H-C epsilon agostic interaction is proposed to be controlled by the maximization of the interaction between U(+) and S(-) under steric constraints. The eta(3) ligation mode of the arylthiolate ligand is also obtained from DFT.

  19. The two radii of a charged particle.

    PubMed

    Michov, B M

    1989-01-01

    The existence of two radii of each charged particle-a geometric and electrokinetic radii, is supposed. The mathematical relationship between them in the four possible combinations of an ion and its counterion is analyzed: (i) at equal geometric radii and, in absolute values, equal valencies; (ii) at equal geometric radii and, in absolute values, different valencies; (iii) at different geometric radii and, in absolute values, equal valencies; (iv) at different geometric radii and, in absolute values, different valencies. One of the equations worked out can be used to define the relationship between the geometric and electrokinetic radii of a polyion. All the equations are used in working out precise calculations.

  20. Gyration-radius dynamics in structural transitions of atomic clusters.

    PubMed

    Yanao, Tomohiro; Koon, Wang S; Marsden, Jerrold E; Kevrekidis, Ioannis G

    2007-03-28

    This paper is concerned with the structural transition dynamics of the six-atom Morse cluster with zero total angular momentum, which serves as an illustrative example of the general reaction dynamics of isolated polyatomic molecules. It develops a methodology that highlights the interplay between the effects of the potential energy topography and those of the intrinsic geometry of the molecular internal space. The method focuses on the dynamics of three coarse variables, the molecular gyration radii. By using the framework of geometric mechanics and hyperspherical coordinates, the internal motions of a molecule are described in terms of these three gyration radii and hyperangular modes. The gyration radii serve as slow collective variables, while the remaining hyperangular modes serve as rapidly oscillating "bath" modes. Internal equations of motion reveal that the gyration radii are subject to two different kinds of forces: One is the ordinary force that originates from the potential energy function of the system, while the other is an internal centrifugal force. The latter originates from the dynamical coupling of the gyration radii with the hyperangular modes. The effects of these two forces often counteract each other: The potential force generally works to keep the internal mass distribution of the system compact and symmetric, while the internal centrifugal force works to inflate and elongate it. Averaged fields of these two forces are calculated numerically along a reaction path for the structural transition of the molecule in the three-dimensional space of gyration radii. By integrating the sum of these two force fields along the reaction path, an effective energy curve is deduced, which quantifies the gross work necessary for the system to change its mass distribution along the reaction path. This effective energy curve elucidates the energy-dependent switching of the structural preference between symmetric and asymmetric conformations. The present methodology should be of wide use for the systematic reduction of dimensionality as well as for the identification of kinematic barriers associated with the rearrangement of mass distribution in a variety of molecular reaction dynamics in vacuum.

  1. Gyration-radius dynamics in structural transitions of atomic clusters

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Koon, Wang S.; Marsden, Jerrold E.; Kevrekidis, Ioannis G.

    2007-03-01

    This paper is concerned with the structural transition dynamics of the six-atom Morse cluster with zero total angular momentum, which serves as an illustrative example of the general reaction dynamics of isolated polyatomic molecules. It develops a methodology that highlights the interplay between the effects of the potential energy topography and those of the intrinsic geometry of the molecular internal space. The method focuses on the dynamics of three coarse variables, the molecular gyration radii. By using the framework of geometric mechanics and hyperspherical coordinates, the internal motions of a molecule are described in terms of these three gyration radii and hyperangular modes. The gyration radii serve as slow collective variables, while the remaining hyperangular modes serve as rapidly oscillating "bath" modes. Internal equations of motion reveal that the gyration radii are subject to two different kinds of forces: One is the ordinary force that originates from the potential energy function of the system, while the other is an internal centrifugal force. The latter originates from the dynamical coupling of the gyration radii with the hyperangular modes. The effects of these two forces often counteract each other: The potential force generally works to keep the internal mass distribution of the system compact and symmetric, while the internal centrifugal force works to inflate and elongate it. Averaged fields of these two forces are calculated numerically along a reaction path for the structural transition of the molecule in the three-dimensional space of gyration radii. By integrating the sum of these two force fields along the reaction path, an effective energy curve is deduced, which quantifies the gross work necessary for the system to change its mass distribution along the reaction path. This effective energy curve elucidates the energy-dependent switching of the structural preference between symmetric and asymmetric conformations. The present methodology should be of wide use for the systematic reduction of dimensionality as well as for the identification of kinematic barriers associated with the rearrangement of mass distribution in a variety of molecular reaction dynamics in vacuum.

  2. Role of Oxygen in Ionic Liquid Gating on Two-Dimensional Cr2Ge2Te6: A Non-oxide Material.

    PubMed

    Chen, Yangyang; Xing, Wenyu; Wang, Xirui; Shen, Bowen; Yuan, Wei; Su, Tang; Ma, Yang; Yao, Yunyan; Zhong, Jiangnan; Yun, Yu; Xie, X C; Jia, Shuang; Han, Wei

    2018-01-10

    Ionic liquid gating can markedly modulate a material's carrier density so as to induce metallization, superconductivity, and quantum phase transitions. One of the main issues is whether the mechanism of ionic liquid gating is an electrostatic field effect or an electrochemical effect, especially for oxide materials. Recent observation of the suppression of the ionic liquid gate-induced metallization in the presence of oxygen for oxide materials suggests the electrochemical effect. However, in more general scenarios, the role of oxygen in the ionic liquid gating effect is still unclear. Here, we perform ionic liquid gating experiments on a non-oxide material: two-dimensional ferromagnetic Cr 2 Ge 2 Te 6 . Our results demonstrate that despite the large increase of the gate leakage current in the presence of oxygen, the oxygen does not affect the ionic liquid gating effect on  the channel resistance of Cr 2 Ge 2 Te 6 devices (<5% difference), which suggests the electrostatic field effect as the mechanism on non-oxide materials. Moreover, our results show that ionic liquid gating is more effective on the modulation of the channel resistances compared to the back gating across the 300 nm thick SiO 2 .

  3. A revised set of values of single-bond radii derived from the observed interatomic distances in metals by correction for bond number and resonance energy

    PubMed Central

    Pauling, Linus; Kamb, Barclay

    1986-01-01

    An earlier discussion [Pauling, L. (1947) J. Am. Chem. Soc. 69, 542] of observed bond lengths in elemental metals with correction for bond number and resonance energy led to a set of single-bond metallic radii with values usually somewhat less than the corresponding values obtained from molecules and complex ions. A theory of resonating covalent bonds has now been developed that permits calculation of the number of resonance structures per atom and of the effective resonance energy per bond. With this refined method of correcting the observed bond lengths for the effect of resonance energy, a new set of single-bond covalent radii, in better agreement with values from molecules and complex ions, has been constructed. PMID:16593698

  4. Listening to Shells: Galaxy Masses from Disrupted Satellites

    NASA Astrophysics Data System (ADS)

    Westfall, Kyle; Sanderson, R.

    2014-01-01

    Our ability to measure the dynamical mass of an individual galaxy is limited by the radial extent of the luminous tracers of its potential. For elliptical galaxies, it is difficult to go much beyond two effective radii using integrated light. Appealing to particle tracers like globular clusters has allowed for mass measurements out to ten effective radii. The extended atomic-gas disks of spiral galaxies allow one to measure rotation curves well beyond the optical disk to a few effective radii; however, such mass measurements are limited to a single plane and can often be confused by warps. As surface-brightness limits have pushed ever deeper, the revealed abundance of disrupted satellites in galaxy halos may present a unique opportunity for determining the enclosed mass at very large radii (more than five effective radii), provided our technology is up to the challenge. Here, we discuss the prospect of using integrated light spectroscopy of tidal shells to measure the masses of individual galaxies at redshifts of up to 0.1. Our study considers the limitations of current and projected instrumentation on 4-, 10-, and 30-meter class telescopes. The observational constraints are indeed very stringent, requiring both high sensitivity (with V-band surface brightness limits below 25 mag per square arsecond) and high spectral resolution (R>10k), whereas spatial resolution is effectively irrelevant. Bigger is not necessarily better for our application because of the limited field-of-view (FOV) of large telescopes, which dramatically limits their total grasp. We find the two most-promising setups are (1) a large FOV (1 square arcminute) integral-field unit (IFU) on a 4-meter class telescope and (2) a multiplexed suite of small FOV (10 square arcseconds) IFUs on a 10- or 30-meter class telescope. Two prospective instruments that may meet these requirements are WEAVE, an instrument currently planned for the William Herschel Telescope at La Palma, and an OPTIMOS-EVE-like instrument on the E-ELT.

  5. Impurity effects on ionic-liquid-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  6. Dispersion of Rod-like Particles of Nafion in Salt-Free Water/1-Propanol and Water/Ethanol Solutions.

    PubMed

    Yamaguchi, Makoto; Matsunaga, Takuro; Amemiya, Kazuki; Ohira, Akihiro; Hasegawa, Naoki; Shinohara, Kazuhiko; Ando, Masaki; Yoshida, Toshihiko

    2014-12-26

    The dispersion of perfluorinated sulfonic acid ionomers in catalyst inks is an important factor controlling the performance of catalyst layers in membrane electrode assemblies of proton exchange membrane fuel cells (PEMFCs). The effect of water/alcohol composition on the dispersion of H-Nafion in water/1-propanol and water/ethanol solutions was studied by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and (19)F nuclear magnetic resonance ((19)F NMR) spectroscopy. Hydrodynamic radii calculated from DLS decay profiles and the radii and interparticle distance of rod-like particles derived from SAXS profiles showed almost the same dependence on alcohol concentration. 1-Propanol was more effective than ethanol to induce changes in the characteristic lengths of the rod-like particles. The motional narrowing in the (19)F NMR spectra by addition of 1-propanol indicates selective solvation of the rod-like particles. We suppose this might have decreased their radii and induced their elongation, which eventually led to extension of the ordered regions as observed in the hydrodynamic radii. Our study helps to clarify the dispersion of Nafion in aqueous alcohol solutions, which has implications for the performance of PEMFCs.

  7. Dielectric studies of Co3-xMnxO4 (x=0.1-1.0) cubic spinel multiferroic

    NASA Astrophysics Data System (ADS)

    Meena, P. L.; Kumar, Ravi; Prajapat, C. L.; Sreenivas, K.; Gupta, Vinay

    2009-07-01

    A series of Co3-xMnxO4 (x =0.1-1.0) multiferroic cubic spinel ceramics were prepared to study the effect of Mn substitution at Co site on the crystal structures and dielectric properties. No significant change in the structural symmetry was observed with increasing x up to 1.0. A linear increase in lattice parameter with x is attributed to the substitution of Co3+ by Mn3+ (large ionic radii) at the octahedral sites. An antiferromagnetic-type ordering of Co3O4 changes to ferrimagnetic-type order after incorporation of Mn. The effect of Mn substitution on the dielectric constant and loss tangent was studied over a wide range of frequency (75 kHz-5 MHz) and temperature of 150-450 K. The measured value of room temperature ac conductivity at 1.0 MHz was found to increase from 2.0×10-6 to 4.4×10-4 Ω-1 cm-1 and follows power law (σac=Aωs) behavior. The dielectric constant ɛ'(ω) shows a weak frequency dispersion and small temperature dependence below 250 K for all ceramic samples. However, a strong temperature and frequency dependence on ɛ'(ω) was observed at higher temperature (>250 K). The temperature dependent ɛ'(ω) data show the existence of room temperature ferroelectricity in all prepared samples.

  8. Synchrotron-based XAS on structure investigation of La0.99-xSrx(Na, K, Ba)0.01MnO3 nanoparticles: Evidence of magnetic properties

    NASA Astrophysics Data System (ADS)

    Daengsakul, Sujittra; Saengplot, Saowalak; Kidkhunthod, Pinit; Pimsawat, Adulphan; Maensiri, Santi

    2018-04-01

    This work presents the structural study of La0.99-xSrx(Na, K, Ba)0.01MnO3 or LSAM nanoparticles synthesized using thermal-hydro decomposition method where A denotes Na, K, Sr and Ba, respectively. The effect of ionic radii size of A dopants or rA from the substitution of A for La and Sr on the MnO6 octrahedral structure, where the average size of the cations occupying in A-site or 〈rA〉 is fixed at ∼ 1.24 Å, is focused. The LSAM nanoparticles are carefully studied using X-ray diffraction (XRD) including Rietveld refinement and X-ray Absorption Spectroscopy (XAS) including X-ray Absorption Near edge Structure (XANES) and X-ray Absorption Fine Structure (EXAFS). The Rietveld refinement shows all nano-powder samples have rhombohedral structure. By XANES technique we found that the effect of A substitutions at A-site causes a slight change of mean oxidation state of Mn between 3.54 and 3.60. Furthermore, the structural distortion of MnO6 octrahedral in samples is analysed and obtained from EXAFS. The observed trend of ferromagnetism for all LSAM samples can be clearly explained by evidences of A-site doping, structural distortion around Mn atoms and mixing Mn3+/Mn4+ valence states.

  9. The molecular assembly of the ionic liquid/aliphatic carboxylic acid/aliphatic amine as effective and safety transdermal permeation enhancers.

    PubMed

    Kubota, Koji; Shibata, Akira; Yamaguchi, Toshikazu

    2016-04-30

    In spite of numerous advantages, transdermal drug delivery systems are unfeasible for most drugs because of the barrier effect of the stratum corneum. Ionic liquids were recently used to enhance transdermal drug delivery by improving drug solubility. In the present study, safe and effective ionic liquids for transdermal absorption were obtained as salts generated by a neutralization reaction between highly biocompatible aliphatic carboxylic acids (octanoic acid or isostearic acid) and aliphatic amines (diisopropanolamine or triisopropanolamine) (Medrx Co., Ltd., 2009). The mechanism of skin permeability enhancement by ionic liquids was investigated by hydrophilic phenol red and hydrophobic tulobuterol. Further, the skin permeation enhancing effect was remarkably superior in the acid excess state rather than the neutralization state. Infrared absorption spectrum analysis confirmed that ionic liquids/aliphatic carboxylic acid/aliphatic amine are coexisting at all mixing states. In the acid excess state, ionic liquids interact with aliphatic carboxylic acids via hydrogen bonds. Thus, the skin permeation enhancing effect is not caused by the ionic liquid alone. The "liquid salt mixture," referred to as a complex of ingredients coexisting with ionic liquids, forms a molecular assembly incorporating hydrophilic drug. This molecular assembly was considered an effective and safety enhancer of transdermal drug permeation. Copyright © 2016. Published by Elsevier B.V.

  10. The shape-memory effect in ionic elastomers: fixation through ionic interactions.

    PubMed

    González-Jiménez, Antonio; Malmierca, Marta A; Bernal-Ortega, Pilar; Posadas, Pilar; Pérez-Aparicio, Roberto; Marcos-Fernández, Ángel; Mather, Patrick T; Valentín, Juan L

    2017-04-19

    Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.

  11. Ionic liquids: Promising green solvents for lignocellulosic biomass utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Chang Geun; Pu, Yunqiao; Ragauskas, Arthur J.

    Ionic liquids are effective solvents/media for the utilization of lignocellulosic biomass. The unique properties of ionic liquids enable them to effectively dissolve and/or convert the biomass into various types of products. This review aims to cover the latest progress achieved in applications of ionic liquids on biomass conversion and analysis. Specifically, several recently developed approaches on how to overcome current challenges on the use of ionic liquids in the biomass conversion were highlighted. Here, recent studies addressing the potential applications of ionic liquids for the production of novel biomass-derived chemicals and materials were also discussed.

  12. Ionic liquids: Promising green solvents for lignocellulosic biomass utilization

    DOE PAGES

    Yoo, Chang Geun; Pu, Yunqiao; Ragauskas, Arthur J.

    2017-06-01

    Ionic liquids are effective solvents/media for the utilization of lignocellulosic biomass. The unique properties of ionic liquids enable them to effectively dissolve and/or convert the biomass into various types of products. This review aims to cover the latest progress achieved in applications of ionic liquids on biomass conversion and analysis. Specifically, several recently developed approaches on how to overcome current challenges on the use of ionic liquids in the biomass conversion were highlighted. Here, recent studies addressing the potential applications of ionic liquids for the production of novel biomass-derived chemicals and materials were also discussed.

  13. Crystal chemistry of M{sup II}M′{sup IV}(PO{sub 4}){sub 2} double monophosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bregiroux, Damien, E-mail: damien.bregiroux@upmc.fr; Popa, Karin; Wallez, Gilles

    2015-10-15

    M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds have been extensively studied for several decades for their potential applications in the field of several domains such as matrices for actinides conditioning, phosphors etc. In this paper, the relationships between composition and crystal structure of these compounds are established. A review of the various processes used for the synthesis of these compounds is also proposed, as well as their most reported properties. M{sup II}M′{sup IV}(PO{sub 4}){sub 2} structures stem from two different archetypes: the cheralite and the yavapaiite structures, with some exceptions that are also described in this article. The ratio of themore » cations radii appears to be the most relevant parameter. The high ratio between the ionic radii of the divalent and tetravalent cations in yavapaiite derivates results in the ordering of these cations into well-differentiated polyhedra whereas cheralite is the only non-ordered structure encountered for M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds. - Graphical abstract: In this paper, the relationships between composition and crystal structure of M{sup II}M′{sup IV}(PO{sub 4}){sub 2} compounds are established. A review of the various processes used for the synthesis of these compounds is also proposed, as well as their most reported properties. - Highlights: • Crystal structure–composition relationships of MIIM′IV(PO4)2 compounds. • Review of the various processes used for the synthesis of these compounds. • Their most reported properties are described and discussed.« less

  14. Applied-field MPD thruster geometry effects

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1991-01-01

    Eight MPD thruster configurations were used to study the effects of applied field strength, propellant, and facility pressure on thruster performance. Vacuum facility background pressures higher than approx. 0.12 Pa were found to greatly influence thruster performance and electrode power deposition. Thrust efficiency and specific impulse increased monotonically with increasing applied field strength. Both cathode and anode radii fundamentally influenced the efficiency specific impulse relationship, while their lengths influence only the magnitude of the applied magnetic field required to reach a given performance level. At a given specific impulse, large electrode radii result in lower efficiencies for the operating conditions studied. For all test conditions, anode power deposition was the largest efficiency loss, and represented between 50 and 80 pct. of the input power. The fraction of the input power deposited into the anode decreased with increasing applied field and anode radii. The highest performance measured, 20 pct. efficiency at 3700 seconds specific impulse, was obtained using hydrogen propellant.

  15. Assessing the Effect of Stellar Companions to Kepler Objects of Interest

    NASA Astrophysics Data System (ADS)

    Hirsch, Lea; Ciardi, David R.; Howard, Andrew

    2017-01-01

    Unknown stellar companions to Kepler planet host stars dilute the transit signal, causing the planetary radii to be underestimated. We report on the analysis of 165 stellar companions detected with high-resolution imaging to be within 2" of 159 KOI host stars. The majority of the planets and planet candidates in these systems have nominal radii smaller than 6 REarth. Using multi-filter photometry on each companion, we assess the likelihood that the companion is bound and estimate its stellar properties, including stellar radius and flux. We then recalculate the planet radii in these systems, determining how much each planet's size is underestimated if it is assumed to 1) orbit the primary star, 2) orbit the companion star, or 3) be equally likely to orbit either star in the system. We demonstrate the overall effect of unknown stellar companions on our understanding of Kepler planet sizes.

  16. Impurity effects on ionic-liquid-based supercapacitors

    DOE PAGES

    Liu, Kun; Lian, Cheng; Henderson, Douglas; ...

    2016-12-27

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface ofmore » a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.« less

  17. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of ∼190 mAh g-1 in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distribution-function (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2MnSiO4 nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (β) Li2MnSiO4 crystalline phase (space group Pmn21) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures.

  18. Electron detachment energies in high-symmetry alkali halide solvated-electron anions

    NASA Astrophysics Data System (ADS)

    Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr

    2003-07-01

    We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.

  19. Transferable Coarse-Grained Models for Ionic Liquids.

    PubMed

    Wang, Yanting; Feng, Shulu; Voth, Gregory A

    2009-04-14

    The effective force coarse-graining (EF-CG) method was applied to the imidazolium-based nitrate ionic liquids with various alkyl side-chain lengths. The nonbonded EF-CG forces for the ionic liquid with a short side chain were extended to generate the nonbonded forces for the ionic liquids with longer side chains. The EF-CG force fields for the ionic liquids exhibit very good transferability between different systems at various temperatures and are suitable for investigating the mesoscopic structural properties of this class of ionic liquids. The good additivity and ease of manipulation of the EF-CG force fields can allow for an inverse design methodology of ionic liquids at the coarse-grained level. With the EF-CG force field, the molecular dynamics (MD) simulation at a very large scale has been performed to check the significance of finite size effects on the structural properties. From these MD simulation results, it can be concluded that the finite size effect on the phenomenon of ionic liquid spatial heterogeneity (Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192) is small and that this phenomenon is indeed a nanostructural behavior which leads to the experimentally observed mesoscopic heterogeneous structure of ionic liquids.

  20. Measurement of UO2 surface oxidation using grazing-incidence x-ray diffraction: Implications for nuclear forensics

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Chen, Chien-Hung; Park, Sulgiye; Davisson, M. Lee; Ewing, Rodney C.

    2018-04-01

    Nuclear forensics involves determination of the origin and history of interdicted nuclear materials based on the detection of signatures associated with their production and trafficking. The surface oxidation undergone by UO2 when exposed to air is a potential signature of its atmospheric exposure during handling and transport. To assess the sensitivity of this oxidation to atmospheric parameters, surface sensitive grazing-incidence x-ray diffraction (GIXRD) measurements were performed on UO2 samples exposed to air of varying relative humidity (34%, 56%, and 95% RH) and temperature (room temperature, 50 °C, and 100 °C). Near-surface unit cell contraction was observed following exposure, indicating oxidation of the surface and accompanying reduction of the uranium cation ionic radii. The extent of unit cell contraction provides a measure of the extent of oxidation, allowing for comparison of the effects of various exposure conditions. No clear influence of relative humidity on the extent of oxidation was observed, with samples exhibiting similar degrees of unit cell contraction at all relative humidities investigated. In contrast, the thickness of the oxidized layers increased substantially with increasing temperature, such that differences on the order of 10 °C yielded readily observable crystallographic signatures of the exposure conditions.

  1. Finding New Perovskite Halides via Machine learning

    NASA Astrophysics Data System (ADS)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  2. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater

    PubMed Central

    Awual, Md. Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-01

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater. PMID:26818070

  3. Exploring the Cr{sup 2+} doping effect on structural, vibrational and dielectric properties of Mn-Zn ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Pankaj; Dar, M. A.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: ty.ru123@gmail.com

    2016-05-23

    A series of Cr doped Mn-Zn ferrites with compositional formula Mn{sub 0.5}Zn{sub 0.5-x}Cr{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.3, 0.5) were prepared by solid-state reaction route. X-ray diffraction (XRD) analysis reveals that the samples prepared are polycrystalline cubic spinel in structure (Fd3m) with some secondary phase of α–Fe{sub 2}O{sub 3}. Slight variation in the lattice parameter of Cr doped Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference in ionic radii of cations. Small shift in Raman modes towards higher wave number has been observed. Further the line width decreases with the doping ions. A giant dielectricmore » constant ~10{sup 4} is observed for parent Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} which is found to decrease with increase in Cr{sup 2+} doping. Low dielectric loss is observed for Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and improves with Cr{sup 2+} doping at Zn{sup 2+} site.« less

  4. Effect of Zn doping on structural and dielectric properties of tetragonal Ni{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lone, S. A.; Dar, M. A.; Kumar, A.

    2015-06-24

    A series of Ni-Zn ferrite with compositional formula Ni{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5) were prepared by solid-state reaction route. The influence of the Zn content on the structural and dielectric properties of NiFe{sub 2}O{sub 4} was investigated using X-ray powder diffraction (XRD), Raman spectroscopy and dielectric measurements. XRD analysis reveals that the samples are polycrystalline single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. Slight variation in the lattice parameter of Zn doped NiFe{sub 2}O{sub 4} has been observed due to difference in ionic radii of cations. Ramanmore » analysis reveals the doublet like nature of A{sub 1g} mode for all synthesized samples. Small shift in Raman modes and increment in the line width has been observed with the doping ions. Furthermore, room temperature dielectric properties of all the prepared samples have been reported. It is observed that for each sample the dielectric constant decreases with an increase of frequency and becomes constant at higher frequencies.« less

  5. A Reliable Hybrid Adsorbent for Efficient Radioactive Cesium Accumulation from Contaminated Wastewater.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Miyazaki, Yuji; Matsumura, Daiju; Shiwaku, Hideaki; Taguchi, Tomitsugu

    2016-01-28

    Cesium (Cs) removal from nuclear liquid wastewater has become an emerging issue for safeguarding public health after the accident at the Fukushima Daiichi Nuclear Power Plant. A novel macrocyclic ligand of o-benzo-p-xylyl-22-crown-6-ether (OBPX22C6) was developed and successfully immobilized onto mesoporous silica for the preparation of hybrid adsorbent. The benzene ring π electron is the part of crown ether of OBPX22C6 for easy orientation of the macrocyclic compound for making the π electron donation with Cs complexation. The potential and feasibility of the hybrid adsorbent as being Cs selective was evaluated in terms of sensitivity, selectivity and reusability. The results clarified that the Cs removal process was rapid and reached saturation within a short time. Considering the effect of competitive ions, sodium (Na) did not markedly affect the Cs adsorption whereas potassium (K) was slightly affected due to the similar ionic radii. However, the oxygen in long ethylene glycol chain in OBPX22C6 was expected to show strong coordination, including Cs-π interaction with Cs even in the presence of the high amount of K and Na. Due to its high selectivity and reusability, significant volume reduction is expected as this promising hybrid adsorbent is used for Cs removal in Fukushima wastewater.

  6. An Examination of the Impact of Drizzle Drops on Satellite-Retrieved Effective Particle Sizes

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Arduini, Robert F.; Young, David F.; Ayers, J, Kirk; Albrecht, Bruce A.; Sharon, Tarah; Stevens, Bjorn

    2004-01-01

    In general, cloud effective droplet radii are remotely sensed in the near-infrared using the assumption of a monomodal droplet size distribution. It has been observed in many instances, especially in relatively pristine marine environments, that cloud effective droplet radii derived from satellite data often exceed 15 m or more. Comparisons of remotely sensed and in situ retrievals indicate that the former often overestimates the latter in clouds with drizzle-size droplets. To gain a better understanding of this discrepancy, this paper performs a theoretical and empirical evaluation of the impact of drizzle drops on the derived effective radius.

  7. Local structure and polarization resistance of Ce doped SrMnO{sub 3} using extended x-ray fine structure analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jiseung; Lee, Heesoo, E-mail: heesoo@pusan.ac.kr

    2014-09-15

    Changes to the local structure of Sr and Mn atoms in Sr{sub 1−x}Ce{sub x}MnO{sub 3} (SCM) according to increasing Ce content and the effect of the structural change on the polarization resistance of SCM were investigated. The reduction of manganese was confirmed by the absorption edge shift of the Mn K-edge toward lower energies. The noise of oscillation in extended X-ray absorption fine structure k{sup 3}χ data at Mn K-edge reveals the distortion of the local structure of Mn atoms, and the peak that indicates the bonding length of Mn-O, Sr/Ce, and -Mn decreased with the addition of Ce contentmore » in Fourier transformations of the Mn K-edge. The distortion of the local structure at Mn atoms was affected by the reduced manganese ions having larger ionic radii than Mn{sup 4+}. Meanwhile, few distortions of local atomic structures of Sr atoms occurred, and the average nearest neighboring distances of Sr-O and Sr-Mn are ∼2.13 Å and ∼2.95 Å, respectively. The average bonding lengths of the Ce-O and Ce-Mn increased because the ionic radius of substituted Ce ion with 12 coordination number is smaller than that of Sr ion, which leads the reduction of Mn ions and the distortion of local structure at the substituted A-site. Therefore, we reasoned that the distortion of the local atomic structure at Mn atoms in MnO{sub 6} and Ce atoms in A-site is one of the causes for interrupting oxygen ion transfers as a geometric factor, which results in an increase in the polarization resistance of SCM within the Ce composition range from 10 mol. % to 30 mol. %.« less

  8. Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering.

    PubMed

    Kontro, Inkeri; Svedström, Kirsi; Duša, Filip; Ahvenainen, Patrik; Ruokonen, Suvi-Katriina; Witos, Joanna; Wiedmer, Susanne K

    2016-12-01

    The effects of ionic liquids on model phospholipid membranes were studied by small-angle X-ray scattering, dynamic light scattering (DLS) and zeta potential measurements. Multilamellar 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes and large unilamellar vesicles composed of l-α-phosphatidylcholine (eggPC) and l-α-phosphatidylglycerol (eggPG) (80:20mol%) or eggPC, eggPG, and cholesterol (60:20:20mol%) were used as biomimicking membrane models. The effects of the phosphonium-based ionic liquids: tributylmethylphosphonium acetate, trioctylmethylphosphonium acetate, tributyl(tetradecyl)-phosphonium acetate, and tributyl(tetradecyl)-phosphonium chloride, were compared to those of 1-ethyl-3-methyl-imidazolium acetate. With multilamellar vesicles, the ionic liquids that did not disrupt liposomes decreased the lamellar spacing as a function of concentration. The magnitude of the effect depended on concentration for all studied ionic liquids. Using large unilamellar vesicles, first a slight decrease in the vesicle size, then aggregation of vesicles was observed by DLS for increasing ionic liquid concentrations. At concentrations just below those that caused aggregation of liposomes, large unilamellar vesicles were coated by ionic liquid cations, evidenced by a change in their zeta potential. The ability of phosphonium-based ionic liquids to affect liposomes is related to the length of the hydrocarbon chains in the cation. Generally, the ability of ionic liquids to disrupt liposomes goes hand in hand with inducing disorder in the phospholipid membrane. However, trioctylmethylphosphonium acetate selectively extracted and induced a well-ordered lamellar structure in phospholipids from disrupted cholesterol-containing large unilamellar vesicles. This kind of effect was not seen with any other combination of ionic liquids and liposomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Oxidative desulfurization of fuel oil by pyridinium-based ionic liquids.

    PubMed

    Zhao, Dishun; Wang, Yanan; Duan, Erhong

    2009-10-28

    In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF(4) was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT) was investigated. Ionic liquids and hydrogen peroxide (30%) were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF(4) has a better desulfurization effect. The best technological conditions are: V(IL)/V(Oil) /V(H(2)O(2)) = 1:1:0.4, temperature 55 degrees C, the time 30 min. The ratio of desulfurization to thiophene and DBT reached 78.5% and 84.3% respectively, which is much higher than extraction desulfurization with simple ionic liquids. Under these conditions, the effect of desulfurization on gasoline was also investigated. The used ionic liquids can be recycled up to four times after regeneration.

  10. Epidemic spreading on random surfer networks with optimal interaction radius

    NASA Astrophysics Data System (ADS)

    Feng, Yun; Ding, Li; Hu, Ping

    2018-03-01

    In this paper, the optimal control problem of epidemic spreading on random surfer heterogeneous networks is considered. An epidemic spreading model is established according to the classification of individual's initial interaction radii. Then, a control strategy is proposed based on adjusting individual's interaction radii. The global stability of the disease free and endemic equilibrium of the model is investigated. We prove that an optimal solution exists for the optimal control problem and the explicit form of which is presented. Numerical simulations are conducted to verify the correctness of the theoretical results. It is proved that the optimal control strategy is effective to minimize the density of infected individuals and the cost associated with the adjustment of interaction radii.

  11. Basicity of pyridine and some substituted pyridines in ionic liquids.

    PubMed

    Angelini, Guido; De Maria, Paolo; Chiappe, Cinzia; Fontana, Antonella; Pierini, Marco; Siani, Gabriella

    2010-06-04

    The equilibrium constants for ion pair formation of some pyridines have been evaluated by spectrophotometric titration with trifluoroacetic acid in different ionic liquids. The basicity order is the same in ionic liquids and in water. The substituent effect on the equilibrium constant has been discussed in terms of the Hammett equation. Pyridine basicity appears to be less sensitive to the substituent effect in ionic liquids than in water.

  12. The effects of high concentrations of ionic liquid on GB1 protein structure and dynamics probed by high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    Warner, Lisa; Gjersing, Erica; Follett, Shelby E; Elliott, K Wade; Dzyuba, Sergei V; Varga, Krisztina

    2016-12-01

    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentration of ionic liquids, has been challenging. In the present work the 13 C, 15 N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid - protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4 -mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6 to 3.5 M, which corresponds to 10%-60% v/v). Interactions between GB1 and [C 4 -mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15 N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4 -mim]Br were assigned using 3D methods under HR-MAS conditions. Thus, HR-MAS NMR is a viable tool that could aid in elucidation of the molecular mechanism of ionic liquid - protein interactions.

  13. Ion-Transport Design for High-Performance Na+-Based Electrochromics.

    PubMed

    Li, Ran; Li, Kerui; Wang, Gang; Li, Lei; Zhang, Qiangqiang; Yan, Jinhui; Chen, Yao; Zhang, Qinghong; Hou, Chengyi; Li, Yaogang; Wang, Hongzhi

    2018-04-24

    Sodium ion (Na + )-based electrochemical systems have been extensively investigated in batteries and supercapacitors and also can be quality candidates for electrochromic (EC) devices. However, poor diffusion kinetics and severe EC performance degradation occur during the intercalation/deintercalation processes because the ionic radii of Na + are larger than those of conventional intercalation ions. Here, through intentional design of ion-transport channels in metal-organic frameworks (MOFs), Na + serves as an efficient intercalation ion for incorporation into a nanostructured electrode with a high diffusion coefficient of approximately 10 -8 cm 2 s -1 . As a result, the well-designed MOF-based EC device demonstrates desirable Na + EC performance, including fast switching speed, multicolor switching, and high stability. A smart "quick response code" display is fabricated using a mask-free laser writing method for application in the "Internet of Things". In addition, the concept of ion transport pathway design can be widely adopted for fabricating high-performance ion intercalation materials and devices for consumer electronics.

  14. Highly improved hydration level sensing properties of copper oxide films with sodium and potassium doping

    NASA Astrophysics Data System (ADS)

    Sahin, Bünyamin; Kaya, Tolga

    2016-01-01

    In this study, un-doped, Na-doped, and K-doped nanostructured CuO films were successfully synthesized by the successive ionic layer adsorption and reaction (SILAR) technique and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and current-voltage (I-V) measurements. Structural properties of the CuO films were affected from doping. The XRD pattern indicates the formation of polycrystalline CuO films with no secondary phases. Furthermore, doping affected the crystal structure of the samples. The optimum conductivity values for both Na and K were obtained at 4 M% doping concentrations. The comparative hydration level sensing properties of the un-doped, Na-doped, and K-doped CuO nanoparticles were also investigated. A significant enhancement in hydration level sensing properties was observed for both 4 M% Na and K-doped CuO films for all concentration levels. Detailed discussions were reported in the study regarding atomic radii, crystalline structure, and conductivity.

  15. A Study of The Direct Aerosol Forcing At Ground Level For A Pollution Event During The Escompte Campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Roger, J. C.; Dubuisson, P.; Putaud, J. P.; van Dingenen, R.; Despiau, S.

    Radiative forcing by aerosol particles is one of the largest source of uncertainties in predicting climate change (IPCC, 2001). Indeed, quantitative estimates of this effect are still uncertain due to little knowledge of these atmospheric particles. Atmospheric particles influence the Earth's radiation balance both directly and indirectly. The indi- rect effect denotes the effect of aerosols acting as cloud condensation nuclei, possibly modifying cloud albedo and cloud lifetime. The direct effect is due to scattering and absorption of radiation and each of these processes depends mainly on the refractive index and the size distribution of aerosol particles. During the ESCOMPTE campaign, which took place in coastal Mediterranean area during the summer 2001, we estimated these aerosol micro-physical properties during a pollution event at two different sites. The first is an urban site (the city of Marseille), and the second is a rural area located fifty kilometers inland. The aerosol size distribution was measured with an SMPS for the particles with radii < 1 µm, and an optical counter for r > 1 µm. The chemi- cal composition (including different ionic compounds , dust, elemental and organic carbon) was deduced from chromatography analysis. The aerosol optical properties calculated from measured aerosol physical and chemical properties at ground level (from Mie theory) are used as input to a shortwave radiative transfer model. Then, this model is used to calculate the diurnally averaged direct aerosol forcing at surface and to compare this values with those measured from the ARAT aircraft and surface pyranometer during the campaign.

  16. Microscopic characterization of tension wood cell walls of Japanese beech (Fagus crenata) treated with ionic liquids.

    PubMed

    Kanbayashi, Toru; Miyafuji, Hisashi

    2016-09-01

    Tension wood that is an abnormal part formed in angiosperms has been barely used for wood industry. In this study, to utilize the tension wood effectively by means of liquefaction using ionic liquid, we performed morphological and topochemical determination of the changes in tension wood of Japanese beech (Fagus crenata) during ionic liquid treatment at the cellular level using light microscopy, scanning electron microscopy and confocal Raman microscopy. Ionic liquid treatment induced cell wall swelling in tension wood. Changes in the tissue morphology treated with ionic liquids were different between normal wood and tension wood, moreover the types of ionic liquids. The ionic liquid 1-ethyl-3-methylimidazolium chloride liquefied gelatinous layers rapidly, whereas 1-ethylpyridinium bromide liquefied slowly but delignified selectively. These novel insights into the deconstruction behavior of tension wood cell walls during ionic liquid treatment provide better understanding of the liquefaction mechanism. The obtained knowledge will contribute to development of an effective chemical processing of tension wood using ionic liquids and lead to efficient use of wood resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The inflated radii of M dwarfs in the Pleiades

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Deliyannis, Constantine P.; Jeffries, R. D.

    2018-05-01

    Rotation periods obtained with the Kepler satellite have been combined with precise measurements of projected rotation velocity from the WIYN 3.5-m telescope to determine the distribution of projected radii for several hundred low-mass (0.1 ≤ M/M⊙ ≤ 0.8), fast-rotating members of the Pleiades cluster. A maximum likelihood modelling technique, that takes account of observational uncertainties, selection effects and censored data, and considers the effects of differential rotation and unresolved binarity, has been used to find that the average radius of these stars is 14 ± 2 per cent larger at a given luminosity than predicted by current evolutionary models of Dotter et al. and Baraffe et al. The same models are a reasonable match to the interferometric radii of older, magnetically inactive field M dwarfs, suggesting that the over-radius may be associated with the young, magnetically active nature of the Pleiades objects. No evidence is found for any change in this over-radius above and below the boundary marking the transition to full convection. Published evolutionary models that incorporate either the effects of magnetic inhibition of convection or the blocking of flux by dark star-spots do not individually explain the radius inflation, but a combination of the two effects might. The distribution of projected radii is consistent with the adopted hypothesis of a random spatial orientation of spin axes; strong alignments of the spin vectors into cones with an opening semi-angle <30° can be ruled out. Any plausible but weaker alignment would increase the inferred over-radius.

  18. The Effect of Ionic Strength on the Solubility of an Electrolyte

    ERIC Educational Resources Information Center

    Willey, Joan D.

    2004-01-01

    A simple experiment was conducted for studying and demonstrating visually and dramatically the effect of ionic strength on the solubility of an electrolyte is described. It is seen that the experiment visually illustrates the effect of ionic strength on electrolyte solubility by the appearance of the two solutions and by the difference in the…

  19. Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features.

    PubMed

    Nardini, Andrea; Dimasi, Federica; Klepsch, Matthias; Jansen, Steven

    2012-12-01

    The 'ionic effect', i.e., changes in xylem hydraulic conductivity (k(xyl)) due to variation of the ionic sap composition in vessels, was studied in four Acer species growing in contrasting environments differing in water availability. Hydraulic measurements of the ionic effect were performed together with measurements on the sap electrical conductivity, leaf water potential and vessel anatomy. The low ionic effect recorded in Acer pseudoplatanus L. and Acer campestre L. (15.8 and 14.7%, respectively), which represented two species from shady and humid habitats, was associated with a low vessel grouping index, high sap electrical conductivity and least negative leaf water potential. Opposite traits were found for Acer monspessulanum L. and Acer platanoides L., which showed an ionic effect of 23.6 and 23.1%, respectively, and represent species adapted to higher irradiance and/or lower water availability. These findings from closely related species provide additional support that the ionic effect could function as a compensation mechanism for embolism-induced loss of k(xyl), either as a result of high evaporative demand or increased risk of hydraulic failure.

  20. A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution

    PubMed Central

    2011-01-01

    The hydration of the alkali metal ions in aqueous solution has been studied by large angle X-ray scattering (LAXS) and double difference infrared spectroscopy (DDIR). The structures of the dimethyl sulfoxide solvated alkali metal ions in solution have been determined to support the studies in aqueous solution. The results of the LAXS and DDIR measurements show that the sodium, potassium, rubidium and cesium ions all are weakly hydrated with only a single shell of water molecules. The smaller lithium ion is more strongly hydrated, most probably with a second hydration shell present. The influence of the rubidium and cesium ions on the water structure was found to be very weak, and it was not possible to quantify this effect in a reliable way due to insufficient separation of the O–D stretching bands of partially deuterated water bound to these metal ions and the O–D stretching bands of the bulk water. Aqueous solutions of sodium, potassium and cesium iodide and cesium and lithium hydroxide have been studied by LAXS and M–O bond distances have been determined fairly accurately except for lithium. However, the number of water molecules binding to the alkali metal ions is very difficult to determine from the LAXS measurements as the number of distances and the temperature factor are strongly correlated. A thorough analysis of M–O bond distances in solid alkali metal compounds with ligands binding through oxygen has been made from available structure databases. There is relatively strong correlation between M–O bond distances and coordination numbers also for the alkali metal ions even though the M–O interactions are weak and the number of complexes of potassium, rubidium and cesium with well-defined coordination geometry is very small. The mean M–O bond distance in the hydrated sodium, potassium, rubidium and cesium ions in aqueous solution have been determined to be 2.43(2), 2.81(1), 2.98(1) and 3.07(1) Å, which corresponds to six-, seven-, eight- and eight-coordination. These coordination numbers are supported by the linear relationship of the hydration enthalpies and the M–O bond distances. This correlation indicates that the hydrated lithium ion is four-coordinate in aqueous solution. New ionic radii are proposed for four- and six-coordinate lithium(I), 0.60 and 0.79 Å, respectively, as well as for five- and six-coordinate sodium(I), 1.02 and 1.07 Å, respectively. The ionic radii for six- and seven-coordinate K+, 1.38 and 1.46 Å, respectively, and eight-coordinate Rb+ and Cs+, 1.64 and 1.73 Å, respectively, are confirmed from previous studies. The M–O bond distances in dimethyl sulfoxide solvated sodium, potassium, rubidium and cesium ions in solution are very similar to those observed in aqueous solution. PMID:22168370

  1. Ionic strength and DOC determinations from various freshwater sources to the San Francisco Bay

    USGS Publications Warehouse

    Hunter, Y.R.; Kuwabara, J.S.

