Viscoelasticity of nano-alumina dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rand, B.; Fries, R.
1996-06-01
The flow and viscoelastic properties of electrostatically stabilized nano-alumina dispersions have been studied as a function of ionic strength and volume fraction of solids. At low ionic strength the suspensions were deflocculated and showed a transition from viscous to elastic behavior as the solid content increased associated with the onset of double layer interpenetration. The phase transition was progressively shifted to higher solids fractions with increasing ionic strength. At higher ionic strength, above the critical coagulation concentration, the suspensions formed attractive networks characterized by high elasticity. Two independent methods of estimating the effective radius of electrostatically stabilized {open_quotes}soft{close_quotes} particles, a{submore » eff}, are presented based on phase angle data and a modified Dougherty-Krieger equation. The results suggest that a{sub eff} is not constant for a given system but changes with both solids fraction and ionic strength.« less
NASA Astrophysics Data System (ADS)
Hwang, G.; Gomez-Flores, A.; Choi, S.; Han, Y., , Dr; Kim, H.
2017-12-01
The influence of humic acid, ionic strength and ionic species on the aggregation and dispersion of carboxyl-functionalized carbon black nanoparticles (CB-NPs) was systemically investigated in aqueous media. The experimental conditions of stability tests were selected to the changes in the solution chemistry (0.1-10 mM NaCl and 0.01-1 mM CaCl2) and in the presence/absence of humic acid (1 and 5 mg L-1) in an aquatic environment. The CB-NPs suspension was more rapidly settled in NaCl solution than in CaCl2. Specifically, in the case of NaCl, the aggregation rate of CB-NPs increased with ionic strength. Contrary, CB-NPs dispersed in CaCl2 were insensitive to the aggregation as the ionic strength increased; that was because specific adsorption of the divalent cation Ca2+ occurred since the zeta potential of the CB-NPs is reversed to a positive charge with increasing of the ionic strength. It was confirmed that humic acid greatly influences the stability of the CB-NPs. In particular, the dispersion of CB-NPs was improved in the whole range of ionic strengths of NaCl as well as of CaCl2. To support the results, the interaction energy between CB-NPs was calculated for each condition by using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) and modified-DLVO theories. In the presence of humic acid, the improved stability of CB-NPs is attributed to the steric repulsive force.This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01020766), the Ministry of Education (MOE) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation (2015H1C1A1035930) and Korea Energy and Mineral Resources Engineering Program (KEMREP).
Dickson, Dionne; Liu, Guangliang; Li, Chenzhong; Tachiev, Georgio; Cai, Yong
2012-01-01
The aggregation and sedimentation of iron oxide nanoparticles (IONPs) can significantly affect the mobility and reactivity of IONPs and subsequently influence the interaction between IONPs and environmental contaminants. Dispersing bare IONPs into a stable suspension within nanoscale range is an important step for studying the interaction of IONPs with contaminants (e.g., toxic metals). In this study, different techniques to disperse bare IONPs (vortex, bath sonication and probe ultrasonication) and the effects of important environmental factors such as dissolved organic matter and ionic strength on the stability of IONPs dispersions were investigated. Vortex minimally dispersed IONPs with hydrodynamic diameter outside the “nanosize range” (698–2400nm). Similar to vortex, bath sonication could not disperse IONPs efficiently. Probe ultrasonication was more effective at dispersing IONPs (50% or more) with hydrodynamic diameters ranging from 120–140 nm with minimal changes in size and sedimentation of IONPs for a prolonged period of time. Over the course of 168 hours, considerable amounts of IONPs remained dispersed in the presence and absence of low ionic strength (0.1 mM of NaCl) and 100 mg/L of humic acid (HA). These results indicate that IONPs can be broken down efficiently into “nanosize range” by probe ultrasonication and a degree of stability can be achieved without the use of synthetic modifiers to enhance colloidal stability. This dispersion tool could be used to develop a laboratory method to study the adsorption mechanism between dispersed bare IONPs and toxic contaminants. PMID:22289174
Structural rearrangement and dispersion of functionalized graphene sheets in aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yun Jung; Huang, Liwei; Wang, Howard
2015-09-01
Surfactants are widely used for dispersing graphene and functionalized graphene sheets (FGS) in colloidal suspensions, but there have been few studies of the structure of the dispersed graphene-surfactant complexes in suspension and of their time evolution. Here, we combine experimental study of efficiencies of ionic surfactants/polymers in suspending FGS in water with characterization using atomic force microscopy, small angle neutron scattering, and molecular simulations to probe the detailed structures of FGSs. A systematic study of FGS dispersions using ionic surfactants with varying chain lengths revealed that the effective charge density of surfactant layer defines the concentration of dispersed FGS whilemore » the strength of interfacial binding defines the stability of graphene dispersion over long time aging. Ionic surfactants with strong interfacial binding and large molecular weight increase the dispersing power by over an order of magnitude.« less
Lawrence, Patrick G; Lapitsky, Yakov
2015-02-03
Gel-like coacervates that adhere to both hydrophilic and hydrophobic substrates under water have recently been prepared by ionically cross-linking poly(allylamine) (PAH) with pyrophosphate (PPi) and tripolyphosphate (TPP). Among the many advantages of these underwater adhesives (which include their simple preparation and low cost) is their ability to dissolve on demand when exposed to high or low pH. To further analyze their stimulus-responsive properties, we have investigated the pH and ionic strength effects on the formation, rheology and adhesion of PAH/PPi and PAH/TPP complexes. The ionic cross-linker concentrations needed to form these adhesives decreased with increasing pH and ionic strength (although the complexes ceased to form when the parent solution pH exceeded ca. 8.5; i.e., the effective pKa of PAH). Once formed, their ionic cross-links were most stable (as inferred from their relaxation times) at near-neutral or slightly alkaline pH values (of roughly 6.5-9) and at low ionic strengths. The decrease in ionic cross-link stability within complexes prepared at other pH values and at elevated (150-300 mM) NaCl concentrations diminished both the strength and longevity of adhesion (although, under most conditions tested, the short-term tensile adhesion strengths remained above 10(5) Pa). Additionally, the sensitivity of PAH/PPi and PAH/TPP complexes to ionic strength was demonstrated as a potential route to injectable adhesive design (where spontaneous adhesive formation was triggered via injection of low-viscosity, colloidal PAH/TPP dispersions into phosphate buffered saline). Thus, while the sensitivity of ionically cross-linked PAH networks to pH and ionic strength can weaken their adhesion, it can also impart them with additional functionality, such as minimally invasive, injectable delivery, and ability to form and dissolve their bonds on demand.
Reid, Michael S; Kedzior, Stephanie A; Villalobos, Marco; Cranston, Emily D
2017-08-01
This work explores cellulose nanocrystal (CNC) thin films (<50 nm) and particle-particle interactions by investigating film swelling in aqueous solutions with varying ionic strength (1-100 mM). CNC film hydration was monitored in situ via surface plasmon resonance, and the kinetics of liquid uptake were quantified. The contribution of electrostatic double-layer forces to film swelling was elucidated by using CNCs with different surface charges (anionic sulfate half ester groups, high and low surface charge density, and cationic trimethylammonium groups). Total water uptake in the thin films was found to be independent of ionic strength and surface chemistry, suggesting that in the aggregated state van der Waals forces dominate over double-layer forces to hold the films together. However, the rate of swelling varied significantly. The water uptake followed Fickian behavior, and the measured diffusion constants decreased with the ionic strength gradient between the film and the solution. This work highlights that nanoparticle interactions and dispersion are highly dependent on the state of particle aggregation and that the rate of water uptake in aggregates and thin films can be tailored based on surface chemistry and solution ionic strength.
Dalmont, Helene; Pinprayoon, Orawan; Saunders, Brian R
2008-03-18
pH-responsive microgel dispersions contain cross-linked polymer particles that swell when the pH approaches the pKa of the ionic monomer incorporated within the particles. In recent work from our group, it was demonstrated that the mechanical properties of degenerated intervertebral discs (IVDs) could be restored to normal values by injection of pH-responsive microgel dispersions (Saunders, J. M.; Tong, T.; LeMaitre, C.; Freemont, A. J.; Saunders, B. R. Soft Matter 2007, 3, 486). These dispersions change from a fluid to a gel with increasing pH. The present work investigates the pH-dependent properties of dispersions of microgel particles containing MAA (methacrylic acid) and also the effects of added Ca2+. Two microgels are discussed: microgel A is poly(EA/MAA/AM) (EA and AM are ethyl acrylate and allyl methacrylate), and microgel B is poly(EA/MAA/BDDA) (butanediol diacrylate). The pH-dependent particle properties investigated include hydrodynamic diameters and electrophoretic mobilities. The critical coagulation concentrations (CCC) of dilute dispersions and the elastic modulus (G') of concentrated, gelled microgel dispersions were also investigated. In the absence of added Ca2+, the particle swelling and G' were smallest and largest, respectively, for microgel A. The changes in hydrodynamic diameter and mobility with pH were explained in terms of a core-shell swelling mechanism. Added Ca2+ was found to significantly decrease the CCCs, extents of particle swelling, and magnitude of the electrophoretic mobility. This was attributed to the ionic cross-linking of neighboring RCOO- groups by Ca2+. It is suggested that the formation of ionic cross-links is inefficient within the microgel particles because of the presence of covalent cross-links that oppose the large-scale conformational rearrangement of neighboring RCOO- groups. The effect of Ca2+ on the properties of the gelled dispersions is important from the viewpoint of potential application in vivo. Rheological studies of the gelled microgel dispersions showed that added Ca2+ did not have a specific influence on G'. The differences observed in the presence of Ca2+ were attributed to ionic strength effects (screening). The key parameter that controls G' of the gelled microgel dispersions is pH. The results from this work suggest that the elasticity of the gels would be slightly reduced in vivo as a consequence of the high ionic strength present.
Werner, Justyna
2016-04-01
Task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction was used for the preconcentration of cadmium(II), cobalt(II), and lead(II) ions in tea samples, which were subsequently analyzed by liquid chromatography with UV detection. The proposed method of preconcentration is free of volatile organic compounds, which are often used as extractants and dispersing solvents in classic techniques of microextraction. A task-specific ionic liquid trioctylmethylammonium thiosalicylate was used as an extractant and a chelating agent. Ultrasound was used to disperse the ionic liquid. After microextraction, the phases were separated by centrifugation, and the ionic liquid phase was solubilized in methanol and directly injected into the liquid chromatograph. Selected microextraction parameters, such as the volume of ionic liquid, the pH of the sample, the duration of ultrasound treatment, the speed and time of centrifugation, and the effect of ionic strength, were optimized. Under optimal conditions an enrichment factor of 200 was obtained for each analyte. The limits of detection were 0.002 mg/kg for Cd(II), 0.009 mg/kg for Co(II), and 0.013 mg/kg for Pb(II). The accuracy of the proposed method was evaluated by an analysis of the Certified Reference Materials (INCT-TL-1, INCT-MPH-2) with the recovery values in the range of 90-104%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zheng, Q.; Dickson, S.; Guo, Y.
2007-12-01
A good understanding of the physico-chemical processes (i.e., advection, dispersion, attachment/detachment, straining, sedimentation etc.) governing colloid transport in fractured media is imperative in order to develop appropriate bioremediation and/or bioaugmentation strategies for contaminated fractured aquifers, form management plans for groundwater resources to prevent pathogen contamination, and identify suitable radioactive waste disposal sites. However, research in this field is still in its infancy due to the complex heterogeneous nature of fractured media and the resulting difficulty in characterizing this media. The goal of this research is to investigate the effects of aperture field variability, flow rate and ionic strength on colloid transport processes in well characterized single fractures. A combination of laboratory-scale experiments, numerical simulations, and imaging techniques were employed to achieve this goal. Transparent replicas were cast from natural rock fractures, and a light transmission technique was employed to measure their aperture fields directly. The surface properties of the synthetic fractures were characterized by measuring the zeta-potential under different ionic strengths. A 33 (3 increased to the power of 3) factorial experiment was implemented to investigate the influence of aperture field variability, flow rate, and ionic strength on different colloid transport processes in the laboratory-scale fractures, specifically dispersion and attachment/detachment. A fluorescent stain technique was employed to photograph the colloid transport processes, and an analytical solution to the one-dimensional transport equation was fit to the colloid breakthrough curves to calculate the average transport velocity, dispersion coefficient, and attachment/detachment coefficient. The Reynolds equation was solved to obtain the flow field in the measured aperture fields, and the random walk particle tracking technique was employed to model the colloid transport experiments. The images clearly show the development of preferential pathways for colloid transport in the different aperture fields and under different flow conditions. Additionally, a correlation between colloid deposition and fracture wall topography was identified. This presentation will demonstrate (1) differential transport between colloid and solute in single fractures, and the relationship between differential transport and aperture field statistics; (2) the relationship between the colloid dispersion coefficient and aperture field statistics; and (3) the relationship between attachment/detachment, aperture field statistics, fracture wall topography, flow rate, and ionic strength. In addition, this presentation will provide insight into the application of the random walk particle tracking technique for modeling colloid transport in variable-aperture fractures.
Dahlsten, Per; Próchniak, Piotr; Kosmulski, Marek; Rosenholm, Jarl B
2009-11-15
The electrokinetic behavior of micrometer-sized melamine-formaldehyde latex particles in 10(-3)-10(-1)M monovalent electrolyte dispersions was investigated by electrophoresis and electroacoustics. Specific adsorption of the electrolytes was identified as a shift of the isoelectric point (pH(iep)) with an increased ionic strength. All salts had an equal dependence on the ionic strength. The pH(iep) was correlated with the anion sequence predicted by the hard-soft acid-base (HSAB) principle, Hofmeister series, and Born charging. The Born and the Hofmeister anion scale were successful in producing a systematic dependency of the isoelectric point (pH(iep)), particularly in high (10(-1)M) and low (10(-3)M) MF electrolyte dispersions. No clear trend could be found for the pH(iep) dependence on the anion HSAB scale.
Pyell, Ute; Jalil, Alaa H; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J
2015-07-15
Taking gold nanoparticles with different hydrophilic coatings as an example, it is investigated whether capillary electrophoresis in combination with Taylor dispersion analysis allows for the precise determination of mean electrophoretic mobilities, electrophoretic mobility distributions, and zeta potentials in a matrix of exactly known composition and the calibration-free determination of number-weighted mean hydrodynamic radii. Our experimental data confirm that the calculation of the zeta potential for colloidal nanoparticles with ζ>25 mV requires to take the relaxation effect into account. Because of the requirement to avoid particle-wall interactions, a solution of disodiumtetraborate decahydrate (borax) in deionized water had been selected as suitable electrolyte. Measurements of the electrophoretic mobility at different ionic strength and application of the analytic approximation developed by Ohshima show that in the present case of a buffered solution with a weak electrolyte co-ion and a strong electrolyte counterion, the effective ionic drag coefficient should be approximated with the ionic drag coefficient of the counterion. The obtained results are in good agreement with theoretical expectations regarding the dependence of the zeta potential and the electrokinetic surface charge density on the ionic strength. We also show that Taylor dispersion analysis (besides estimation of the number-weighted mean hydrodynamic radius) provides additional information on the type and width of the number-weighted particle distribution. Copyright © 2015 Elsevier Inc. All rights reserved.
Gimsa, J; Müller, T; Schnelle, T; Fuhr, G
1996-01-01
Usually dielectrophoretic and electrorotation measurements are carried out at low ionic strength to reduce electrolysis and heat production. Such problems are minimized in microelectrode chambers. In a planar ultramicroelectrode chamber fabricated by semiconductor technology, we were able to measure the dielectric properties of human red blood cells in the frequency range from 2 kHz to 200 MHz up to physiological ion concentrations. At low ionic strength, red cells exhibit a typical electrorotation spectrum with an antifield rotation peak at low frequencies and a cofield rotation peak at higher ones. With increasing medium conductivity, both electrorotational peaks shift toward higher frequencies. The cofield peak becomes antifield for conductivities higher than 0.5 S/m. Because the polarizability of the external medium at these ionic strengths becomes similar to that of the cytoplasm, properties can be measured more sensitively. The critical dielectrophoretic frequencies were also determined. From our measurements, in the wide conductivity range from 2 mS/m to 1.5 S/m we propose a single-shell erythrocyte model. This pictures the cell as an oblate spheroid with a long semiaxis of 3.3 microns and an axial ratio of 1:2. Its membrane exhibits a capacitance of 0.997 x 10(-2) F/m2 and a specific conductance of 480 S/m2. The cytoplasmic parameters, a conductivity of 0.4 S/m at a dielectric constant of 212, disperse around 15 MHz to become 0.535 S/m and 50, respectively. We attribute this cytoplasmic dispersion to hemoglobin and cytoplasmic ion properties. In electrorotation measurements at about 60 MHz, an unexpectedly low rotation speed was observed. Around 180 MHz, the speed increased dramatically. By analysis of the electric chamber circuit properties, we were able to show that these effects are not due to cell polarization but are instead caused by a dramatic increase in the chamber field strength around 180 MHz. Although the chamber exhibits a resonance around 180 MHz, the harmonic content of the square-topped driving signals generates distortions of electrorotational spectra at far lower frequencies. Possible technological applications of chamber resonances are mentioned. Images FIGURE 1 PMID:8804632
Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles
NASA Astrophysics Data System (ADS)
Ali, H. M.; Iedema, M.; Yu, X.-Y.; Cowin, J. P.
2014-06-01
The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium chloride (brine) particles was studied by utilizing a cross flow mini-reactor. The reaction kinetics were followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely CCSEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry's law solubility of H2O2 in brine solutions to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to, eventually, a mixed NaHSO4 plus H2SO4 brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted using established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the dependence of the Henry's law constant of H2O2 on ionic strength.
Ionic strength dependence of the oxidation of SO2 by H2O2 in sodium chloride particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Hashim M.; Iedema, Martin J.; Yu, Xiao-Ying
The reaction of sulfur dioxide and hydrogen peroxide in the presence of deliquesced (>75% RH) sodium particles was studied by utilizing a crossflow-mini reactor. The reaction kinetics was followed by observing chloride depletion in particles by computer-controlled scanning electron microscope with energy dispersive X-ray analysis, namely SEM/EDX. The reactions take place in concentrated mixed salt brine aerosols, for which no complete kinetic equilibrium data previously existed. We measured the Henry’s law solubility of H2O2 to close that gap. We also calculated the reaction rate as the particle transforms continuously from concentrated NaCl brine to eventually a mixed NaHSO4 plus H2SO4more » brine solution. The reaction rate of the SO2 oxidation by H2O2 was found to be influenced by the change in ionic strength as the particle undergoes compositional transformation, following closely the dependence of the third order rate constant on ionic strength as predicted rates using previously established rate equations. This is the first study that has measured the ionic strength dependence of sulfate formation (in non-aqueous media) from oxidation of mixed salt brine aerosols in the presence of H2O2. It also gives the first report of the Henry’s law constant of H2O2 dependence on ionic strength.« less
Corresponding-states behavior of an ionic model fluid with variable dispersion interactions
NASA Astrophysics Data System (ADS)
Weiss, Volker C.
2016-06-01
Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.
Corresponding-states behavior of an ionic model fluid with variable dispersion interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Volker C., E-mail: volker.weiss@bccms.uni-bremen.de
2016-06-21
Guggenheim’s corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroymore » and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Z{sub c}. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%–40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Z{sub c} as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.« less
Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming
2011-11-30
The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-05-29
An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mistry, Pinal; Mohapatra, Sarat; Gopinath, Tata; Vogt, Frederick G; Suryanarayanan, Raj
2015-09-08
The effects of specific drug-polymer interactions (ionic or hydrogen-bonding) on the molecular mobility of model amorphous solid dispersions (ASDs) were investigated. ASDs of ketoconazole (KTZ), a weakly basic drug, with each of poly(acrylic acid) (PAA), poly(2-hydroxyethyl methacrylate) (PHEMA), and polyvinylpyrrolidone (PVP) were prepared. Drug-polymer interactions in the ASDs were evaluated by infrared and solid-state NMR, the molecular mobility quantified by dielectric spectroscopy, and crystallization onset monitored by differential scanning calorimetry (DSC) and variable temperature X-ray diffractometry (VTXRD). KTZ likely exhibited ionic interactions with PAA, hydrogen-bonding with PHEMA, and weaker dipole-dipole interactions with PVP. On the basis of dielectric spectroscopy, the α-relaxation times of the ASDs followed the order: PAA > PHEMA > PVP. In addition, the presence of ionic interactions also translated to a dramatic and disproportionate decrease in mobility as a function of polymer concentration. On the basis of both DSC and VTXRD, an increase in strength of interaction translated to higher crystallization onset temperature and a decrease in extent of crystallization. Stronger drug-polymer interactions, by reducing the molecular mobility, can potentially delay the crystallization onset temperature as well as crystallization extent.
Slow dynamics approaching the glass transition in repulsive magnetic fluids
NASA Astrophysics Data System (ADS)
Mériguet, G.; Dubois, E.; Dupuis, V.; Perzynski, R.
2004-04-01
We study the dynamics of concentrated ionic magnetic colloidal dispersions, which are constituted of γ - Fe2O3 nanoparticles dispersed in water, and stabilized with electrostatic interparticle repulsion, using magneto-optical birefringence measurements. By gradually increasing the volume fraction Φ of the particles at constant ionic strength in the repulsive region of the phase diagram, we observe a dramatic increase of the characteristic time associated with the rotation of the particles that we induce by applying a field pulse. This increase is reminiscent of the divergence of the relaxation time observed at the approach of a glass transition and confirms the existence of a glassy phase in these magnetic colloids.
Kwon, Taehoon; Cho, Hyeongrae; Lee, Jang-Woo; Henkensmeier, Dirk; Kang, Youngjong; Koo, Chong Min
2017-08-30
Ionic polymer composite membranes based on sulfonated poly(arylene ether sulfone) (SPAES) and copper(II) phthalocyanine tetrasulfonic acid (CuPCSA) are assembled into bending ionic polymer actuators. CuPCSA is an organic filler with very high sulfonation degree (IEC = 4.5 mmol H + /g) that can be homogeneously dispersed on the molecular scale into the SPAES membrane, probably due to its good dispersibility in SPAES-containing solutions. SPAES/CuPCSA actuators exhibit larger ion conductivity (102 mS cm -1 ), tensile modulus (208 MPa), strength (101 MPa), and strain (1.21%), exceptionally faster response to electrical stimuli, and larger mechanical power density (3028 W m -3 ) than ever reported for ion-conducting polymer actuators. This outstanding actuation performance of SPAES/CuPCSA composite membrane actuators makes them attractive for next-generation transducers with high power density, which are currently developed, e.g., for underwater propulsion and endoscopic surgery.
Co-transport of gold nanospheres with single-walled carbon nanotubes in saturated porous media.
Afrooz, A R M Nabiul; Das, Dipesh; Murphy, Catherine J; Vikesland, Peter; Saleh, Navid B
2016-08-01
Porous media transport of engineered nanomaterials (ENMs) is typically assessed in a controlled single-particulate environment. Presence of a secondary particle (either natural or engineered) in the natural environment though likely, is rarely taken into consideration in assessing ENMs' transport behavior. This study systematically assesses the effect of a secondary ENM (i.e., pluronic acid modified single-walled carbon nanotubes, PA-SWNTs) on a primary particle (i.e., gold nanospheres, AuNSs) transport through saturated porous media under a wide range of aquatic conditions (1-100 mM NaCl). AuNS hetero-dispersions (i.e., with PA-SWNTs) are transported through saturated sand columns, and the transport behavior is compared to AuNS-only homo-dispersion cases, which display classical ionic strength-dependent behavior. AuNS hetero-dispersion, however, is highly mobile with little to no ionic strength-dependent effects. This study also assesses the role of pre-coating of the collectors with PA-SWNTs on AuNSs' mobility, thereby elucidating the role played by the order of introduction of the secondary particles. Pre-existence of the secondary particles in the porous media shows enhanced filtration of primary AuNSs. However, the presence of natural organic matter (NOM) slightly increases AuNS mobility through PA-SWNT coated sand at 10 mM ionic strength. The study results demonstrate that the presence and order of addition of the secondary particles strongly influence primary particles' mobility. Thus ENMs can demonstrate facilitated transport or enhanced removal, depending on the presence of the secondary particulate matter and background solution chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Orlye, Fanny; Reiller, Pascal E.
2014-02-15
The physicochemical properties of three different humic substances (HS) are probed using capillary zone electrophoresis in alkaline carbonate buffers, pH 10. Special attention is drawn to the impact of the electrolyte ionic strength and counter-ion nature, chosen within the alkali-metal series, on HS electrophoretic mobility. Taylor-Aris dispersion analysis provides insights into the hydrodynamic radius (R-H) distributions of HS. The smallest characterized entities are of nano-metric dimensions, showing neither ionic strength- nor alkali-metal-induced aggregation. These results are compared with the entities evidenced in dynamic light scattering measurements, the size of which is two order of magnitude higher, ca. 100 nm. Themore » extended Onsager model provides a reasonable description of measured electrophoretic mobilities in the ionic strength range 1-50 mM, thus allowing the estimation of limiting mobilities and ionic charge numbers for the different HS samples. An unexpected HS electrophoretic mobility increase (in absolute value) is observed in the order Li{sup +} ≤ Na{sup +} ≤ K{sup +} ≤ Cs{sup +} and discussed either in terms of retarding forces or in terms of ion-ion interactions. (authors)« less
NASA Astrophysics Data System (ADS)
Elzbieciak-Wodka, Magdalena; Popescu, Mihail N.; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal
2014-03-01
Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10-21 J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.
Elzbieciak-Wodka, Magdalena; Popescu, Mihail N; Montes Ruiz-Cabello, F Javier; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal
2014-03-14
Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10(-21) J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.
Dammak, Abir; Moreau, Céline; Azzam, Firas; Jean, Bruno; Cousin, Fabrice; Cathala, Bernard
2015-12-15
The effect of the variation of CNC concentration on the growth pattern of CNC-XG films is investigated. We found that a transition in the growth slope occurs at a CNC concentration of roughly 3-4gL(-1). A close effect can be obtained by the increase of the ionic strength of the CNC suspensions, suggesting that electrostatic interactions are involved. Static light scattering investigation of CNC dispersions at increasing concentrations demonstrated that the particle-particle interactions change as the CNC concentration increases. Neutron Reflectivity (NR) was used to probe the internal structure of the films. The increase of the CNC concentration as well as the increase of the ionic strength in the CNC suspension were found to induce a densification of the adsorbed CNC layers, even though the mechanisms are not strictly identical in both cases. Small changes in these parameters provide a straightforward way of controlling the architecture of CNC-based multilayered thin films and, as a result, their functional properties. Copyright © 2015 Elsevier Inc. All rights reserved.
Padró, Juan M; Pellegrino Vidal, Rocío B; Echevarria, Romina N; Califano, Alicia N; Reta, Mario R
2015-05-01
Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic-liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and UV detection. For this technique, the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate has been used as the "extraction solvent." A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 μg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cetin, B.; Unal, H. I.; Erol, O.
2012-12-01
In this study, the electrorheological (ER) properties of colemanite and polyindene (94.8% PIn)/colemanite (5.2%) conducting composite were investigated by dispersion in silicone oil (SO). The zeta (ζ)-potentials and antisedimentation ratios of the materials were determined. Some parameters which affect the ER properties of all the dispersions such as the volume fraction, electric field strength (E), shear rate, frequency and temperature were investigated. The rather unusual behavior known as the negative ER effect was observed for colemanite/SO above E = 1.5 kV mm-1 and for PIn/colemanite/SO under all values of the electric field strength even at high volume fraction. This negative ER response was converted to a positive one by the addition of non-ionic surfactant. Furthermore, glycerol was used as a polar promoter and observed to enhance the ER activity of the colemanite/SO system. Creep-recovery tests were applied to all the dispersions studied to investigate their behavior under sustained shear stress. Finally, 28% and 30% vibration damping capacities were achieved using an automobile shock absorber for the glycerol/colemanite/SO and non-ionic surfactant/PIn/colemanite/SO systems under the E = 0.17 kV mm-1 condition, respectively.
Chen, Jingjing; Zheng, Jinkai; McClements, David Julian; Xiao, Hang
2014-09-01
The aim of this study was to design a colloidal delivery system to encapsulate poor water-soluble bioactive flavonoid tangeretin so that it could be utilized in various food products as functional ingredient. Tangeretin-loaded protein nanoparticles were produced by mixing an organic phase containing zein and tangeretin with an aqueous phase containing β-lactoglobulin and then converted into powder by freeze-drying. This powder formed a colloidal suspension when dispersed in water that is relatively stable to particle aggregation and sedimentation. The influence of temperature, ionic strength, and pH on the stability of the protein nanoparticles was tested. Extensive particle aggregation occurred at high ionic strength (>100mM) and intermediate pH (4.5-5.5) due to reduced electrostatic repulsion. Extensive aggregation also occurred at temperatures exceeding 60 °C, which was presumably due to increased hydrophobic attraction. Overall, this study shows that protein-based nanoparticles can be used to encapsulate bioactive tangeretin so that it can be readily dispersed in compatible food products. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor
2014-03-14
Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. Thismore » value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.« less
CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength
Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Simple Conceptual Diagram
Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.
CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Detailed Conceptual Diagram
Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.
Electrical and Electrorheological Properties of Alumina/Natural Rubber (STR XL) Composites
Tangboriboon, Nuchnapa; Uttanawanit, Nuttapot; Longtong, Mean; Wongpinthong, Piraya; Sirivat, Anuvat; Kunanuruksapong, Ruksapong
2010-01-01
The electrorheological properties (ER) of natural rubber (XL)/alumina (Al2O3) composites were investigated in oscillatory shear mode under DC electrical field strengths between 0 to 2 kV/mm. SEM micrographs indicate a mean particle size of 9.873 ± 0.034 µm and particles that are moderately dispersed in the matrix. The XRD patterns indicate Al2O3 is of the β-phase polytype which possesses high ionic conductivity. The storage modulus (G′) of the composites, or the rigidity, increases by nearly two orders of magnitude, with variations in particle volume fraction and electrical field strength. The increase in the storage modulus is caused the ionic polarization of the alumina particles and the induced dipole moments set up in the natural rubber matrix.
Peng, Cheng; Shen, Chensi; Zheng, Siyuan; Yang, Weiling; Hu, Hang; Liu, Jianshe; Shi, Jiyan
2017-01-01
Many studies have shown the effect of solution chemistry on the environmental behavior of metal-based nanoparticles (NPs), except CuO NPs. Here, we investigated the agglomeration, sedimentation, dissolution, and speciation of CuO NPs by varying pH, ionic strength, ionic valence, and natural organic matter (NOM). The results showed that as the pH moved away from 6, the size of CuO agglomerates decreased, along with the enhanced NP suspension stabilization, due to the increase of electrostatic repulsive force. Increasing ionic strength and valence intensified the agglomeration and sedimentation of CuO NPs because of the compression of electrical double layers. The presence of humic acid and citric acid enhanced the dispersion and stabilization of CuO NP suspension, but l-cysteine showed a different impact. Decreasing pH, increasing ionic strength and all NOM improved the dissolution of CuO NPs, but the divalent electrolyte (CaCl2) inhibited the Cu2+ release from CuO NPs compared to the monovalent electrolyte (NaCl). In addition, X-ray absorption near edge structure (XANES) analysis demonstrated that the presence of l-cysteine transformed more than 30% of CuO NPs to Cu(I)-cysteine by coordinating with thiol group. This study can give us an in-depth understanding on the environmental behavior and fate of CuO NPs in the aquatic environment. PMID:29036921
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
Xu, Chuanhui; Cao, Liming; Huang, Xunhui; Chen, Yukun; Lin, Baofeng; Fu, Lihua
2017-08-30
In most cases, the strength of self-healing supramolecular rubber based on noncovalent bonds is in the order of KPa, which is a challenge for their further applications. Incorporation of conventional fillers can effectively enhance the strength of rubbers, but usually accompanied by a sacrifice of self-healing capability due to that the filler system is independent of the reversible supramolecular network. In the present work, in situ reaction of methacrylic acid (MAA) and excess zinc oxide (ZnO) was realized in natural rubber (NR). Ionic cross-links in NR matrix were obtained by limiting the covalent cross-linking of NR molecules and allowing the in situ polymerization of MAA/ZnO. Because of the natural affinity between Zn 2+ ion-rich domains and ZnO, the residual nano ZnO participated in formation of a reversible ionic supramolecular hybrid network, thus having little obstructions on the reconstruction of ionic cross-links. Meanwhile, the well dispersed residual ZnO could tailor the mechanical properties of NR by changing the MAA/ZnO molar ratios. The present study thus provides a simple method to fabricate a new self-healing NR with tailorable mechanical properties that may have more potential applications.
Oćwieja, Magdalena; Matras-Postołek, Katarzyna; Maciejewska-Prończuk, Julia; Morga, Maria; Adamczyk, Zbigniew; Sovinska, Svitlana; Żaba, Adam; Gajewska, Marta; Król, Tomasz; Cupiał, Klaudia; Bredol, Michael
2017-10-01
Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10 -4 and 10 -2 M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10 -4 and 10 -2 M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
Flotation of metal-loaded clay anion exchangers. Part II: the case of arsenates.
Lazaridis, N K; Hourzemanoglou, A; Matis, K A
2002-04-01
Hydrotalcite-like materials, or otherwise termed layered double hydroxides, are clays with an ability to remove anions. As they usually are in powder form, these sorbents often present appreciable problems in the solid/liquid separation process following the sorption stage. Sorptive flotation of metal-loaded particles was investigated in this paper, as an alternative two-stage process. In the sorption process, satisfactory removals of arsenic(V) were obtained onto synthetic hydrotalcite particles from water. The effect of some parameters, like the solution ionic strength, concentrations, temperature, etc. was examined. During the second stage of the process, hydrotalcite fine particles were removed from the liquid phase by dispersed-air flotation; various surfactants were tested in relation to the ionic strength of the solution. The combined process of sorptive flotation provides promising results for arsenic removal.
Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto
2018-01-01
In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.
Hayakawa, Toru; Yoshida, Yuri; Yasui, Masanori; Ito, Toshiaki; Wakamatsu, Jun-ichi; Hattori, Akihito; Nishimura, Takanori
2015-08-01
The gelation of myosin has a very important role in meat products. We have already shown that myosin in low ionic strength solution containing L-histidine forms a transparent gel after heating. To clarify the mechanism of this unique gelation, we investigated the changes in the nature of myosin subfragments during heating in solutions with low and high ionic strengths with and without L-histidine. The hydrophobicity of myosin and heavy meromyosin (HMM) in low ionic strength solution containing L-histidine was lower than in high ionic strength solution. The SH contents of myosin and HMM in low ionic strength solution containing l-histidine did not change during the heating process, whereas in high ionic strength solution they decreased slightly. The heat-induced globular masses of HMM in low ionic strength solution containing L-histidine were smaller than those in high ionic strength solution. These findings suggested that the polymerization of HMM molecules by heating was suppressed in low ionic strength solution containing L-histidine, resulting in formation of the unique gel. © 2015 Institute of Food Technologists®
Heat-induced gelation of myosin in a low ionic strength solution containing L-histidine.
Hayakawa, T; Yoshida, Y; Yasui, M; Ito, T; Iwasaki, T; Wakamatsu, J; Hattori, A; Nishimura, T
2012-01-01
Binding properties are important for meat products and are substantially derived from the heat-induced gelation of myosin. We have shown that myosin is solubilized in a low ionic strength solution containing L-histidine. To clarify its processing characteristics, we investigated properties and structures of heat-induced gels of myosin solubilized in a low ionic strength solution containing L-histidine. Myosin in a low ionic strength solution formed transparent gels at 40-50°C, while myosin in a high ionic strength solution formed opaque gels at 60-70°C. The gel of myosin in a low ionic strength solution with L-histidine showed a fine network consisting of thin strands and its viscosity was lower than that of myosin in a high ionic strength solution at 40-50°C. The rheological properties of heat-induced gels of myosin at low ionic strength are different from those at high ionic strength. This difference might be caused by structural changes in the rod region of myosin in a low ionic strength solution containing L-histidine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media
NASA Astrophysics Data System (ADS)
Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie
2016-10-01
Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30-40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks.
Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media
Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie
2016-01-01
Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30–40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks. PMID:27734948
On the pH of Aqueous Attoliter-Volume Droplets
NASA Astrophysics Data System (ADS)
Ramos, Kieran P.; Velpula, Samson S.; Demille, Trevor B.; Pajela, Ryan; Goldner, Lori S.
Droplets of water dispersed in perfluorinated liquids have widespread use including microfluidics, drug delivery and single-molecule measurements. Perfluorinated liquids are distinctly biocompatible due to their stability, low surface tension, lipophobicity, and hydrophobicity. For this reason, the effect of the perfluorinated surface on droplet contents is usually ignored. However, as the droplet diameter is reduced, we expect that any effect of the water/oil interface on droplet contents will become more obvious. We studied the pH of attoliter-volume aqueous droplets in perfluorinated liquids using pH-sensing fluorescent dyes. Droplets were prepared either by sonication or extrusion from buffer and perfluorinated liquids (FC40 or FC77). A non-ionic surfactant was used to stabilize the droplets. Buffer strength, ionic strength, and pH of the aqueous phase were varied and resulting droplet pH compared to the pH of the buffer from which they were formed. Preliminary data are consistent with a pH in droplets that depends on the concentration of non-ionic surfactant. At low surfactant concentrations, the pH in droplets is distinctly lower than the stock buffer. However, as the concentration of non-ionic surfactant is increased the change in pH decreases. This work was funded by NSF/DBI-1152386.
An, Jiwoo; Rahn, Kira L; Anderson, Jared L
2017-05-15
A headspace single drop microextraction (HS-SDME) method and a dispersive liquid-liquid microextraction (DLLME) method were developed using two tetrachloromanganate ([MnCl 4 2- ])-based magnetic ionic liquids (MIL) as extraction solvents for the determination of twelve aromatic compounds, including four polyaromatic hydrocarbons, by reversed phase high-performance liquid chromatography (HPLC). The analytical performance of the developed HS-SDME method was compared to the DLLME approach employing the same MILs. In the HS-SDME approach, the magnetic field generated by the magnet was exploited to suspend the MIL solvent from the tip of a rod magnet. The utilization of MILs in HS-SDME resulted in a highly stable microdroplet under elevated temperatures and long extraction times, overcoming a common challenge encountered in traditional SDME approaches of droplet instability. The low UV absorbance of the [MnCl 4 2- ]-based MILs permitted direct analysis of the analyte enriched extraction solvent by HPLC. In HS-SDME, the effects of ionic strength of the sample solution, temperature of the extraction system, extraction time, stir rate, and headspace volume on extraction efficiencies were examined. Coefficients of determination (R 2 ) ranged from 0.994 to 0.999 and limits of detection (LODs) varied from 0.04 to 1.0μgL -1 with relative recoveries from lake water ranging from 70.2% to 109.6%. For the DLLME method, parameters including disperser solvent type and volume, ionic strength of the sample solution, mass of extraction solvent, and extraction time were studied and optimized. Coefficients of determination for the DLLME method varied from 0.997 to 0.999 with LODs ranging from 0.05 to 1.0μgL -1 . Relative recoveries from lake water samples ranged from 68.7% to 104.5%. Overall, the DLLME approach permitted faster extraction times and higher enrichment factors for analytes with low vapor pressure whereas the HS-SDME approach exhibited better extraction efficiencies for analytes with relatively higher vapor pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Joung, Young Soo
2018-05-01
We propose a new analytical model of ionic surfactants used for the dispersion of carbon nanotubes (CNTs) in aqueous solutions. Although ionic surfactants are commonly used to facilitate the dispersion of CNTs in aqueous solutions, understanding the dispersion process is challenging and time-consuming owing to its complexity and nonlinearity. In this work, we develop a mean-density model of ionic surfactants to simplify the calculation of interaction forces between CNTs stabilized by ionic surfactants. Using this model, we can evaluate various interaction forces between the CNTs and ionic surfactants under different conditions. The dispersion mechanism is investigated by estimating the potential of mean force (PMF) as a function of van der Waals forces, electrostatic forces, interfacial tension, and osmotic pressure. To verify the proposed model, we compare the PMFs derived using our method with those derived from molecular dynamics simulations using comparable CNTs and ionic surfactants. Notably, for stable dispersions, the osmotic pressure and interfacial energy are important for long-range and short-range interactions, respectively, in comparison with the effect of electrostatic forces. Our model effectively prescribes specific surfactants and their concentrations to achieve stable aqueous suspensions of CNTs.
Petr, Jan; Teste, Bruno; Descroix, Stéphanie; Siaugue, Jean-Michel; Gareil, Pierre; Varenne, Anne
2010-08-01
The use of nanoparticles (NPs) in immunodiagnostics is a challenging task for many reasons, including the need for miniaturization. In view of the development of an assay dedicated to an original, miniaturized and fully automated immunodiagnostics which aims to mimic in vivo interactions, magnetic zwitterionic bifunctional amino/polyethyleneoxide maghemite core/silica shell NPs functionalized with allergenic alpha-lactalbumin were characterized by CE. Proper analytical performances were obtained through semi-permanent capillary coating with didodecyldimethylammonium bromide (DDAB) or permanent capillary wall modification by hydroxypropylcellulose. The influence of experimental conditions (e.g. buffer component nature, pH, ionic strength, and electric field strength) on sample stability, electrophoretic mobility, and dispersion was investigated using either DDAB- or hydroxypropylcellulose-coated capillaries. Adsorption to the capillary wall and aggregation phenomena were evaluated according to the CE conditions. The proper choice of experimental conditions, i.e. separation under -10 kV in a 25 mM ionic strength MES/NaOH (pH 6.0) with a DDAB-coated capillary, allowed the separation of the grafted and the non-grafted NPs.