    1994-01-01

    An exact estimation of dissolved organic carbon (DOC) within the salinity gradient of zinc and copper metals is significant in understanding the limit to which DOC could influence metal speciation. A low-temperature persulfate/oxygen/ultraviolet wet oxidation procedure was utilized for analyzing DOC samples adapted for ionic strength from major freshwater sources of the northern and southern regions of San Francisco Bay. The ionic strength of samples was modified with a chemically defined seawater medium up to 0.7M. Based on the results, a minimum effect of ionic strength on oxidation proficiency for DOC sources to the Bay over an ionic strength gradient of 0.0 to 0.7 M was observed. There was no major impacts of ionic strength on two Suwanee River fulvic acids. In general, the noted effects associated with ionic strength were smaller than the variances seen in the aquatic environment between high- and low-temperature methods.

  2. Fundamental Stellar Properties of M-Dwarfs from the CHARA Array

    NASA Astrophysics Data System (ADS)

    Berger, D. H.; Gies, D. R.; McAlister, H. A.; ten Brummelaar, T. A.; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Mérand, A. M.

    2005-12-01

    We report the angular diameters of six M dwarfs ranging in spectral type from M1.0 V to M3.0 V measured with Georgia State University's CHARA Array, a long-baseline optical interferometer located at Mount Wilson Observatory. Observations were made with the longest baselines in the near infrared K'-band and yielded angular diameters less than one milliarcsecond. Using an iterative process combining parallaxes from the NStars program and photometrically-derived bolometric luminosities and masses, we calculated effective temperatures, surface gravities, and stellar radii. Our results are consistent with other empirical measurements of M-dwarf radii, but found that current models underestimate the true stellar radii by up to 15-20%. We suggest that theoretical models for low mass stars may be lacking an opacity source that alters the computed stellar radii. Science operations at the Array are supported by the National Science Foundation through NSF Grant AST--0307562 and by Georgia State University through the College of Arts and Sciences and the Office of the Vice President for Research. Financial support for DHB was provided by the National Science Foundation through grant AST--0205297.

  3. Ionic structure in liquids confined by dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-11-01

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.

  4. Thermodynamics of interaction of ionic liquids with lipid monolayer.

    PubMed

    Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K

    2018-06-01

    Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.

  5. Solid solubility of Yb 2Si 2O 7 in β-, γ- and δ-Y 2Si 2O 7

    NASA Astrophysics Data System (ADS)

    Fernández-Carrión, A. J.; Alba, M. D.; Escudero, A.; Becerro, A. I.

    2011-07-01

    This paper examines the structural changes with temperature and composition in the Yb 2Si 2O 7-Y 2Si 2O 7 system; members of this system are expected to form in the intergranular region of Si 3N 4 and SiC structural ceramics when sintered with the aid of Yb 2O 3 and Y 2O 3 mixtures. A set of different compositions have been synthesised using the sol-gel method to obtain a xerogel, which has been calcined at temperatures between 1300 and 1650 °C during different times. Isotherms at 1300 and 1600 °C have been analysed in detail to evaluate the solid solubility of Yb 2Si 2O 7 in β-Y 2Si 2O 7 and γ-Y 2Si 2O 7. Although Yb 2Si 2O 7 shows a unique stable polymorph (β), Yb 3+ is able to replace Y 3+ in γ-Y 2Si 2O 7 and δ-Y 2Si 2O 7 at high temperatures and low Yb contents. IR results confirm the total solid solubility in the system and suggest a constant SiOSi angle of 180° in the Si 2O 7 unit across the system. The temperature-composition diagram of the system, obtained from powder XRD data, is dominated by the β- RE2Si 2O 7 polymorph, with γ- RE2Si 2O 7 and δ- RE2Si 2O 7 showing reduced stability fields. The diagram is in accordance with Felsche's diagram if average ionic radii are assumed for the members of the solid solution at any temperature, as long as the β-γ phase boundary is slightly shifted towards higher radii.

  6. The effects of high concentrations of ionic liquid on GB1 protein structure and dynamics probed by high-resolution magic-angle-spinning NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, Lisa; Gjersing, Erica; Follett, Shelby E.

    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid-protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6-3.5 M, whichmore » corresponds to 10-60% v/v). Interactions between GB1 and [C 4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4-mim]Br were assigned using 3D methods under HR-MAS conditions. Furthermore, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid-protein interactions.« less

  7. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    PubMed

    Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu

    2015-01-01

    Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  8. The effects of high concentrations of ionic liquid on GB1 protein structure and dynamics probed by high-resolution magic-angle-spinning NMR spectroscopy

    DOE PAGES

    Warner, Lisa; Gjersing, Erica; Follett, Shelby E.; ...

    2016-08-11

    Ionic liquids have great potential in biological applications and biocatalysis, as some ionic liquids can stabilize proteins and enhance enzyme activity, while others have the opposite effect. However, on the molecular level, probing ionic liquid interactions with proteins, especially in solutions containing high concentrations of ionic liquids, has been challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy to investigate ionic liquid-protein interactions. Effect of an ionic liquid (1-butyl-3-methylimidazolium bromide, [C 4-mim]Br) on GB1was studied over a wide range of the ionic liquid concentrations (0.6-3.5 M, whichmore » corresponds to 10-60% v/v). Interactions between GB1 and [C 4-mim]Br were observed from changes in the chemical shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational correlation times. Site-specific interactions between the protein and [C 4-mim]Br were assigned using 3D methods under HR-MAS conditions. Furthermore, HR-MAS NMR is a viable tool that could aid in elucidation of molecular mechanisms of ionic liquid-protein interactions.« less

  9. Influence of Sn4+ on Structural and DC Electrical Resistivity of Ni-Zn Ferrite Thick Films

    NASA Astrophysics Data System (ADS)

    Dalawai, S. P.; Shinde, T. J.; Gadkari, A. B.; Tarwal, N. L.; Jang, J. H.; Vasambekar, P. N.

    2017-03-01

    Among the soft ferrites, Ni-Zn ferrite is one of the most versatile ceramic materials because of their important electrical and magnetic properties. These properties were improved by substituting Sn4+ in Ni-Zn ferrites with chemical composition of Ni x Zn1+ y- x Fe2-2 y Sn y O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1.0; y = 0.1, 0.2). To achieve homogenous ferrite powder at lower sintering temperature and smaller duration in nano-size form, the oxalate co-precipitation method was preferred as compared to other physical and chemical methods. Using this powder, ferrite thick films (FTFs) were prepared by the screen printing technique because of its low cost and easy use. To study structural behavior, the FTFs were characterized by different techniques. The x-ray diffraction and thermo-gravimetric and differential thermal analysis studies show the formation of cubic spinel structure and ferrite phase formation, respectively. There is no remarkable trend observed in lattice constants for the Sn4+ ( y = 0.1)- and Sn4+ ( y = 0.2)-substituted Ni-Zn ferrites. The bond lengths as well as ionic radii on the A-site of Ni-Zn-Sn ferrites were found to decrease with increasing nickel content. The bond length and ionic radii on the B-sites remained almost constant for Sn4+ ( y = 0.1, 0.2)-substituted Ni-Zn ferrites. The energy dispersive x-ray analysis confirms the elemental analysis of FTFs. The Fourier transform infrared spectra show two major absorption bands near 400 cm-1 and 600 cm-1 corresponding to octahedral and tetrahedral sites, respectively, which also confirms the formation of the ferrites. The field emission scanning electron microscopy images shows that the particles are highly porous in nature and located in loosely packed agglomerates. The average particle size of the FTFs lies in the range 20-60 nm. Direct current (DC) resistivity of Ni-Zn-Sn FTFs shows the semiconductor nature. The DC resistivity of Ni-Zn-Sn0.2FTFs is lower than Ni-Zn-Sn0.1 FTFs. The DC resistivity is found to decrease with the increase in Ni2+ content up to x = 0.6. It increases thereafter for a further increase in Ni2+ content up to x = 1.0, and a similar trend is observed for the variations of activation energy with Ni2+ content.

  10. Faraday rotation fluctutation spectra observed during solar occultation of the Helios spacecraft

    NASA Technical Reports Server (NTRS)

    Andreev, V.; Efimov, A. I.; Samoznaev, L.; Bird, M. K.

    1995-01-01

    Faraday rotation (FR) measurements using linearly polarized radio signals from the two Helios spacecraft were carried out during the period from 1975 to 1984. This paper presents the results of a spectral analysis of the Helios S-band FR fluctuations observed at heliocentric distances from 2.6 to 15 solar radii during the superior conjunctions 1975-1983. The mean intensity of the FR fluctuations does not exceed the noise level for solar offsets greater than ca. 15 solar radii. The rms FR fluctuation amplitude increases rapidly as the radio ray path approaches the Sun, varying according to a power law (exponent: 2.85 +/- 0.15) at solar distances 4-12 solar radii. At distances inside 4 solar radii the increase is even steeper (exponent: 5.6 +/- 0.2). The equivalent two-dimensional FR fluctuation spectrum is well modeled by a single power-law over the frequency range from 5 to 50 mHz. For heliocentric distances larger than 4 solar radii the spectral index varies between 1.1 and 1.6 with a mean value of 1.4 +/- 0.2, corresponding to a 3-D spectral index p = 2.4. FR fluctuations thus display a somwhat lower spectral index compared with phase and amplitude fluctuations. Surprisingly high values of the spectral index were found for measurements inside 4 solar radii (p = 2.9 +/- 0.2). This may arise from the increasingly dominant effect of the magnetic field on radio wave propagation at small solar offsets. Finally, a quasiperiodic component, believed to be associated with Alfven waves, was discovered in some (but not all!) fluctuation spectra observed simultaneously at two ground stations. Characteristic periods and bulk velocities of this component were 240 +/- 30 sec and 300 +/- 60 km/s, respectively.

  11. First-principles studies of the local structure and relaxor behavior of Pb(Mg 1 /3Nb2 /3) O3-PbTiO3 -derived ferroelectric perovskite solid solutions

    NASA Astrophysics Data System (ADS)

    Tan, Hengxin; Takenaka, Hiroyuki; Xu, Changsong; Duan, Wenhui; Grinberg, Ilya; Rappe, Andrew M.

    2018-05-01

    We have investigated the effect of transition-metal dopants on the local structure of the prototypical 0.75 Pb (Mg1 /3Nb2 /3) O3-0.25 PbTiO3 relaxor ferroelectric. We find that these dopants give rise to very different local structure and other physical properties. For example, when Mg is partially substituted by Cu or Zn, the displacement of Cu or Zn is much larger than that of Mg and is even comparable to that of Nb. The polarization of these systems is also increased, especially for the Cu-doped solution, due to the large polarizability of Cu and Zn. As a result, the predicted maximum dielectric constant temperatures Tm are increased. On the other hand, the replacement of a Ti atom with a Mo or Tc atom dramatically decreases the displacements of the cations and the polarization, and thus, the Tm values are also substantially decreased. The higher Tm cannot be explained by the conventional argument based on the ionic radii of the cations. Furthermore, we find that Cu, Mo, or Tc doping increases the cation displacement disorder. The effect of the dopants on the temperature dispersion Δ Tm , which is the change in Tm for different frequencies, is also discussed. Our findings lay the foundation for further investigations of unexplored dopants.

  12. Sizing up the stars

    NASA Astrophysics Data System (ADS)

    Boyajian, Tabetha S.

    For the main part of this dissertation, I have executed a survey of nearby, main sequence A, F, and G-type stars with the CHARA Array, successfully measuring the angular diameters of forty-four stars to better than 4% accuracy. The results of these observations also yield empirical determinations of stellar linear radii and effective temperatures for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale isochrones to constrain the masses and ages of the stars. These quantities are compared to the results found in Allende Prieto & Lambert (1999), Holmberg et al. (2007), and Takeda (2007), who indirectly determine these same properties by fitting models to observed photometry. I find that for most cases, the models underestimate the radius of the star by ~ 12%, while in turn they overestimate the effective temperature by ~ 1.5-4%, when compared to my directly measured values, with no apparent correlation to the star's metallicity or color index. These overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses and younger ages, in particular for stars with masses greater than ~ 1.3 [Special characters omitted.] . Alternatively, these quantities I measure are also compared to direct measurements from a large sample of eclipsing binary stars in Andersen (1991), and excellent agreement is seen within both data sets. Finally, a multi-parameter solution is found to fit color-temperature-metallicity values of the stars in this sample to provide a new calibration of the effective temperature scale for these types of stars. Published work in the field of stellar interferometry and optical spectroscopy of early-type stars are presented in Appendix D and E, respectively. INDEX WORDS: Interferometry, Infrared, Stellar Astronomy, Fundamental Properties, Effective Temperatures, Stellar Radii

  13. Three regimes of extrasolar planet radius inferred from host star metallicities.

    PubMed

    Buchhave, Lars A; Bizzarro, Martin; Latham, David W; Sasselov, Dimitar; Cochran, William D; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W

    2014-05-29

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (∼4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.

  14. Three regimes of extrasolar planet radius inferred from host star metallicities

    PubMed Central

    Buchhave, Lars A.; Bizzarro, Martin; Latham, David W.; Sasselov, Dimitar; Cochran, William D.; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W.

    2014-01-01

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods1. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (~4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates2,3, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems. PMID:24870544

  15. The Energy Diameter Effect

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Garza, Raul; Hernandez, Andy; Souers, P. Clark

    2007-12-01

    We explore various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder. The effective detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation that detonation energy is roughly proportional to the square of the detonation velocity is shown by data and calculation.

  16. Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects.

    PubMed

    Lawrence, Patrick G; Lapitsky, Yakov

    2015-02-03

    Gel-like coacervates that adhere to both hydrophilic and hydrophobic substrates under water have recently been prepared by ionically cross-linking poly(allylamine) (PAH) with pyrophosphate (PPi) and tripolyphosphate (TPP). Among the many advantages of these underwater adhesives (which include their simple preparation and low cost) is their ability to dissolve on demand when exposed to high or low pH. To further analyze their stimulus-responsive properties, we have investigated the pH and ionic strength effects on the formation, rheology and adhesion of PAH/PPi and PAH/TPP complexes. The ionic cross-linker concentrations needed to form these adhesives decreased with increasing pH and ionic strength (although the complexes ceased to form when the parent solution pH exceeded ca. 8.5; i.e., the effective pKa of PAH). Once formed, their ionic cross-links were most stable (as inferred from their relaxation times) at near-neutral or slightly alkaline pH values (of roughly 6.5-9) and at low ionic strengths. The decrease in ionic cross-link stability within complexes prepared at other pH values and at elevated (150-300 mM) NaCl concentrations diminished both the strength and longevity of adhesion (although, under most conditions tested, the short-term tensile adhesion strengths remained above 10(5) Pa). Additionally, the sensitivity of PAH/PPi and PAH/TPP complexes to ionic strength was demonstrated as a potential route to injectable adhesive design (where spontaneous adhesive formation was triggered via injection of low-viscosity, colloidal PAH/TPP dispersions into phosphate buffered saline). Thus, while the sensitivity of ionically cross-linked PAH networks to pH and ionic strength can weaken their adhesion, it can also impart them with additional functionality, such as minimally invasive, injectable delivery, and ability to form and dissolve their bonds on demand.

  17. Consistent van der Waals Radii for the Whole Main Group

    PubMed Central

    Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G.

    2013-01-01

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and noble gas crystals are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present article we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi’s scale. The method chosen is a set of two-parameter correlations of Bondi’s radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in Å) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.50; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83. PMID:19382751

  18. Consistent van der Waals radii for the whole main group.

    PubMed

    Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G

    2009-05-14

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.

  19. Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations.

    PubMed

    Qiao, Yu; Tu, Bin; Lu, Benzhuo

    2014-05-07

    Ionic finite size can impose considerable effects to both the equilibrium and non-equilibrium properties of a solvated molecular system, such as the solvation energy, ionic concentration, and transport in a channel. As discussed in our former work [B. Lu and Y. C. Zhou, Biophys. J. 100, 2475 (2011)], a class of size-modified Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) models can be uniformly studied through the general nonuniform size-modified PNP (SMPNP) equations deduced from the extended free energy functional of Borukhov et al. [I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett. 79, 435 (1997)] This work focuses on the nonuniform size effects to molecular solvation energy and to ion current across a channel for real biomolecular systems. The main contributions are: (1) we prove that for solvation energy calculation with nonuniform size effects (through equilibrium SMPNP simulation), there exists a simplified approximation formulation which is the same as the widely used one in PB community. This approximate form avoids integration over the whole domain and makes energy calculations convenient. (2) Numerical calculations show that ionic size effects tend to negate the solvation effects, which indicates that a higher molecular solvation energy (lower absolute value) is to be predicted when ionic size effects are considered. For both calculations on a protein and a DNA fragment systems in a 0.5M 1:1 ionic solution, a difference about 10 kcal/mol in solvation energies is found between the PB and the SMPNP predictions. Moreover, it is observed that the solvation energy decreases as ionic strength increases, which behavior is similar as those predicted by the traditional PB equation (without size effect) and by the uniform size-modified Poisson-Boltzmann equation. (3) Nonequilibrium SMPNP simulations of ion permeation through a gramicidin A channel show that the ionic size effects lead to reduced ion current inside the channel compared with the results without considering size effects. As a component of the current, the drift term is the main contribution to the total current. The ionic size effects to the total current almost come through the drift term, and have little influence on the diffusion terms in SMPNP.

  20. Insights into the crystal chemistry of Earth materials rendered by electron density distributions: Pauling's rules revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.

    2014-05-20

    Pauling's first two rules are examined in terms of the accumulation of the electron density between bonded pairs of atoms for a relatively large number of oxide and silicate crystals and siloxane molecules. The distribution of the electron density shows that the radius of the oxygen atom is not fixed, but that it actually decreases systematically from ~1.40 Å to ~ 0.65 Å as the polarizing power and the electronegativity of the bonded metal atoms increase and the distribution of the O atom is progressively polarized and contracted along the bond vectors by the impact of the bonded interactions. Themore » contractions result in an aspherical oxygen atom that displays as many different bonded “radii” as it has bonded interactions. The bonded radii for the metal atoms match the Shannon and Prewitt ionic radii for the more electropositive atoms like potassium and sodium, but they are systematically larger for the more electronegative atoms like aluminum, silicon and phosphorous. Pauling's first rule is based on the assumption that the radius of the oxide anion is fixed and that the radii of the cations are such that radius sum of the spherical oxide anion and a cation necessarily equals the separation between the cation-anion bonded pair with the coordination number of the cation being determined by the ratio of the radii of the cation and anion. In the case of the bonded radii, the sum of the bonded radii for the metal atoms and the oxide anion necessarily equals the bond lengths by virtue of the way that the bonded radii were determined in the partitioning of the electron density along the bond path into metal and O atom parts. But, the radius ratio for the O and M atoms is an unsatisfactory rule for determining the coordination number of the metal atom inasmuch as a bonded O atom is not, in general, spherical, and its size varies substantially along its bonded directions. But by counting the number of bond paths that radiate from a bonded atom, the coordination number of the atom is determined uniquely independent of the asphericity and sizes of the atom. A power law connection established between the bond lengths and bond strengths for crystals and molecules is mirrored by a comparable power law connection between bond length and the accumulation of the electron density between bonded pairs of atoms, a connection that is consistent with Pauling's electroneutrality postulate that the charges of the atoms in an oxide are negligibly small. The connection indicates that a one-to-one correspondence exists between the accumulation between a pair of bonded atoms and the Pauling bond strength for M-O bonded interaction for all atoms of the periodic table. The connection provides a common basis for understanding the success of the manifold applications that have been made with the bond valence theory model together with the modeling of crystal structures, chemical zoning, leaching and cation transport in batteries and the like. We believe that the wide spread applications of the model in mineralogy and material science owes much of its success to the direct connection between bond strength and the quantum mechanical observable, the electron density distribution. Comparable power law expressions established for the bonded interactions for both crystals and molecules support Pauling's assertion that his second rule has significance for molecules as well as for crystals. A simple expression is found that provides a one to one connection between the accumulation of the electron density between bonded M and O atoms and the Pauling bond strength for all M atoms of the periodic table with ~ 95 % of the variation of the bond strength being explained in terms of a linear dependence on the accumulated electron density. Compelling evidence is presented that supports the argument that the Si-O bonded interactions for tiny siloxane molecules and silicate crystals are chemically equivalent.« less

  1. Mechanical properties and XRD of Nafion modified by 2-hydroxyethylammonium ionic liquids

    NASA Astrophysics Data System (ADS)

    Garaev, V.; Pavlovica, S.; Reinholds, I.; Vaivars, G.

    2013-12-01

    In this work, the Nafion 112 membrane impregnated with 2-hydroxyethylammonium carboxylate ionic liquids have been investigated. The used ionic liquids were 2-hydroxyethylammonium formate [HEA]F, acetate [HEA]A and lactate [HEA]L. Prepared composite membranes Nafion/ionic liquid are characterized by mechanical testing, such as tensile test and creep test. It is found that ionic liquids decrease elastic modulus and creep compliance, but do not have significant effect on the tensile strength. Also, composite membranes were studied by wide angle X-ray diffraction. All ionic liquids shift the peak maximum to the lower angle. In this work, only biodegradable ionic liquids were used for composite preparation.

  2. Accuracy of specimen-specific nonlinear finite element analysis for evaluation of radial diaphysis strength in cadaver material.

    PubMed

    Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa

    2015-01-01

    The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.

  3. Design of experimental studies of human performance under influences of simulated artificial gravity. [effects of rotation on psychomotor tasks

    NASA Technical Reports Server (NTRS)

    Piland, W. M.; Hausch, H. G.; Maraman, G. V.; Green, J. A.

    1973-01-01

    A ground based research program is now being undertaken to provide data concerning the effects of a rotating environment on man's ability to adequately perform gross and fine psychomotor tasks. Emphasis is being placed on establishing the levels of artificial gravity and rates and radii of rotation required in future space systems for preservation of crew performance and comfort. An experimental study utilizing a rotational facility to investigate crew mobility, cargo transfer and handling, and fine motor coordination at radii up to 24 meters and at rotational rates up to 5 rpm is reported.

  4. Extracting p Λ scattering lengths from heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Shapoval, V. M.; Erazmus, B.; Lednicky, R.; Sinyukov, Yu. M.

    2015-09-01

    The source radii previously extracted by the STAR Collaboration from the p -Λ ⊕p ¯-Λ ¯ and p ¯-Λ ⊕p -Λ ¯ correlation functions measured in 10% most central Au+Au collisions at top Relativistic Heavy Ion Collider (RHIC) energy, √{sN N}=200 GeV, differ by a factor of 2. The probable reason for this is the neglect of residual correlation effect in the STAR analysis. In the present paper we analyze baryon correlation functions within the Lednický and Lyuboshitz analytical model, extended to effectively account for the residual correlation contribution. Different analytical approximations for such a contribution are considered. We also use the averaged source radii extracted from hydrokinetic model (HKM) simulations to fit the experimental data. In contrast to the STAR experimental study, the calculations in HKM show both p Λ and p Λ ¯ radii to be quite close, as expected from theoretical considerations. Using the effective Gaussian parametrization of residual correlations we obtain a satisfactory fit to the measured baryon-antibaryon correlation function with the HKM source radius value 3.28 fm. The baryon-antibaryon spin-averaged strong interaction scattering length is also extracted from the fit to the experimental correlation function.

  5. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    NASA Astrophysics Data System (ADS)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  6. Effect of ionic liquid on activity, stability, and structure of enzymes: a review.

    PubMed

    Naushad, Mu; Alothman, Zied Abdullah; Khan, Abbul Bashar; Ali, Maroof

    2012-11-01

    Ionic liquids have shown their potential as a solvent media for many enzymatic reactions as well as protein preservation, because of their unusual characteristics. It is also observed that change in cation or anion alters the physiochemical properties of the ionic liquids, which in turn influence the enzymatic reactions by altering the structure, activity, enatioselectivity, and stability of the enzymes. Thus, it is utmost need of the researchers to have full understanding of these influences created by ionic liquids before choosing or developing an ionic liquid to serve as solvent media for enzymatic reaction or protein preservation. So, in the present review, we try to shed light on effects of ionic liquids chemistry on structure, stability, and activity of enzymes, which will be helpful for the researchers in various biocatalytic applications. Copyright © 2012. Published by Elsevier B.V.

  7. Trace concentration - Huge impact: Nitrate in the calcite/Eu(III) system

    NASA Astrophysics Data System (ADS)

    Hofmann, Sascha; Voïtchovsky, Kislon; Schmidt, Moritz; Stumpf, Thorsten

    2014-01-01

    The interactions of trivalent lanthanides and actinides with secondary mineral phases such as calcite is of high importance for the safety assessment of deep geological repositories for high level nuclear waste (HLW). Due to similar ionic radii, calcium-bearing mineral phases are suitable host minerals for Ln(III) and An(III) ions. Especially calcite has been proven to retain these metal ions effectively by both surface complexation and bulk incorporation. Since anionic ligands (e.g., nitrate) are omnipresent in the geological environment and due to their coordinating properties, their influence on retentive processes should not be underestimated. Nitrate is a common contaminant in most HLW forms as a result of using nitric acid in fuel reprocessing. It is also formed by microbial activity under aerobic conditions. In this study, atomic force microscopy investigations revealed a major influence of nitrate upon the surface of calcite crystals. NaNO3 causes serious modifications even in trace amounts (<10-7 M) and forms a soft surface layer of low crystallinity on top of the calcite crystal. Time-resolved laser fluorescence spectroscopy of Eu(III) showed that, within this layer, Eu(III) ions are incorporated, while losing most of their hydration shell. The results show that solid solution modelling for actinides in calcite must take into account the presence of nitrate in pore and ground waters.

  8. Tunable dielectric properties of Barium Magnesium Niobate (BMN) doped Barium Strontium Titanate (BST) thin films by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Reinholz, Aaron; Pokhodnya, Konstantin

    2013-03-01

    We report on the tunable dielectric properties of Mg and Nb co-doped Ba0.45Sr0.55TiO3 (BST) thin film prepared by the magnetron sputtering using BST target (pure and doped with BaMg0.33Nb0.67O3 (BMN)) on Pt/TiO2/SiO2/Al2O3 4'' wafers at 700 °C under oxygen atmosphere. The electrical measurements are conducted on 2432 metal-ferroelectric-metal capacitors using Pt as the top and bottom electrode. The crystalline structure, microstructure, and surface morphology of the films are analyzed and correlated to the films dielectric properties. The BMN doped and undoped BST films have shown tunabilities of 48% and 52%; and leakage current densities of 2.2x10-6 A/cm2 and 3.7x10-5 A/cm2, respectively at 0.5 MV/cm bias field. The results indicate that the BMN doped film exhibits a lower leakage current with no significant decrease in tunability. Due to similar electronegativity and ionic radii, it was suggested that both Mg2+ (accepter-type) and Nb5+ (donor-type) dopants substitutTi4+ ion in BST. The improvement in the film dielectric losses and leakage current with insignificant loss of tunability is attributed to the adversary effects of Mg2+ and Nb5+ in BST.

  9. Ce and La single- and double-substitutional defects in yttrium aluminum garnet: first-principles study.

    PubMed

    Muñoz-García, Ana Belén; Seijo, Luis

    2011-02-10

    The atomistic structure, energetics, and electronic structure of single-substitutional Ce and La defects and double-substitutional Ce-La defects in Ce,La-codoped yttrium aluminum garnet (YAG) Y(3)Al(5)O(12) have been studied by means of first-principles periodic boundary conditions density functional theory calculations. Single substitution of Y by Ce or by La produces atomistic expansions around the impurities, which are significantly smaller than the ionic radii mismatches and the overall lattice distortions are found to be confined within their second coordination spheres. In double-substitutional defects, the impurities tend to be as close as possible. La-codoping Ce:YAG provokes an anisotropic expansion around Ce defects. The Ce impurity introduces 4f occupied states in the 5.0 eV computed gap of YAG, peaking 0.25 eV above the top of the valence band, and empty 4f, 5d, and 6s states starting at 3.8 eV in the gap and spreading over the conduction band. La-codoping produces very small effects on the electronic structure of Ce:YAG, the most visible one being the decrease in covalent bonding with one of the oxygen atoms, which shifts 0.05 Å away from Ce and gets 0.04 Å closer to La in the most stable Ce-La double-substitutional defect.

  10. Finding new perovskite halides via machine learning

    DOE PAGES

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; ...

    2016-04-26

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vectormore » machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX 3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX 3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX 3 compositions with perovskite crystal structure.« less

  11. Effect of lone-electron-pair cations on the orientation of crystallographic shear planes in anion-deficient perovskites.

    PubMed

    Batuk, Dmitry; Batuk, Maria; Abakumov, Artem M; Tsirlin, Alexander A; McCammon, Catherine; Dubrovinsky, Leonid; Hadermann, Joke

    2013-09-03

    Factors affecting the structure and orientation of the crystallographic shear (CS) planes in anion-deficient perovskites were investigated using the (Pb(1-z)Sr(z))(1-x)Fe(1+x)O(3-y) perovskites as a model system. The isovalent substitution of Sr(2+) for Pb(2+) highlights the influence of the A cation electronic structure because these cations exhibit very close ionic radii. Two compositional ranges have been identified in the system: 0.05 ≤ z ≤ 0.2, where the CS plane orientation gradually varies but stays close to (203)p, and 0.3 ≤ z ≤ 0.45 with (101)p CS planes. The incommensurately modulated structure of Pb0.792Sr0.168Fe1.040O2.529 was refined from neutron powder diffraction data using the (3 + 1)D approach (space group X2/m(α0γ), X = (1/2, 1/2, 1/2, 1/2), a = 3.9512(1) Å, b = 3.9483(1) Å, c = 3.9165(1) Å, β = 93.268(2)°, q = 0.0879(1)a* + 0.1276(1)c*, RF = 0.023, RP = 0.029, and T = 900 K). A comparison of the compounds with different CS planes indicates that the orientation of the CS planes is governed mainly by the stereochemical activity of the lone-electron-pair cations inside the perovskite blocks.

  12. Finding new perovskite halides via machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach toward rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning, henceforth referred to as ML) via building a support vectormore » machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX 3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br, or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 185 experimentally known ABX 3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor, and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. As a result, the trained and validated models then predict, with a high degree of confidence, several novel ABX 3 compositions with perovskite crystal structure.« less

  13. Ionic Liquid as an Effective Additive for Rechargeable Magnesium Batteries

    DOE PAGES

    Pan, Baofei; Lau, Ka -Cheong; Vaughey, John T.; ...

    2017-03-02

    Here, the effect of the addition of an ionic liquid DEME•TFSI to an electrolyte solution of Mg(HMDS) 2-MgCl 2 in THF was studied electrochemically and spectroscopically. Reversible magnesium deposition/dissolution was achieved with the DEME•TFSI-modified electrolyte. This electrolyte shows higher ionic conductivity, and a linear relationship was observed between the ionic conductivity and the concentration of DEME•TFSI in THF solution of Mg(HMDS) 2-MgCl 2. Mg-Mo 6S 8 coin cells have also been successfully cycled using Mg(HMDS) 2-MgCl 2 electrolyte with the addition of DEME•TFSI. Raman and NMR spectroscopy suggest that DEME•TFSI facilitates magnesium deposition/dissolution by improving ionic conductivity of the electrolyte.

  14. Ionic liquids behave as dilute electrolyte solutions

    PubMed Central

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  15. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.

  16. Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii

    NASA Technical Reports Server (NTRS)

    Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.

    2007-01-01

    Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.

  17. The magnetic field of the equatorial magnetotail - AMPTE/CCE observations at R less than 8.8 earth radii

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Acuna, M. H.; Zanetti, L. J.; Potemra, T. A.

    1987-01-01

    The MPTE/CCE magnetic field experiment has been used to obtain a quantitative evaluation of the frequency and extent of magnetic field distortion in the near-tail region at less than 8.8 earth radii. The variation of this distortion with Kp, radial distance, longitude, and near-equatorial latitude is reported. It has been found that taillike distortions from the dipole field direction may reach 80 deg near the MPTE/CE apogee of 8.8 earth radii. The Bz field component in dipole coordinates was always positive within 0.5 earth radii of the equatorial current sheet, indicating the neutral lines were never seen inside of 8.8 earth radii. Fields were most taillike near midnight and during times of high Kp. At 8.5 earth radii the equatorial field magnitude depressions were roughly half the dipole field strength of 51 nT. These depressions are larger at lesser distances, reaching -40 nT at 3.4 earth radii for Kp of 2- or less and -80 nT and Kp of 3+ and greater.

  18. Response surface optimization of pH and ionic strength for emulsion characteristics of egg yolk.

    PubMed

    Kurt, S; Zorba, O

    2009-11-01

    Effects of pH (3.5, 4.5, 6.0, 7.5, and 8.5) and ionic strength (0.05, 0.15, 0.30, 0.45, and 0.55 M NaCl) on emulsion capacity, emulsion stability (ES), apparent yield stress of emulsion (AYS), and emulsion density (ED) of egg yolk were studied by using a model system. Ionic strength and pH had significant (P < 0.01) effects on the emulsion characteristics of egg yolk. Their interaction effects also have been found significant on ES, AYS, and ED. Predicted solutions of ES, emulsion capacity, and ED were minimum. The critical point of ES was determined to be at pH 6.08 and an ionic strength of 0.49 (M NaCl). Predicted solution for AYS was a maximum, which was determined to be at pH 6.04 and an ionic strength of 0.29 (M NaCl). Optimum values of pH and ionic strenght were 4.61 to 7.43 and 0.10 to 0.47, respectively.

  19. Solvation structures of water in trihexyltetradecylphosphonium-orthoborate ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong-Lei, E-mail: wangyonl@gmail.com; System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm; Sarman, Sten

    2016-08-14

    Atomistic molecular dynamics simulations have been performed to investigate effective interactions of isolated water molecules dispersed in trihexyltetradecylphosphonium-orthoborate ionic liquids (ILs). The intrinsic free energy changes in solvating one water molecule from gas phase into bulk IL matrices were estimated as a function of temperature, and thereafter, the calculations of potential of mean force between two dispersed water molecules within different IL matrices were performed using umbrella sampling simulations. The systematic analyses of local ionic microstructures, orientational preferences, probability and spatial distributions of dispersed water molecules around neighboring ionic species indicate their preferential coordinations to central polar segments in orthoboratemore » anions. The effective interactions between two dispersed water molecules are partially or totally screened as their separation distance increases due to interference of ionic species in between. These computational results connect microscopic anionic structures with macroscopically and experimentally observed difficulty in completely removing water from synthesized IL samples and suggest that the introduction of hydrophobic groups to central polar segments and the formation of conjugated ionic structures in orthoborate anions can effectively reduce residual water content in the corresponding IL samples.« less

  20. Anisotropic magnetic field observed at 300 K in citrate-coated iron oxide nanoparticles: effect of counterions

    NASA Astrophysics Data System (ADS)

    Misra, Sushil K.; Li, Lin; Mukherjee, Sudip; Ghosh, Goutam

    2015-12-01

    Iron oxide nanoparticles (IONPs) have been synthesized by chemical co-precipitation method and coated with three citrates, namely, tri-lithium citrate (TLC), tri-sodium citrate (TSC), or tri-potassium citrate (TKC). In these `core-shell' structures, the `core' is a cluster of average 3 IONPs which is enveloped by a `shell' of citrate molecules and counterions, and thus called `core-shell' nano-clusters (CS-NCs), of average size 20 to 22 nm. The counterions in the three CS-NCs differ in ionic radii (r_{{ion}}), in the order of Li+ < Na+ < K+. Our aim was to investigate the effect of counterions on magnetic interactions between CS-NCs in different powder samples at 300 K, using vibrating sample magnetometer and electron magnetic resonance (EMR) techniques. The hysteresis loops showed negligible coercivity field ( H c) in all samples. The saturation magnetization ( M S) was the highest for TLC-coated CS-NCs. The blocking temperature ( T B), obtained from zero-field-cooled measurements, was >300 K for TLC-coated CS-NCs and <300 K for TSC- and TKC-coated CS-NCs. The EMR linewidth (∆ B PP), measured at 300 K, was also the broadest for TLC-coated CS-NCs. At low temperatures, Δ B PP was found to increase more significantly for TSC- and TKC-coated CS-NCs than for TLC-coated CS-NCs. These results indicate a significant anisotropic field effect; arising due to thermal motion of counterions at 300 K, on the magnetic interactions in TLC-coated CS-NCs. To our knowledge, this is the first report on the effect of counterions on magnetic interactions between CS-NCs.

  1. Nanoparticles in ionic liquids: interactions and organization.

    PubMed

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  2. Matter effects on LIGO/Virgo searches for gravitational waves from merging neutron stars

    NASA Astrophysics Data System (ADS)

    Cullen, Torrey; Harry, Ian; Read, Jocelyn; Flynn, Eric

    2017-12-01

    Gravitational waves from merging neutron stars are expected to be observed in the next five years. We explore the potential impact of matter effects on gravitational waves from merging double neutron-star binaries. If neutron star binaries exist with chirp masses less than roughly one solar mass and typical neutron-star radii are larger than roughly 14 km, or if neutron-star radii are larger than 15-16 km for the chirp masses of galactic neutron-star binaries, then matter will have a significant impact on the effectiveness of a point-particle-based search at Advanced LIGO design sensitivity (roughly 5% additional loss of signals). In a configuration typical of LIGO’s first observing run, extreme matter effects lead to up to 10% potential loss in the most extreme cases.

  3. The chemical identity of intervessel pit membranes in Acer challenges hydrogel control of xylem hydraulic conductivity

    PubMed Central

    Klepsch, Matthias M.; Schmitt, Marco; Paul Knox, J.; Jansen, Steven

    2016-01-01

    Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been reported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrinking of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as heteroxylans or arabinogalactan–proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycoproteins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated using light and electron microscopy. The ionic effect varied from 18 % (± 9) to 32 % (± 13). Epitopes of homogalacturonan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in parenchyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pectic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect. PMID:27354661

  4. Effects of ionic strength on passive and iontophoretic transport of cationic permeant across human nail.

    PubMed

    Smith, Kelly A; Hao, Jinsong; Li, S Kevin

    2009-06-01

    Transport across the human nail under hydration can be modeled as hindered transport across aqueous pore pathways. As such, nail permselectivity to charged species can be manipulated by changing the ionic strength of the system in transungual delivery to treat nail diseases. The present study investigated the effects of ionic strength upon transungual passive and iontophoretic transport. Transungual passive and anodal iontophoretic transport experiments of tetraethylammonium ion (TEA) were conducted under symmetric conditions in which the donor and receiver had the same ionic strength in vitro. Experiments under asymmetric conditions were performed to mimic the in vivo conditions. Prior to the transport studies, TEA uptake studies were performed to assess the partitioning of TEA into the nail. Permselectivity towards TEA was inversely related to ionic strength in both passive and iontophoretic transport. The permeability and transference number of TEA were higher at lower ionic strengths under the symmetric conditions due to increased partitioning of TEA into the nail. Transference numbers were smaller under the asymmetric conditions compared with their symmetric counterparts. The results demonstrate significant ionic strength effects upon the partitioning and transport of a cationic permeant in transungual transport, which may be instrumental in the development of transungual delivery systems.

  5. Thermoresponsive light scattering device utilizing surface behavior effects between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation

    NASA Astrophysics Data System (ADS)

    Goda, Kazuya; Takatoh, Kohki; Funasako, Yusuke; Inokuchi, Makoto

    2018-06-01

    We proposed a thermoresponsive light scattering device that utilizes the surface behavior between polyimide and an ionic liquid-water mixture exhibiting lower critical solution temperature (LCST)-type phase separation. The LCST behavior for an ionic liquid device utilizing the polyimide with and without alkyl side chains was investigated. In the here-reported ionic liquid device that utilized the polyimide with alkyl side chains, [nBu4P][CF3COO] droplets were generated by phase separation—they were predominantly formed at the alkyl surface by a surface pinning effect. A stable transmittance in the opaque state could be obtained with this device. In contrast, an ionic liquid device using polyimide without alkyl side chains deteriorated transmittance in the opaque state because there was no surface pinning effect. Additionally, the viewing angle, contrast ratio, and heat cycle testing of this ionic liquid device with polyimide with alkyl side chains were also investigated. The results indicated that no parallax was obtained and that the ionic liquid device has a stable transmittance (verified by heat cycle testing). This unique device is expected to find use in the smart window applications that are activated by temperature changes.

  6. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices.

    PubMed

    Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali

    2013-11-01

    The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in bound water as ionic strengths increased. Texture analysis was employed to determine the gel strength and also to explain the drug release for the diltiazem hydrochloride. This methodology can be used as a valuable tool for predicting potential ionic effects related to in vivo fed and fasted states on drug release from hydrophilic ER matrices. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Joint Soviet-French studies of the solar corona. II - Photometry of the solar corona on June 30, 1973

    NASA Astrophysics Data System (ADS)

    Vsekhsvyatsky, S. K.; Dzyubenko, N. I.; Ivanchuk, V. I.; Popov, O. S.; Rubo, G. A.; Koutchmy, S.; Koutchmy, O.; Shtelmacher, G.

    1981-04-01

    Results are presented of a study of negatives obtained on June 30, 1973 during the total solar eclipse in Africa; the study was part of a joint Soviet-French experiment on white corona dynamics, carried out by expeditions of Kiev University (Atar, Mauritania) and the Paris Astrophysical Institute (Moussoro, Chad). The distribution of total corona brightness up to 4.5 solar radii and its K and F corona components for east and north directions were found on the basis of novel methods of photometry and colorimetry using star images up to 8.5m as the photometry standards. Neither the color effect nor flattening is found in the inner part (less than 2.5 solar radii) of the F corona. Integral corona brightness in the standard zone of 1.03-6.00 solar radii was found to be 0.64 x 10 to the -6th solar-E.