The Effect of Ionic Strength on the Haemolytic Activity of Complement
Wardlaw, A. C.; Walker, H. G.
1963-01-01
The haemolytic activity of guinea-pig complement has been measured in isotonic solutions of various ionic strengths in the range 0.034–0.28 and shown to be maximum at an ionic strength close to 0.08. Haemolytic activity was virtually abolished at ionic strength 0.034, while at 0.28, the complement titre was only about 20 per cent of the value found at the physiological ionic strength 0.155. NaCl, KCl, LiBr and K2SO4 were the electrolytes used to provide ionic strength, and sucrose, mannitol and inositol the non-electrolytes used to maintain isotonicity. Nine permutations of the four electrolytes with the three non-electrolytes were tested and gave similar results. Human and rabbit complements also showed optimum haemolytic activity at ionic strength 0.08–0.10. PMID:13998876
Ionic strength and DOC determinations from various freshwater sources to the San Francisco Bay
Hunter, Y.R.; Kuwabara, J.S.
1994-01-01
An exact estimation of dissolved organic carbon (DOC) within the salinity gradient of zinc and copper metals is significant in understanding the limit to which DOC could influence metal speciation. A low-temperature persulfate/oxygen/ultraviolet wet oxidation procedure was utilized for analyzing DOC samples adapted for ionic strength from major freshwater sources of the northern and southern regions of San Francisco Bay. The ionic strength of samples was modified with a chemically defined seawater medium up to 0.7M. Based on the results, a minimum effect of ionic strength on oxidation proficiency for DOC sources to the Bay over an ionic strength gradient of 0.0 to 0.7 M was observed. There was no major impacts of ionic strength on two Suwanee River fulvic acids. In general, the noted effects associated with ionic strength were smaller than the variances seen in the aquatic environment between high- and low-temperature methods.
Abraham, Jiji; Thomas, Jince; Kalarikkal, Nandakumar; George, Soney C; Thomas, Sabu
2018-02-01
Well-dispersed, robust, mechanicaly long-term stable functionalized multiwalled carbon nanotube (f-MWCNT)-styrene butadiene rubber (SBR) nanocomposites were fabricated via a melt mixing route with the assistance of ionic liquid as a dispersing agent. The mechanical properties of f-MWCNT/SBR vulcanizates were compared over a range of loadings, and it was found that the network morphology was highly favorable for mechanical performance with enlarged stiffness. A comparative investigation of composite models found that modified Kelly-Tyson theory gave an excellent fit to tensile strength data of the composites considering the effect of the interphase between polymer and f-MWCNT. Dynamic mechanical analysis highlighted the mechanical reinforcement due to the improved filler-polymer interactions which were the consequence of proper dispersion of the nanotubes in the SBR matrix. Effectiveness of filler, entanglement density, and adhesion factor were evaluated to get an in depth understanding of the reinforcing mechanism of modified MWCNT. The amount of polymer chains immobilized by the filler surface computed from dynamic mechanical analysis further supports a substantial boost up in mechanics. The Cole-Cole plot shows an imperfect semicircular curve representing the heterogeneity of the system and moderately worthy filler polymer bonding. The combined results of structural characterizatrion by Raman spectroscopy, cure characteristics, mechanical properties, and scanning and transmission electron microscopy (SEM, TEM) confirm the role of ionic liquid modified MWCNT as a reinforcing agent in the present system.
Surface interaction forces of cellulose nanocrystals grafted with thermoresponsive polymer brushes.
Zoppe, Justin O; Osterberg, Monika; Venditti, Richard A; Laine, Janne; Rojas, Orlando J
2011-07-11
The colloidal stability and thermoresponsive behavior of poly(N-isopropylacrylamide) brushes grafted from cellulose nanocrystals (CNCs) of varying graft densities and molecular weights was investigated. Indication of the grafted polymer brushes was obtained after AFM imaging of CNCs adsorbed on silica. Also, aggregation of the nanoparticles carrying grafts of high degree of polymerization was observed. The responsiveness of grafted CNCs in aqueous dispersions and as an ultrathin film was evaluated by using light scattering, viscosimetry, and colloidal probe microscopy (CPM). Light transmittance measurements showed temperature-dependent aggregation originating from the different graft densities and molecular weights. The lower critical solution temperature (LCST) of grafted poly(NiPAAm) brushes was found to decrease with the ionic strength, as is the case for free poly(NiPAAm) in aqueous solution. Thermal responsive behavior of grafted CNCs in aqueous dispersions was observed by a sharp increase in dispersion viscosity as the temperature approached the LCST. CPM in liquid media for asymmetric systems consisting of ultrathin films of CNCs and a colloidal silica probe showed the distinctive effects of the grafted polymer brushes on interaction and adhesive forces. The origin of such forces was found to be mainly electrostatic and steric in the case of bare and grafted CNCs, respectively. A decrease in the onset of attractive and adhesion forces of grafted CNCs films were observed with the ionic strength of the aqueous solution. The decreased mobility of polymer brushes upon partial collapse and decreased availability of hydrogen bonding sites with higher electrolyte concentration were hypothesized as the main reasons for the less prominent polymer bridging between interacting surfaces.
Synthesis of poly(N-isopropylacrylamide) particles for metal affinity binding of peptides
Tsai, Hsin-Yi; Lee, Alexander; Peng, Wei; Yates, Matthew Z.
2013-01-01
Temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgel particles with metal affinity ligands were prepared for selective binding of peptides containing the His6-tag (six consecutive histidine residues). The PNIPAM particles were copolymerized with the functional ligand vinylbenzyl iminodiacetic acid (VBIDA) through a two-stage dispersion polymerization using poly(N-vinyl pyrrolidone) (PVP) as a steric stabilizer. The resulting particles were monodisperse in size and colloidally stable over a wide range of temperature and ionic strength due to chemically grafted PVP chains. The particle size was also found to be sensitive to ionic strength and pH of the aqueous environment, likely due to the electrostatic repulsion between ionized VBIDA groups. Divalent nickel ions were chelated to the VBIDA groups, allowing selective metal affinity attachment of a His6-Cys peptide. The peptide was released upon the addition of the competitive ligand imidazole, demonstrating that the peptide attachment to the particles is reversible and selective. PMID:24176889
Synthesis and Properties of Highly Dispersed Ionic Silica–Poly(ethylene oxide) Nanohybrids
2013-01-01
We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent. PMID:23351113
Carrillo, Carlos A; Nypelö, Tiina; Rojas, Orlando J
2016-03-14
A route for the compatibilization of aqueous dispersions of cellulose nanofibrils (CNFs) with a non-polar polymer matrix is proposed to overcome a major challenge in CNF-based material synthesis. Non-ionic surfactants were used in CNF aqueous dispersions equilibrated with an organic phase (for demonstration, a polystyrene solution, PS, was used). Stable water-in-oil-in-water (W/O/W) double emulsions were produced as a result of the compromise between composition and formulation variables. Most remarkably, the proposed route for CNF integration with hydrophobic polymers removed the need for drying or solvent-exchange of the CNF aqueous dispersion prior to processing. The rheological behavior of the double emulsions showed strong shear thinning behavior and facilitated CNF-PS co-mixing in solid nanofibers upon electrospinning. The morphology and thermal properties of the resultant nanofibers revealed that CNFs were efficiently integrated in the hydrophobic matrix which was consistent with the high interfacial area of the precursor double emulsion. In addition, the morphology and quality of the composite nanofibers can be controlled by the conductivity (ionic strength) of the CNF dispersion. Overall, double emulsion systems are proposed as a novel, efficient and scalable platform for CNF co-processing with non-polar systems and they open up the possibility for the redispersion of CNFs after removal of the organic phase.
Shinohara, Shuhei; Eom, Namsoon; Teh, E-Jen; Tamada, Kaoru; Parsons, Drew; Craig, Vincent S J
2018-02-27
The interactions between colloidal particles and nanoparticles determine solution stability and the structures formed when the particles are unstable to flocculation. Therefore, knowledge of the interparticle interactions is important for understanding the transport, dissolution, and fate of particles in the environment. The interactions between particles are governed by the surface properties of the particles, which are altered when species adsorb to the surface. The important interactions in the environment are almost never those between the bare particles but rather those between particles that have been modified by the adsorption of natural organic materials. Citric acid is important in this regard not only because it is present in soil but also as a model of humic and fulvic acids. Here we have studied the surface forces between the model metal oxide surface hafnia in the presence of citric acid in order to understand the stability of colloidal particles and nanoparticles. We find that citric acid stabilizes the particles over a wide range of pH at low to moderate ionic strength. At high ionic strength, colloidal particles will flocculate due to a secondary minimum, resulting in aggregates that are dense and easily redispersed. In contrast, nanoparticles stabilized by citric acid remain stable at high ionic strengths and therefore exist in solution as individual particles; this will contribute to their dispersion in the environment and the uptake of nanoparticles by mammalian cells.
Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation
Salinas, Branden A; Sathish, Hasige A; Bishop, Steven M; Harn, Nick; Carpenter, John F; Randolph, Theodore W
2014-01-01
Opalescence and high viscosities can pose challenges for high concentration formulation of antibodies. Both phenomena result from protein-protein intermolecular interactions that can be modulated with solution ionic strength. We studied a therapeutic monoclonal antibody that exhibits high viscosity in solutions at low ionic strength (~20 centipoise (cP) at 90 mg/mL and 23°C) and significant opalescence at isotonic ionic strength (approximately 100 nephelometric turbidity units at 90 mg/mL and 23°C). The intermolecular interactions responsible for these effects were characterized using membrane osmometry, static light scattering and zeta potential measurements. The net protein-protein interactions were repulsive at low ionic strength (~4 mM) and attractive at isotonic ionic strengths. The high viscosities are attributed to electroviscous forces at low ionic strength and the significant opalescence at isotonic ionic strength is correlated with attractive antibody interactions. Furthermore there appears to be a connection to critical phenomena and it is suggested that the extent of opalescence is dependent on the proximity to the critical point. We demonstrate that by balancing the repulsive and attractive forces via intermediate ionic strengths and by increasing the mAb concentration above the apparent critical concentration both opalescence and viscosity can be simultaneously minimized. PMID:19475558
Influence of sodium polyacrylate on the rheology of aqueous Laponite dispersions.
Labanda, Jordi; Llorens, Joan
2005-09-01
Aqueous Laponite dispersions containing a sodium polyacrylate were analyzed, at fixed ionic strength and pH, by rheometric and electroacoustic (for zeta-potential determinations) techniques at 7 days after their preparation. The rheological behavior of these dispersions was determined by oscillatory and flow experiments. Addition of sodium polyacrylate modifies the interactions between Laponite particles and therefore the physical state of the dispersion. The phase diagram of Laponite dispersion as a function of sodium polyacrylate concentration shows different sol-gel transitions for a specific Laponite concentration as a function of the polyacrylate concentration. Under equilibrium flow conditions the Laponite dispersions fit the pseudoplastic Oswald-de Waele power law model. At the same time, these dispersions show thixotropy, which was analyzed using a second-order kinetic equation. The kinetic processes were characterized by breakdown and build-up parameters, which were found to depend on shear rate. This kinetic equation was modified by a power law exponent of viscosity with shear rate that takes into account the viscosity variations when the shear rates are suddenly changed, in order to fit the hysteresis loops.
Yan, Zhi-Yuan; Jia, Li-Ping; Yan, Bing
2014-01-01
Two typical kinds of rare earth fluoride nanocrystals codoped with rare earth ions (Eu(3+) and Tm(3+)/Er(3+),Yb(3+)) are synthesized and dispersed in ionic liquid compound (1-chlorohexane-3-methylimidazolium chloride, abbreviated as [C6mim][Cl]). Assisted by agarose, the luminescent hydrogels are prepared homogeneously. The down/up-conversion luminescence of these hydrogels can be realized for the dispersed rare earth fluoride nanocrystals. The results provide a strategy to prepare luminescent (especially up-conversion luminescent) hydrogels with ionic liquid to disperse rare earth fluoride nanocrystals. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhao, Y X; Shon, H K; Phuntsho, S; Gao, B Y
2014-02-15
This study is the first attempt to investigate the effect of total hardness and ionic strength on coagulation performance and the floc characteristics of titanium tetrachloride (TiCl4). Membrane fouling under different total hardness and ionic strength conditions was also evaluated during a coagulation-ultrafiltration (C-UF) hybrid process. Coagulation experiments were performed with two simulated waters, using humic acid (HA, high molecular weight) and fulvic acid (FA, relatively low molecular weight), respectively, as model natural organic matter (NOM). Results show that both particle and organic matter removal can be enhanced by increasing total hardness and ionic strength. Floc characteristics were significantly influenced by total hardness and ionic strength and were improved in terms of floc size, growth rate, strength, recoverability and compactness. The results of the UF tests show that the pre-coagulation with TiCl4 significantly improves the membrane permeate fluxes. Under different total hardness and ionic strength conditions, the membrane permeate flux varied according to both NOM and floc characteristics. The increase in total hardness and ionic strength improved the membrane permeate flux in the case of HA simulated water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Concept of Ionic Strength Eighty Years after Its Introduction in Chemistry
ERIC Educational Resources Information Center
Manuel E. Sastre de Vicente
2004-01-01
Some comments on the relationship of ionic strength to macroscopic concepts such as thermodynamic quantities and microscopic ones such as molecule size are presented. The meaning of ionic strength is also reviewed.
Development of regenerated cellulose/halloysites nanocomposites via ionic liquids.
Hanid, Nurbaiti Abdul; Wahit, Mat Uzir; Guo, Qipeng; Mahmoodian, Shaya; Soheilmoghaddam, Mohammad
2014-01-01
In this study, regenerated cellulose/halloysites (RC/HNT) nanocomposites with different nanofillers loading were fabricated by dissolving the cellulose in 1-ethyl-3-methylimidazolium chloride (EMIMCl) ionic liquid. The films were prepared via solution casting method and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The mechanical properties were investigated by tensile testing. It clearly displayed a good enhancement of both tensile strength and Young's modulus with HNT loading up to 5 wt%. As the HNT loadings increased to 5 wt%, the thermal behaviour and water resistance rate was also increased. The TEM and SEM images also depicted even dispersion of the HNT and a good intertubular interaction between the HNT and the cellulose matrix. Copyright © 2013 Elsevier Ltd. All rights reserved.
Solvation structures of water in trihexyltetradecylphosphonium-orthoborate ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong-Lei, E-mail: wangyonl@gmail.com; System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm; Sarman, Sten
2016-08-14
Atomistic molecular dynamics simulations have been performed to investigate effective interactions of isolated water molecules dispersed in trihexyltetradecylphosphonium-orthoborate ionic liquids (ILs). The intrinsic free energy changes in solvating one water molecule from gas phase into bulk IL matrices were estimated as a function of temperature, and thereafter, the calculations of potential of mean force between two dispersed water molecules within different IL matrices were performed using umbrella sampling simulations. The systematic analyses of local ionic microstructures, orientational preferences, probability and spatial distributions of dispersed water molecules around neighboring ionic species indicate their preferential coordinations to central polar segments in orthoboratemore » anions. The effective interactions between two dispersed water molecules are partially or totally screened as their separation distance increases due to interference of ionic species in between. These computational results connect microscopic anionic structures with macroscopically and experimentally observed difficulty in completely removing water from synthesized IL samples and suggest that the introduction of hydrophobic groups to central polar segments and the formation of conjugated ionic structures in orthoborate anions can effectively reduce residual water content in the corresponding IL samples.« less
Dixit, Nitin; Maloney, Kevin M; Kalonia, Devendra S
2011-06-30
In this study, we have used quartz crystal microbalance (QCM) to quantitate the adsorption of a protein on silicone oil coated surfaces as a function of protein concentration, pH and ionic strength using a 5 MHz quartz crystal. Protein adsorption isotherms were generated at different solution pH and ionic strengths. Surface saturation concentrations were selected from adsorption isotherms and used to generate adsorption profiles from pH 3.0 to 9.0, and at ionic strengths of 10 mM and 150 mM. At low ionic strength (10mM) and pH 5.0 (close to the isoelectric point of the protein), maximum adsorption of protein to the silicone oil surface was observed. At higher ionic strength (150 mM), no significant pH influence on adsorption was observed. QCM could be used as a reliable technique to study the binding of proteins to silicone oil coated surfaces. Copyright © 2011 Elsevier B.V. All rights reserved.
Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C
2018-02-01
This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (<4 or >7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.
Emerson, H P; Zengotita, F; Richmann, M; Katsenovich, Y; Reed, D T; Dittrich, T M
2018-10-01
The results presented in this paper highlight the complexity of adsorption and incorporation processes of Nd with dolomite and significantly improve upon previous work investigating trivalent actinide and lanthanide interactions with dolomite. Both batch and mini column experiments were conducted at variable ionic strength. These data highlight the strong chemisorption of Nd to the dolomite surface (equilibrium K d 's > 3000 mL/g) and suggest that equilibrium adsorption processes may not be affected by ionic strength based on similar results at 0.1 and 5.0 M ionic strength in column breakthrough and equilibrium batch (>5 days) results. Mini column experiments conducted over approximately one year also represent a significant development in measurement of sorption of Nd in the presence of flow as previous large-scale column experiments did not achieve breakthrough likely due to the high loading capacity of dolomite for Nd (up to 240 μg/g). Batch experiments in the absence of flow show that the rate of Nd removal increases with increasing ionic strength (up to 5.0 M) with greater removal at greater ionic strength for a 24 h sampling point. We suggest that the increasing ionic strength induces increased mineral dissolution and re-precipitation caused by changes in activity with ionic strength that lead to increased removal of Nd through co-precipitation processes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Counterion-induced swelling of ionic microgels
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Tang, Qiyun
2016-10-01
Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.
Ramírez-García, Gonzalo; Oluwole, David O; Nxele, Siphesihle Robin; d'Orlyé, Fanny; Nyokong, Tebello; Bedioui, Fethi; Varenne, Anne
2017-02-01
In this work, we characterized different phtalocyanine-capped core/shell/shell quantum dots (QDs) in terms of stability, ζ-potential, and size at various pH and ionic strengths, by means of capillary electrophoresis (CE), and compared these results to the ones obtained by laser Doppler electrophoresis (LDE) and dynamic light scattering (DLS). The effect of the phthalocyanine metallic center (Zn, Al, or In), the number (one or four), and nature of substituents (carboxyphenoxy- or sulfonated-) of functionalization on the phthalocyanine physicochemical properties were evaluated. Whereas QDs capped with zinc mono-carboxyphenoxy-phtalocyanine (ZnMCPPc-QDs) remained aggregated in the whole analyzed pH range, even at low ionic strength, QDs capped with zinc tetracarboxyphenoxy phtalocyanine (ZnTPPc-QDs) were easily dispersed in buffers at pH equal to or higher than 7.4. QDs capped with aluminum tetrasulfonated phthalocyanine (AlTSPPc-QDs) and indium tetracarboxyphenoxy phthalocyanines (InTCPPc-QDs) were stable in aqueous suspension only at pH higher than 9.0 due to the presence of functional groups bound to the metallic center of the phthalocyanine. The ζ-potential values determined by CE for all the samples decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiological relevant solutions and thereby, its usefulness for improving their design and applications for photodynamic therapy. Graphical Abstract Schematic illustration of the phthalocyanine capped QDs nanoconjugates and the capillary electrophoresis methods applied for size and ζ-potential characterization.
Smith, Kelly A; Hao, Jinsong; Li, S Kevin
2009-06-01
Transport across the human nail under hydration can be modeled as hindered transport across aqueous pore pathways. As such, nail permselectivity to charged species can be manipulated by changing the ionic strength of the system in transungual delivery to treat nail diseases. The present study investigated the effects of ionic strength upon transungual passive and iontophoretic transport. Transungual passive and anodal iontophoretic transport experiments of tetraethylammonium ion (TEA) were conducted under symmetric conditions in which the donor and receiver had the same ionic strength in vitro. Experiments under asymmetric conditions were performed to mimic the in vivo conditions. Prior to the transport studies, TEA uptake studies were performed to assess the partitioning of TEA into the nail. Permselectivity towards TEA was inversely related to ionic strength in both passive and iontophoretic transport. The permeability and transference number of TEA were higher at lower ionic strengths under the symmetric conditions due to increased partitioning of TEA into the nail. Transference numbers were smaller under the asymmetric conditions compared with their symmetric counterparts. The results demonstrate significant ionic strength effects upon the partitioning and transport of a cationic permeant in transungual transport, which may be instrumental in the development of transungual delivery systems.
L'Hocine, Lamia; Pitre, Mélanie
2016-03-01
A full factorial design was used to assess the single and interactive effects of three non-denaturing aqueous (phosphate, borate, and carbonate) buffers at various ionic strengths (I) on allergen extractability from and immunoglobulin E (IgE) immunoreactivity of peanut, almond, hazelnut, and pistachio. The results indicated that the type and ionic strength of the buffer had different effects on protein recovery from the nuts under study. Substantial differences in protein profiles, abundance, and IgE-binding intensity with different combinations of pH and ionic strength were found. A significant interaction between pH and ionic strength was observed for pistachio and almond. The optimal buffer system conditions, which maximized the IgE-binding efficiency of allergens and provided satisfactory to superior protein recovery yield and profiles, were carbonate buffer at an ionic strength of I=0.075 for peanut, carbonate buffer at I=0.15 for almond, phosphate buffer at I=0.5 for hazelnut, and borate at I=0.15 for pistachio. The buffer type and its ionic strength could be manipulated to achieve the selective solubility of desired allergens. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali
2013-11-01
The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in bound water as ionic strengths increased. Texture analysis was employed to determine the gel strength and also to explain the drug release for the diltiazem hydrochloride. This methodology can be used as a valuable tool for predicting potential ionic effects related to in vivo fed and fasted states on drug release from hydrophilic ER matrices. Copyright © 2013 Elsevier B.V. All rights reserved.
Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
Flury, Markus; Czigány, Szabolcs; Chen, Gang; Harsh, James B
2004-07-01
Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments. Copyright 2003 Elsevier B.V.
Al-Obaidi, Hisham; Lawrence, M Jayne; Buckton, Graham
2016-11-01
To understand the impact of ionic and non-ionic surfactants on the dissolution and stability properties of amorphous polymeric dispersions using griseofulvin (GF) as a model for poorly soluble drugs. Solid dispersions of the poorly water-soluble drug, griseofulvin (GF) and the polymers, poly(vinylpyrrolidone) (PVP) and poly(2-hydroxypropyl methacrylate) (PHPMA), have been prepared by spray drying and bead milling and the effect of the ionic and non-ionic surfactants, namely sodium dodecyl sulphate (SDS) and Tween-80, on the physico-chemical properties of the solid dispersions studied. The X-ray powder diffraction data and hot-stage microscopy showed a fast re-crystallisation of GF. While dynamic vapour sorption (DVS) measurements indicated an increased water uptake, slow dissolution rates were observed for the solid dispersions incorporating surfactants. The order by which surfactants free dispersions were prepared seemed critical as indicated by DVS and thermal analysis. Dispersions prepared by milling with SDS showed significantly better stability than spray-dried dispersions (drug remained amorphous for more than 6 months) as well as improved dissolution profile. We suggest that surfactants can hinder the dissolution by promoting aggregation of polymeric chains, however that effect depends mainly on how the particles were prepared. © 2016 Royal Pharmaceutical Society.
Effects of oil dispersants on photodegradation of pyrene in marine water.
Gong, Yanyan; Fu, Jie; O'Reilly, S E; Zhao, Dongye
2015-04-28
This work investigated effects of a popular oil dispersant (Corexit EC9500A) on UV- or sunlight-mediated photodegradation of pyrene (a model polycyclic aromatic hydrocarbon) in seawater. The presence of 18 and 180mg/L of the dispersant increased the first-order photodegradation rate by 5.5% and 16.7%, respectively, and reduced or ceased pyrene volatilization. By combining individual first-order rate laws for volatilization and photodegradation, we proposed an integrated kinetic model that can adequately predict the overall dissipation of pyrene from seawater. Mechanistic studies indicated that superoxide radicals played a predominant role in pyrene photodegradation, and the dispersant enhanced formation of superoxide radicals. 1-Hydroxypyrene was the main intermediate regardless of the dispersant, suggesting that electrons were transferred from excited pyrene to oxygen. In the presence of 18mg/L of the dispersant, the photodegradation rate increased with increasing ionic strength and temperature, but decreased with increasing HA concentration, and remained independent of solution pH. The results are important in understanding roles of oil dispersants on environmental fate of persistent oil components in natural and engineered systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Challenges in Determining Intrinsic Viscosity Under Low Ionic Strength Solution Conditions.
Pindrus, Mariya A; Shire, Steven J; Yadav, Sandeep; Kalonia, Devendra S
2017-04-01
To determine the intrinsic viscosity of several monoclonal antibodies (mAbs) under varying pH and ionic strength solution conditions. An online viscosity detector attached to HPLC (Viscotek®) was used to determine the intrinsic viscosity of mAbs. The Ross and Minton equation was used for viscosity prediction at high protein concentrations. Bulk viscosity was determined by a Cambridge viscometer. At 15 mM ionic strength, intrinsic viscosity of the mAbs determined by the single-point approach varied from 5.6 to 6.4 mL/g with changes in pH. High ionic strength did not significantly alter intrinsic viscosity, while a significant increase (up to 24.0 mL/g) was observed near zero mM. No difference in bulk viscosity of mAb3 was observed around pH 6 as a function of ionic strength. Data analysis revealed that near zero mM ionic strength limitations of the single-point technique result in erroneously high intrinsic viscosity. Intrinsic viscosity is a valuable tool that can be used to model baseline viscosity at higher protein concentrations. However, it is not predictive of solution non-ideality at higher protein concentrations. Furthermore, breakdown of numerous assumptions limits the applicability of experimental techniques near zero mM ionic strength conditions. For molecules and conditions studied, the single-point approach produced reliable intrinsic viscosity results at 15 mM. However, this approach must be used with caution near zero mM ionic strength. Data analysis can be used to reveal whether determined intrinsic viscosity is reliable or erroneously high.
NASA Astrophysics Data System (ADS)
Jabes, B. Shadrack; Bratko, Dusan; Luzar, Alenka
2018-06-01
Solubilization of nanoparticles facilitates nanomaterial processing and enables new applications. An effective method to improve dispersibility in water is provided by ionic functionalization. We explore how the necessary extent of functionalization depends on the particle geometry. Using molecular dynamics/umbrella sampling simulations, we determine the effect of the solute curvature on solvent-averaged interactions among ionizing graphitic nanoparticles in aqueous dispersion. We tune the hydrophilicity of molecular-brush coated fullerenes, carbon nanotubes, and graphane platelets by gradually replacing a fraction of the methyl end groups of the alkyl coating by the ionizing -COOK or -NH3Cl groups. To assess the change in nanoparticles' dispersibility in water, we determine the potential-of-mean-force profiles at varied degrees of ionization. When the coating comprises only propyl groups, the attraction between the hydrophobic particles intensifies from spherical to cylindrical to planar geometry. This is explained by the increasing fraction of surface groups that can be brought into contact and the reduced access to water molecules, both following the above sequence. When ionic groups are added, however, the dispersibility increases in the opposite order, with the biggest effect in the planar geometry and the smallest in the spherical geometry. These results highlight the important role of geometry in nanoparticle solubilization by ionic functionalities, with about twice higher threshold surface charge necessary to stabilize a dispersion of spherical than planar particles. At 25%-50% ionization, the potential of mean force reaches a plateau because of the counterion condensation and saturated brush hydration. Moreover, the increase in the fraction of ionic groups can weaken the repulsion through counterion correlations between adjacent nanoparticles. High degrees of ionization and concomitant ionic screening gradually reduce the differences among surface interactions in distinct geometries until an essentially curvature-independent dispersion environment is created. Insights into tuning nanoparticle interactions can guide the synthesis of a broad class of nonpolar nanoparticles, where solubility is achieved by ionic functionalization.
Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo
2013-01-01
Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+)-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca(2+)-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca(2+)-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca(2+) activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca(2+)-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca(2+)-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction.
Gordon, A. M.; Godt, R. E.; Donaldson, S. K. B.; Harris, C. E.
1973-01-01
The maximal calcium-activated isometric tension produced by a skinned frog single muscle fiber falls off as the ionic strength of the solution bathing this fiber is elevated declining to zero near 0.5 M as the ionic strength is varied using KCl. When other neutral salts are used, the tension always declines at high ionic strength, but there is some difference between the various neutral salts used. The anions and cations can be ordered in terms of their ability to inhibit the maximal calcium-activated tension. The order of increasing inhibition of tension (decreasing tension) at high ionic strength for anions is propionate- ≃ SO4 -- < Cl- < Br-. The order of increasing inhibition of calcium-activated tension for cations is K+ ≃ Na+ ≃ TMA+ < TEA+ < TPrA+ < TBuA+. The decline of maximal calcium-activated isometric tension with elevated salt concentration (ionic strength) can quantitatively explain the decline of isometric tetanic tension of a frog muscle fiber bathed in a hypertonic solution if one assumes that the internal ionic strength of a muscle fiber in normal Ringer's solution is 0.14–0.17 M. There is an increase in the base-line tension of a skinned muscle fiber bathed in a relaxing solution (no added calcium and 3 mM EGTA) of low ionic strength. This tension, which has no correlate in the intact fiber in hypotonic solutions, appears to be a noncalcium-activated tension and correlates more with a declining ionic strength than with small changes in [MgATP], [Mg], pH buffer, or [EGTA]. It is dependent upon the specific neutral salts used with cations being ordered in increasing inhibition of this noncalcium-activated tension (decreasing tension) as TPrA+ < TMA+ < K+ ≃ Na+. Measurements of potentials inside these skinned muscle fibers bathed in relaxing solutions produced occasional small positive values (<6 mV) which were not significantly different from zero. PMID:4543066
Park, Jae Hyeon; Sut, Tun Naw; Jackman, Joshua A; Ferhan, Abdul Rahim; Yoon, Bo Kyeong; Cho, Nam-Joon
2017-03-29
Understanding the physicochemical factors that influence protein adsorption onto solid supports holds wide relevance for fundamental insights into protein structure and function as well as for applications such as surface passivation. Ionic strength is a key parameter that influences protein adsorption, although how its modulation might be utilized to prepare well-coated protein adlayers remains to be explored. Herein, we investigated how ionic strength can be utilized to control the adsorption and passivation properties of bovine serum albumin (BSA) on silica surfaces. As protein stability in solution can influence adsorption kinetics, the size distribution and secondary structure of proteins in solution were first characterized by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and circular dichroism (CD) spectroscopy. A non-monotonic correlation between ionic strength and protein aggregation was observed and attributed to colloidal agglomeration, while the primarily α-helical character of the protein in solution was maintained in all cases. Quartz crystal microbalance-dissipation (QCM-D) experiments were then conducted in order to track protein adsorption onto silica surfaces as a function of ionic strength, and the measurement responses indicated that total protein uptake at saturation coverage is lower with increasing ionic strength. In turn, the QCM-D data and the corresponding Voigt-Voinova model analysis support that the surface area per bound protein molecule is greater with increasing ionic strength. While higher protein uptake under lower ionic strengths by itself did not result in greater surface passivation under subsequent physiologically relevant conditions, the treatment of adsorbed protein layers with a gluteraldehyde cross-linking agent stabilized the bound protein in this case and significantly improved surface passivation. Collectively, our findings demonstrate that ionic strength modulation influences BSA adsorption uptake on account of protein spreading and can be utilized in conjunction with covalent cross-linking strategies to prepare well-coated protein adlayers for improved surface passivation.
Reproduction of Venezulean Equine Encephalomyelitis Virus at Low Ionic Strength
1975-02-28
AD/A-006 206 REPRODUCTION OF VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS AT LOW IONIC STRENGTH T.M. Sokolova, et al Army Medical Research Institute of... Reproduction of Venezuelan equine encephalo- Translation myelitis virus at low ionic strength 6. PERFORM4ING ORG. REPORT NU14BER II!LTT, 0491 7. AUTHOR(a... REPRODUCTION OF VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS AT LOW IONIC STRFNGTH Article by T. M. Sokolova, I. B. Tazulakhova, S. S. Grigoryan and F. I. e v
Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.
Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A
2007-02-15
Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was <1.5% relative to the solubility in pure water. This decrease of solubility is insufficient to account for the observed increase of sorption by K-smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.
Measurements and theoretical interpretation of points of zero charge/potential of BSA protein.
Salis, Andrea; Boström, Mathias; Medda, Luca; Cugia, Francesca; Barse, Brajesh; Parsons, Drew F; Ninham, Barry W; Monduzzi, Maura
2011-09-20
The points of zero charge/potential of proteins depend not only on pH but also on how they are measured. They depend also on background salt solution type and concentration. The protein isoelectric point (IEP) is determined by electrokinetical measurements, whereas the isoionic point (IIP) is determined by potentiometric titrations. Here we use potentiometric titration and zeta potential (ζ) measurements at different NaCl concentrations to study systematically the effect of ionic strength on the IEP and IIP of bovine serum albumin (BSA) aqueous solutions. It is found that high ionic strengths produce a shift of both points toward lower (IEP) and higher (IIP) pH values. This result was already reported more than 60 years ago. At that time, the only available theory was the purely electrostatic Debye-Hückel theory. It was not able to predict the opposite trends of IIP and IEP with ionic strength increase. Here, we extend that theory to admit both electrostatic and nonelectrostatic (NES) dispersion interactions. The use of a modified Poisson-Boltzmann equation for a simple model system (a charge regulated spherical colloidal particle in NaCl salt solutions), that includes these ion specific interactions, allows us to explain the opposite trends observed for isoelectric point (zero zeta potential) and isoionic point (zero protein charge) of BSA. At higher concentrations, an excess of the anion (with stronger NES interactions than the cation) is adsorbed at the surface due to an attractive ionic NES potential. This makes the potential relatively more negative. Consequently, the IEP is pushed toward lower pH. But the charge regulation condition means that the surface charge becomes relatively more positive as the surface potential becomes more negative. Consequently, the IIP (measuring charge) shifts toward higher pH as concentration increases, in the opposite direction from the IEP (measuring potential). © 2011 American Chemical Society
Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke
2014-11-01
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Effect of Ionic Strength on the Solubility of an Electrolyte
ERIC Educational Resources Information Center
Willey, Joan D.
2004-01-01
A simple experiment was conducted for studying and demonstrating visually and dramatically the effect of ionic strength on the solubility of an electrolyte is described. It is seen that the experiment visually illustrates the effect of ionic strength on electrolyte solubility by the appearance of the two solutions and by the difference in the…
Thompson, Ronald W; Latypov, Ramil F; Wang, Ying; Lomakin, Aleksey; Meyer, Julie A; Vunnum, Suresh; Benedek, George B
2016-11-14
Colloidal stability of IgG antibody solutions is important for pharmaceutical and medicinal applications. Solution pH and ionic strength are two key factors that affect the colloidal stability of protein solutions. In this work, we use a method based on the PEG-induced liquid-liquid phase separation to examine the effects of pH and ionic strength on the colloidal stability of IgG solutions. We found that at high ionic strength (≥0.25M), the colloidal stability of most of our IgGs is insensitive to pH, and at low ionic strength (≤0.15M), all IgG solutions are much more stable at pH 5 than at pH 7. In addition, the PEG-induced depletion force is less efficient in causing phase separation at pH 5 than at pH 7. In contrast to the native inter-protein interaction of IgGs, the effect of depletion force on phase separation of the antibody solutions is insensitive to ionic strength. Our results suggest that the long-range electrostatic inter-protein repulsion at low ionic strength stabilizes the IgG solutions at low pH. At high ionic strength, the short-range electrostatic interactions do not make a significant contribution to the colloidal stability for most IgGs with a few exceptions. The weaker effect of depletion force at lower pH indicates a reduction of protein concentration in the condensed phase. This work advances our basic understanding of the colloidal stability of IgG solutions and also introduces a practical approach to measuring protein colloidal stability under various solution conditions.
NASA Astrophysics Data System (ADS)
Kurade, S. S.; Ramteke, A. A.
2018-05-01
In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.
Impact of self-assembled surfactant structures on rheology of concentrated nanoparticle dispersions.
Zaman, A A; Singh, P; Moudgil, B M
2002-07-15
Rheological behavior of surfactant-stabilized colloidal dispersions of silica particles under extreme conditions (low pH, high ionic strength) has been investigated in relation to interparticle forces and stability of the dispersion. The surfactant used as the dispersing agent was C(12)TAB, a cationic surfactant. Stability analysis through turbidity measurements indicated that there is a sharp increase in the stability of the dispersion when the surfactant concentration is in the range of 8 to 10 mM in the system. The state of the dispersion changes from an unstable regime to a stable regime above a critical concentration of C(12)TAB in the system. In the case of interaction forces measured between the silica substrate and AFM tip, no repulsive force was observed up to a surfactant concentration of 8 mM and a transition from no repulsive forces to steric repulsive forces occurred between 8 and 10 mM. Rheological measurements as a function of C(12)TAB concentration indicated a significant decrease in the viscosity and linear viscoelastic functions of the dispersion over the same range of surfactant concentration (8 to 10 mM C(12)TAB), showing a strong correlation between the viscosity behavior, interparticle forces, and structure development in the dispersion.
NASA Astrophysics Data System (ADS)
Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.
2015-07-01
Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum ( 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate- or polyvinylpyrrolidone-stabilized silver nanoparticles.
Response surface optimization of pH and ionic strength for emulsion characteristics of egg yolk.
Kurt, S; Zorba, O
2009-11-01
Effects of pH (3.5, 4.5, 6.0, 7.5, and 8.5) and ionic strength (0.05, 0.15, 0.30, 0.45, and 0.55 M NaCl) on emulsion capacity, emulsion stability (ES), apparent yield stress of emulsion (AYS), and emulsion density (ED) of egg yolk were studied by using a model system. Ionic strength and pH had significant (P < 0.01) effects on the emulsion characteristics of egg yolk. Their interaction effects also have been found significant on ES, AYS, and ED. Predicted solutions of ES, emulsion capacity, and ED were minimum. The critical point of ES was determined to be at pH 6.08 and an ionic strength of 0.49 (M NaCl). Predicted solution for AYS was a maximum, which was determined to be at pH 6.04 and an ionic strength of 0.29 (M NaCl). Optimum values of pH and ionic strenght were 4.61 to 7.43 and 0.10 to 0.47, respectively.
Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei
2017-07-01
A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A batch adsorption study on bentonite clay Pertinence to transport modeling?
NASA Astrophysics Data System (ADS)
BOURG, I.; BOURG, A. C.; SPOSITO, G.
2001-12-01
Bentonite clay is often used as a component of engineered barriers for the isolation of high-level toxic wastes. This swelling clay is used for its physical (impermeability, self-healing) but also for its chemical properties, mostly a high cation exchange capacity (CEC). The adsorbed cations being temporarily immobilized, this should slow down the release of cations from the waste to the surrounding environment. In order to assess the performance of the engineered barrier, the partitioning of solutes between the liquid and solid phases needs to be quantified for use in transport models. The usual method for characterizing the adsorption is through batch adsorption experiments on dispersed suspensions of the solid, yielding an adsorption isotherm (adsorbed concentration vs. dissolved concentration). This isotherm however should be a function of various environmental variables (e.g., pH, ionic strength, concentrations of various ligands and competing adsorbents), so that extrapolation of lab data to performance assessment in the field is problematic. We present results from a study of the adsorption of cesium, strontium, cadmium and lead on dispersed suspensions of the standard BX-80 bentonite. Through a wide range of experimental parameters (pH, ionic strength, reaction time, reactor open or closed to the atmosphere, study of a range of cations of differing properties), we seek a mechanistic interpretation of the results instead of an empirical determination of adsorption parameters. Depending on the mechanisms that control the adsorption in different experimental ranges, we discuss the degree to which the partitioning coefficient (Kd) obtained in the lab can be extrapolated to a transport model through compacted bentonite in a natural environment.
Wang, Zhibing; He, Mengyu; Jiang, Chunzhu; Zhang, Fengqing; Du, Shanshan; Feng, Wennan; Zhang, Hanqi
2015-12-01
Matrix solid-phase dispersion coupled with homogeneous ionic liquid microextraction was developed and applied to the extraction of some sulfonamides, including sulfamerazine, sulfamethazine, sulfathiazole, sulfachloropyridazine, sulfadoxine, sulfisoxazole, and sulfaphenazole, in animal tissues. High-performance liquid chromatography was applied to the separation and determination of the target analytes. The solid sample was directly treated by matrix solid-phase dispersion and the eluate obtained was treated by homogeneous ionic liquid microextraction. The ionic liquid was used as the extraction solvent in this method, which may result in the improvement of the recoveries of the target analytes. To avoid using organic solvent and reduce environmental pollution, water was used as the elution solvent of matrix solid-phase dispersion. The effects of the experimental parameters on recoveries, including the type and volume of ionic liquid, type of dispersant, ratio of sample to dispersant, pH value of elution solvent, volume of elution solvent, amount of salt in eluate, amount of ion-pairing agent (NH4 PF6 ), and centrifuging time, were evaluated. When the present method was applied to the analysis of animal tissues, the recoveries of the analytes ranged from 85.4 to 118.0%, and the relative standard deviations were lower than 9.30%. The detection limits for the analytes were 4.3-13.4 μg/kg. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Prabhash; Department of Nanoengineering, Samara State Aerospace University, 443086 Samara; Pavelyev, V.S.
2016-06-15
Graphical abstract: Ionic liquid ([C6-mim]PF6) used as dispersant agent for SWCNTs: An investigations were carried out to find the structural quality and surface modification for sensor application. - Highlights: • An effective technique based on Ionic liquids (IL) and their use as a dispersant. • Electron microscopy and spectroscopy for structure characterization. • Covalent linkage of ILs with SWNTs and dispersion of SWCNTs. • The IL-wrapped sensing film, capable for detecting trace levels of gas. - Abstract: Single-walled carbon nanotubes (SWCNTs) were dispersed in an imidazolium-based ionic liquid (IL) and investigated in terms of structural quality, surface functionalization and inter-CNTmore » force. Analysis by field emission electron microscopy and transmission electron microscopy shows the IL layer to coat the SWNTs, and FTIR and Raman spectroscopy confirm strong binding of the ILs to the SWNTs. Two kinds of resistive sensors were fabricated, one by drop casting of IL-wrapped SWCNTs, the other by conventional dispersion of SWCNTs. Good response and recovery to NO{sub 2} is achieved with the IL-wrapped SWCNTs material upon UV-light exposure, which is needed because decrease the desorption energy barrier to increase the gas molecule desorption. NO{sub 2} can be detected in the 1–20 ppm concentration range. The sensor is not interfered by humidity due to the hydrophobic tail of PF6 (ionic liquid) that makes our sensor highly resistant to moisture.« less
Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo
2013-01-01
Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca2+-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca2+-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca2+-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca2+ activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca2+-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca2+-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction. PMID:23691080
Werner, Justyna
2018-05-15
Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase was used for preconcentration of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in natural water samples prior to liquid chromatography with UV detection. In the proposed method, the ammonium pyrrolidinedithiocarbamate was used as a complexing agent and the phosphonium ionic liquid trihexyl(tetradecyl)phosphonium bis[(2,4,4-trimethyl)pentyl]phosphinate (Cyphos IL 104) was used as an extractant. Ultrasound energy was used to disperse the extractant in the aqueous phase. After microextraction, the ionic liquid and aqueous phases were separated by centrifugation. Then the aqueous phase was frozen and the lighter than water ionic liquid phase containing metal ions complexes with pyrrolidinedithiocarbamate was separated and dissolved in a small volume of methanol prior to injection into the liquid chromatograph. Several parameters including the volume of extractant, the pH of the sample, the concentration of complexing agent, the time of ultrasound energy treatment, the time and speed of centrifugation and the effect of ionic strength were optimized. Under the optimized conditions (10 µL of Cyphos IL 104, pH = 5, 0.3% w/v ammonium pyrrolidinedithiocarbamate, 60 s of ultrasound use, 5 min/5000 rpm (2516×g) of centrifugation, 2.0 mg of NaCl), preconcentration factors were 211, 210, 209, 207 and 211 for Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ and Pb 2+ respectively. Linearity was observed in the ranges 0.2-75.0 µg L -1 for Pb 2+ , Cd 2+ , Co 2+ and 0.5-100.0 µg L -1 for Cu 2+ , Ni 2+ . The limits of detection were 0.03 µg L -1 for Ni 2+ , 0.03 µg L -1 for Co 2+ , 0.03 µg L -1 for Cd 2+ , 0.02 µg L -1 for Cu 2+ , 0.02 µg L -1 for Pb 2+ , respectively. The accuracy of this method was evaluated by preconcentration and determination of Ni 2+ , Co 2+ , Cd 2+ , Cu 2+ , Pb 2+ in certified reference materials (TMRAIN-04 and NIST 1643e) with the recovery values in the range of 97-102%. The presented method has been successfully applied for the determination of analytes in natural water samples (river and lake waters). Copyright © 2018 Elsevier B.V. All rights reserved.
Dispersion polymerization of L-lactide utilizing ionic liquids as reaction medium
NASA Astrophysics Data System (ADS)
Fahmiati, Sri; Minami, Hideto; Haryono, Agus; Adilina, Indri B.
2017-11-01
Dispersion polymerization of L-lactide was proceeded in various ionic liquids. Ionic liquids as 1-Hexyl-3-methylimidazolium bis (trifluormethylsulfonyl) imide, [HMIM] [TFSI], 1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, [BMP] [TFSI], and N,N,N-Trimethyl-N-Propylammonium Bis (trifloromethanesulfonyl) imide, [TMPA] [TFSI], were employed as reaction medium that dissolved both of lactide and stabilizer (polyvinylprrolidone). Sn-supported on bentonite was used as a ring opening catalyst of L-lactide. Gel Permeation Chromatography result showed that poly-(L-lactic acid) were formed in ionic liquids [HMIM] [TFSI] and [BMP] [TFSI] with molecular weight as 19390 and 20844, respectively.
McUmber, Aaron C; Randolph, Theodore W; Schwartz, Daniel K
2015-07-02
High-throughput single-molecule total internal reflection fluorescence microscopy was used to investigate the effects of pH and ionic strength on bovine serum albumin (BSA) adsorption, desorption, and interfacial diffusion at the aqueous-fused silica interface. At high pH and low ionic strength, negatively charged BSA adsorbed slowly to the negatively charged fused silica surface. At low pH and low ionic strength, where BSA was positively charged, or in solutions at higher ionic strength, adsorption was approximately 1000 times faster. Interestingly, neither surface residence times nor the interfacial diffusion coefficients of BSA were influenced by pH or ionic strength. These findings suggested that adsorption kinetics were dominated by energy barriers associated with electrostatic interactions, but once adsorbed, protein-surface interactions were dominated by short-range nonelectrostatic interactions. These results highlight the ability of single-molecule techniques to isolate elementary processes (e.g., adsorption and desorption) under steady-state conditions, which would be impossible to measure using ensemble-averaging methods.
Polarographic determination of lead hydroxide formation constants at low ionic strength
Lind, Carol J.
1978-01-01
Values of formation constants for lead hydroxide at 25 ??C were calculated from normal pulse polarographic measurements of 10-6 M lead in 0.01 M sodium perchlorate. The low concentrations simulate those found in many freshwaters, permitting direct application of the values when considering distributions of lead species. The precise evaluation of species distribution in waters at other ionic strengths requires activity coefficient corrections. As opposed to much of the previously published work done at high ionic strength, the values reported here were obtained at low ionic strength, permitting use of smaller and better defined activity coefficient corrections. These values were further confirmed by differential-pulse polarography and differential-pulse anodic stripping voltammetry data. The logs of the values for ??1??? ??2???, and ??3??? were calculated to be 6.59, 10.80, and 13.63, respectively. When corrected to zero ionic strength these values were calculated to be 6.77, 11.07, and 13.89, respectively.
NASA Astrophysics Data System (ADS)
Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt
2008-03-01
Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.
Ma, Teng; Li, Zheng; Jia, Qiong; Zhou, Weihong
2016-07-01
We developed a CE and ultrasound-assisted temperature-controlled ionic liquid emulsification microextraction method for the determination of four parabens (methyl paraben, ethyl paraben, propyl paraben, and butyl paraben) in personal care products including mouthwash and toning lotion. In the proposed extraction procedure, ionic liquid (IL, 1-octyl-3-methylimidazolium hexafluorophosphate) was used as extraction solvent, moreover, no disperser solvent was needed. Parameters affecting the extraction efficiency including volume of IL, heating temperature, ultrasonic time, extraction time, sample pH, ionic strength, and centrifugation time were optimized. Under the optimized conditions, the method was found to be linear over the range of 3-500 ng/mL with coefficient of determination (R(2) ) in the range of 0.9990-0.9998. The LODs and LOQs for the four parabens were 0.45-0.72 ng/mL and 1.50-2.40 ng/mL, respectively. Intraday and interday precisions (RSDs, n = 5) were in the range of 5.4-6.8% and 7.0-8.7%, respectively. The recoveries of parabens at different spiked levels ranged from 71.9 to 119.2% with RSDs less than 9.5%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
End Functionalized Nonionic Water-Dispersible Conjugated Polymers.
Zhan, Ruoyu; Liu, Bin
2017-09-01
2,7-Dibromofluorene monomers carrying two or four oligo(ethylene glycol) (OEG) side chains are synthesized. Heck coupling between the monomers and 1,4-divinylbenzene followed by end capping with [4-(4-bromophenoxy)butyl]carbamic acid tert-butyl ester leads to two nonionic water-dispersible poly(fluorene-alt-1,4-divinylenephenylene)s end-functionalized with amine groups after hydrolysis. In water, the polymer with a lower OEG density (P1) has poor water dispersibility with a quantum yield of 0.24, while the polymer with a higher OEG density (P2) possesses excellent water-dispersibility with a high quantum yield of 0.45. Both polymers show fluorescence enhancement and blue-shifted absorption and emission maxima in the presence of surfactant sodium dodecyl sulfate and dodecyltrimethylammonium bromide. The polymers are also resistant to ionic strength with minimal nonspecific interactions to bovine serum albumin. When biotin is incorporated into the end of the polymer backbones through N-hydroxysuccinimide/amine coupling reaction, the biotinylated polymers interact specifically with streptavidin on solid surface. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanoparticles in ionic liquids: interactions and organization.
He, Zhiqi; Alexandridis, Paschalis
2015-07-28
Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.
Zhao, Shaojing; Lan, Minhuan; Zhu, Xiaoyue; Xue, Hongtao; Ng, Tsz-Wai; Meng, Xiangmin; Lee, Chun-Sing; Wang, Pengfei; Zhang, Wenjun
2015-08-12
Nitrogen and sulfur codoped carbon dots (CDs) were prepared from garlic by a hydrothermal method. The as-prepared CDs possess good water dispersibility, strong blue fluorescence emission with a fluorescent quantum yield of 17.5%, and excellent photo and pH stabilities. It is also demonstrated that the fluorescence of CDs are resistant to the interference of metal ions, biomolecules, and high ionic strength environments. Combining with low cytotoxicity properties, CDs could be used as an excellent fluorescent probe for cellular multicolor imaging. Moreover, the CDs were also demonstrated to exhibit favorable radical scavenging activity.
Patel, Salin Gupta; Bummer, Paul M
2017-01-10
This report examines the energetics of aggregate formation between hydroxypropyl methylcellulose (HPMC) and model ionic surfactants including sodium dodecyl sulfate (SDS) at pharmaceutically relevant concentrations using the isothermal titration calorimetry (ITC) technique and a novel treatment of calorimetric data that accounts for the various species formed. The influence of molecular weight of HPMC, temperature and ionic strength of solution on the aggregate formation process was explored. The interaction between SDS and HPMC was determined to be an endothermic process and initiated at a critical aggregation concentration (CAC). The SDS-HPMC interactions were observed to be cooperative in nature and dependent on temperature and ionic strength of the solution. Molecular weight of HPMC significantly shifted the interaction parameters between HPMC and SDS such that at the highest molecular weight (HPMC K-100M;>240kDa), although the general shape of the titration curve (enthalpogram) was observed to remain similar, the critical concentration parameters (CAC, polymer saturation concentration (C sat ) and critical micelle concentration (CMC)) were significantly altered and shifted to lower concentrations of SDS. Ionic strength was also observed to influence the critical concentration parameters for the SDS-HPMC aggregation and decreased to lower SDS concentrations with increasing ionic strength for both anionic and cationic surfactant-HPMC systems. From these data, other thermodynamic parameters of aggregation such as ΔH agg ° , ΔG agg ° , H agg ° , ΔS agg ° , and ΔC p were calculated and utilized to postulate the hydrophobic nature of SDS-HPMC aggregate formation. The type of ionic surfactant head group (anionic vs. cationic i.e., dodecyltrimethylammonium bromide (DTAB)) was found to influence the strength of HPMC-surfactant interactions wherein a distinct CAC signifying the strength of HPMC-DTAB interactions was not observed. The interpretation of the microcalorimetric data at different temperatures and ionic strengths while varying properties of polymer and surfactant was a very effective tool in investigating the nature and energetics of HPMC and ionic surfactant interactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.
Chen, J Paul; Wang, Lin
2004-01-01
Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.
Shimizu, Karina; Tariq, Mohammad; Costa Gomes, Margarida F; Rebelo, Luís P N; Canongia Lopes, José N
2010-05-06
Molecular dynamics simulations were used to calculate the density and the cohesive molar internal energy of seventeen different ionic liquids in the liquid phase. The results were correlated with previously reported experimental density and molar refraction data. The link between the dispersive component of the total cohesive energy of the fluid and the corresponding molar refraction was established in an unequivocal way. The results have shown that the two components of the total cohesive energy (dispersive and electrostatic) exhibit strikingly different trends and ratios along different families of ionic liquids, a notion that may help explain their diverse behavior toward different molecular solutes and solvents.
Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength
NASA Astrophysics Data System (ADS)
Ams, D.; Swanson, J. S.; Reed, D. T.
2010-12-01
Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic strength effects as the electronic double layer is compressed with increasing ionic strength. These results further highlight the importance of electrostatic interactions in the adsorption process between dissolved metals and bacterial surfaces. This work expands the understanding of actinide-bacteria adsorption phenomena to high ionic strength environmental conditions that are relevant as an aid to predicting Np(V) fate and transport behavior in areas such as the vicinity of salt-based nuclear waste repositories and high ionic-strength groundwaters at DOE sites.
Specific binding of (/sup 3/H-Tyr8)physalaemin to rat submaxillary gland substance P receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahouth, S.W.; Lazaro, D.M.; Brundish, D.E.
1985-01-01
(/sup 3/H)Physalaemin ((/sup 3/H)PHY) binds to a single class of noninteracting sites on rat submaxillary gland membranes suspended in high ionic strength media with a KD of 2.7 nM, a Bmax of 240 fmol/mg of protein, and low nonspecific binding. The relative potencies of substance P (SP) and its fragments in competing with (/sup 3/H)PHY correlate with their relative salivation potencies. This indicates that (/sup 3/H)PHY interacts with a physiologically relevant SP receptor. In low ionic strength media, the KD of (/sup 3/H)PHY does not change, but SP and some of its fragments are more potent than PHY in competingmore » with (/sup 3/H) PHY. Computer-assisted analysis of (/sup 3/H)PHY and (/sup 3/H)SP binding in high and low ionic strength media demonstrated that both peptides are equipotent in high ionic strength but that the affinity of SP increases by 70-fold in low ionic strength. The SP fragments that contain a basic residue in positions 1 and/or 3 also display an increased affinity in low ionic strength. These findings document that (/sup 3/H)PHY binding in high ionic strength (mu . 0.6) accurately reflects the pharmacological potencies of agonists on the SP-P receptor. The binding of (/sup 3/H)PHY, like that of (/sup 3/H)SP, increases by the addition of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+). Guanine nucleotides decrease (/sup 3/H)PHY binding by decreasing the Bmax to the same level (160 fmol/mg of protein), in the presence or absence of Mg2+.« less
The role of electrostatics in protein-protein interactions of a monoclonal antibody.
Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R
2014-07-07
Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.
Murthy, Arun; Manthiram, Arumugam
2011-06-28
Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011
Solubilization of octane in cationic surfactant-anionic polymer complexes: Effect of ionic strength.
Zhang, Hui; Deng, Lingli; Sun, Ping; Que, Fei; Weiss, Jochen
2016-01-01
Polymers may alter the ability of oppositely charged surfactant micelles to solubilize hydrophobic molecules depending on surfactant-polymer interactions. This study was conducted to investigate the effect of ionic strength on the solubilization thermodynamics of an octane oil-in-water emulsion in mixtures of an anionic polymer (carboxymethyl cellulose) and cationic cetyltrimethylammonium bromide (CTAB) surfactant micelles using isothermal titration calorimetry (ITC). Results indicated that the CTAB binding capacity of carboxymethyl cellulose increased with increasing NaCl concentrations up to 100 mM, and the thermodynamic behavior of octane solubilization in CTAB micelles, either in the absence or presence of polymer, was found to have a strong dependence on ionic strength. The increasing ionic strength caused the solubilization in CTAB micelles to be less endothermic or even exothermic, but increased the solubilization capacity. Based on the phase separation model, the solubilization was suggested to be driven by enthalpy. It is indicated that increasing ionic strength gave rise to a larger Gibbs energy decrease but a smaller unfavorable entropy increase for octane solubilization in cationic surfactant micelles. Copyright © 2015 Elsevier Inc. All rights reserved.
Miller, Daniel S.; Abbott, Nicholas L.
2012-01-01
We report an investigation of ordering transitions that are induced in water-dispersed, micrometer-sized droplets of a thermotropic liquid crystal (LC) by the bacterial lipopolysaccharide endotoxin. We reveal that the ordering transitions induced by endotoxin – from a bipolar state of the droplets to a radial state – are strongly dependent on the size of the LC droplets. Specifically, as the diameters of the LC droplets increase from 2 μm to above 10 μm (in phosphate buffered saline with an ionic strength of 90 mM and a pH of 7.2), we measured the percentage of droplets exhibiting a radial configuration in the presence of 100 pg/mL endotoxin to decrease from 98 ± 1 % to 3 ± 2 %. In addition, we measured a decrease in either the ionic strength or pH of the aqueous phase to reduce the percentage of droplets exhibiting a radial configuration in the presence of endotoxin. These results, when interpreted within the context of a simple thermodynamic model that incorporates the contributions of elasticity and surface anchoring to the free energies of the LC droplets, lead us to conclude that (i) the elastic constant K24 plays a central role in determining the size-dependent response of the LC droplets to endotoxin, and (ii) endotoxin-triggered ordering transitions occur only under solution conditions (pH, ionic strength) where the combined contributions of elasticity and surface anchoring to the free energies of the bipolar and radial configurations of the LC droplets are similar in magnitude. Our analysis also suggests that the presence of endotoxin perturbs the free energies of the LC droplets by ~10−17 J/droplet, which is comparable to the standard free energy of self-association of ~103 endotoxin molecules. These results, when combined with prior reports of localization of endotoxin at the center of LC droplets, are consistent with the hypothesis that self-assembly of endotoxin within micrometer-sized LC droplets provides the driving force for the ordering transitions. Overall, these results advance our understanding of ordering transitions triggered by the interactions of analytes with LC droplets and, more broadly, provide guidance to the design of LC droplet systems as the basis of stimuli-responsive soft materials. PMID:23675387
Light scattering measurements supporting helical structures for chromatin in solution.
Campbell, A M; Cotter, R I; Pardon, J F
1978-05-01
Laser light scattering measurements have been made on a series of polynucleosomes containing from 50 to 150 nucleosomes. Radii of gyration have been determined as a function of polynucleosome length for different ionic strength solutions. The results suggest that at low ionic strength the chromatin adopts a loosely helical structure rather than a random coil. The helix becomes more regular on increasing the ionic strength, the dimension resembling those proposed by Finch and Klug for their solenoid model.
NASA Astrophysics Data System (ADS)
Watters, Arianna L.; Palmese, Giuseppe R.
2014-09-01
Uniform dispersion of single walled carbon nanotubes (SWNTs) in an epoxy was achieved by a streamlined mechano-chemical processing method. SWNT-epoxy composites were synthesized using a room temperature ionic liquid (IL) with an imidazolium cation and dicyanamide anion. The novel approach of using ionic liquid that behaves as a dispersant for SWNTs and initiator for epoxy polymerization greatly simplifies nanocomposite synthesis. The material was processed using simple and scalable three roll milling. The SWNT dispersion of the resultant composite was evaluated by electron microscopy and electrical conductivity measurements in conjunction with percolation theory. Processing conditions were optimized to achieve the lowest possible percolation threshold, 4.29 × 10-5 volume fraction SWNTs. This percolation threshold is among the best reported in literature yet it was obtained using a streamlined method that greatly simplifies processing.
Zhang, Liyuan; Wang, Changyuan; Li, Zuotong; Zhao, Changjiang; Zhang, Hanqi; Zhang, Dongjie
2018-04-15
Ionic liquid-based matrix solid phase dispersion-solvent flotation coupled with high performance liquid chromatography was developed for the determination of the acetanilide herbicides, including metazachlor, propanil, alachlor, propisochlor, pretilachlor, and butachlor in rice samples. Some experimental parameters, including the type of dispersant, the mass ratio of dispersant to sample, pH of sample solution, the type of extraction solvent, the type of ionic liquid, flotation time, and flow rate of N 2 were optimized. The average recoveries of the acetanilide herbicides at spiked concentrations of 50, 125, and 250 µg/kg ranged from 89.4% to 108.7%, and relative standard deviations were equal to or lower than 7.1%, the limits of quantification were in the range of 38.0 to 84.7 µg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prédélus, Dieuseul; Lassabatere, Laurent; Louis, Cédric; Gehan, Hélène; Brichart, Thomas; Winiarski, Thierry; Angulo-Jaramillo, Rafael
2017-03-01
This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO2-FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10-2 M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.
Dancker, P
1975-01-01
1. The dependence on ATP concentration of ATPase activity and light scattering decrease of acto-HMM could be described at very low ionic strength by one hyperbolic adsorption isotherm with a dissociation constant of 3 X 10(-6)M. Hence the increase of ATP ase activity was paralleled by a decrease in light scattering. At higher values of ionic strength ATPase activity stopped rising before HMM was completely saturated with ATP. Higher ionic strength prevented ATPase activity from further increasing when the rigor links (links between actin and nucleotide-free myosin), which have formerly protected the ATPase against the suppressing action of higher ionic strength have fallen below a certain amount. This protecting influence of rigor links did not require tropomyosin-troponin. 2. For complete activation of ATPase activity by actin less actin was needed when HMM was incompletely saturated with ATP than when it was completely saturated with ATP. 3. The apparent affinity of ATP to regulated acto-HMM (which contained tropomyosin-troponin) was lower than to unregulated acto-HMM (which was devoid of tropomyosin-troponin). In the presence of rigor complexes (indicated by an incomplete decrease of light scattering) the ATPase activity of regulated acto-HMM was higher than that of unregulated acto-HMM. At increasing ATP concentrations the ATPase activity of regulated acto-HMM stopped rising at a similar degree of saturation with ATP as the ATPase activity of unregulated acto-HMM at the same ionic strength.
Rah, Kyunil; Han, Sujeong; Choi, Jaeyeong; Eum, Chul Hun; Lee, Seungho
2017-12-15
We investigate an explicit role of the ionic strength in the retention behaviors of polystyrene (PS) latex particles in sedimentation field-flow fractionation (SdFFF) by hinging upon the retention theory recently developed [1] asR=(R o +v b * )/(1+v b * ). Here R is an experimental retention ratio, and R o is the analytical expression of the standard retention theory based on the parabolic flow velocity. The reduced boundary velocityv b * is expressed in terms of the ionic strength I of the carrier liquid as v b * =v b,o * /(1+εI), where v b,o * =0.070and ε=60 mM -1 for all the PS latex systems under investigation. We then apply this to study the explicit ionic strength effect on the retention behaviors of PS beads of 200, 300, 400, and 500nm, respectively. As a primary result, the strong dependence of the retention ratio on the ionic strength can be quantitatively accounted for in an excellent accuracy: The slip effect at the channel surface is significant, particularly when I≲0.5mM, without showing any distinguishable dependence on the specific additives to control I, such as FL-70, SDS, NaNO 3 , and NaN 3 . Based on the present study, we put forward an experimental means to estimate the ionic strength of an aqueous solution using an FFF technique. Copyright © 2017. Published by Elsevier B.V.
Su, Y.-H.; Zhu, Y.-G.; Sheng, G.; Chiou, C.T.
2006-01-01
To characterize the linear adsorption phenomena in aqueous nonionic organic solute-mineral systems, the adsorption isotherms of some low-molecular- weightnonpolar nonionic solutes (1,2,3-trichlorobenzene, lindane, phenanthrene, and pyrene) and polar nonionic solutes (1,3-dinitrobenzene and 2,4-dinitrotoluene) from single-and binary-solute solutions on hydrophilic silica and alumina were established. Toward this objective, the influences of temperature, ionic strength, and pH on adsorption were also determined. It is found that linear adsorption exhibits low exothermic heats and practically no adsorptive competition. The solute-solid configuration and the adsorptive force consistent with these effects were hypothesized. For nonpolar solutes, the adsorption occurs presumably by London (dispersion) forces onto a water film above the mineral surface. For polar solutes, the adsorption is also assisted by polar-group interactions. The reduced adsorptive forces of solutes with hydrophilic minerals due to physical separation by the water film and the low fractions of the water-film surface covered by solutes offer a theoretical basis for linear solute adsorption, low exothermic heats, and no adsorptive competition. The postulated adsorptive forces are supported by observations that ionic strength or pH poses no effect on the adsorption of nonpolar solutes while it exhibits a significant effect on the uptake of polar solutes. ?? 2006 American Chemical Society.
Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P.-A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert
2011-01-01
The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity. PMID:21878634
Song, Yonghai; Chen, Jingyi; Liu, Hongyu; Li, Ping; Li, Hongbo; Wang, Li
2015-09-03
A simple, sensitive and effective method to detect glucose in ultra-low ionic strength solution containing citrate-capped silver nanoparticles (CCAgNPs) was developed by monitoring the change of solution conductance. Glucose was catalyzed into gluconic acid firstly by glucose oxidase in an O2-saturated solution accompanied by the reduction of O2 into hydrogen peroxide (H2O2). Then, CCAgNPs was oxidized by H2O2 into Ag(+) and the capping regent of citrate was released at the same time. All these resulted Ag(+), gluconic acid and the released citrate would contribute to the increase of solution ionic strength together, leading to a detectable increase of solution conductance. And a novel conductance glucose biosensor was developed with a routine linear range of 0.06-4.0 mM and a suitable detection limit of 18.0 μM. The novel glucose biosensor was further applied in energy drink sample and proven to be suitable for practical system with low ionic strength. The proposed conductance biosensor achieved a significant breakthrough of glucose detection in ultra-low ionic strength media. Copyright © 2015 Elsevier B.V. All rights reserved.
Electrophoretic mobilities of erythrocytes in various buffers
NASA Technical Reports Server (NTRS)
Plank, L. D.; Kunze, M. E.; Todd, P. W.
1985-01-01
The calibration of space flight equipment depends on a source of standard test particles, this test particle of choice is the fixed erythrocyte. Erythrocytes from different species have different electrophoretic mobilities. Electrophoretic mobility depends upon zeta potential, which, in turn depends upon ionic strength. Zeta potential decreases with increasing ionic strength, so cells have high electrophoretic mobility in space electrophoresis buffers than in typical physiological buffers. The electrophoretic mobilities of fixed human, rat, and rabbit erythrocytes in 0.145 M salt and buffers of varying ionic strength, temperature, and composition, to assess the effects of some of the unique combinations used in space buffers were characterized. Several effects were assessed: glycerol or DMSO (dimethylsulfoxide) were considered for use as cryoprotectants. The effect of these substances on erythrocyte electrophoretic mobility was examined. The choice of buffer depended upon cell mobility. Primary experiments with kidney cells established the choice of buffer and cryoprotectant. A nonstandard temperature of EPM in the suitable buffer was determined. A loss of ionic strength control occurs in the course of preparing columns for flight, the effects of small increases in ionic strength over the expected low values need to be evaluated.
Coupled ion redistribution and electronic breakdown in low-alkali boroaluminosilicate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Doo Hyun, E-mail: cooldoo@add.re.kr; Randall, Clive, E-mail: car4@psu.edu; Furman, Eugene, E-mail: euf1@psu.edu
2015-08-28
Dielectrics with high electrostatic energy storage must have exceptionally high dielectric breakdown strength at elevated temperatures. Another important consideration in designing a high performance dielectric is understanding the thickness and temperature dependence of breakdown strengths. Here, we develop a numerical model which assumes a coupled ionic redistribution and electronic breakdown is applied to predict the breakdown strength of low-alkali glass. The ionic charge transport of three likely charge carriers (Na{sup +}, H{sup +}/H{sub 3}O{sup +}, Ba{sup 2+}) was used to calculate the ionic depletion width in low-alkali boroaluminosilicate which can further be used for the breakdown modeling. This model predictsmore » the breakdown strengths in the 10{sup 8}–10{sup 9 }V/m range and also accounts for the experimentally observed two distinct thickness dependent regions for breakdown. Moreover, the model successfully predicts the temperature dependent breakdown strength for low-alkali glass from room temperature up to 150 °C. This model showed that breakdown strengths were governed by minority charge carriers in the form of ionic transport (mostly sodium) in these glasses.« less
Gelatinization kinetic of waxy starches under pressure according to ionic strength
NASA Astrophysics Data System (ADS)
Simonin, Hélène; Guyon, Claire; de Lamballerie, Marie; Lebail, Alain
2010-12-01
High pressure is a potential technology for the texturization of food products at ambient temperature. In this area, waxy starches are particularly interesting because they gelatinize quickly under sufficient pressure. However, gelatinization may be influenced by other components in the food matrix. Here, we investigate the influence of increasing ionic strength on gelatinization rate and kinetics at 500 MPa for waxy corn and waxy rice starches. We show that increasing ionic strength strongly retards and inhibits starch gelatinization under pressure and leads to heterogeneous gels with remnant granules.
NASA Astrophysics Data System (ADS)
Liu, Chengbao; Du, Peng; Nan, Feng; Zhao, Haichao; Wang, Liping
2018-06-01
Dispersion of graphene nanosheets in a water and polymer matrix has been rarely achieved due to graphene’s hydrophobicity, which thus impedes its potential anticorrosive application. In this study, stable graphene aqueous dispersion was obtained by using imidazole-based polymeric ionic liquid (PIL) as the dispersant with ultrasonic vibration. Stacked graphene sheets were exfoliated to a few layers via cation-π interaction between PIL and graphene nanosheets. Electrochemical impedance measurements were taken to investigate the anticorrosion performance of epoxy coatings with or without polymeric ionic liquid–graphene (PIL–G) hybrids. Results indicated that the PIL–G hybrid significantly enhanced the long-term protective performance of epoxy coatings, which was attributed to the synergistic effects of the corrosion-inhibitive PIL and impermeable graphene nanosheets.
Time-dependent Fracture Behaviour of Polyampholyte Hydrogels
NASA Astrophysics Data System (ADS)
Sun, Tao Lin; Luo, Feng; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping
Recently, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and self-healing hydrogels with excellent multiple mechanical functions. The randomness makes ionic bonds with a wide distribution of strength, via inter and intra chain complexation. As the breaking and reforming of ionic bonds are time dependent, the hydrogels exhibit rate dependent mechanical behaviour. We systematically studied the tearing energy by tearing test with various tearing velocity under different temperature, and the linear viscoelastic behaviour over a wide range of frequency and temperature. Results have shown that the tearing energy markedly increase with the crack velocity and decrease with the measured temperature. In accordance with the prediction of Williams, Landel, and Ferry (WLF) rate-temperature equivalence, a master curve of tearing energy dependence of crack velocity can be well constructed using the same shift factor from the linear viscoelastic data. The scaling relation of tearing energy as a function of crack velocity can be predicted well by the rheological data according to the developed linear fracture mechanics.
Isotope effects in aqueous solvation of simple halides
NASA Astrophysics Data System (ADS)
Videla, Pablo E.; Rossky, Peter J.; Laria, D.
2018-03-01
We present a path-integral-molecular-dynamics study of the thermodynamic stabilities of DOH⋯ X- and HOD⋯ X- (X = F, Cl, Br, I) coordination in aqueous solutions at ambient conditions. In agreement with experimental evidence, our results for the F- case reveal a clear stabilization of the latter motif, whereas, in the rest of the halogen series, the former articulation prevails. The DOH⋯ X- preference becomes more marked the larger the size of the ionic solute. A physical interpretation of these tendencies is provided in terms of an analysis of the global quantum kinetic energies of the light atoms and their geometrical decomposition. The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O-H⋯X- axis, as the strength of the water-halide H-bond varies. This interpretation is corroborated by a complementary analysis performed on the different spectroscopic signals of the corresponding IR spectra.
Large Magneto-ionic Variations toward the Galactic Center Magnetar, PSR J1745-2900
NASA Astrophysics Data System (ADS)
Desvignes, G.; Eatough, R. P.; Pen, U. L.; Lee, K. J.; Mao, S. A.; Karuppusamy, R.; Schnitzeler, D. H. F. M.; Falcke, H.; Kramer, M.; Wucknitz, O.; Spitler, L. G.; Torne, P.; Liu, K.; Bower, G. C.; Cognard, I.; Lyne, A. G.; Stappers, B. W.
2018-01-01
Polarized radio emission from PSR J1745‑2900 has already been used to investigate the strength of the magnetic field in the Galactic center (GC), close to Sagittarius A*. Here we report how persistent radio emission from this magnetar, for over four years since its discovery, has revealed large changes in the observed Faraday rotation measure (RM), by up to 3500 rad m‑2 (a 5% fractional change). From simultaneous analysis of the dispersion measure, we determine that these fluctuations are dominated by variations in either the projected magnetic field or the free electron content within the GC, along the changing line of sight to the rapidly moving magnetar. From a structure function analysis of RM variations, and a recent epoch of rapid change of RM, we determine a minimum scale of magneto-ionic fluctuations of size ∼2 au at the GC distance, inferring PSR J1745‑2900 is just ∼0.1 pc behind an additional scattering screen.
Communication: Dimensionality of the ionic conduction pathways in glass and the mixed-alkali effect.
Novy, Melissa; Avila-Paredes, Hugo; Kim, Sangtae; Sen, Sabyasachi
2015-12-28
A revised empirical relationship between the power law exponent of ac conductivity dispersion and the dimensionality of the ionic conduction pathway is established on the basis of electrical impedance spectroscopic (EIS) measurements on crystalline ionic conductors. These results imply that the "universal" ac conductivity dispersion observed in glassy solids is associated with ionic transport along fractal pathways. EIS measurements on single-alkali glasses indicate that the dimensionality of this pathway D is ∼2.5, while in mixed-alkali glasses, D is lower and goes through a minimum value of ∼2.2 when the concentrations of the two alkalis become equal. D and σ display similar variation with alkali composition, thus suggesting a topological origin of the mixed-alkali effect.
NASA Astrophysics Data System (ADS)
Perlt, Eva; Ray, Promit; Hansen, Andreas; Malberg, Friedrich; Grimme, Stefan; Kirchner, Barbara
2018-05-01
Ionic liquids raise interesting but complicated questions for theoretical investigations due to the fact that a number of different inter-molecular interactions, e.g., hydrogen bonding, long-range Coulomb interactions, and dispersion interactions, need to be described properly. Here, we present a detailed study on the ionic liquids ethylammonium nitrate and 1-ethyl-3-methylimidazolium acetate, in which we compare different dispersion corrected density functional approximations to accurate local coupled cluster data in static calculations on ionic liquid clusters. The efficient new composite method B97-3c is tested and has been implemented in CP2K for future studies. Furthermore, tight-binding based approaches which may be used in large scale simulations are assessed. Subsequently, ab initio as well as classical molecular dynamics simulations are conducted and structural analyses are presented in order to shed light on the different short- and long-range structural patterns depending on the method and the system size considered in the simulation. Our results indicate the presence of strong hydrogen bonds in ionic liquids as well as the aggregation of alkyl side chains due to dispersion interactions.
Friction and wear behavior of glasses and ceramics
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1973-01-01
Adhesion, friction, and wear behavior of glasses and ionic solids are reviewed. These materials are shown to behave in a manner similar to other solids with respect to adhesion. Their friction characteristics are shown to be sensitive to environmental constituents and surface films. This sensitivity can be related to a reduction in adhesive bonding and the changes in surficial mechanical behavior associated with Rehbinder and Joffe effects. Both friction and wear properties of ionic crystalline solids are highly anisotropic. With metals in contact with ionic solids the fracture strength of the ionic solid and the shear strength in the metal and those properties that determine these will dictate which of the materials undergoes adhesive wear. The chemical activity of the metal plays an important role in the nature and strength of the adhesive interfacial bond that develops between the metal and a glass or ionic solid.
Curvale, Rolando A; Debattista, Nora B; Pappano, Nora B
2012-04-01
UV-Vis spectroscopy was used to study the interaction between the 2',4- dihydroxychalcone, flavonoid which is known to have anti-tumor activity in vitro, and others biological properties, and the N, F and E conformers of bovine serum albumin at different ionic strengths and temperatures. The Klotz model was found to be adequate to determine the constants and number of binding sites. The reaction was found to be exothermic and spontaneous. The number of binding sites decreases and the reaction is more exergonic along with the increase in ionic strength and the conformational change of N to E. The reactions were necessarily hydrophobic and followed by a process of ionic character.
Polycation induced actin bundles.
Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil
2011-04-01
Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arain, Mariam S.; Arain, Salma A.; Kazi, Tasneem G.; Afridi, Hassan I.; Ali, Jamshaid; Naeemulllah; Arain, Sadaf S.; Brahman, Kapil Dev; Mughal, Moina Akhtar
2015-02-01
A green and sensitive temperature controlled dispersive liquid-liquid microextraction (TIL-DLLME) methodology based on the application of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, [C4mim][PF6], as an extractant solvent was proposed for the preconcentration of trace levels of aluminium (Al3+) in scalp hair samples of Alzheimer's (AD) patients, prior to analyzing by flame atomic absorption spectrometry (FAAS). The Al3+ was complexed with 8-hydrooxyquinoline (oxine) (L1) and 3,5,7,2‧-4‧ pentahydroxy flavone (morin) (L2) separately and then extracted by IL at temperature (50 ± 2.0 °C). Some effective factors that influence the TIL-DLLME efficiency such as pH, ligands concentrations, volume of IL, ionic strength, and incubation time were investigated and optimized by multivariate analysis. In the optimum experimental conditions, the limit of detection (3 s) and enhancement factor were 0.56 μg L-1, 0.64 μg L-1 and 85, 73 for both ligands, respectively. The relative standard deviation (RSD) for six replicate determinations of 100 μg L-1 Al3+ complexed with oxine and morin were found to be 3.88% and 4.74%, respectively. The developed method was validated by the analysis of certified reference material of human hair (NCSZC81002).and applied satisfactorily to the determination of Al3+ in acid digested scalp hair samples of AD patients and healthy controls. The resulted data shows significant higher level in scalp hair samples of AD male patients with related to referents of same age and socioeconomic status.
Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayesteh; Talebianpoor, Mohammad Sharif; Khodadoust, Saeid
2016-05-01
In this work, a fast, easy, and efficient dispersive liquid-liquid microextraction method based on solidification of floating organic drop followed by high-performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1-dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min(-1) . The linear response (r(2) = 0.997) was obtained in the range of 0.013-10.0 μg mL(-1) with a limit of detection of 4.0 ng mL(-1) and relative standard deviations of less than 5.0 % (n = 6). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel functionalized fluorescent polymeric nanoparticles for immobilization of biomolecules
NASA Astrophysics Data System (ADS)
Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, C. K. V. Zainul; Singh, Harpal
2013-07-01
Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable, monodisperse, spherical nano sized particles exhibiting high luminescence properties. Particles with 1% SLS (S1) showed good dispersion stability and fluorescence intensity and were chosen as ideal candidates for further immobilization studies. Steady state fluorescence studies showed 10 times higher fluorescence intensity of S1 nanoparticles than that of pyrene solution in solvent-toluene at the same concentration. Environmental factors such as pH, ionic strength and time were found to have no effect on fluorescence intensity of FPNPs. Surface β-di-ketone groups were utilized for the covalent immobilization of enzyme conjugated antibodies without any activation or pre-treatment of nanoparticles.Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable, monodisperse, spherical nano sized particles exhibiting high luminescence properties. Particles with 1% SLS (S1) showed good dispersion stability and fluorescence intensity and were chosen as ideal candidates for further immobilization studies. Steady state fluorescence studies showed 10 times higher fluorescence intensity of S1 nanoparticles than that of pyrene solution in solvent-toluene at the same concentration. Environmental factors such as pH, ionic strength and time were found to have no effect on fluorescence intensity of FPNPs. Surface β-di-ketone groups were utilized for the covalent immobilization of enzyme conjugated antibodies without any activation or pre-treatment of nanoparticles. Electronic supplementary information (ESI) available: Resulting ATR-FTIR spectrum and procedure to study fluorescence of nanoparticles, effect of particle size, concentration, pH, ionic strength and time on Fl intensity of FPNP. See DOI: 10.1039/c3nr34100c
Zhao, Jiao; Zhu, Yan; Jiao, Yang; Ning, Jinyan; Yang, Yaling
2016-10-01
A novel two-step extraction technique combining ionic-liquid-based dispersive liquid-liquid microextraction with magnetic solid-phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high-performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid-liquid microextraction, and hydrophobic pelargonic acid modified Fe 3 O 4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins-containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid-liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid-liquid microextraction and magnetic solid-phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3-103.7% with relative standard deviations of 3.2-6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B 1 , B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, Yuehuang; Tang, Tingting; Cao, Zhen; Shi, Guoyue; Zhou, Tianshu
2015-06-01
A hydroxyl-functionalized ionic liquid, 1-hydroxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid-phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H-bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0-1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0-1000 μg/L for estriol. The detection limits were in the range of 1.7-3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2011-09-30
transducers from branched sulfonated polysulfones.7 The mechanical strength of the membranes drastically decreased upon introduction of ionic liquids to... liquids ,8 and zwitterionomers maintained mechanical strengths upon swelling with 10 wt % ionic liquid . Zwitterions are chargedmolecules that contain...water purification5 to biotechnology.6 A unique combination of physical properties of ionomeric membranes is the ionic con- ductivity of lowmolar mass
Karkossa, Frank; Klein, Sandra
2017-10-01
The objective of this test series was to elucidate the importance of selecting the right media composition for a biopredictive in-vitro dissolution screening of enteric-coated dosage forms. Drug release from immediate-release (IR) and enteric-coated (EC) aspirin formulations was assessed in phosphate-based and bicarbonate-based media with different pH, electrolyte composition and ionic strength. Drug release from aspirin IR tablets was unaffected by media composition. In contrast, drug release from EC aspirin formulations was affected by buffer species and ionic strength. In all media, drug release increased with increasing ionic strength, but in bicarbonate-based buffers was delayed when compared with that in phosphate-based buffers. Interestingly, the cation species in the dissolution medium had also a clear impact on drug release. Drug release profiles obtained in Blank CarbSIF, a new medium simulating pH and average ionic composition of small intestinal fluid, were different from those obtained in all other buffer compositions studied. Results from this study in which the impact of various media parameters on drug release of EC aspirin formulations was systematically screened clearly show that when developing predictive dissolution tests, it is important to simulate the ionic composition of intraluminal fluids as closely as possible. © 2017 Royal Pharmaceutical Society.