  8. Effect of Cerium(III) and ionic liquids on the clouding behavior of Triton X-100 micelles

    NASA Astrophysics Data System (ADS)

    Sen, Indrani Das; Negi, Charu; Jayaram, Radha V.

    2018-04-01

    In the present study, the effect of Ce(III) on the clouding behavior of Triton X-100 has been investigated in the presence and absence of imidazolium based ionic liquids of varying chain length and counter ions. Thermodynamic parameters of clouding were calculated to comprehend the underlying interactions between the surfactant and the additives. The cloud point (CP) of Triton X-100 was found to increase with the concentration of Ce(III) and that of the ionic liquids studied. This increase of CP reflects the solubilization of the ionic liquids in the micellar solution1.

  9. Empirical Bolometric Fluxes and Angular Diameters of 1.6 Million Tycho-2 Stars and Radii of 350,000 Stars with Gaia DR1 Parallaxes

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel J.; Stassun, Keivan G.; Gaudi, B. Scott

    2017-12-01

    We present bolometric fluxes and angular diameters for over 1.6 million stars in the Tycho-2 catalog, determined using previously determined empirical color-temperature and color-flux relations. We vet these relations via full fits to the full broadband spectral energy distributions for a subset of benchmark stars and perform quality checks against the large set of stars for which spectroscopically determined parameters are available from LAMOST, RAVE, and/or APOGEE. We then estimate radii for the 355,502 Tycho-2 stars in our sample whose Gaia DR1 parallaxes are precise to ≲ 10 % . For these stars, we achieve effective temperature, bolometric flux, and angular diameter uncertainties of the order of 1%-2% and radius uncertainties of order 8%, and we explore the effect that imposing spectroscopic effective temperature priors has on these uncertainties. These stellar parameters are shown to be reliable for stars with {T}{eff} ≲ 7000 K. The over half a million bolometric fluxes and angular diameters presented here will serve as an immediate trove of empirical stellar radii with the Gaia second data release, at which point effective temperature uncertainties will dominate the radius uncertainties. Already, dwarf, subgiant, and giant populations are readily identifiable in our purely empirical luminosity-effective temperature (theoretical) Hertzsprung-Russell diagrams.

  10. Evaluation of effects of pH and ionic strength on colloidal stability of IgG solutions by PEG-induced liquid-liquid phase separation.

    PubMed

    Thompson, Ronald W; Latypov, Ramil F; Wang, Ying; Lomakin, Aleksey; Meyer, Julie A; Vunnum, Suresh; Benedek, George B

    2016-11-14

    Colloidal stability of IgG antibody solutions is important for pharmaceutical and medicinal applications. Solution pH and ionic strength are two key factors that affect the colloidal stability of protein solutions. In this work, we use a method based on the PEG-induced liquid-liquid phase separation to examine the effects of pH and ionic strength on the colloidal stability of IgG solutions. We found that at high ionic strength (≥0.25M), the colloidal stability of most of our IgGs is insensitive to pH, and at low ionic strength (≤0.15M), all IgG solutions are much more stable at pH 5 than at pH 7. In addition, the PEG-induced depletion force is less efficient in causing phase separation at pH 5 than at pH 7. In contrast to the native inter-protein interaction of IgGs, the effect of depletion force on phase separation of the antibody solutions is insensitive to ionic strength. Our results suggest that the long-range electrostatic inter-protein repulsion at low ionic strength stabilizes the IgG solutions at low pH. At high ionic strength, the short-range electrostatic interactions do not make a significant contribution to the colloidal stability for most IgGs with a few exceptions. The weaker effect of depletion force at lower pH indicates a reduction of protein concentration in the condensed phase. This work advances our basic understanding of the colloidal stability of IgG solutions and also introduces a practical approach to measuring protein colloidal stability under various solution conditions.

  11. Deflocculants for Tape Casting Barium Titanate Dielectrics.

    DTIC Science & Technology

    1988-02-01

    was estimated for two spheres with radii of 0.5 microns using the a form of the Hamaker expression for spheres of equal radii: A#( 1 1 (x(x +-2)1VA...2+ 22n 2(9) 12t x(x + 2) + 1 2) (x + J J where a is the particle radius, H is the particle separation, x - H/2a, and A’ is the effective Hamaker ...Organic Chemistry, 3rd ed., Allyn and Bacon, Inc., Boston, 1973. 33. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 4th +ed., John

  12. Femtosecond Raman-Induced Kerr Effect Study of Temperature-Dependent Intermolecular Dynamics in Molten Bis(trifluoromethylsulfonyl)amide Salts: Effects of Cation Species.

    PubMed

    Kakinuma, Shohei; Shirota, Hideaki

    2018-05-25

    In this study, we have investigated the effects of cation structures on the temperature dependence of the intermolecular vibrational dynamics of ionic liquids using femtosecond Raman-induced Kerr effect spectroscopy. The ionic liquids used in this study are bis(trifluoromethylsulfonyl)amide [NTf 2 ] - salts of the cations 1-butyl-3-methylimidazolium [C 4 MIm] + , 1-butyl-1-methylpyrrolidinium [Pyrr 14 ] + , 1-butylpyridinium [C 4 Py] + , butyldiethylmethylammonium [N 1224 ] + , triethyloctylammonium [N 2228 ] + , and triethyloctylphosphonium [P 2228 ] + . All of the ionic liquids show temperature-dependent low-frequency spectra. A difference in the temperature dependence between the spectra of the aromatic and nonaromatic cation based ionic liquids is especially significant. In the case of the aromatic cation based ionic liquids [C 4 MIm][NTf 2 ] and [C 4 Py][NTf 2 ], the spectral intensities in the low-frequency region below ca. 50 cm -1 increase and the high-frequency components at ca. 80 cm -1 shift to lower frequencies with rising temperature. In contrast, the ionic liquids based on nonaromatic cations only exhibit an increase in the low-frequency region below ca. 50 cm -1 with increasing temperature, while the high-frequency region of the spectra above ca. 50 cm -1 shows little change with variation of the temperature. These results suggest that the presence or absence of aromatic rings is the main factor in determining the temperature-dependent spectral features, particularly in the high-frequency region. We also found that the alkyl chain length and central atoms of the nonaromatic quaternary cations do not have much influence on the temperature-dependent spectral features. The first moments of the aromatic cation based ionic liquids are a little more sensitive to temperature than those of the nonaromatic cation based ionic liquids. The temperature-dependent viscosities and fragilities of the ionic liquids have also been examined.

  13. Centrality dependence of pion freeze-out radii in Pb-Pb collisions at √{sN N}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-02-01

    We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at √{sNN}=2.76 TeV as a function of collision centrality and the average transverse momentum of the pair kT. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with kT, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with 1 /3. This behavior is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller √{sNN}, a decrease in the ratio Rout/Rside is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. The results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider.

  14. Centrality dependence of pion freeze-out radii in Pb-Pb collisions at s N N = 2.76  TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-02-04

    Here, we report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at √s NN = 2.76 TeV as a function of collision centrality and the average transverse momentum of the pair k T. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with k T, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with < dN ch/d η > 1/3. We compare this behavior to world data onmore » femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller √s NN, a decrease in the ratio R out/R side is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. Furthermore, these results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider.« less

  15. Comparative in vitro study of cholinium-based ionic liquids and deep eutectic solvents toward fish cell line.

    PubMed

    Radošević, Kristina; Železnjak, Jelena; Cvjetko Bubalo, Marina; Radojčić Redovniković, Ivana; Slivac, Igor; Gaurina Srček, Višnja

    2016-09-01

    With the advent of ionic liquids, much was expected concerning their applicability as an alternative to organic solvents in the chemical technology and biotechnology fields. However, the most studied and commonly used ionic liquids based on imidazolium and pyridinium were found not to be as environmentally friendly as it was first expected. Therefore, a new generation of alternative solvents named natural ionic liquids and deep eutectic solvents, composed of natural and/or renewable compounds, have come into focus in recent years. Since the number of newly synthesized chemicals increases yearly, simple and reliable methods for their ecotoxicological assessment are necessary. Permanent fish cell lines can serve as a test system for the evaluation of a chemical's cytotoxicity. This paper presents research results on the cytotoxic effects on Channel Catfish Ovary (CCO) cell line induced by fifteen cholinium-based ionic liquids and deep eutectic solvents. Based on the decrease in cell viability, the most obvious toxic effect on CCO cells was caused by ionic liquid choline oxalate, while other solvents tested exhibited low cytotoxicity. Therefore, we can conclude that cholinium-based ionic liquids and deep eutectic solvents are comparatively less toxic to CCO cells than conventional ionic liquids. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Electrokinetic mixing at high zeta potentials: ionic size effects on cross stream diffusion.

    PubMed

    Ahmadian Yazdi, Alireza; Sadeghi, Arman; Saidi, Mohammad Hassan

    2015-03-15

    The electrokinetic phenomena at high zeta potentials may show several unique features which are not normally observed. One of these features is the ionic size (steric) effect associated with the solutions of high ionic concentration. In the present work, attention is given to the influences of finite ionic size on the cross stream diffusion process in an electrokinetically actuated Y-shaped micromixer. The method consists of a finite difference based numerical approach for non-uniform grid which is applied to the dimensionless form of the governing equations, including the modified Poisson-Boltzmann equation. The results reveal that, neglecting the ionic size at high zeta potentials gives rise to the overestimation of the mixing length, because the steric effects retard liquid flow, thereby enhancing the mixing efficiency. The importance of steric effects is found to be more intense for channels of smaller width to height ratio. It is also observed that, in sharp contrast to the conditions that the ions are treated as point charges, increasing the zeta potential improves the cross stream diffusion when incorporating the ionic size. Moreover, increasing the EDL thickness decreases the mixing length, whereas the opposite is true for the channel aspect ratio. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Shamblin, Jacob; Park, Sulgiye; Zhang, Fuxiang; Trautmann, Christina; Lang, Maik; Ewing, Rodney C.

    2016-08-01

    A2S n2O7 (A =Nd ,Sm,Gd,Er,Yb,and Y) materials with the pyrochlore structure were irradiated with 2.2 GeV Au ions to systematically investigate disordering of this system in response to dense electronic excitation. Structural modifications were characterized, over multiple length scales, by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Transformations to amorphous and disordered phases were observed, with disordering dominating the structural response of materials with small A -site cation ionic radii. Both the disordered and amorphous phases were found to possess weberite-type local ordering, differing only in that the disordered phase exhibits a long-range, modulated arrangement of weberite-type structural units into an average defect-fluorite structure, while the amorphous phase remains fully aperiodic. Comparison with the behavior of titanate and zirconate pyrochlores showed minimal influence of the high covalency of the Sn-O bond on this phase behavior. An analytical model of damage accumulation was developed to account for simultaneous amorphization and recrystallization of the disordered phase during irradiation.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beales, T.P.; Parberry, J.M.

    (Bi{sub 0.33}Cd{sub 0.67})Sr{sub 2}YCu{sub 2}O{sub 7{minus}{delta}} can be synthesized single phase by XRD, between 800 and 950 C. It has a tetragonal structure, space group P4/mmm, and lattice parameters a = 3.802 {angstrom} and c = 11.96 {angstrom}. The Cd site can be fully replaced with an appropriate M{sup 11} ion and the Y site can be chemically substituted up to 100% by lanthanide ions with ionic radii falling between those of Nd and Gd, with a measurable shift in a and c axis lattice parameters. As synthesized, (Bi{sub 0.33}Cd{sub 0.67})Sr{sub 2}YCu{sub 2}O{sub 7{minus}{delta}} is semiconducting and paramagnetic down tomore » 4 K. Superconductivity can be induced by a post-synthesis annealing in high pressure oxygen to give {Tc} = 40 K. Thermopower measurements show that the material is underdoped with S{sub 290K} = 50 {mu}VK{sup {minus}1}. Introduction of extra charge carriers to raise {Tc} by doping Ca on the Y site is not chemically possible with the synthesis techniques used.« less

  19. Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.

    PubMed

    Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E

    2014-06-01

    Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed.

  20. Lattice parameter functions of (AmyU1-y)O2-x based on XRD and XANES measurements

    NASA Astrophysics Data System (ADS)

    Nishi, Tsuyoshi; Nakada, Masami; Hirata, Masaru

    2017-12-01

    The lattice parameters of (Am0.50U0.50)O2.0, (Am0.37U0.63)O2.0, and (Am0.50U0.50)O2-x were determined by powder X-ray diffraction with Cu Kα radiation. In addition, the lattice parameter functions of (AmyU1-y)O2-x (0.00

  1. Biocompatible Er, Yb co-doped fluoroapatite upconversion nanoparticles for imaging applications

    NASA Astrophysics Data System (ADS)

    Anjana, R.; K. M., Kurias; M. K., Jayaraj

    2017-08-01

    Upconversion luminescence, visible emission on infra red (IR) excitation was achieved in a biocompatible material, fluoroapatite. Fluoroapatite crystals are well known biomaterials, which is a component of tooth enamel. Also it can be considered as an excellent host material for lanthanide doping since the ionic radii of lanthanide is similar to that of calcium ion(Ca2+) hence successful incorporation of dopants within the lattice is possible. Erbium (Er), Ytterbium (Yb) co-doped fluorapatite (FAp) nanoparticles were prepared by precipitation method. The particles show intense visible emission when excited with 980 nm laser. Since upconversion luminescence is a multiphoton process the excitation power dependence on emission will give number of photons involved in the emission of single photon. Excitation power dependence studies show that two photons are involved in the emission of single photons. The value of slope was different for different emission peak because of the difference in intermediate energy level involved. The crystal structure and morphology of the particle were determined using X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM). These particles with surface functionalisation can be used for live cell imaging.

  2. Single-Crystal Growth of Cl-Doped n-Type SnS Using SnCl2 Self-Flux.

    PubMed

    Iguchi, Yuki; Inoue, Kazutoshi; Sugiyama, Taiki; Yanagi, Hiroshi

    2018-06-05

    SnS is a promising photovoltaic semiconductor owing to its suitable band gap energy and high optical absorption coefficient for highly efficient thin film solar cells. The most significant carnage is demonstration of n-type SnS. In this study, Cl-doped n-type single crystals were grown using SnCl 2 self-flux method. The obtained crystal was lamellar, with length and width of a few millimeters and thickness ranging between 28 and 39 μm. X-ray diffraction measurements revealed the single crystals had an orthorhombic unit cell. Since the ionic radii of S 2- and Cl - are similar, Cl doping did not result in substantial change in lattice parameter. All the elements were homogeneously distributed on a cleaved surface; the Sn/(S + Cl) ratio was 1.00. The crystal was an n-type degenerate semiconductor with a carrier concentration of ∼3 × 10 17 cm -3 . Hall mobility at 300 K was 252 cm 2 V -1 s -1 and reached 363 cm 2 V -1 s -1 at 142 K.

  3. The effect of residual stresses induced by prestraining on fatigue life of notched specimens

    NASA Astrophysics Data System (ADS)

    Sadeler, R.; Ozel, A.; Kaymaz, I.; Totik, Y.

    2005-06-01

    The effect of tensile prestraining-induced residual stress on the fatigue life of notched steel parts was investigated. The study was performed on AISI 4140 steel. Rotating bending fatigue tests were carried out on semicircular notched specimens with different notch radii in the as-quenched and tempered conditions. Metallography of the specimens was performed by means of light optical microscopy. The finite-element method was used to evaluate the residual stress distribution near the notch region. Fatigue tests revealed fatigue life improvement for notched specimens, which changes depending on the notch radii and applied stress. Scanning electron microscopy was used to examine the fracture surfaces of the specimens.

  4. The Energy Diameter Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P; Garza, R; Hernandez, A

    2007-07-10

    We explore various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder. The detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation that detonation energymore » is roughly proportional to the square of the detonation velocity is shown by data and calculation.« less

  5. Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: a review.

    PubMed

    Pandey, Shubha; Baker, Sheila N; Pandey, Siddharth; Baker, Gary A

    2012-09-01

    Ionic liquids display an array of useful and sometimes unconventional, solvent features and have attracted considerable interest in the field of green chemistry for the potential they hold to significantly reduce environmental emissions. Some of these points have a bearing on the chemical reactivity of these systems and have also generated interest in the physical and theoretical aspects of solvation in ionic liquids. This review presents an introduction to the field of ionic liquids, followed by discussion of investigations into the solvation properties of neat ionic liquids or mixed systems including ionic liquids as a major or minor component. The ionic liquid based multicomponent systems discussed are composed of other solvents, other ionic liquids, carbon dioxide, surfactants or surfactant solutions. Although we clearly focus on fluorescence spectroscopy as a tool to illuminate ionic liquid systems, the issues discussed herein are of general relevance to discussions of polarity and solvent effects in ionic liquids. Transient solvation measurements carried out by means of time-resolved fluorescence measurements are particularly powerful for their ability to parameterize the kinetics of the solvation process in ionic liquids and are discussed as well.

  6. Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.

    PubMed

    Flury, Markus; Czigány, Szabolcs; Chen, Gang; Harsh, James B

    2004-07-01

    Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments. Copyright 2003 Elsevier B.V.

  7. Exploiting 1,2,3-Triazolium Ionic Liquids for Synthesis of Tryptanthrin and Chemoselective Extraction of Copper(II) Ions and Histidine-Containing Peptides.

    PubMed

    Li, Hsin-Yi; Chen, Chien-Yuan; Cheng, Hui-Ting; Chu, Yen-Ho

    2016-10-13

    Based on a common structural core of 4,5,6,7-tetrahydro[1,2,3]triazolo[1,5- a ]pyridine, a number of bicyclic triazolium ionic liquids 1 - 3 were designed and successfully prepared. In our hands, this optimized synthesis of ionic liquids 1 and 2 requires no chromatographic separation. Also in this work, ionic liquids 1 , 2 were shown to be efficient ionic solvents for fast synthesis of tryptanthrin natural product. Furthermore, a new affinity ionic liquid 3 was tailor-synthesized and displayed its effectiveness in chemoselective extraction of both Cu(II) ions and, for the first time, histidine-containing peptides.

  8. Which iodinated contrast media is the least cytotoxic to human disc cells?

    PubMed

    Kim, Kyung-Hyun; Park, Jeong-Yoon; Park, Hyo-Suk; Kuh, Sung-Uk; Chin, Dong-Kyu; Kim, Keun-Su; Cho, Yong-Eun

    2015-05-01

    Iodinated contrast media (CM) is commonly used for various intradiscal injections such as in discography and endoscopic spinal surgery. However, CM has been shown to be toxic to renal tissue due to its ionic strength and osmolarity and as a result of iodine-induced cytotoxicity, which has raised concern over whether there are similar negative effects on disc cells. This in vitro study was designed to identify the least cytotoxic iodinated CM to the human disc cell among four different physiochemical iodinated contrast dyes. In vitro laboratory study. Intervertebral disc tissue was obtained by discectomy from a total of 10 lumbar disc patients undergoing surgery and disc cells were isolated. The human disc cells were grown in 3D alginate bead culture with 0, 0.1, 10, and 100 mg/mL CM solutions (ionic dimer, ionic monomer, non-ionic dimer, and non-ionic monomer) and mannitol as a control for 2 days. The living cells were analyzed with trypan blue staining. Fluorescence-activated cell sorting analysis was performed using Annexin V and propidium iodide (PI) and 3D alginate bead immunostaining to identify live, apoptotic, and necrotic cells. Human disc cell death was time- and dose-dependent in response to CM and more necrosis was observed than apoptosis. In addition, non-ionic dimeric CM (iodixanol) showed the least toxic effect on human disc cells, followed by non-ionic monomeric (iopromide), ionic dimeric (ioxaglate), and ionic monomeric CM (ioxithalamate). Contrast media is cytotoxic to human disc cells in a dose- and time-dependent manner. This in vitro study revealed that, among four different CM preparations, non-ionic dimeric CM is the least detrimental to human disc cell viability. Careful attention should be paid to the type of CM chosen for discography and endoscopic spinal surgery. It is also necessary to investigate the detrimental effects of CM on disc cells and disc degeneration in further in vivo studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Influence of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage.

    PubMed

    Baker, Joseph L; Furbish, Jeffrey; Lindberg, Gerrick E

    2015-11-01

    We examine the effect of the ionic liquid [C4mpy][Tf2N] on the structure of the miniprotein Trp-cage and contrast these results with the behavior of Trp-cage in water. We find the ionic liquid has a dramatic effect on Trp-cage, though many similarities with aqueous Trp-cage are observed. We assess Trp-cage folding by monitoring root mean square deviation from the crystallographic structure, radius of gyration, proline cis/trans isomerization state, protein secondary structure, amino acid contact formation and distance, and native and non-native contact formation. Starting from an unfolded configuration, Trp-cage folds in water at 298 K in less than 500 ns of simulation, but has very little mobility in the ionic liquid at the same temperature, which can be ascribed to the higher ionic liquid viscosity. At 365 K, the mobility of the ionic liquid is increased and initial stages of Trp-cage folding are observed, however Trp-cage does not reach the native folded state in 2 μs of simulation in the ionic liquid. Therefore, in addition to conventional molecular dynamics, we also employ scaled molecular dynamics to expedite sampling, and we demonstrate that Trp-cage in the ionic liquid does closely approach the aqueous folded state. Interestingly, while the reduced mobility of the ionic liquid is found to restrict Trp-cage motion, the ionic liquid does facilitate proline cis/trans isomerization events that are not seen in our aqueous simulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Systematic study of charged-pion and kaon femtoscopy in Au + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, D.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Hartouni, E. P.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leite, M. A. L.; Leitner, E.; Lenzi, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Zou, L.; Phenix Collaboration

    2015-09-01

    We present a systematic study of charged-pion and kaon interferometry in Au +Au collisions at √{s NN}=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

  11. Effects of impurity doping on ionic conductivity and polarization phenomenon in TlBr

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua

    2013-02-01

    Ionic conductivity due to vacancy diffusion and the resulting polarization phenomenon are major challenges to the development of TlBr radiation detector. It had been proposed that impurity doping of TlBr can suppress the ionic conductivity because the impurities can getter vacancies to form neutral complexes. This paper shows that the isolated vacancies can maintain their equilibrium concentrations even at room temperature, rendering any gettering methods ineffective. The main effect of doping is to change the Fermi level and consequently the vacancy concentration. The minimal ionic conductivity is reached at the donor concentration of [D+] = 4 × 1016 cm-3.

  12. Hemodynamics of the renal artery ostia with implications for their structural development and efficiency of flow.

    PubMed

    McIntosh, William H; Ozturk, Mesude; Down, Linden A; Papavassiliou, Dimitrios V; O'Rear, Edgar A

    2015-01-01

    Energy losses at tube or blood vessel orifices depend on the extent of flare as measured by the dimensionless ratio of the fillet radius of curvature to diameter (r/D). The goal of this study was to assess the effect of ostial fillet radii on energy losses at the aorta-renal artery junctions since as much as a quarter of cardiac output passes through the kidneys. Pressure loss coefficients K for the renal artery ostia as a function of r/D have been determined for representative anatomical variants using finite volume simulations. Estimates of fillet radii in humans from image analysis were employed in simulations for comparison of loss coefficients. Values for K drop 45% as r/D increases over the range 0-1.3. Image analysis indicates that the ostia are not symmetric in humans with (r/D)superior much larger than (r/D)inferior. Simulations show the loss coefficient depends almost entirely on the superior fillet radius. Superior fillet radii for both renal arteries are similar to the optimal value to reduce energy losses while the inferior radii are not. Ostial asymmetry may have been induced by higher levels of shear stress present on the superior portion of a developing symmetric ostium of small r/D.

  13. Boson peak of alkali and alkaline earth silicate glasses: influence of the nature and size of the network-modifying cation.

    PubMed

    Richet, Nicolas F

    2012-01-21

    The influence of the size of the alkaline earth cation on the boson peak of binary metasilicate glasses, MSiO(3) (M = Mg, Ca, Sr, Ba), has been investigated from vibrational densities of states determined by inversion of low-temperature heat capacities. As given both by C(p)/T(3) and g(ω)/ω(2), the intensity of the boson peak undergoes a 7-fold increase from Mg to Ba, whereas its temperature and frequency correlatively decrease from 18 to 10 K and from 100 to 20 cm(-1), respectively. The boson peak results from a combination of librations of SiO(4) tetrahedra and localized vibrations of network-modifying cations with non-bridging oxygens whose contribution increases markedly with the ionic radius of the alkaline earth. As a function of ionic radii, the intensity for Sr and Ba varies in the same way as previously found for alkali metasilicate glasses. The localized vibrations involving alkali and heavy alkaline earth cations appear to be insensitive to the overall glass structure. Although the new data are coherent with an almost linear relationship between the temperature of the boson peak and transverse sound velocity, pure SiO(2) and SiO(2)-rich glasses make marked exceptions to this trend because of the weak transverse character of SiO(4) librations. Finally, the universality of the calorimetric boson peak is again borne out because all data for silicate glasses collapse on the same master curve when plotted in a reduced form (C(P)∕/T(3))/(C(P)/T(3))(b) vs. T/T(b). © 2012 American Institute of Physics

  14. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.

    PubMed

    Dybczyński, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna

    2015-03-20

    Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with γ-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Presence of a monoclinic (Pm) phase in the morphotropic phase boundary region of multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution: A Rietveld study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in

    2014-07-28

    We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The resultsmore » of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.« less

  16. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  17. Modeling electrokinetics in ionic liquids: General

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Bao, Jie; Pan, Wenxiao

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow onmore » a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.« less

  18. Average-atom model for two-temperature states and ionic transport properties of aluminum in the warm dense matter regime

    NASA Astrophysics Data System (ADS)

    Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin

    2017-03-01

    The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.

  19. Genetic relationship between deformation and low-Ca content in olivine from magmatic systems: evidence from the Poyi ultramafic intrusion, NW China

    NASA Astrophysics Data System (ADS)

    Yao, Zhuo-sen; Qin, Ke-zhang; Xue, Sheng-chao

    2017-12-01

    The deformation features (e.g., undulose extinction and subgrain boundaries) and low Ca content (<1000 ppm) of high-Fo olivine have been widely used as indictors for the mantle origin of olivine in the past. However, grains with these characteristics are also found in some crustal intrusions, e.g., Duke Island and Bushveld complexes. Here, we study this type of olivine in the Poyi ultramafic intrusion, NW China, to trace the formation of these unusual features in magmatic systems. As a result of the possible Ca-depleted parental melt and low Ca olivine/melt partition coefficient, olivine from the Poyi intrusion is extremely depleted in Ca. On the other hand, it has been confirmed that trace elements with large ionic radii (e.g., Ca2+ and Al3+) are chemically segregated at the grain boundary of olivine, exerting a dragging influence on grain boundary processes (named as solute drag effect). In this regard, the low Ca content in olivine weakens the solute drag effect, and in doing so it enhances the rate and strength of grain deformation, which occurs to accommodate the stress derived by fast compaction of the crystal mush in Poyi intrusion. Therefore, there is a genetic relationship between the plastic deformation and low Ca content in olivines from magmatic cumulates, and this link is one of the reasons causing the widespread deformation observed in Ca-depleted olivine from Poyi and other intrusions. What is more important, this work fills the gaps in the interpretation of this type of olivine in volcanic rocks.

  20. Atomic Gas in Blue Ultra Diffuse Galaxies around Hickson Compact Groups

    NASA Astrophysics Data System (ADS)

    Spekkens, Kristine; Karunakaran, Ananthan

    2018-03-01

    We have found the atomic gas (H I) reservoirs of the blue ultra diffuse galaxy (UDG) candidates identified by Róman and Trujillo in images near Hickson Compact Groups (HCGs). We confirm that all of the objects are indeed UDGs with effective radii {R}e> 1.5 kpc. Three of them are likely to be gravitationally bound to the HCG near which they project, one is plausibly gravitationally bound to the nearest HCG, and one is in the background. We measure H I masses and velocity widths for each object directly from the spectra, and use the widths together with the UDG effective radii to estimate dynamical masses and halo spin parameters. The location of the blue UDGs in the H I mass–stellar mass plane is consistent with that of the broader gas-rich galaxy population, and both their H I masses and gas richnesses are correlated with their effective radii. The blue UDGs appear to be low-mass objects with high-spin halos, although their properties are not as extreme as those of the faintest diffuse objects found in H I searches. The data presented here highlight the potential of single-dish radio observations for measuring the physical properties of blue diffuse objects detected in the optical.

  1. Understanding the effect models of ionic liquids in the synthesis of NH4-Dw and γ-AlOOH nanostructures and their conversion into porous γ-Al2O3.

    PubMed

    Duan, Xiaochuan; Kim, Tongil; Li, Di; Ma, Jianmin; Zheng, Wenjun

    2013-05-03

    Well-dispersed ammonium aluminum carbonate hydroxide (NH4-Dw) and γ-AlOOH nanostructures with controlled morphologies have been synthesized by employing an ionic-liquid-assisted hydrothermal process. The basic strategies that were used in this work were: 1) A controllable phase transition from NH4-Dw to γ-AlOOH could be realized by increasing the reaction temperature and 2) the morphological evolution of NH4-Dw and γ-AlOOH nanostructures could be influenced by the concentration of the ionic liquid. Based on these experimental results, the main objective of this work was to clarify the effect models of the ionic liquids on the synthesis of NH4-Dw and γ-AlOOH nanostructures, which could be divided into cationic- or anionic-dominant effect models, as determined by the different surface structures of the targets. Specifically, under the cationic-dominant regime, the ionic liquids mainly showed dispersion effects for the NH4-Dw nanostructures, whereas the anionic-dominant model could induce the self-assembly of the γ-AlOOH particles to form hierarchical structures. Under the guidance of the proposed models, the effect of the ionic liquids would be optimized by an appropriate choice of cations or anions, as well as by considering the different effect models with the substrate surface. We expect that such effect models between ionic liquids and the target products will be helpful for understanding and designing rational ionic liquids that contain specific functional groups, thus open up new opportunities for the synthesis of inorganic nanomaterials with new morphologies and improved properties. In addition, these as-prepared NH4-Dw and γ-AlOOH nanostructures were converted into porous γ-Al2O3 nanostructures by thermal decomposition, whilst preserving the same morphology. By using HRTEM and nitrogen-adsorption analysis, the obtained γ-Al2O3 samples were found to have excellent porous properties and, hence, may have applications in catalysis and adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, western Labrador: Structural, compositional and thermal controls

    NASA Astrophysics Data System (ADS)

    Yang, Panseok; Rivers, Toby

    2000-04-01

    Coexisting biotite and muscovite in ten metapelitic and quartzofeldspathic rocks from western Labrador have been analyzed by electron microprobe for major and minor elements and by a laser ablation microprobe coupled to ICP-MS (LAM-ICP-MS) for selected trace elements - Li, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf and Ta. The samples have experienced a single prograde Grenvillian metamorphism ranging from 490 to 680°C and from 7 to 12 kbar. The trace element compositions of coexisting micas in the metamorphic rocks are used to assess the effects of crystal structure, major element composition and temperature on the partitioning of each element between biotite and muscovite. Overall, trace element distributions are systematic across the range of metamorphic grade and bulk composition, suggesting that chemical equilibrium was approached. Most distribution coefficients (biotite/muscovite) show good agreement with published data. However, distribution coefficients for Co and Sr are significantly different from previous determinations, probably because of contamination associated with older data obtained by bulk analysis techniques. The sequence of distribution coefficients is governed mainly by the ionic radii and charges of substituting cations compared to the optimum ionic radius of each crystallographic site in the micas. In particular, distribution coefficients exhibit the sequence Cr 3+ (0.615 Å) > V 3+ (0.64 Å) > Sc 3+ (0.745 Å) in VI-sites, and Ba 2+ (1.61 Å) > Sr 2+ (1.44 Å) and Cs + (1.88 Å) > K + (1.64 Å) > Rb + (1.72 Å) > Na + (1.39 Å) in XII-sites. The distributions of Li, Sc, Sr and Ba appear to be thermally sensitive but are also controlled by major element compositions of micas. V and Zr partitioning is dependent on T and may be used to cross-check thermometry calculations where the latter suffer from retrograde re-equilibration and/or high concentrations of Fe 3+. The ranges and dependence of distribution coefficients on major element compositions provide important constraints on the values that can be used in geochemical modeling.

  3. Removal of natural organic matter by titanium tetrachloride: The effect of total hardness and ionic strength.

    PubMed

    Zhao, Y X; Shon, H K; Phuntsho, S; Gao, B Y

    2014-02-15

    This study is the first attempt to investigate the effect of total hardness and ionic strength on coagulation performance and the floc characteristics of titanium tetrachloride (TiCl4). Membrane fouling under different total hardness and ionic strength conditions was also evaluated during a coagulation-ultrafiltration (C-UF) hybrid process. Coagulation experiments were performed with two simulated waters, using humic acid (HA, high molecular weight) and fulvic acid (FA, relatively low molecular weight), respectively, as model natural organic matter (NOM). Results show that both particle and organic matter removal can be enhanced by increasing total hardness and ionic strength. Floc characteristics were significantly influenced by total hardness and ionic strength and were improved in terms of floc size, growth rate, strength, recoverability and compactness. The results of the UF tests show that the pre-coagulation with TiCl4 significantly improves the membrane permeate fluxes. Under different total hardness and ionic strength conditions, the membrane permeate flux varied according to both NOM and floc characteristics. The increase in total hardness and ionic strength improved the membrane permeate flux in the case of HA simulated water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A mean-density model of ionic surfactants for the dispersion of carbon nanotubes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Joung, Young Soo

    2018-05-01

    We propose a new analytical model of ionic surfactants used for the dispersion of carbon nanotubes (CNTs) in aqueous solutions. Although ionic surfactants are commonly used to facilitate the dispersion of CNTs in aqueous solutions, understanding the dispersion process is challenging and time-consuming owing to its complexity and nonlinearity. In this work, we develop a mean-density model of ionic surfactants to simplify the calculation of interaction forces between CNTs stabilized by ionic surfactants. Using this model, we can evaluate various interaction forces between the CNTs and ionic surfactants under different conditions. The dispersion mechanism is investigated by estimating the potential of mean force (PMF) as a function of van der Waals forces, electrostatic forces, interfacial tension, and osmotic pressure. To verify the proposed model, we compare the PMFs derived using our method with those derived from molecular dynamics simulations using comparable CNTs and ionic surfactants. Notably, for stable dispersions, the osmotic pressure and interfacial energy are important for long-range and short-range interactions, respectively, in comparison with the effect of electrostatic forces. Our model effectively prescribes specific surfactants and their concentrations to achieve stable aqueous suspensions of CNTs.

  5. NafionxAE-based polymer actuators with ionic liquids as solvent incorporated at room temperature

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kunitomo; Tsuchitani, Shigeki

    2009-09-01

    Nafion®-based ionic polymer-metal composites (IPMCs), with ionic liquids as solvent, were fabricated by exchanging counterions to ionic liquids at room temperature. Ion exchange is performed by only immersing IPMC in a mixture of de-ionized water and ionic liquids at room temperature for 48 h. The fabricated IPMCs exhibited a bending curvature the same as or larger than that of conventional IPMCs with ionic liquids, formed by ion exchange to ionic liquids at an elevated temperature up to about 100 °C, and also had long-term stability in operation in air, with a fluctuation smaller than 21% in bending curvature during a 180 min operation. The effective ion exchange to ionic liquids in the present method is probably due to an increase in diffusion speed of ionic liquids into IPMC by adsorption of water in a Nafion® membrane. It is a surprise that among IPMCs with ionic liquids 1-ethyl-3-methyl-imidazolium tetrafluoroborate, 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6), IPMC with water-insoluble BMIPF6 exhibited a larger bending curvature than that IPMC with water-miscible BMIBF4. This might be due to effective incorporation of BMIPF6 into IPMC, since BMIPF6 has a higher affinity with IPMC than with water in the mixture of water and BMIPF6. From measurements of complex impedance and step voltage response of the driving current of IPMCs with ionic liquid, they are expressed by an equivalent circuit of a parallel combination of a serial circuit of membrane resistance of Nafion® and electric double layer capacitance at metal electrodes, with membrane capacitance of Nafion®, in a frequency range higher than about 0.1 Hz. The difference in magnitude of bending curvature in three kinds of IPMCs with ionic liquids is mainly due to the difference in bending response speed coming from the difference in the membrane resistance.

  6. Correlation between ionic size and valence state of tetra, penta and hexavalent B-site substitution with solubility limit, phase transformation and multiferroic properties of Bi0.875Eu0.125FeO3

    NASA Astrophysics Data System (ADS)

    Mumtaz, Fiza; Jaffari, G. Hassnain; Hassan, Qadeer ul; Shah, S. Ismat

    2018-06-01

    We present detailed comparative study of effect of isovalent i.e. Eu+3 substitution at A-site and tetra (Ti+4, Zr+4), penta (V+5) and hexavalent (W+6) substitutions at B-site in BiFeO3. Eu+3 substitution led to phase transformation and exhibited mixed phases i.e. rhombohedral and orthorhombic, while tetravalent substituents (Ti+4 and Zr+4) led to stabilization of cubic phase. In higher valent (i.e. V+5 and W+6) cases solubility limit was significantly reduced where orthorhombic phase was observed as in the case of parent compound. Phase transformation as a consequence of increase in microstrain and chemical pressure induced by the substituent has been discussed. Solubility limit of different B-site dopants i.e. Zr, W and V was extracted to 5%, 2% and 2%, respectively. Extra phases in various cases were Bi2Fe4O9, Bi25FeO40, Bi14W2O27, and Bi23V4O44.5 and their fractional amount have been quantified. Ti was substituted up to 15% and has been observed to be completely soluble in the parent compound. Solubility limits depends on ionic radii mismatch and valance difference of Fe+3 and dopant, in which valance difference plays more dominant role. Solubility limit and phase transformation has been explained in terms of change in bond strength and tolerance factor induced by incorporation of dopant which depend on its size and valence state. Detail optical, dielectric, ferroelectric, magnetic and transport properties of Eu and Ti co-doped samples and selected low concentration B-site doped compositions (i.e. 2%) have presented and discussed. Two d-d transitions and three charge transfer transitions were observed within UV-VIS range. Both change in cell volume for the same phase and transformation in crystal structure affects the band gap. Increase in room temperature dielectric constant and saturation polarization was also found to increase in case of Eu-Ti co-doped samples with increasing concentration of Ti. Substitution of Eu at A-site and Ti at B-site led to observation of weak ferromagnetism. Effect of extra phases on ferroelectricity and transport properties have also been discussed.

  7. Solid-State Ionic Diodes Demonstrated in Conical Nanopores

    DOE PAGES

    Plett, Timothy S.; Cai, Wenjia; Le Thai, Mya; ...

    2017-02-27

    Ionic transport at the nanoscale features phenomena that are not observed in larger systems. Nonlinear current–voltage curves characteristic of ionic diodes as well as ion selectivity are examples of effects observed at the nanoscale. Many man-made nanopore systems are inspired by biological channels in a cell membrane, thus measurements are often performed in aqueous solutions. Consequently, much less is known about ionic transport in nonaqueous systems, especially in solid-state electrolytes. Here we show ionic transport through single pores filled with gel electrolyte of poly(methyl methacrylate) (PMMA) doped with LiClO 4 in propylene carbonate. The system has no liquid interface andmore » the ionic transport occurs through the porous gel structure. We demonstrate that a conically shaped nanopore filled with the gel rectifies the current and works as a solid-state ionic diode.« less

  8. The Effect of Ionic Strength on the Haemolytic Activity of Complement

    PubMed Central

    Wardlaw, A. C.; Walker, H. G.

    1963-01-01

    The haemolytic activity of guinea-pig complement has been measured in isotonic solutions of various ionic strengths in the range 0.034–0.28 and shown to be maximum at an ionic strength close to 0.08. Haemolytic activity was virtually abolished at ionic strength 0.034, while at 0.28, the complement titre was only about 20 per cent of the value found at the physiological ionic strength 0.155. NaCl, KCl, LiBr and K2SO4 were the electrolytes used to provide ionic strength, and sucrose, mannitol and inositol the non-electrolytes used to maintain isotonicity. Nine permutations of the four electrolytes with the three non-electrolytes were tested and gave similar results. Human and rabbit complements also showed optimum haemolytic activity at ionic strength 0.08–0.10. PMID:13998876

  9. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lethesh, Kallidanthiyil Chellappan, E-mail: lethesh.chellappan@petronas.com.my; Wilfred, Cecilia Devi; Taha, M. F.

    2014-10-24

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K atmore » atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.« less

  10. Predictions of nuclear charge radii

    NASA Astrophysics Data System (ADS)

    Bao, M.; Lu, Y.; Zhao, Y. M.; Arima, A.

    2016-12-01

    The nuclear charge radius is a fundamental property of an atomic nucleus. In this article we study the predictive power of empirical relations for experimental nuclear charge radii of neighboring nuclei and predict the unknown charge radii of 1085 nuclei based on the experimental CR2013 database within an uncertainty of 0.03 fm.

  11. Responses of articular and epiphyseal cartilage zones of developing avian radii to estrone treatment and a 2-G environment

    NASA Technical Reports Server (NTRS)

    Negulesco, J. A.; Kossler, T.

    1978-01-01

    Histological measurements of radii from chickens exposed to estrone and hypergravity are reported. Female chicks at two weeks post-hatch were maintained for two weeks at earth gravity or 2 G with daily injections of 0.2 or 0.4 mg estrone. Animals were sacrificed after the last injection, and the radii were processed by described histological techniques. The results suggest that proximal and distal epiphyses of developing radii show different morphological responses to estrone and hypergravity.

  12. Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √s NN = 200 GeV

    DOE PAGES

    Adare, A.