Interaction of indole-papaverine with DNA in solutions of various ionic strength
NASA Astrophysics Data System (ADS)
Travkina, V. I.; Moroshkina, E. B.; Osinnikova, D. N.
2017-11-01
Interaction of synthetic alkaloid of isoquinoline series, which is an analogue of the biologically active compound papaverine, was studied by spectral, microcalorimetric, optical and hydrodynamic methods at different ionic strengths of medium. It was found that the investigated compound may interact with DNA in various ways depending on the ratio of ligand - DNA concentrations and ionic strength of solution (μ). When μ = 0.001, indole-papaverine intercalates into the double helix of DNA. The increase of μ resulted in a decrease of the affinity of the compound to DNA and a change its binding method.
Liu, Jie; Peng, Chunwang; Yu, Gaobo; Zhou, Jian
2015-10-06
The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (±0.05 and ±0.16 C·m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.
Saraji, Mohammad; Ghambari, Hoda
2018-06-21
In this work we seek clues to select the appropriate dispersive liquid-liquid microextraction mode for extracting three categories of compounds. For this purpose, three common dispersive liquid-liquid microextraction modes were compared under optimized conditions. Traditional dispersive liquid-liquid microextraction, in situ ionic liquid dispersive liquid-liquid microextraction and conventional ionic liquid dispersive liquid-liquid microextraction using chloroform, 1-butyl-3-methylimidazolium tetrafluoroborate, and 1-hexyl-3-methylimidazolium hexafluorophosphate as the extraction solvent, respectively, were considered in this work. Phenolic, neutral aromatic and amino compounds (each category included six members) were studied as analytes. The analytes in the extracts were determined by high-performance liquid chromatography with UV detection. For the analytes with polar functionalities, the in situ ionic liquid dispersive liquid-liquid microextraction mode mostly led to better results. In contrast, for neutral hydrocarbons without polar functionalities, traditional dispersive liquid-liquid microextraction using chloroform produced better results. In this case, where dispersion forces were the dominant interactions in the extraction, the refractive index of solvent and analyte predicted the extraction performance better than the octanol-water partition coefficient. It was also revealed that none of the methods were successful in extracting very hydrophilic analytes (compounds with the log octanol-water partition coefficient < 2). The results of this study could be helpful in selecting a dispersive liquid-liquid microextraction mode for the extraction of various groups of compounds. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Osmotic Pressure in Ionic Microgel Dispersions
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Tang, Qiyun
2015-03-01
Microgels are microscopic gel particles, typically 10-1000 nm in size, that are swollen by a solvent. Hollow microgels (microcapsules) can encapsulate cargo, such as dye molecules or drugs, in their solvent-filled cavities. Their sensitive response to environmental conditions (e.g., temperature, pH) and influence on flow properties suit microgels to widespread applications in the chemical, pharmaceutical, food, and consumer care industries. When dispersed in water, polyelectrolyte gels become charged through dissociation of counterions. The electrostatic contribution to the osmotic pressure inside and outside of ionic microgels influences particle swelling and bulk materials properties, including thermodynamic, structural, optical, and rheological properties. Within the primitive and cell models of polyelectrolyte solutions, we derive an exact statistical mechanical formula for the contribution of mobile microions to the osmotic pressure within ionic microgels. Using Poisson-Boltzmann theory, we validate this result by explicitly calculating ion distributions across the surface of an ionic microgel and the electrostatic contribution to the osmotic pressure. Within a coarse-grained one-component model, we further chart the limits of the cell model for salty dispersions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.
Effect of ionic strength and presence of serum on lipoplexes structure monitorized by FRET
Madeira, Catarina; Loura, Luís MS; Prieto, Manuel; Fedorov, Aleksander; Aires-Barros, M Raquel
2008-01-01
Background Serum and high ionic strength solutions constitute important barriers to cationic lipid-mediated intravenous gene transfer. Preparation or incubation of lipoplexes in these media results in alteration of their biophysical properties, generally leading to a decrease in transfection efficiency. Accurate quantification of these changes is of paramount importance for the success of lipoplex-mediated gene transfer in vivo. Results In this work, a novel time-resolved fluorescence resonance energy transfer (FRET) methodology was used to monitor lipoplex structural changes in the presence of phosphate-buffered saline solution (PBS) and fetal bovine serum. 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/pDNA lipoplexes, prepared in high and low ionic strength solutions, are compared in terms of complexation efficiency. Lipoplexes prepared in PBS show lower complexation efficiencies when compared to lipoplexes prepared in low ionic strength buffer followed by addition of PBS. Moreover, when serum is added to the referred formulation no significant effect on the complexation efficiency was observed. In physiological saline solutions and serum, a multilamellar arrangement of the lipoplexes is maintained, with reduced spacing distances between the FRET probes, relative to those in low ionic strength medium. Conclusion The time-resolved FRET methodology described in this work allowed us to monitor stability and characterize quantitatively the structural changes (variations in interchromophore spacing distances and complexation efficiencies) undergone by DOTAP/DNA complexes in high ionic strength solutions and in presence of serum, as well as to determine the minimum amount of potentially cytotoxic cationic lipid necessary for complete coverage of DNA. This constitutes essential information regarding thoughtful design of future in vivo applications. PMID:18302788
Ruan, Chunqiang; Zhao, Xiang; Liu, Chenglan
2015-09-01
In this study, a simple and low-organic-solvent-consuming method combining an acetonitrile-partitioning extraction procedure followed by "quick, easy, cheap, effective, rugged and safe" cleanup with ionic-liquid-based dispersive liquid-liquid microextraction and high-performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic-liquid-based dispersive liquid-liquid microextraction was performed using the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid-liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces.
Kim, Sunghan; Geryak, Ren D; Zhang, Shuaidi; Ma, Ruilong; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V
2017-09-11
The interfacial shear strength between different layers in multilayered structures of layer-by-layer (LbL) microcapsules is a crucial mechanical property to ensure their robustness. In this work, we investigated the interfacial shear strength of modified silk fibroin ionomers utilized in LbL shells, an ionic-cationic pair with complementary ionic pairing, (SF)-poly-l-glutamic acid (Glu) and SF-poly-l-lysine (Lys), and a complementary pair with partially screened Coulombic interactions due to the presence of poly(ethylene glycol) (PEG) segments and SF-Glu/SF-Lys[PEG] pair. Shearing and adhesive behavior between these silk ionomer surfaces in the swollen state were probed at different spatial scales and pressure ranges by using functionalized atomic force microscopy (AFM) tips as well as functionalized colloidal probes. The results show that both approaches were consistent in analyzing the interfacial shear strength of LbL silk ionomers at different spatial scales from a nanoscale to a fraction of a micron. Surprisingly, the interfacial shear strength between SF-Glu and SF-Lys[PEG] pair with partially screened ionic pairing was greater than the interfacial shear strength of the SF-Glu and SF-Lys pair with a high density of complementary ionic groups. The difference in interfacial shear strength and adhesive strength is suggested to be predominantly facilitated by the interlayer hydrogen bonding of complementary amino acids and overlap of highly swollen PEG segments.
Zhang, Yan; Guo, Jingjing; Li, Lanlan; Liu, Xuewei; Yao, Xiaojun; Liu, Huanxiang
2016-10-01
The interactions of complement receptor 2 (CR2) and the degradation fragment C3d of complement component C3 play important links between the innate and adaptive immune systems. Due to the importance of C3d-CR2 interaction in the design of vaccines and inhibitors, a number of studies have been performed to investigate C3d-CR2 interaction. Many studies have indicated C3d-CR2 interactions are ionic strength-dependent. To investigate the molecular mechanism of C3d-CR2 interaction and the origin of effects of ionic strength, molecular dynamics simulations for C3d-CR2 complex together with the energetic and structural analysis were performed. Our results revealed the increased interactions between charged protein and ions weaken C3d-CR2 association, as ionic strengths increase. Moreover, ion strengths have similar effects on antigen-binding site and CR2 binding site. Meanwhile, Ala17 and Gln20 will transform between the activated and non-activated states mediated by His133 and Glu135 at different ion strengths. Our results reveal the origins of the effects of ionic strengths on C3d-CR2 interactions are due to the changes of water, ion occupancies and distributions. This study uncovers the origin of the effect of ionic strength on C3d-CR2 interaction and deepens the understanding of the molecular mechanism of their interaction, which is valuable for the design of vaccines and small molecule inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isley, Sara L.; Jordan, David S.; Penn, R. Lee
2009-01-08
This work investigates the role of ionic strength during synthesis, reflux, and hydrothermal aging of sol-gel synthesized titanium dioxide. Research presented here uses X-ray diffraction data and Rietveld refinements to quantify anatase, brookite, and rutile phases as functions of synthetic and aging variables. In addition, the Scherrer equation is used to obtain average crystallite sizes for each phase quantified. Results presented in this work demonstrate that the most control over the sol-gel products can be obtained by modifying the pH during hydrolysis. In addition, while varying the ionic strength during reflux and hydrothermal aging can result in enhanced control overmore » the crystalline phase and crystallite size, the most control can be achieved by varying the ionic strength during synthesis. Finally, sol-gel synthesis at low pH (-0.6) and high-chloride concentration (3 M NaCl) produced a heterogeneous sample composed of nanocrystalline anatase (3.8 nm) and rutile (2.9 nm)« less
Kuehner, D E; Heyer, C; Rämsch, C; Fornefeld, U M; Blanch, H W; Prausnitz, J M
1997-01-01
The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4-7 and ionic strength 0.05-5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation. PMID:9414232
Dąbkowska, Maria; Adamczak, Małgorzata; Barbasz, Jakub; Cieśla, Michał; Machaliński, Bogusław
2017-09-26
Bulk physicochemical properties of neurotrophin 4 (NT-4) in electrolyte solutions and its adsorption/desorption on/from mica surfaces have been studied using dynamic light scattering (DLS), microelectrophoresis, a solution depletion technique (enzyme-linked immunosorbent assay, ELISA), and AFM imaging. Our study presents a determination of the diffusion coefficient, hydrodynamic diameters, electrophoretic mobility, and isoelectric point of the NT-4 under various ionic strength and pH conditions. The size of the NT-4 homodimer for an ionic strength of 0.015 M was substantially independent of pH and equal to 5.1 nm. It has been found that the number of electrokinetic charges per NT-4 molecule was equal to zero for all studied ionic strengths at pH 8.1, which was identified as the isoelectric point (iep). The protein adsorption/desorption on/from mica surfaces was examined as a function of ionic strength and pH. The kinetics of neurotrophin adsorption/desorption were evaluated at pH 3.5, 7.4, and 11 by direct AFM imaging and the ELISA technique. A monotonic increase in the maximum coverage of adsorbed NT-4 molecules with ionic strength (up to 5.5 mg/m 2 ) was observed at pH 3.5. These results were interpreted in terms of the theoretical model postulating an irreversible adsorption of the protein governed by the random sequential adsorption (RSA). Our measurements revealed a significant role of ionic strength, pH, and electrolyte composition in the lateral electrostatic interactions among differently charged NT-4 molecules. The transition between adsorption/desorption processes is found for the region of high pH and low surface concentration of adsorbed neurotrophin molecules at constant ionic strength. Additionally, results presented in this work show that the adsorption behavior of neurotrophin molecules may be governed by intrasolvent electrostatic interactions yielding an aggregation process. Understanding polyvalent neurotrophin interactions may have an impact on the reversibility/irreversibility of adsorption, and hence they might be useful for obtaining well-ordered protein layers, targeting the future development of drug delivery systems for treating neurodegenerative diseases.
NASA Astrophysics Data System (ADS)
Dutta, Rituraj; Kumar, Ashok
2016-10-01
Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.
Stabilizing nanocellulose-nonionic surfactant composite foams by delayed Ca-induced gelation.
Gordeyeva, Korneliya S; Fall, Andreas B; Hall, Stephen; Wicklein, Bernd; Bergström, Lennart
2016-06-15
Aggregation of dispersed rod-like particles like nanocellulose can improve the strength and rigidity of percolated networks but may also have a detrimental effect on the foamability. However, it should be possible to improve the strength of nanocellulose foams by multivalent ion-induced aggregation if the aggregation occurs after the foam has been formed. Lightweight and highly porous foams based on TEMPO-mediated oxidized cellulose nanofibrils (CNF) were formulated with the addition of a non-ionic surfactant, pluronic P123, and CaCO3 nanoparticles. Foam volume measurements show that addition of the non-ionic surfactant generates wet CNF/P123 foams with a high foamability. Foam bubble size studies show that delayed Ca-induced aggregation of CNF by gluconic acid-triggered dissolution of the CaCO3 nanoparticles significantly improves the long-term stability of the wet composite foams. Drying the Ca-reinforced foam at 60 °C results in a moderate shrinkage and electron microscopy and X-ray tomography studies show that the pores became slightly oblate after drying but the overall microstructure and pore/foam bubble size distribution is preserved after drying. The elastic modulus (0.9-1.4 MPa) of Ca-reinforced composite foams with a density of 9-15 kg/m(3) is significantly higher than commercially available polyurethane foams used for thermal insulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Pore-Scale Transport of Strontium During Dynamic Water Content Changes in the Unsaturated Zone
NASA Astrophysics Data System (ADS)
Weaver, W.; Kibbey, T. C. G.; Papelis, C.
2016-12-01
Dynamic water content changes in the unsaturated zone caused by natural and manmade processes, such as evaporation, rainfall, and irrigation, have an effect on contaminant mobility. In general, in the unsaturated zone, evaporation causes an increase in contaminant concentrations, potentially leading to sorption of contaminants on aquifer materials or precipitation of crystalline or amorphous phases. On the other hand, increase of water content may result in dissolution of precipitated phases and increased mobility of contaminants. The objective of this study was to develop a quantitative model for the transport of strontium through sand under dynamic water content conditions, as a function of strontium concentration, pH, and ionic strength. Strontium was selected as a surrogate for strontium-90, a by-product of nuclear reactions. The dynamic water content was determined using an automated device for rapidly measuring the hysteretic capillary pressure—saturation relationship, followed by ambient air evaporation, and gravimetric water content measurement. Strontium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Flow interruption experiments were conducted to determine whether equilibrium conditions existed for a given flowrate. Scanning electron microscopy (SEM) was used to visualize the treated quartz sand particles and the distribution of strontium on sand grains was determined using elemental maps created by energy-dispersive x-ray spectroscopy (EDX). Strontium behavior appears to be pH dependent as well as ionic strength dependent under these conditions.
Phosphorylation and Ionic Strength Alter the LRAP-HAP Interface in the N-terminus
Lu, Jun-xia; Xu, Yimin Sharon; Shaw, Wendy J.
2013-01-01
The conditions present during enamel crystallite development change dramatically as a function of time, including the pH, protein concentration, surface type and ionic strength. In this work, we investigate the role that two of these changing conditions, pH and ionic strength, have in modulating the interaction of the amelogenin, LRAP, with hydroxyapatite (HAP). Using solid state NMR dipolar recoupling and chemical shift data, we investigate the structure, orientation and dynamics of three regions in the N-terminus of the protein, L15 to V19, V19 to L23 and K24 to S28. These regions are also near the only phosphorylated residue in the protein, pS16, therefore, changes in the LRAP-HAP interaction as a function of phosphorylation (LRAP(−P) vs. LRAP(+P)) were also investigated. All of the regions and conditions studied for the surface immobilized proteins showed restricted motion, with indications of slightly more mobility under all conditions for L15(+P) and K24(−P). The structure and orientation of the LRAP-HAP interaction in the N-terminus of the phosphorylated protein is very stable to changing solution conditions. From REDOR dipolar recoupling data, the structure and orientation in the region L15V19(−P) did not change significantly as a function of pH or ionic strength. The structure and orientation of the region V19L23(+P) were also stable to changes in pH, with the only significant change observed at high ionic strength, where the region becomes extended, suggesting this may be an important region in regulating mineral development. Chemical shift studies also suggest minimal changes in all three regions studied for both LRAP(−P) and LRAP(+P) as a function of pH or ionic strength and reveal that K24 has multiple resolvable resonance, suggestive of two coexisting structures. Phosphorylation also alters the LRAP-HAP interface. All of the three residues investigated (L15, V19, and K24) are closer to the surface in LRAP(+P), but K24S28 also changes structure as a result of phosphorylation, from a random coil to a largely helical structure, and V19L23 becomes more extended at high ionic strength when phosphorylated. These observations suggest that ionic strength and dephosphorylation may provide switching mechanisms to trigger a change in the function of the N-terminus. PMID:23477367
Bui, Tung Xuan; Choi, Heechul
2010-08-01
The adsorption of four wide-use pharmaceuticals (carbamazepine, diclofenac, ibuprofen, and ketoprofen) onto a porous silica was investigated under varied ionic strengths, different anions, divalent cations (Ca(2+) and Mg(2+)), trivalent cations (Al(3+) and Fe(3+)), and natural organic matter (NOM). The experiments demonstrated that at a given pH the adsorption was most affected by ionic strength, trivalent cations, and properties of pharmaceuticals. The increase of ionic strength resulted in an increase in the adsorption of ketoprofen, but a decrease in the adsorption of carbamazepine. Trivalent metal cations made intense increases in the adsorption of three acidic pharmaceuticals, which could be due to the formation of inner-sphere complex of the cations on the surface and/or complexation of the pharmaceuticals with both surface and aqueous metal species. It was found that the adsorption of carbamazepine was not affected by divalent and trivalent cations, whereas the adsorption of diclofenac was solely impacted by the presence of Al(3+). Moreover, divalent cations at low concentration could slightly enhance the adsorption of ibuprofen and ketoprofen, whereas NOM caused a reduction in the adsorption of the tested pharmaceuticals except for diclofenac. These results suggest that ionic strength, divalent cations, trivalent cations, and NOM are notable factors affecting the adsorption of pharmaceuticals and thus the ultimate fate of pharmaceuticals in the aqueous environment. Copyright 2010 Elsevier Ltd. All rights reserved.
Osmotic Pressure of Aqueous Chondroitin Sulfate Solution: A Molecular Modeling Investigation
Bathe, Mark; Rutledge, Gregory C.; Grodzinsky, Alan J.; Tidor, Bruce
2005-01-01
The osmotic pressure of chondroitin sulfate (CS) solution in contact with an aqueous 1:1 salt reservoir of fixed ionic strength is studied using a recently developed coarse-grained molecular model. The effects of sulfation type (4- vs. 6-sulfation), sulfation pattern (statistical distribution of sulfate groups along a chain), ionic strength, CS intrinsic stiffness, and steric interactions on CS osmotic pressure are investigated. At physiological ionic strength (0.15 M NaCl), the sulfation type and pattern, as measured by a standard statistical description of copolymerization, are found to have a negligible influence on CS osmotic pressure, which depends principally on the mean volumetric fixed charge density. The intrinsic backbone stiffness characteristic of polysaccharides such as CS, however, is demonstrated to contribute significantly to its osmotic pressure behavior, which is similar to that of a solution of charged rods for the 20-disaccharide chains considered. Steric excluded volume is found to play a negligible role in determining CS osmotic pressure at physiological ionic strength due to the dominance of repulsive intermolecular electrostatic interactions that maintain chains maximally spaced in that regime, whereas at high ionic-strength steric interactions become dominant due to electrostatic screening. Osmotic pressure predictions are compared to experimental data and to well-established theoretical models including the Donnan theory and the Poisson-Boltzmann cylindrical cell model. PMID:16055525
Influence of nano-dispersive modified additive on cement activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sazonova, Natalya, E-mail: n.a.sazonova@mail.ru; Badenikov, Artem, E-mail: rector@agta.ru; Ivanova, Elizaveta, E-mail: lisik-iva@mail.ru
2016-01-15
In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4–6.3 fold relatively to the reference samples and may reach 179.6 MPa. It maymore » intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C{sub 3}S and β-C{sub 2}S.« less
Dispersion enhanced metal/zeolite catalysts
Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.
1987-03-31
Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.
Dispersion enhanced metal/zeolite catalysts
Sachtler, Wolfgang M. H.; Tzou, Ming-Shin; Jiang, Hui-Jong
1987-01-01
Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.
Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...
The toxicological and regulatory communities are currently exploring the use of the free-ion-activity (FIA) model both alone and in conjunction with the biotic ligand model (BLM) as a means of reducing uncertainties in current methods for assessing metals bioavailability from aqu...
Zhou, Lixia; Zhu, Dunxue; Zhang, Shujuan; Pan, Bingcai
2015-03-01
Understanding the aggregation and deposition behavior of carbon nanotubes (CNTs) is of great significance in terms of their fate and transport in the environment. Attachment efficiency is a widely used index for well-dispersed CNT solutions. However, in natural waters, CNTs are usually heterogeneous in particle size. The attachment efficiency method is not applicable to such systems. Describing the dispersion stability of CNTs in natural aquatic systems is still a challenge. In this work, a settling curve modeling (SCM) method was developed for the description of the aggregation and deposition behavior of CNTs in aqueous solutions. The effects of water chemistry (natural organic matter, pH, and ionic strength) on the aggregation and deposition behavior of pristine and surface-functionalized multi-walled carbon nanotubes (MWCNTs) were systematically studied to evaluate the reliability of the SCM method. The results showed that, as compared to particle size and optical density, the centrifugal sedimentation rate constant (ks) from the settling curve profile is a practical, useful and reliable index for the description of heterogeneous CNT suspensions. The SCM method was successfully applied to MWCNT in three natural waters. The constituents in water, especially organic matter, determine the dispersion stability of MWCNTs in natural water bodies. Copyright © 2015. Published by Elsevier B.V.
Casein Micelle Dispersions under Osmotic Stress
Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard
2009-01-01
Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314
Casein micelle dispersions under osmotic stress.
Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard
2009-01-01
Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their kappa-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins.
Uysal, Deniz; Karadaş, Cennet; Kara, Derya
2017-05-01
A new, simple, efficient, and environmentally friendly ionic liquid dispersive liquid-liquid microextraction method was developed for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent, and ethanol was used as the disperser solvent. The main parameters affecting the extraction efficiency, including sample pH, volume of the ionic liquid, choice of the dispersive solvent and its volume, concentration of NaCl, and extraction and centrifugation times, were investigated and optimized. The effect of interfering species on the recovery of irinotecan was also examined. Under optimal conditions, the LOD (3σ) was 48.7 μg/L without any preconcentration. Because the urine sample was diluted 10-fold, the LOD for urine would be 487 μg/L. However, this could be improved 16-fold if preconcentration using a 40 mL aliquot of the sample is used. The proposed method was successfully applied to the determination of irinotecan in tap water, river water, and urine samples spiked with 10.20 mg/L for the water samples and 8.32 mg/L for the urine sample. The average recovery values of irinotecan determined were 99.1% for tap water, 109.4% for river water, and 96.1% for urine.
Mixtures of amino-acid based ionic liquids and water.
Chaban, Vitaly V; Fileti, Eudes Eterno
2015-09-01
New ionic liquids (ILs) involving increasing numbers of organic and inorganic ions are continuously being reported. We recently developed a new force field; in the present work, we applied that force field to investigate the structural properties of a few novel imidazolium-based ILs in aqueous mixtures via molecular dynamics (MD) simulations. Using cluster analysis, radial distribution functions, and spatial distribution functions, we argue that organic ions (imidazolium, deprotonated alanine, deprotonated methionine, deprotonated tryptophan) are well dispersed in aqueous media, irrespective of the IL content. Aqueous dispersions exhibit desirable properties for chemical engineering. The ILs exist as ion pairs in relatively dilute aqueous mixtures (10 mol%), while more concentrated mixtures feature a certain amount of larger ionic aggregates.
Hu, Anran; Chen, Chen; Mantle, Michael D; Wolf, Bettina; Gladden, Lynn F; Rajabi-Siahboomi, Ali; Missaghi, Shahrzad; Mason, Laura; Melia, Colin D
2017-05-01
Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths. The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media. Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data. Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.
Design and synthesis of magnetic nanoparticles with gold shells for single particle optical tracking
NASA Astrophysics Data System (ADS)
Lim, Jitkang
The design, synthesis, and characterization of iron oxide core, gold shell nanoparticles are studied in this thesis. Firstly, nanoparticles with 18 +/- 1.7 nm diameter iron oxide cores with ˜5 nm thick gold shells were synthesized via a new seed-mediated electroless deposition method. The nanoparticles were superparamagnetic at room temperature and could be reversibly collected by a permanent magnet. These nanoparticles displayed a sharp localized surface plasmon resonance peak at 605 nm, as predicted by scattering theory, and their large scattering cross-section allowed them to be individually resolved in darkfield optical microscopy while undergoing Brownian motion in aqueous suspension. Later, commercially available 38 +/- 3.8 nm diameter spherical iron oxide nanoparticles (from Ocean Nanotech, Inc) were employed to make core-shell particles. These particles were decorated with cationic poly(diallyldimethylammonium chloride) (PDDA) which further promotes the attachment of small gold clusters. After gold seeding, the average hydrodynamic diameter of the core-shell particles is 172 +/- 65.9 nm. The magnetophoretic motion of these particles was guided by a piece of magnetized mu-metal. Individual particle trajectories were observed by darkfield optical microscopy. The typical magnetophoretic velocity achieved was within the range of 1--10 mum/sec. Random walk analysis performed on these particles while undergoing Brownian motion confirmed that individual particles were indeed being imaged. The particle size variation within the observed sample obtained through random walk analysis was within the size distribution obtained by dynamic light scattering. When the current to the solenoid used to magnetize the mu-metal was turned off, all the collected core-shell particles were readily redispersed by diffusion back into the surrounding environment. A Peclet number analysis was performed to probe the convective motion of nanospheres and nanorods under the influence of magnetophoresis and diffusion. Under most circumstances, magnetophoretic behavior dominates diffusion for nanorods, as the magnetic field lines tend to align the magnetic moment along the rod axis. The synthesis and dispersion of fluorophore-tagged nanorods are described. Fluorescence microscopy was employed to image the nanorod motion in a magnetic field gradient. The preliminary experimental data are consistent with the Peclet number analysis. Lastly, the colloidal stability of iron oxide core, gold shell nanoparticles in high ionic strength media was investigated. Such particles are sufficiently charged to be stable against flocculation without modification in low ionic strength media, but they require surface modification to be stably dispersed in elevated ionic strength media that are appropriate for biotechnological applications. Dynamic light scattering and ultraviolet-visible spectrophotometry were used to monitor the colloidal stability of core-shell particles in pH 7.4, 150 mM ionic strength phosphate buffered saline (PBS). While uncoated particles flocculated immediately upon being introduced into PBS, core-shell particles with adsorbed layers of bovine serum albumin or the amphiphilic triblock copolymers Pluronic F127 and Pluronic F68 resist flocculation after more than five days in PBS. Adsorbed dextran allowed flocculation that was limited to the formation of small clusters, while poly(ethylene glycol) homopolymers ranging in molecular weight from 6,000 to 100,000 were ineffective steric stabilizers. The effectiveness of adsorbed Pluronic copolymers as steric stabilizers was interpreted in terms of the measured adsorbed layer thickness and extended DLVO theory predictions of the interparticle interactions.
NASA Astrophysics Data System (ADS)
Throckmorton, James A.
This dissertation explores the application of a room temperature ionic liquid (RTIL) to problems in the chemistry, processing, and modification of thermosetting polymers. In particular, the solution properties and reaction chemistry of 1-ethyl-3-methyl imidazolium dicyanamide (EMIM-DCN) are applied to problems of nanoparticle dispersion and processing, graphite exfoliation, cyanate ester (CE) cure, and the environmental degradation of CEs. Nanoparticle Dispersion: Nanocomposite processing can be simplified by using the same compound as both a nanoparticle solvent and an initiator for polymerization. This dual-function molecule can be designed both for solvent potential and reaction chemistry. EMIM-DCN, previously shown by our lab to act as an epoxy initiator, is used in the synthesis of silica and acid expanded graphite composites. These composites are then characterized for particle dispersion and physical properties. Individual particle dispersion of silica nanocomposites is shown, and silica nanocomposites at low loading show individual particle dispersion and improved modulus and fracture toughness. GNP nanocomposites show a 70% increase in modulus along with a 10-order of magnitude increase in electrical conductivity at 6.5 vol%, and an electrical percolation threshold of 1.7 vol%. Direct Graphite Exfoliation By Laminar Shear: This work presents a laminar-shear alternative to chemical processing and chaotic flow-fields for the direct exfoliation of graphite and the single-pot preparation of nanocomposites. Additionally, we develop the theory of laminar flow through a 3-roll mill, and apply that theory to the latest developments in the theory of graphite interlayer shear. The resulting nanocomposite shows low electrical percolation (0.5 vol%) and low thickness (1-3 layer) graphite/graphene flakes. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. Cyanate Ester Cure: Dicyanamide-containing ionic liquids decrease the cure temperature of bi- and tri-functional CEs. During the cure reaction, the dicyanamide anion completely reacts and is incorporated into the triazine network. The cure effect was found in many dicyanamide-containing ionic liquids with diverse cations. This invention creates a novel, ionic thermoset polymer. The dicyanamide initiator provides an alternative to metal and hydroxyl catalysts (which have been shown to accelerate degradation and possess human and environmental toxicity). Additionally, the ionic character of the new polymer, rare among thermosets, lends itself to future research and novel applications. RTIL initiation also paves the way to new CE technologies, including RTIL-CE nanocomposites, prepared by graphite exfoliation and nanocomposite dispersion techniques developed herin.
Nonequilibrium electrokinetic effects in beds of ion-permselective particles.
Leinweber, Felix C; Tallarek, Ulrich
2004-12-21
Electrokinetic transport of fluorescent tracer molecules in a bed of porous glass beads was investigated by confocal laser scanning microscopy. Refractive index matching between beads and the saturating fluid enabled a quantitative analysis of intraparticle and extraparticle fluid-side concentration profiles. Kinetic data were acquired for the uptake and release of electroneutral and counterionic tracer under devised conditions with respect to constant pressure-driven flow through the device and the effect of superimposed electrical fields. Transport of neutral tracer is controlled by intraparticle mass transfer resistance which can be strongly reduced by electroosmotic flow, while steady-state distributions and bead-averaged concentrations are unaffected by the externally applied fields. Electrolytes of low ionic strength caused the transport through the charged (mesoporous) beads to become highly ion-permselective, and concentration polarization is induced in the bulk solution due to the superimposed fields. The depleted concentration polarization zone comprises extraparticle fluid-side mass transfer resistance. Ionic concentrations in this diffusion boundary layer decrease at increasing field strength, and the flux densities approach an upper limit. Meanwhile, intraparticle transport of counterions by electromigration and electroosmosis continues to increase and finally exceeds the transport from bulk solution into the beads. A nonequilibrium electrical double layer is induced which consists of mobile and immobile space charge regions in the extraparticle bulk solution and inside a bead, respectively. These electrical field-induced space charges form the basis for nonequilibrium electrokinetic phenomena. Caused by the underlying transport discrimination (intraparticle electrokinetic vs extraparticle boundary-layer mass transfer), the dynamic adsorption capacity for counterions can be drastically reduced. Further, the extraparticle mobile space charge region leads to nonlinear electroosmosis. Flow patterns can become highly chaotic, and electrokinetic instability mixing is shown to increase lateral dispersion. Under these conditions, the overall axial dispersion of counterionic tracer can be reduced by more than 2 orders of magnitude, as demonstrated by pulse injections.
Role of oxygen on the optical properties of borate glass doped with ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Baki, Manal; El-Diasty, Fouad, E-mail: fdiasty@yahoo.com
2011-10-15
Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density,more » which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bučko, Tomáš, E-mail: bucko@fns.uniba.sk; Department of Computational Materials Physics, Fakultät für Physik and Center for Computational Materials Science, Universität Wien, Sensengasse, Wien 1090; Lebègue, Sébastien, E-mail: sebastien.lebegue@univ-lorraine.fr
2014-07-21
Recently we have demonstrated that the applicability of the Tkatchenko-Scheffler (TS) method for calculating dispersion corrections to density-functional theory can be extended to ionic systems if the Hirshfeld method for estimating effective volumes and charges of atoms in molecules or solids (AIM’s) is replaced by its iterative variant [T. Bučko, S. Lebègue, J. Hafner, and J. Ángyán, J. Chem. Theory Comput. 9, 4293 (2013)]. The standard Hirshfeld method uses neutral atoms as a reference, whereas in the iterative Hirshfeld (HI) scheme the fractionally charged atomic reference states are determined self-consistently. We show that the HI method predicts more realistic AIMmore » charges and that the TS/HI approach leads to polarizabilities and C{sub 6} dispersion coefficients in ionic or partially ionic systems which are, as expected, larger for anions than for cations (in contrast to the conventional TS method). For crystalline materials, the new algorithm predicts polarizabilities per unit cell in better agreement with the values derived from the Clausius-Mosotti equation. The applicability of the TS/HI method has been tested for a wide variety of molecular and solid-state systems. It is demonstrated that for systems dominated by covalent interactions and/or dispersion forces the TS/HI method leads to the same results as the conventional TS approach. The difference between the TS/HI and TS approaches increases with increasing ionicity. A detailed comparison is presented for isoelectronic series of octet compounds, layered crystals, complex intermetallic compounds, and hydrides, and for crystals built of molecules or containing molecular anions. It is demonstrated that only the TS/HI method leads to accurate results for systems where both electrostatic and dispersion interactions are important, as illustrated for Li-intercalated graphite and for molecular adsorption on the surfaces in ionic solids and in the cavities of zeolites.« less
Medina, Giselle S; Reta, Mario
2016-11-01
A dispersive liquid-liquid microextraction method using a lighter-than-water phosphonium-based ionic liquid for the extraction of 16 polycyclic aromatic hydrocarbons from water samples has been developed. The extracted compounds were analyzed by liquid chromatography coupled to fluorescence/diode array detectors. The effects of several experimental parameters on the extraction efficiency, such as type and volume of ionic liquid and disperser solvent, type and concentration of salt in the aqueous phase and extraction time, were investigated and optimized. Three phosphonium-based ionic liquids were assayed, obtaining larger extraction efficiencies when trihexyl-(tetradecyl)phosphonium bromide was used. The optimized methodology requires a few microliters of a lighter-than-water phosphonium-based ionic liquid, which allows an easy separation of the extraction solvent phase. The obtained limits of detection were between 0.02 and 0.56 μg/L, enrichment factors between 109 and 228, recoveries between 60 and 108%, trueness between 0.4 and 9.9% and reproducibility values between 3 and 12% were obtained. These figures of merit combined with the simplicity, rapidity and low cost of the analytical methodology indicate that this is a viable and convenient alternative to the methods reported in the literature. The developed method was used to analyze polycyclic aromatic hydrocarbons in river water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...
ERIC Educational Resources Information Center
Watkins, Kenneth W.; Olson, June A.
1980-01-01
Describes a physical chemistry experiment that allows students to test the effect of ionic strength on the rates of a reaction between ions. The reduction of hexacyanoferrate III by ascorbic acid is detailed. Comparisons with the iodine clock reaction are made. (CS)
A precise ion chromatography method has been developed for the determination of chloride in high ionic strength ammonium acetate solutions (10-5 M-5 M) using sodium carbonate/sodium bicarbonate as eluent. Negative ion electrospray ionization (ESI) mass spectrometry was used for q...
State-of-the-Art pH Electrode Quality Control for Measurements of Acidic, Low Ionic Strength Waters.
ERIC Educational Resources Information Center
Stapanian, Martin A.; Metcalf, Richard C.
1990-01-01
Described is the derivation of the relationship between the pH measurement error and the resulting percentage error in hydrogen ion concentration including the use of variable activity coefficients. The relative influence of the ionic strength of the solution on the percentage error is shown. (CW)
The pH of chemistry assays plays an important role in monoclonal immunoglobulin interferences.
Alberti, Michael O; Drake, Thomas A; Song, Lu
2015-12-01
Immunoglobulin paraproteins can interfere with multiple chemistry assays. We want to investigate the mechanisms of immunoglobulin interference. Serum samples containing paraproteins from the index patient and eight additional patients were used to investigate the interference with the creatinine and total protein assays on the Beckman Coulter AU5400/2700 analyzer, and to determine the effects of pH and ionic strength on the precipitation of different immunoglobulins in these patient samples. The paraprotein interference with the creatinine and total protein assays was caused by the precipitation of IgM paraprotein in the index patient's samples under alkaline assay conditions. At extremely high pH (12-13) and extremely low pH (1-2) and low ionic strength, paraprotein formed large aggregates in samples from the index patient but not from other patients. The pH and ionic strength are the key factors that contribute to protein aggregation and precipitation which interfere with the creatinine and total protein measurements on AU5400/2700. The different amino acid sequence of each monoclonal paraprotein will determine the pH and ionic strength at which the paraprotein will precipitate.
Chain Conformation of Phosphorycholine-based Zwitterionic Polymer Brushes in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Mao, Jun; Yu, Jing; Lee, Sungsik; Yuan, Guangcui; Satija, Sushil; Chen, Wei; Tirrell, Matthew
Polyzwitterionic brushes are resistant to nonspecific accumulation of proteins and microorganisms, making them excellent candidates for antifouling applications. It is well-known that polyzwitterions exhibit the so-called antipolyelectrolyte effect: Polyzwitterionic brushes would adopt a collapsed conformation at a low ionic strength due to the electrostatic inter/intra-chain association; whereas at a high ionic strength, they would exhibit an extended conformation because the electrostatic inter/intra-chain dipole-dipole interaction is weakened. However, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) is a unique member in polyzwitterionic families. Its ultrahigh affinity to water leads to no detectable shrinks in aqueous solutions even at low ionic strengths. In this study, we synthesized highly dense PMPC brushes via surface initiated radical polymerization and systematically investigate their conformational behaviors at solid-liquid interfaces in the presence of multivalent counterions, combining X-ray and neutron scattering and force measurements. We have demonstrated that despite no obvious changes of the entire lengths of extended PMPC brushes in aqueous solutions, the chain conformations including, but not limited to, polyzwitterion distribution and charge correlation, varied, dependent on salt types, ionic strengths and ion valences.
Effect of various pH values, ionic strength, and temperature on papain hydrolysis of salivary film.
Yao, Jiang-Wu; Xiao, Yin; Lin, Feng
2012-04-01
Stimulated human whole saliva (WS) was used to study the dynamics of papain hydrolysis at defined pH, ionic strength, and temperature with the view of reducing an acquired pellicle. A quartz crystal microbalance with dissipation (QCM-D) was used to monitor the changes in frequency caused by enzyme hydrolysis of WS films, and the hydrolytic parameters were calculated using an empirical model. The morphological and conformational changes of the salivary films before and after enzymatic hydrolysis were characterized by atomic force microscopy (AFM) imaging and grazing-angle Fourier transform infrared (GA-FTIR ) spectra, respectively. The characteristics of papain hydrolysis of WS films were pH-, ionic strength-, and temperature-dependent. The WS films were partially removed by the action of papain, resulting in thinner and smoother surfaces. The infrared data suggested that hydrolysis-induced deformation did not occur on the remnants of salivary films. The processes of papain hydrolysis of WS films can be controlled by properly regulating pH, ionic strength, and temperature. © 2012 Eur J Oral Sci.
The binding of glucose to yeast hexokinase monomers is independent of ionic strength.
Mayes, E L; Hoggett, J G; Kellett, G L
1982-05-01
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.
The binding of glucose to yeast hexokinase monomers is independent of ionic strength.
Mayes, E L; Hoggett, J G; Kellett, G L
1982-01-01
Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer. PMID:7052060
Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.
Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang
2010-07-27
Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.
Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.
Roman, Maxine J; Decker, Eric A; Goddard, Julie M
2014-07-01
Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.
NASA Astrophysics Data System (ADS)
Lee, Joonseong; Kim, Seonghoon; Chang, Rakwoo; Jayanthi, Lakshmi; Gebremichael, Yeshitila
2013-01-01
The present study examines the effects of the model dependence, ionic strength, divalent ions, and hydrophobic interaction on the structural organization of the human neurofilament (NF) brush, using canonical ensemble Monte Carlo (MC) simulations of a coarse-grained model with the amino-acid resolution. The model simplifies the interactions between the NF core and the sidearm or between the sidearms by the sum of excluded volume, electrostatic, and hydrophobic interactions, where both monovalent salt ions and solvents are implicitly incorporated into the electrostatic interaction potential. Several important observations are made from the MC simulations of the coarse-grained model NF systems. First, the mean-field type description of monovalent salt ions works reasonably well in the NF system. Second, the manner by which the NF sidearms are arranged on the surface of the NF backbone core has little influence on the lateral extension of NF sidearms. Third, the lateral extension of the NF sidearms is highly affected by the ionic strength of the system: at low ionic strength, NF-M is most extended but at high ionic strength, NF-H is more stretched out because of the effective screening of the electrostatic interaction. Fourth, the presence of Ca2 + ions induces the attraction between negatively charged residues, which leads to the contraction of the overall NF extension. Finally, the introduction of hydrophobic interaction does not change the general structural organization of the NF sidearms except that the overall extension is contracted.
Coupled factors influencing detachment of nano- and micro-sized particles from primary minima.
Shen, Chongyang; Lazouskaya, Volha; Jin, Yan; Li, Baoguo; Ma, Zhiqiang; Zheng, Wenjuan; Huang, Yuanfang
2012-06-01
This study examined the detachments of nano- and micro-sized colloids from primary minima in the presence of cation exchange by laboratory column experiments. Colloids were initially deposited in columns packed with glass beads at 0.2 M CaCl(2) in the primary minima of Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Then, the columns were flushed with NaCl solutions with different ionic strengths (i.e., 0.001, 0.01, 0.1 and 0.2 M). Detachments were observed at all ionic strengths and were particularly significant for the nanoparticle. The detachments increased with increasing electrolyte concentration for the nanoparticle whereas increased from 0.001 M to 0.01 M and decreased with further increasing electrolyte concentration for the micro-sized colloid. The observations were attributed to coupled influence of cation exchange, short-range repulsion, surface roughness, surface charge heterogeneity, and deposition in the secondary minima. The detachments of colloids from primary minima challenge the common belief that colloid interaction in primary minimum is irreversible and resistant to disturbance in solution ionic strength and composition. Although the significance of surface roughness, surface charge heterogeneity, and secondary minima on colloid deposition has been widely recognized, our study implies that they also play important roles in colloid detachment. Whereas colloid detachment is frequently associated with decrease of ionic strength, our results show that increase of ionic strength can also cause detachment due to influence of cation exchange. Copyright © 2012 Elsevier B.V. All rights reserved.
Boddohi, Soheil; Killingsworth, Christopher E; Kipper, Matt J
2008-07-01
The goal of this work is to explore the effects of solution ionic strength and pH on polyelectrolyte multilayer (PEM) assembly, using biologically derived polysaccharides as the polyelectrolytes. We used the layer-by-layer (LBL) technique to assemble PEM of the polysaccharides heparin (a strong polyanion) and chitosan (a weak polycation) and characterized the sensitivity of the PEM composition and layer thickness to changes in processing parameters. Fourier-transform surface plasmon resonance (FT-SPR) and spectroscopic ellipsometry provided in situ and ex situ measurements of the PEM thickness, respectively. Vibrational spectroscopy and X-ray photoelectron spectroscopy (XPS) provided details of the chemistry (i.e., composition, electrostatic interactions) of the PEM. We found that when PEM were assembled from 0.2 M buffer, the PEM thickness could be increased from less than 2 nm per bilayer to greater than 4 nm per bilayer by changing the solution pH; higher and lower ionic strength buffer solutions resulted in narrower ranges of accessible thickness. Molar composition of the PEM was not very sensitive to solution pH or ionic strength, but pH did affect the interactions between the sulfonates in heparin and amines in chitosan when PEM were assembled from 0.2 M buffer. Changes in the PEM thickness with pH and ionic strength can be interpreted through descriptions of the charge density and conformation of the polyelectrolyte chains in solution.
Esfandyari Bayat, Ali; Junin, Radzuan; Derahman, Mohd Nawi; Samad, Adlina Abdul
2015-09-01
The impact of ionic strength (from 0.003 to 500mM) and salt type (NaCl vs MgCl2) on transport and retention of titanium dioxide (TiO2) nanoparticles (NPs) in saturated limestone porous media was systematically studied. Vertical columns were packed with limestone grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolent-visible spectrometry. Presence of NaCl and MgCl2 in the suspensions were found to have a significant influence on the electrokinetic properties of the NP aggregates and limestone grains. In NaCl and MgCl2 solutions, the deposition rates of the TiO2-NP aggregates were enhanced with the increase in ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Furthermore, the NP aggregates retention increased in the porous media with ionic strength. The presence of salts also caused a considerable delay in the NPs breakthrough time. MgCl2 as compared to NaCl was found to be more effective agent for the deposition and retention of TiO2-NPs. The experimental results followed closely the general trends predicted by the filtration and DLVO calculations. Overall, it was found that TiO2-NP mobility in the limestone porous media depends on ionic strength and salt type. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DI Kaplan; KE Parker; RD Orr
1998-10-14
As part of the Immobilized Low-Activity Waste-Performance Assessment three experiments were conducted to evaluate the effect of the expected near-field chemistry on the sorption of iodide, selenate, and pertechnetate onto a sediment obtained from the Hanford Site. These experiments were performed in fiscal year 1998 at the Pacific Northwest National Laboratory.' During these experiments, attention was directed at the identification of the chemical mechanisms controlling the sorption processes to provide technical defensibility for the selection of the distribution coefficients (IQ to be used in the remainder of the performance assessment. It was found, during the conduct of the experiments, thatmore » selenium and technetium I&s increased as ionic strength increased. The cause for this is most likely to be that the higher ionic strength caused the double layer around the particles to decrease, thereby permitting greater interaction with the mineral surfaces. Further, the pH level had an effect on the sorption of these anions. These are the first-ever experiments conducted with Hanford Site sediment in which the IQ were measured as a function of ionic strength and pH. Overall, the observed trends were consistent with more generalized geochemical principles. One of the most important contributions of these experiments was that they quantified the & changes induced by variations in ionic strength and pH that are expected to exist in the near field.« less
NASA Astrophysics Data System (ADS)
Sharma, P.
2012-04-01
Nanotechnology is one of the most important technologies in this century and it is evoking a new industrial revolution. Carbon nanotubes (CNTs) are important engineered nanoparticles with unique and beneficial properties. As a result, CNT has been used in a wide range of commercial products including electronics, optical devices and drug delivery leading to their disposal in the natural environment. Literature studies have investigated the mobility of CNTs in saturated porous media under differing physical and chemical conditions. However CNT transport in temporarily changing porous media water content has not been investigated thus far (a common scenario with rainfall/infiltration events in the vadose zone). This study investigated the mobilization of multi-walled CNTs (MCNTs) in repeated wetting and drying cycles with varying flow rates and ionic strength of the inflow solution. Imbibition-drainage-imbibition cycle experiments suggest that MCNTs mobilization increased with increase in flow rates. MCNTs mobilization occurred only with first imbibition events at low ionic strengths however less mobilization happened for higher ionic strength inflow solution in the first imbibition cycle and additional MCNTs were found in the outflow solution in second imbibition cycle, using low ionic strength solution. This observation was likely due to the attachment force between MCNTs and sand surface. Most of the MCNT mobilization occurred during liquid-gas interface movement with less chance of MCNTs to jump the energy barrier at higher ionic strength solution. As a result, less detachment of MCNTs occurred from the sand surface during drainage.
Kuttiyawong, K; Nakapong, S; Pichyangkura, R
2008-11-03
Mutations of the tryptophan residues in the tryptophan-track of the N-terminal domain (W33F/Y and W69F/Y) and in the catalytic domain (W245F/Y) of Serratia sp. TU09 Chitinase 60 (CHI60) were constructed, as single and double point substitutions to either phenylalanine or tyrosine. The enzyme-substrate interaction and mode of catalysis, exo/endo-type, of wild type CHI60 and mutant enzymes on soluble (partially N-acetylated chitin), amorphous (colloidal chitin), and crystalline (β-chitin) substrates were studied. All CHI60 mutants exhibited a reduced substrate binding activity on colloidal chitin. CHI60 possesses a dual mode of catalysis with both exo- and endo-type activities allowing the enzyme to work efficiently on various substrate types. CHI60 preferentially uses the endo-type mode on soluble and amorphous substrates and the exo-type mode on crystalline substrate. However, the prevalent mode of hydrolysis mediated by CHI60 is regulated by ionic strength. Slightly elevated ionic strength, 0.1-0.2M NaCl, which promotes enzyme-substrate interactions, enhances CHI60 hydrolytic activity on amorphous substrate and, interestingly, on partially N-acetylated chitin. High ionic strength, 0.5-2.0M NaCl, prevents the enzyme from dissociating from amorphous substrate, occupying the enzyme in an enzyme-substrate non-productive complex. However, on crystalline substrates, the activity of CHI60 was only inhibited approximately 50% at high ionic strength, suggesting that the enzyme hydrolyzes crystalline substrates with an exo-type mode processively while remaining tightly bound to the substrate. Moreover, substitution of Trp-33 to either phenylalanine or tyrosine reduced the activity of the enzyme at high ionic strength, suggesting an important role of Trp-33 on enzyme processivity.
Heinrich, Hannah T M; Bremer, Phil J; Daughney, Christopher J; McQuillan, A James
2007-02-27
Acid-base functional groups at the surface of Anoxybacillus flavithermus (AF) were assigned from the modeling of batch titration data of bacterial suspensions and compared with those determined from in situ infrared spectroscopic titration analysis. The computer program FITMOD was used to generate a two-site Donnan model (site 1: pKa = 3.26, wet concn = 2.46 x 10(-4) mol g(-1); site 2: pKa = 6.12, wet concn = 6.55 x 10(-5) mol g(-1)), which was able to describe data for whole exponential phase cells from both batch acid-base titrations at 0.01 M ionic strength and electrophoretic mobility measurements over a range of different pH values and ionic strengths. In agreement with information on the composition of bacterial cell walls and a considerable body of modeling literature, site 1 of the model was assigned to carboxyl groups, and site 2 was assigned to amino groups. pH difference IR spectra acquired by in situ attenuated total reflection infrared (ATR-IR) spectroscopy confirmed the presence of carboxyl groups. The spectra appear to show a carboxyl pKa in the 3.3-4.0 range. Further peaks were assigned to phosphodiester groups, which deprotonated at slightly lower pH. The presence of amino groups could not be confirmed or discounted by IR spectroscopy, but a positively charged group corresponding to site 2 was implicated by electrophoretic mobility data. Carboxyl group speciation over a pH range of 2.3-10.3 at two different ionic strengths was further compared to modeling predictions. While model predictions were strongly influenced by the ionic strength change, pH difference IR data showed no significant change. This meant that modeling predictions agreed reasonably well with the IR data for 0.5 M ionic strength but not for 0.01 M ionic strength.
Biochemical thermodynamics: applications of Mathematica.
Alberty, Robert A
2006-01-01
The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants.
Sorption of Metal Ions on Clay Minerals.
Schlegel; Charlet; Manceau
1999-12-15
The mechanism of Co uptake from aqueous solution onto hectorite (a magnesian smectite) and its impact on the stability of this clay mineral were investigated as a function of Co concentration (TotCo = 20 to 200 µM, 0.3 M NaNO(3)) and ionic strength (0.3 and 0.01 M NaNO(3), TotCo = 100 µM) by combining kinetics measurements and Co K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The morphology of the sorbent phase was characterized by atomic force microscopy (AFM) and consists of lath-type particles bounded by large basal planes and layer edges. At low ionic strength (0.01 M NaNO(3)), important Co uptake occurred within the first 5 min of reaction, consistent with Co adsorption on exchange sites of hectorite basal planes. Thereafter, the sorption rate dramatically decreased. In contrast, at high ionic strength (0.3 M NaNO(3)), Co uptake rate was much slower within the first 5 min and afterward higher than at 0.01 M NaNO(3), consistent with Co adsorption on specific surface sites located on the edges of hectorite. Time-dependent isotherms for Co uptake at high ionic strength indicated the existence of several sorption mechanisms having distinct equilibration times. The dissolution of hectorite was monitored before and after Co addition. A congruent dissolution regime was observed prior to Co addition. Just after Co addition, an excess release of Mg relatively to congruent dissolution rates occurred at both high and low ionic strengths. At high ionic strength, this excess release nearly equaled the amount of sorbed Co. The dissolution rate of hectorite then decreased at longer Co sorption times. EXAFS spectra of hectorite reacted with Co at high and low ionic strengths and for reaction times longer than 6 h, exhibited similar features, suggesting that the local structural environments of Co atoms are similar. Spectral simulations revealed the occurrence of approximately 2 Mg and approximately 2 Si neighboring cations at interatomic distances characteristic of edge-sharing linkages between Co and Mg octahedra and corner-sharing linkages between Co octahedra and Si tetrahedra, respectively. This local structure is characteristic of inner sphere mononuclear surface complexes at layer edges of hectorite platelets. The occurrence of these complexes even at low ionic strength apparently conflicts with kinetics results, as exchangeable divalent cations are known to form outer sphere surface complexes. To clarify this issue, the amount of Co adsorbed on exchange sites was calculated from the solute Co concentration, assuming that cation exchange was always at equilibrium. These calculations showed that sorbed Co was transferred within 48 h from exchange sites to edge sorption sites. Copyright 1999 Academic Press.
Soft poly(2-chloroaniline)/pectin hydrogel and its electromechanical properties.
Kongkaew, Wanar; Sangwan, Watchara; Lerdwijitjarud, Wanchai; Sirivat, Anuvat
2018-01-01
Pectin hydrogels were successfully fabricated with various physical crosslinkers and concentrations for soft actuator applications. A small amount of synthesized P2ClAn was added as a dispersed phase into the pectin matrix. The electromechanical properties of the pectin hydrogels and blends were investigated under the effects of electric field strength, ionic crosslinker type and concentration, and P2ClAn concentration. The electromechanical properties of the pectin hydrogel as crosslinked by Fe 2+ were superior to other pectin hydrogels. The pristine pectin hydrogel and the P2ClAn/Pectin hydrogel blended with 0.10%v/v P2ClAn provided the high storage modulus sensitivity values of 8.61 and 14.01, respectively, under the electric field strength of 800 V/mm. The P2ClAn/Pectin hydrogel blend responded to the electric field with higher dielectrophoretic forces, but lower deflections relative to the pristine pectin hydrogel due to the additional P2ClAn polarization and the latter lower rigidity.
Heavy metals are common pollutants in wet weather flows and urban waterways. Changes in ionic strength, whether from mixing with saline waters, road salt, or from the large osmotic adjustment needed for the Microtox toxicity assay, affect the aqueous chemistry of stormwater runof...
The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO2, rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and...
Miyazaki, Kohei; Iizuka, Asuka; Mikata, Koji; Fukutsuka, Tomokazu; Abe, Takeshi
2017-09-05
The intercalation of hydroxide ions (OH - ) into graphite formed graphite intercalation compounds (GICs) in high ionic strength solutions. GICs of solvated OH - anions with two water molecules (OH - ·2H 2 O) in alkaline aqueous solutions and GICs of only OH - anions in a molten NaOH-KOH salt solution were electrochemically synthesized.
Uranium (VI) exhibits little adsorption onto sediment minerals in acidic, alkaline or high ionic-strength aqueous media that often occur in U mining or contaminated sites, which makes U(VI) very mobile and difficult to sequester. In this work, magnetic mesoporous silica nanoparti...
Salting out of proteins using ammonium sulfate precipitation.
Duong-Ly, Krisna C; Gabelli, Sandra B
2014-01-01
Protein solubility is affected by ions. At low ion concentrations (<0.5 M), protein solubility increases along with ionic strength. Ions in the solution shield protein molecules from the charge of other protein molecules in what is known as 'salting-in'. At a very high ionic strength, protein solubility decreases as ionic strength increases in the process known as 'salting-out'. Thus, salting out can be used to separate proteins based on their solubility in the presence of a high concentration of salt. In this protocol, ammonium sulfate will be added incrementally to an E. coli cell lysate to isolate a recombinantly over-expressed protein of 20 kDa containing no cysteine residues or tags. © 2014 Elsevier Inc. All rights reserved.
Microstickies agglomeration by electric field.
Du, Xiaotang Tony; Hsieh, Jeffery S
2016-01-01
Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.
High-Performance, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants
NASA Technical Reports Server (NTRS)
Bergeron, Bryan; Skyler, David; Roberts, Kyle; Stevens, Amy
2013-01-01
The synthesis and characterization of six new ionic liquids, with fluoroether moeties on the imidazolium ring, each with vapor pressures shown to be <10(exp -7 Torr at 25 C, have been demonstrated. Thermal stability of the ionic liquids up to 250 C was demonstrated. The ionic liquids had no measurable influence upon viscosity upon addition to perfluoropolyether (PFPE) base fluids. They also had no measureable influence upon corrosion on steel substrates upon addition to base fluids. In general, 13 to 34% lower COFs (coefficients of friction), and 30 to 80% higher OK load of base fluids upon addition of the ionic liquids was shown. The compound consists of a 1,3-disubstituted imidazolium cation. The substituents comprise perfluoroether groups. A bis(trifluoromethanesulfonyl) imide anion counterbalances the charge. The fluorinated groups are intended to enhance dispersion of the ionic liquid in the PFPE base fluid. The presence of weak Van der Waals forces associated with fluorine atoms will limit interaction of the substituents on adjacent ions. The longer interionic distances will reduce the heat of melting and viscosity, and will increase dispersion capabilities.
Saucedo-Espinosa, Mario A.; Lapizco-Encinas, Blanca H.
2016-01-01
Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices. PMID:27375813
Karlsson, Rose-Marie Pernilla; Larsson, Per Tomas; Yu, Shun; Pendergraph, Samuel Allen; Pettersson, Torbjörn; Hellwig, Johannes; Wågberg, Lars
2018-06-01
Macroscopic beads of water-based gels consisting of uncharged and partially charged β-(1,4)-d-glucan polymers were developed to be used as a novel model material for studying the water induced swelling of the delignified plant fiber walls. The gel beads were prepared by drop-wise precipitation of solutions of dissolving grade fibers carboxymethylated to different degrees. The internal structure was analyzed using Solid State Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance and Small Angle X-ray Scattering showing that the internal structure could be considered a homogeneous, non-crystalline and molecularly dispersed polymer network. When beads with different charge densities were equilibrated with aqueous solutions of different ionic strengths and/or pH, the change in water uptake followed the trends expected for weak polyelectrolyte gels and the trends found for cellulose-rich fibers. When dried and subsequently immersed in water the beads also showed an irreversible loss of swelling depending on the charge and type of counter-ion which is commonly also found for cellulose-rich fibers. Taken all these results together it is clear that the model cellulose-based beads constitute an excellent tool for studying the fundamentals of swelling of cellulose rich plant fibers, aiding in the elucidation of the different molecular and supramolecular contributions to the swelling. Copyright © 2018 Elsevier Inc. All rights reserved.
Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin
2009-01-01
The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients. PMID:19277213
Petersen, Jesper; Poulsen, Lena; Birgens, Henrik; Dufva, Martin
2009-01-01
The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.
NASA Astrophysics Data System (ADS)
Thakur, Punam; Xiong, Yongliang; Borkowski, Marian; Choppin, Gregory R.
2014-05-01
The dissociation constants of ethylenediaminetetraacetic acid (H4EDTA), and the stability constants of Am3+, Cm3+and Eu3+ with EDTA4- have been determined at 25 °C, over a range of concentration varying from 0.1 to 6.60 m NaClO4 using potentiometric titration and an extraction technique, respectively. The formation of only 1:1 complex, M(EDTA)-, where (M = Am3+, Cm3+ and Eu3+), was observed under the experimental conditions. The observed ionic strength dependencies of the dissociation constants and the stability constants have been described successfully over the entire ionic strength range using the Pitzer model. The thermodynamic stability constant: logβ1010=20.55±0.18 for Am3+, logβ1010=20.43±0.20 for Cm3+ and logβ1010=20.65±0.19 for Eu3+ were calculated by extrapolation of data to zero ionic strength in an NaClO4 medium. In addition, logβ1010 of 20.05 ± 0.40 for Am3+ was obtained by simultaneously modeling data both in NaCl and NaClO4 media. For all stability constants, the Pitzer model gives an excellent representation of the data using interaction parameters β(0), β(1), and Cϕ determined in this work. The improved model presented in this work would enable researchers to model accurately the potential mobility of actinides (III) and light rare earth elements to ionic strength of 6.60 m in low temperature environments in the presence of EDTA.
Ferhan, Abdul Rahim; Guo, Longhua; Kim, Dong-Hwan
2010-07-20
The effect of ionic strength as well as surfactant concentration on the surface assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (GNRs) has been studied. Glass substrates were modified to yield a net negative charge through electrostatic coating of polystyrenesulfonate (PSS) over a self-assembled monolayer (SAM) of positively charged aminopropyltriethoxysilane (APTS). The substrates were then fully immersed in GNR solutions at different CTAB concentrations and ionic strengths. Under slightly excess CTAB concentrations, it was observed that the density of GNRs immobilized on a substrate was predictably tunable through the adjustment of NaCl concentration over a wide range. Motivated by the experimental observation, we hypothesize that electrostatic shielding of charges around the GNRs affects the density of GNR immobilization. This model ultimately explains that at moderate to high CTAB concentrations a second electrostatic shielding effect contributed by excess CTAB molecules occurs, resulting in a parabolic trend of nanorod surface density when ionic strength is continually increased. In contrast, at a low CTAB concentration, the effect of ionic strength becomes much less significant due to insufficient CTAB molecules to provide for the second electrostatic shielding effect. The tunability of electrostatic-based surface assembly of GNRs enables the attainment of a dense surface assembly of nanorods without significant removal of CTAB or any other substituted stabilizing agent, both of which could compromise the stability and morphology of GNRs in solution. An additional study performed to investigate the robustness of such electrostatic-based surface assembly also proved its reliability to be used as biosensing platforms.
Ferhan, Abdul Rahim; Jackman, Joshua A; Sut, Tun Naw; Cho, Nam-Joon
2018-04-22
Nanoplasmonic sensors are a popular, surface-sensitive measurement tool to investigate biomacromolecular interactions at solid-liquid interfaces, opening the door to a wide range of applications. In addition to high surface sensitivity, nanoplasmonic sensors have versatile surface chemistry options as plasmonic metal nanoparticles can be coated with thin dielectric layers. Within this scope, nanoplasmonic sensors have demonstrated promise for tracking protein adsorption and substrate-induced conformational changes on oxide film-coated arrays, although existing studies have been limited to single substrates. Herein, we investigated human serum albumin (HSA) adsorption onto silica- and titania-coated arrays of plasmonic gold nanodisks by localized surface plasmon resonance (LSPR) measurements and established an analytical framework to compare responses across multiple substrates with different sensitivities. While similar responses were recorded on the two substrates for HSA adsorption under physiologically-relevant ionic strength conditions, distinct substrate-specific behavior was observed at lower ionic strength conditions. With decreasing ionic strength, larger measurement responses occurred for HSA adsorption onto silica surfaces, whereas HSA adsorption onto titania surfaces occurred independently of ionic strength condition. Complementary quartz crystal microbalance-dissipation (QCM-D) measurements were also performed, and the trend in adsorption behavior was similar. Of note, the magnitudes of the ionic strength-dependent LSPR and QCM-D measurement responses varied, and are discussed with respect to the measurement principle and surface sensitivity of each technique. Taken together, our findings demonstrate how the high surface sensitivity of nanoplasmonic sensors can be applied to quantitatively characterize protein adsorption across multiple surfaces, and outline broadly-applicable measurement strategies for biointerfacial science applications.
Wu, Jia; Wang, Shixia; Zheng, Haifei
2016-01-01
The Raman wavenumber of the symmetric stretching vibration of carbonate ion (ν1-CO32−) was measured in three aqueous solutions containing 2.0 mol·L−1 Na2CO3 and 0.20, 0.42, or 0.92 mol·L−1 NaCl, respectively, from 122 to 1538 MPa at 22 °C using a moissanite anvil cell. The ν1 Raman signal linearly shifted to higher wavenumbers with increasing pressure. Most importantly, the slope of ν1-CO32− Raman frequency shift (∂ν1/∂P)I was independent of NaCl concentration. Moreover, elevated ionic strength was found to shift the apparent outline of the carbonate peak toward low wavenumbers, possibly by increasing the proportion of the contact ion pair NaCO3−. Further investigations revealed no cross-interaction between the pressure effect and the ionic strength effect on the Raman spectra, possibly because the distribution of different ion-pair species in the carbonate equilibrium was largely pressure-independent. These results suggested that the ionic strength should be incorporated as an additional constraint for measuring the internal pressure of various solution-based systems. Combining the ν1-CO32− Raman frequency slope with the pressure herein with the values for the temperature or the ionic strength dependencies determined from previous studies, we developed an empirical equation that can be used to estimate the pressure of carbonate-bearing aqueous solutions. PMID:27982064
ERIC Educational Resources Information Center
Baeza-Baeza, Juan J.; Garcia-Alvarez-Coque, M. Celia
2012-01-01
A general systematic approach including ionic strength effects is proposed for the numerical calculation of concentrations of chemical species in multiequilibrium problems. This approach extends the versatility of the approach presented in a previous article and is applied using the Solver option of the Excel spreadsheet to solve real problems…
The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...
Wagner, R; Gonzalez, D H; Podesta, F E; Andreo, C S
1987-05-04
Phosphoenolpyruvate carboxylase from maize leaves dissociated into dimers and/or monomers when exposed to increasing ionic strength (e.g. 200-400 mM NaCl) as indicated by gel filtration experiments. Changes in the oligomerization state were dependent on pH, time of preincubation with salt and protein concentration. A dissociation into dimers and monomers was observed at pH 8, while at pH 7 dissociation into the dimeric form only was observed. Exposure of the enzyme to higher ionic strength decreased the activity in a time-dependent manner. Turnover conditions and glucose 6-phosphate protected the carboxylase from the decay in activity, which was faster at pH 7 than at pH 8. The results suggest that changes in activity of the enzyme, following exposure to high ionic strength, are the consequence of dissociation. Tetrameric and dimeric forms of the phosphoenolpyruvate carboxylase seemingly reveal different catalytic properties. We suggest that the distinct catalytic properties of the different oligomeric species of phosphoenolpyruvate carboxylase and changes in the equilibrium between them could be the molecular basis for an effective regulation of metabolite levels by this key enzyme of C4 plants.
Bunn, Rebecca A.; Magelky, Robin D.; Ryan, Joseph N.; Elimelech, Menachem
2002-01-01
Field and laboratory column experiments were performed to assess the effect of elevated pH and reduced ionic strength on the mobilization of natural colloids in a ferric oxyhydroxide-coated aquifer sediment. The field experiments were conducted as natural gradient injections of groundwater amended by sodium hydroxide additions. The laboratory experiments were conducted in columns of undisturbed, oriented sediments and disturbed, disoriented sediments. In the field, the breakthrough of released colloids coincided with the pH pulse breakthrough and lagged the bromide tracer breakthrough. The breakthrough behavior suggested that the progress of the elevated pH front controlled the transport of the mobilized colloids. In the laboratory, about twice as much colloid release occurred in the disturbed sediments as in the undisturbed sediments. The field and laboratory experiments both showed that the total mass of colloid release increased with increasing pH until the concurrent increase in ionic strength limited release. A decrease in ionic strength did not mobilize significant amounts of colloids in the field. The amount of colloids released normalized to the mass of the sediments was similar for the field and the undisturbed laboratory experiments.
Akaighe, Nelson; Depner, Sean W; Banerjee, Sarbajit; Sohn, Mary
2013-07-01
The transport and deposition of silver nanoparticles (AgNPs) formed from Ag(+) reduction by Suwannee River Humic Acid (SRHA) and Suwannee River Natural Organic Matter (SRNOM) utilizing a silica matrix is reported. The morphology and stability of the AgNPs was analyzed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. The percentage conversion of the initial [Ag(+)] to [AgNPs] was determined from a combination of atomic absorption (AAS) and UV-Vis spectroscopy, and centrifugation techniques. The results indicate higher AgNP transport and consequently low deposition in the porous media at basic pH conditions and low ionic strength. However, at low acidic pH and high ionic strength, especially with the divalent metallic cations, the mobility of the AgNPs in the porous media was very low, most likely due to NP aggregation. Overall, the results suggest the potential for AgNP contamination of subsurface soils and groundwater aquifers is mostly dependent on their aggregation state, controlled by the soil water and sediment ionic strength and pH. Copyright © 2013 Elsevier Ltd. All rights reserved.
Arutiunian, A V; Ivanova, M A; Kurliand, D I; Kapshin, Iu S; Landa, S B; Poshekhonov, S T; Drobchenko, E A; Shevelev, I V
2011-01-01
Changes in the rigidity of the polymetric chain of phage lambda double-strand DNA have been studied by laser correlation spectroscopy. It was shown that, as the ionic strength increases, the effect of the screening of the hydrodynamic interaction of the links of the polymeric chain specific for polymeric coils arises in a DNA solution. It is assumed that the screening occurs when the threshold of the overlapping of DNA coils is achieved. The overlapping of coils is the result of a previously observed significant rise of DNA coil size from abnormally small DNA coils in low ionic strength buffers (about 10(-2) M Na+ or less) to maximum possible large coils in the 5SSC and 5SSC-like buffers. Further analysis of the far interlink interactions in linear lambda phage DNA coils in similar buffers at pH 7 and 4 confirms the earlier proposal about the role of H+ ions in the appearance of abnormally small DNA coils. The abnormal decrease in the DNA coil size in low ionic strength buffers is not a specific feature of lambda phage DNA only.
Chen, Xing; Tume, Ron K; Xu, Xinglian; Zhou, Guanghong
2017-10-13
The qualitative characteristics of meat products are closely related to the functionality of muscle proteins. Myofibrillar proteins (MPs), comprising approximately 50% of total muscle proteins, are generally considered to be insoluble in solutions of low ionic strength (< 0.2 M), requiring high concentrations of salt (> 0.3 M) for solubilization. These soluble proteins are the ones which determine many functional properties of meat products, including emulsification and thermal gelation. In order to increase the utilization of meat and meat products, many studies have investigated the solubilization of MPs in water or low ionic strength media and determining their functionality. However, there still remains a lack of systematic information on the functional properties of MPs solubilized in this manner. Hence, this review will explore some typical techniques that have been used. The main procedures used for their solubilization, the fundamental principles and their functionalities in water (low ionic strength medium) are comprehensively discussed. In addition, advantages and disadvantages of each technique are summarized. Finally, future considerations are presented to facilitate progress in this new area and to enable water soluble muscle MPs to be utilized as novel meat ingredients in the food industry.
Liu, Zhongling; Yu, Wei; Zhang, Hanqi; Gu, Fanbin; Jin, Xiangqun
2016-12-01
Salting-out homogenous extraction followed by ionic liquid/ionic liquid dispersive liquid-liquid micro-extraction system was developed and applied to the extraction of sulfonamides in blood. High-performance liquid chromatography was applied to the determination of the analytes. The blood sample was centrifuged to obtain the serum. After the proteins in the serum were removed in the presence of acetonitrile, ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, dipotassium hydrogen phosphate, ionic liquid 1-Hexyl-3-methylimidazolium hexafluorophosphate were added into the resulting solution. After the resulting mixture was ultrasonically shaken and centrifuged, the precipitate was separated. The acetonitrile was added in the precipitate and the analytes were extracted into the acetonitrile phase. The parameters affecting the extraction efficiency, such as volume of ionic liquid, amount of dipotassium hydrogen phosphate, volume of dispersant, extraction time and temperature were investigated. The limits of detection of sulfamethizole (STZ), sulfachlorpyridazine (SCP), sulfamethoxazole (SMX) and Sulfisoxazole (SSZ) were 4.78, 3.99, 5.21 and 3.77μgL -1 , respectively. When the present method was applied to the analysis of real blood samples, the recoveries of analytes ranged from 90.0% to 113.0% and relative standard deviations were lower than 7.2%. Copyright © 2016 Elsevier B.V. All rights reserved.
A precision structured smart hydrogel for sensing applications
NASA Astrophysics Data System (ADS)
Menges, J.; Kleinschmidt, P.; Bart, H.-J.; Oesterschulze, E.
2017-10-01
We report on a macroinitiator based smart hydrogel film applied on a microcantilever for sensing applications. The studied hydrogel features a comparatively wide dynamic range for changes in the electrolyte's ionic strength. Furthermore, it offers a simple spin coating process for thin film deposition as well as the capability to obtain high aspect ratio microstructures by reactive ion etching. This makes the hydrogel compatible to microelectromechanical system integration. As a proof of concept, we study the response of hydrogel functionalized cantilevers in aqueous sodium chloride solutions of varying ionic strength. In contrast to the majority of hydrogel materials reported in the literature, we found that our hydrogel still responds in high ionic strength environments. This may be of future interest for sensing e.g., in sea water or physiological environments like urine.
Theory and practice in the electrometric determination of pH in precipitation
NASA Astrophysics Data System (ADS)
Brennan, Carla Jo; Peden, Mark E.
Basic theory and laboratory investigations have been applied to the electrometric determination of pH in precipitation samples in an effort to improve the reliability of the results obtained from these low ionic strength samples. The theoretical problems inherent in the measurement of pH in rain have been examined using natural precipitation samples with varying ionic strengths and pH values. The importance of electrode design and construction has been stressed. The proper choice of electrode can minimize or eliminate problems arising from residual liquid junction potentials, streaming potentials and temperature differences. Reliable pH measurements can be made in precipitation samples using commercially available calibration buffers providing low ionic strength quality control solutions are routinely used to verify electrode and meter performance.
Jiang, Wenqing; Chen, Xiaochu; Liu, Fengmao; You, Xiangwei; Xue, Jiaying
2014-11-01
A novel effervescence-assisted dispersive liquid-liquid microextraction method has been developed for the determination of four fungicides in apple juice samples. In this method, a solid effervescent agent is added into samples to assist the dispersion of extraction solvent. The effervescent agent is environmentally friendly and only produces an increase in the ionic strength and a negligible variation in the pH value of the aqueous sample, which does not interfere with the extraction of the analytes. The parameters affecting the extraction efficiency were investigated including the composition of effervescent agent, effervescent agent amount, formulation of effervescent agent, adding mode of effervescent agent, type and volume of extraction solvent, and pH. Under optimized conditions, the method showed a good linearity within the range of 0.05-2 mg/L for pyrimethanil, fludioxonil, and cyprodinil, and 0.1-4 mg/L for kresoxim-methyl, with the correlation coefficients >0.998. The limits of detection for the method ranged between 0.005 and 0.01 mg/L. The recoveries of the target fungicides in apple juice samples were in the range of 72.4-110.8% with the relative standard deviations ranging from 1.2 to 6.8%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fan, Chen; Li, Nai; Cao, Xueli
2015-05-01
In-situ ionic liquid-dispersive liquid-liquid microextraction (IL-DLLME) method was developed as a pretreatment method for the detection of six chlorophenols (CPs) in honey samples. The hydrophobic ionic liquid [C4MIM][NTf2], formed in-situ by the hydrophilic ionic liquid [C4MIM][BF4] and the ion exchange reagent LiNTf2 was used as the microextractant solvent of CPs from honey sample. Then the enriched analytes were back-extracted into 40 μL of 0.14 M NaOH solution and finally subjected to analysis by high-performance liquid chromatography. The method showed low limit of detection of CPs, 0.8-3.2 μg/L and high enrichment factor, 34-65 with the recoveries range from 91.60% to 114.33%. The method is simple, rapid, environmentally friendly and with high extraction efficiency. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hyltegren, Kristin; Skepö, Marie
2017-05-15
The adsorbed amount of the polyelectrolyte-like protein histatin 5 on a silica surface depends on the pH and the ionic strength of the solution. Interestingly, an increase in ionic strength affects the adsorbed amount differently depending on the pH of the solution, as shown by ellipsometry measurements (Hyltegren, 2016). We have tested the hypothesis that the same (qualitative) trends can be found also from a coarse-grained model that takes all charge-charge interactions into account within the frameworks of Gouy-Chapman and Debye-Hückel theories. Using the same coarse-grained model as in our previous Monte Carlo study of single protein adsorption (Hyltegren, 2016), simulations of systems with many histatin 5 molecules were performed and then compared with ellipsometry measurements. The strength of the short-ranged attractive interaction between the protein and the surface was varied. The coarse-grained model does not qualitatively reproduce the pH-dependence of the experimentally observed trends in adsorbed amount as a function of ionic strength. However, the simulations cast light on the balance between electrostatic attraction between protein and surface and electrostatic repulsion between adsorbed proteins, the deficiencies of the Langmuir isotherm, and the implications of protein charge regulation in concentrated systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Ding, Yuxiao; Klyushin, Alexander; Huang, Xing; Jones, Travis; Teschner, Detre; Girgsdies, Frank; Rodenas, Tania; Schlögl, Robert; Heumann, Saskia
2018-03-19
By taking inspiration from the catalytic properties of single-site catalysts and the enhancement of performance through ionic liquids on metal catalysts, we exploited a scalable way to place single cobalt ions on a carbon-nanotube surface bridged by polymerized ionic liquid. Single dispersed cobalt ions coordinated by ionic liquid are used as heterogeneous catalysts for the oxygen evolution reaction (OER). Performance data reveals high activity and stable operation without chemical instability. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.
2010-12-01
In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.
NASA Astrophysics Data System (ADS)
Zhao, Shuo; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Sheng, Xiaoli; Fang, Jiasheng; Zhang, Mingyu; Yang, Yong
2017-04-01
Here we present a facile method for the preparation of highly dispersive ZnO materials by using ionic liquid 1-methyl-3-[3‧-(trimethoxysilyl) propyl] imidazolium chloride as the template. The influence of ionic liquid concentration and calcined atmosphere on the photoactivity is studied. The samples were characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscope (SEM), N2 gas sorption and ultraviolet-visible diffuse reflectance spectroscopy. The results showed that the as-fabricated ZnO materials consisted of individual microrods with self-assembled bowknot-like architecture whose size was about 1 μm. The formation mechanism of the bowknot-like ZnO materials which is based on the self-assembly of ionic liquid is tentatively elucidated. Moreover, the ZnO-2.6N sample exhibited the higher activity for the photodegradation of MB than the photodegradation of MO and RhB. Furthermore, it was found that the ZnO materials calcined under air atmosphere showed the better photocatalytic activities than that of samples calcined under nitrogen atmosphere in the degradation of methylene blue (MB) under UV irradiation. And the special structure, surface area, adsorption capability of dye, the separation rate of photogenerated electron-hole pairs and band gap had effects on the photocatalytic activity of ZnO photocatalysts. O2rad - was the main active species for the photocatalytic degradation of MB. It is valuable to develop this facile route preparing the highly dispersive bowknot-like ZnO materials and the ZnO materials can be beneficial for environmental protection.
A computer program for geochemical analysis of acid-rain and other low-ionic-strength, acidic waters
Johnsson, P.A.; Lord, D.G.
1987-01-01
ARCHEM, a computer program written in FORTRAN 77, is designed primarily for use in the routine geochemical interpretation of low-ionic-strength, acidic waters. On the basis of chemical analyses of the water, and either laboratory or field determinations of pH, temperature, and dissolved oxygen, the program calculates the equilibrium distribution of major inorganic aqueous species and of inorganic aluminum complexes. The concentration of the organic anion is estimated from the dissolved organic concentration. Ionic ferrous iron is calculated from the dissolved oxygen concentration. Ionic balances and comparisons of computed with measured specific conductances are performed as checks on the analytical accuracy of chemical analyses. ARCHEM may be tailored easily to fit different sampling protocols, and may be run on multiple sample analyses. (Author 's abstract)
Conformation of chromatin oligomers. A new argument for a change with the hexanucleosome.
Marion, C; Bezot, P; Hesse-Bezot, C; Roux, B; Bernengo, J C
1981-11-01
Quasielastic laser light scattering measurements have been made on chromatin oligomers to obtain information on the transition in their electrooptical properties, previously observed for the hexameric structures [Marion, C. and Roux, B. (1978) Nucleic Acids Res. 5, 4431-4449]. Translational diffusion coefficients were determined for mononucleosomes to octanucleosomes containing histone H1 over a range of ionic strength. At high ionic strength, oligomers show a linear dependence of the logarithm of diffusion coefficient upon the logarithm of number of nucleosomes. At low ionic strength a change occurs between hexamer and heptamer. Our results agree well with the recent sedimentation data of Osipova et al. [Eur. J. Biochem. (1980) 113, 183-188] and of Butler and Thomas [J. Mol. Biol. (1980) 140, 505-529] showing a change in stability with hexamer. Various models for the arrangements of nucleosomes in the superstructure of chromatin are discussed. All calculations clearly indicate a conformational change with the hexanucleosome and the results suggest that, at low ionic strength, the chromatin adopts a loosely helical structure of 28-nm diameter and 22-nm pitch. These results are also consistent with a discontinuity every sixth nucleosome, corresponding to a turn of the helix. This discontinuity may explain the recent electric dichroism data of Lee et al. [Biochemistry (1981) 20, 1438-1445]. The hexanucleosome structure which we have previously suggested, with the faces of nucleosomes arranged radially to the helical axis has been recently confirmed by Mc Ghee et al. [Cell (1980) 22, 87-96]. With an increase of ionic strength, the helix becomes more regular and compact with a slightly reduced outer diameter and a decreased pitch, the dimensions resembling those proposed for solenoid models.
Hamed, Rania; AlJanabi, Reem; Sunoqrot, Suhair; Abbas, Aiman
2017-08-01
The objective of this study was to investigate the effect of the different physiological parameters of the gastrointestinal (GI) fluid (pH, buffer capacity, and ionic strength) on the in vitro release of the weakly basic BCS class II drug quetiapine fumarate (QF) from two once-a-day matrix tablet formulations (F1 and F2) developed as potential generic equivalents to Seroquel ® XR. F1 tablets were prepared using blends of high and low viscosity grades of hydroxypropyl methylcellulose (HPMC K4M and K100LV, respectively), while F2 tablets were prepared from HPMC K4M and PEGylated glyceryl behenate (Compritol ® HD5 ATO). The two formulations attained release profiles of QF over 24 h similar to that of Seroquel ® XR using the dissolution medium published by the Food and Drug Administration (FDA). A series of solubility and in vitro dissolution studies was then carried out using media that simulate the gastric and intestinal fluids and cover the physiological pH, buffer capacity and ionic strength range of the GIT. Solubility studies revealed that QF exhibits a typical weak base pH-dependent solubility profile and that the solubility of QF increases with increasing the buffer capacity and ionic strength of the media. The release profiles of QF from F1, F2 and Seroquel ® XR tablets were found to be influenced by the pH, buffer capacity and ionic strength of the dissolution media to varying degrees. Results highlight the importance of studying the physiological variables along the GIT in designing controlled release formulations for more predictive in vitro-in vivo correlations.
A classical density functional theory of ionic liquids.
Forsman, Jan; Woodward, Clifford E; Trulsson, Martin
2011-04-28
We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.