    2015-09-23

    We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √s NN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe themore » transverse-mass dependence of the oscillations.« less

  13. Lithium-Air and ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellar, Michael

    2015-09-01

    The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to themore » typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.« less

  14. Influence of the ionic liquid/gas surface on ionic liquid chemistry.

    PubMed

    Lovelock, Kevin R J

    2012-04-21

    Applications such as gas storage, gas separation, NP synthesis and supported ionic liquid phase catalysis depend upon the interaction of different species with the ionic liquid/gas surface. Consequently, these applications cannot proceed to the full extent of their potential without a profound understanding of the surface structure and properties. As a whole, this perspective contains more questions than answers, which demonstrates the current state of the field. Throughout this perspective, crucial questions are posed and a roadmap is proposed to answer these questions. A critical analysis is made of the field of ionic liquid/gas surface structure and properties, and a number of design rules are mined. The effects of ionic additives on the ionic liquid/gas surface structure are presented. A possible driving force for surface formation is discussed that has, to the best of my knowledge, not been postulated in the literature to date. This driving force suggests that for systems composed solely of ions, the rules for surface formation of dilute electrolytes do not apply. The interaction of neutral additives with the ionic liquid/gas surface is discussed. Particular attention is focussed upon H(2)O and CO(2), vital additives for many applications of ionic liquids. Correlations between ionic liquid/gas surface structure and properties, ionic liquid surfaces plus additives, and ionic liquid applications are given. This journal is © the Owner Societies 2012

  15. The Energy Diameter Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P; Vitello, P; Garza, R

    2007-04-20

    Various relations for the detonation energy and velocity as they relate to the inverse radius of the cylinder are explored. The detonation rate-inverse slope relation seen in reactive flow models can be used to derive the familiar Eyring equation. Generalized inverse radii can be shown to fit large quantities of cylinder and sphere results. A rough relation between detonation energy and detonation velocity is found from collected JWL values. Cylinder test data for ammonium nitrate mixes down to 6.35 mm radii are presented, and a size energy effect is shown to exist in the Cylinder test data. The relation thatmore » detonation energy is roughly proportional to the square of the detonation velocity is shown by data and calculation.« less

  16. Dark matter in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  17. Surface effects on ionic Coulomb blockade in nanometer-size pores

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  18. Conductivity Scaling Relationships of Nanostructured Membranes based on Hydrated Protic Polymerized Ionic Liquids: Effect of Domain Spacing

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Popere, Bhooshan; Beckingham, Bryan; Evans, Christopher; Lynd, Nathaniel; Segalman, Rachel

    Elucidating the relationship between chemical structure, morphology, and ionic conductivity is essential for designing novel materials for electrochemical applications. In this work, the effect of lamellar domain spacing (d) on ionic conductivity (σ) is investigated for a model system of hydrated block copolymer based on a protic polymerized ionic liquid. We present a strategy that allows for the synthesis of a well-defined series of narrowly dispersed PS- b - PIL with constant volume fraction of ionic liquid moieties (fIL ~ 0.39). These materials self-assemble into ordered lamellar morphologies with variable domain spacing (23-59 nm) as demonstrated by SAXS. PS- b - PIL membranes exhibit ionic conductivities above 10-4 S/cm at room temperature, which are independent of domain spacing. The conductivity scaling relationship demonstrated in this work suggests that a mechanically robust membrane can be designed without compromising its ability to transport ions. In addition, PIL-based membranes exhibit lower water uptake (λ = 10) in comparison with many proton-conducting systems reported elsewhere. The low water content of these materials makes them promising candidates for solar-fuels electrochemical devices.

  19. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    PubMed

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  20. Average configuration of the distant (less than 220-earth-radii) magnetotail - Initial ISEE-3 magnetic field results

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.

    1983-01-01

    Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.

  1. Effects of Ionic Dependence of DNA Persistence Length on the DNA Condensation at Room Temperature

    NASA Astrophysics Data System (ADS)

    Mao, Wei; Liu, Yan-Hui; Hu, Lin; Xu, Hou-Qiang

    2016-05-01

    DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. A series of experiments pointed out that, in the DNA condensation process by multivalent cations, the condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in ionic concentration. At the same time, single molecule experiments carried out in solution with multivalent cations (such as spermidine, spermine) indicated that DNA persistence length strongly depends on the ionic concentration. In order to revolve the effects of ionic concentration dependence of persistence length on DNA condensation, a model including the ionic concentration dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the ionic concentration dependence of toroidal conformations. With an increase in ion concentration, the first periodic oscillation contained in the autocorrelation function shifts, the number of segment contained in the first periodic oscillation decreases gradually. According to the experiments, the average long-axis length is defined to estimate the ionic concentration dependence of condensation process further. The relation between long-axis length and ionic concentration matches the experimental results qualitatively. Supported by National Natural Science Foundation of China under Grant Nos. 11047022, 11204045, 11464004 and 31360215; The Research Foundation from Ministry of Education of China (212152), Guizhou Provincial Tracking Key Program of Social Development (SY20123089, SZ20113069); The General Financial Grant from the China Postdoctoral Science Foundation (2014M562341); The Research Foundation for Young University Teachers from Guizhou University (201311); The West Light Foundation (2015) and College Innovation Talent Team of Guizhou Province, (2014) 32

  2. Can the scaling behavior of electric conductivity be used to probe the self-organizational changes in solution with respect to the ionic liquid structure? The case of [C8MIM][NTf2].

    PubMed

    Paluch, Marian; Wojnarowska, Zaneta; Goodrich, Peter; Jacquemin, Johan; Pionteck, Jürgen; Hensel-Bielowka, Stella

    2015-08-28

    Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent γ = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent γ reported herein along with literature data for other ionic liquids, it appears that γ decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent γ may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, James; Mullan, D. J.

    KIC 7177553 is a quadruple system containing two binaries of orbital periods 16.5 and 18 days. All components have comparable masses and are slowly rotating with spectral types of ∼G2V. The longer period binary is eclipsing with component masses and radii M {sub 1} = 1.043 ± 0.014 M {sub ⊙}, R {sub 1} = 0.940 ± 0.005 R {sub ⊙} and M {sub 2} = 0.986 ± 0.015 M {sub ⊙}, R {sub 2} = 0.941 ± 0.005 R {sub ⊙}. The essentially equal radii measurements are inconsistent with the two stars being on the man sequence at themore » same age using standard nonmagnetic stellar evolution models. Instead a consistent scenario is found if the stars are in their pre-main-sequence phase of evolution and have an age of 32–36 Myr. We have also computed evolutionary models of magnetic stars, but we find that our nonmagnetic models fit the empirical radii and effective temperatures better than the magnetic models.« less

  4. Central Pb+Pb collisions at 158 A GeV/c studied by $$\\pi^-\\pi^-$$ interferometry

    DOE PAGES

    Aggarwal et al., M. M.

    2000-05-18

    Two-particle correlations have been measured for identifiedmore » $$\\pi^-$$ from central 158 A GeV Pb+Pb collisions and fitted radii of about 7 fm in all dimensions have been obtained. A multi-dimensional study of the radii as a function of k T is presented, including a full correction for the resolution effects of the apparatus. The cross term R 2 out-long of the standard fit in the Longitudinally CoMoving System (LCMS) and the v L parameter of the generalised Yano-Koonin fit are compatible with o, suggesting that the source undergoes a boost invariant expansion. The shapes of the correlation functions in Q inv and Q space = √Q$$2\\atop{x}$$ + Q$$2\\atop{y}$$ + Q$$2\\atop{z}$$ have been analyzed in detail. They are not Gaussian but better represented by exponentials. As a consequence fitting Gaussians to these correlation functions may produce different radii depending on the acceptance of the experimental setup used for the measurement.« less

  5. Quantifying the effect of ionic screening with protein-decorated graphene transistors

    PubMed Central

    Ping, Jinglei; Xi, Jin; Saven, Jeffery G.; Liu, Renyu; Charlie Johnson, A. T.

    2015-01-01

    Liquid-based applications of biomolecule-decorated field-effect transistors (FETs) range from biosensors to in vivo implants. A critical scientific challenge is to develop a quantitative understanding of the gating effect of charged biomolecules in ionic solution and how this influences the readout of the FETs. To address this issue, we fabricated protein-decorated graphene FETs and measured their electrical properties, specifically the shift in Dirac voltage, in solutions of varying ionic strength. We found excellent quantitative agreement with a model that accounts for both the graphene polarization charge and ionic screening of ions adsorbed on the graphene as well as charged amino acids associated with the immobilized protein. The technique and analysis presented here directly couple the charging status of bound biomolecules to readout of liquid-phase FETs fabricated with graphene or other two-dimensional materials. PMID:26626969

  6. Surface Adsorption in Nonpolarizable Atomic Models.

    PubMed

    Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J

    2014-12-09

    Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  7. Electrophoretic mobilities of erythrocytes in various buffers

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.

  8. Quantitative and qualitative optimization of allergen extraction from peanut and selected tree nuts. Part 2. Optimization of buffer and ionic strength using a full factorial experimental design.

    PubMed

    L'Hocine, Lamia; Pitre, Mélanie

    2016-03-01

    A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Electroactive nanostructured polymer actuators fabricated using sulfonated styrenic pentablock copolymer/montmorillonite/ionic liquid nanocomposite membranes

    NASA Astrophysics Data System (ADS)

    Lee, Jang-Woo; Hong, Soon Man; Koo, Chong Min

    2014-08-01

    High-bendable, air-operable ionic polymer-metal composite (IPMC) actuators composed of electroactive nanostructured middle-block sulfonated styrenic pentablock copolymer (SSPB)/sulfonated montmorillonite (s-MMT) nanocomposite electrolyte membranes with bulky imidazolium ionic liquids (ILs) incorporated were fabricated and their bending actuation performances were evaluated. The SSPB-based IPMC actuators showed larger air-operable bending displacements, higher displacement rates, and higher energy efficiency of actuations without conventional IPMC bottlenecks, including back relaxation and actuation instability during actuation in air, than the Nafion counterpart. Incorporation of s-MMT into the SSPB matrix further enhanced the actuation performance of the IPMC actuators in terms of displacement, displacement rate, and energy efficiency. The remarkably high performance of the SSPB/s-MMT/IL IPMCs was considered to be due to the microphase-separated large ionic domains of the SSPB (the average diameter of the ionic domain: ca. 20 nm) and the role of s-MMT as an ionic bridge between the ionic domains, and the ion pumping effect of the bulky imidazolium cations of the ILs as well. The microphase-separated nanostructure of the composite membranes caused a high dimensional stability upon swelling in the presence of ILs, which effectively preserved the original electrode resistance against swelling, leading to a high actuation performance of IPMC.

  10. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    DOE PAGES

    Burr, P. A.; Cooper, M. W. D.

    2017-09-15

    Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less

  11. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, P. A.; Cooper, M. W. D.

    Small system sizes are a well known source of error in DFT calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite size effects have been well characterised, but self-interaction of charge neutral defects is often discounted or assumed to follow an asymptotic behaviour and thus easily corrected with linear elastic theory. Here we show that elastic effect are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequatly small supercells are used; moreover,more » the spurious self-interaction does not follow the behaviour predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground state structure of (charge neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768 and 1500 atoms), and careful analysis determines that elastic effects, not electrostatic, are responsible. The spurious self-interaction was also observed in non-oxide ionic compounds and irrespective of the computational method used, thereby resolving long standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects are a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g. hybrid functionals) or when modelling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studies oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells | greater than 96 atoms.« less

  12. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    NASA Astrophysics Data System (ADS)

    Burr, P. A.; Cooper, M. W. D.

    2017-09-01

    Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.

  13. Effects of simulated artificial gravity on human performance

    NASA Technical Reports Server (NTRS)

    Green, J. A.; Peacock, J. L.

    1972-01-01

    The ability of test subjects to perform operational type tasks was evaluated at rotational rates to 6 rpm and radii to 78 ft (24 m). The tasks included fine motor activity, mental operations, postural equilibrium, cargo handling, radial and tangential locomotion. Performance data indicate that 6 rpm presents a physiological limit at radii to 75 ft (23 m). Radial locomotion was not found to produce excessive adverse stimuli, and tangential locomotion was readily accomplished at walking rates of 2 of 4.8 ft/s (.6 to 1.4 m/s). The absence of vision dramatically reduced an individual's postural equilibrium during rotation. The use of selected anti-motion pharmaceuticals had, generally, a positive effect upon psychomotor performance at 6 rpm, but did not prove to be a panacea for the adverse effects of rotation at this rate.

  14. Design of guanidinium ionic liquid based microwave-assisted extraction for the efficient extraction of Praeruptorin A from Radix peucedani.

    PubMed

    Ding, Xueqin; Li, Li; Wang, Yuzhi; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-12-01

    A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids were confirmed by (1)H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave-assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed-phase high-performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single-factor and L9 (3(4)) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3-tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave-assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound-assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave-assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave-assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comparative study of bending characteristics of ionic polymer actuators containing ionic liquids for modeling actuation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kunitomo; Sakamoto, Takumi; Tsuchitani, Shigeki; Asaka, Kinji

    2011-04-01

    Ionic polymer metal composites (IPMCs) that can operate in air have recently been developed by incorporating an ionic liquid in ionic polymers. To understand transduction in these composites, it is important to determine the role of the ionic liquid in the ionic polymer (Nafion®), to identify the counter cation, and to investigate the interaction of IPMCs with water vapor in the air. We used Fourier-transform infrared spectroscopy to analyze three Nafion® membranes, which were soaked in mixtures of water and an ionic liquid (1-ethyl-3-methyl-imidazolium tetrafluoroborate (EMIBF4), 1-buthyl-3-methyl-imidazolium tetrafluoroborate (BMIBF4), and 1-buthyl-3-methyl-imidazolium hexafluorophosphate (BMIPF6)). The results demonstrate that only cations (EMI+ and BMI+) in the ionic liquids are taken into the Nafion® membranes as counter ions and that the water content of the membranes in air is less than ˜4% that of Nafion® swollen with water. Based on the experimental results, a transduction model is proposed for an IPMC with an ionic liquid. In this model, bending is caused by local swelling due to the volume effect of the bulky counter cations. This model can explain 30-50% of the experimentally observed bending curvature.

  16. Broad hexagonal columnar mesophases formation in bioinspired transition-metal complexes of simple fatty acid meta-octaester derivatives of meso-tetraphenyl porphyrins.

    PubMed

    Wu, Bin; Chen, Keyang; Deng, Yuchen; Chen, Jian; Liu, Chengjie; Cheng, Rongshi; Chen, Dongzhong

    2015-02-23

    A series of meta-substituted fatty acid octaester derivatives and their transition-metal complexes of meso- tetraphenyl porphyrins (TPP-8OOCR, with R = C(n-1)H(2n-1), n = 8, 12, or 16) have been prepared through very simple synthesis protocols. The thermotropic phase behavior and the liquid crystalline (LC) organization structures of the synthesized porphyrin derivatives were systematically investigated by a combination of differential scanning calorimetry (DSC), polarized optical microscopy (POM), and variable-temperature small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) techniques. The shorter octanoic acid ester substituted porphyrin (C8-TPP) did not show liquid crystallinity and its metal porphyrins exhibited an uncommon columnar mesophase. The lauric acid octaester (C12-TPP) and the palmitic acid octaester (C16-TPP) series porphyrins generated hexagonal columnar mesophase Colh. Moreover, the metal porphyrins C12-TPPM and C16-TPPM with M = Zn, Cu, or Ni, exhibited well-organized Colh mesophases of broad LC temperature ranges increasing in the order of TPPNi

  17. EXAFS analysis of cations distribution in structure of Co1-xNixFe2O4 nanoparticles obtained by hydrothermal method in aloe vera extract solution

    NASA Astrophysics Data System (ADS)

    Wongpratat, Unchista; Maensiri, Santi; Swatsitang, Ekaphan

    2016-09-01

    Effect of cations distribution upon EXAFS analysis on magnetic properties of Co1-xNixFe2O4 (x = 0, 0.25, 0.50, 0.75 and 1.0) nanoparticles prepared by the hydrothermal method in aloe vera extract solution were studied. XRD analysis confirmed a pure phase of cubic spinel ferrite of all samples. Changes in lattice parameter and particle size depended on the Ni content with partial substitution and site distributions of Co2+, Ni2+ ions of different ionic radii at both tetrahedral and octahedral sites in the crystal structure. Particle sizes of samples estimated by TEM images were found to be in the range of 10.87-62.50 nm. The VSM results at room temperature indicated the ferrimagnetic behavior of all samples. Superparamagnetic behavior was observed in NiFe2O4 sample. The coercivity (Hc) and remanance (Mr) values were related to the particle sizes of samples. The saturation magnetization (Ms) was increased by a factor of 1.4 to a value of 57.57 emu/g, whereas the coercivity (Hc) was decreased by a factor of 20 to a value of 63.15 Oe for a sample with x = 0.75. In addition to the cations distribution, the increase of aspect ratio (surface to volume ratio) due to the decrease of particle size could significantly affect the magnetic properties of the materials.

  18. Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization.

    PubMed

    Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun

    2016-07-13

    Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.

  19. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    NASA Astrophysics Data System (ADS)

    Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent

    2016-08-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.

  20. Effect of additives on the clouding and aggregation behavior of Triton X-100

    NASA Astrophysics Data System (ADS)

    Semwal, Divyam; Sen, Indrani Das; Jayaram, Radha V.

    2018-04-01

    The present study investigates the effect of additives such as CsNO3 and imidazolium ionic liquids on the cloud point (CP) of Triton X-100. Thermodynamic parameters of the clouding process were determined in order to understand the interactions. CP was found to increase with the increase in concentration of most of the ionic liquids studied. This increase of CP reflects the solubilization of the ionic liquids in the micellar phase1. The thermodynamic parameters on the introduction of CsNO3 in TX-100 - ionic liquid system helps in understanding the different interactions occurring in the system. All ΔG values for clouding were found to be positive and hence made the process non spontaneous.

  1. Communication: Dimensionality of the ionic conduction pathways in glass and the mixed-alkali effect.

    PubMed

    Novy, Melissa; Avila-Paredes, Hugo; Kim, Sangtae; Sen, Sabyasachi

    2015-12-28

    A revised empirical relationship between the power law exponent of ac conductivity dispersion and the dimensionality of the ionic conduction pathway is established on the basis of electrical impedance spectroscopic (EIS) measurements on crystalline ionic conductors. These results imply that the "universal" ac conductivity dispersion observed in glassy solids is associated with ionic transport along fractal pathways. EIS measurements on single-alkali glasses indicate that the dimensionality of this pathway D is ∼2.5, while in mixed-alkali glasses, D is lower and goes through a minimum value of ∼2.2 when the concentrations of the two alkalis become equal. D and σ display similar variation with alkali composition, thus suggesting a topological origin of the mixed-alkali effect.

  2. Magnetic Inflation and Stellar Mass. II. On the Radii of Single, Rapidly Rotating, Fully Convective M-Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg

    2018-06-01

    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 < M < 0.4 M Sun), the discrepancy is only about 6% and comparable to results from interferometry and eclipsing binaries. At the lowest masses (0.08 < M < 0.18 M Sun), we find that the discrepancy between observations and theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.

  3. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Marisa A. A., E-mail: lbsantos@fc.up.pt, E-mail: marisa.alexandra.rocha@gmail.com; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven; Coutinho, João A. P.

    2014-10-07

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids.more » The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.« less

  4. Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models.

    PubMed

    Ferraz, Ricardo; Pinheiro, Marina; Gomes, Ana; Teixeira, Cátia; Prudêncio, Cristina; Reis, Salette; Gomes, Paula

    2017-09-01

    Primaquine-based ionic liquids, obtained by acid-base reaction between parent primaquine and cinnamic acids, were recently found as triple-stage antimalarial hits. These ionic compounds displayed significant activity against both liver- and blood-stage Plasmodium parasites, as well as against stage V P. falciparum parasites. Remarkably, blood-stage activity of the ionic liquids against both chloroquine-sensitive (3D7) and resistant (Dd2) P. falciparum strains was clearly superior to those of the respective covalent (amide) analogues and of parent primaquine. Having hypothesized that such behaviour might be ascribed to an enhanced ability of the ionic compounds to permeate into Plasmodium-infected erythrocytes, we have carried out a differential scanning calorimetry-based study of the interactions between the ionic liquids and membrane models. Results provide evidence, at the molecular level, that the primaquine-derived ionic liquids may contribute to an increased permeation of the parent drug into malaria-infected erythrocytes, which has relevant implications towards novel antimalarial approaches based on ionic liquids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Studies of bio-mimetic medium of ionic and non-ionic micelles by a simple charge transfer fluorescence probe N,N-dimethylaminonapthyl-(acrylo)-nitrile

    NASA Astrophysics Data System (ADS)

    Samanta, Anuva; Paul, Bijan Kumar; Guchhait, N.

    2011-05-01

    In this report we have studied micellization process of anionic, cationic and non-ionic surfactants using N,N-dimethylaminonapthyl-(acrylo)-nitrile (DMANAN) as an external fluorescence probe. Micropolarity, microviscosity, critical micellar concentration of these micelles based on steady state absorption and fluorescence and time resolved emission spectroscopy of the probe DMANAN show that the molecule resides in the micelle-water interface for ionic micelles and in the core for the non-ionic micelle. The effect of variation of pH of the micellar solution as well as fluorescence quenching measurements of DMANAN provide further support for the location of the probe in the micelles.

  6. Rare earth metal-containing ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodius, Denis; Mudring, Anja-Verena

    As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less

  7. Rare earth metal-containing ionic liquids

    DOE PAGES

    Prodius, Denis; Mudring, Anja-Verena

    2018-03-07

    As an innovative tool, ionic liquids (ILs) are widely employed as an alternative, smart, reaction media (vs. traditional solvents) offering interesting technology solutions for dissolving, processing and recycling of metal-containing materials. The costly mining and refining of rare earths (RE), combined with increasing demand for high-tech and energy-related applications around the world, urgently requires effective approaches to improve the efficiency of rare earth separation and recovery. In this context, ionic liquids appear as an attractive technology solution. Finally, this paper addresses the structural and coordination chemistry of ionic liquids comprising rare earth metals with the aim to add to understandingmore » prospects of ionic liquids in the chemistry of rare earths.« less

  8. Surface-active ionic liquids for palladium-catalysed cross coupling in water: effect of ionic liquid concentration on the catalytically active species† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07757b

    PubMed Central

    Taskin, Meltem; Cognigni, Alice; Zirbs, Ronald; Reimhult, Erik

    2017-01-01

    We report the design and synthesis of surface-active ionic liquids for application in palladium-catalyzed cross coupling reactions. A series of dodecylimidazolium-based ionic liquids were applied as additives in the Heck reaction of ethyl acrylate and iodobenzene, and high yields of >90% could be obtained in water without the addition of further ligands. Our results indicate that the ionic liquid concentration in water is the key factor affecting the formation of the catalytically active species and hence the yield. Moreover, imidazolium-based ionic liquids that are able to form a carbene species differ significantly from conventional cationic surfactants, as a concentration dependent formation of the N-heterocyclic carbene complex was observed. PMID:29308189

  9. Insight into the grain boundary effect on the ionic transport of yttria-stabilized zirconia at elevated temperatures from a molecular modeling perspective

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Shiun; Lin, Yi-Feng; Tung, Kuo-Lun

    A molecular dynamics (MD) simulation is used to reveal the grain boundary effect on the ionic transport of yttria-stabilized zirconia (YSZ). The oxygen ion displacements and diffusivities of the ideal and grain boundary-inserted YSZ models are analyzed at elevated temperatures. An optimized Y 2O 3 concentration within YSZ for the best ionic conductivity is achieved by balancing the trade-off between the increased vacancies and the decreased accessible free space. The mass transfer resistance of the grain boundary in YSZ can be more easily found at higher temperatures by observing the oxygen ion diffusivities or traveling trajectories. At lower temperatures, the grain interior and the grain boundary control the ionic transport. In contrast, the grain boundary effect on the diffusion barrier is gradually eliminated at elevated temperatures. The modeled results in this work agree well with previous experimental data.

  10. Modeling hardwood crown radii using circular data analysis

    Treesearch

    Paul F. Doruska; Hal O. Liechty; Douglas J. Marshall

    2003-01-01

    Cylindrical data are bivariate data composed of a linear and an angular component. One can use uniform, first-order (one maximum and one minimum) or second-order (two maxima and two minima) models to relate the linear component to the angular component. Crown radii can be treated as cylindrical data when the azimuths at which the radii are measured are also recorded....

  11. Nuclear charge radii: density functional theory meets Bayesian neural networks

    NASA Astrophysics Data System (ADS)

    Utama, R.; Chen, Wei-Chia; Piekarewicz, J.

    2016-11-01

    The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.

  12. Microwave-Assisted Resolution of α-Lipoic Acid Catalyzed by an Ionic Liquid Co-Lyophilized Lipase.

    PubMed

    Liu, Ning; Wang, Lei; Wang, Zhi; Jiang, Liyan; Wu, Zhuofu; Yue, Hong; Xie, Xiaona

    2015-05-29

    The combination of the ionic liquid co-lyophilized lipase and microwave irradiation was used to improve enzyme performance in enantioselective esterification of α-lipoic acid. Effects of various reaction conditions on enzyme activity and enantioselectivity were investigated. Under optimal condition, the highest enantioselectivity (E = 41.2) was observed with a high enzyme activity (178.1 μmol/h/mg) when using the ionic liquid co-lyophilized lipase with microwave assistance. Furthermore, the ionic liquid co-lyophilized lipase exhibited excellent reusability under low power microwave.

  13. Understanding the impact of nanoscale aggregation on charge transport and structural dynamics in room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Griffin, Philip; Holt, Adam; Wang, Yangyang; Sokolov, Alexei

    2015-03-01

    Amphiphilic room temperature ionic liquids (ILs) segregate on the nanoscale, forming intricate networks of charge-rich ionic domains intercalated with charge-poor aliphatic domains. While this structural phenomenon has been well established through x-ray diffraction studies and atomistic MD simulations, the precise effects of nanophase segregation on ion transport and structural dynamics in ILs remains poorly understood. Using a combination of broadband dielectric spectroscopy, light scattering spectroscopy, and rheology, we have characterized the ionic conductivity, structural dynamics, and shear viscosity of a homologous series of quaternary ammonium ionic liquids over a wide temperature range. Upon increasing the length and volume fraction of the alkyl side chains of these quaternary ammonium ILs, ionic conductivity decreases precipitously, although no corresponding slowing of the structural dynamics is observed. Instead, we identify the dynamical signature of supramolecular aggregates. Our results directly demonstrate the role that chemical structure and ionic aggregation plays in determining the charge transport properties of amphiphilic ILs.

  14. Predictive model for ionic liquid extraction solvents for rare earth elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabda, Mariusz; Oleszek, Sylwia; Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effectivemore » extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.« less

  15. Ionic current and polarization effect in TlBr

    NASA Astrophysics Data System (ADS)

    Leão, Cedric Rocha; Lordi, Vincenzo

    2013-02-01

    Thallium bromide (TlBr) is an ionic semiconductor that has shown great capacity for accurate radiation detection. Its application to this end, however, has been hampered by degradation of performance over time, in a process called polarization. This effect has been traditionally assigned to a build-up of ions at the electrodes, which would counteract an applied electrical bias field. Here, we estimate the ionic mobility in TlBr and its possible association with the polarization effect using parameter-free quantum simulations. Our results indicate that in samples with up to moderate levels of impurities, ions cannot traverse distances large enough to generate zones of accumulation and depletion in the crystal, suggesting different causes for the polarization effect.

  16. Frequency-Stable Ionic-Type Hybrid Gate Dielectrics for High Mobility Solution-Processed Metal-Oxide Thin-Film Transistors

    PubMed Central

    Heo, Jae Sang; Choi, Seungbeom; Jo, Jeong-Wan; Kang, Jingu; Park, Ho-Hyun; Kim, Yong-Hoon; Park, Sung Kyu

    2017-01-01

    In this paper, we demonstrate high mobility solution-processed metal-oxide thin-film transistors (TFTs) by using a high-frequency-stable ionic-type hybrid gate dielectric (HGD). The HGD gate dielectric, a blend of sol-gel aluminum oxide (AlOx) and poly(4-vinylphenol) (PVP), exhibited high dielectric constant (ε~8.15) and high-frequency-stable characteristics (1 MHz). Using the ionic-type HGD as a gate dielectric layer, an minimal electron-double-layer (EDL) can be formed at the gate dielectric/InOx interface, enhancing the field-effect mobility of the TFTs. Particularly, using the ionic-type HGD gate dielectrics annealed at 350 °C, InOx TFTs having an average field-effect mobility of 16.1 cm2/Vs were achieved (maximum mobility of 24 cm2/Vs). Furthermore, the ionic-type HGD gate dielectrics can be processed at a low temperature of 150 °C, which may enable their applications in low-thermal-budget plastic and elastomeric substrates. In addition, we systematically studied the operational stability of the InOx TFTs using the HGD gate dielectric, and it was observed that the HGD gate dielectric effectively suppressed the negative threshold voltage shift during the negative-illumination-bias stress possibly owing to the recombination of hole carriers injected in the gate dielectric with the negatively charged ionic species in the HGD gate dielectric. PMID:28772972

  17. Effect of Aprotic Solvents on the Dynamics of a Room Temperature Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Osti, Naresh; van Aken, Katherine; Thompson, Matthew; Tiet, Felix; Jiang, De-En; Cummings, Peter; Gogotsi, Yury; Mamontov, Eugene

    Room temperature ionic liquids (RTILs) have attracted much attention as electrolytes in energy storage devices because of their peculiar physical and chemical characteristics. However, their remarkably high viscosity, which results in low conductivity and diffusivity, may adversely affect the charging and discharging rates. Despite changing molecular configurations, use of aprotic solvent allows to enhance the transport properties of ionic liquids by disrupting the cation-anion interactions. We explore the impact of dipole moment of aprotic solvents on the cation-anion interaction and transport in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM +][Tf2N-], RTIL using molecular dynamics (MD) simulations and quasi-elastic neutrons scattering (QENS) measurements. We observed an increase in cation diffusivity with the increasing dipole moment of the solvent. This effect is due to a decrease in the solvation free energy induced by the increasing solvent polarity. A clear nano-phase separation into ionic liquid-rich and ionic liquid-poor phases as observed by QENS will be also discussed.

  18. Structure-Antibacterial Activity Relationships of Imidazolium-Type Ionic Liquid Monomers, Poly(ionic liquids) and Poly(ionic liquid) Membranes: Effect of Alkyl Chain Length and Cations.

    PubMed

    Zheng, Zhiqiang; Xu, Qiming; Guo, Jiangna; Qin, Jing; Mao, Hailei; Wang, Bin; Yan, Feng

    2016-05-25

    The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.

  19. Effects of wastewater sludge and its detergents on the stability of rotavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    Wastewater sludge reduced the heat required to inactivate rotavirus SA-11, and ionic detergents were identified as the sludge components responsible for this effect. A similar result was found previously with reovirus. The quantitative effects of individual ionic detergents on rotavirus and reovirus were very different, and rotavirus was found to be extremely sensitive to several of these detergents. However, neither virus was destabilized by nonionic detergents. On the contrary, rotavirus was stabilized by a nonionic detergent against the potent destabilizing effects of the ionic detergent sodium dodecyl sulfate. The destabilizing effects of both cationic and anionic detergents on rotavirus weremore » greatly altered by changes in the pH of the medium.« less

  20. Dielectric Modulation of Ion Transport near Interfaces

    NASA Astrophysics Data System (ADS)

    Antila, Hanne S.; Luijten, Erik

    2018-03-01

    Ion mobility and ionic conductance in nanodevices are known to deviate from bulk behavior, a phenomenon often attributed to surface effects. We demonstrate that dielectric mismatch between the electrolyte and the surface can qualitatively alter ionic transport in a counterintuitive manner. Instead of following the polarization-induced modulation of the concentration profile, mobility is enhanced or reduced by changes in the ionic atmosphere near the interface and affected by a polarization force parallel to the surface. In addition to revealing this mechanism, we explore the effect of salt concentration and electrostatic coupling.

  1. Steven's orbital reduction factor in ionic clusters

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Mulak, J.

    1985-11-01

    General expressions for reduction coefficients of matrix elements of angular momentum operator in ionic clusters or molecular systems have been derived. The reduction in this approach results from overlap and covalency effects and plays an important role in the reconciling of magnetic and spectroscopic experimental data. The formulated expressions make possible a phenomenological description of the effect with two independent parameters for typical equidistant clusters. Some detailed calculations also suggest the possibility of a one-parameter description. The results of these calculations for some ionic uranium compounds are presented as an example.

  2. Experimental and computational study on the properties of pure and water mixed 1-ethyl-3-methylimidazolium L-(+)-lactate ionic liquid.

    PubMed

    Aparicio, Santiago; Alcalde, Rafael; Atilhan, Mert

    2010-05-06

    Ionic liquids have attracted great attention, from both industry and academe, as alternative fluids for a large collection of applications. Although the term green is used frequently to describe ionic liquids in general, it is obvious that it cannot be applied to the huge quantity of possible ionic liquids, and thus, those with adequate environmental and technological profiles must be selected for further and deeper studies, from both basic science and applied approaches. In this work, 1-ethyl-3-methylimidazolium L-(+)-lactate ionic liquid is studied, because of its remarkable properties, through a wide-ranging approach considering thermophysical, spectroscopic, and computational tools, to gain a deeper insight into its complex liquid structure, both pure and mixed with water, thus implying the main factors that would control the technological applications that could be designed using this fluid. The reported results shows a strongly structured pure ionic liquid, in which hydrogen bonding, because of the hydroxyl group of the lactate anion, develops a remarkable role, together with Coulombic forces to determine the fluid's behavior. Upon mixing with water, the ionic liquid retains its structure up to very high dilution levels, with the effect of the ionic liquid on the water structure being very large, even for very low ionic liquid mole fractions. Thus, in water solution, the studied ionic liquid evolves from noninteracting ions solvated by water molecules toward large interacting structures with increasing ionic liquid content.

  3. On the chemical stabilities of ionic liquids.

    PubMed

    Sowmiah, Subbiah; Srinivasadesikan, Venkatesan; Tseng, Ming-Chung; Chu, Yen-Ho

    2009-09-25

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitously advantageous in others is has been a problem, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  4. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.

    PubMed

    Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A

    2007-02-15

    Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was <1.5% relative to the solubility in pure water. This decrease of solubility is insufficient to account for the observed increase of sorption by K-smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.

  5. An unambiguous determination of the propagation of a compressional Pc 5 wave

    NASA Technical Reports Server (NTRS)

    Lin, N.; Mcpherron, R. L.; Kivelson, M. G.; Williams, D. J.

    1988-01-01

    A compressional Pc5 event observed by the ISEE-1 magnetometer and Medium Energetic Particle Experiment instrument on August 21 and 22, 1978, is examined. The propagation properties of the compressional waves were determined using a technique which utilizes the finite Larmor radius effects in the signature of the multichannel energetic ion detector. It is shown that this technique determines unambiguously the propagation characteristics of the wave in both the azimuthal and the radial directions in the plane perpendicular to the background magnetic field; the results remained valid even though heavy energetic ions with Larmor radii larger than proton Larmor radii were present in the plasma.

  6. An unambiguous determination of the propagation of a compressional Pc 5 wave

    NASA Astrophysics Data System (ADS)

    Lin, N.; McPherron, R. L.; Kivelson, M. G.; Williams, D. J.

    1988-06-01

    A compressional Pc5 event observed by the ISEE-1 magnetometer and Medium Energetic Particle Experiment instrument on August 21 and 22, 1978, is examined. The propagation properties of the compressional waves were determined using a technique which utilizes the finite Larmor radius effects in the signature of the multichannel energetic ion detector. It is shown that this technique determines unambiguously the propagation characteristics of the wave in both the azimuthal and the radial directions in the plane perpendicular to the background magnetic field; the results remained valid even though heavy energetic ions with Larmor radii larger than proton Larmor radii were present in the plasma.

  7. Electric field effect on exchange interaction in ultrathin Co films with ionic liquids

    NASA Astrophysics Data System (ADS)

    Ishibashi, Mio; Yamada, Kihiro T.; Shiota, Yoichi; Ando, Fuyuki; Koyama, Tomohiro; Kakizakai, Haruka; Mizuno, Hayato; Miwa, Kazumoto; Ono, Shimpei; Moriyama, Takahiro; Chiba, Daichi; Ono, Teruo

    2018-06-01

    Electric-field modulations of magnetic properties have been extensively studied not only for practical applications but also for fundamental interest. In this study, we investigated the electric field effect on the exchange interaction in ultrathin Co films with ionic liquids. The exchange coupling J was characterized from the direct magnetization measurement as a function of temperature using Pt/ultrathin Co/MgO structures. The trend of the electric field effect on J is in good agreement with that of the theoretical prediction, and a large change in J by applying a gate voltage was observed by forming an electric double layer using ionic liquids.

  8. Magneto-ionic effect in CoFeB thin films with in-plane and perpendicular-to-plane magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Baldrati, L.; Tan, A. J.; Mann, M.; Bertacco, R.; Beach, G. S. D.

    2017-01-01

    The magneto-ionic effect is a promising method to control the magnetic properties electrically. Charged mobile oxygen ions can easily be driven by an electric field to modify the magnetic anisotropy of a ferromagnetic layer in contact with an ionic conductor in a solid-state device. In this paper, we report on the room temperature magneto-ionic modulation of the magnetic anisotropy of ultrathin CoFeB films in contact with a GdOx layer, as probed by polar micro-Magneto Optical Kerr Effect during the application of a voltage across patterned capacitors. Both Pt/CoFeB/GdOx films with perpendicular magnetic anisotropy and Ta/CoFeB/GdOx films with uniaxial in-plane magnetic anisotropy in the as-grown state exhibit a sizable dependence of the magnetic anisotropy on the voltage (amplitude, polarity, and time) applied across the oxide. In Pt/CoFeB/GdOx multilayers, it is possible to reorient the magnetic anisotropy from perpendicular-to-plane to in-plane, with a variation of the magnetic anisotropy energy greater than 0.2 mJ m-2. As for Ta/CoFeB/GdOx multilayers, magneto-ionic effects still lead to a sizable variation of the in-plane magnetic anisotropy, but the anisotropy axis remains in-plane.

  9. A theoretical consideration of ion size effects on the electric double layer and voltammetry of nanometer-sized disk electrodes.

    PubMed

    Gao, Yu; Liu, Yuwen; Chen, Shengli

    2016-12-12

    Considering that an electric-double-layer (EDL) structure may significantly impact on the mass transport and charge transfer kinetics at the interfaces of nanometer-sized electrodes, while EDL structures could be altered by the finite sizes of electrolyte and redox ions, the possible effects of ion sizes on EDL structures and voltammetric responses of nanometer-sized disk (nanodisk) electrodes are investigated. Modified Boltzmann and Nernst-Planck (NP) equations, which include the influence of the finite ion volumes, are combined with the Poisson equation and modified Butler-Volmer equation to gain knowledge on how the finite sizes of ions and the nanometer sizes of electrodes may couple with each other to affect the structures and reactivities of a nanoscale electrochemical interface. Two typical ion radii, 0.38 nm and 0.68 nm, which could represent the sizes of the commonly used aqueous electrolyte ions (e.g., the solvated K + ) and the organic electrolyte ions (e.g., the solvated TEA + ) respectively, are considered. The finite size of ions can result in decreased screening of electrode charges, therefore magnifying EDL effects on the ion transport and the electron transfer at electrochemical interfaces. This finite size effect of ions becomes more pronounced for larger ions and at smaller electrodes as the electrode radii is larger than 10 nm. For electrodes with radii smaller than 10 nm, however, the ion size effect may be less pronounced with decreasing the electrode size. This can be explained in terms of the increased edge effect of disk electrodes at nanometer scales, which could relax the ion crowding at/near the outer Helmholtz plane. The conditions and situations under which the ion sizes may have a significant effect on the voltammetry of electrodes are discussed.

  10. Nonlocal Poisson-Fermi double-layer models: Effects of nonuniform ion sizes on double-layer structure

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Jiang, Yi

    2018-05-01

    This paper reports a nonuniform ionic size nonlocal Poisson-Fermi double-layer model (nuNPF) and a uniform ionic size nonlocal Poisson-Fermi double-layer model (uNPF) for an electrolyte mixture of multiple ionic species, variable voltages on electrodes, and variable induced charges on boundary segments. The finite element solvers of nuNPF and uNPF are developed and applied to typical double-layer tests defined on a rectangular box, a hollow sphere, and a hollow rectangle with a charged post. Numerical results show that nuNPF can significantly improve the quality of the ionic concentrations and electric fields generated from uNPF, implying that the effect of nonuniform ion sizes is a key consideration in modeling the double-layer structure.

  11. AME - Asteroseismology Made Easy. Estimating stellar properties by using scaled models

    NASA Astrophysics Data System (ADS)

    Lundkvist, Mia; Kjeldsen, Hans; Silva Aguirre, Victor

    2014-06-01

    Context. Stellar properties and, in particular stellar radii of exoplanet host stars, are essential for measuring the properties of exoplanets, therefore it is becoming increasingly important to be able to supply reliable stellar radii fast. Grid-modelling is an obvious choice for this, but that only offers a low degree of transparency to non-specialists. Aims: Here we present a new, easy, fast, and transparent method of obtaining stellar properties for stars exhibiting solar-like oscillations. The method, called Asteroseismology Made Easy (AME), can determine stellar masses, mean densities, radii, and surface gravities, as well as estimate ages. We present AME as a visual and powerful tool that could be useful, in particular, in light of the large number of exoplanets being found. Methods: AME consists of a set of figures from which the stellar parameters can be deduced. These figures are made from a grid of stellar evolutionary models that cover masses ranging from 0.7 M⊙ to 1.6 M⊙ in steps of 0.1 M⊙ and metallicities in the interval -0.3 dex ≤ [Fe/H] ≤ +0.3 dex in increments of 0.1 dex. The stellar evolutionary models are computed using the Modules for Experiments in Stellar Astrophysics (MESA) code with simple input physics. Results: We have compared the results from AME with results for three groups of stars: stars with radii determined from interferometry (and measured parallaxes), stars with radii determined from measurements of their parallaxes (and calculated angular diameters), and stars with results based on modelling their individual oscillation frequencies. We find that a comparison of the radii from interferometry to those from AME yields a weighted mean of the fractional differences of just 2%. This is also the level of deviation that we find when we compare the parallax-based radii to the radii determined from AME. Conclusions: The comparison between independently determined stellar parameters and those found using AME show that our method can provide reliable stellar masses, radii, and ages, with median uncertainties in the order of 4%, 2%, and 25%, respectively. http://sac.au.dk/scientific-data/ame

  12. Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography.

    PubMed

    Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei

    2017-07-01

    A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A simulation study of CS2 solutions in two related ionic liquids with dications and monocations

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, R. M.; Quitevis, E. L.

    2018-05-01

    Atomistic simulations of solutions of CS2 in an ionic liquid, [C8(C1im)2 ] [NTf2]2, with a divalent cation and in the corresponding ionic liquid with a monovalent cation, [C4C1im][NTf2], were carried out. The low-frequency librational density of states of the CS2 was of particular interest in view of recent optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). Compared to the monocation ionic liquid, the maximum shifts to higher frequencies in the dication ionic liquid under ambient conditions, but was found to be significantly pressure-dependent. CS2 molecules lie above and below the plane of the imidazolium rings and found to be close to the butyl tails of the monocation. The diffusion rates and embedding energies of solvent ions and CS2 in the two ionic liquids were measured.

  14. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    PubMed

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ionic conduction in sodium azide under high pressure: Experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Wang, Qinglin; Ma, Yanzhang; Sang, Dandan; Wang, Xiaoli; Liu, Cailong; Hu, Haiquan; Wang, Wenjun; Zhang, Bingyuan; Fan, Quli; Han, Yonghao; Gao, Chunxiao

    2018-04-01

    Alkali metal azides can be used as starting materials for the synthesis of polymeric nitrogen, a potential material of high energy density. In this letter, we report the ionic transport behavior in sodium azide under high pressure by in situ impedance spectroscopy and density functional theory calculations. The ionic transportation consists of ion transfer and Warburg diffusion processes. The ionic migration channels and barrier energy were given for the high-pressure phases. The enhanced ionic conductivity of the γ phase with pressure is because of the formation of space charge regions in the grain boundaries. This ionic conduction and grain boundary effect in NaN3 under pressures could shed light on the better understanding of the conduction mechanism of alkali azides and open up an area of research for polymeric nitrogen in these compounds and other high-energy-density polynitrides.

  16. Suppression and enhancement of deep level emission of ZnO on Si4+ & V5+ substitution

    NASA Astrophysics Data System (ADS)

    Srivastava, T.; Bajpai, G.; Sen, S.

    2018-03-01

    ZnO possess a wide range of tunable properties depending on the type and concentration of dopant. Defects in ZnO due to doped aliovalent ions can generate certain functionalities. Such defects in the lattice do not deteriorate the material properties but actually modifies the material towards infinite number of possibilities. Defects like oxygen vacancies play a significant role in photocatalytic and sensing applications. Depending upon the functionality, defect state of ZnO can be modified by suitable doping. Amount and nature of different dopant has different effect on defect state of ZnO. It depends upon the ionic radii, valence state, chemical stability etc. of the ion doped. Two samples with two different dopants i.e., silicon and vanadium, Zn1-xSixO and Zn1-xVxO, for x=0 & 0.020, were synthesized using solgel method (a citric acid-glycerol route) followed by solid state sintering. A comparison of their optical properties, photoluminescence and UV-Vis spectroscopy, with pure ZnO was studied at room temperature. Silicon doping drastically reduces whereas vanadium doping enhances the green emission as compared with pure ZnO. Suppression and enhancement of defect levels (DLE) is rationalized by the effects of extra charge present on Si4+ & V5+ (in comparison to Zn2+) and formation of new hybrid state (V3d O2p) within bandgap. Reduction of defects in Zn1-xSixO makes it suitable material for opto-electronics application whereas enhancement in defects in Zn1-xVxO makes it suitable material for photocatalytic as well as gas sensing application.

  17. Spectral studies, thermal investigation and biological activity of some metal complexes derived from (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.

    2017-09-01

    A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.

  18. Effects of ammonium-based ionic liquids and 2,4-dichlorophenol on the phospholipid fatty acid composition of zebrafish embryos.

    PubMed

    Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Lukasz; Luckenbach, Till; Heipieper, Hermann J

    2018-01-01

    Ionic liquids consisting of a combination of herbicidal anions with a quaternary ammonium cation act as efficient herbicides, which are under consideration to be used in the agriculture. In the present study, we used embryos of the zebrafish (Danio rerio) as a model to assess the toxic potential of ammonium-based ionic liquids for aquatic organisms. As we assumed interference of the partially hydrophobic ionic liquid cation with lipids, we investigated the adaptation response in the lipid composition of the zebrafish embryos, triggered by the ionic compound. Therefore, the impact of ammonium-based ionic liquids with different lengths of the alkyl chain ([C6,C6,C1,C1N][Br], [C8,C8,C1,C1N][Br]) on the phospholipid fatty acid (PLFA) profile of zebrafish embryos up to 72 hours post fertilization (hpf) was examined. Furthermore, the changes in the unsaturation index (UI) of PLFAs, as the sum parameter of membrane fluidity in eukaryotic cells, were presented. The PLFA's UI in the zebrafish embryos upon exposure to quaternary ammonium salts was compared to the UI of the embryos upon exposure to nonionic 2,4-dichlorophenol, which has a similar hydrophobicity but is structurally different to [C8,C8,C1,C1N][Br]. It was shown that for ammonium-based ionic liquid precursors non-specific mode of action occurs and the toxic effect on lipid composition of zebrafish embryos can be well predicted based on chemical properties, like hydrophobicity. Furthermore, the changes in PLFAs, expressed by the UI, can be useful to study toxic effects of organic contamination. However, for zebrafish embryos, after ionic liquids and 2,4-DCP exposure, the changes were observed at high lethal concentrations, which caused the incidence of lethality of 30 and 50% of a group of test animals.

  19. Effects of ammonium-based ionic liquids and 2,4-dichlorophenol on the phospholipid fatty acid composition of zebrafish embryos

    PubMed Central

    Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Lukasz; Luckenbach, Till

    2018-01-01

    Ionic liquids consisting of a combination of herbicidal anions with a quaternary ammonium cation act as efficient herbicides, which are under consideration to be used in the agriculture. In the present study, we used embryos of the zebrafish (Danio rerio) as a model to assess the toxic potential of ammonium-based ionic liquids for aquatic organisms. As we assumed interference of the partially hydrophobic ionic liquid cation with lipids, we investigated the adaptation response in the lipid composition of the zebrafish embryos, triggered by the ionic compound. Therefore, the impact of ammonium-based ionic liquids with different lengths of the alkyl chain ([C6,C6,C1,C1N][Br], [C8,C8,C1,C1N][Br]) on the phospholipid fatty acid (PLFA) profile of zebrafish embryos up to 72 hours post fertilization (hpf) was examined. Furthermore, the changes in the unsaturation index (UI) of PLFAs, as the sum parameter of membrane fluidity in eukaryotic cells, were presented. The PLFA’s UI in the zebrafish embryos upon exposure to quaternary ammonium salts was compared to the UI of the embryos upon exposure to nonionic 2,4-dichlorophenol, which has a similar hydrophobicity but is structurally different to [C8,C8,C1,C1N][Br]. It was shown that for ammonium-based ionic liquid precursors non-specific mode of action occurs and the toxic effect on lipid composition of zebrafish embryos can be well predicted based on chemical properties, like hydrophobicity. Furthermore, the changes in PLFAs, expressed by the UI, can be useful to study toxic effects of organic contamination. However, for zebrafish embryos, after ionic liquids and 2,4-DCP exposure, the changes were observed at high lethal concentrations, which caused the incidence of lethality of 30 and 50% of a group of test animals. PMID:29342167

  20. Effect of Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilis AX101.

    PubMed

    Gyamerah, M; Ampaw-Asiedu, M; Mackey, J; Menezes, B; Woldesenbet, S

    2018-06-01

    The potential of large-scale lignocellulosic biomass hydrolysis to fermentable sugars using ionic liquids has increased interest in this green chemistry route to fermentation for fuel-ethanol production. The ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride compared to other reported ionic liquids has the advantage of hydrolysing lignocellulosic biomass to reducing sugars at catalytic concentrations (≤0·032 mol l -1 ) in a single step. However, effects of this ionic liquid on co-fermentation of glucose, xylose and arabinose to ethanol by recombinant Zymomonas mobilisAX101 has not been studied. Authentic glucose, xylose and arabinose were used to formulate fermentation media at varying catalytic 1-(1-propylsulfonic)-3-methylimidazolium chloride concentrations for batch co-fermentation of the sugars using Z. mobilisAX101. The results showed that at 0·008, 0·016 and 0·032 mol l -1 ionic liquid in the culture medium, cell growth decreased by 10, 27 and 67% respectively compared to the control. Ethanol yields were 62·6, 61·8, 50·5 and 23·1% for the control, 0·008, 0·016 and 0·032 mol l -1 ionic liquid respectively. The results indicate that lignocellulosic biomass hydrolysed using 0·008 mol l -1 of 1-(1-propylsulfonic)-3-methylimidazolium chloride would eliminate an additional separation step and provide a ready to use fermentation substrate. This is the first reported study of the effect of the Brönsted acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride on growth and co-fermentation of glucose, xylose and arabinose by Zymomonas mobilisAX101 in batch culture. Growth on and co-fermentation of the sugars by Z. mobilisAX 101 with no significant inhibition by the ionic liquid at the same catalytic amounts of 0·008 mol l -1 used to hydrolyse lignocellulosic biomass to reducing sugars overcome two major hurdles that adversely affect the process economics of large-scale industrial cellulosic fuel ethanol production; the energy-intensive hydrolysis and ionic liquid separation steps. © 2018 The Society for Applied Microbiology.

  1. WtF‐Nano: One‐Pot Dewatering and Water‐Free Topochemical Modification of Nanocellulose in Ionic Liquids or γ‐Valerolactone

    PubMed Central

    Laaksonen, Tiina; Helminen, Jussi K. J.; Lemetti, Laura; Långbacka, Jesper; Rico del Cerro, Daniel; Hummel, Michael; Rantamäki, Antti H.; Kakko, Tia; Kemell, Marianna L.; Wiedmer, Susanne K.; Heikkinen, Sami; Kilpeläinen, Ilkka

    2017-01-01

    Abstract Ionic liquids are used to dewater a suspension of birch Kraft pulp cellulose nanofibrils (CNF) and as a medium for water‐free topochemical modification of the nanocellulose (a process denoted as “WtF‐Nano”). Acetylation was applied as a model reaction to investigate the degree of modification and scope of effective ionic liquid structures. Little difference in reactivity was observed when water was removed, after introduction of an ionic liquid or molecular co‐solvent. However, the viscoelastic properties of the CNF suspended in two ionic liquids show that the more basic, but non‐dissolving ionic liquid, allows for better solvation of the CNF. Vibrio fischeri bacterial tests show that all ionic liquids in this study were harmless. Scanning electron microscopy and wide‐angle X‐ray scattering on regenerated samples show that the acetylated CNF is still in a fibrillar form. 1 D and 2 D NMR analyses, after direct dissolution in a novel ionic liquid electrolyte solution, indicate that both cellulose and residual xylan on the surface of the nanofibrils reacts to give acetate esters. PMID:29112334

  2. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  3. Electropolymerized polyazulene as active material in flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Suominen, Milla; Lehtimäki, Suvi; Yewale, Rahul; Damlin, Pia; Tuukkanen, Sampo; Kvarnström, Carita

    2017-07-01

    We report the capacitive behavior of electrochemically polymerized polyazulene films in different ionic liquids. The ionic liquids in this study represent conventional imidazolium based ionic liquids with tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions as well as an unconventional choline based ionic liquid. The effect of different ionic liquids on the polymerization and capacitive performance of polyazulene films is demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy in a 3-electrode cell configuration. The films exhibit the highest capacitances in the lowest viscosity ionic liquid (92 mF cm-2), while synthesis in high viscosity ionic liquid shortens the conjugation length and results in lower electroactivity (25 mF cm-2). The obtained films also show good cycling stabilities retaining over 90% of their initial capacitance over 1200 p-doping cycles. We also demonstrate, for the first time, flexible polyazulene supercapacitors of symmetric and asymmetric configurations using the choline based ionic liquid as electrolyte. In asymmetric configuration, capacitance of 55 mF (27 mF cm-2) with an equivalent series resistance of 19 Ω is obtained at operating voltage of 1.5 V. Upon increasing the operating voltage up to 2.4 V, the capacitance increases to 72 mF (36 mF cm-2).

  4. X-ray Photoelectron Spectroscopy of Pyridinium-Based Ionic Liquids: Comparison to Imidazolium- and Pyrrolidinium-Based Analogues.

    PubMed

    Men, Shuang; Mitchell, Daniel S; Lovelock, Kevin R J; Licence, Peter

    2015-07-20

    We investigate eight 1-alkylpyridinium-based ionic liquids of the form [Cn Py][A] by using X-ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake-up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic-liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8 Py][A] and analogues including 1-octyl-1-methylpyrrolidinium- ([C8 C1 Pyrr][A]), and 1-octyl-3-methylimidazolium- ([C8 C1 Im][A]) based samples, where X is common to all ionic liquids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Analysis of coronal H I Lyman alpha measurements from a rocket flight on 1979 April 13

    NASA Technical Reports Server (NTRS)

    Withbroe, G. L.; Kohl, J. L.; Weiser, H.; Noci, G.; Munro, R. H.

    1982-01-01

    It is noted that measurements of the profiles of resonantly scattered hydrogen Lyman-alpha coronal radiation have been used in determining hydrogen kinetic temperatures from 1.5 to 4 solar radii from sun center in a quiet region of the corona. Proton temperatures derived using the line widths decrease with height from 2.6 x 10 to the 6th K at 1.5 solar radii to 1.2 x 10 to the 6th K at 4 solar radii. These measurements, together with temperatures for lower heights determined from earlier Skylab and eclipse data, suggest that there is a maximum in the quiet coronal proton temperature at about 1.5 solar radii. Comparison of measured Lyman-alpha intensities with those calculated using a representative model for the radial variation of the coronal electron density yields information on the magnitude of the electron temperature gradient and suggests that the solar wind flow was subsonic for distances less than 4 solar radii.

  6. The Large Angle Spectroscopic Coronagraph (LASCO): Visible light coronal imaging and spectroscopy

    NASA Technical Reports Server (NTRS)

    Brueckner, Guenter E.; Howard, Russell A.; Koomen, Martin J.; Korendyke, C.; Michels, D. J.; Socker, D. G.; Lamy, Philippe; Llebaria, Antoine; Maucherat, J.; Schwenn, Rainer

    1992-01-01

    The Large Angle Spectroscopic Coronagraph (LASCO) is a triple coronagraph being jointly developed for the Solar and Heliospheric Observatory (SOHO) mission. LASCO comprises three nested coronagraphs (C1, C2, and C3) that image the solar corona for 1.1 to 30 solar radii (C1: 1.1 to 3 solar radii, C2: 1.5 to 6 solar radii, and C3: 3 to 30.0 solar radii). The inner coronagraph (C1) is a newly developed mirror version of the classic Lyot coronagraph without an external occultor, while the middle coronagraph (C2) and the outer coronagraph (C3) are externally occulted instruments. High resolution coronal spectroscopy from 1.1 to 3 R solar radii can be performed by using a Fabry-Perot interferometer, which is part of C1. High volume memories and a high speed microprocessor enable extensive onboard image processing. Image compression by factors of 10 to 20 will result in the transmission of 10 to 20 full images per hour.

  7. Investigations on structural, vibrational and dielectric properties of nanosized Cu doped Mg-Zn ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Anand; Department of Physics, MEDICAPS Institute of Science and Technology, Pithampur 453331; Rajpoot, Rambabu

    2016-05-23

    Transition metal Cu{sup 2+} doped Mg-Zn ferrite [Mg{sub 0.5}Zn{sub 0.5-x}Cu{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 0.5)] were prepared by sol gel auto combustion (SGAC) method to probe the structural, vibrational and electrical properties. X-ray diffraction (XRD) pattern reveals a single-phase cubic spinel structure without the presence of any secondary phase corresponding to other structure. The average particle size of the parent Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} is found to be ~29.8 nm and is found to increase with Cu{sup 2+} doping. Progressive reduction in lattice parameter of Mg{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference inmore » ionic radii of cations with improved Cu doping. Spinel cubic structure is further confirmed by Raman spectroscopy. Small shift in Raman modes towards higher wave number has been observed in doped Mg-Zn ferrites. The permittivity and dielectric loss decreases at lower doping and increases at higher order doping of Cu{sup 2+}.« less

  8. Study of structural and magnetic properties of melt spun Nd2Fe13.6Zr0.4B ingot and ribbon

    NASA Astrophysics Data System (ADS)

    Amin, Muhammad; Siddiqi, Saadat A.; Ashfaq, Ahmad; Saleem, Murtaza; Ramay, Shahid M.; Mahmood, Asif; Al-Zaghayer, Yousef S.

    2015-12-01

    Nd2Fe13.6Zr0.4B hard magnetic material were prepared using arc-melting technique on a water-cooled copper hearth kept under argon gas atmosphere. The prepared samples, Nd2Fe13.6Zr0.4B ingot and ribbon are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) for crystal structure determination and morphological studies, respectively. The magnetic properties of the samples have been explored using vibrating sample magnetometer (VSM). The lattice constants slightly increased due to the difference in the ionic radii of Fe and that of Zr. The bulk density decreased due to smaller molar weight and low density of Zr as compared to that of Fe. Ingot sample shows almost single crystalline phase with larger crystallite sizes whereas ribbon sample shows a mixture of amorphous and crystalline phases with smaller crystallite sizes. The crystallinity of the material was highly affected with high thermal treatments. Magnetic measurements show noticeable variation in magnetic behavior with the change in crystallite size. The sample prepared in ingot type shows soft while ribbon shows hard magnetic behavior.

  9. Tungsten doped titanium dioxide nanowires for high efficiency dye-sensitized solar cells.

    PubMed

    Archana, P S; Gupta, Arunava; Yusoff, Mashitah M; Jose, Rajan

    2014-04-28

    Metal oxide semiconductors offering simultaneously high specific surface area and high electron mobility are actively sought for fabricating high performance nanoelectronic devices. The present study deals with synthesis of tungsten doped TiO2 (W:TiO2) nanowires (diameter ∼50 nm) by electrospinning and evaluation of their performance in dye-sensitized solar cells (DSCs). Similarity in the ionic radii between W(6+) and Ti(4+) and availability of two free electrons per dopant are the rationale for the present study. Materials were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray fluorescence measurements, and absorption spectroscopy. Nanowires containing 2 at% W:TiO2 gave 90% higher short circuit current density (JSC) (∼15.39 mA cm(-2)) in DSCs with a nominal increase in the open circuit voltage compared with that of the undoped analogue (JSC ∼8.1 mA cm(-2)). The results are validated by multiple techniques employing absorption spectroscopy, electrochemical impedance spectroscopy and open circuit voltage decay. The above studies show that the observed increments resulted from increased dye-loading, electron density, and electron lifetime in tungsten doped samples.

  10. Using 15N-Ammonium to Characterise and Map Potassium Binding Sites in Proteins by NMR Spectroscopy

    PubMed Central

    Werbeck, Nicolas D; Kirkpatrick, John; Reinstein, Jochen; Hansen, D Flemming

    2014-01-01

    A variety of enzymes are activated by the binding of potassium ions. The potassium binding sites of these enzymes are very specific, but ammonium ions can often replace potassium ions in vitro because of their similar ionic radii. In these cases, ammonium can be used as a proxy for potassium to characterise potassium binding sites in enzymes: the 1H,15N spin-pair of enzyme-bound 15NH4+ can be probed by 15N-edited heteronuclear NMR experiments. Here, we demonstrate the use of NMR spectroscopy to characterise binding of ammonium ions to two different enzymes: human histone deacetylase 8 (HDAC8), which is activated allosterically by potassium, and the bacterial Hsp70 homologue DnaK, for which potassium is an integral part of the active site. Ammonium activates both enzymes in a similar way to potassium, thus supporting this non-invasive approach. Furthermore, we present an approach to map the observed binding site onto the structure of HDAC8. Our method for mapping the binding site is general and does not require chemical shift assignment of the enzyme resonances. PMID:24520048

  11. THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2013-02-20

    We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a clustermore » recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.« less

  12. Correlating hydrodynamic radii with that of two-dimensional nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Yuan; Kan, Yuwei; Clearfield, Abraham

    2015-12-21

    Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correctingmore » factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.« less

  13. Improvements for retrieval of cloud droplet size by the POLDER instrument

    NASA Astrophysics Data System (ADS)

    Shang, H.; Husi, L.; Bréon, F. M.; Ma, R.; Chen, L.; Wang, Z.

    2017-12-01

    The principles of cloud droplet size retrieval via Polarization and Directionality of the Earth's Reflectance (POLDER) requires that clouds be horizontally homogeneous. The retrieval is performed by combining all measurements from an area of 150 km × 150 km to compensate for POLDER's insufficient directional sampling. Using POLDER-like data simulated with the RT3 model, we investigate the impact of cloud horizontal inhomogeneity and directional sampling on the retrieval and analyze which spatial resolution is potentially accessible from the measurements. Case studies show that the sub-grid-scale variability in droplet effective radius (CDR) can significantly reduce valid retrievals and introduce small biases to the CDR ( 1.5µm) and effective variance (EV) estimates. Nevertheless, the sub-grid-scale variations in EV and cloud optical thickness (COT) only influence the EV retrievals and not the CDR estimate. In the directional sampling cases studied, the retrieval using limited observations is accurate and is largely free of random noise. Several improvements have been made to the original POLDER droplet size retrieval. For example, measurements in the primary rainbow region (137-145°) are used to ensure retrievals of large droplet (>15 µm) and to reduce the uncertainties caused by cloud heterogeneity. A premium resoltion of 0.8° is determined by considering successful retrievals and cloud horizontal homogeneity. The improved algorithm is applied to measurements of POLDER in 2008, and we further compared our retrievals with cloud effective radii estimations of Moderate Resolution Imaging Spectroradiometer (MODIS). The results indicate that in global scale, the cloud effective radii and effective variance is larger in the central ocean than inland and coast areas. Over heavy polluted regions, the cloud droplets has small effective radii and narraw distribution due to the influence of aerosol particles.

  14. Four new chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl: Syntheses, crystal structures and optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chao; Feng, Kai; Tu, Heng

    Four new chalcohalides, namely NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br, and CsBa{sub 2}SnS{sub 4}Cl, have been synthesized by the conventional high temperature solid-state reactions. They crystallize in three different space groups: space group I4/mcm for NaBa{sub 2}SnS{sub 4}Cl and KBa{sub 2}SnS{sub 4}Cl, Pnma for KBa{sub 2}SnS{sub 4}Br, and P2{sub 1}/c for CsBa{sub 2}SnS{sub 4}Cl. In all four compounds, the X{sup −} halide anions are only connected to six alkali metal or Ba cations, and the Sn atoms are only tetrahedrally enjoined to four S atoms. However, the M–X–Ba pseudo layers and the SnS{sub 4} tetrahedra are arrangedmore » in different ways in the three structural types, which demonstrates the interesting effect of ionic radii on the crystal structures. UV–vis–NIR spectroscopy measurements indicate that NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br, and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30, 1.95, and 2.06 eV, respectively. - Graphical abstract: A new series of chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have been obtained. They present three different space groups: NaBa{sub 2}SnS{sub 4}Cl and KBa{sub 2}SnS{sub 4}Cl in space group I4/mcm, KBa{sub 2}SnS{sub 4}Br in Pnma and CsBa{sub 2}SnS{sub 4}Cl in space group P2{sub 1}/c. UV–vis–NIR spectroscopy measurements indicate that NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30 1.95, and 2.06 eV, respectively. - Highlights: • Four new chalcohalides, NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl were obtained. • They adopt three different structures owing to different ionic radii and elemental electronegativity. • NaBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Cl, KBa{sub 2}SnS{sub 4}Br and CsBa{sub 2}SnS{sub 4}Cl have band gaps of 2.28, 2.30 1.95, and 2.06 eV, respectively.« less

  15. Curvature dependence of the effect of ionic functionalization on the attraction among nanoparticles in dispersion

    NASA Astrophysics Data System (ADS)

    Jabes, B. Shadrack; Bratko, Dusan; Luzar, Alenka

    2018-06-01

    Solubilization of nanoparticles facilitates nanomaterial processing and enables new applications. An effective method to improve dispersibility in water is provided by ionic functionalization. We explore how the necessary extent of functionalization depends on the particle geometry. Using molecular dynamics/umbrella sampling simulations, we determine the effect of the solute curvature on solvent-averaged interactions among ionizing graphitic nanoparticles in aqueous dispersion. We tune the hydrophilicity of molecular-brush coated fullerenes, carbon nanotubes, and graphane platelets by gradually replacing a fraction of the methyl end groups of the alkyl coating by the ionizing -COOK or -NH3Cl groups. To assess the change in nanoparticles' dispersibility in water, we determine the potential-of-mean-force profiles at varied degrees of ionization. When the coating comprises only propyl groups, the attraction between the hydrophobic particles intensifies from spherical to cylindrical to planar geometry. This is explained by the increasing fraction of surface groups that can be brought into contact and the reduced access to water molecules, both following the above sequence. When ionic groups are added, however, the dispersibility increases in the opposite order, with the biggest effect in the planar geometry and the smallest in the spherical geometry. These results highlight the important role of geometry in nanoparticle solubilization by ionic functionalities, with about twice higher threshold surface charge necessary to stabilize a dispersion of spherical than planar particles. At 25%-50% ionization, the potential of mean force reaches a plateau because of the counterion condensation and saturated brush hydration. Moreover, the increase in the fraction of ionic groups can weaken the repulsion through counterion correlations between adjacent nanoparticles. High degrees of ionization and concomitant ionic screening gradually reduce the differences among surface interactions in distinct geometries until an essentially curvature-independent dispersion environment is created. Insights into tuning nanoparticle interactions can guide the synthesis of a broad class of nonpolar nanoparticles, where solubility is achieved by ionic functionalization.

  16. Revival of nitrogen-containing bisphosphonate-induced inhibition of osteoclastogenesis and osteoclast function by water-soluble microfibrous borate glass.

    PubMed

    Yuan, He; Niu, Li-Na; Jiao, Kai; Pei, Dan-Dan; Pramanik, Chandrani; Li, Ji-Yao; Messer, Regina; Kumar, Satish; Pashley, David H; Tay, Franklin R

    2016-02-01

    Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a serious skeletal complication associated with the long-term oral or intravenous use of nitrogen-containing bisphosphonates (N-BPs). Here, we investigated the effects of an ionic cocktail prepared from water-soluble microfibrous borate glass on neutralizing the inhibitory effects of two heterocyclic N-BPs, risedronate or zoledronic acid, on osteoclastogenesis, apoptosis of differentiated osteoclasts and osteoclast function. Cell growth and proliferation assays were first performed on RAW 264.7 cells to optimize the concentrations of the ionic cocktail and N-BPs to be used for static cell culture. The pre-osteoclasts were then stimulated with RANKL to differentiate into osteoclasts. The effects of the ionic cocktail and N-BPs on osteoclast differentiation, apoptosis and function were subsequently examined using 3 series of experiments conducted at the gene, protein, morphological and functional levels. After concentration optimization, the ionic cocktail was found to partially reverse N-BP-induced inhibition of osteoclastogenesis, stimulation of osteoclasts apoptosis and reduction of osteoclast resorptive activity. Ultrastructural examination of osteoclasts that had been exposed to either N-BP identified classical features of late apoptosis and secondary necrosis, while osteoclasts exposed simultaneously to the concentration-optimized ionic cocktail and N-BPs exhibited only signs of early apoptosis that were possibly reversible. Taken together, the results of the 4 series of experiments indicate that the ionic cocktail produced from dissolution of borate glass dressings has the potential to rescue the adverse effects of heterocyclic N-BPs on osteoclast differentiation and function. These results warrant further confirmation using dynamic cell culture and small animal BRONJ models. Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) may result in bisphosphonate-related osteonecrosis of the jaw (BRONJ) due to the suppression of normal bone turnover. There is no effective treatment for such a complication to date. This work reported the use of an ionic cocktail derived from water-soluble microfibrous borate glass to revert heterocyclic N-BP-induced inhibition of osteoclastogenesis, stimulation of osteoclasts apoptosis and reduction of osteoclasts resorption in static cell culture condition. This ionic cocktail may have the potential to be further developed into a new adjunctive treatment for BRONJ. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    NASA Astrophysics Data System (ADS)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  18. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization.

    PubMed

    Egorova, Ksenia S; Ananikov, Valentine P

    2014-02-01

    Rapid progress in the field of ionic liquids in recent decades led to the development of many outstanding energy-conversion processes, catalytic systems, synthetic procedures, and important practical applications. Task-specific optimization emerged as a sharpening stone for the fine-tuning of structure of ionic liquids, which resulted in unprecedented efficiency at the molecular level. Ionic-liquid systems showed promising opportunities in the development of green and sustainable technologies; however, the chemical nature of ionic liquids is not intrinsically green. Many ionic liquids were found to be toxic or even highly toxic towards cells and living organisms. In this Review, we show that biological activity and cytotoxicity of ionic liquids dramatically depend on the nature of a biological system. An ionic liquid may be not toxic for particular cells or organisms, but may demonstrate high toxicity towards another target present in the environment. Thus, a careful selection of biological activity data is a must for the correct assessment of chemical technologies involving ionic liquids. In addition to the direct biological activity (immediate response), several indirect effects and aftereffects are of primary importance. The following principal factors were revealed to modulate toxicity of ionic liquids: i) length of an alkyl chain in the cation; ii) degree of functionalization in the side chain of the cation; iii) anion nature; iv) cation nature; and v) mutual influence of anion and cation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.

    PubMed

    Han, Mengwei; Espinosa-Marzal, Rosa M

    2017-09-07

    We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.

  20. Optimization of neural network for ionic conductivity of nanocomposite solid polymer electrolyte system (PEO-LiPF 6-EC-CNT)

    NASA Astrophysics Data System (ADS)

    Johan, Mohd Rafie; Ibrahim, Suriani

    2012-01-01

    In this study, the ionic conductivity of a nanocomposite polymer electrolyte system (PEO-LiPF 6-EC-CNT), which has been produced using solution cast technique, is obtained using artificial neural networks approach. Several results have been recorded from experiments in preparation for the training and testing of the network. In the experiments, polyethylene oxide (PEO), lithium hexafluorophosphate (LiPF 6), ethylene carbonate (EC) and carbon nanotubes (CNT) are mixed at various ratios to obtain the highest ionic conductivity. The effects of chemical composition and temperature on the ionic conductivity of the polymer electrolyte system are investigated. Electrical tests reveal that the ionic conductivity of the polymer electrolyte system varies with different chemical compositions and temperatures. In neural networks training, different chemical compositions and temperatures are used as inputs and the ionic conductivities of the resultant polymer electrolytes are used as outputs. The experimental data is used to check the system's accuracy following the training process. The neural network is found to be successful for the prediction of ionic conductivity of nanocomposite polymer electrolyte system.

  1. Influence of Polar Organic Solvents in an Ionic Liquid Containing Lithium Bis(fluorosulfonyl)amide: Effect on the Cation-Anion Interaction, Lithium Ion Battery Performance, and Solid Electrolyte Interphase.

    PubMed

    Lahiri, Abhishek; Li, Guozhu; Olschewski, Mark; Endres, Frank

    2016-12-14

    Ionic liquid-organic solvent mixtures have recently been investigated as potential battery electrolytes. However, contradictory results with these mixtures have been shown for battery performance. In this manuscript, we studied the influence of the addition of polar organic solvents into the ionic liquid electrolyte 1 M lithium bis(fluorosulfonyl)amide (LiFSI)-1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide ([Py 1,4 ]FSI) and tested it for lithium ion battery applications. From infrared and Raman spectroscopy, clear changes in the lithium solvation and cation-anion interactions in the ionic liquid were observed on addition of organic solvents. From the lithiation/delithiation studies on electrodeposited Ge, the storage capacity for the ionic liquid-highly polar organic solvent (acetonitrile) mixture was found to be the highest at low C-rates (0.425 C) compared to using an ionic liquid alone and ionic liquid-less polar solvent (dimethyl carbonate) mixtures. Furthermore, XPS and AFM were used to evaluate the solid electrolyte interphase (SEI) and to correlate its stability with Li storage capacity.

  2. Ionic structures and transport properties of hot dense W and U plasmas

    NASA Astrophysics Data System (ADS)

    Hou, Yong; Yuan, Jianmin

    2016-10-01

    We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.

  3. Interaction of proteins with ionic liquid, alcohol and DMSO and in situ generation of gold nano-clusters in a cell.

    PubMed

    Nandi, Somen; Parui, Sridip; Halder, Ritaban; Jana, Biman; Bhattacharyya, Kankan

    2018-06-01

    In this review, we give a brief overview on how the interaction of proteins with ionic liquids, alcohols and dimethyl sulfoxide (DMSO) influences the stability, conformational dynamics and function of proteins/enzymes. We present experimental results obtained from fluorescence correlation spectroscopy on the effect of ionic liquid or alcohol or DMSO on the size (more precisely, the diffusion constant) and conformational dynamics of lysozyme, cytochrome c and human serum albumin in aqueous solution. The interaction of ionic liquid with biomolecules (e.g. protein, DNA etc.) has emerged as a current frontier. We demonstrate that ionic liquids are excellent stabilizers of protein and DNA and, in some cases, cause refolding of a protein already denatured by chemical denaturing agents. We show that in ethanol-water binary mixture, proteins undergo non-monotonic changes in size and dynamics with increasing ethanol content. We also discuss the effect of water-DMSO mixture on the stability of proteins. We demonstrate how large-scale molecular dynamics simulations have revealed the molecular origin of this observed phenomenon and provide a microscopic picture of the immediate environment of the biomolecules. Finally, we describe how favorable interactions of ionic liquids may be utilized for in situ generation of fluorescent gold nano-clusters for imaging a live cell.

  4. Radius correction formula for capacitances and effective length vectors of monopole and dipole antenna systems

    NASA Astrophysics Data System (ADS)

    Macher, W.; Oswald, T. H.

    2011-02-01

    In the investigation of antenna systems which consist of one or several monopoles, a realistic modeling of the monopole radii is not always feasible. In particular, physical scale models for electrolytic tank measurements of effective length vectors (rheometry) of spaceborne monopoles are so small that a correct scaling of monopole radii often results in very thin, flexible antenna wires which bend too much under their own weight. So one has to use monopoles in the model which are thicker than the correct scale diameters. The opposite case, where the monopole radius has to be modeled too thin, appears with certain numerical antenna programs based on wire grid modeling. This problem arises if the underlying algorithm assumes that the wire segments are much longer than their diameters. In such a case it is eventually not possible to use wires of correct thickness to model the monopoles. In order that these numerical and experimental techniques can be applied nonetheless to determine the capacitances and effective length vectors of such monopoles (with an inaccurate modeling of monopole diameters), an analytical correction method is devised. It enables one to calculate the quantities for the real antenna system from those obtained for the model antenna system with wrong monopole radii. Since a typical application of the presented formalism is the analysis of spaceborne antenna systems, an illustration for the monopoles of the WAVES experiment on board the STEREO-A spacecraft is given.

  5. THE IMPACT OF SURFACE TEMPERATURE INHOMOGENEITIES ON QUIESCENT NEUTRON STAR RADIUS MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elshamouty, K. G.; Heinke, C. O.; Morsink, S. M.

    Fitting the thermal X-ray spectra of neutron stars (NSs) in quiescent X-ray binaries can constrain the masses and radii of NSs. The effect of undetected hot spots on the spectrum, and thus on the inferred NS mass and radius, has not yet been explored for appropriate atmospheres and spectra. A hot spot would harden the observed spectrum, so that spectral modeling tends to infer radii that are too small. However, a hot spot may also produce detectable pulsations. We simulated the effects of a hot spot on the pulsed fraction and spectrum of the quiescent NSs X5 and X7 inmore » the globular cluster 47 Tucanae, using appropriate spectra and beaming for hydrogen atmosphere models, incorporating special and general relativistic effects, and sampling a range of system angles. We searched for pulsations in archival Chandra HRC-S observations of X5 and X7, placing 90% confidence upper limits on their pulsed fractions below 16%. We use these pulsation limits to constrain the temperature differential of any hot spots, and to then constrain the effects of possible hot spots on the X-ray spectrum and the inferred radius from spectral fitting. We find that hot spots below our pulsation limit could bias the spectroscopically inferred radius downward by up to 28%. For Cen X-4 (which has deeper published pulsation searches), an undetected hot spot could bias its inferred radius downward by up to 10%. Improving constraints on pulsations from quiescent LMXBs may be essential for progress in constraining their radii.« less

  6. Geometrical effects on the concentrated behavior of heat flux in metamaterials thermal harvesting devices

    NASA Astrophysics Data System (ADS)

    Xu, Guoqiang; Zhang, Haochun; Xie, Ming; Jin, Yan

    2017-10-01

    Thermal harvesting devices based on transformation optics, which can manipulate the heat flux concentration significantly through rational arrangements of the conductivities, have attracted considerable interest owing to several great potential applications of the technique for high-efficiency thermal conversion and collection. However, quantitative studies on the geometrical effects, particularly wedge angles, on the harvesting behaviors are rare. In this paper, we adopt wedge structure-based thermal harvesting schemes, and focus on the effects of the geometrical parameters including the radii ratios and wedge angles on the harvesting performance. The temperature deformations at the boundaries of the compressional region and temperature gradients for the different schemes with varying design parameters are investigated. Moreover, a concept for temperature stabilization was derived to evaluate the fluctuation in the energy distributions. In addition, the effects of interface thermal resistances have been investigated. Considering the changes in the radii ratios and wedge angles, we proposed a modification of the harvesting efficiency to quantitatively assess the concentration performance, which was verified through random tests and previously fabricated devices. In general, this study indicates that a smaller radii ratio contributes to a better harvesting behavior, but causes larger perturbations in the thermal profiles owing to a larger heat loss. We also find that a smaller wedge angle is beneficial to ensuring a higher concentration efficiency with less energy perturbations. These findings can be used to guide the improvement of a thermal concentrator with a high efficiency in reference to its potential applications as novel heat storage, thermal sensors, solar cells, and thermoelectric devices.

  7. Modeling electrokinetics in ionic liquids: General

    DOE PAGES

    Wang, Chao; Bao, Jie; Pan, Wenxiao; ...

    2017-04-01

    Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson–Nernst–Planck equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the modified Poisson-Nernst-Planck equations are coupled with Navier–Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electroosmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on amore » curved ionselective surface. Lastly, we also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.« less

  8. Ionic liquids as solvents for Čerenkov counting and the effect of a wavelength shifter.

    PubMed

    Mirenda, M; Rodrigues, D; Ferreyra, C; Arenillas, P; Sarmiento, G P; Krimer, N; Japas, M L

    2018-04-01

    We study the wavelength shift of the Čerenkov light - generated in the ionic liquid (BMIMCl) - caused by the addition of the highly fluorescent ionic liquid (BMIMHPTS). 18 F and 32 P efficiencies increases up to 124% and 14%, respectively, compared with the values obtained with pure BMIMCl. With this improvement, ionic liquid mixtures become a good alternative - when using the TDCR-Cherenkov technique - to standardize radionuclides having electron emissions energies close to the threshold energy in water (∼ 260keV). As an advantage compared with other solvents, the Ionic liquid mixture can be reused, in the case of short-lived radionuclides, by simply removing all water content in a vacuum oven. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mirror Charge Radii and the Neutron Equation of State

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex

    2017-09-01

    The differences in the charge radii of mirror nuclei are shown to be proportional to the derivative of the neutron equation of state and the symmetry energy at nuclear matter saturation density. This derivative is important for constraining the neutron equation of state for use in astrophysics. The charge radii of several neutron-rich nuclei are already measured to the accuracy of about 0.005 fm. Experiments at isotope-separator and radioactive-beam facilities are needed to measure the charge radii of the corresponding proton-rich mirror nuclei to a similar accuracy. It is also shown that neutron skins of nuclei with N =Z depend upon the value of the symmetry energy at a density of 0.10 nucleons /fm3 .

  10. Synthesis and characterization of low viscosity carbon dioxide binding organic liquids for flue gas clean up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koech, Phillip K.; Malhotra, Deepika; Heldebrant, David J.

    2015-01-01

    Climate change is partly attributed to global anthropogenic carbon dioxide (CO2) emission to the atmosphere. These environmental effects can be mitigated by CO2 capture, utilization and storage. Alkanolamine solvents, such as monoethanolamine (MEA), which bind CO2 as carbamates or bicarbonate salts are used for CO2 capture in niche applications. These solvents consist of approximately 30 wt% of MEA in water, exhibiting a low, CO2-rich viscosity, fast kinetics and favorable thermodynamics. However, these solvents have low CO2 capacity and high heat capacity of water, resulting in prohibitively high costs of thermal solvent regeneration. Effective capture of the enormous amounts of CO2more » produced by coal-fired plants requires a material with high CO2 capacity and low regeneration energy requirements. To this end, several water-lean transformational solvents systems have been developed in order to reduce these energy penalties. These technologies include nano-material organic hybrids (NOHMs), task-specific, protic and conventional ionic liquids, phase change solvents. As part of an ongoing program in our group, we have developed new water lean transformational solvents known as CO2 binding organic liquids (CO2BOLs) which have the potential to be energy efficient CO2 capture solvents. These solvents, also known as switchable ionic liquids meaning, are organic solvents that can reversibly transform from non- ionic to ionic form and back. The zwitterionic state in these liquids is formed when low polarity non-ionic alkanolguanidines or alkanolamidines react with CO2 or SO2 to form ionic liquids with high polarity. These polar ionic liquids can be thermally converted to the less polar non-ionic solvent by releasing CO2.« less

  11. Ionic Strength Effect on the Rate of Reduction of Hexacyanoferrate (III) by Ascorbic Acid: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Watkins, Kenneth W.; Olson, June A.

    1980-01-01

    Describes a physical chemistry experiment that allows students to test the effect of ionic strength on the rates of a reaction between ions. The reduction of hexacyanoferrate III by ascorbic acid is detailed. Comparisons with the iodine clock reaction are made. (CS)

  12. Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-01-01

    A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.