Dispersion stability of a ceramic glaze achieved through ionic surfactant adsorption.
Panya, Preecha; Arquero, Orn-anong; Franks, George V; Wanless, Erica J
2004-11-01
The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations < or = 0.01 M. At 0.1 M salt poor stability results despite substantial zeta potential values. Three mechanisms for SDBS adsorption have been identified. When anionic SDBS monomers either adsorb by electrostatic interactions with the few positive surface sites at high pH or adsorb onto like charged negative surface sites due to dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.
Study of Np(V) Sorption by Ionic Exchange on Na, K, Ca and Mg-Montmorillonite
NASA Astrophysics Data System (ADS)
Benedicto, A.; Begg, J.; Zhao, P.; Kersting, A. B.; Zavarin, M.
2012-12-01
The transport behavior of actinides in soil and ground water are highly influenced by clay minerals due to their ubiquity in the environment, reactivity and colloidal properties. Neptunium(V) has been introduced in the environment as a result of nuclear weapons testing [e.g. 1, 2] and is a radionuclide of potential interest for safety assessment of high level radioactive waste disposal because its long half-life and high toxicity [3]. Surface complexation and ionic exchange have been identified as Np(V) sorption mechanisms onto montmorillonite. At pH below 5, Np(V) sorption is mainly attributed to ionic exchange. This study examines Np(V) ion exchange on Na, K, Ca and Mg forms of montmorillonite. Experiments were carried out using 237Np concentrations between 2 x 10-8 M and 5 x 10-6 M at three different ionic strengths 0.1, 0.01 and 0.001M. The pH was maintained at 4.5. Np(V) sorption to montmorillonite homoionized with monovalent cations (Na and K) demonstrated a markedly different behavior to that observed for montmorillonite homoionized with divalent cations (Ca and Mg). Np sorption to Na and K-montmorillonite was greater than Np sorption to Ca and Mg-montmorillonite. Isotherms with Na and K-montmorillonite showed a strong dependence on ionic strength: the percentage of Np adsorbed was near zero at 0.1M ionic strength, but increased to 30% at 0.001 M ionic strength. This suggests ionic exchange is the main Np adsorption mechanism under the experimental conditions investigated. Dependence on ionic strength was not observed in the Np sorption isotherms for Ca and Mg-montmorillonite indicating a low exchange capacity between Np and divalent cations. Modeling of the sorption experimental data will allow determination of the Na+↔NpO2+ and K+↔NpO2+ ionic exchange constants on montmorillonite. References: [1] A. R. Felmy; K. J. Cantrell; S. D. Conradson, Phys. Chem. Earth 2010, 35, 292-297 [2] D. K. Smith; D. L. Finnegan; S. M. Bowen, J. Environ. Radioact. 2003, 67, (1), 35-51 [3] N. Kozai; T. Ohnuki; S. Muraoka, J. Nucl. Sci. Technol. 1993, 30, (11), 1153-1159 This work was funded by U. S. DOE Office of Biological & Environmental Sciences, Subsurface Biogeochemistry Research Program, and performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. A. Benedicto was supported by a Spanish Ministry of Science and Innovation 'FPI' pre-doctoral contract in CIEMAT (Spain). LLNL-ABS-570160
NASA Astrophysics Data System (ADS)
Gamov, G. A.; Grazhdan, K. V.; Gavrilova, M. A.; Dushina, S. V.; Sharnin, V. A.; Baranski, A.
2013-06-01
Solutions of iron(III) perchlorate in water, water-ethanol, and water-dimethyl sulfoxide solvents (x_{H_2 O} = 0.7 and 0.25 mole fractions) at ionic strength values I = 0.1, 0.25, and 0.5 are studied by IR spectroscopy. Analysis of the absorption bands of perchlorate ion shows that it does not participate in association processes. It is demonstrated that in the range of ionic strength values between 0 and 0.5 (NaClO4), it affects neither the results from potentiometric titration to determine the stability constants of the iron(III)-nicotinamide complex nor the thermal effects of complexation determined via direct calorimetry in a binary solvent containing 0.3 mole fractions (m.f.) of a non-aqueous component.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.
Xiong, Yongliang; Kirkes, Leslie Dawn; Marrs, Cassandra
2017-12-01
In this paper, the experimental results from long-term solubility experiments on micro crystalline neodymium hydroxide, Nd(OH) 3(micro cr), in high ionic strength solutions at 298.15 K under well-constrained conditions are presented. The starting material was synthesized according to a well-established method in the literature. In contrast with the previous studies in which hydrogen ion concentrations in experiments were adjusted with addition of either an acid or a base, the hydrogen ion concentrations in our experiments are controlled by the dissolution of Nd(OH) 3(micro cr), avoiding the possibility of phase change.
Naing, Nyi Nyi; Li, Sam Fong Yau; Lee, Hian Kee
2015-12-24
A fast and low-cost sample preparation method of graphene based dispersive solid-phase extraction combined with gas chromatography-mass spectrometric (GC-MS) analysis, was developed. The procedure involves an initial extraction with water-immiscible organic solvent, followed by a rapid clean-up using amine functionalized reduced graphene oxide as sorbent. Simple and fast one-step in situ derivatization using trimethylphenylammonium hydroxide was subsequently applied on acidic pharmaceuticals serving as model analytes, ibuprofen, gemfibrozil, naproxen, ketoprofen and diclofenac, before GC-MS analysis. Extraction parameters affecting the derivatization and extraction efficiency such as volume of derivatization agent, effect of desorption solvent, effect of pH and effect of ionic strength were investigated. Under the optimum conditions, the method demonstrated good limits of detection ranging from 1 to 16ngL(-1), linearity (from 0.01 to 50 and 0.05 to 50μgL(-1), depending on the analytes) and satisfactory repeatability of extractions (relative standard deviations, below 13%, n=3). Copyright © 2015 Elsevier B.V. All rights reserved.
Khodadoust, Saeid; Ghaedi, Mehrorang
2014-12-10
In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME)) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100μL of chloroform, 1.3mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0mgmL(-1) of MR in initial solution with R(2)=0.995 (n=5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015mgmL(-1), respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n=5). Copyright © 2014 Elsevier B.V. All rights reserved.
Lian, Cheng; Univ. of California, Riverside, CA; Zhao, Shuangliang; ...
2016-11-29
Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this paper, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the durationmore » of charging. Finally and furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.« less
Specialist gelator for ionic liquids.
Hanabusa, Kenji; Fukui, Hiroaki; Suzuki, Masahiro; Shirai, Hirofusa
2005-11-08
Cyclo(l-beta-3,7-dimethyloctylasparaginyl-L-phenylalanyl) (1) and cyclo(L-beta-2-ethylhexylasparaginyl-L-phenylalanyl) (2), prepared from L-asparaginyl-L-phenylalanine methyl ester, have been found to be specialist gelators for ionic liquids. They can gel a wide variety of ionic liquids, including imizazolium, pyridinium, pyrazolidinium, piperidinium, morpholinium, and ammonium salts. The mean minimum gel concentrations (MGCs) necessary to make gels at 25 degrees C were determined for ionic liquids. The gel strength increased at a rate nearly proportional to the concentration of added gelator. The strength of the transparent gel of 1-butylpyridinium tetrafluoroborate ([C(4)py]BF(4)), prepared at a concentration of 60 g L(-1) (gelator 1/[C(4)py]BF(4)), was ca. 1500 g cm(-2). FT-IR spectroscopy indicated that a driving force for gelation was intermolecular hydrogen bonding between amides and that the phase transition from gel to liquid upon heating was brought about by the collapse of hydrogen bonding. The gels formed from ionic liquids were very thermally stable; no melting occurs up to 140 degrees C when the gels were prepared at a concentration of 70 g L(-1) (gelator/ionic liquid). The ionic conductivities of the gels were nearly the same as those of pure ionic liquids. The gelator had electrochemical stability and a wide electrochemical window. When the gels were prepared from ionic liquids containing propylene carbonate, the ionic conductivities of the resulting gels increased to levels rather higher than those of pure ionic liquids. The gelators also gelled ionic liquids containing supporting electrolytes.
Gonzalez-Siso, Paula; Lorenzo, Rosa A; Regenjo, María; Fernández, Purificación; Carro, Antonia M
2015-10-01
Chloropropanols are processing toxicants with a potential risk to human health due to the increased intake of processed foods. A rapid and efficient method for the determination of three chloropropanols in human plasma was developed using ultrasound-assisted dispersive liquid-liquid microextraction. The method involved derivatization and extraction in one step followed by gas chromatography with tandem mass spectrometry analysis. Parameters affecting extraction, such as sample pH, ionic strength, type and volume of dispersive and extraction solvents were optimized by response surface methodology using a pentagonal design. The linear range of the method was 5-200 ng/mL for 1,3-dichloro-2-propanol, 10-200 ng/mL for 2,3-dichloro-2-propanol and 10-400 ng/mL for 3-chloropropane-1,2-diol with the determination coefficients between 0.9989 and 0.9997. The limits of detection were in the range of 0.3-3.2 ng/mL. The precision varied from 1.9 to 10% relative standard deviation (n = 9). The recovery of the method was between 91 and 101%. Advantages such as low consumption of organic solvents and short time of analysis make the method suitable for the biomonitoring of chloropropanols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Malaei, Reyhane; Ramezani, Amir M; Absalan, Ghodratollah
2018-05-04
A sensitive and reliable ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) procedure was developed and validated for extraction and analysis of malondialdehyde (MDA) as an important lipids-peroxidation biomarker in human plasma. In this methodology, to achieve an applicable extraction procedure, the whole optimization processes were performed in human plasma. To convert MDA into readily extractable species, it was derivatized to hydrazone structure-base by 2,4-dinitrophenylhydrazine (DNPH) at 40 °C within 60 min. Influences of experimental variables on the extraction process including type and volume of extraction and disperser solvents, amount of derivatization agent, temperature, pH, ionic strength, sonication and centrifugation times were evaluated. Under the optimal experimental conditions, the enhancement factor and extraction recovery were 79.8 and 95.8%, respectively. The analytical signal linearly (R 2 = 0.9988) responded over a concentration range of 5.00-4000 ng mL -1 with a limit of detection of 0.75 ng mL -1 (S/N = 3) in the plasma sample. To validate the developed procedure, the recommend guidelines of Food and Drug Administration for bioanalytical analysis have been employed. Copyright © 2018. Published by Elsevier B.V.
Cationic flocculants carrying hydrophobic functionalities: applications for solid/liquid separation.
Schwarz, S; Jaeger, W; Paulke, B-R; Bratskaya, S; Smolka, N; Bohrisch, J
2007-07-26
The flocculation behaviors of three series of polycations with narrow molecular weight distributions carrying hydrophobic substituents on their backbones [poly(N-vinylbenzyl-N,N,N-trimethylammonium chloride), poly(N-vinylbenzyl-N,N-dimethyl-N-butylammonium chloride), and poly(N-vinylbenzylpyridinium chloride)] were investigated in dispersions of monodisperse polystyrene latexes and kaolin. Apparently, the charge density of the polycations decreases with increasing substituent hydrophobicity and increasing molecular weight of the polyelectrolytes. The necessary amount of flocculant for phase separation in dispersions with high substrate surface charge densities increases with increasing hydrophobicity of the polyelectrolyte. Nevertheless, the introduction of hydrophobic functionalities is beneficial, resulting in a substantial broadening of the range between the minimum and maximum amounts of flocculant necessary for efficient flocculation (flocculation window). An increase in ionic strength supports this effect. When the substrate has a low charge density, the hydrophobic interactions play a much more significant role in the flocculation process. Here, the minimum efficient doses remained the same for all three polyelectrolytes investigated, but the width of the flocculation window increased as the polycation hydrophobicity and the molecular weight increased. The necessary amount of flocculant increased with an increase in particle size at constant solid content of the dispersion, as well as with a decreasing number of particles at a constant particle size.
Gao, Li; Wei, Yinmao
2016-08-01
A novel mixed-mode adsorbent was prepared by functionalizing silica with tris(2-aminoethyl)amine and 3-phenoxybenzaldehyde as the main mixed-mode scaffold due to the presence of the plentiful amino groups and benzene rings in their molecules. The adsorption mechanism was probed with acidic, natural and basic compounds, and the mixed hydrophobic and ion-exchange interactions were found to be responsible for the adsorption of analytes. The suitability of dispersive solid-phase extraction was demonstrated in the determination of chlorophenols in environmental water. Several parameters, including sample pH, desorption solvent, ionic strength, adsorbent dose, and extraction time were optimized. Under the optimal extraction conditions, the proposed dispersive solid-phase extraction coupled with high-performance liquid chromatography showed good linearity range and acceptable limits of detection (0.22∽0.54 ng/mL) for five chlorophenols. Notably, the higher extraction recoveries (88.7∽109.7%) for five chlorophenols were obtained with smaller adsorbent dose (10 mg) and shorter extraction time (15 min) compared with the reported methods. The proposed method might be potentially applied in the determination of trace chlorophenols in real water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hu, Lu; Zhang, Panjie; Shan, Wanyu; Wang, Xuan; Li, Songqing; Zhou, Wenfeng; Gao, Haixiang
2015-11-01
A novel dispersion liquid-liquid microextraction method based on the solidification of sedimentary ionic liquids (SSIL-DLLME), in which an in situ metathesis reaction forms an ionic liquid (IL) extraction phase, was developed to determine four pyrethroid insecticides (i.e., permethrin, cyhalothrin, fenpropathrin, and transfluthrin) in water followed by separation using high-performance liquid chromatography. In the developed method, in situ DLLME was used to enhance the extraction efficiency and yield. After centrifugation, the extraction solvent, tributyldodecylphosphonium hexafluorophosphate ([P44412][PF6]), was easily collected by solidification in the bottom of the tube. The effects of various experimental parameters, the quantity of tributyldodecylphosphonium bromide ([P44412]Br), the molar ratio of [P44412]Br to potassium hexafluorophosphate (KPF6), the ionic strength, the temperature of the sample solution, and the centrifugation time, were optimized using a Plackett-Burman design to identify the significant factors that affected the extraction efficiency. These significant factors were then optimized using a central composite design. Under the optimized conditions, the recoveries of the four pyrethroid insecticides at four spiked levels ranged from 87.1% to 101.7%, with relative standard deviations (RSDs) ranging from 0.1% to 5.5%. At concentration levels between 1 and 500 µg/L, good linearity was obtained, with coefficients of determination greater than 0.9995. The limits of detection (LODs) for the four pyrethroid insecticides were in the range of 0.71-1.54 µg/L. The developed method was then successfully used for the determination of pyrethroid insecticides in environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Martins, Angela; Nunes, Nelson
2015-01-01
In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…
ERIC Educational Resources Information Center
Rodriguez, Hernan B.; Mirenda, Martin
2012-01-01
A modified laboratory experiment for undergraduate students is presented to evaluate the effects of the ionic strength, "I", on the equilibrium concentration quotient, K[subscript c], of the acid-base indicator bromcresol green (BCG). The two-step deprotonation of the acidic form of the dye (sultone form), as it is dissolved in water, yields…
Mikac, Urša; Sepe, Ana; Baumgartner, Saša; Kristl, Julijana
2016-03-07
The formation of a gel coat around xanthan (Xan) tablets, empty or loaded with pentoxifylline (PF), and its release in media differing in pH and ionic strength by NMR, MR imaging, and two release methods were studied. The T1 and T2 NMR relaxation times in gels depend predominantly on Xan concentration; the presence of PF has negligible influence on them. It is interesting that the matrix swelling is primarily regulated by Xan despite high drug loading (25%, 50%). The gastric pH and high ionic strength of the media do not influence the position of the penetration and swelling fronts but do affect the erosion front and gel thickness. The different release profiles obtained in mixing and nonmixing in vitro methods are the consequence of matrix hydration level and erosion at the surface. In water and in diluted acid medium with low ionic strength, the main release mechanism is erosion, whereas in other media (pH 1.2, μ ≥ 0.20 M), anomalous transport dominates as was found out by fitting of measured data with theoretical model. Besides the in vitro investigation that mimics gastric conditions, mathematical modeling makes the product development more successful.
Quantifying particulate and colloidal release of radionuclides in waste-weathered hanford sediments.
Perdrial, Nicolas; Thompson, Aaron; LaSharr, Kelsie; Amistadi, Mary Kay; Chorover, Jon
2015-05-01
At the Hanford Site in the state of Washington, leakage of hyperalkaline, high ionic strength wastewater from underground storage tanks into the vadose zone has induced mineral transformations and changes in radionuclide speciation. Remediation of this wastewater will decrease the ionic strength of water infiltrating to the vadose zone and could affect the fate of the radionuclides. Although it was shown that radionuclide host phases are thermodynamically stable in the presence of waste fluids, a decrease in solution ionic strength and pH could alter aggregate stability and remobilize radionuclide-bearing colloids and particulate matter. We quantified the release of particulate, colloidal, and truly dissolved Sr, Cs, and I from hyperalkaline-weathered Hanford sediments during a low ionic strength pore water leach and characterized the released particles and colloids using electron microscopy and X-ray diffraction. Although most of the Sr, Cs, and I was released in dissolved form, between 3 and 30% of the Sr and 4 to 18% of the Cs was associated with a dominantly zeolitic mobile particulate fraction. Thus, the removal of hyperalkaline wastewater will likely induce Sr and Cs mobilization that will be augmented by particulate- and colloid-facilitated transport. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Kosmulski, Marek; Maczka, Edward; Jartych, Elzbieta; Rosenholm, Jarl B
2003-03-19
Aging of synthetic goethite at 140 degrees C overnight leads to a composite material in which hematite is detectable by Mössbauer spectroscopy, but X-ray diffraction does not reveal any hematite peaks. The pristine point of zero charge (PZC) of synthetic goethite was found at pH 9.4 as the common intersection point of potentiometric titration curves at different ionic strengths and the isoelectric point (IEP). For the goethite-hematite composite, the common intersection point (pH 9.4), and the IEP (pH 8.8) do not match. The electrokinetic potential of goethite at ionic strengths up to 1 mol dm(-3) was determined. Unlike metal oxides, for which the electrokinetic potential is reversed to positive over the entire pH range at sufficiently high ionic strength, the IEP of goethite is rather insensitive to the ionic strength. A literature survey of published PZC/IEP values of iron oxides and hydroxides indicated that the average PZC/IEP does not depend on the degree of hydration (oxide or hydroxide). Our material showed a higher PZC and IEP than most published results. The present results confirm the allegation that electroacoustic measurements produce a higher IEP than the average IEP obtained by means of classical electrokinetic methods.
Reguyal, Febelyn; Sarmah, Ajit K
2018-07-01
Recent studies have shown the widespread occurrence of pharmaceuticals in the aquatic environment leading to increasing global concern on their potential adverse effects in the environment and public health. In this study, we evaluated the use of magnetic biochar derived from pine sawdust, one of New Zealand's major wood wastes, to remove an emerging contaminant, sulfamethoxazole (SMX), at different pH, ionic strength, natural organic matter (NOM) and a competing compound, 17α-ethinylestradiol (EE2). In single-solute system, the sorption of SMX onto magnetic biochar was found to be highly pH-dependent and slightly increased with increase in ionic strength. However, the effects of pH, ionic strength and NOM were relatively insignificant compared to the sorption inhibition caused by EE2 in binary-solute system. Both SMX and EE2 sorption onto the highly carbonised biochar in magnetic biochar were postulated to be due to the π-π electron donor acceptor and hydrophobic interaction. EE2 is more hydrophobic than SMX. Hence, strong competition between these compounds was identified where EE2 markedly inhibited the sorption of SMX onto magnetic biochar in all artificial environmental conditions studied. Copyright © 2018 Elsevier B.V. All rights reserved.
DNA surface hybridization regimes
Gong, Ping; Levicky, Rastislav
2008-01-01
Surface hybridization reactions, in which sequence-specific recognition occurs between immobilized and solution nucleic acids, are routinely carried out to quantify and interpret genomic information. Although hybridization is fairly well understood in bulk solution, the greater complexity of an interfacial environment presents new challenges to a fundamental understanding, and hence application, of these assays. At a surface, molecular interactions are amplified by the two-dimensional nature of the immobilized layer, which focuses the nucleic acid charge and concentration to levels not encountered in solution, and which impacts the hybridization behavior in unique ways. This study finds that, at low ionic strengths, an electrostatic balance between the concentration of immobilized oligonucleotide charge and solution ionic strength governs the onset of hybridization. As ionic strength increases, the importance of electrostatics diminishes and the hybridization behavior becomes more complex. Suppression of hybridization affinity constants relative to solution values, and their weakened dependence on the concentration of DNA counterions, indicate that the immobilized strands form complexes that compete with hybridization to analyte strands. Moreover, an unusual regime is observed in which the surface coverage of immobilized oligonucleotides does not significantly influence the hybridization behavior, despite physical closeness and hence compulsory interactions between sites. These results are interpreted and summarized in a diagram of hybridization regimes that maps specific behaviors to experimental ranges of ionic strength and probe coverage. PMID:18381819
Feng, Juanjuan; Sun, Min; Xu, Lili; Wang, Shuai; Liu, Xia; Jiang, Shengxiang
2012-12-14
Because of the occurrence of ion exchange between high-ionic-strength solution and anions of polymeric ionic liquids (PILs), PILs based solid-phase microextraction (SPME) fibers were rarely used in direct immersion mode to high-salt-added samples. In this work, a novel double-confined PIL sorbent was prepared by co-polymerization of cation and anion of 1-vinyl-3-octylimidzaolium p-styrenesulfonate (VOIm(+)SS(-)). The poly(VOIm(+)-SS(-)) was chemically bonded onto functionalized stainless steel wire via surface radical chain-transfer reaction. Stability of poly(VOIm(+)-SS(-)) in high-ionic-strength solution was investigated and compared with that of poly(1-vinyl-3-octylimidzaolium benzenesulfonate) (poly(VOIm(+)BS(-))) by elemental analysis of sulfur element, and results turned out that the poly(VOIm(+)-SS(-)) was more stable. Coupled to gas chromatography (GC), the poly(VOIm(+)-SS(-)) fiber was used to extract three sorts of compounds including anilines, phenols and phthalate esters in aqueous solution. The as-established method showed good linearity, low detection limits, and acceptable repeatability. The direct immersion SPME-GC method was applied to determine the model phthalate esters in bottled mineral water. The determination results were satisfactory. Copyright © 2012 Elsevier B.V. All rights reserved.
Soft and flexible PEDOT/PSS films for applications to soft actuators
NASA Astrophysics Data System (ADS)
Li, Yuechen; Tanigawa, Ryo; Okuzaki, Hidenori
2014-07-01
Stretchable and highly conductive PEDOT/PSS/Xyl films were prepared by casting an aqueous dispersion of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) as colloidal gel particles containing xylitol (Xyl) and subsequent heating. The electrical conductivity of the PEDOT/PSS/Xyl film containing 50 wt% of xylitol significantly increased from 115 S cm-1 to 407 S cm-1 by heating at 140 °C in air for 1 h. It was found that the xylitol had two functions as (i) a plasticizer to weaken hydrogen bonds between PSS of colloidal particles by replacing with that between xylitol and PSS and (ii) the additional capability of increasing the mobility of charge carriers between the colloidal particles. The transparent ionic liquid/polyurethane (IL/PU) gels were fabricated by dissolving thermoplastic polyurethane and ionic liquid of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. By increasing the IL content from 0 wt% to 70 wt%, both ionic conductivity and electric-double-layer capacitance under an electric field increased, while Young’s modulus, strength and elongation at break decreased. The IL/PU/PEDOT/PSS/Xyl composites were fabricated by sandwiching the IL/PU gel between two soft and flexible PEDOT/PSS/Xyl films. Upon application of 2 V, the IL/PU/PEDOT/PSS/Xyl composite (IL = 70%) showed quick and intensive bending toward anode, where the bending displacement at 0.1 Hz attained 2.9 mm, corresponding to the strain of 0.15%, and still worked at frequencies higher than 50 Hz.
The influence of ionic strength on DNA diffusion in gel networks
NASA Astrophysics Data System (ADS)
Fu, Yuanxi; Jee, Ah-Young; Kim, Hyeong-Ju; Granick, Steve
Cations are known to reduce the rigidity of the DNA molecules by screening the negative charge along the sugar phosphate backbone. This was established by optical tweezer pulling experiment of immobilized DNA strands. However, little is known regarding the influence of ions on the motion of DNA molecules as they thread through network meshes. We imaged in real time the Brownian diffusion of fluorescent labeled lambda-DNA in an agarose gel network in the presence of salt with monovalent or multivalent cations. Each movie was analyzed using home-written program to yield a trajectory of center of the mass and the accompanying history of the shape fluctuations. One preliminary finding is that ionic strength has a profound influence on the slope of the trace of mean square displacement (MSD) versus time. The influence of ionic strength on DNA diffusion in gel networks.
Dispersions of polymer ionomers: I.
Capek, Ignác
2004-12-31
The principal subject discussed in the current paper is the effect of ionic functional groups in polymers on the formation of nontraditional polymer materials, polymer blends or polymer dispersions. Ionomers are polymers that have a small amount of ionic groups distributed along a nonionic hydrocarbon chain. Specific interactions between components in a polymer blend can induce miscibility of two or more otherwise immiscible polymers. Such interactions include hydrogen bonding, ion-dipole interactions, acid-base interactions or transition metal complexation. Ion-containing polymers provide a means of modifying properties of polymer dispersions by controlling molecular structure through the utilization of ionic interactions. Ionomers having a relatively small number of ionic groups distributed usually along nonionic organic backbone chains can agglomerate into the following structures: (1) multiplets, consisting of a small number of tightly packed ion pairs; and (2) ionic clusters, larger aggregates than multiplets. Ionomers exhibit unique solid-state properties as a result of strong associations among ionic groups attached to the polymer chains. An important potential application of ionomers is in the area of thermoplastic elastomers, where the associations constitute thermally reversible cross-links. The ionic (anionic, cationic or polar) groups are spaced more or less randomly along the polymer chain. Because in this type of ionomer an anionic group falls along the interior of the chain, it trails two hydrocarbon chain segments, and these must be accommodated sterically within any domain structure into which the ionic group enters. The primary effects of ionic functionalization of a polymer are to increase the glass transition temperature, the melt viscosity and the characteristic relaxation times. The polymer microstructure is also affected, and it is generally agreed that in most ionomers, microphase-separated, ion-rich aggregates form as a result of strong ion-dipole attractions. As a consequence of this new phase, additional relaxation processes are often observed in the viscoelastic behavior of ionomers. Light functionalization of polymers can increase the glass transition temperature and gives rise to two new features in viscoelastic behavior: (1) a rubbery plateau above T(g) and (2) a second loss process at elevated temperatures. The rubbery plateau was due to the formation of a physical network. The major effect of the ionic aggregate was to increase the longer time relaxation processes. This in turn increases the melt viscosity and is responsible for the network-like behavior of ionomers above the glass transition temperature. Ionomers rich in polar groups can fulfill the criteria for the self-assembly formation. The reported phenomenon of surface micelle formation has been found to be very general for these materials.
Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions
Godfrin, P. Douglas; Hudson, Steven; Hong, Kunlun; ...
2015-11-24
Although there have been numerous investigations of the glass transition for colloidal dispersions with only a short-ranged attraction, less is understood for systems interacting with a long-ranged repulsion in addition to this attraction, which is ubiquitous in aqueous protein solutions at low ionic strength. Highly puri ed concentrated lysozyme solutions are used as a model system and investigated over a large range of protein concentrations at very low ionic strength. Newtonian liquid behavior is observed at all concentrations, even up to 480 mg/mL, where the zero shear viscosity increases by more than three orders of magnitude with increasing concentration. Remarkably,more » despite this macroscopic liquid-like behavior, the measurements of the dynamics in the short-time limit shows features typical of glassy colloidal systems. Investigation of the inter-protein structure indicates that the reduced short-time mobility of the protein is caused by localized regions of high density within a heterogeneous density distribution. This structural heterogeneity occurs on intermediate range length scale, driven by the competing potential features, and is distinct from commonly studied colloidal gel systems in which a heterogeneous density distribution tends to extend to the whole system. The presence of long-ranged repulsion also allows for more mobility over large length and long time scales resulting in the macroscopic relaxation of the structure. The experimental results provide evidence for the need to explicitly include intermediate range order in theories for the macroscopic properties of protein solutions interacting via competing potential features.« less
He, Shuran; Li, Yongtao; Weng, Liping; Wang, Jinjin; He, Jinxian; Liu, Yonglin; Zhang, Kun; Wu, Qihong; Zhang, Yulong; Zhang, Zhen
2018-10-01
In present study, the feasibility of applying a natural adsorbent with Fe 3+ modification (Fe 3+ -modified argillaceous limestone, FAL) on the competitive adsorption of heavy metals (i.e., Cd 2+ , Pb 2+ and Ni 2+ ) was evaluated. The current results revealed an efficient adsorption on Cd 2+ , Pb 2+ and Ni 2+ in mono-metal system. Further experiments demonstrated a high selectivity of Pb 2+ during the competitive adsorption of Cd 2+ , Pb 2+ and Ni 2+ . The adsorption selectivity of the metal ions followed the order of Pb ≫ Cd > Ni. In addition, both pH and ionic strength are important factors affecting the metal adsorptions. It is interestingly that various NOMs (i.e., humic acid (HA) and glycine (Gly)) exerted different effects on the adsorption behaviors, probably due to the different affinities for Pb 2+ , Cd 2+ and Ni 2+ and the redistribution of newly-formed metal-DOM complexes. X-ray photoelectron spectroscopy (XPS) analysis together with X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analysis revealed that the metal adsorptions were mainly regulated via the synergistic mechanisms of ion exchange by Na + , Ca 2+ , and Al 3+ , precipitation to form CdCO 3 and Pb 2 (OH) 2 (CO 3 ) 2 , as well as complexes of FAL-OPb and FAL-ONi by hydroxyl groups on the surface of FAL. The application of FAL would be a promising option in leading to an efficient heavy metal removal. Copyright © 2018 Elsevier B.V. All rights reserved.
Competing Hydrophobic and Screened-Coulomb Interactions in Hepatitis B Virus Capsid Assembly
Kegel, Willem K.; Schoot, Paul van der
2004-01-01
Recent experiments show that, in the range from ∼15 to 45°C, an increase in the temperature promotes the spontaneous assembly into capsids of the Escherichia coli-expressed coat proteins of hepatitis B virus. Within that temperature interval, an increase in ionic strength up to five times that of standard physiological conditions also acts to promote capsid assembly. To explain both observations we propose an interaction of mean force between the protein subunits that is the sum of an attractive hydrophobic interaction, driving the self-assembly, and a repulsive electrostatic interaction, opposing the self-assembly. We find that the binding strength of the capsid subunits increases with temperature virtually independently of the ionic strength, and that, at fixed temperature, the binding strength increases with the square root of ionic strength. Both predictions are in quantitative agreement with experiment. We point out the similarities of capsid assembly in general and the micellization of surfactants. Finally we make plausible that electrostatic repulsion between the native core subunits of a large class of virus suppresses the formation in vivo of empty virus capsids, that is, without the presence of the charge-neutralizing nucleic acid. PMID:15189887
NASA Astrophysics Data System (ADS)
Kamiya, Mamoru
1988-02-01
The fundamental features of the optical activity induced in dye-DNA intercalation complexes are studied by application of the trap potential model which is useful to evaluate the induced rotational strength without reference to detailed geometrical information about the intercalation complexes. The specific effect of the potential depth upon the induced optical activity is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving on a restricted helical segment just like an exciton trapped around the dye intercalation site. The parallel and perpendicular components of the induced rotational strength well reflect basic properties of the helicity effects about the longitudinal and tangential axes of the DNA helical cylinder. The trap potential model is applied to optimize the potential parameters so as to reproduce the ionic strength effect upon the optical activity induced to proflavine-DNA intercalation complexes. From relationships between the optimized potential parameters and ionic strengths, it is inferred that increase in the ionic strength contributes to the optical activity induced by the nearest-neighbour interaction between intercalated proflavine and DNA base pairs.
Lubach, Joseph W; Hau, Jonathan
2018-02-20
To investigate the nature of drug-excipient interactions between indomethacin (IMC) and methacrylate copolymer Eudragit® E (EE) in the amorphous state, and evaluate the effects on formulation and stability of these amorphous systems. Amorphous solid dispersions containing IMC and EE were spray dried with drug loadings from 20% to 90%. PXRD was used to confirm the amorphous nature of the dispersions, and DSC was used to measure glass transition temperatures (T g ). 13 C and 15 N solid-state NMR was utilized to investigate changes in local structure and protonation state, while 1 H T 1 and T 1ρ relaxation measurements were used to probe miscibility and phase behavior of the dispersions. T g values for IMC-EE solid dispersions showed significant positive deviations from predicted values in the drug loading range of 40-90%, indicating a relatively strong drug-excipient interaction. 15 N solid-state NMR exhibited a change in protonation state of the EE basic amine, with two distinct populations for the EE amine at -360.7 ppm (unprotonated) and -344.4 ppm (protonated). Additionally, 1 H relaxation measurements showed phase separation at high drug load, indicating an amorphous ionic complex and free IMC-rich phase. PXRD data showed all ASDs up to 90% drug load remained physically stable after 2 years. 15 N solid-state NMR experiments show a change in protonation state of EE, indicating that an ionic complex indeed forms between IMC and EE in amorphous solid dispersions. Phase behavior was determined to exhibit nanoscale phase separation at high drug load between the amorphous ionic complex and excess free IMC.
Estudio tribologico de nuevos nanofluidos ionicos y nanomateriales
NASA Astrophysics Data System (ADS)
Saurin Serrano, Noelia
The present work has focused on tribology and surface engineering of materials and interfaces. In the first place, four new halogen-free ionic liquids have been studied as boundary lubricants in reciprocating steel-sapphire and steel-epoxy resin contacts. Two different steel surface roughness have been compared, finding not only low friction, but also non-measurable wear, in the case of higher roughness. New ionic nanofluids have been obtained by dispersion of two commercial graphene grades in the ionic liquid 1-octyl-3-methylimidazlium tetrafluoroborate, finding the best friction reducing and antiwear performance in pin-on-disc sapphire-steel and steel-epoxy resin contacts. New aqueous lubricants have been developed by addition of new dispersions of graphene in a protic ionic liquid free from contaminant elements, as it is an ammonium cation citrate anion derivative. Controlled water evaporation leads to new self-lubricating surfaces. In the present work, the tribological performance of a fragile low wear-resistance materials such as epoxy resin has been improved by addition of variables concentrations of the ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate or carbon nanophases such as singlewalled carbon nanotubes or graphene. Blended with the ionic liquid or previously modified by it. The first epoxy resin materials with ability of self-healing the abrasion surface damage, due to the addition of ionic liquid, are described. New epoxy resin matrix nanocomposites, obtained by combination of carbon nanophases and ionic liquid, show better tribological behavior than the materials containing any of the additives separately. Finally, a new research line on the cure of the new epoxy matrix nanocomoposites as protective coatings on steel substrates has been initiated.
Predicting ion specific capacitances of supercapacitors due to quantum ionic interactions.
Parsons, Drew F
2014-08-01
A new theoretical framework is now available to help explain ion specific (Hofmeister) effects. All measurements in physical chemistry show ion specificity, inexplicable by classical electrostatic theories. These ignore ionic dispersion forces that change ionic adsorption. We explored ion specificity in supercapacitors using a modified Poisson-Boltzmann approach that includes ionic dispersion energies. We have applied ab initio quantum chemical methods to determine required ion sizes and ion polarisabilities. Our model represents graphite electrodes through their optical dielectric spectra. The electrolyte was 1.2 M Li salt in propylene carbonate, using the common battery anions, PF6(-), BF4(-) and ClO4(-). We also investigated the perhalate series with BrO4(-) and IO4(-). The capacitance C=dσ/dψ was calculated from the predicted electrode surface charge σ of each electrode with potential ψ between electrodes. Compared to the purely electrostatic calculation, the capacitance of a positively charged graphite electrode was enhanced by more than 15%, with PF6(-) showing >50% increase in capacitance. IO4(-) provided minimal enhancement. The enhancement is due to adsorption of both anions and cations, driven by ionic dispersion forces. The Hofmeister series in the single-electrode capacitance was PF6(-)>BF4(-)>ClO4(-)>BrO4(-)>IO4(-) . When the graphite electrode was negatively charged, the perhalates provided almost no enhancement of capacitance, while PF6(-) and BF4(-) decreased capacitance by about 15%. Due to the asymmetric impact of nonelectrostatic ion interactions, the capacitances of positive and negative electrodes are not equal. The capacitance of a supercapacitor should therefore be reported as two values rather than one, similar to the matrix of mutual capacitances used in multielectrode devices. Copyright © 2014 Elsevier Inc. All rights reserved.
Kamath, Ganesh; Baker, Gary A
2012-06-14
Free energies for graphene exfoliation from bilayer graphene using ionic liquids based on various cations paired with the bis(trifluoromethylsulfonyl)imide anion were determined from adaptive bias force-molecular dynamics (ABF-MD) simulation and fall in excellent qualitative agreement with experiment. This method has notable potential as an a priori screening tool for performance based rank order prediction of novel ionic liquids for the dispersion and exfoliation of various nanocarbons and inorganic graphene analogues.
Mechanical properties and XRD of Nafion modified by 2-hydroxyethylammonium ionic liquids
NASA Astrophysics Data System (ADS)
Garaev, V.; Pavlovica, S.; Reinholds, I.; Vaivars, G.
2013-12-01
In this work, the Nafion 112 membrane impregnated with 2-hydroxyethylammonium carboxylate ionic liquids have been investigated. The used ionic liquids were 2-hydroxyethylammonium formate [HEA]F, acetate [HEA]A and lactate [HEA]L. Prepared composite membranes Nafion/ionic liquid are characterized by mechanical testing, such as tensile test and creep test. It is found that ionic liquids decrease elastic modulus and creep compliance, but do not have significant effect on the tensile strength. Also, composite membranes were studied by wide angle X-ray diffraction. All ionic liquids shift the peak maximum to the lower angle. In this work, only biodegradable ionic liquids were used for composite preparation.
Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
Van Calcar, Pamela; Mackay, Richard; Sammells, Anthony F.
2002-01-01
The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.
NASA Astrophysics Data System (ADS)
Bano, Fouzia; Sluysmans, Damien; Wislez, Arnaud; Duwez, Anne-Sophie
2015-11-01
Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine.Addressing the effect of different environmental factors on the adsorption of DNA to solid supports is critical for the development of robust miniaturized devices for applications ranging from biosensors to next generation molecular technology. Most of the time, thiol-based chemistry is used to anchor DNA on gold - a substrate commonly used in nanotechnology - and little is known about the direct interaction between DNA and gold. So far there have been no systematic studies on the direct adsorption behavior of the deoxyribonucleotides (i.e., a nitrogenous base, a deoxyribose sugar, and a phosphate group) and on the factors that govern the DNA-gold bond strength. Here, using single molecule force spectroscopy, we investigated the interaction of the four individual nucleotides, adenine, guanine, cytosine, and thymine, with gold. Experiments were performed in three salinity conditions and two surface dwell times to reveal the factors that influence nucleotide-Au bond strength. Force data show that, at physiological ionic strength, adenine-Au interactions are stronger, asymmetrical and independent of surface dwell time as compared to cytosine-Au and guanine-Au interactions. We suggest that in these conditions only adenine is able to chemisorb on gold. A decrease of the ionic strength significantly increases the bond strength for all nucleotides. We show that moderate ionic strength along with longer surface dwell period suggest weak chemisorption also for cytosine and guanine. Electronic supplementary information (ESI) available: Details of the data analysis; Fig. S1-S5 histograms of rupture lengths; histograms for Au-adenine and Au-amine interactions; Force-extension curve for MCH-Au interactions; normalized force-extension curves; theoretical length of the DNA oligomers. See DOI: 10.1039/c5nr05695k
NASA Astrophysics Data System (ADS)
Degrève, Léo; Fuzo, Carlos A.; Caliri, Antonio
2012-12-01
The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.
The effect of high ionic strength on neptunium (V) adsorption to a halophilic bacterium
NASA Astrophysics Data System (ADS)
Ams, David A.; Swanson, Juliet S.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Richmann, Michael; Reed, Donald T.
2013-06-01
The mobility of neptunium (V) in subsurface high ionic strength aqueous systems may be strongly influenced by adsorption to the cell wall of the halophilic bacteria Chromohalobacter sp. This study is the first to evaluate the adsorption of neptunium (V) to the surface of a halophilic bacterium as a function of pH from approximately 2 to 10 and at ionic strengths of 2 and 4 M. This is also the first study to evaluate the effects of carbonate complexation with neptunium (V) on adsorption to whole bacterial cells under high pH conditions. A thermodynamically-based surface complexation model was adapted to describe experimental adsorption data under high ionic strength conditions where traditional corrections for aqueous ion activity are invalid. Adsorption of neptunium (V) was rapid and reversible under the conditions of the study. Adsorption was significant over the entire pH range evaluated for both ionic strength conditions and was shown to be dependent on the speciation of the sites on the bacterial surface and neptunium (V) in solution. Adsorption behavior was controlled by the relatively strong electrostatic attraction of the positively charged neptunyl ion to the negatively charged bacterial surface at pH below circum-neutral. At pH above circum-neutral, the adsorption behavior was controlled by the presence of negatively charged neptunium (V) carbonate complexes resulting in decreased adsorption, although adsorption was still significant due to the adsorption of negatively charged neptunyl-carbonate species. Adsorption in 4 M NaClO4 was enhanced relative to adsorption in 2 M NaClO4 over the majority of the pH range evaluated, likely due to the effect of increasing aqueous ion activity at high ionic strength. The protonation/deprotonation characteristics of the cell wall of Chromohalobacter sp. were evaluated by potentiometric titrations in 2 and 4 M NaClO4. Bacterial titration results indicated that Chromohalobacter sp. exhibits similar proton buffering capacity to previously studied non-halophilic bacteria. The titration data were used to determine the number of types, concentrations, and associated deprotonation constants of functional groups on the bacterial surface; the neptunium adsorption measurements were used to constrain binding constant values for the important neptunium (V)-bacterial surface species. Together, these results can be incorporated into geochemical speciation models to aid in the prediction of neptunium (V) mobility in complex bacteria-bearing geochemical systems.