  13. Comparison of Three Ionic Liquid-Tolerant Cellulases by Molecular Dynamics

    PubMed Central

    Jaeger, Vance; Burney, Patrick; Pfaendtner, Jim

    2015-01-01

    We have employed molecular dynamics to investigate the differences in ionic liquid tolerance among three distinct family 5 cellulases from Trichoderma viride, Thermogata maritima, and Pyrococcus horikoshii. Simulations of the three cellulases were conducted at a range of temperatures in various binary mixtures of the ionic liquid 1-ethyl-3-methyl-imidazolium acetate with water. Our analysis demonstrates that the effects of ionic liquids on the enzymes vary in each individual case from local structural disturbances to loss of much of one of the enzyme’s secondary structure. Enzymes with more negatively charged surfaces tend to resist destabilization by ionic liquids. Specific and unique structural changes in the enzymes are induced by the presence of ionic liquids. Disruption of the secondary structure, changes in dynamical motion, and local changes in the binding pocket are observed in less tolerant enzymes. Ionic-liquid-induced denaturation of one of the enzymes is indicated over the 500 ns timescale. In contrast, the most tolerant cellulase behaves similarly in water and in ionic-liquid-containing mixtures. Unlike the heuristic approaches that attempt to predict enzyme stability using macroscopic properties, molecular dynamics allows us to predict specific atomic-level structural and dynamical changes in an enzyme’s behavior induced by ionic liquids and other mixed solvents. Using these insights, we propose specific experimentally testable hypotheses regarding the origin of activity loss for each of the systems investigated in this study. PMID:25692593

  14. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. I. Structural properties.

    PubMed

    Costa, Luciano T; Ribeiro, Mauro C C

    2006-05-14

    Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.

  15. Polarization effect in the Ionic conductor TlBr

    NASA Astrophysics Data System (ADS)

    Rocha Leao, Cedric; Lordi, Vincenzo

    2012-02-01

    TlBr is an ionic crystal that in recent years has been standing out as one of the most promising materials for effective room temperature radiation detection. However, its exceptional performance invariably degrades after operation times that vary from hours to several weeks. This phenomenon, known as polarization, is assigned to the undesirable ionic current that sets in the crystal under an applied bias, leading to the accumulation of oppositely charged Tl+ and Br- ions at the electric contacts of the device. This charge build up induces a field that opposes the applied bias, impairing the collection of the photo-induced carriers. In this presentation, we use parameter free quantum mechanical simulations to discuss the possible origins of the polarization effect in TlBr, showing that ionic mobility in the intrinsic material is not enough to account for effects reported by several groups. We then discuss other possible causes for the degradation of biased TlBr and propose ways to prevent its occurrence, via careful co-doping as well as a judicious choice of the metal contacts to be employed.

  16. Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM](+)[FeCl4](-) ionic liquid in desulfurization: A novel charge transfer mechanism.

    PubMed

    Li, Hongping; Zhu, Wenshuai; Chang, Yonghui; Jiang, Wei; Zhang, Ming; Yin, Sheng; Xia, Jiexiang; Li, Huaming

    2015-06-01

    In this work, interaction nature between a group of aromatic sulfur compounds and [BMIM](+)[FeCl4](-) have been investigated by density functional theory (DFT). A coordination structure is found to be critical to the mechanism of extractive desulfurization. Interaction energy and extractive selectivity follow the order: thiophene (TH)

  17. Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes for Lithium Sulfur Batteries

    DOE PAGES

    Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; ...

    2014-11-26

    A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAhg- 1 (second cycle) by using 40% 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-Npropylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60% 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower thanmore » that obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAhg 1 even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity.« less

  18. Phase transitions in local equation-of-state approximation and anomalies of spatial charge profiles in non-uniform plasma

    NASA Astrophysics Data System (ADS)

    Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.

    2018-01-01

    Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.

  19. Vector Analysis of Ionic Collision on CaCO3 Precipitation Based on Vibration Time History

    NASA Astrophysics Data System (ADS)

    Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.

    2017-05-01

    Vibration effects on the piping system can result from the internal factor of fluid or the external factor of the mechanical equipment operation. As the pipe vibrated, the precipitation process of CaCO3 on the inner pipe could be affected. In the previous research, the effect of vibration on CaCO3 precipitation in piping system was clearly verified. This increased the deposition rate and decreased the induction time. However, the mechanism of vibration control in CaCO3 precipitation process as the presence of vibration has not been recognized yet. In the present research, the mechanism of vibration affecting the CaCO3 precipitation was investigated through vector analysis of ionic collision. The ionic vector force was calculated based on the amount of the activation energy and the vibration force was calculated based on the vibration sensor data. The vector resultant of ionic collision based on the vibration time history was analyzed to prove that vibration brings ionic collision randomly to the planar horizontal direction and its collision model was suspected as the cause of the increasing deposition rate.

  20. Solubilization of octane in cationic surfactant-anionic polymer complexes: Effect of ionic strength.

    PubMed

    Zhang, Hui; Deng, Lingli; Sun, Ping; Que, Fei; Weiss, Jochen

    2016-01-01

    Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effect of ionic strength on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results indicated that the CTAB binding capacity of carboxymethyl cellulose increased with increasing NaCl concentrations up to 100 mM, and the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to have a strong dependence on ionic strength. The increasing ionic strength caused the solubilization in CTAB micelles to be less endothermic or even exothermic, but increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be driven by enthalpy. It is indicated that increasing ionic strength gave rise to a larger Gibbs energy decrease but a smaller unfavorable entropy increase for octane solubilization in cationic surfactant micelles. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    PubMed

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-02-08

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  2. Ionic calcium determination in skim milk with molecular probes and front-face fluorescence spectroscopy: simple linear regression.

    PubMed

    Gangidi, R R; Metzger, L E

    2006-11-01

    The purpose of this study was to determine if the ionic calcium content of skim milk could be determined using molecular probes and front-face fluorescence spectroscopy. Current methods for determining ionic calcium are not sensitive, overestimate ionic calcium, or require complex procedures. Molecular probes designed specifically for measuring ionic calcium could potentially be used to determine the ionic calcium content of skim milk. The goal of the current study was to develop foundation methods for future studies to determine ionic calcium directly in skim milk and other dairy products with molecular probes and fluorescence spectroscopy. In this study, the effect of pH on calcium-sensitive fluorescent probe (Rhod-5N and Fluo-5N) performance using various concentrations of skim milk was determined. The pH of diluted skim milk (1.9 to 8.9% skim milk), was adjusted to either 6.2 or 7.0, after which the samples were analyzed with fluorescent probes (1 microM) and front-face fluorescence spectroscopy. The ionic calcium content of each sample was also determined using a calcium ion-selective electrode. The results demonstrated that the ionic calcium content of each sample was highly correlated (R2 > 0.989) with the fluorescence intensities of the probe-calcium adduct using simple linear regression. Higher than suggested ionic calcium contents of 1,207 and 1,973 microM were determined with the probes (Fluo-5N and Rhod-5N) in diluted skim milk with pH 7.0 and 6.2, respectively. The fluorescence intensity of the probe-calcium adduct decreased with a decrease in pH for the same ionic calcium concentration. This study demonstrates that Fluo-5N and Rhod-5N can be used to determine the ionic-calcium content of diluted milk with front-face fluorescence spectroscopy. Furthermore, these probes may also have the potential to determine the ionic calcium content of undiluted skim milk.

  3. Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.

    PubMed

    Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo

    2013-01-01

    Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+)-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca(2+)-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca(2+)-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca(2+) activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca(2+)-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca(2+)-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction.

  4. Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.

    2011-01-01

    Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.

  5. Geophysical disturbance environment during the NASA/MPE barium release at 5 earth radii on September 21, 1971.

    NASA Technical Reports Server (NTRS)

    Davis, T. N.; Stanley, G. M.; Boyd, J. S.

    1973-01-01

    The geophysical disturbance environment was quiet during the NASA/MPE barium release at 5 earth radii on September 21, 1971. At the time of the release, the magnetosphere was in the late recovery phase of a principal magnetic storm, the provisional Dst value was -13 gammas, and the local horizontal disturbance at Great Whale River was near zero. Riometer and other observations indicated low-level widespread precipitation of high-energy electrons at Great Whale River before, during, and after the release. Cloudy sky at this station prevented optical observation of aurora. No magnetic or ionospheric effects attributable to the barium release were detected at Great Whale River.

  6. Variation of Nb-Ta, Zr-Hf, Th-U and K-Cs in two diabase-granophyre suites

    USGS Publications Warehouse

    Gottfried, D.; Greenland, L.P.; Campbell, E.Y.

    1968-01-01

    Concentrations of Nb, Ta, Zr, Hf, Th, U and Cs have been determined in samples of igneous rocks representing the diabase-granophyre suites from Dillsburg, Pennsylvania, and Great Lake, Tasmania. Niobium and tantalum have a three to fourfold increase with differentiation in each of the suites. The chilled margin of the Great Lake intrusion contains half the niobium and tantalum content (5.3 ppm and 0.4 ppm, respectively) of the chilled basalt from Dillsburg (10 ppm and 0.9 ppm, respectively). The twofold difference between the suites is correlated with differences in their titanium content. The average Nb Ta ratios for each suite are similar: 13.5 for the Great Lake suite, and 14.4 for the Dillsburg suite. The zirconium content of the two suites is essentially the same and increases from 50 to 60 ppm in the chilled margins to 240-300 ppm in the granophyres. Hafnium is low in the early formed rocks (0.5 -1.5 ppm and achieves a maximum in the granophyres (5-8 ppm). The Zr Hfratio decreases from 68 to 33 with progressive differentiation. In the Dillsburg suite thorium and uranium increase from 2.6 ppm and 0.6 ppm, respectively, in the chilled samples to 11.8 ppm and 3.1 ppm in the granophyres. The chilled margin of the Great Lake suite contains 3.2 ppm thorium and 9.8 ppm uranium; the granophyre contains 11.2 ppm thorium and 2.8 ppm uranium. The average Th U ratios of the Dillsburg and Great Lake suites are nearly the same-4.1 and 4.4, respectively. Within each suite the Th U ratio remains quite constant. Cesium and the K Cs ratio do not vary systematically in the Dillsburg suite possibly because of redistribution or loss of cesium by complex geologic processes. Except for the chilled margin of the Great Lake suite, the variation of Cs and the K Cs ratio are in accord with theoretical considerations. Cesium increases from about 0.6 ppm in the lower zone to 3.5 ppm in the granophyre; the K Cs ratio varies from 10 ?? 103 in the lower zone to 6 ?? 103 in the granophyre. A comparison of the abundance of some of these elements is made with those reported on oceanic tholeiites from the Atlantic and Pacific oceans. Trace elements with large ionic radii (Th, U, Cs) are present in significantly greater concentrations in the two continental tholeiitic series than in the oceanic tholeiites. However, this does not seem to be true for lithophilic elements of smaller ionic radii (Zr and Nb). These trace element distribution patterns, when considered with other minor element and isotopic studies, indicate that 1. (1) crustal contamination does not entirely account for differences between continental and oceanic tholeiites, and 2. (2) the oceanic tholeiites do not necessarily delimit the geochemical characteristics of the mantle. ?? 1968.

  7. Influence of Ionic Liquids on Thermodynamics of Small Molecule-DNA Interaction: The Binding of Ethidium Bromide to Calf Thymus DNA.

    PubMed

    Mishra, Arpit; Ekka, Mary Krishna; Maiti, Souvik

    2016-03-17

    Ionic liquids (ILs) are salts with poor ionic coordination, resultantly remaining in liquid state below 100 °C and some may retain liquid state even at room temperature. ILs are known to provide a conducive environment for many biological enzymatic reactions, but their interaction with biomacromolecules are poorly understood. In the present study, we investigate the effect of various ionic liquids on DNA-small molecule interaction using calf thymus DNA (ctDNA)-ethidium bromide (EB) as a model system. The effect of various ionic liquids on these interactions is studied by an array of techniques such as circular dichroism (CD), UV melting, fluorescence exclusion and isothermal titration calorimetry. Interestingly, we observed that presence of IL increased the stability of ctDNA without altering its structure. The binding affinities Kbs for EB binding to ctDNA in the presence of 300 mM ILs are about half order of magnitude smaller than the Kbs in absence of ILs and correspond to a less favorable free energy. We noted that, when adjusted to corresponding buffer condition, the unfavorable shift in ΔG of ctDNA-EB interaction is attributed to decreased entropy in the case of ILs, whereas the same effect by NaCl was due to increased enthalpy.

  8. Use of the Posterior/Anterior Corneal Curvature Radii Ratio to Improve the Accuracy of Intraocular Lens Power Calculation: Eom's Adjustment Method.

    PubMed

    Kim, Mingue; Eom, Youngsub; Lee, Hwa; Suh, Young-Woo; Song, Jong Suk; Kim, Hyo Myung

    2018-02-01

    To evaluate the accuracy of IOL power calculation using adjusted corneal power according to the posterior/anterior corneal curvature radii ratio. Nine hundred twenty-eight eyes from 928 reference subjects and 158 eyes from 158 cataract patients who underwent phacoemulsification surgery were enrolled. Adjusted corneal power of cataract patients was calculated using the fictitious refractive index that was obtained from the geometric mean posterior/anterior corneal curvature radii ratio of reference subjects and adjusted anterior and predicted posterior corneal curvature radii from conventional keratometry (K) using the posterior/anterior corneal curvature radii ratio. The median absolute error (MedAE) based on the adjusted corneal power was compared with that based on conventional K in the Haigis and SRK/T formulae. The geometric mean posterior/anterior corneal curvature radii ratio was 0.808, and the fictitious refractive index of the cornea for a single Scheimpflug camera was 1.3275. The mean difference between adjusted corneal power and conventional K was 0.05 diopter (D). The MedAE based on adjusted corneal power (0.31 D in the Haigis formula and 0.32 D in the SRK/T formula) was significantly smaller than that based on conventional K (0.41 D and 0.40 D, respectively; P < 0.001 and P < 0.001, respectively). The percentage of eyes with refractive prediction error within ± 0.50 D calculated using adjusted corneal power (74.7%) was significantly greater than that obtained using conventional K (62.7%) in the Haigis formula (P = 0.029). IOL power calculation using adjusted corneal power according to the posterior/anterior corneal curvature radii ratio provided more accurate refractive outcomes than calculation using conventional K.

  9. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation

    PubMed Central

    Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W

    2014-01-01

    Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody that exhibits high viscosity in solutions at low ionic strength (~20 centipoise (cP) at 90 mg/mL and 23°C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and 23°C). The intermolecular interactions responsible for these effects were characterized using membrane osmometry, static light scattering and zeta potential measurements. The net protein-protein interactions were repulsive at low ionic strength (~4 mM) and attractive at isotonic ionic strengths. The high viscosities are attributed to electroviscous forces at low ionic strength and the significant opalescence at isotonic ionic strength is correlated with attractive antibody interactions. Furthermore there appears to be a connection to critical phenomena and it is suggested that the extent of opalescence is dependent on the proximity to the critical point. We demonstrate that by balancing the repulsive and attractive forces via intermediate ionic strengths and by increasing the mAb concentration above the apparent critical concentration both opalescence and viscosity can be simultaneously minimized. PMID:19475558

  10. Numerical modeling of ultrasonic cavitation in ionic liquids

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael L.; Elder, Ross M.

    2017-11-01

    Ionic liquids have favorable properties for sonochemistry applications in which the high temperatures and pressures achieved by cavitation bubbles are important drivers of chemical processes. Two different numerical models are presented to simulate ultrasonic cavitation in ionic liquids, each with different capabilities and physical assumptions. A model based on a compressible form of the Rayleigh-Plesset equation (RPE) simulates ultrasonic cavitation of a spherical bubble with a homogeneous interior, incorporating evaporation and condensation at the bubble surface, and temperature-varying thermodynamic properties in the interior. A second, more computationally intensive model of a spherical bubble uses the finite element method (FEM) and accounts for spatial variations in pressure and temperature throughout the flow domain. This model provides insight into heat transfer across the bubble surface and throughout the bubble interior and exterior. Parametric studies are presented for sonochemistry applications involving ionic liquids as a solvent, examining a range of realistic ionic liquid properties and initial conditions to determine their effect on temperature and pressure. Results from the two models are presented for parametric variations including viscosity, thermal conductivity, water content of the ionic liquid solvent, acoustic frequency, and initial bubble pressure. An additional study performed with the FEM model examines thermal penetration into the surrounding ionic liquid during bubble oscillation. The results suggest the prospect of tuning ionic liquid properties for specific applications.

  11. The effect of addition of primary positive salts, complex salt, on the ionic strength and rate constant at various temperatures by reaction kinetics

    NASA Astrophysics Data System (ADS)

    Kurade, S. S.; Ramteke, A. A.

    2018-05-01

    In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.

  12. Superbase-derived protic ionic liquid extractants for metal ion separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Jason R.; Dai, Sheng; Luo, Huimin

    2014-04-19

    Solvent extraction of La 3+ and Ba 2+ by an ionic liquid extractant in an imidazolium-based ionic liquid diluent was investigated. Seven protic ionic liquid extractants were examined and these protic ILs are based on five organic superbases and either 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octadione (Hfod) or 1,1,1,5,5,5-hexafluoroacetylacetone (Hhfac) -diketones as anion. For fod-based extractants, the extraction efficiencies and separation factors were found to be concentration dependent. The effects of aqueous phase acidity, extractant structure, and extractant concentration on separation properties of La 3+ and Ba 2+ are discussed in this paper.

  13. A classical density functional theory of ionic liquids.

    PubMed

    Forsman, Jan; Woodward, Clifford E; Trulsson, Martin

    2011-04-28

    We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.

  14. A PEGylated Fibrin-Based Wound Dressing with Antimicrobial and Angiogenic Activity

    DTIC Science & Technology

    2011-04-13

    naturally available, cost-effective, biocompatible, and biodegradable. Among these natural polymers chitosan ( poly (b-(1,4)-2-amino-2-deoxy-D...drying, ionic gela- tion, and sieving. Among these, ionic gelation is preferred for drugs that require an initial short burst release while maintaining...form ionic interactions with anionic mole- cules, and have been previously used for the controlled release of drugs [18]. Since SSD is a weak anionic

  15. The Electrolyte Factor in O2 Reduction Electrocatalysis

    DTIC Science & Technology

    1993-04-23

    molecule thick and does not seem to interfere with 02 and water/proton transport at this interface. This layer resembles a self-ordered Langmuir - Blodgett ... liquid electrolyte from within the polymer is in contact with the catalyst and completes the ionic circuit between the ionic conducting polymer and the...the free energy of adsorption of H2 0 and ionic components because of the lower effective dielectric constant in the electrolyte phase immediately

  16. Effect of ionic liquid treatment on the ultrastructural and topochemical features of compression wood in Japanese cedar (Cryptomeria japonica).

    PubMed

    Kanbayashi, Toru; Miyafuji, Hisashi

    2016-07-18

    The morphological and topochemical changes in wood tissues in compression wood of Japanese cedar (Cryptomeria japonica) upon treated with two types of ionic liquids, 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-ethylpyridinium bromide ([EtPy][Br]) were investigated. Compression wood tracheids were swollen by both ionic liquids but their swelling behaviors were different in the types of ionic liquids used. Under the polarized light, we confirmed that crystalline cellulose in compression wood is amorphized by [C2mim][Cl] treatment whereas it changes slightly by [EtPy][Br] treatment. Raman microscopic analyses revealed that [C2mim][Cl] can preferentially liquefy polysaccharides in compression wood whereas [EtPy][Br] liquefy lignin. In addition, the interaction of compression wood with ionic liquids is different for the morphological regions. These results will assist in the use of ionic liquid treatment of woody biomass to produce valuable chemicals, bio-fuels, bio-based composites and other products.

  17. Effect of ionic liquid treatment on the ultrastructural and topochemical features of compression wood in Japanese cedar (Cryptomeria japonica)

    PubMed Central

    Kanbayashi, Toru; Miyafuji, Hisashi

    2016-01-01

    The morphological and topochemical changes in wood tissues in compression wood of Japanese cedar (Cryptomeria japonica) upon treated with two types of ionic liquids, 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) and 1-ethylpyridinium bromide ([EtPy][Br]) were investigated. Compression wood tracheids were swollen by both ionic liquids but their swelling behaviors were different in the types of ionic liquids used. Under the polarized light, we confirmed that crystalline cellulose in compression wood is amorphized by [C2mim][Cl] treatment whereas it changes slightly by [EtPy][Br] treatment. Raman microscopic analyses revealed that [C2mim][Cl] can preferentially liquefy polysaccharides in compression wood whereas [EtPy][Br] liquefy lignin. In addition, the interaction of compression wood with ionic liquids is different for the morphological regions. These results will assist in the use of ionic liquid treatment of woody biomass to produce valuable chemicals, bio-fuels, bio-based composites and other products. PMID:27426470

  18. Electrodeposition of Si from an Ionic Liquid Bath at Room Temperature in the Presence of Water.

    PubMed

    Shah, Nisarg K; Pati, Ranjan Kumar; Ray, Abhijit; Mukhopadhyay, Indrajit

    2017-02-21

    The electrochemical deposition of Si has been carried out in an ionic liquid medium in the presence of water in a limited dry nitrogen environment on highly oriented pyrolytic graphite (HOPG) at room temperature. It has been found that the presence of water in ionic liquids does not affect the available effective potential window to a large extent. Silicon has been successfully deposited electrochemically in the overpotential regime in two different ionic liquids, namely, BMImTf 2 N and BMImPF 6 , in the presence of water. Although a Si thin film has been obtained from BMImTf 2 N; only distinguished Si crystals protected in ionic liquid droplets have been observed from BMImPF 6 . The most important observation of the present investigation is that the Si precursor, SiCl 4 , instead of undergoing hydrolysis, even in the presence of water, coexisted with ionic liquids, and elemental Si has been successfully electrodeposited.

  19. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.

    PubMed

    Liu, Lei; Li, Chu; Ma, Jian; Wu, Yingdong; Ni, Zhonghua; Chen, Yunfei

    2014-12-01

    Novel generation of analytical technology based on nanopores has provided possibilities to fabricate nanofluidic devices for low-cost DNA sequencing or rapid biosensing. In this paper, a simplified model was suggested to describe DNA molecule's translocation through a nanopore, and the internal potential, ion concentration, ionic flowing speed and ionic current in nanopores with different sizes were theoretically calculated and discussed on the basis of Poisson-Boltzmann equation, Navier-Stokes equation and Nernst-Planck equation by considering several important parameters, such as the applied voltage, the thickness and the electric potential distributions in nanopores. In this way, the basic ionic currents, the modulated ionic currents and the current drops induced by translocation were obtained, and the size effects of the nanopores were carefully compared and discussed based on the calculated results and experimental data, which indicated that nanopores with a size of 10 nm or so are more advantageous to achieve high quality ionic current signals in DNA sensing.

  20. Nuclear States with Abnormally Large Radii (size Isomers)

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Demyanova, A. S.; Danilov, A. N.; Belyaeva, T. L.; Goncharov, S. A.

    2015-06-01

    Application of the methods of measuring the radii of the short-lived excited states (Modified diffraction model MDM, Inelastic nuclear rainbow scattering method INRS, Asymptotic normalization coefficients method ANC) to the analysis of some nuclear reactions provide evidence of existing in 9Be, 11B, 12C, 13C the excited states whose radii exceed those of the corresponding ground states by ~ 30%. Two types of structure of these "size isomers" were identified: neutron halo an α-clusters.

  1. Global Geodesy Using GPS Without Fiducial Sites

    NASA Technical Reports Server (NTRS)

    Heflin, Michael B.; Blewitt, Geoffrey

    1994-01-01

    Global Positioning System, GPS, used to make global geodetic measurements without use of fiducial site coordinates. Baseline lengths and geocentric radii for each site determined without having to fix any site coordinates. Given n globally distributed sites, n baseline lengths and n geocentric radii form polyhedron with each site at vertex and with geocenter at intersection of all radii. Geodetic information derived from structure of polyhedron and its change with time. Approach applied to any global geodetic technique.

  2. Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms

    NASA Astrophysics Data System (ADS)

    Sednev, I.; Menon, S.; McFarquhar, G.

    2008-06-01

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9th-10th October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors' concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and undersaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors' contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

  3. Simulating mixed-phase Arctic stratus clouds: sensitivity to ice initiation mechanisms

    NASA Astrophysics Data System (ADS)

    Sednev, I.; Menon, S.; McFarquhar, G.

    2009-07-01

    The importance of Arctic mixed-phase clouds on radiation and the Arctic climate is well known. However, the development of mixed-phase cloud parameterization for use in large scale models is limited by lack of both related observations and numerical studies using multidimensional models with advanced microphysics that provide the basis for understanding the relative importance of different microphysical processes that take place in mixed-phase clouds. To improve the representation of mixed-phase cloud processes in the GISS GCM we use the GISS single-column model coupled to a bin resolved microphysics (BRM) scheme that was specially designed to simulate mixed-phase clouds and aerosol-cloud interactions. Using this model with the microphysical measurements obtained from the DOE ARM Mixed-Phase Arctic Cloud Experiment (MPACE) campaign in October 2004 at the North Slope of Alaska, we investigate the effect of ice initiation processes and Bergeron-Findeisen process (BFP) on glaciation time and longevity of single-layer stratiform mixed-phase clouds. We focus on observations taken during 9-10 October, which indicated the presence of a single-layer mixed-phase clouds. We performed several sets of 12-h simulations to examine model sensitivity to different ice initiation mechanisms and evaluate model output (hydrometeors' concentrations, contents, effective radii, precipitation fluxes, and radar reflectivity) against measurements from the MPACE Intensive Observing Period. Overall, the model qualitatively simulates ice crystal concentration and hydrometeors content, but it fails to predict quantitatively the effective radii of ice particles and their vertical profiles. In particular, the ice effective radii are overestimated by at least 50%. However, using the same definition as used for observations, the effective radii simulated and that observed were more comparable. We find that for the single-layer stratiform mixed-phase clouds simulated, process of ice phase initiation due to freezing of supercooled water in both saturated and subsaturated (w.r.t. water) environments is as important as primary ice crystal origination from water vapor. We also find that the BFP is a process mainly responsible for the rates of glaciation of simulated clouds. These glaciation rates cannot be adequately represented by a water-ice saturation adjustment scheme that only depends on temperature and liquid and solid hydrometeors' contents as is widely used in bulk microphysics schemes and are better represented by processes that also account for supersaturation changes as the hydrometeors grow.

  4. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P. W.; Gandolfi, S.

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  5. Radii of neutron drops probed via the neutron skin thickness of nuclei

    DOE PAGES

    Zhao, P. W.; Gandolfi, S.

    2016-10-10

    Multineutron systems are crucial to understanding the physics of neutron-rich nuclei and neutron stars. Neutron drops, neutrons confined in an external field, are investigated systematically in both nonrelativistic and relativistic density functional theories and with ab initio calculations. Here, we demonstrate a new strong linear correlation, which is universal in the realm of mean-field models, between the rms radii of neutron drops and the neutron skin thickness of 208 Pb and 48 Ca , i.e., the difference between the neutron and proton rms radii of a nucleus. This correlation can be used to deduce the radii of neutron drops frommore » the measured neutron skin thickness in a model-independent way, and the radii obtained for neutron drops can provide a useful constraint for realistic three-neutron forces, due to its high quality. Furthermore, we present a new correlation between the slope L of the symmetry energy and the radii of neutron drops, and provide the first validation of such a correlation by using density-functional models and ab initio calculations. These newly established correlations, together with more precise measurements of the neutron skin thicknesses of 208 Pb and 48 Ca and/or accurate determinations of L , will have an enduring impact on the understanding of multineutron interactions, neutron-rich nuclei, neutron stars, etc.« less

  6. Ion Association, Solubilities, and Reduction Potentials in Aqueous Solution.

    ERIC Educational Resources Information Center

    Russo, Steven O.; Hanania, George I. H.

    1989-01-01

    Incorporates the combined effects of ionic strength and ion association to show how calculations involving ionic equilibria are carried out. Examines the variability of reduction potential data for two aqueous redox systems. Provides several examples. (MVL)

  7. Spectrum of antimicrobial activity associated with ionic colloidal silver.

    PubMed

    Morrill, Kira; May, Kathleen; Leek, Daniel; Langland, Nicole; Jeane, La Deana; Ventura, Jose; Skubisz, Corey; Scherer, Sean; Lopez, Eric; Crocker, Ephraim; Peters, Rachel; Oertle, John; Nguyen, Krystine; Just, Scott; Orian, Michael; Humphrey, Meaghan; Payne, David; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2013-03-01

    Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. However, the Food and Drug Administration currently does not recognize colloidal silver as a safe and effective antimicrobial agent. The goal of this study was to further evaluate the antimicrobial efficacy of colloidal silver. Several strains of bacteria, fungi, and viruses were grown under multicycle growth conditions in the presence or absence of ionic colloidal silver in order to assess the antimicrobial activity. For bacteria grown under aerobic or anaerobic conditions, significant growth inhibition was observed, although multiple treatments were typically required. For fungal cultures, the effects of ionic colloidal silver varied significantly between different genera. No viral growth inhibition was observed with any strains tested. The study data support ionic colloidal silver as a broad-spectrum antimicrobial agent against aerobic and anaerobic bacteria, while having a more limited and specific spectrum of activity against fungi.

  8. The synthesis and the chemical and physical properties of non-aqueous silylamine solvents for carbon dioxide capture.

    PubMed

    Rohan, Amy L; Switzer, Jackson R; Flack, Kyle M; Hart, Ryan J; Sivaswamy, Swetha; Biddinger, Elizabeth J; Talreja, Manish; Verma, Manjusha; Faltermeier, Sean; Nielsen, Paul T; Pollet, Pamela; Schuette, George F; Eckert, Charles A; Liotta, Charles L

    2012-11-01

    Silylamine reversible ionic liquids were designed to achieve specific physical properties in order to address effective CO₂ capture. The reversible ionic liquid systems reported herein represent a class of switchable solvents where a relatively non-polar silylamine (molecular liquid) is reversibly transformed to a reversible ionic liquid (RevIL) by reaction with CO₂ (chemisorption). The RevILs can further capture additional CO₂ through physical absorption (physisorption). The effects of changes in structure on (1) the CO₂ capture capacity (chemisorption and physisorption), (2) the viscosity of the solvent systems at partial and total conversion to the ionic liquid state, (3) the energy required for reversing the CO₂ capture process, and (4) the ability to recycle the solvents systems are reported. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Effect of Lengthening Cation Ether Tails on Ionic Liquid Properties

    DOE PAGES

    Lall-Ramnarine, S.; Rodriguez, C.; Fernandez, R.; ...

    2016-08-30

    In order to explore the effect of multiple ether functionalities on ionic liquid properties, a series of ten pyrrolidinium ionic liquids and ten imidazolium ionic liquids bearing ether and alkyl side chains of varying lengths (4 to 10 atoms in length) were prepared for this study. Their physical properties, such as viscosity, conductivity and thermal profile were measured and compared. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILs increases there is hardly any increase inmore » the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. These results provide significant insight on the choice of starting materials for researchers designing ILs for specific applications.« less

  10. Effect of alcaline cations in zeolites on their dielectric properties.

    PubMed

    Legras, Benoît; Polaert, Isabelle; Estel, Lionel; Thomas, Michel

    2012-01-01

    The effect on dielectric properties of alkaline cations Li+, Na+ and K+ incorporated in a zeolite Faujasite structure X or Y, has been investigated. Two major phenomena have been proved to occur: ionic conductivity and rotational polarization of the water molecules adsorbed. The polarizability of the cation which is directly linked to its radius, affects ionic conductivity as well as rotational polarization. Li cations are more strongly Linked to the framework than K+ and Na+ and induce a lower ionic conductivity. K+ is weakly fixed and induces a ionic conductivity even at low solvation level. At low water content, the cation nature and number mainly control the free rotation of the water molecules and affect the relaxation frequency. Close to saturation, the water molecules are mainly linked together by H bonds: the cation nature and number do not really affect the global dielectric properties anymore.

  11. Examination of ionic wind and cathode sheath effects in a E-field premixed flame with ion density measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Stewart V., E-mail: svj0001@uah.edu; Xu, Kunning G., E-mail: gabe.xu@uah.edu

    2016-04-15

    The effect of the ionic wind on a premixed methane-air flame under a DC electric field is studied via mapping of the ion density with Langmuir probes. Ion densities were observed to increase near the burner with increasing electrode voltage up to 6 kV. Past this electrode supply voltage, ion densities ceased increasing and began to decline in some locations within the premixed flame. The increased ion density is caused by an increase in ionic wind force and cathode sheath thickness. The plateau in density is due to the cathode sheath fully encompassing the flame front which is the ion source,more » thereby collecting all ions in the flame. The spatial density data support the ionic wind hypothesis and provide further explanation of its limits based on the plasma sheath.« less

  12. The magnetic field of the equatorial magnetotail from 10 to 40 earth radii

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1986-01-01

    A statistical study of IMP 6, 7, and 8 magnetotail magnetic field measurements near the equatorial plane reveals new information about various aspects of magnetospheric structure. More magnetic flux crosses the equatorial plane on the dawn and dusk flanks of the tail than near midnight, but no evidence is found for a dependence on the interplanetary magnetic field sector polarity. Field magnitudes within 3 earth radii of the equatorial plane near dawn are more than twice as large as those near dusk for Xsm = -20 to -10 earth radii. The frequency of occurrence of southward fields is greatest near midnight, and such fields are seen almost twice as often for Xsm = -20 to -10 earth radii as for Xsm beyond -20 earth radii. This latter result supports the idea that the midnight region of the tail between 10 and 20 is a special location where neutral lines are particularly apt to form. Such a neutral line will approach nearest the earth in the midnight and premidnight region, where substorms are thought to have their onset.

  13. The rise-time of Type II supernovae

    NASA Astrophysics Data System (ADS)

    González-Gaitán, S.; Tominaga, N.; Molina, J.; Galbany, L.; Bufano, F.; Anderson, J. P.; Gutierrez, C.; Förster, F.; Pignata, G.; Bersten, M.; Howell, D. A.; Sullivan, M.; Carlberg, R.; de Jaeger, T.; Hamuy, M.; Baklanov, P. V.; Blinnikov, S. I.

    2015-08-01

    We investigate the early-time light curves of a large sample of 223 Type II supernovae (SNe II) from the Sloan Digital Sky Survey and the Supernova Legacy Survey. Having a cadence of a few days and sufficient non-detections prior to explosion, we constrain rise-times, i.e. the durations from estimated first to maximum light, as a function of effective wavelength. At rest-frame g' band (λeff = 4722 Å), we find a distribution of fast rise-times with median of (7.5 ± 0.3) d. Comparing these durations with analytical shock models of Rabinak & Waxman and Nakar & Sari, and hydrodynamical models of Tominaga et al., which are mostly sensitive to progenitor radius at these epochs, we find a median characteristic radius of less than 400 solar radii. The inferred radii are on average much smaller than the radii obtained for observed red supergiants (RSG). Investigating the post-maximum slopes as a function of effective wavelength in the light of theoretical models, we find that massive hydrogen envelopes are still needed to explain the plateaus of SNe II. We therefore argue that the SN II rise-times we observe are either (a) the shock cooling resulting from the core collapse of RSG with small and dense envelopes, or (b) the delayed and prolonged shock breakout of the collapse of an RSG with an extended atmosphere or embedded within pre-SN circumstellar material.

  14. Peroxyoxalate chemiluminescence enhanced by oligophenylenevinylene fluorophores in the presence of various surfactants.

    PubMed

    Motoyoshiya, Jiro; Takigawa, Setsuko

    2014-11-01

    The effect of several surfactants on peroxyoxalate chemiluminescence (PO-CL) using oligophenylenevinylene fluorophores was investigated. Among several oligophenylenevinylenes consisting of stilbene units, linearly conjugated ones, such as distyrylbenzene and distyrylstilbene, effectively enhanced PO-CL efficiency. Various effects of anionic, cationic, amphoteric and non-ionic surfactants on the CL efficiency of PO-CL were determined using three oxalates and the distyrylbenzene fluorophore. Anionic and non-ionic surfactants effectively enhanced CL efficiency, in contrast to the negative effect of cationic and amphoteric surfactants. Non-ionic surfactants were also effective in CL reactions of oxalates bearing dodecyl ester groups by the hydrophobic interaction between their alkyl chains. Considering these results, the surfactants not only increase the concentrations of water-insoluble interacting species in the hydrophobic micelle cores, but also control rapid degradation of the oxalates by alkaline hydrolysis. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Gray and multigroup radiation transport through 3D binary stochastic media with different sphere radii distributions

    DOE PAGES

    Olson, Gordon Lee

    2016-12-06

    Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less

  16. Gray and multigroup radiation transport through 3D binary stochastic media with different sphere radii distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Gordon Lee

    Here, gray and multigroup radiation is transported through 3D media consisting of spheres randomly placed in a uniform background. Comparisons are made between using constant radii spheres and three different distributions of sphere radii. Because of the computational cost of 3D calculations, only the lowest angle order, n=1, is tested. If the mean chord length is held constant, using different radii distributions makes little difference. This is true for both gray and multigroup solutions. 3D transport solutions are compared to 2D and 1D solutions with the same mean chord lengths. 2D disk and 3D sphere media give solutions that aremore » nearly identical while 1D slab solutions are fundamentally different.« less

  17. Anomalous frequency-dependent ionic conductivity of lesion-laden human-brain tissue

    NASA Astrophysics Data System (ADS)

    Emin, David; Akhtari, Massoud; Fallah, Aria; Vinters, Harry V.; Mathern, Gary W.

    2017-10-01

    We study the effect of lesions on our four-electrode measurements of the ionic conductivity of (˜1 cm3) samples of human brain excised from patients undergoing pediatric epilepsy surgery. For most (˜94%) samples, the low-frequency ionic conductivity rises upon increasing the applied frequency. We attributed this behavior to the long-range (˜0.4 mm) diffusion of solvated sodium cations before encountering intrinsic impenetrable blockages such as cell membranes, blood vessels, and cell walls. By contrast, the low-frequency ionic conductivity of some (˜6%) brain-tissue samples falls with increasing applied frequency. We attribute this unusual frequency-dependence to the electric-field induced liberation of sodium cations from traps introduced by the unusually severe pathology observed in samples from these patients. Thus, the anomalous frequency-dependence of the ionic conductivity indicates trap-producing brain lesions.

  18. Dispersions of polymer ionomers: I.

    PubMed

    Capek, Ignác

    2004-12-31

    The principal subject discussed in the current paper is the effect of ionic functional groups in polymers on the formation of nontraditional polymer materials, polymer blends or polymer dispersions. Ionomers are polymers that have a small amount of ionic groups distributed along a nonionic hydrocarbon chain. Specific interactions between components in a polymer blend can induce miscibility of two or more otherwise immiscible polymers. Such interactions include hydrogen bonding, ion-dipole interactions, acid-base interactions or transition metal complexation. Ion-containing polymers provide a means of modifying properties of polymer dispersions by controlling molecular structure through the utilization of ionic interactions. Ionomers having a relatively small number of ionic groups distributed usually along nonionic organic backbone chains can agglomerate into the following structures: (1) multiplets, consisting of a small number of tightly packed ion pairs; and (2) ionic clusters, larger aggregates than multiplets. Ionomers exhibit unique solid-state properties as a result of strong associations among ionic groups attached to the polymer chains. An important potential application of ionomers is in the area of thermoplastic elastomers, where the associations constitute thermally reversible cross-links. The ionic (anionic, cationic or polar) groups are spaced more or less randomly along the polymer chain. Because in this type of ionomer an anionic group falls along the interior of the chain, it trails two hydrocarbon chain segments, and these must be accommodated sterically within any domain structure into which the ionic group enters. The primary effects of ionic functionalization of a polymer are to increase the glass transition temperature, the melt viscosity and the characteristic relaxation times. The polymer microstructure is also affected, and it is generally agreed that in most ionomers, microphase-separated, ion-rich aggregates form as a result of strong ion-dipole attractions. As a consequence of this new phase, additional relaxation processes are often observed in the viscoelastic behavior of ionomers. Light functionalization of polymers can increase the glass transition temperature and gives rise to two new features in viscoelastic behavior: (1) a rubbery plateau above T(g) and (2) a second loss process at elevated temperatures. The rubbery plateau was due to the formation of a physical network. The major effect of the ionic aggregate was to increase the longer time relaxation processes. This in turn increases the melt viscosity and is responsible for the network-like behavior of ionomers above the glass transition temperature. Ionomers rich in polar groups can fulfill the criteria for the self-assembly formation. The reported phenomenon of surface micelle formation has been found to be very general for these materials.

  19. Capturing the effect of [PF3(C2F5)3]-vs. [PF6]-, flexible anion vs. rigid, and scaled charge vs. unit on the transport properties of [bmim]+-based ionic liquids: a comparative MD study.

    PubMed

    Kowsari, Mohammad H; Ebrahimi, Soraya

    2018-05-16

    Comprehensive molecular dynamics simulations are performed to study the average single-particle dynamics and the transport properties of 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [bmim][FAP], ionic liquids (ILs) at 400 K. We applied one of the most widely used nonpolarizable all-atom force fields for ILs, both with the original unit (±1) charges on each ion and with the partial charges uniformly scaled to 80-85%, taking into account the average polarizability and tracing the experimentally compatible transport properties. In all simulations, [bmim]+ was considered to be flexible, while the effect of a flexible vs. rigid structure of the anions and the effect of two applied charge sets on the calculated properties were separately investigated in detail. The simulation results showed that replacing [PF6]- with [FAP]-, considering anion flexibility, and applying the charge-scaled model significantly enhanced the ionic self-diffusion, ionic conductivity, inverse viscosity, and hyper anion preference (HAP). Both of the calculated self-diffusion coefficients from the long-time linear slope of the mean-square displacement (MSD) and from the integration of the velocity autocorrelation function (VACF) for the centers of mass of the ions were used for evaluation of the ionic transference number, HAP, ideal Nernst-Einstein ionic conductivity (σNE), and the Stokes-Einstein viscosity. In addition, for quantification of the degree of complicated ionic association (known as the Nernst-Einstein deviation parameter, Δ) and ionicity phenomena in the two studied ILs, the ionic conductivity was determined more rigorously by the Green-Kubo integral of the electric-current autocorrelation function (ECACF), and then the σGK/σNE ratio was evaluated. It was found that the correlated motion of the (cationanion) neighbors in [bmim][FAP] is smaller than in [bmim][PF6]. The relaxation times of the normalized reorientational autocorrelation functions were computed to gain a deep, molecular-level insight into the rotational motion of the ions. The geometric shape of the ion is a key factor in determining its reorientational dynamics. [bmim]+ shows faster translational and slower rotational dynamics in contrast to [PF6]-.

  20. Co-precipitation of radium with barium and strontium sulfate and its impact on the fate of radium during treatment of produced water from unconventional gas extraction.

    PubMed

    Zhang, Tieyuan; Gregory, Kelvin; Hammack, Richard W; Vidic, Radisav D

    2014-04-15

    Radium occurs in flowback and produced waters from hydraulic fracturing for unconventional gas extraction along with high concentrations of barium and strontium and elevated salinity. Radium is often removed from this wastewater by co-precipitation with barium or other alkaline earth metals. The distribution equation for Ra in the precipitate is derived from the equilibrium of the lattice replacement reaction (inclusion) between the Ra(2+) ion and the carrier ions (e.g., Ba(2+) and Sr(2+)) in aqueous and solid phases and is often applied to describe the fate of radium in these systems. Although the theoretical distribution coefficient for Ra-SrSO4 (Kd = 237) is much larger than that for Ra-BaSO4 (Kd = 1.54), previous studies have focused on Ra-BaSO4 equilibrium. This study evaluates the equilibria and kinetics of co-precipitation reactions in Ra-Ba-SO4 and Ra-Sr-SO4 binary systems and the Ra-Ba-Sr-SO4 ternary system under varying ionic strength (IS) conditions that are representative of brines generated during unconventional gas extraction. Results show that radium removal generally follows the theoretical distribution law in binary systems and is enhanced in the Ra-Ba-SO4 system and restrained in the Ra-Sr-SO4 system by high IS. However, the experimental distribution coefficient (Kd') varies widely and cannot be accurately described by the distribution equation, which depends on IS, kinetics of carrier precipitation and does not account for radium removal by adsorption. Radium removal in the ternary system is controlled by the co-precipitation of Ra-Ba-SO4, which is attributed to the rapid BaSO4 nucleation rate and closer ionic radii of Ra(2+) with Ba(2+) than with Sr(2+). Carrier (i.e., barite) recycling during water treatment was shown to be effective in enhancing radium removal even after co-precipitation was completed. Calculations based on experimental results show that Ra levels in the precipitate generated in centralized waste treatment facilities far exceed regulatory limits for disposal in municipal sanitary landfills and require careful monitoring of allowed source term loading (ASTL) for technically enhanced naturally occurring materials (TENORM) in these landfills. Several alternatives for sustainable management of TENORM are discussed.

  1. X-Ray Crystallographic Studies of Electrostatic Effects in Cubic Insulin

    NASA Astrophysics Data System (ADS)

    Gursky, Olga

    1992-09-01

    Cubic crystals of bovine insulin were obtained at pH 9 from sodium phosphate buffer. Pathway dependence of crystallization was analysed and crystallization using controlled nucleation was developed. Crystal stability and solubility were surveyed by dialysing the crystals against salt solutions varying in salt composition and ionic strength. Crystals dialysed in 0.1-0.2M Li, Na, K, Rb, NH(4) or Tl salt solutions at pH 9 diffracted to beyond 2.8A, while crystals dialysed in Cs, Mg, Ca or La rapidly lost lattice order. Change in the solvent anion did not affect crystal stability. Electron density maps calculated from X-ray data to 2.8A resolution showed two specific cation binding sites which may be occupied by monovalent cations with ionic radii <1.5A. One site lies between insulin dimers near crystallographic two-fold axis without the close involvement of protein charged groups. Cation binding at this site is important for crystal stability. The other site is alternatively occupied by B10 His in one of its two conformations. At pH 7, the Tl occupancy at both sites was decreased, at pH 9.5 the Tl occupancy of the site near B10 His was increased. The structure was refined using the refined model of cubic porcine insulin and the X-ray data collected to 2A resolution from a bovine insulin crystal at pH 9, to R = 16.1% for the data extending from 10A to 2A. High -resolution data from crystals at pH 7 and pH 10 were collected and analysed. The weights of the two B10 His conformers and the cation occupancy near B10 vary in the pH range from 7 to 10, indicating histidine titration. Shifts in the positions of B1-B4 at pH 7 suggest titration of the B-chain terminal amino groups. Co-operative conformational changes in the surface charged residues A1, A4, B21, B29, B30 at pH 10.2 suggest titration of the A-chain terminal amino groups. In several crystals treated with dichloroethane, the syn-dichloroethane was bound in the niche across the two-fold axis connecting insulin monomers. Dichloroethane binding does not perturb the site geometry and probably leads to cubic insulin preparations of increased stability.

  2. Stellar and Planetary Parameters for K2 's Late-type Dwarf Systems from C1 to C5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Arturo O.; Crossfield, Ian J. M.; Peacock, Sarah

    The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI spectrograph on the European Southern Observatory’s New Technology Telescope, we obtained R ≈ 1000 J -, H -, and K -band (0.95–2.52 μ m) spectra of 34 late-type K2 planetmore » and candidate planet host systems and 12 bright K4–M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 R {sub ⊙} (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet’s radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2 . We find a median planet radius and an equilibrium temperature of approximately 3 R {sub ⊕} and 500 K, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.« less

  3. Comparison of the effect of ionic liquids containing hexafluorophosphate and trifluoroacetate anions on the inhibition of growth and oxidative stress in spring barley and common radish.

    PubMed

    Biczak, Robert; Pawłowska, Barbara; Feder-Kubis, Joanna; Telesiński, Arkadiusz

    2017-08-01

    Ionic liquids are a group of chemical compounds with chemical properties that are of great interest to various fields of science and industry. However, commercial use of these substances raises concern because they may threaten the natural ecosystems. The present study used 2 types of (-)-menthol-containing imidazolium chiral ionic liquids: 1-[(1R,2S,5R)-(-)-menthoxymethyl]-3-methylimidazolium hexafluorophosphate [Im-Men][PF 6 ] and 1-[(1R,2S,5R)-(-)-menthoxymethyl]-3-methylimidazolium trifluoroacetate [Im-Men][CF 3 CO 2 ]. The effects of these compounds on growth and development of spring barley (Hordeum vulgare) and common radish (Raphanus sativus L. subvar. radicula Pers.) were investigated. The present study demonstrated that chiral ionic liquids produced a relatively high phytotoxicity, by shortening the plants' lengths and roots, thus causing a decline in the experimental plants' fresh weights. The investigated ionic liquids also led to a reduction in photosynthetic pigment levels, changes in hydrogen peroxide and malondialdehyde content, and changes in the activities of superoxide dismutase, catalase, and peroxidase in both plants. Changes in these enzymes were used to indicate oxidative stress levels in spring barley and common radish. It was demonstrated that imidazolium ionic liquid-induced phytotoxicity depended largely on the type of anion. The liquid [Im-Men][PF 6 ] exhibited higher toxicity toward spring barley and common radish seedlings. Common radish was more resistant to chiral ionic liquids. Environ Toxicol Chem 2017;36:2167-2177. © 2017 SETAC. © 2017 SETAC.

  4. Proton Distribution Radii of 12-19C Illuminate Features of Neutron Halos

    DOE PAGES

    Kanungo, R.; Horiuchi, W.; Hagen, Gaute; ...

    2016-09-02

    We report proton radii of 12-19C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target. A thick neutron surface evolves from ~0.5 fm in 15C to ~1 fm in 19C. Also, the halo radius in 19C is found to be 6.4±0.7 fm as large as 11Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.

  5. Calculation of Protein Heat Capacity from Replica-Exchange Molecular Dynamics Simulations with Different Implicit Solvent Models

    DTIC Science & Technology

    2008-10-30

    rigorous Poisson-based methods generally apply a Lee-Richards mo- lecular surface.9 This surface is considered the de facto description for continuum...definition and calculation of the Born radii. To evaluate the Born radii, two approximations are invoked. The first is the Coulomb field approximation (CFA...energy term, and depending on the particular GB formulation, higher-order non- Coulomb correction terms may be added to the Born radii to account for the

  6. Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy

    DOE PAGES

    Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; ...

    2015-12-17

    We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra ofmore » the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.« less

  7. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    NASA Astrophysics Data System (ADS)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  8. Solvation of apolar compounds in protic ionic liquids: the non-synergistic effect of electrostatic interactions and hydrogen bonds.

    PubMed

    Sedov, I A; Magsumov, T I; Salikov, T M; Solomonov, B N

    2017-09-27

    The solvation properties of protic ionic liquids such as alkylammonium salts are still virtually uncharacterized. Both electrostatic interactions between charged particles and hydrogen bond networks in a solvent are known to hinder the solubility of apolar species. Protic ionic liquids can be a priori expected to dissolve hydrocarbons worse than aprotic ionic liquids which do not form hydrogen bonds between the ions. We measured the limiting activity coefficients of several alkanes and alkylbenzenes in propylammonium and butylammonium nitrates at 298 K. Surprisingly, we observed the tendency of higher solubility than for the same compounds in aprotic ionic liquids with a similar molar volume. The calculations of the excess Gibbs free energies using test particle insertions into the snapshots of molecular dynamics trajectories reproduced lower values in protic rather than in aprotic ionic liquids for both methane molecules and hard sphere solutes. This can be explained by the favorable solvation of apolar species in the apolar domain of nanostructured PILs. For the first time, we point out at the essential difference between the solvation properties of two types of ionic liquids and prove that it arises from the cavity formation term.

  9. Influence of the ionic liquid 1-butyl-3-methylimidazolium bromide on amyloid fibrillogenesis in lysozyme: Evidence from photophysical and imaging studies.

    PubMed

    Basu, Anirban; Bhattacharya, Subhash Chandra; Kumar, Gopinatha Suresh

    2018-02-01

    Many proteins can abnormally fold to form pathological amyloid deposits/aggregates that are responsible for various degenerative disorders called amyloidosis. Here we have examined the anti-amyloidogenic potency of an ionic liquid, 1-butyl-3-methylimidazolium bromide, using lysozyme as a model system. Thioflavin T fluorescence assay demonstrated that the ionic liquid suppressed the formation of lysozyme fibrils significantly. This observation was further confirmed by the Congo red assay. Fluorescence microscopy, intrinsic fluorescence studies, nile red fluorescence assay, ANS binding assay and circular dichroism studies also testified diminishing of the fibrillogenesis in the presence of ionic liquid. Formation of amyloid fibrils was also characterized by α to β conformational transition. From far-UV circular dichroism studies it was observed that the β-sheet content of the lysozyme samples decreased in the presence of the ionic liquid which in turn implied that fibrillogenesis was supressed by the ionic liquid. Atomic force microscopy imaging unequivocally established that the ionic liquid attenuated fibrillogenesis in lysozyme. These results may be useful for the development of more effective therapeutics for amyloidosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Chromatin ionic atmosphere analyzed by a mesoscale electrostatic approach.

    PubMed

    Gan, Hin Hark; Schlick, Tamar

    2010-10-20

    Characterizing the ionic distribution around chromatin is important for understanding the electrostatic forces governing chromatin structure and function. Here we develop an electrostatic model to handle multivalent ions and compute the ionic distribution around a mesoscale chromatin model as a function of conformation, number of nucleosome cores, and ionic strength and species using Poisson-Boltzmann theory. This approach enables us to visualize and measure the complex patterns of counterion condensation around chromatin by examining ionic densities, free energies, shielding charges, and correlations of shielding charges around the nucleosome core and various oligonucleosome conformations. We show that: counterions, especially divalent cations, predominantly condense around the nucleosomal and linker DNA, unburied regions of histone tails, and exposed chromatin surfaces; ionic screening is sensitively influenced by local and global conformations, with a wide ranging net nucleosome core screening charge (56-100e); and screening charge correlations reveal conformational flexibility and interactions among chromatin subunits, especially between the histone tails and parental nucleosome cores. These results provide complementary and detailed views of ionic effects on chromatin structure for modest computational resources. The electrostatic model developed here is applicable to other coarse-grained macromolecular complexes. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. X‐ray Photoelectron Spectroscopy of Pyridinium‐Based Ionic Liquids: Comparison to Imidazolium‐ and Pyrrolidinium‐Based Analogues

    PubMed Central

    Mitchell, Daniel S.; Lovelock, Kevin R. J.

    2015-01-01

    Abstract We investigate eight 1‐alkylpyridinium‐based ionic liquids of the form [CnPy][A] by using X‐ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake‐up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic‐liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8Py][A] and analogues including 1‐octyl‐1‐methylpyrrolidinium‐ ([C8C1Pyrr][A]), and 1‐octyl‐3‐methylimidazolium‐ ([C8C1Im][A]) based samples, where X is common to all ionic liquids. PMID:25952131

  12. Molecular dynamics simulation of the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide.

    PubMed

    Siqueira, Leonardo J A; Ribeiro, Mauro C C

    2007-10-11

    Thermodynamics, structure, and dynamics of an ionic liquid based on a quaternary ammonium salt with ether side chain, namely, N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM2E TFSI, are investigated by molecular dynamics (MD) simulations. Average density and configurational energy of simulated MOENM2E TFSI are interpreted with models that take into account empirical ionic volumes. A throughout comparison of the equilibrium structure of MOENM2E TFSI with previous results for the more common ionic liquids based on imidazolium cations is provided. Several time correlation functions are used to reveal the microscopic dynamics of MOENM2E TFSI. Structural relaxation is discussed by the calculation of simultaneous space-time correlation functions. Temperature effects on transport coefficients (diffusion, conductivity, and viscosity) are investigated. The ratio between the actual conductivity and the estimate from ionic diffusion by the Nernst-Einstein equation indicates that correlated motion of neighboring ions in MOENM2E TFSI is similar to imidazolium ionic liquids. In line with experiment, Walden plot of conductivity and viscosity indicates that simulated MOENM2E TFSI should be classified as a poor ionic liquid.

  13. Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium.

    PubMed

    Dinda, Enakshi; Si, Satyabrata; Kotal, Atanu; Mandal, Tarun K

    2008-01-01

    A series of newly designed ascorbic acid based room temperature ionic liquids were successfully used to prepare quasi-spherical and anisotropic gold nanostructures in an aqueous medium at ambient temperature. The synthesis of these room temperature ionic liquids involves, first, the preparation of a 1-alkyl (such as methyl, ethyl, butyl, hexyl, octyl, and decyl) derivative of 3-methylimidazolium hydroxide followed by the neutralization of the derivatised product with ascorbic acid. These ionic liquids show significantly better thermal stability and their glass transition temperature (Tg) decreases with increasing alkyl chain length. The ascorbate counter anion of these ionic liquids acts as a reducing agent for HAuCl4 to produce metallic gold and the alkylated imidazolium counter cation acts as a capping/shape-directing agent. It has been found that the nature of the ionic liquids and the mole ratio of ionic liquid to HAuCl4 has a significant effect on the morphology of the formed gold nanostructures. If an equimolar mixture of ionic liquid and HAuCl4 is used, predominantly anisotropic gold nanostructures are formed and by varying the alkyl chain length attached to imidazolium cation of the ionic liquids, various particle morphologies can formed, such as quasispherical, raspberry-like, flakes or dendritic. A probable formation mechanism for such anisotropic gold nanostructures has been proposed, which is based on the results of some control experiments.

  14. OsO(4) in ionic liquid [Bmim]PF(6): a recyclable and reusable catalyst system for olefin dihydroxylation. remarkable effect of DMAP.

    PubMed

    Yao, Qingwei

    2002-06-27

    [reaction: see text] The combination of the ionic liquid [bmim]PF(6) and DMAP provides a most simple and practical approach to the immobilization of OsO(4) as catalyst for olefin dihydroxylation. Both the catalyst and the ionic liquid can be repeatedly recycled and reused in the dihydroxylation of a variety of olefins with only a very slight drop in catalyst activity.

  15. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography.

    PubMed

    Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2014-02-21

    In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effects of ionic liquid to water ratio as a composite medium for the synthesis of LiFePO4 for battery

    NASA Astrophysics Data System (ADS)

    Tith, Rany; Dutta, Jaydeep; Jung, Kichang; Martinez-Morales, Alfredo A.

    2017-05-01

    LiFePO4 is a highly researched cathode material that serves as an alternative material for traditional commercial lithiumion batteries such as LiCoO2. Currently, there are a number of different methods to synthesize LiFePO4 including: hydrothermal, solid state, spray pyrolysis, and coprecipitation. Our proposed method has the potential to provide an ecologically friendly and economically competitive way to synthesize LiFePO4 by utilizing ionic liquid and water, as a composite synthesis medium. The addition of water to ionic liquid can be beneficial as it can act as a mineralizer to bring insoluble precursors to form LiFePO4 seed crystals. Furthermore, this method provides the possibility of recycling the ionic liquid for repeated synthesis processes. In this work, we study the effects of ionic liquid to water ratio on the crystallinity and morphology of the synthesized material. Our group was able to conclude a reaction medium utilizing a ratio of equal parts of 1-ethyl-3-methyl imidazolium trifluoromethane sulfonate (EMIM Otf) and water, or a slightly favored ionic liquid ratio, increases the efficacy of the synthesis route. Crystallinity and purity was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) was used to determine morphology and crystal sizes, and energy dispersion spectroscopy (EDX) was used for elemental analysis.

  17. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in the Phosphonium Cation.

    PubMed

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2016-06-30

    A series of room-temperature ionic liquids (ILs) composed of triethyl(alkyl)phosphonium cations paired with three different aprotic heterocyclic anions (AHAs) (alkyl = butyl ([P2224](+)) and octyl ([P2228](+))) were prepared to investigate the effect of cationic alkyl chain length on transport properties. The transport properties and density of these ILs were measured from 283.15 to 343.15 K at ambient pressure. The dependence of the transport properties (viscosity, ionic conductivity, diffusivity, and molar conductivity) on temperature can be described by the Vogel-Fulcher-Tamman (VFT) equation. The ratio of the molar conductivity obtained from the molar concentration and ionic conductivity measurements to that calculated from self-diffusion coefficients (measured by pulsed gradient spin-echo nuclear magnetic resonance spectroscopy) using the Nernst-Einstein equation was used to quantify the ionicity of these ILs. The molar conductivity ratio decreases with increasing number of carbon atoms in the alkyl chain, indicating that the reduced Coulombic interactions resulting from lower density are more than balanced by the increased van der Waals interactions between the alkyl chains. The results of this study may provide insight into the design of ILs with enhanced dynamics that may be suitable as electrolytes in lithium ion batteries and other electrochemical applications.

  18. Solid electrolytes for fluoride ion batteries: ionic conductivity in polycrystalline tysonite-type fluorides.

    PubMed

    Rongeat, Carine; Reddy, M Anji; Witter, Raiker; Fichtner, Maximilian

    2014-02-12

    Batteries based on a fluoride shuttle (fluoride ion battery, FIB) can theoretically provide high energy densities and can thus be considered as an interesting alternative to Li-ion batteries. Large improvements are still needed regarding their actual performance, in particular for the ionic conductivity of the solid electrolyte. At the current state of the art, two types of fluoride families can be considered for electrolyte applications: alkaline-earth fluorides having a fluorite-type structure and rare-earth fluorides having a tysonite-type structure. As regard to the latter, high ionic conductivities have been reported for doped LaF3 single crystals. However, polycrystalline materials would be easier to implement in a FIB due to practical reasons in the cell manufacturing. Hence, we have analyzed in detail the ionic conductivity of La(1-y)Ba(y)F(3-y) (0 ≤ y ≤ 0.15) solid solutions prepared by ball milling. The combination of DC and AC conductivity analyses provides a better understanding of the conduction mechanism in tysonite-type fluorides with a blocking effect of the grain boundaries. Heat treatment of the electrolyte material was performed and leads to an improvement of the ionic conductivity. This confirms the detrimental effect of grain boundaries and opens new route for the development of solid electrolytes for FIB with high ionic conductivities.

  19. Fluorinated ionic liquids for protein drug delivery systems: Investigating their impact on the structure and function of lysozyme.

    PubMed

    Alves, Márcia; Vieira, Nicole S M; Rebelo, Luís Paulo N; Araújo, João M M; Pereiro, Ana B; Archer, Margarida

    2017-06-30

    Since the approval of recombinant human insulin by FDA in 1982, more than 200 proteins are currently available for pharmaceutical use to treat a wide range of diseases. However, innovation is still required to develop effective approaches for drug delivery. Our aim is to investigate the potential use of fluorinated ionic liquids (FILs) as drug delivery systems (DDS) for therapeutic proteins. Some initial parameters need to be assessed before further studies can proceed. This work evaluates the impact of FILs on the stability, function, structure and aggregation state of lysozyme. Different techniques were used for this purpose, which included differential scanning fluorimetry (DSF), spectrophotometric assays, circular dichroism (CD), dynamic light scattering (DLS), and scanning and transmission electron microscopy (SEM/TEM). Ionic liquids composed of cholinium-, imidazolium- or pyridinium- derivatives were combined with different anions and analysed at different concentrations in aqueous solutions (below and above the critical aggregation concentration, CAC). The results herein presented show that the addition of ionic liquids had no significant effect on the stability and hydrolytic activity of lysozyme. Moreover, a distinct behaviour was observed in DLS experiments for non-surfactant and surfactant ionic liquids, with the latter encapsulating the protein at concentrations above the CAC. These results encourage us to further study ionic liquids as promising tools for DDS of protein drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The presence of functional groups key for biodegradation in ionic liquids: effect on gas solubility.

    PubMed

    Deng, Yun; Morrissey, Saibh; Gathergood, Nicholas; Delort, Anne-Marie; Husson, Pascale; Costa Gomes, Margarida F

    2010-03-22

    The effect of the incorporation of either ester or ester and ether functions into the side chain of an 1-alkyl-3-methylimidazolium cation on the physico-chemical properties of ionic liquids containing bis(trifluoromethylsulfonyl)imide or octylsulfate anions is studied. It is believed that the introduction of an ester function into the cation of the ionic liquids greatly increases their biodegradability. The density of three such ionic liquids is measured as a function of temperature, and the solubility of four gases-carbon dioxide, ethane, methane, and hydrogen-is determined between 303 K and 343 K and at pressures close to atmospheric level. Carbon dioxide is the most soluble gas, followed by ethane and methane; the mole fraction solubilities vary from 1.8 x 10(-3) to 3.7 x 10(-2). These solubilities are of the same order of magnitude as those determined for alkylimidazolium-based ionic liquids. The chemical modification of the alkyl side chain does not result in a significant change of the solvation properties of the ionic liquid. All of the solubilities decrease with increasing temperature, corresponding to an exothermal solvation process. From the variation of this property with temperature, the thermodynamic functions of solvation (Gibbs energy, enthalpy, and entropy) are calculated and provide information about the solute-solvent interactions and the molecular structure of the solutions.

  1. Spherical nanoindentation study of the deformation micromechanisms of LiTaO{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anasori, B.; Barsoum, M. W.; Sickafus, K. E.

    2011-07-15

    Herein, spherical nanoindentation (NI) was used to investigate the room temperature deformation behavior of C-plane LiTaO{sub 3} single crystals loaded along the [0001] direction as a function of ion irradiation. When the NI load-displacement curves of 3 different nanoindenter radii (1.4 {mu}m, 5 {mu}m, and 21 {mu}m) were converted to NI stress-strain curves, good agreement between them was found. The surface first deforms elastically - with a Young's modulus of 205 {+-} 5 GPa, calculated from the stiffness versus contact radii curves and 207 {+-} 3 GPa measured using a Berkovich tip - and then plastically deforms at {approx_equal} 6more » GPa. Repeated loading into the same location results in large, reproducible, fully reversible, nested hysteresis loops attributed to the formation of incipient kink bands (IKBs). The latter are coaxial fully reversible dislocation loops that spontaneously shrink when the load is removed. The IKBs most probably nucleate within the (1012) twins that form near the surface. The sharper radii resulted in twin nucleation at lower stresses. The changes in the reversible loops' shape and areas can be related to the width of the twins that form. The latter were proportional to the nanoindenter tip radii and confirmed by scanning electron microscopy and by the fact that larger threshold stresses were needed for IKB nucleation with the smaller tip sizes. No effect of irradiation was observed on the NI response, presumably because of the mildness of the irradiation damage.« less

  2. Interaction cross sections and matter radii of oxygen isotopes using the Glauber model

    NASA Astrophysics Data System (ADS)

    Ahmad, Suhel; Usmani, A. A.; Ahmad, Shakeb; Khan, Z. A.

    2017-05-01

    Using the Coulomb modified correlation expansion for the Glauber model S matrix, we calculate the interaction cross sections of oxygen isotopes (O-2616) on 12C at 1.0 GeV/nucleon. The densities of O-2616 are obtained using (i) the Slater determinants consisting of the harmonic oscillator single-particle wave functions (SDHO) and (ii) the relativistic mean-field approach (RMF). Retaining up to the two-body density term in the correlation expansion, the calculations are performed employing the free as well as the in-medium nucleon-nucleon (N N ) scattering amplitude. The in-medium N N amplitude considers the effects arising due to phase variation, higher momentum transfer components, and Pauli blocking. Our main focus in this work is to reveal how could one make the best use of SDHO densities with reference to the RMF one. The results demonstrate that the SDHO densities, along with the in-medium N N amplitude, are able to provide satisfactory explanation of the experimental data. It is found that, except for O,2423, the predicted SDHO matter rms radii of oxygen isotopes closely agree with those obtained using the RMF densities. However, for O,2423, our results require reasonably larger SDHO matter rms radii than the RMF values, thereby predicting thicker neutron skins in 23O and 24O as compared to RMF ones. In conclusion, the results of the present analysis establish the utility of SDHO densities in predicting fairly reliable estimates of the matter rms radii of neutron-rich nuclei.

  3. Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii

    NASA Astrophysics Data System (ADS)

    Cheng, Yung-Chang; Lee, Cheng-Kang

    2017-10-01

    This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.

  4. The X-ray surface brightness distribution and spectral properties of six early-type galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Canizares, C. R.

    1986-01-01

    Detailed analysis is presented of the Einstein X-ray observations of six early-type galaxies. The results show that effective cooling is probably present in these systems, at least in the innermost regions. Interaction with the surrounding medium has a major effect on the X-ray surface brightness distribution at large radii, at least for galaxies in clusters. The data do not warrant the general assumptions of isothermality and gravitational hydrostatic equilibrium at large radii. Comparison of the X-ray surface brightness profiles with model predictions indicate that 1/r-squared halos with masses of the order of 10 times the stellar masses are required to match the data. The physical model of White and Chevalier (1984) for steady cooling flows in a King law potential with no heavy halo gives a surface brightness distribution that resembles the data if supernovae heating is present.

  5. Effects of polarizability on the structural and thermodynamics properties of [C{sub n}mim][Gly] ionic liquids (n = 1–4) using EEM/MM molecular dynamic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yang; Hu, Na; Yue, Lili

    2015-02-14

    An extended electronegativity equalization method/molecular mechanics (EEM/MM) model for ionic liquids is used to investigate the structures and properties of 1-alkyl-3-methylimidazolium glycine ionic liquids [C{sub n}mim][Gly] (n = 1–4) with alkyl substituents of different lengths. The EEM/MM model describes the electrostatic interactions of atoms and their changes in different ambient environments. This property is the most outstanding characteristic of the model. EEM parameters (i.e., valence electronegativities and valence hardness parameters) are calibrated using linear regression and least-squares methods, which can accurately predict the gas-phase properties of [C{sub n}mim]{sup +}, [Gly]{sup −}, and [C{sub n}mim][Gly] ion pairs. We utilize the EEM/MMmore » force field to systematically investigate the effects of polarizability on the accuracy of [C{sub n}mim][Gly] properties predicted through the molecular dynamic simulations. EEM/MM explicitly describes the atom-based polarizability of [C{sub n}mim][Gly]; thus, the densities, enthalpies of vaporization, self-diffusion coefficients, and conductivities of the [C{sub n}mim][Gly] are consistent with the experimental values. The calculated radial distribution functions provide a mechanistic understanding of the effects of polarizability on ionic aggregations in amino acid ionic liquids. The effects of alkyl chain length on the diffusion coefficient and conductivity are also discussed.« less

  6. Synergistic effects of mixing sulfone and ionic liquid as safe electrolytes for lithium sulfur batteries.

    PubMed

    Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; Dai, Sheng

    2015-01-01

    A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAh g(-1) (second cycle) by using 40 % 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60 % 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower than that obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAh g(-1) even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dressed ion theory of size-asymmetric electrolytes: effective ionic charges and the decay length of screened Coulomb potential and pair correlations.

    PubMed

    Forsberg, Björn; Ulander, Johan; Kjellander, Roland

    2005-02-08

    The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution. It is found that the variation of these quantities with the degree of size asymmetry depends in a quite intricate manner on the interplay between the electrostatic coupling and excluded volume effects. In most cases the magnitude of the effective charge of the small ion species is larger than that of the large species; the difference increases with increasing size asymmetry. The effective charges of both species are larger (in absolute value) than the bare ionic charge, except for high asymmetry where the effective charge of the large ions can become smaller than the bare charge.

  8. Systematic Approach for Calculating the Concentrations of Chemical Species in Multiequilibrium Problems: Inclusion of the Ionic Strength Effects

    ERIC Educational Resources Information Center

    Baeza-Baeza, Juan J.; Garcia-Alvarez-Coque, M. Celia

    2012-01-01

    A general systematic approach including ionic strength effects is proposed for the numerical calculation of concentrations of chemical species in multiequilibrium problems. This approach extends the versatility of the approach presented in a previous article and is applied using the Solver option of the Excel spreadsheet to solve real problems…

  9. Large-scale correlations in gas traced by Mg II absorbers around low-mass galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Guinevere

    2018-03-01

    The physical origin of the large-scale conformity in the colours and specific star formation rates of isolated low-mass central galaxies and their neighbours on scales in excess of 1 Mpc is still under debate. One possible scenario is that gas is heated over large scales by feedback from active galactic nuclei (AGNs), leading to coherent modulation of cooling and star formation between well-separated galaxies. In this Letter, the metal line absorption catalogue of Zhu & Ménard is used to probe gas out to large projected radii around a sample of a million galaxies with stellar masses ˜1010M⊙ and photometric redshifts in the range 0.4 < z < 0.8 selected from Sloan Digital Sky Survey imaging data. This galaxy sample covers an effective volume of 2.2 Gpc3. A statistically significant excess of Mg II absorbers is present around the red-low-mass galaxies compared to their blue counterparts out to projected radii of 10 Mpc. In addition, the equivalent width distribution function of Mg II absorbers around low-mass galaxies is shown to be strongly affected by the presence of a nearby (Rp < 2 Mpc) radio-loud AGNs out to projected radii of 5 Mpc.

  10. Eye size and visual acuity influence vestibular anatomy in mammals.

    PubMed

    Kemp, Addison D; Christopher Kirk, E

    2014-04-01

    The semicircular canals of the inner ear detect head rotations and trigger compensatory movements that stabilize gaze and help maintain visual fixation. Mammals with large eyes and high visual acuity require precise gaze stabilization mechanisms because they experience diminished visual functionality at low thresholds of uncompensated motion. Because semicircular canal radius of curvature is a primary determinant of canal sensitivity, species with large canal radii are expected to be capable of more precise gaze stabilization than species with small canal radii. Here, we examine the relationship between mean semicircular canal radius of curvature, eye size, and visual acuity in a large sample of mammals. Our results demonstrate that eye size and visual acuity both explain a significant proportion of the variance in mean canal radius of curvature after statistically controlling for the effects of body mass and phylogeny. These findings suggest that variation in mean semicircular canal radius of curvature among mammals is partly the result of selection for improved gaze stabilization in species with large eyes and acute vision. Our results also provide a possible functional explanation for the small semicircular canal radii of fossorial mammals and plesiadapiforms. Copyright © 2014 Wiley Periodicals, Inc.

  11. Adverse reactions of low osmolar non-ionic and ionic contrast media when used together or separately during percutaneous coronary intervention.

    PubMed

    Juergens, Craig P; Khaing, Aye Mi; McIntyre, Geraldine J; Leung, Dominic Y C; Lo, Sidney T H; Fernandes, Clyne; Hopkins, Andrew P

    2005-09-01

    Due to perceived advantages in the use of non-ionic contrast agents for diagnostic angiography and ionic agents for percutaneous coronary intervention (PCI), patients often receive various combinations of both types of agents. To assess potential adverse effects of non-ionic and ionic contrast media when used together or separately during percutaneous coronary intervention. We retrospectively evaluated the outcomes of 532 patients undergoing percutaneous coronary intervention in our institution. Patients were divided into two groups: those that underwent diagnostic angiography and "follow on" PCI; and those that underwent "planned" PCI. The groups were subdivided on the basis of the use of the ionic agent ioxaglate or the non-ionic agent iopromide during PCI. The frequency of allergic reactions and major adverse cardiac events (MACE) were noted. With respect to the "follow on" group, allergic reactions occurred in 9 of 150 patients (6.0%) who received the combination of ioxaglate and iopromide versus 1 of 93 (1.1%) who only received iopromide (p=0.094). There was no difference with respect to MACE [6 (4.0%) ioxaglate and iopromide versus 4 (4.3%) iopromide alone, p=1.00]. In the "planned" group, 7 of 165 patients (4.2%) receiving ioxaglate had an allergic reaction as opposed 0.0% (0 of 124 patients) in the iopromide group (p=0.021). All contrast reactions were mild. The incidence of a MACE was similar in both groups [1 (0.6%) ioxaglate versus 2 (1.6%) iopromide, p=0.579]. The incidence of allergic reactions was similar if ioxaglate was used alone or in combination with iopromide (p=0.478). Whilst combining ionic and non-ionic contrast agents in the same procedure was not associated with any more adverse reactions than using an ionic contrast agent alone, the ionic contrast agent ioxaglate was associated with the majority of allergic reactions. With respect to choice of contrast agent, using the non-ionic agent iopromide alone for coronary intervention is associated with the lowest risk of an adverse event.

  12. Precise Masses & Radii of the Planets Orbiting K2-3 and GJ3470

    NASA Astrophysics Data System (ADS)

    Kosiarek, Molly; Crossfield, Ian; Hardegree-Ullman, Kevin; Livingston, John; Howard, Andrew; Fulton, Benjamin; Hirsch, Lea; Isaacson, Howard; Petigura, Erik; Sinukoff, Evan; Weiss, Lauren; Knutson, Heather; Bonfils, Xavier; Benneke, Björn; Beichman, Charles; Dressing, Courtney

    2018-01-01

    We report improved masses, radii, and densities for two planetary systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Both stars are nearby, early M dwarfs. K2-3 hosts three super-Earth planets between 1.5 and 2 Earth-radii at orbital periods between 10 and 45 days, while GJ 3470 hosts one 4 Earth-radii planet with a period of 3.3 days. Furthermore, we confirmed GJ3470's rotation period through multi-year ground-based photometry; RV analysis must account for this rotation signature. Due to the planets' low densities (all < 4.2 g/cm3) and bright host stars, they are among the best candidates for transmission spectroscopy with JWST and HST in order to characterize their atmospheric compositions.

  13. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.

    PubMed

    Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo

    2017-06-01

    Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. β-cyclodextrin-ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis.

    PubMed

    Zhou, Chunyan; Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu

    2017-04-01

    Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono-6-deoxy-6-(3-methylimidazolium)-β-cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β-cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β-cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β-cyclodextrin ionic liquid. The satisfied result demonstrated that the β-cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2007-04-01

    This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.

  16. Friction and wear behavior of glasses and ceramics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Adhesion, friction, and wear behavior of glasses and ionic solids are reviewed. These materials are shown to behave in a manner similar to other solids with respect to adhesion. Their friction characteristics are shown to be sensitive to environmental constituents and surface films. This sensitivity can be related to a reduction in adhesive bonding and the changes in surficial mechanical behavior associated with Rehbinder and Joffe effects. Both friction and wear properties of ionic crystalline solids are highly anisotropic. With metals in contact with ionic solids the fracture strength of the ionic solid and the shear strength in the metal and those properties that determine these will dictate which of the materials undergoes adhesive wear. The chemical activity of the metal plays an important role in the nature and strength of the adhesive interfacial bond that develops between the metal and a glass or ionic solid.

  17. Covalent Immobilization of Cellulase Using Magnetic Poly(ionic liquid) Support: Improvement of the Enzyme Activity and Stability.

    PubMed

    Hosseini, Seyed Hassan; Hosseini, Seyedeh Ameneh; Zohreh, Nasrin; Yaghoubi, Mahshid; Pourjavadi, Ali

    2018-01-31

    A magnetic nanocomposite was prepared by entrapment of Fe 3 O 4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The results showed that the ionic surface and covalent binding of enzyme onto the support improved the activity, thermal stability, and reusability of cellulase compared to free cellulase.

  18. Recent advances in the applications of ionic liquids in protein stability and activity: a review.

    PubMed

    Patel, Rajan; Kumari, Meena; Khan, Abbul Bashar

    2014-04-01

    Room temperatures ionic liquids are considered as miraculous solvents for biological system. Due to their inimitable properties and large variety of applications, they have been widely used in enzyme catalysis and protein stability and separation. The related information present in the current review is helpful to the researchers working in the field of biotechnology and biochemistry to design or choose an ionic liquid that can serve as a noble and selective solvent for any particular enzymatic reaction, protein preservation and other protein based applications. We have extensively analyzed the methods used for studying the protein-IL interaction which is useful in providing information about structural and conformational dynamics of protein. This can be helpful to develop and understanding about the effect of ionic liquids on stability and activity of proteins. In addition, the affect of physico-chemical properties of ionic liquids, viz. hydrogen bond capacity and hydrophobicity on protein stability are discussed.

  19. Viscoelasticity of nano-alumina dispersions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rand, B.; Fries, R.

    1996-06-01

    The flow and viscoelastic properties of electrostatically stabilized nano-alumina dispersions have been studied as a function of ionic strength and volume fraction of solids. At low ionic strength the suspensions were deflocculated and showed a transition from viscous to elastic behavior as the solid content increased associated with the onset of double layer interpenetration. The phase transition was progressively shifted to higher solids fractions with increasing ionic strength. At higher ionic strength, above the critical coagulation concentration, the suspensions formed attractive networks characterized by high elasticity. Two independent methods of estimating the effective radius of electrostatically stabilized {open_quotes}soft{close_quotes} particles, a{submore » eff}, are presented based on phase angle data and a modified Dougherty-Krieger equation. The results suggest that a{sub eff} is not constant for a given system but changes with both solids fraction and ionic strength.« less

  20. Development and Characterization of Poly(1-vinylpyrrolidone-co-vinyl acetate) Copolymer Based Polymer Electrolytes

    PubMed Central

    Sa'adun, Nurul Nadiah; Subramaniam, Ramesh; Kasi, Ramesh

    2014-01-01

    Gel polymer electrolytes (GPEs) are developed using poly(1-vinylpyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] as the host polymer, lithium bis(trifluoromethane) sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10−6 S cm−1 for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA) while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis (XRD), respectively. PMID:25431781

  1. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  2. Beneficial effect of added water on sodium metal cycling in super concentrated ionic liquid sodium electrolytes

    NASA Astrophysics Data System (ADS)

    Basile, Andrew; Ferdousi, Shammi A.; Makhlooghiazad, Faezeh; Yunis, Ruhamah; Hilder, Matthias; Forsyth, Maria; Howlett, Patrick C.

    2018-03-01

    The plating and stripping performance of sodium metal in an ionic liquid electrolyte is improved when including water as an additive. Herein we report for the first time the trend of improved cycling behavior of Na0/+ in N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide with 500 ppm H2O. The addition of water to this ionic liquid electrolyte promotes the breakdown of the [FSI]- anion towards beneficial SEI formation. The benefits during plating and stripping of sodium is observed as lower total polarization during symmetrical cell cycling and decreased electrode/electrolyte interface impedance. Sodium metal surfaces after cycling with 500 ppm H2O are shown to be smooth in morphology in comparison to lower additive concentrations. The outcome of adventitious moisture benefiting Na0/+ cycling in an ionic liquid, contrary to conventional electrolytes, allows flexibility in ionic liquid electrolyte design to the benefit of battery manufacturers.

  3. Bubble Motion through a Generalized Power-Law Fluid Flowing in a Vertical Tube

    PubMed Central

    Mukundakrishnan, Karthik; Eckmann, David M.; Ayyaswamy, P. S.

    2009-01-01

    Intravascular gas embolism may occur with decompression in space flight, as well as during cardiac and vascular surgery. Intravascular bubbles may be deposited into any end organ, such as the heart or the brain. Surface interactions between the bubble and the endothelial cells lining the vasculature result in serious impairment of blood flow and can lead to heart attack, stroke, or even death. To develop effective therapeutic strategies, there is a need for understanding the dynamics of bubble motion through blood and its interaction with the vessel wall through which it moves. Toward this goal, we numerically investigate the axisymmetric motion of a bubble moving through a vertical circular tube in a shear-thinning generalized power-law fluid, using a front-tracking method. The formulation is characterized by the inlet Reynolds number, capillary number, Weber number, and Froude number. The flow dynamics and the associated wall shear stresses are documented for a combination of two different inlet flow conditions (inlet Reynolds numbers) and three different effective bubble radii (ratio of the undeformed bubble radii to the tube radii). The results of the non-Newtonian model are then compared with that of the model assuming a Newtonian blood viscosity. Specifically, for an almost occluding bubble (effective bubble radius = 0.9), the wall shear stress and the bubble residence time are compared for both Newtonian and non-Newtonian cases. Results show that at low shear rates, for a given pressure gradient the residence time for a non-Newtonian flow is higher than that for a Newtonian flow. PMID:19426324

  4. Large N{sub c}, constituent quarks, and N, {Delta} charge radii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchmann, Alfons J.; Lebed, Richard F.

    2000-11-01

    We show how one may define baryon constituent quarks in a rigorous manner, given physical assumptions that hold in the large-N{sub c} limit of QCD. This constituent picture gives rise to an operator expansion that has been used to study large-N{sub c} baryon observables; here we apply it to the case of charge radii of the N and {Delta} states, using minimal dynamical assumptions. For example, one finds the relation r{sub p}{sup 2}-r{sub {Delta}{sup +}}{sup 2}=r{sub n}{sup 2}-r{sub {Delta}{sup 0}}{sup 2} to be broken only by three-body, O(1/N{sub c}{sup 2}) effects for any N{sub c}.

  5. New insight into the environmental impact of two imidazolium ionic liquids. Effects on seed germination and soil microbial activity.