Owusu-Agyeman, Isaac; Shen, Junjie; Schäfer, Andrea Iris
2018-04-15
Real water pH and ionic strength vary greatly, which influences the performance of membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Systematic variation of pH (3-12) and ionic strength (2-10g/L as total dissolved solids (TDS)) was undertaken with a real Tanzanian water to investigate how water quality affects retention mechanisms of fluoride (F) and natural organic matter (NOM). An autonomous solar powered NF/RO system driven by a solar array simulator was supplied with constant power from a generator. An open NF (NF270) and a brackish water RO (BW30) membrane were used. A surface water with a very high F (59.7mg/L) and NOM (110mgC/L) was used. Retention of F by NF270 was <20% at pH <6, increased to 40% at pH6, and 60-70% at pH7-12, indicating a dominance of charge repulsion while being ineffective in meeting the guideline of 1.5mg/L. Increase in ionic strength led to a significant decline in retention of F (from 70 to 50%) and electrical conductivity (from 60 to 10%) by NF270, presumably due to charge screening. In contrast, BW30 retained about 50% of F at pH3, >80% at pH4, and about 99% at pH >5, due to the smaller pore size and hence a more dominant size exclusion. In consequence, only little impact of ionic strength increase was observed for BW30. The concentration of NOM in permeates of both NF270 and BW30 were typically <2mg/L. This was not affected by pH or ionic strength due to the fact that the bulk of NOM was rejected by both membranes through size exclusion. The research is carried out in the context of providing safe drinking water for rural and remote communities where infrastructure is lacking, and water quality varies significantly. While other studies focus on energy fluctuations, this research emphasises on feed water quality that affects system performance and may alter due to a number of environmental factors. Copyright © 2017 Elsevier B.V. All rights reserved.
López-Nogueroles, Marina; Chisvert, Alberto; Salvador, Amparo
2014-05-15
A new analytical method based on simultaneous derivatization and dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS), for the determination of the allergenic compounds atranol and chloroatranol in perfumes, is presented. Derivatization of the target analytes by means of acetylation with anhydride acetic in carbonate buffer was carried out. Thereby volatility and detectability were increased for improved GC-MS sensitivity. In addition, extractability by DLLME was also enhanced due to a less polar character of the solutes. A liquid-liquid extraction was performed before DLLME to clean up the sample and to obtain an aqueous sample solution, free of the low polar matrix from the essential oils, as donor phase. Different parameters, such as the nature and volume of both the extraction and disperser solvents, the ionic strength of the aqueous donor phase or the effect of the derivatization reagent volume, were optimized. Under the selected conditions (injection of a mixture of 750μL of acetone as disperser solvent, 100μL of chloroform as extraction solvent and 100μL of anhydride acetic as derivatization reagent) the figures of merit of the proposed method were evaluated. Limits of detection in the low ngmL(-1) range were obtained. Matrix effect was observed in real perfume samples and thus, standard addition calibration is recommended. Copyright © 2014 Elsevier B.V. All rights reserved.
Fernández, Purificación; González, Cristina; Pena, M Teresa; Carro, Antonia M; Lorenzo, Rosa A
2013-03-12
A simple and efficient ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) method has been developed for the determination of seven benzodiazepines (alprazolam, bromazepam, clonazepam, diazepam, lorazepam, lormetazepam and tetrazepam) in human plasma samples. Chloroform and methanol were used as extractant and disperser solvents, respectively. The influence of several variables (e.g., type and volume of dispersant and extraction solvents, pH, ultrasonic time and ionic strength) was carefully evaluated and optimized, using an asymmetric screening design 3(2)4(2)//16. Analysis of extracts was performed by ultra-performance liquid chromatography coupled with photodiode array detection (UPLC-PDA). Under the optimum conditions, two reversed-phases, Shield RP18 and C18 columns were successfully tested, obtaining good linearity in a range of 0.01-5μgmL(-1), with correlation coefficients r>0.996. Quantification limits ranged between 4.3-13.2ngmL(-1) and 4.0-14.8ngmL(-1), were obtained for C18 and Shield RP18 columns, respectively. The optimized method exhibited a good precision level, with relative standard deviation values lower than 8%. The recoveries studied at two spiked levels, ranged from 71 to 102% for all considered compounds. The proposed method was successfully applied to the analysis of seven benzodiazepines in real human plasma samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Crea, Francesco; Cucinotta, Daniela; De Stefano, Concetta; Milea, Demetrio; Sammartano, Silvio; Vianelli, Giuseppina
2012-11-20
The total solubility of three penicillin derivatives was determined, in pure water and NaCl aqueous solutions at different salt concentrations (from ∼0.15 to 1.0 mol L(-1) for ampicillin and amoxicillin, and from ∼0.05 to 2.0 mol L(-1) for (+)6-aminopenicillanic acid), using the shake-flask method for generating the saturated solutions, followed by potentiometric analysis. The knowledge of the pH of solubilization and of the protonation constants determined in the same experimental conditions, allowed us to calculate, by means of the mass balance equations, the solubility of the neutral species at different ionic strength values, to model its dependence on the salt concentration and to determine the corresponding values at infinite dilution. The salting parameter and the activity coefficients of the neutral species were calculated by the Setschenow equation. The protonation constants of ampicillin and amoxicillin, determined at different temperatures (from T=288.15 to 318.15K), from potentiometric and spectrophotometric measurements, were used to calculate, by means of the Van't Hoff equation, the temperature coefficients at different ionic strength values and the corresponding protonation entropies. The protonation enthalpies of the (+)6-aminopenicillanic acid were determined by isoperibol calorimetric titrations at T=298.15K and up to I=2.0 mol L(-1). The dependence of the protonation constants on ionic strength was modeled by means of the Debye-Hückel and SIT (Specific ion Interaction Theory) approaches, and the specific interaction parameters of the ionic species were determined. The hydrolysis of the β-lactam ring was studied by spectrophotometric and H NMR investigations as a function of pH, ionic strength and time. Potentiometric measurements carried out on the hydrolyzed (+)6-aminopenicillanic acid allowed us to highlight that the opened and the closed β-lactam forms of the (+)6-aminopenicillanic acid have quite different acid-base properties. An analysis of literature solubility, protonation constants, enthalpies and activity coefficients is reported too. Copyright © 2012 Elsevier B.V. All rights reserved.
Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G
2012-08-01
A novel, automatic on-line sequential injection dispersive liquid-liquid microextraction (SI-DLLME) method, based on 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) ionic liquid as an extractant solvent was developed and demonstrated for trace thallium determination by flame atomic absorption spectrometry. The ionic liquid was on-line fully dispersed into the aqueous solution in a continuous flow format while the TlBr(4)(-) complex was easily migrated into the fine droplets of the extractant due to the huge contact area of them with the aqueous phase. Furthermore, the extractant was simply retained onto the surface of polyurethane foam packed into a microcolumn. No specific conditions like low temperature are required for extractant isolation. All analytical parameters of the proposed method were investigated and optimized. For 15 mL of sample solution, an enhancement factor of 290, a detection limit of 0.86 μg L(-1) and a precision (RSD) of 2.7% at 20.0 μg L(-1) Tl(I) concentration level, was obtained. The developed method was evaluated by analyzing certified reference materials while good recoveries from environmental and biological samples proved that present method was competitive in practical applications.
Ion Association, Solubilities, and Reduction Potentials in Aqueous Solution.
ERIC Educational Resources Information Center
Russo, Steven O.; Hanania, George I. H.
1989-01-01
Incorporates the combined effects of ionic strength and ion association to show how calculations involving ionic equilibria are carried out. Examines the variability of reduction potential data for two aqueous redox systems. Provides several examples. (MVL)
NASA Astrophysics Data System (ADS)
Ghasemi, Jahanbakhsh; Niazi, Ali; Kubista, Mikael
2005-11-01
The dimerization constants of rhodamine B and 6G have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-80 °C at different total concentrations of rhodamine B (5.89 × 10 -6 to 2.36 × 10 -4 M) and rhodamine 6G (2.34 × 10 -5 to 5.89 × 10 -4 M) and in different concentrations of LiCl, NaCl and KCl salts as supporting electrolytes. The monomer-dimer equilibrium of rhodamine B and 6G have been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed at different ionic strengths. The quantitative analysis of the data of undefined mixtures, was carried out by simultaneous resolution of the overlapping spectral bands in the whole set of absorption spectra. The dimerization constants are varied by changing the ionic strength and the degree of dimerization are decreased by increasing of the ionic strength of the medium. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants on the temperature (van't Hoff equation). From the thermodynamic results the TΔ S°-Δ H° plot was sketched. It shows a fairly good positive correlation which indicates the enthalpy-entropy compensation in the dimerization reactions (compensation effect).
Ghasemi, Jahanbakhsh; Niazi, Ali; Kubista, Mikael
2005-11-01
The dimerization constants of rhodamine B and 6G have been determined by studying the dependence of their absorption spectra on the temperature in the range 20-80 degrees C at different total concentrations of rhodamine B (5.89 x 10(-6) to 2.36 x 10(-4)M) and rhodamine 6G (2.34 x 10(-5) to 5.89 x 10(-4)M) and in different concentrations of LiCl, NaCl and KCl salts as supporting electrolytes. The monomer-dimer equilibrium of rhodamine B and 6G have been determined by chemometrics refinement of the absorption spectra obtained by thermometric titrations performed at different ionic strengths. The quantitative analysis of the data of undefined mixtures, was carried out by simultaneous resolution of the overlapping spectral bands in the whole set of absorption spectra. The dimerization constants are varied by changing the ionic strength and the degree of dimerization are decreased by increasing of the ionic strength of the medium. The enthalpy and entropy of the dimerization reactions were determined from the dependence of the equilibrium constants on the temperature (van't Hoff equation). From the thermodynamic results the TDeltaS degrees -DeltaH degrees plot was sketched. It shows a fairly good positive correlation which indicates the enthalpy-entropy compensation in the dimerization reactions (compensation effect).
Sorption-desorption of fipronil in some soils, as influenced by ionic strength, pH and temperature.
Singh, Anand; Srivastava, Anjana; Srivastava, Prakash C
2016-08-01
The sorption-desorpion of fipronil insecticide is influenced by soil properties and variables such as pH, ionic strength, temperature, etc. A better understanding of soil properties and these variables in sorption-desorption processes by quantification of fipronil using liquid chromatography may help to optimise suitable soil management to reduce contamination of surface and groundwaters. In the present investigation, the sorption-desorption of fipronil was studied in some soils at varying concentrations, ionic strengths, temperatures and pH values, and IR specta of fipronil sorbed onto soils were studied. The sorption of fipronil onto soils conformed to the Freundlich isotherm model. The sorption-desorption of fipronil varied with ionic strength in each of the soils. Sorption decreased but desorption increased with temperature. Sorption did not change with increasing pH, but for desorption there was no correlation. The cumulative desorption of fipronil from soil was significantly and inversely related to soil organic carbon content. IR spectra of sorbed fipronil showed the involvement of amino, nitrile, sulfone, chloro and fluoro groups and the pyrazole nucleus of the fipronil molecule. The sorption of fipronil onto soils appeared to be a physical process with the involvement of hydrogen bonding. An increase in soil organic carbon may help to reduce desorption of fipronil. High-temperature regimes are more conducive to the desorption. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Kisley, Lydia; Chen, Jixin; Mansur, Andrea P.; Dominguez-Medina, Sergio; Kulla, Eliona; Kang, Marci; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Dhamane, Sagar; Willson, Richard C.; Landes, Christy F.
2014-01-01
The retention and elution of proteins in ion-exchange chromatography is routinely controlled by adjusting the mobile phase salt concentration. It has repeatedly been observed, as judged from adsorption isotherms, that the apparent heterogeneity of adsorption is lower at more-eluting, higher ionic strength. Here, we present an investigation into the mechanism of this phenomenon using a single-molecule, super-resolution imaging technique called motion-blur Points Accumulation for Imaging in Nanoscale Topography (mbPAINT). We observed that the number of functional adsorption sites was smaller at high ionic strength and that these sites had reduced desorption kinetic heterogeneity, and thus narrower predicted elution profiles, for the anion-exchange adsorption of α-lactalbumin on an agarose-supported, clustered-charge ligand stationary phase. Explanations for the narrowing of the functional population such as inter-protein interactions and protein or support structural changes were investigated through kinetic analysis, circular dichroism spectroscopy, and microscopy of agarose microbeads, respectively. The results suggest the reduction of heterogeneity is due to both electrostatic screening between the protein and ligand and tuning the steric availability within the agarose support. Overall, we have shown that single molecule spectroscopy can aid in understanding the influence of ionic strength on the population of functional adsorbent sites participating in the ion-exchange chromatographic separation of proteins. PMID:24751557
[Optimized isolation and purification of non-typeable Haemophilus influenzae Haps protein].
Li, Wan-yi; Kuang, Yu; Li, Ming-yuan; Yang, Yuan; Jiang, Zhong-hua; Yao, Feng; Chen, Chang-chun
2007-12-01
To optimize the isolation and purification conditions for Hap(s) protein of non-typeable Haemophilus influenzae. Hap(s) protein was purified by ammonium sulfate precipitation, dialysis desalting and Hitrap weak cation exchange columns of CM Sepharose Fast Flow. The condition of the elution was optimized for pH and ionic strength, the absorbance at 280 nm of the elution samples were detected, and the targeted protein band in the collected samples was observed by SDS-PAGE electrophoresis. The Hitrap ion exchange column was eluted with buffer 1, which resulted in a baseline distribution of absorbance at 280 nm. Buffer 2 elution of the column resulted in the presence of peak absorbance with trails, which was identified to be constituted by some low molecular weight bands by subsequent SDS-PAGE. In serial column elution with buffer 3 with different ionic strength, a peak absorbance was observed with the ionic strength of 100 mmol/L NaCl, and SDS-PAGE confirmed that the peak was generated by the target protein. No obvious peaks or bands in SDS-PAGE occurred with the other ionic strengths. The pH of the buffer only affect the elution of the irrelevant proteins rather than the Hap(s) protein, and elution with the buffer containing 100 mmol/L NaCl can be optimal for eluting the Hap(s) protein.
Behera, Shishir Kumar; Oh, Seok-Young; Park, Hung-Suck
2010-07-15
Sorption of triclosan on three sorbents, viz., activated carbon, kaolinite and montmorillonite was studied as a function of pH, ionic strength and humic acid (HA) concentration through controlled batch experiments. Triclosan sorption was found to be higher in the acidic pH range, as varying pH showed significant influence on the surface charge of the sorbents and degree of ionization of the sorbate. Sorption capacity of the sorbents increased with an increase in the ionic strength of solution. At low pH (pH 3), the overall increase in triclosan sorption was 1.2, approximately 4 and 3.5 times, respectively for activated carbon, kaolinite and montmorillonite when ionic strength was increased from 1x10(-3) to 5x10(-1) M. Triclosan sorption onto activated carbon decreased from 31.4 to 10.6 mg g(-1) by increasing the HA concentration to 200 mg C L(-1). However, during sorption onto kaolinite and montmorillonite, the effect of HA was very complex probably due to (i) hydrophobicity (log K(ow)=4.76) of triclosan; and (ii) complexation of HA with triclosan. Though triclosan sorption onto activated carbon is higher, the potential of kaolinite and montmorillonite in controlling the transport of triclosan in subsurface environment can still be appreciable. 2010 Elsevier B.V. All rights reserved.
Donnan membrane technique (DMT) for anion measurement.
Vega, Flora Alonso; Weng, Liping; Temminghoff, Erwin J M; Van Riemsdijk, Willem H
2010-04-01
Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl(-), 1-2 days for NO(3)(-), 1-4 days for SO(4)(2-) and SeO(4)(2-), and 1-14 days for H(2)PO(4)(-) in a background of 2-200 mM KCl or K(2)SO(4). The strongest effect of ionic strength on equilibrium time is found for H(2)PO(4)(-), followed by SO(4)(2-) and SeO(4)(2-), and then by Cl(-) and NO(3)(-). The negatively charged organic particles of fulvic and humic acids do not pass the membrane. Two approaches for the measurement of different anion species of the same element, such as SeO(4)(2-) and HSeO(3)(-), using DMT are proposed and tested. These two approaches are based on transport kinetics or response to ionic strength difference. A transport model that was developed previously for cation DMT is applied in this work to analyze the rate-limiting step in the anion DMT. In the absence of mobile/labile complexes, transport tends to be controlled by diffusion in solution at a low ionic strength, whereas at a higher ionic strength, diffusion in the membrane starts to control the transport.
Wang, Huazi; Hu, Lu; Li, Wanzhen; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang
2016-11-04
A pretreatment method using in-syringe dispersive liquid-liquid microextraction based on the direct solidification of ionic liquids before high performance liquid chromatography analysis was developed for the determination of benzoylurea insecticides (BUs) in honey samples. The hydrophobic ionic liquid [N 4444 ][PF 6 ], formed in situ by the hydrophilic ionic liquid [N 4444 ]Cl and the ion exchange reagent KPF 6 , was used to extract the target analytes. The entire extraction procedure was performed in a syringe. The extractant was solidified at room temperature and collected using a nylon membrane filter. This technique did not require a dispersive solvent, vortex mixer, ultrasound bath, or centrifugation. The parameters affecting the extraction efficiency were investigated through an experimental design. Under the optimal conditions, the limits of detection for the four BUs varied from 0.21 to 0.42μgL -1 in solution (2.1-4.2μgkg -1 in honey). Good linearities were obtained in the range of 2-300μgL -1 , with coefficients of determination greater than 0.999. The recoveries of the four BUs ranged from 80.94% to 84.59%. The intra-day (n=3) and inter-day (n=3) relative standard deviations were less than 5.08%. Finally, the proposed method was applied to the determination of BUs in commercial honey samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.
Ionic liquid and nanoparticle hybrid systems: Emerging applications.
He, Zhiqi; Alexandridis, Paschalis
2017-06-01
Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.
Paumier, S; Pantet, A; Monnet, P
2008-09-01
Smectites are swelling clay materials with pronounced colloidal properties that are widely used in industry. These properties originate in the electrokinetic properties of the smectite layers and their linkage capacities. Thin layers may be dispersed or aggregated according to many parameters, such as concentration, particle size and morphology, exchangeable cation nature and chemical environment (pH, ionic strength). The literature usually provides general rules, like the sodium dispersion contains a lot of small units whereas the calcium dispersion contains a few large units. A volume of water molecules bound to the clay surface is considered as the immobile water phase that behaves like the solid phase obstructing the flow. The water immobilized around layers and trapped inside aggregates cannot participate to the flow. In this study, we evaluated the volume occupied by calcium and sodium units inside the dispersion containing the immobile water phase. First, the smectite was cautiously extracted from a raw bentonite and its physicochemical properties were determined. A large quantity of extracted and saturated smectite (Na-smectite and Ca-smectite) was obtained. Second, the unit size and a shape factor for each sample were evaluated using granulometry and scanning transmission electron microscopy on wet samples (Wet STEM) and some flow curves. Na-smectite dispersions contain 0.13 microm(2) surface units with a shape factor of 50. Ca-smectite dispersions contain 0.32 microm(2) surface units with a shape factor of 3.3. Finally, rheometry allowed us to evaluate the unit occupancy using an adaptation of the Krieger-Dougherty law. We used shape factors and evaluated the concentration from which the entire immobile volume was connected (6.4% for Na-smectite and 11.9% for Ca-smectite). This study explains the evolution of flow properties with increasing concentrations by the evolution of layer interactions at the microscopic scale for homoionic smectite particles in diluted dispersions.
Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong
2017-07-04
In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Sang-Tae; Gebbinck, Christa Klein; Mucci, Alfonso; Coplen, Tyler B.
2014-01-01
To investigate the oxygen isotope systematics in the aragonite-CO2-H2O-NaCl system, witherite (BaCO3) was precipitated quasi-instantaneously and quantitatively from Na-Cl-Ba-CO2 solutions of seawater-like ionic strength (I = 0.7 mol/kg) at two pH values (~7.9 and ~10.6) at 25 °C. The oxygen isotope composition of the witherite and the dissolved inorganic carbon speciation in the starting solution were used to estimate the oxygen isotope fractionations between HCO3¯ and H2O as well as between CO3 2 and H2O. Given the analytical error on the oxygen isotope composition of the witherite and uncertainties of the parent solution pH and speciation, oxygen isotope fractionation between NaHCO3° and HCO3¯, as well as between NaCO3¯ and CO3 2, is negligible under the experimental conditions investigated. The influence of dissolved NaCl concentration on the oxygen isotope fractionation in the aragonite-CO2-H2O-NaCl system also was investigated at 25 °C. Aragonite was precipitated from Na-Cl-Ca-Mg-(B)-CO2 solutions of seawater-like ionic strength using passive CO2 degassing or constant addition methods. Based upon our new experimental observations and published experimental data from lower ionic strength solutions by Kim et al. (2007b), the equilibrium aragonite-water oxygen isotope fractionation factor is independent of the ionic strength of the parent solution up to 0.7 mol/kg. Hence, our study also suggests that the aragonite precipitation mechanism is not affected by the presence of sodium and chloride ions in the parent solution over the range of concentrations investigated.
Binding Rate Constants Reveal Distinct Features of Disordered Protein Domains.
Dogan, Jakob; Jonasson, Josefin; Andersson, Eva; Jemth, Per
2015-08-04
Intrinsically disordered proteins (IDPs) are abundant in the proteome and involved in key cellular functions. However, experimental data about the binding kinetics of IDPs as a function of different environmental conditions are scarce. We have performed an extensive characterization of the ionic strength dependence of the interaction between the molten globular nuclear co-activator binding domain (NCBD) of CREB binding protein and five different protein ligands, including the intrinsically disordered activation domain of p160 transcriptional co-activators (SRC1, TIF2, ACTR), the p53 transactivation domain, and the folded pointed domain (PNT) of transcription factor ETS-2. Direct comparisons of the binding rate constants under identical conditions show that the association rate constant, kon, for interactions between NCBD and disordered protein domains is high at low salt concentrations (90-350 × 10(6) M(-1) s(-1) at 4 °C) but is reduced significantly (10-30-fold) with an increasing ionic strength and reaches a plateau around physiological ionic strength. In contrast, the kon for the interaction between NCBD and the folded PNT domain is only 7 × 10(6) M(-1) s(-1) (4 °C and low salt) and displays weak ionic strength dependence, which could reflect a distinctly different association that relies less on electrostatic interactions. Furthermore, the basal rate constant (in the absence of electrostatic interactions) is high for the NCBD interactions, exceeding those typically observed for folded proteins. One likely interpretation is that disordered proteins have a large number of possible collisions leading to a productive on-pathway encounter complex, while folded proteins are more restricted in terms of orientation. Our results highlight the importance of electrostatic interactions in binding involving IDPs and emphasize the significance of including ionic strength as a factor in studies that compare the binding properties of IDPs to those of ordered proteins.
Human fibrinogen adsorption on positively charged latex particles.
Zeliszewska, Paulina; Bratek-Skicki, Anna; Adamczyk, Zbigniew; Cieśla, Michał
2014-09-23
Fibrinogen (Fb) adsorption on positively charged latex particles (average diameter of 800 nm) was studied using the microelectrophoretic and the concentration depletion methods based on AFM imaging. Monolayers on latex were adsorbed from diluted bulk solutions at pH 7.4 and an ionic strength in the range of 10(-3) to 0.15 M where fibrinogen molecules exhibited an average negative charge. The electrophoretic mobility of the latex after controlled fibrinogen adsorption was systematically measured. A monotonic decrease in the electrophoretic mobility of fibrinogen-covered latex was observed for all ionic strengths. The results of these experiments were interpreted according to the three-dimensional electrokinetic model. It was also determined using the concentration depletion method that fibrinogen adsorption was irreversible and the maximum coverage was equal to 0.6 mg m(-2) for ionic strength 10(-3) M and 1.3 mg m(-2) for ionic strength 0.15 M. The increase of the maximum coverage was confirmed by theoretical modeling based on the random sequential adsorption approach. Paradoxically, the maximum coverage of fibrinogen on positively charged latex particles was more than two times lower than the maximum coverage obtained for negative latex particles (3.2 mg m(-2)) at pH 7.4 and ionic strength of 0.15 M. This was interpreted as a result of the side-on adsorption of fibrinogen molecules with their negatively charged core attached to the positively charged latex surface. The stability and acid base properties of fibrinogen monolayers on latex were also determined in pH cycling experiments where it was observed that there were no irreversible conformational changes in the fibrinogen monolayers. Additionally, the zeta potential of monolayers was more positive than the zeta potential of fibrinogen in the bulk, which proves a heterogeneous charge distribution. These experimental data reveal a new, side-on adsorption mechanism of fibrinogen on positively charged surfaces and confirmed the decisive role of electrostatic interactions in this process.
Schulz, Volker; Guenther, Margarita; Gerlach, Gerald; Magda, Jules J.; Tathireddy, Prashant; Rieth, Loren; Solzbacher, Florian
2010-01-01
Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate. Within this work two different sensor designs have been studied. The biocompatible poly(hydroxypropyl methacrylate-N,N-dimethylaminoethyl methacrylate-tetra-ethyleneglycol dimethacrylate) (HPMA-DMA-TEGDMA) was used as an environmental sensitive element in piezoresistive biochemical sensors. This polyelectrolytic hydrogel shows a very sharp volume phase transition at pH values below about 7.4 which is in the range of the physiological pH. The sensor's characteristic response was measured in-vitro for changes in pH of PBS buffer solution at fixed ionic strength. The experimental data was applied to the Hill equation and the sensor sensitivity as a function of pH was calculated out of it. The time-dependent sensor response was measured for small changes in pH, whereas different time constants have been observed. The same sensor principal was used for sensing of ionic strength. The time-dependent electrical sensor signal of both sensors was measured for variations in ionic strength at fixed pH value using PBS buffer solution. Both sensor types showed an asymmetric swelling behavior between the swelling and the deswelling cycle as well as different time constants, which was attributed to the different nature of mechanical hydrogel-confinement inside the sensor. PMID:21152365
Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail; Jean, Julie
2015-11-01
Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Effect of salts on the kinetic parameters and thermal stability of bovine brain acid phosphatase.
Bittencourt, H M; Chaimovich, H
1976-08-01
Bovine brain acid phosphatase is inhibited, at any pH, by an increase in ionic strength. The rate decrease is associated at pH 5, with a marked decrease in Km and, at pH 8, with a noticeable decrease in Vm. The rate of thermal inactivation of the enzyme is unaffected by increasing ionic strength up to 300 mM. These results are discussed in terms of interactions at the active site of the enzyme.
Ionic Liquid Epoxy Resin Monomers
NASA Technical Reports Server (NTRS)
Paley, Mark S. (Inventor)
2013-01-01
Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.
Development of alginate microspheres containing thyme essential oil using ionic gelation.
Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy
2016-08-01
Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determination of tramadol by dispersive liquid-liquid microextraction combined with GC-MS.
Habibollahi, Saeed; Tavakkoli, Nahid; Nasirian, Vahid; Khani, Hossein
2015-01-01
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) has been developed for preconcentration and determination of tramadol, ((±)-cis-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol-HCl), in aqueous and biological samples (urine, blood). DLLME is a simple, rapid and efficient method for determination of drugs in aqueous samples. Efficient factors on the DLLME process has defined and optimized for extraction of tramadol including type of extraction and disperser solvents and their volumes, pH of donor phase, time of extraction and ionic strength of donor phase. Based on the results of this study, under optimal conditions and by using 2-nitro phenol as internal standard, tramadol was determined by GC-MS, and the figures of merit of this work were evaluated. The enrichment factor, relative recovery and limit of detection were obtained 420, 99.2% and 0.08 µg L(-1), respectively. The linear range was between 0.26 and 220.00 µg L(-1) (R(2) = 0.9970). The relative standard deviation for 50.00 µg L(-1) of tramadol in aqueous samples by using 2-nitro phenol as IS was 3.6% (n = 7). Finally, the performance of DLLME was evaluated for analysis of tramadol in urine and blood. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak
2015-05-15
Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.
Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan
2015-03-01
A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. Copyright © 2014 John Wiley & Sons, Ltd.
Rocha, Bruno Alves; da Costa, Bruno Ruiz Brandão; de Albuquerque, Nayara Cristina Perez; de Oliveira, Anderson Rodrigo Moraes; Souza, Juliana Maria Oliveira; Al-Tameemi, Maha; Campiglia, Andres Dobal; Barbosa, Fernando
2016-07-01
In this study, a novel method combining dispersive liquid-liquid microextraction (DLLME) and fast liquid chromatography coupled to mass spectrometry (LC-MS/MS) was developed and validated for the extraction and determination of bisphenol A (BPA) and six bisphenol analogues, namely bisphenol S (BPS), bisphenol F (BPF), bisphenol P (BPP), bisphenol Z (BPZ), bisphenol AP (BPAP) and bisphenol AF (BPAF) in human urine samples. Type and volume of extraction and disperser solvents, pH sample, ionic strength, and agitation were evaluated. The matrix-matched calibration curves of all analytes were linear with correlation coefficients higher than 0.99 in the range level of 0.5-20.0ngmL(-1). The relative standard deviation (RSD), precision, at three concentrations (1.0, 8.0 and 15.0ngmL(-1)) was lower than 15% with accuracy ranging from 90 to 112%. The biomonitoring capability of the new method was confirmed with the analysis of 50 human urine samples randomly collected from Brazilians. BPA was detected in 92% of the analyzed samples at concentrations ranging
Gao, Jiajia; Wang, Hui; Qu, Jingang; Wang, Huili; Wang, Xuedong
2017-01-15
In traditional ionic liquids (ILs)-based microextraction, ILs are often used as extraction and dispersive solvents; however, their functional effects are not fully utilized. Herein, we developed a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]) with strong acidity. It was used as a mixed dispersive solvent with conventional [C2MIM][BF4] in "functionalized ionic liquid-based non-organic solvent microextraction (FIL-NOSM)" for determination of tetracycline antibiotics (TCs) in milk and eggs. Utilization of [C4MIM][NPA] in FIL-NOSM method increased extraction recoveries (ERs) of TCs by more than 20% and eliminated the pH adjustment step because of its strong acidity. Under optimized conditions based on central composite design, the ERs of four TCs were 94.1-102.1%, and the limitsofdetection were 0.08-1.12μgkg(-1) in milk and egg samples. This proposed method provides high extraction efficiency, less pretreatment time and requires non-organic solvents for determination of trace TC concentrations in complex animal-based food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Mendil, Durali; Soylak, Mustafa; Machado, Luana O R; Dos Santos, Walter N L; Ferreira, Sergio L C
2018-04-15
This paper proposes a simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure using pyrocatechol violet (PV) as complexing reagent and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide [C 6 MIM][Tf 2 N] as ionic liquid for the detection of tin employing electrothermal atomic absorption spectrometry (ETAAS). The optimization step was performed using a two-level full factorial design involving the following factors: pH of the working media, amount reagents, ionic liquid volume and extraction time and the chemometric response was tin recovery. The procedure allowed the determination of tin with limits of detection and quantification of 3.4 and 11.3 ng L -1 , respectively. The relative standard deviation was 4.5% for a tin solution of 0.50 µg L -1 . The validation method was confirmed by analysis of rice flour certified reference material. The method was applied for the quantification of tin in several food samples. The concentration range found varied from 0.10 to 1.50 µg g -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Flores-Chaparro, Carlos E; Chazaro Ruiz, Luis Felipe; Alfaro de la Torre, Ma Catalina; Huerta-Diaz, Miguel Angel; Rangel-Mendez, Jose Rene
2017-05-15
Release of low-molecular aromatic hydrocarbons (HC) into natural waters brings severe consequences to our environment. Unfortunately very limited information is available regarding the treatment of these pollutants. This work evaluated the use of brown, green and red macroalgae biomass as biosorbents of benzene and toluene, two of the most soluble HC. Raw seaweed biomasses were completely characterized, then evaluated under different temperatures and ionic strengths to assess their potential as biosorbents and to elucidate the biosorption mechanisms involved. Brown macroalgae registered the highest removal capacities for benzene and toluene (112 and 28 mg·g -1 , respectively), and these were not affected at ionic strength < 0.6 M. Langmuir and Sips isotherm equations well described biosorption data, and the pseudo-second order model provided the best fit to the kinetics rate. Hydrocarbons are adsorbed onto the diverse chemical components of the cell wall by London forces and hydrophobic interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chu, Chia-Ho; Sarangadharan, Indu; Regmi, Abiral; Chen, Yen-Wen; Hsu, Chen-Pin; Chang, Wen-Hsin; Lee, Geng-Yen; Chyi, Jen-Inn; Chen, Chih-Chen; Shiesh, Shu-Chu; Lee, Gwo-Bin; Wang, Yu-Lin
2017-07-12
In this study, a new type of field-effect transistor (FET)-based biosensor is demonstrated to be able to overcome the problem of severe charge-screening effect caused by high ionic strength in solution and detect proteins in physiological environment. Antibody or aptamer-immobilized AlGaN/GaN high electron mobility transistors (HEMTs) are used to directly detect proteins, including HIV-1 RT, CEA, NT-proBNP and CRP, in 1X PBS (with 1%BSA) or human sera. The samples do not need any dilution or washing process to reduce the ionic strength. The sensor shows high sensitivity and the detection takes only 5 minutes. The designs of the sensor, the methodology of the measurement, and the working mechanism of the sensor are discussed and investigated. A theoretical model is proposed based on the finding of the experiments. This sensor is promising for point-of-care, home healthcare, and mobile diagnostic device.
Gebennikov, Dmytro; Mittler, Silvia
2013-02-26
The effect of electrostatic interaction between carboxylate- and amino-functionalized polystyrene particles and a charged waveguide surface on the propulsion speed in optical tweezers is considered to be a function of the pH and ionic strength. It was shown that with the variation of the pH of the aqueous solution in which the particles were immersed, a systematic change in propulsion speed with a maximum speed could be achieved. The appearance of a maximum speed was ascribed to changes in the particle-waveguide separation as a result of the combination of two forces: Coulomb repulsion/attraction and induced dipole forces. The highest maximum speed at low ionic strength was around 12 μm/s. Changes in the ionic strength of the solution influenced the gradient of the dielectric constant near the involved surfaces and also led to a slightly reduced hydrodynamic radius of the particles. The combination of these effects subsequently increased the maximum speed to about 23 μm/s.
Santacruz, Stalin
2014-06-15
The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.
Extension of nanoconfined DNA: Quantitative comparison between experiment and theory
NASA Astrophysics Data System (ADS)
Iarko, V.; Werner, E.; Nyberg, L. K.; Müller, V.; Fritzsche, J.; Ambjörnsson, T.; Beech, J. P.; Tegenfeldt, J. O.; Mehlig, K.; Westerlund, F.; Mehlig, B.
2015-12-01
The extension of DNA confined to nanochannels has been studied intensively and in detail. However, quantitative comparisons between experiments and model calculations are difficult because most theoretical predictions involve undetermined prefactors, and because the model parameters (contour length, Kuhn length, effective width) are difficult to compute reliably, leading to substantial uncertainties. Here we use a recent asymptotically exact theory for the DNA extension in the "extended de Gennes regime" that allows us to compare experimental results with theory. For this purpose, we performed experiments measuring the mean DNA extension and its standard deviation while varying the channel geometry, dye intercalation ratio, and ionic strength of the buffer. The experimental results agree very well with theory at high ionic strengths, indicating that the model parameters are reliable. At low ionic strengths, the agreement is less good. We discuss possible reasons. In principle, our approach allows us to measure the Kuhn length and the effective width of a single DNA molecule and more generally of semiflexible polymers in solution.
Norkus, E; Vaskelis, A; Zakaite, I
1996-03-01
D.c. polarographic data show that the complex formation of copper ions with EDTA depends markedly on the ionic strength of the solution at pH 8-10. This is primarily associated with the dependence of the fourth deprotonization constant of EDTA on the solution ionic strength: when it increases from 0.4 to 3.4, the pK(a4) value decreases from 9.5 to 8.2. According to polarographic and spectrophotometric data the degree of Cu(II) complexation increases at pH>10 due to transformation of the complex CuY(2-) to the more stable CuY(OH)(3-) (Y(4-), a fully deprotonized anion of EDTA), but it decreases with increase in alkalinity in a highly alkaline solution (pH>13.5). The latter result could be explained by the decrease in the EDTA anion activity. The calculated values of the activity coefficient are lower than 0.05 at pH>14.
Fiorentini, Emiliano F; Escudero, Leticia B; Wuilloud, Rodolfo G
2018-04-19
A simple, highly efficient, batch, and centrifuge-less dispersive liquid-liquid microextraction method based on a magnetic ionic liquid (MIL-DLLME) and electrothermal atomic absorption spectrometry (ETAAS) detection was developed for ultra-trace Cd determination in honey. Initially, Cd(II) was chelated with ammonium diethyldithiophosphate (DDTP) at pH 0.5 followed by its extraction with the MIL trihexyl(tetradecyl)phosphonium tetrachloroferrate(III) ([P 6,6,6,14 ]FeCl 4 ) and acetonitrile as dispersant. The MIL phase containing the analyte was separated from the aqueous phase using only a magnet. A back-extraction procedure was applied to recover Cd from the MIL phase using diluted HNO 3 and this solution was directly injected into the graphite furnace of ETAAS instrument. An extraction efficiency of 93% and a sensitivity enhancement factor of 112 were obtained under optimal experimental conditions. The detection limit (LOD) was 0.4 ng L -1 Cd, while the relative standard deviation (RSD) was 3.8% (at 2 μg L -1 Cd and n = 10), calculated from the peak height of absorbance signals. This work reports the first application of the MIL [P 6,6,6,14 ]FeCl 4 along with the DLLME technique for the successful determination of Cd at trace levels in different honey samples. Graphical abstract Preconcentration of ultratraces of Cd in honey using a magnetic ionic liquid and dispersive liquid-liquid microextraction technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor
We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al{sub 2}O{sub 3} nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al{sub 2}O{sub 3} nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seenmore » to be determined by an interplay between the nanoparticle-polymer, nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.« less
Ionic liquid as an electrolyte additive for high performance lead-acid batteries
NASA Astrophysics Data System (ADS)
Deyab, M. A.
2018-06-01
The performance of lead-acid battery is improved in this work by inhibiting the corrosion of negative battery electrode (lead) and hydrogen gas evolution using ionic liquid (1-ethyl-3-methylimidazolium diethyl phosphate). The results display that the addition of ionic liquid to battery electrolyte (5.0 M H2SO4 solution) suppresses the hydrogen gas evolution to very low rate 0.049 ml min-1 cm-2 at 80 ppm. Electrochemical studies show that the adsorption of ionic liquid molecules on the lead electrode surface leads to the increase in the charge transfer resistance and the decrease in the double layer capacitance. I also notice a noteworthy improvement of battery capacity from 45 mAh g-1 to 83 mAh g-1 in the presence of ionic liquid compound. Scanning electron microscopy and energy dispersive X-ray analysis confirm the adsorption of ionic liquid molecules on the battery electrode surface.
NASA Astrophysics Data System (ADS)
Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander
2017-01-01
The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies.
Roeters, Steven J.; Iyer, Aditya; Pletikapić, Galja; Kogan, Vladimir; Subramaniam, Vinod; Woutersen, Sander
2017-01-01
The aggregation of the intrinsically disordered protein alpha-synuclein (αS) into amyloid fibrils is thought to play a central role in the pathology of Parkinson’s disease. Using a combination of techniques (AFM, UV-CD, XRD, and amide-I 1D- and 2D-IR spectroscopy) we show that the structure of αS fibrils varies as a function of ionic strength: fibrils aggregated in low ionic-strength buffers ([NaCl] ≤ 25 mM) have a significantly different structure than fibrils grown in higher ionic-strength buffers. The observations for fibrils aggregated in low-salt buffers are consistent with an extended conformation of αS molecules, forming hydrogen-bonded intermolecular β-sheets that are loosely packed in a parallel fashion. For fibrils aggregated in high-salt buffers (including those prepared in buffers with a physiological salt concentration) the measurements are consistent with αS molecules in a more tightly-packed, antiparallel intramolecular conformation, and suggest a structure characterized by two twisting stacks of approximately five hydrogen-bonded intermolecular β-sheets each. We find evidence that the high-frequency peak in the amide-I spectrum of αS fibrils involves a normal mode that differs fundamentally from the canonical high-frequency antiparallel β-sheet mode. The high sensitivity of the fibril structure to the ionic strength might form the basis of differences in αS-related pathologies. PMID:28112214
Effect of dipolar moments in domain sizes of lipid bilayers and monolayers
NASA Astrophysics Data System (ADS)
Travesset, A.