    PubMed

    Salgado, J; Parajó, J J; Teijeira, T; Cruz, O; Proupín, J; Villanueva, M; Rodríguez-Añón, J A; Verdes, P V; Reyes, O

    2017-10-01

    The next generation of ionic liquids must be synthetized taking into account structures that guarantee the suitable properties for a defined application as well as ecological data. Thus, searching of the right methodologies to know, quickly and efficiently, the ecological effects of these compounds is a preliminary task. The effects of two imidazolium based ionic liquids with different anions, 1-butyl-3-methylimidazolium tetrafluoroborate, [C 4 C 1 Im][BF 4 ], and 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C 3 C 1 Im][NTf 2 ], on seedling emergence of six tree species and on the microbial behaviour of two soils were determined in this work. Results showed that the highest doses of both ionic liquids caused the total inhibition of germination for almost all the species studied and that the seeds are more sensitive to the presence of these compounds than soil microbial activity. Nevertheless, signals of stress and death are observed from the results of heat released by microorganisms after the addition of the highest doses of both ionic liquids. The novelty of this work resides in the enlargement of knowledge of toxicity of ILs on complex organisms such as arboreal species and microbial activity of soils studied for the first time through a microcalorimetric technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A universal steady state I-V relationship for membrane current

    NASA Technical Reports Server (NTRS)

    Chernyak, Y. B.; Cohen, R. J. (Principal Investigator)

    1995-01-01

    A purely electrical mechanism for the gating of membrane ionic channel gives rise to a simple I-V relationship for membrane current. Our approach is based on the known presence of gating charge, which is an established property of the membrane channel gating. The gating charge is systematically treated as a polarization of the channel protein which varies with the external electric field and modifies the effective potential through which the ions migrate in the channel. Two polarization effects have been considered: 1) the up or down shift of the whole potential function, and 2) the change in the effective electric field inside the channel which is due to familiar effect of the effective reduction of the electric field inside a dielectric body because of the presence of surface charges on its surface. Both effects are linear in the channel polarization. The ionic current is described by a steady state solution of the Nernst-Planck equation with the potential directly controlled by the gating charge system. The solution describes reasonably well the steady state and peak-current I-V relationships for different channels, and when applied adiabatically, explains the time lag between the gating charge current and the rise of the ionic current. The approach developed can be useful as an effective way to model the ionic currents in axons, cardiac cells and other excitable tissues.

  7. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    NASA Astrophysics Data System (ADS)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  8. SELECTIVE OXIDATION OF STYRENE TO ACETOPHENONE IN PRESENCE OF IONIC LIQUIDS

    EPA Science Inventory

    Palladium-catalyzed oxidation of styrene (Wacker reaction) in the presence of 1,3-dialkylimidazolium cation based ionic liquids is described. The effect of temperature, use of co-catalyst, and recyclability aspects for the generation of carbonyl compounds using environmentally de...

  9. Hall Determination of Atomic Radii of Alkali Metals

    ERIC Educational Resources Information Center

    Houari, Ahmed

    2008-01-01

    I will propose here an alternative method for determining atomic radii of alkali metals based on the Hall measurements of their free electron densities and the knowledge of their crystal structure. (Contains 2 figures.)

  10. Enhancement of Force Generated by Individual Myosin Heads in Skinned Rabbit Psoas Muscle Fibers at Low Ionic Strength

    PubMed Central

    Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo

    2013-01-01

    Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca2+-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca2+-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca2+-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca2+ activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca2+-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca2+-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction. PMID:23691080

  11. Diffusion of ionic and non-ionic contrast agents in articular cartilage with increased cross-linking--contribution of steric and electrostatic effects.

    PubMed

    Kulmala, K A M; Karjalainen, H M; Kokkonen, H T; Tiitu, V; Kovanen, V; Lammi, M J; Jurvelin, J S; Korhonen, R K; Töyräs, J

    2013-10-01

    To investigate the effect of threose-induced collagen cross-linking on diffusion of ionic and non-ionic contrast agents in articular cartilage. Osteochondral plugs (Ø=6mm) were prepared from bovine patellae and divided into two groups according to the contrast agent to be used in contrast enhanced computed tomography (CECT) imaging: (I) anionic ioxaglate and (II) non-ionic iodixanol. The groups I and II contained 7 and 6 sample pairs, respectively. One of the paired samples served as a reference while the other was treated with threose to induce collagen cross-linking. The equilibrium partitioning of the contrast agents was imaged after 24h of immersion. Fixed charge density (FCD), water content, contents of proteoglycans, total collagen, hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP) and pentosidine (Pent) cross-links were determined as a reference. The equilibrium partitioning of ioxaglate (group I) was significantly (p=0.018) lower (-23.4%) in threose-treated than control samples while the equilibrium partitioning of iodixanol (group II) was unaffected by the threose-treatment. FCD in the middle and deep zones of the cartilage (p<0.05) and contents of Pent and LP (p=0.001) increased significantly due to the treatment. However, the proteoglycan concentration was not systematically altered after the treatment. Water content was significantly (-3.5%, p=0.007) lower after the treatment. Since non-ionic iodixanol showed no changes in partition after cross-linking, in contrast to anionic ioxaglate, we conclude that the cross-linking induced changes in charge distribution have greater effect on diffusion compared to the cross-linking induced changes in steric hindrance. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Effect of radiographic contrast media on markers of complement activation and apoptosis in patients with chronic coronary artery disease undergoing coronary angiography.

    PubMed

    Deftereos, Spyridon; Giannopoulos, Georgios; Kossyvakis, Charalampos; Raisakis, Konstantinos; Kaoukis, Andreas; Driva, Metaxia; Ntzouvara, Olga; Panagopoulou, Vasiliki; Rentoukas, Ilias; Nikas, Dimitrios J; Pyrgakis, Vlasios; Alpert, Martin A

    2009-09-01

    The effects of radiographic contrast media on markers of complement activation and apoptosis in patients with chronic coronary artery disease (CAD) are unknown. The purpose of this study was to assess the comparative effects of ionic high-osmolar and non-ionic iso-osmolar radiographic contrast media on plasma markers of complement activation and apoptosis in patients with chronic CAD undergoing coronary angiography. Forty-four patients undergoing coronary angiography for chronic CAD were randomly assigned to receive the ionic high-osmolar radiographic contrast agent diatrizoate (Group A), or the non-ionic iso-osmolar contrast agent iodixanol (Group B) during angiography. Complement component 5 (C5a) and apoptotic markers sFas and sFasL were measured just prior to angiography and 1 hour after completion of angiography. Comparison of mean pre- and post-angiography plasma marker levels showed significantly greater increases in plasma levels in Group A than in Group B of C5a (29.30 +/- 5.45 ng/ml for Group A and 0.47 +/- 0.70 ng/ml for Group B (p < 0.00001), sFas (2.36 +/- 1.63 ng/ml for Group A and 0.23 +/- 0.90 ng/ml for Group B (p < 0.00001) and sFasL (14.00 +/- 5.41 pg/ml for Group A and 0.01 +/- 1.00 pg/ml for Group B (p < 0.00001). The results suggest that in patients with chronic CAD, the use of ionic high-osmolar radiographic contrast media during coronary angiography is associated with a more robust inflammatory and apoptotic milieu than that associated with the use of non-ionic iso-osmolar radiographic contrast media.

  13. Research Update: Fast and tunable nanoionics in vertically aligned nanostructured films

    NASA Astrophysics Data System (ADS)

    Lee, Shinbuhm; MacManus-Driscoll, Judith L.

    2017-04-01

    This review provides the design principles to develop new nanoionic applications using vertically aligned nanostructured (VAN) thin films, incorporating two phases which self-assemble in one film. Tunable nanoionics has attracted great attention for energy and device applications, such as ion batteries, solid oxide fuel cells, catalysts, memories, and neuromorphic devices. Among many proposed device architectures, VAN films have strong potential for nanoionic applications since they show enhanced ionic conductivity and tunability. Here, we will review the recent progress on state-of-the-art nanoionic applications, which have been realized by using VAN films. In many VAN systems made by the inclusion of an oxygen ionic insulator, it is found that ions flow through the vertical heterointerfaces. The observation is consistent with structural incompatibility at the vertical heteroepitaxial interfaces resulting in oxygen deficiency in one of the phases and hence to oxygen ion conducting pathways. In other VAN systems where one of the phases is an ionic conductor, ions flow much faster within the ionic conducting phase than within the corresponding plain film. The improved ionic conduction coincides with much improved crystallinity in the ionically conducting nanocolumnar phase, induced by use of the VAN structure. Furthermore, for both cases Joule heating effects induced by localized ionic current flow also play a role for enhanced ionic conductivity. Nanocolumn stoichiometry and strain are other important parameters for tuning ionic conductivity in VAN films. Finally, double-layered VAN film architectures are discussed from the perspective of stabilizing VAN structures which would be less stable and hence less perfect when grown on standard substrates.

  14. The magic of aqueous solutions of ionic liquids: ionic liquids as a powerful class of catanionic hydrotropes†

    PubMed Central

    Cláudio, Ana Filipa M.; Neves, Márcia C.; Shimizu, Karina; Canongia Lopes, José N.; Freire, Mara G.; Coutinho, João A. P.

    2015-01-01

    Hydrotropes are compounds able to enhance the solubility of hydrophobic substances in aqueous media and therefore are widely used in the formulation of drugs, cleaning and personal care products. In this work, it is shown that ionic liquids are a new class of powerful catanionic hydrotropes where both the cation and the anion synergistically contribute to increase the solubility of biomolecules in water. The effects of the ionic liquid chemical structures, their concentration and the temperature on the solubility of two model biomolecules, vanillin and gallic acid were evaluated and compared with the performance of conventional hydrotropes. The solubility of these two biomolecules was studied in the entire composition range, from pure water to pure ionic liquids, and an increase in the solubility of up to 40-fold was observed, confirming the potential of ionic liquids to act as hydrotropes. Using dynamic light scattering, NMR and molecular dynamics simulations, it was possible to infer that the enhanced solubility of the biomolecule in the IL aqueous solutions is related to the formation of ionic-liquid–biomolecules aggregates. Finally, it was demonstrated that hydrotropy induced by ionic liquids can be used to recover solutes from aqueous media by precipitation, simply by using water as an anti-solvent. The results reported here have a significant impact on the understanding of the role of ionic liquid aqueous solutions in the extraction of value-added compounds from biomass as well as in the design of novel processes for their recovery from aqueous media. PMID:26379471

  15. Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida.

    PubMed

    Piotrowska, Aleksandra; Syguda, Anna; Wyrwas, Bogdan; Chrzanowski, Łukasz; Heipieper, Hermann J

    2017-01-01

    Combination of the hydrophilic herbicidal anion with hydrophobic, antimicrobial ammonium cation allows to obtain compounds in ionic liquid form with better properties then conventional herbicides. Both cation and anion can be modified by selection of herbicide and the length of alkyl chains in cation structure. However the knowledge of their potential toxic effects are still limited. Furthermore, the relation between hydrophobicity associated with the length of alkyl chains and toxicity for ionic liquids has not been thoroughly studied. Therefore we investigated toxic effects of herbicidal ionic liquid forms on growth inhibition, given as EC 50, of the common soil bacterium Pseudomonas putida. We thereby concentrated on quaternary ammonium salts. Analyzed compounds were composed of dicamba or MCPP moieties and cation with various alkyl chain lengths (n = 6,8,10) We compared them with commercial herbicides, and ammonium-based ionic liquids with neutral anion (Br - ). In addition, cis-trans isomerisation of unsaturated membrane fatty acids in Pseudomonas putida was applied as the proxy for toxicity and membrane activity. We showed that toxicity increased with the length of alkyl chains. However, this correlation is only valid for six and eight carbon atom in alkyl chains, where for n = 10 the EC 50 values rise by one order of magnitude. In our studies, the herbicidal ionic liquids [C 10 ,C 10 ,C 1 ,C 1 N][MCPP] and [C 10 ,C 10 ,C 1 ,C 1 N][dicamba] showed the lowest toxicity among analyzed quaternary ammonium salts and comparable toxicity with corresponding herbicides. No clear increase in toxicity could be followed by changing the anion moieties for ammonium-based ionic liquid forms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The role of electrostatics in protein-protein interactions of a monoclonal antibody.

    PubMed

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2014-07-07

    Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.

  17. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-09-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  18. Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes--an improved model for nanocrystalline thin films and a review of experimental data.

    PubMed

    Korte, C; Keppner, J; Peters, A; Schichtel, N; Aydin, H; Janek, J

    2014-11-28

    A phenomenological and analytical model for the influence of strain effects on atomic transport in columnar thin films is presented. A model system consisting of two types of crystalline thin films with coherent interfaces is assumed. Biaxial mechanical strain ε0 is caused by lattice misfit of the two phases. The conjoined films consist of columnar crystallites with a small diameter l. Strain relaxation by local elastic deformation, parallel to the hetero-interface, is possible along the columnar grain boundaries. The spatial extent δ0 of the strained hetero-interface regions can be calculated, assuming an exponential decay of the deformation-forces. The effect of the strain field on the local ionic transport in a thin film is then calculated by using the thermodynamic relation between (isostatic) pressure and free activation enthalpy ΔG(#). An expression describing the total ionic transport relative to bulk transport of a thin film or a multilayer as a function of the layer thickness is obtained as an integral average over strained and unstrained regions. The expression depends only on known material constants such as Young modulus Y, Poisson ratio ν and activation volume ΔV(#), which can be combined as dimensionless parameters. The model is successfully used to describe own experimental data from conductivity and diffusion studies. In the second part of the paper a comprehensive literature overview of experimental studies on (fast) ion transport in thin films and multilayers along solid-solid hetero-interfaces is presented. By comparing and reviewing the data the observed interface effects can be classified into three groups: (i) transport along interfaces between extrinsic ionic conductors (and insulator), (ii) transport along an open surface of an extrinsic ionic conductor and (iii) transport along interfaces between intrinsic ionic conductors. The observed effects in these groups differ by about five orders of magnitude in a very consistent way. The modified interface transport in group (i) is most probably caused by strain effects, misfit dislocations or disordered transition regions.

  19. Studies of Ionic Photoionization Using Relativistic Random Phase Approximation and Relativistic Multichannel Quantum Defect Theory

    NASA Astrophysics Data System (ADS)

    Haque, Ghousia Nasreen

    The absorption of electromagnetic radiation by positive ions is one of the fundamental processes of nature which occurs in every intensely hot environment. Due to the difficulties in producing sufficient densities of ions in a laboratory, there are very few measurements of ionic photoabsorption parameters. On the theoretical side, some calculations have been made of a few major photoionization parameters, but generally speaking, most of the work done so far has employed rather simple single particle models and any theoretical work which has adequately taken into account intricate atomic many-body and relativistic effects is only scanty. In the present work, several complex aspects of atomic/ionic photoabsorption parameters have been studied. Non -resonant photoionization in neon and argon isonuclear as well as isoelectronic sequences has been studied using a very sophisticated technique, namely the relativistic random phase approximation (RRPA). This technique takes into account relativistic effects as well as an important class of major many-body effects on the same footing. The present calculations confirmed that gross features of photoionization parameters calculated using simpler models were not an artifact of the simple model. Also, the present RRPA calculations on K^+ ion and neutral Ar brought out the relative importance of various many-body effects such the inter-channel coupling. Inter-channel coupling between discrete bound state photoexcitation channels from an inner atomic/ionic level and photoionization continuum channels from an outer atomic/ionic level leads to the phenomena of autoionization resonances in the photoionization process. These resonances lead to very complex effects in the atomic/ionic photoabsorption spectra. These resonances have been calculated and studied in the present work in the neon and magnesium isoelectronic sequences using the relativistic multi-channel quantum defect theory (RMQDT) within the framework of the RRPA. The character of the autoionization resonances studied was determined in the present work and the effect of series perturbations in the Rydberg series due to interference between various multichannel processes was quantitatively determined. Furthermore, results of the present calculations also serve as important pointer to measure the relative strengths of radiative (fluorescence) decay modes and non -radiative (autoionization/auger) decay modes in an isoelectronic sequence.

  20. DFT-based ab initio MD simulation of the ionic conduction in doped ZrO₂ systems under epitaxial strain.

    PubMed

    Oka, M; Kamisaka, H; Fukumura, T; Hasegawa, T

    2015-11-21

    The oxygen ionic conduction in ZrO2 systems under tensile epitaxial strain was investigated by performing ab initio molecular dynamics (MD) calculations based on density functional theory (DFT) to elucidate the essential factors in the colossal ionic conductivity observed in the yttria stabilized ZrO2 (YSZ)/SrTiO3 heterostructure. Three factors were evaluated: lattice strain, oxygen vacancies, and dopants. Phonon calculations based on density functional perturbation theory (DFPT) were used to obtain the most stable structure for nondoped ZrO2 under 7% tensile strain along the a- and b-axes. This structure has the space group Pbcn, which is entirely different from that of cubic ZrO2, suggesting that previous ab initio MD calculations assuming cubic ZrO2 may have overestimated the ionic conductivity due to relaxation from the initial structure to the stable structure (Pbcn). Our MD calculations revealed that the ionic conductivity is enhanced only when tensile strain and oxygen vacancies are incorporated, although the presently obtained diffusion constant is far below the range for the colossal ionic conduction experimentally observed. The enhanced ionic conductivity is due to the combined effects of oxygen sublattice formation induced by strain and deformation of this sublattice by oxygen vacancies.

  1. Effect of the alkyl chain length on the rotational dynamics of nonpolar and dipolar solutes in a series of N-alkyl-N-methylmorpholinium ionic liquids.

    PubMed

    Khara, Dinesh Chandra; Kumar, Jaini Praveen; Mondal, Navendu; Samanta, Anunay

    2013-05-02

    Rotational dynamics of two dipolar solutes, 4-aminophthalimide (AP) and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), and a nonpolar solute, anthracene, have been studied in N-alkyl-N-methylmorpholinium (alkyl = ethyl, butyl, hexyl, and octyl) bis(trifluoromethansulfonyl)imide (Tf2N) ionic liquids as a function of temperature and excitation wavelength to probe the microheterogeneous nature of these ionic liquids, which are recently reported to be more structured than the imidazolium ionic liquids (Khara and Samanta, J. Phys. Chem. B2012, 116, 13430-13438). Analysis of the measured rotational time constants of the solutes in terms of the Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that with increase in the alkyl chain length attached to the cationic component of the ionic liquids, AP shows stick to superstick behavior, PRODAN rotation lies between stick and slip boundary conditions, whereas anthracene exhibits slip to sub slip behavior. The contrasting rotational dynamics of these probe molecules is a reflection of their location in distinct environments of the ionic liquids thus demonstrating the heterogeneity of these ionic liquids. The microheterogeneity of these media, in particular, those with the long alkyl chain, is further evidence from the excitation wavelength dependence study of the rotational diffusion of the dipolar probe molecules.

  2. A Molecular Dynamics Study on Selective Cation Depletion from an Ionic Liquid Droplet under an Electric Field

    NASA Astrophysics Data System (ADS)

    Yang, Yudong; Ahn, Myungmo; Im, Dojin; Oh, Jungmin; Kang, Inseok

    2017-11-01

    General electrohydrodynamic behavior of ionic liquid droplets under an electric field is investigated using MD simulations. Especially, a unique behavior of ion depletion of an ionic liquid droplet under a uniform electric field is studied. Shape deformation due to electric stress and ion distributions inside the droplet are calculated to understand the ionic motion of imidazolium-based ionic liquid droplets with 200 ion pairs of 2 kinds of ionic liquids: EMIM-NTf2 and EMIM-ES. The intermolecular force between cations and anions can be significantly different due to the nature of the structure and charge distribution of the ions. Together with an analytical interpretation of the conducting droplet in an electric field, the MD simulation successfully explains the mechanism of selective ion depletion of an ionic liquid droplet in an electric field. The selective ion depletion phenomenon has been adopted to explain the experimentally observed retreating motion of a droplet in a uniform electric field. The effect of anions on the cation depletion phenomenon can be accounted for from a direct approach to the intermolecular interaction. This research was supproted by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2017R1D1A1B05035211).

  3. Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofu, Maiko; Inamura, Yasuhiro; Miyazaki, Kyoko

    2015-12-21

    Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (E{sub a}) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionicmore » diffusion processes, E{sub a} increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.« less

  4. Probing the cool interstellar and circumgalactic gas of three massive lensing galaxies at z = 0.4-0.7

    NASA Astrophysics Data System (ADS)

    Zahedy, Fakhri S.; Chen, Hsiao-Wen; Rauch, Michael; Wilson, Michelle L.; Zabludoff, Ann

    2016-05-01

    We present multisightline absorption spectroscopy of cool gas around three lensing galaxies at z = 0.4-0.7. These lenses have half-light radii re = 2.6-8 kpc and stellar masses of log M*/M⊙ = 10.9-11.4, and therefore resemble nearby passive elliptical galaxies. The lensed QSO sightlines presented here occur at projected distances of d = 3-15 kpc (or d ≈ 1-2 re) from the lensing galaxies, providing for the first time an opportunity to probe both interstellar gas at r ˜ re and circumgalactic gas at larger radii r ≫ re of these distant quiescent galaxies. We observe distinct gas absorption properties among different lenses and among sightlines of individual lenses. Specifically, while the quadruple lens for HE 0435-1223 shows no absorption features to very sensitive limits along all four sightlines, strong Mg II, Fe II, Mg I, and Ca II absorption transitions are detected along both sightlines near the double lens for HE 0047-1756, and in one of the two sightlines near the double lens for HE 1104-1805. The absorbers are resolved into 8-15 individual components with a line-of-sight velocity spread of Δ v ≈ 300-600 km s-1. The large ionic column densities, log N ≳ 14, observed in two components suggest that these may be Lyman limit or damped Ly α absorbers with a significant neutral hydrogen fraction. The majority of the absorbing components exhibit a uniform supersolar Fe/Mg ratio with a scatter of <0.1 dex across the full Δ v range. Given a predominantly old stellar population in these lensing galaxies, we argue that the observed large velocity width and Fe-rich abundance pattern can be explained by SNe Ia enriched gas at radius r ˜ re. We show that additional spatial constraints in line-of-sight velocity and relative abundance ratios afforded by a multisightline approach provide a powerful tool to resolve the origin of chemically enriched cool gas in massive haloes.

  5. Role of succinonitrile in improving ionic conductivity of sodium-ion conductive polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Nair, Manjula G.; Mohapatra, Saumya R.

    2018-05-01

    Sodium ion conducting solid polymer electrolytes were prepared using poly (ethylene oxide) (PEO) as polymer matrix, sodium perchlorate (NaClO4) as salt and succinonitrile (SN) as a plasticizer by solution casting technique. By blending a plastic crystal such as succinonitrile (SN) with PEO-NaClO4 electrolyte system, we aimed at improving the ionic conductivity by weakening the ether oxygen-Na+ interactions. The XRD and FTIR studies revealed structural and micro-structural changes in the blended electrolytes which aids in improving ionic conductivity. Also, DSC measurements showed improved segmental motion in the blended polymer electrolytes due to plasticizing effect of SN. The maximum ionic conductivity observed at room temperature is 1.13×10-5 S cm-1 merely for 7 wt. % of SN, which is one order higher than pure polymer-salt complex. The thermo-gravimetric analysis (TGA) suggests that blending of SN with polymer electrolyte had no detrimental effect on its thermal stability.

  6. Exceptionally High Electric Double Layer Capacitances of Oligomeric Ionic Liquids.

    PubMed

    Matsumoto, Michio; Shimizu, Sunao; Sotoike, Rina; Watanabe, Masayoshi; Iwasa, Yoshihiro; Itoh, Yoshimitsu; Aida, Takuzo

    2017-11-15

    Electric double layer (EDL) capacitors are promising as next-generation energy accumulators if their capacitances and operation voltages are both high. However, only few electrolytes can simultaneously fulfill these two requisites. Here we report that an oligomeric ionic liquid such as IL4 TFSI with four imidazolium ion units in its structure provides a wide electrochemical window of ∼5.0 V, similar to monomeric ionic liquids. Furthermore, electrochemical impedance measurements using Au working electrodes demonstrated that IL4 TFSI exhibits an exceptionally high EDL capacitance of ∼66 μF/cm 2 , which is ∼6 times as high as those of monomeric ionic liquids so far reported. We also found that an EDL-based field effect transistor (FET) using IL4 TFSI as a gate dielectric material and SrTiO 3 as a channel material displays a very sharp transfer curve with an enhanced carrier accumulation capability of ∼64 μF/cm 2 , as determined by Hall-effect measurements.

  7. Fabrication of core-shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye.

    PubMed

    Beyki, Mostafa Hossein; Bayat, Mehrnoosh; Shemirani, Farzaneh

    2016-10-01

    Ionic liquids are considered to be a class of environmentally friendly compounds as combination of them with bioresource polymeric substances such as; cellulose, constitute emerging coating materials. Biosorption by polymeric ionic liquids exhibits an attractive green way that involves low cost and irrespective of toxicity. As a result, a novel polymeric ionic liquid has been developed by the reaction of one step synthesized Fe3O4-cellulose nanohybrid, epichlorohydrin and 1-methylimidazole and employed as a green sorbent for efficient biosorption of Congo red dye. Effective parameters on dye removing as well as their interactions were determined with response surface methodology (RSM). Congo red adsorption showed fast equilibrium time (11min) with maximum uptake of 131mgg(-1). Isotherm study revealed that Langmuir adsorption model can better describe dye adsorption behavior. Regeneration of the sorbent was performed with a mixture of methanol-acetone-NaOH (3.0molL(-1)) solution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements.

    PubMed Central

    Kuehner, D E; Heyer, C; Rämsch, C; Fornefeld, U M; Blanch, H W; Prausnitz, J M

    1997-01-01

    The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4-7 and ionic strength 0.05-5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation. PMID:9414232

  9. Azimuthal Angle Dependence of HBT Radii in Au+Au Collisions at RHIC-PHENIX

    NASA Astrophysics Data System (ADS)

    Niida, Takafumi

    Measurement of Hanbury-Brown and Twiss (HBT) interferometry with respect to the event plane have been performed in Au+Au collisions at √{sNN} = 200 GeV at PHENIX, which is a unique tool to study the spatial extent of the created matter at final state in heavy ion collisions and the detailed picture of the space-time evolution from the initial state to the final state. The Gaussian source radii was measured for charged pions and kaons with respect to 2nd-order event plane. There was a difference in final eccentricity between both species, which may imply the different freeze-out mechanism by the particle species. The pion source radii was also measured relative to 3rd-order event plane, and the azimuthal angle dependence of the radii was observed, which qualitatively agrees with the recent hydrodynamic calculation and the oscillation may be driven from the triangular flow.

  10. Effect of Ammonium- and Phosphonium-Based Ionic Liquids on the Separation of Lactic Acid by Supported Ionic Liquid Membranes (SILMs)

    PubMed Central

    Matsumoto, Michiaki; Panigrahi, Abhishek; Murakami, Yuuki; Kondo, Kazuo

    2011-01-01

    Biodegradable polymers have attracted much attention from an environmental point of view. Optically pure lactic acid that can be prepared by fermentation is one of the important raw materials for biodegradable polymer. The separation and purification of lactic acid from the fermentation broth are the major portions of the production costs. We proposed the application of supported ionic liquid membranes to recovering lactic acid. In this paper, the effect of ionic liquids, such as Aliquat 336, CYPHOS IL-101, CYPHOS IL-102, CYPHOS IL-104, CYPHOS IL-109 and CYPHOS IL-111 on the lactic acid permeation have been studied. Aliquat 336, CYPHOS IL-101 and CYPHOS IL-102 were found to be the best membrane solvents as far as membrane stability and permeation of lactic acid are concerned. CYPHOS IL-109 and CYPHOS IL-111 were found to be unsuitable, as they leak out from the pores of the supported liquid membrane (SLM), thereby allowing free transport of lactic acid as well as hydrochloric acid. CYPHOS IL-102 was found to be the most adequate (Permeation rate = 60.41%) among these ionic liquids as far as the separation of lactic acid is concerned. The permeation mechanisms, by which ionic liquid-water complexes act as the carrier of lactate and hydrochloric acid, were proposed. The experimental permeation results have been obtained as opposed to the expected values from the solution-diffusion mechanism. PMID:24957613

  11. Explicit role of ionic strength in retention behavior of polystyrene latex particles in sedimentation field-flow fractionation: Slip boundary model.

    PubMed

    Rah, Kyunil; Han, Sujeong; Choi, Jaeyeong; Eum, Chul Hun; Lee, Seungho

    2017-12-15

    We investigate an explicit role of the ionic strength in the retention behaviors of polystyrene (PS) latex particles in sedimentation field-flow fractionation (SdFFF) by hinging upon the retention theory recently developed [1] asR=(R o +v b * )/(1+v b * ). Here R is an experimental retention ratio, and R o is the analytical expression of the standard retention theory based on the parabolic flow velocity. The reduced boundary velocityv b * is expressed in terms of the ionic strength I of the carrier liquid as v b * =v b,o * /(1+εI), where v b,o * =0.070and ε=60 mM -1 for all the PS latex systems under investigation. We then apply this to study the explicit ionic strength effect on the retention behaviors of PS beads of 200, 300, 400, and 500nm, respectively. As a primary result, the strong dependence of the retention ratio on the ionic strength can be quantitatively accounted for in an excellent accuracy: The slip effect at the channel surface is significant, particularly when I≲0.5mM, without showing any distinguishable dependence on the specific additives to control I, such as FL-70, SDS, NaNO 3 , and NaN 3 . Based on the present study, we put forward an experimental means to estimate the ionic strength of an aqueous solution using an FFF technique. Copyright © 2017. Published by Elsevier B.V.

  12. Electrodialytic in-line preconcentration for ionic solute analysis.

    PubMed

    Ohira, Shin-Ichi; Yamasaki, Takayuki; Koda, Takumi; Kodama, Yuko; Toda, Kei

    2018-04-01

    Preconcentration is an effective way to improve analytical sensitivity. Many types of methods are used for enrichment of ionic solute analytes. However, current methods are batchwise and include procedures such as trapping and elution. In this manuscript, we propose in-line electrodialytic enrichment of ionic solutes. The method can enrich ionic solutes within seconds by quantitative transfer of analytes from the sample solution to the acceptor solution under an electric field. Because of quantitative ion transfer, the enrichment factor (the ratio of the concentration in the sample and to that in the obtained acceptor solution) only depends on the flow rate ratio of the sample solution to the acceptor solution. The ratios of the concentrations and flow rates are equal for ratios up to 70, 20, and 70 for the tested ionic solutes of inorganic cations, inorganic anions, and heavy metal ions, respectively. The sensitivity of ionic solute determinations is also improved based on the enrichment factor. The method can also simultaneously achieve matrix isolation and enrichment. The method was successively applied to determine the concentrations of trace amounts of chloroacetic acids in tap water. The regulated concentration levels cannot be determined by conventional high-performance liquid chromatography with ultraviolet detection (HPLC-UV) without enrichment. However, enrichment with the present method is effective for determination of tap water quality by improving the limits of detection of HPLC-UV. The standard addition test with real tap water samples shows good recoveries (94.9-109.6%). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits

    NASA Astrophysics Data System (ADS)

    Cessa, V.; Beck, T.; Benz, W.; Broeg, C.; Ehrenreich, D.; Fortier, A.; Peter, G.; Magrin, D.; Pagano, I.; Plesseria, J.-Y.; Steller, M.; Szoke, J.; Thomas, N.; Ragazzoni, R.; Wildi, F.

    2017-11-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry whose launch readiness is expected end 2017. The CHEOPS instrument will be the first space telescope dedicated to search for transits on bright stars already known to host planets. By being able to point at nearly any location on the sky, it will provide the unique capability of determining accurate radii for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. CHEOPS will also provide precision radii for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The main science goals of the CHEOPS mission will be to study the structure of exoplanets with radii typically ranging from 1 to 6 Earth radii orbiting bright stars. With an accurate knowledge of masses and radii for an unprecedented sample of planets, CHEOPS will set new constraints on the structure and hence on the formation and evolution of planets in this mass range. To reach its goals CHEOPS will measure photometric signals with a precision of 20 ppm in 6 hours of integration time for a 9th magnitude star. This corresponds to a signal to noise of 5 for a transit of an Earth-sized planet orbiting a solar-sized star (0.9 solar radii). This precision will be achieved by using a single frame-transfer backside illuminated CCD detector cool down at 233K and stabilized within {10 mK . The CHEOPS optical design is based on a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star while minimizing straylight using a dedicated field stop and baffle system. As CHEOPS will be in a LEO orbit, straylight suppression is a key point to allow the observation of faint stars. The telescope will be the only payload on a spacecraft platform providing pointing stability of < 8 arcsec rms, power of 60W for instrument operations and downlink transmission of at least 1.2GBit/day. Both CHEOPS paylaod and platform will rely mainly on components with flight heritage. The baseline CHEOPS mission fits within the technical readiness requirements, short development time and the cost envelope defined by ESA in its first call for S-missions. It represents a breakthrough opportunity in furthering our understanding of the formation and evolution of planetary systems.

  14. Efficient platinum-free counter electrodes for dye-sensitized solar cell applications.

    PubMed

    Ahmad, Shahzada; Yum, Jun-Ho; Butt, Hans-Jürgen; Nazeeruddin, Mohammad K; Grätzel, Michael

    2010-09-10

    Nanoporous layers of poly(3,4-propylenedioxythiophene) (PProDOT) were fabricated by electrical-field-assisted growth using hydrophobic ionic liquids as the growing medium. A series of PProDoT layers was prepared with three different ionic liquids to control the microstructure and electrochemical properties of the resulting dye-sensitized solar cells, which were highly efficient and showed a power conversion efficiency of >9% under different sunlight intensities. The current-voltage characteristics of the counter electrodes varied depending on the ionic liquids used in the synthesis of PProDOT. The most hydrophobic ionic liquids exhibited high catalytic properties, thus resulting in high power conversion efficiency and allowing the fabrication of platinum-free, stable, flexible, and cost-effective dye-sensitized solar cells.

  15. Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films.

    PubMed

    Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank

    2017-09-25

    Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

  16. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolytes

    NASA Astrophysics Data System (ADS)

    Appetecchi, Giovanni B.; Montanino, Maria; Balducci, Andrea; Lux, Simon F.; Winterb, Martin; Passerini, Stefano

    In this paper we report the results of chemical-physical investigation performed on ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. The ternary electrolytes were made by mixing N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide (PYR 13FSI) and N-butyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR 14TFSI) ionic liquids with lithium hexafluorophosphate (LiPF 6) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The mixtures were developed based on preliminary results on the cyclability of graphite electrodes in the IL-LiX binary electrolytes. The results clearly show the beneficial synergic effect of the two ionic liquids on the electrochemical properties of the mixtures.

  17. Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces.

    PubMed

    Grinshpun, S A; Mainelis, G; Trunov, M; Adhikari, A; Reponen, T; Willeke, K

    2005-08-01

    Numerous techniques have been developed over the years for reducing aerosol exposure in indoor air environments. Among indoor air purifiers of different types, ionic emitters have gained increasing attention and are presently used for removing dust particles, aeroallergens and airborne microorganisms from indoor air. In this study, five ionic air purifiers (two wearable and three stationary) that produce unipolar air ions were evaluated with respect to their ability to reduce aerosol exposure in confined indoor spaces. The concentration decay of respirable particles of different properties was monitored in real time inside the breathing zone of a human manikin, which was placed in a relatively small (2.6 m3) walk-in chamber during the operation of an ionic air purifier in calm air and under mixing air condition. The particle removal efficiency as a function of particle size was determined using the data collected with a size-selective optical particle counter. The removal efficiency of the more powerful of the two wearable ionic purifiers reached about 50% after 15 min and almost 100% after 1.5 h of continuous operation in the chamber under calm air conditions. In the absence of external ventilation, air mixing, especially vigorous one (900 CFM), enhanced the air cleaning effect. Similar results were obtained when the manikin was placed inside a partial enclosure that simulated an aircraft seating configuration. All three stationary ionic air purifiers tested in this study were found capable of reducing the aerosol concentration in a confined indoor space. The most powerful stationary unit demonstrated an extremely high particle removal efficiency that increased sharply to almost 90% within 5-6 min, reaching about 100% within 10-12 min for all particle sizes (0.3-3 microm) tested in the chamber. For the units of the same emission rate, the data suggest that the ion polarity per se (negative vs. positive) does not affect the performance but the ion emission rate does. The effects of particle size (within the tested range) and properties (NaCl, PSL, Pseudomonas fluorescens bacteria) as well as the effects of the manikin's body temperature and its breathing on the ionic purifier performance were either small or insignificant. The data suggest that the unipolar ionic air purifiers are particularly efficient in reducing aerosol exposure in the breathing zone when used inside confined spaces with a relatively high surface-to-volume ratio. Ionic air purifiers have become increasingly popular for removing dust particles, aeroallergens and airborne microorganisms from indoor air in various settings. While the indoor air cleaning effect, resulting from unipolar and bipolar ion emission, has been tested by several investigators, there are still controversial claims (favorable and unfavorable) about the performance of commercially available ionic air purifiers. Among the five tested ionic air purifiers (two wearable and three stationary) producing unipolar air ions, the units with a higher ion emission rate provided higher particle removal efficiency. The ion polarity (negative vs. positive), the particle size (0.3-3 microm) and properties (NaCl, PSL, Pseudomonas fluorescens bacteria), as well as the body temperature and breathing did not considerable affected the ionization-driven particle removal. The data suggest that the unipolar ionic air purifiers are particularly efficient in reducing aerosol exposure in the breathing zone when they are used inside confined spaces with a relatively high surface-to-volume ratio (such as automobile cabins, aircraft seating areas, bathrooms, cellular offices, small residential rooms, and animal confinements). Based on our experiments, we proposed that purifiers with a very high ion emission rate be operated in an intermittent mode if used indoors for extended time periods. As the particles migrate to and deposit on indoor surfaces during the operation of ionic air purifiers, some excessive surface contamination may occur, which introduces the need of periodic cleaning these surfaces.

  18. Absolute Properties of the Low-Mass Eclipsing Binary CM Draconis

    NASA Astrophysics Data System (ADS)

    Morales, Juan Carlos; Ribas, Ignasi; Jordi, Carme; Torres, Guillermo; Gallardo, José; Guinan, Edward F.; Charbonneau, David; Wolf, Marek; Latham, David W.; Anglada-Escudé, Guillem; Bradstreet, David H.; Everett, Mark E.; O'Donovan, Francis T.; Mandushev, Georgi; Mathieu, Robert D.

    2009-02-01

    Spectroscopic and eclipsing binary systems offer the best means for determining accurate physical properties of stars, including their masses and radii. The data available for low-mass stars have yielded firm evidence that stellar structure models predict smaller radii and higher effective temperatures than observed, but the number of systems with detailed analyses is still small. In this paper, we present a complete reanalysis of one of such eclipsing systems, CM Dra, composed of two dM4.5 stars. New and existing light curves as well as a radial velocity curve are modeled to measure the physical properties of both components. The masses and radii determined for the components of CM Dra are M 1 = 0.2310 ± 0.0009 M sun, M 2 = 0.2141 ± 0.0010M sun, R 1 = 0.2534 ± 0.0019 R sun, and R 2 = 0.2396 ± 0.0015 R sun. With relative uncertainties well below the 1% level, these values constitute the most accurate properties to date for fully convective stars. This makes CM Dra a valuable benchmark for testing theoretical models. In comparing our measurements with theory, we confirm the discrepancies previously reported for other low-mass eclipsing binaries. These discrepancies seem likely to be due to the effects of magnetic activity. We find that the orbit of this system is slightly eccentric, and we have made use of eclipse timings spanning three decades to infer the apsidal motion and other related properties.

  19. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.

    PubMed

    Ferhan, Abdul Rahim; Guo, Longhua; Kim, Dong-Hwan

    2010-07-20

    The effect of ionic strength as well as surfactant concentration on the surface assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (GNRs) has been studied. Glass substrates were modified to yield a net negative charge through electrostatic coating of polystyrenesulfonate (PSS) over a self-assembled monolayer (SAM) of positively charged aminopropyltriethoxysilane (APTS). The substrates were then fully immersed in GNR solutions at different CTAB concentrations and ionic strengths. Under slightly excess CTAB concentrations, it was observed that the density of GNRs immobilized on a substrate was predictably tunable through the adjustment of NaCl concentration over a wide range. Motivated by the experimental observation, we hypothesize that electrostatic shielding of charges around the GNRs affects the density of GNR immobilization. This model ultimately explains that at moderate to high CTAB concentrations a second electrostatic shielding effect contributed by excess CTAB molecules occurs, resulting in a parabolic trend of nanorod surface density when ionic strength is continually increased. In contrast, at a low CTAB concentration, the effect of ionic strength becomes much less significant due to insufficient CTAB molecules to provide for the second electrostatic shielding effect. The tunability of electrostatic-based surface assembly of GNRs enables the attainment of a dense surface assembly of nanorods without significant removal of CTAB or any other substituted stabilizing agent, both of which could compromise the stability and morphology of GNRs in solution. An additional study performed to investigate the robustness of such electrostatic-based surface assembly also proved its reliability to be used as biosensing platforms.

  20. Improvement of imprinting effect of ionic liquid molecularly imprinted polymers by use of a molecular crowding agent.

    PubMed

    Jia, Man; Yang, Jian; Sun, Ya Kun; Bai, Xi; Wu, Tao; Liu, Zhao Sheng; Aisa, Haji Akber

    2018-01-01

    We aimed to improve the imprinting effect of ionic liquid molecularly imprinted polymers (MIPs) by use of a molecular crowding agent. The ionic liquid 1-vinyl-3-ethylimidazolium tetrafluoroborate ([VEIm][BF 4 ]) was used as the functional monomer and aesculetin was used as the template molecule in a crowding environment, which was made up of a tetrahydrofuran solution of polystyrene. The ionic liquid MIPs that were prepared in the crowding environment displayed an enhanced imprinting effect. NMR peak shifts of active hydrogen of aesculetin suggested that interaction between the functional monomer and the template could be increased by the use of a crowding agent in the self-assembly process. The retention and selectivity of aesculetin were affected greatly by high molecular crowding, the amount of high molecular weight crowding agent, and the ratio of [VEIm][BF 4 ] to aesculetin. The optimal MIPs were used as solid-phase extraction sorbents to extract aesculetin from Cichorium glandulosum. A calibration curve was obtained with aesculetin concentrations from 0.0005 to 0.05 mg mL -1 (correlation coefficient R 2 of 0.9999, y = 1519x + 0.0923). The limit of quantification was 0.12 μg mL -1 , and the limit of detection was 0.05 μg mL -1 . The absolute recovery of aesculetin was (80 ± 2)% (n = 3), and the purity of aesculetin was (92 ± 0.5)% (n = 5). As a conclusion, molecular crowding is an effective approach to obtain ionic liquid MIPs with high selectivity even in a polar solvent environment.

Top