2006-08-01
Lipid domains are found in systems such as multicomponent bilayer membranes and single component monolayers at the air-water interface. It was shown by Keller et al. [J. Phys. Chem. 91, 6417 (1987)] that in monolayers, the size of the domains results from balancing the line tension, which favors the formation of a large single circular domain, against the electrostatic cost of assembling the dipolar moments of the lipids. In this paper, we present an exact analytical expression for the electric potential, ion distribution, and electrostatic free energy for different problems consisting of three different slabs with different dielectric constants and Debye lengths, with a circular homogeneous dipolar density in the middle slab. From these solutions, we extend the calculation of domain sizes for monolayers to include the effects of finite ionic strength, dielectric discontinuities (or image charges), and the polarizability of the dipoles and further generalize the calculations to account for domains in lipid bilayers. In monolayers, the size of the domains is dependent on the different dielectric constants but independent of ionic strength. In asymmetric bilayers, where the inner and outer leaflets have different dipolar densities, domains show a strong size dependence with ionic strength, with molecular-sized domains that grow to macroscopic phase separation with increasing ionic strength. We discuss the implications of the results for experiments and briefly consider their relation to other two dimensional systems such as Wigner crystals or heteroepitaxial growth.
Feng, Ye; Zhang, Jinming; He, Jiasong; Zhang, Jun
2016-08-20
The solubility of eight types of polyhedral oligomeric silsesquioxane (POSS) derivatives in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) and the dispersion of POSS in cellulose matrix were examined. Only a special POSS containing both aminophenyl and nitrophenyl groups (POSS-AN, NH2:NO2=2:6) was selected to prepare nanocomposites, because of its good solubility in AmimCl and high stability during the preparation process. POSS-AN nanoparticles were uniformly dispersed in a cellulose matrix with a size of 30-40nm, and so the resultant cellulose/POSS-AN nanocomposite films were transparent. The mechanical properties of the films achieved a maximum tensile strength of 190MPa after addition of 2wt% POSS-AN. Interestingly, all of the cellulose/POSS-AN films exhibited high UV-absorbing capability. For the 15wt% cellulose/POSS-AN film, the transmittance of UVA (315-400nm) and UVB (280-315nm) was only 9.1% and nearly 0, respectively. The UV aging and shielding experiments showed that the transparent cellulose/POSS-AN nanocomposite films possessed anti-UV aging and UV shielding properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
King, Stephen M; Jarvie, Helen P
2012-07-03
The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.
Study on epoxy resin modified by polyether ionic liquid
NASA Astrophysics Data System (ADS)
Jin, X. C.; Guo, L. Y.; Deng, L. L.; Wu, H.
2017-06-01
Chloride 1-carboxyl polyether-3-methyl imidazole ionic liquid (PIIL) was synthesized. Then blended with epoxy resin(EP) to prepare the composite materials of PIIL/EP, which cured with aniline curing agent. The structure and curing performance of PIIL/EP were determined by FT-IR and DSC. The effects of the content of PIIL on strength of EP were studied. The results show that the PIIL was the target product. The strength was improved significantly with increase of the PIIL content. The obvious rubber elasticity of PIIL/EP after cured was showed when the content of PIIL accounts for 40% and the impact strength was up to 15.95kJ/m2.
Fate and Transport of Molybdenum Disulfide Nanomaterials in Sand Columns
Lanphere, Jacob D.; Luth, Corey J.; Guiney, Linda M.; Mansukhani, Nikhita D.; Hersam, Mark C.; Walker, Sharon L.
2015-01-01
Abstract Research and development of two-dimensional transition metal dichalcogenides (TMDC) (e.g., molybdenum disulfide [MoS2]) in electronic, optical, and catalytic applications has been growing rapidly. However, there is little known regarding the behavior of these particles once released into aquatic environments. Therefore, an in-depth study regarding the fate and transport of two popular types of MoS2 nanomaterials, lithiated (MoS2-Li) and Pluronic PF-87 dispersed (MoS2-PL), was conducted in saturated porous media (quartz sand) to identify which form would be least mobile in aquatic environments. The electrokinetic properties and hydrodynamic diameters of MoS2 as a function of ionic strength and pH were determined using a zeta potential analyzer and dynamic light scattering techniques. Results suggest that the stability is significantly decreased beginning at 10 and 31.6 mM KCl, for MoS2-PL and MoS2-Li, respectively. Transport study results from breakthrough curves, column dissections, and release experiments suggest that MoS2-PL exhibits a greater affinity to be irreversibly bound to quartz surfaces as compared with the MoS2-Li at a similar ionic strength. Derjaguin–Landau–Verwey–Overbeek theory was used to help explain the unique interactions between the MoS2-PL and MoS2-Li surfaces between particles and with the quartz collectors. Overall, the results suggest that the fate and transport of MoS2 is dependent on the type of MoS2 that enters the environment, where MoS2-PL will be least mobile and more likely be deposited in porous media from pluronic–quartz interactions, whereas MoS2-Li will travel greater distances and have a greater tendency to be remobilized in sand columns. PMID:25741176
Heteroaggregation of lipid droplets coated with sodium caseinate and lactoferrin.
de Figueiredo Furtado, Guilherme; Michelon, Mariano; de Oliveira, Davi Rocha Bernardes; da Cunha, Rosiane Lopes
2016-11-01
Formation and characterization of droplet heteroaggregates were investigated by mixing two emulsions previously stabilized by proteins oppositely charged. Emulsions were composed of 5vol.% of sunflower oil and 95vol.% of sodium caseinate or lactoferrin aqueous dispersions. They were produced using ultrasound with fixed power (300W) and sonication time (6min). Different volume ratios (0-100%) of sodium caseinate-stabilized emulsion (droplet diameter around 1.75μm) to lactoferrin-stabilized emulsion (droplet diameter around 1.55μm) were mixed under conditions that both proteins showed opposite charges (pH7). Influence of ionic strength (0-400mM NaCl) on the heteroaggregates stability was also evaluated. Creaming stability, zeta potential, microstructure, mean particle diameter and rheological properties of the heteroaggregates were measured. These properties depended on the volume ratio (0-100%) of sodium caseinate to lactoferrin-stabilized emulsion (C:L) and the ionic strength. In the absence of salt, different zeta potential values were obtained, rheological properties (viscosity and elastic moduli) were improved and the largest heteroaggregates were formed at higher content of lactoferrin-stabilized emulsion (60-80%). The system containing 40 and 60vol.% of sodium caseinate and lactoferrin stabilized emulsion, respectively, presented good stability against phase separation besides showing enhanced rheological and size properties due to extensive droplets aggregation. Phase separation was observed only in the absence of sodium caseinate, demonstrating the higher susceptibility of lactoferrin to NaCl. The heteroaggregates produced may be useful functional agents for texture modification and controlled release since different rheological properties and sizes can be achieved depending on protein concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Jian-Nan; Chen, Juan; Shi, Yan-Ping
2014-07-01
A new mode of ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) is developed. In this work, [C6MIm][PF6] was chosen as the extraction solvent, and two kinds of hydrophilic ionic liquids, [EMIm][BF4] and [BSO3HMIm][OTf], functioned as the dispersive solvent. So in the whole extraction procedure, no organic solvent was used. With the aid of SO3H group, the acidic compound was extracted from the sample solution without pH adjustment. Two phenolic compounds, namely, 2-naphthol and 4-nitrophenol were chosen as the target analytes. Important parameters affecting the extraction efficiency, such as the type of hydrophilic ionic liquids, the volume ratio of [EMIm][BF4] to [BSO3HMIm][OTf], type and volume of extraction solvent, pH value of sample solution, sonication time, extraction time and centrifugation time were investigated and optimized. Under the optimized extraction conditions, the method exhibited good sensitivity with the limits of detection (LODs) at 5.5 μg L(-1)and 10.0 μg L(-1) for 4-nitrophenol and 2-naphthol, respectively. Good linearity over the concentration ranges of 24-384 μg L(-1) for 4-nitrophenol and 28-336 μg L(-1) for 2-naphthol was obtained with correlation coefficients of 0.9998 and 0.9961, respectively. The proposed method can directly extract acidic compound from environmental sample or even more complex sample matrix without any pH adjustment procedure. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Xiaojun; Wu, Long; Cao, Jiaqi; Hong, Xincheng; Ye, Rui; Chen, Weiji; Yuan, Ting
2016-07-01
A novel, simple and rapid method based on magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction (MEA-IL-DLLME) followed by graphite furnace atomic absorption spectrometry (GFAAS) determination was established for the speciation of selenium in various food and beverage samples. In the procedure, a special magnetic effervescent tablet containing CO2 sources (sodium carbonate and sodium dihydrogenphosphate), ionic liquids and Fe3O4 magnetic nanoparticles (MNPs) was used to combine extractant dispersion and magnetic recovery procedures into a single step. The parameters influencing the microextraction efficiency, such as pH of the sample solution, volume of ionic liquid, amount of MNPs, concentration of the chelating agent, salt effect and matrix effect were investigated and optimised. Under the optimised conditions, the limits of detection (LODs) for Se(IV) were 0.021 μg l(-)(1) and the linear dynamic range was 0.05-5.0 μg l(-)(1). The relative standard deviation for seven replicate measurements of 1.0 μg l(-)(1) of Se(IV) was 2.9%. The accuracy of the developed method was evaluated by analysis of the standard reference materials (GBW10016 tea, GBW10017 milk powder, GBW10043 Liaoning rice, GBW10046 Henan wheat, GBW10048 celery). The proposed method was successfully applied to food and beverage samples including black tea, milk powder, mushroom, soybean, bamboo shoots, energy drink, bottled water, carbonated drink and mineral water for the speciation of Se(IV) and Se(VI) with satisfactory relative recoveries (92.0-108.1%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristiawan, B., E-mail: budi-k@uns.ac.id; Wijayanta, A. T., E-mail: agungtw@uns.ac.id; Juwana, W. E., E-mail: wibawa.ej@gmail.com
2016-03-29
This study presents a characterization of nanofluids as electroactive materials with dispersing metal oxide nanoparticles into aqueous polyelectrolytes of 20 wt.%, in particular, their electrochemical activites. The fundamental characterizations including X-ray diffraction, transmission electron microscopy, and Fourier ttransform iinfrared measurement were performed to ensure metal oxide component used in this work. Alumina (Al{sub 2}O{sub 3}) and copper oxide (CuO) nanoparticles of 0.5 vol.% in volume fraction were dispersed into Poly(diallyldimethylammonium chloride) solution (PDADMAC) and Poly(sodium 4-styrenesulfonate) (PSS), respectively. Alumina and copper oxide nanoparticles were dispersed into ionic solution with volume fraction of 0.5 vol.% by using two-step method. The generalmore » cyclic voltammetry measurement was used to analyze electrochemical behavior within three-electrode cell setup. The results show that PSS-based nanofluids demonstrate redox process. However, unclearly redox phenomenon was depicted PDADMAC-based nanofluids. Dispersing nanoparticles could shift pure ionic solution’s cyclic profile. It is clear that a significant impact on electrochemical behavior can be provided because of the existence metal oxide nanoparticles into polyelectrolyte solution.« less
Wu, Jia; Xu, Zilin; Pan, Yixuan; Shi, Yi; Bao, Xiujie; Li, Jun; Tong, Yu; Tang, Han; Ma, Shuyan; Wang, Xuedong; Lyu, Jianxin
2018-05-01
Herein, a novel magnetic effervescence tablet-assisted microextraction coupled to in situ metathesis reaction of ionic liquid (IS-META-ILDM) is presented for the determination of four endogenous steroids in human urine, pregnant women's blood, and fetal umbilical cord blood. The magnetic effervescent tablets, which were composed of Fe 3 O 4 nanoparticles, sodium carbonate (alkaline source), and tartaric acid (acidic source), were used to disperse the extractant and for convenient magnetic separation. After the effervescent reaction, in situ reaction between NH 4 PF 6 and [C 6 MIM]BF 4 was adopted to change hydrophilic ionic liquid to hydrophobic liquid, which could be separated from the aqueous phase. The newly developed method has three obvious advantages: (1) combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously; (2) as compared to temperature-controlled ionic liquid dispersive microextraction and cold-induced solidified microextraction, this method avoids a heating and cooling process which significantly reduces the extraction time and energy cost; and (3) the combination of adsorption by magnetic nanoparticles with extraction by in situ metathesis reaction easily produces high recoveries for target analytes. The optimized composition of effervescent tablet and experimental parameters are as follows: 0.64 g mixture of sodium carbonate and tartaric acid, 7 mg of Fe 3 O 4 (20 nm) as magnetic sorbents, 40 μL of [C 6 MIM]BF 4 as the extraction solvent, 0.15 g NH 4 PF 6 , and 300 μL of elution solvent. Under the optimized conditions, the newly developed method provided high extraction recoveries (90.0-118.5%) and low LODs (0.14-0.17 μg L -1 ) in urine and blood samples. In total, this IS-META-ILDM method provided high extraction efficiency, fast and convenient separation, and underutilization of any organic solvent, and thus it has great potential for the determination of trace endogenous steroids in complex human fluids. Graphical abstract The newly developed method has three obvious advantages: combination of effervescent dispersion and magnetic nanoparticles' retrieval is cost-effective and the dispersion and collection of the extractant can be completed almost simultaneously. It avoids a heating and cooling process which significantly reduces the extraction time and energy cost and easily produces high recoveries for target analytes.
NASA Astrophysics Data System (ADS)
Toomey, Ryan; Tirrell, Matthew
2002-03-01
We have studied the adsorption kinetics of two classes of hydrophobic/ionic diblock copolymer surfactants in aqueous environments to understand the role that micellization plays in the adsorption process. The two systems studied were poly(t-butyl styrene)-block-poly(styrene sulfonate) (PtBS-b-PSS) and polystyrene-block-poly(acrylic acid) (PS-b-PAA). It is found that by changing the hydrophobicity of the adsorbing surface, micelle adsorption can be turned on or off. When micelle adsorption occurs, the initial adsorption rate is always slower than the supply rate of micelles to the surface, indicating “reaction-limited” adsorption. Since these micelles have essentially frozen cores, the adsorption cannot be explained by the release of unimers from the micelles. Rather, micelles directly adsorb, and they have to overcome the potential barrier imposed by their corona. Due to micellization, the adsorption rate can also be a complex function of ionic strength. A regime was found where the initial adsorption rate decreased with increasing ionic strength. This anomaly can be explained by the onset of micellization. As the salt concentration is increased, more micelles are formed. However micelles adsorb roughly an order of magnitude slower than free chains. Therefore, if increasing the ionic strength produces more micelles, the adsorption rate will simultaneously decrease.
Kutsch, Miriam; Hortmann, Pascal; Herrmann, Christian; Weibels, Sebastian; Weingärtner, Hermann
2016-03-03
Diseases like Alzheimer, type II diabetes mellitus, and others go back to fibril formation of partially unfolded proteins. The impact of sodium, potassium, choline, guanidinium, and 1-ethyl-3-methylimidazolium chloride on the fibrillation kinetics of insulin in an acid-denaturing solvent environment is studied by fluorescence spectroscopy using thioflavin T as a fibril-specific stain. The fibrillation kinetics reveal a sigmoidal behavior, characterized by the lag time τlag and the maximum elongation rate k of the fibrils. Up to ionic strengths of about 70 mM, the elongation rate increases with salt concentration. This increase is nonspecific with regard to the salts. Below ionic strengths of ∼50 mM, it can be explained by a Debye-Hückel type model, indicating a dominant role of Coulomb interactions between the charged reactants and products screened by the ionic environment. At higher ionic strength, the elongation rates pass maxima, followed by a Hofmeister type ion-specific decrease. There is a correlation between the lag time τlag and the inverse elongation rate k, which can be described by a power law of the form τlag ∝ aτ(α) with a sublinear exponent α ≅ 1/2.
Wang, Huili; Gao, Ming; Gao, Jiajia; Yu, Nana; Huang, Hong; Yu, Qing; Wang, Xuedong
2016-09-01
In conventional microextraction procedures, the disperser (organic solvent or ionic liquid) is left in the aqueous phase and discarded after finishing the microextraction process. Because the disperser is water-soluble, it results in low extraction recovery for polar compounds. In this investigation, an ionic-liquid-based microextraction (ILBME) was integrated with salting-out assisted liquid-liquid microextraction (SALLME) to build an ionic-liquid-based, salt-induced, dual microextraction (ILSDME) for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P, -1.0 to 1.0). The proposed ILSDME method incorporates a dual microextraction by converting the disperser in the ILBME to the extractor in the SALLME. Optimization of key factors was conducted by integrating single-factor experiments and central composite design. The optimized experimental parameters were 80 μL [C8MIM][PF6] as extractor, 505 μL acetone as disperser, pH = 2.0, 4.1 min extraction time, and 4.2 g of Na2SO4. Under optimized conditions, high ERs (90.6-103.2 %) and low LODs (0.07-0.61 μg kg(-1)) were determined for five FQs in swine feed. Experimental precision based on RSDs was 1.4-5.2 % for intra-day and 2.4-6.9 % for inter-day analyses. The combination of ILBME with SALLME increased FQ recoveries by 15-20 % as compared with SALLME, demonstrating that the ILSDME method can enhance extraction efficiency for polar compounds compared to single-step microextraction. Therefore, the ILSDME method developed in this study has wide application for pretreatment of moderately to highly polar pollutants in complex matrices. Graphical Abstract A dual microextraction was developed by integrating ionic-liquid-based microextraction with salting-out assisted liquid-liquid microextraction for isolation of five fluoroquinolone antibiotics (FQs) with high polarity (log P = -1.0 to 1.0). The principle of dual microextraction is based on converting the remaining disperser from the first microextraction into an extractor in the second microextraction. Single-factor experiment and central composite design were applied for optimizing operational parameters using 3D response surfaces and contour lines. Under optimized conditions, the method provided high extraction recoveries and low LODs for five FQs in swine feed. The prominent advantage of the dual microextraction is rapid and highly efficient extraction of moderately to highly polar fluoroquinolones from complex matrices.
NASA Technical Reports Server (NTRS)
Chan, Stephen; Orenberg, James; Lahav, Noam
1987-01-01
The adsorption of 5-prime-AMP and 5-prime-CMP is studied in the saturated solutions of several mineral salts as a function of pH, ionic strength, and surface area of the solid salt. It is suggested that the adsorption which results from the binding between the nucleotide molecule and the salt surface is due to electrostatic forces. The adsorption is reversible in nature and decreases with increasing ionic strength.
2012-05-24
distribution of protein molecules on the cell surface and relative to the substrate on which the bacteria were growing. 9:30AMKKLL3 Effects of the... Temperature and Ionic Strength of Growth Conditions on the Nanoscale Adhesion of L. monocytogenes EGDe to Silicon Nitride. Pinar Gordesli and Nehal Abu...microscopy (AFM) for bacterial cells grown under five different temperatures (10, 20, 30, 37 and 40°C) and five different ionic strengths (0.005
Aspée, Alexis; Aliaga, Christian; Maretti, Luca; Zúñiga-Núñez, Daniel; Godoy, Jessica; Pino, Eduardo; Cárdenas-Jirón, Gloria; Lopez-Alarcon, Camilo; Scaiano, Juan C; Alarcon, Emilio I
2017-07-06
8-Hydroxy-1,3,6-pyrenetrisulfonic acid (pyranine, PyOH) free radicals were induced by laser excitation at visible wavelengths (470 nm). The photochemical process involves photoelectron ejection from PyO- to produce PyO• and PyO•- with maxima absorption at 450 and 510 nm, respectively. The kinetic rate constants for phenolic antioxidants with PyO•, determined by nanosecond time-resolved spectroscopy, were largely reliant on the ionic strength depending on the antioxidant phenol/phenolate dissociation constant. Further, the apparent rate constant measured in the presence of Triton X100 micelles was influenced by the antioxidant partition between the micelle and the dispersant aqueous media but limited by its exit rates from the micelle. Similarly, the rate reaction between ascorbic acid and PyO• was markedly affected by the presence of human serum albumin responding to the dynamic of the ascorbic acid binding to the protein.
Ionic Association Ion-Selective Electrode Experiment.
ERIC Educational Resources Information Center
Emara, Mostafa M.; And Others
1979-01-01
Describes an experiment that, using a commercially available solid-state selective electrode in conjunction with a pH-meter, determines the stability constants of sodium sulfate while varying the ionic strength of the media using sodium chloride. Detailed reproducible procedures of both the measurements and calculations are described. (BT)
NASA Astrophysics Data System (ADS)
MicicBatka, Vesna; Schmid, Doris; Marko, Florian; Velimirovic, Milica; Wagner, Stephan; von der Kammer, Frank; Hofmann, Thilo
2015-04-01
Successful emplacement of nanoscale zero-valent iron (nZVI) within the contaminated source zone is a prerequisite for the use of nZVI technology in groundwater remediation. Emplacement of nZVI is influenced i.e., by the injection technique and the injection velocity applied, as well as by the mobility of nZVI in the subsurface. Whereas processes linked to the injection can be controlled by the remediation practitioners, the mobility of nZVI in the subsurface remains limited. Even though mobility of nZVI is somewhat improved by surface coating with polyelectrolytes, it is still greatly affected by the groundwater composition and physical and chemical heterogeneities of aquifer grains. In order to promote mobility of nZVI it is needed to alter the surface charge heterogeneities of aquifer grains. Modifying the aquifer grain's surfaces by means of polyelectrolyte coating is an approach proposed to increase the overall negative surface charge of the aquifer grain surfaces, hinder deposition of nZVI onto aquifer grains, and finally promote nZVI mobility. In this study the effect of different polyelectrolytes on the nZVI mobility is tested in natural sands deriving from real brownfield sites that are proposed to be remediated using the nZVI technology. Sands collected from brownfield sites were characterized in terms of grain size distribution, mineralogical and chemical composition, and organic carbon content. Furthermore, surface charge of these sands was determined in both, low- and high ionic strength background solutions. Finally, changes of the sand's surface charges were examined after addition of the proposed aquifer modifiers, lignin sulfonate and humic acid. Surface charge of brownfield sands in low ionic strength background solution is more negative compared to that in high ionic strength background solution. An increase in negative surface potential of brownfield sand was recorded when aquifer modifiers were applied in a background solution with low ionic strength, indicating their potential to improve nZVI mobility under comparable environmental conditions. In contrast, no significant change of the surface potential of brownfield sand was observed when aquifer modifiers were applied in a background solution with high ionic strength. The potential of the aquifer modifiers to promote the mobility of nZVI was furthermore tested in flow-through columns, starting with the one filled with natural quartz sand with rough surface, low ionic strength background solutions and pre-injecting lignin sulfonate in concentration of 50 mg/L. The preliminary results showed that the pre-injection of lignin sulfonate does increase mobility of nZVI under this experimental condition. Further mobility tests will be carried out in order to elucidate the potential of the aquifer modifiers to promote the mobility of nZVI in sands with a complex mineralogy and in the background solutions with varying ionic strength, in order to account for the condition that resemble those at polluted sites. This research receives funding from the European Union's Seventh Framework Programme FP7/2007-2013 under grant agreement n°309517.
Cacho, J I; Campillo, N; Viñas, P; Hernández-Córdoba, M
2018-07-20
Nine organophosphorus pesticides (OPPs) were determined in environmental waters from different origins using in situ ionic liquid dispersive liquid microextraction (IL-DLLME). This preconcentration technique was coupled to gas chromatography-mass spectrometry (GC-MS) using microvial insert thermal desorption, an approach that uses a thermal desorption injector as sample introduction system. The parameters affecting both the microextraction and sample injection steps were optimized. The proposed method showed good precision, with RSD values ranging from 4.1 to 9.7%, accuracy with recoveries in the 85-118% range, and sensitivity with DLs ranging from 5 to 16 ng L -1 . Copyright © 2017 Elsevier B.V. All rights reserved.
High performance light-colored nitrile-butadiene rubber nanocomposites.
Lei, Yanda; Guo, Baochun; Chen, Feng; Zhu, Lixin; Zhou, Wenyou; Jia, Demin
2011-12-01
High mechanical performance nitrile-butadiene rubber (NBR) with light color was fabricated by the method of in situ formation of zinc disorbate (ZDS) or magnesium disorbate (MDS). The in situ formed ZDS and its polymerization via internal mixing was confirmed by X-ray diffaraction. The mechanical properties, ageing resistance, morphology and the dynamic mechanical analysis were fully studied. It was found that with increasing loading of metallic disorbate both the curing rate and the ionic crosslink density was largely increased. The modulus, tensile strength and tear strength were largely increased. With a comparison between internal mixing and opening mixing, the mechanical performance for the former one was obviously better than the latter one. The high performance was ascribed to the finely dispersion nano domains with irregular shape and obscure interfacial structures. Except for the NBR vulcanizate with a high loading of MDS, the others' ageing resistance with incorporation of these two metallic disorbate was found to be good. Dynamic mechanical analysis (DMA) showed that, with increasing loading of metallic disorbate, the highly increased storage modulus above -20 degrees C, the up-shifted glass transition temperature (Tg) and the reduced mechanical loss were ascribed to strengthened interfacial interactions.
NASA Astrophysics Data System (ADS)
Storms, Max
Membrane systems are among the primary emergent technologies in water treatment process units due to their ease of use, small physical footprint, and high physical rejection. Membrane fouling, the phenomena by which membranes become clogged or generally soiled, is an inhibitor to optimal efficiency in membrane systems. Novel, composite, and modified surface materials must be investigated to determine their efficacy in improving fouling behavior. Ceramic membranes derived from iron oxide nanoparticles called ferroxanes were coated with a superhydrophillic, zwitterionic polymer called poly (sulfobetaine methacrylate) (polySBMA) to form a composite ceramic-polymeric membrane. Membrane samples with and without polySBMA coating were subjected to fouling with a bovine serum albumin solution and fouling was observed by measuring permeate flux at 10 mL intervals. Loss of polySBMA was measured using total organic carbon analysis, and membrane samples were characterized using x-ray diffraction, scanning electron microscopy, and optical profilometry. The coated membrane samples decreased initial fouling rate by 27% and secondary fouling rate by 24%. Similarly, they displayed a 30% decrease in irreversible fouling during the initial fouling stage, and a 27% decrease in irreversible fouling in the secondary fouling stage; however, retention of polySBMA sufficient for improved performance was not conclusive. The addition of chemical disinfectants into drinking water treatment processes results in the formation of compounds called disinfection by-products (DBPs). The formation of DBPs occurs when common chemical disinfectants (i.e. chlorine) react with organic material. The harmful effects of DBP exposure require that they be monitored and controlled for public safety. This work investigated the ability of nanostructured hematite derived from ferroxane nanoparticles to remove organic precursors to DBPs in the form of humic acid via adsorption processes. The results show that pH and ionic strength have an effect on adsorption capacity and mechanism. At lower ionic strengths, the adsorption isotherms are closely correlated with the Freundlich adsorption isotherm model, while at higher ionic strength, the isotherms are closely related to the Langmuir adsorption isotherm model. Lower pH systems facilitate better adsorption capacities than higher pH systems, and lower ionic strength systems facilitate better adsorption than higher ionic strength systems.
Leo, Norman; Liu, Juan; Archbold, Ian; Tang, Yongan; Zeng, Xiangqun
2017-02-28
The various environmental parameters of packing density, ionic strength, and solution charge were examined for their effects on the properties of the immobilized peptide mimotope CH19 (CGSGSGSQLGPYELWELSH) that binds with the therapeutic antibody Trastuzumab (Herceptin) on a gold substrate. The immobilization of CH19 onto gold was examined with a quartz crystal microbalance (QCM). The QCM data showed the presence of intermolecular interactions resulting in the increase of viscoelastic properties of the peptide self-assembled monolayer (SAM). The CH19 SAM was diluted with CS7 (CGSGSGS) to decrease the packing density as CH19/CS7. The packing density and ionic strength parameters were evaluated by atomic force microscopy (AFM), ellipsometry, and QCM. AFM and ellipsometry showed a distinct conformational difference between CH19 and CH19/CS7, indicating a relationship between packing density and conformational state of the immobilized peptide. The CH19 SAM thickness was 40 Å with a rough topology, while the CH19/CS7 SAM thickness was 20 Å with a smooth topology. The affinity studies showed that the affinity of CH19 and CH19/CS7 to Trastuzumab were both on the order of 10 7 M -1 in undiluted PBS buffer, while the dilution of the buffer by 1000× increased both SAMs affinities to Trastuzumab to the order of 10 15 M -2 and changed the binding behavior from noncooperative to cooperative binding. This indicated that ionic strength had a more pronounced effect on binding properties of the CH19 SAM than packing density. Electrochemical impedance spectroscopy (EIS) was conducted on the CH19/CS7 SAM, which showed an increase in impedance after each EIS measurement cycle. Cyclic voltammetry on the CH19/CS7 SAM decreased impedance to near initial values. The impact of the packing density, buffer ionic strength, and local charge perturbation of the peptide SAM properties was interpreted based on the titratable sites in CH19 that could participate in the proton transfer and water equilibrium.
Dubinin, M V; Vedernikov, A A; Khoroshavina, E I; Samartsev, V N
2014-06-01
In liver mitochondria loaded with Ca2+ or Sr(2+), α,ω-hexadecanedioic acid (HDA) can induce nonspecific permeability of the inner membrane (mitochondrial pore) by the mechanism insensitive to cyclosporin A (CsA). In this work we studied the effect of ionic strength of the incubation medium on the kinetics of the processes that accompany Ca2+-dependent induction of the mitochondrial pore by fatty acid: organelle swelling, Ca2+ release from the matrix, changes in transmembrane potential (Δψ) and rate of oxygen consumption, and the release of cytochrome c from the intermembrane space. Two basic incubation media were used: sucrose medium and isotonic ionic medium containing KCl without sucrose. We found that 200 μM Ca2+ and 20 μM HDA in the presence of CsA effectively induce high-amplitude swelling of mitochondria both in the case of sucrose and in the ionic incubation medium. In the presence of CsA, mitochondria can rapidly absorb Ca2+ and retain it in the matrix for a while without reducing Δψ. Upon incubation in the ionic medium, mitochondria retain most of the added Ca2+ in the matrix for a short time without reducing the Δψ. In both cases the addition of HDA to the mitochondria 2 min after the introduction of Ca2+ leads to the rapid release of these ions from the matrix and total drop in Δψ. The mitochondrial swelling induced by Ca2+ and HDA in non-ionic medium is accompanied by almost maximal stimulation of respiration. Under the same conditions, but during incubation of mitochondria in the ionic medium, it is necessary to add cytochrome c for significant stimulation of respiration. The mitochondrial swelling induced by Ca2+ and HDA leads to the release of cytochrome c in a larger amount in the case of ionic medium than for the sucrose medium. We conclude that high ionic strength of the incubation medium determines the massive release of cytochrome c from mitochondria and liberates it from the respiratory chain, which leads to blockade of electron transport along the respiratory chain and consequently to disruption of the energy functions of the organelles.
Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation.
Jochem, Aljosha-Rakim; Ankah, Genesis Ngwa; Meyer, Lars-Arne; Elsenberg, Stephan; Johann, Christoph; Kraus, Tobias
2016-10-07
Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV-vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1-20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.
Effect of electrolytes on proteins physisorption on ordered mesoporous silica materials.
Salis, Andrea; Medda, Luca; Cugia, Francesca; Monduzzi, Maura
2016-01-01
This short review highlights the effect of electrolytes on the performance of proteins-mesoporous silica conjugates which can open interesting perspectives in biotechnological fields, particularly nanomedicine and biocatalysis. Indeed therapeutic proteins and peptides represent a challenging innovation for several kinds of diseases, but since their self-life in biological fluids is very short, they need a stealth protective carrier. Similarly, enzymes need a solid support to improve thermal stability and to allow for recycling. Ordered mesoporous silica materials represent a valid choice as widely demonstrated. Both proteins and silica mesoporous materials possess charged surfaces, and here, the crucial role of pH, buffer, ionic strength and electrolyte type is posed in relation with loading/release of proteins onto/from the silica support through the analysis of adsorption and release processes. A delicate interplay of electrostatic and van der Waals interactions arises from considering electrolytes' effects on the two different charged surfaces. Clear outcomes concern the effect of pH and ionic strength. Protein loading onto the silica matrix is favored by an adsorbing solution having a pH close to the protein pI, and by a high ionic strength that reduces the Debye length. Release is instead favored by an adsorbing solution characterized by an intermediate ionic strength, close to the physiological values. Significant specific ions effects are shown to affect both proteins and silica matrices, as well as protein adsorption onto silica matrices. Further work is needed to quantify specific ion effects on the preservation of the biological activity, and on the release performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Bremmell, Kristen E; Britcher, Leanne; Griesser, Hans J
2013-06-01
Addition of ionized terminal groups to PEG graft layers may cause additional interfacial forces to modulate the net interfacial interactions between PEG graft layers and proteins. In this study we investigated the effect of terminal sulfonate groups, characterizing PEG-aldehyde (PEG-CHO) and sulfonated PEG (PEG-SO3) graft layers by XPS and colloid probe AFM interaction force measurements as a function of ionic strength, in order to determine surface forces relevant to protein resistance and models of bio-interfacial interaction of such graft coatings. On the PEG-CHO surface the measured interaction force does not alter with ionic strength, typical of a repulsive steric barrier coating. An analogous repulsive interaction force of steric origin was also observed on the PEG-SO3 graft coating; however, the net interaction force changed with ionic strength. Interaction forces were modelled by steric and electrical double layer interaction theories, with fitting to a scaling theory model enabling determination of the spacing and stretching of the grafted chains. Albumin, fibrinogen, and lysozyme did not adsorb on the PEG-CHO coating, whereas the PEG graft with terminal sulfonate groups showed substantial adsorption of albumin but not fibrinogen or lysozyme from 0.15 M salt solutions. Under lower ionic strength conditions albumin adsorption was again minimized as a result of the increased electrical double-layer interaction observed with the PEG-SO3 modified surface. This unique and unexpected adsorption behaviour of albumin provides an alternative explanation to the "negative cilia" model used by others to rationalize observed thromboresistance on PEG-sulfonate coatings. Copyright © 2013 Elsevier B.V. All rights reserved.
Individual and Co Transport Study of Titanium Dioxide NPs and Zinc Oxide NPs in Porous Media
Kumari, Jyoti; Mathur, Ankita; Rajeshwari, A.; Venkatesan, Arthi; S, Satyavati; Pulimi, Mrudula; Chandrasekaran, Natarajan; Nagarajan, R.; Mukherjee, Amitava
2015-01-01
The impact of pH and ionic strength on the mobility (individual and co-transport) and deposition kinetics of TiO2 and ZnO NPs in porous media was systematically investigated in this study. Packed column experiments were performed over a series of environmentally relevant ionic strengths with both NaCl (0.1−10 mM) and CaCl2 (0.01–0.1mM) solutions and at pH 5, 7, and 9. The transport of TiO2 NPs at pH 5 was not significantly affected by ZnO NPs in solution. At pH 7, a decrease in TiO2 NP transport was noted with co-existence of ZnO NPs, while at pH 9 an increase in the transport was observed. At pH 5 and 7, the transport of ZnO NPs was decreased when TiO2 NPs was present in the solution, and at pH 9, an increase was noted. The breakthrough curves (BTC) were noted to be sensitive to the solution chemistries; the decrease in the breakthrough plateau with increasing ionic strength was observed under all examined pH (5, 7, and 9). The retention profiles were the inverse of the plateaus of BTCs, as expected from mass balance considerations. Overall, the results from this study suggest that solution chemistries (ionic strength and pH) are likely the key factors that govern the individual and co-transport behavior of TiO2 and ZnO NPs in sand. PMID:26252479
The effect of humic acid on uranyl sorption onto bentonite at trace uranium levels.
Ivanov, Peter; Griffiths, Tamara; Bryan, Nick D; Bozhikov, Gospodin; Dmitriev, Serguei
2012-11-01
The effect of humic acid (HA) on U(VI) sorption on bentonite was studied in batch experiments at room temperature and ambient atmosphere at a (237)U(VI) concentration of 8.4 × 10(-11) M and HA concentration of 100 mg L(-1). The distribution of U(VI) between the liquid and solid phases was studied as a function of pH and ionic strength both in the absence and presence of HA. It was shown that the uranyl sorption on bentonite is strongly dependent on pH and the presence of humics, and the effect of the addition order was negligible. In the absence of HA an enhancement in the uptake with increasing pH was observed and a sharp sorption edge was found to take place between pH 3.2 and 4.2. The presence of HA slightly increases uranium(VI) sorption at low pH and curtails it at moderate pH, compared to the absence of HA. In the basic pH range for both the presence and absence of HA the sorption of uranium is significantly reduced, which could be attributed to the formation of soluble uranyl carbonate complexes. The influence of ionic strength on U(VI) and HA uptake by bentonite were investigated in the range of 0.01-1.0 M, and while there was an enhancement in the sorption of humic acid with increasing ionic strength, no significant effect of the ionic strength on the U(VI) sorption was observed in both the absence and presence of HA.
NASA Astrophysics Data System (ADS)
Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes
2017-03-01
The extensive production and application of engineered silica nanoparticles (SiO2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO2 NP filtration.
Fasih Ramandi, Negin; Shemirani, Farzaneh
2015-01-01
For the first time, a selective ionic liquid ferrofluid has been used in dispersive solid phase extraction (IL-FF-D-SPE) for simultaneous preconcentration and separation of lead and cadmium in milk and biological samples combined with flame atomic absorption spectrometry. To improve the selectivity of the ionic liquid ferrofluid, the surface of TiO2 nanoparticles with a magnetic core as sorbent was modified by loading 1-(2-pyridylazo)-2-naphtol. Due to the rapid injection of an appropriate amount of ionic liquid ferrofluid into the aqueous sample by a syringe, extraction can be achieved within a few seconds. In addition, based on the attraction of the ionic liquid ferrofluid to a magnet, no centrifugation step is needed for phase separation. The experimental parameters of IL-FF-D-SPE were optimized using a Box-Behnken design (BBD) after a Plackett-Burman screening design. Under the optimum conditions, the relative standard deviations of 2.2% and 2.4% were obtained for lead and cadmium, respectively (n=7). The limit of detections were 1.21 µg L(-1) for Pb(II) and 0.21 µg L(-1) for Cd(II). The preconcentration factors were 250 for lead and 200 for cadmium and the maximum adsorption capacities of the sorbent were 11.18 and 9.34 mg g(-1) for lead and cadmium, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
López Cascales, J J; Oliveira Costa, S D
2013-02-01
The insertion of local anaesthetics into a cell membrane is a key aspect for explaining their activity at a molecular level. It has been described how the potency and response time of local anaesthetics is improved (for clinical applications) when they are dissolved in a solution of sodium bicarbonate. With the aim of gaining insight into the physico-chemical principles that govern the action mechanism of these drugs at a molecular level, simulations of benzocaine in binary lipid bilayers formed by DPPC/DPPS were carried out for different ionic strengths of the aqueous solution. From these molecular dynamic simulations, we observed how the thermodynamic barrier associated with benzocaine insertion into the lipid bilayers diminished exponentially as the fraction of DPPS in the bilayer increased, especially when the ionic strength of the aqueous solution increased. In line with these results, we also observed how this thermodynamic barrier diminished exponentially with the phospholipid/water interfacial tension. Copyright © 2012 Elsevier B.V. All rights reserved.
Peroxidase-mediated polymerization of 1-naphthol: impact of solution pH and ionic strength.
Bhandari, Alok; Xu, Fangxiang; Koch, David E; Hunter, Robert P
2009-01-01
Peroxidase-mediated oxidation has been proposed as a treatment method for naphthol-contaminated water. However, the impact of solution chemistry on naphthol polymerization and removal has not been documented. This research investigated the impact of pH and ionic strength on peroxidase-mediated removal of 1-naphthol in completely mixed batch reactors. The impact of hydrogen peroxide to 1-naphthol ratio and activity of horseradish peroxidase was also studied. Size exclusion chromatography was used to estimate the molecular weight distribution of oligomeric products, and liquid chromatography/mass spectrometry was used to estimate product structure. Naphthol transformation decreased with ionic strength, and substrate removal was lowest at neutral pHs. Solution pH influenced the size and the composition of the oligomeric products. An equimolar ratio of H(2)O(2):naphthol was sufficient for optimal naphthol removal. Polymerization products included naphthoquinones and oligomers derived from two, three, and four naphthol molecules. Our results illustrate the importance of water chemistry when considering a peroxidase-based approach for treatment of naphthol-contaminated waters.
Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid.
Tan, Xiaoli; Fang, Ming; Li, Jiaxing; Lu, Yi; Wang, Xiangke
2009-08-30
The effects of pH, initial Eu(III) concentration, ionic strength and fulvic acid (FA) on the adsorption of Eu(III) on TiO(2) are investigated by using batch techniques. The results indicate that the presence of FA strongly enhances the adsorption of Eu(III) on TiO(2) at low pH values. Besides, the adsorption of Eu(III) on TiO(2) is significantly dependent on pH values and independent of ionic strength. The adsorption of Eu(III) on TiO(2) is attributed to inner-sphere surface complexation. The diffuse layer model (DLM) is applied to simulate the adsorption data, and fits the experimental data well with the aid of FITEQL 3.2. X-ray photoelectron spectroscopy (XPS) is performed to study the species of Eu(III) adsorbed on the surfaces of TiO(2)/FA-TiO(2) hybrids at a molecular level, which suggest that FA act as "bridge" between Eu(III) and TiO(2) particles to enhance the ability to adsorb Eu(III) in solution.
Yan, Mingyan; Wang, Xinping
2018-05-27
The kinetic self-assembly of type I collagen from tilapia (Oreochromis niloticus) skin was characterized by the fluorescence method based on thioflavin T (ThT). The fluorescence probe could bind to the active monomeric collagen with a higher ordered degree of molecule, which displayed the pH and ionic strength dependence, the binding constant higher at neutral pH and proportional to the NaCl concentration. Compared to the turbidity method, ThT was more suitable to characterize the nucleation phase of collagen self-assembly. The nucleus size was determined through the ThT fluorescence and linear-polymerization model. At various pH and ionic strength, the nucleus size was nearly identical, either one or two monomers, demonstrating that one or two active monomeric collagen formed into the nucleus and different pH and ionic strength didn't alter the self-assembly mechanism of collagen. This approach was beneficial to advance the understanding of the kinetic self-assembly of the fish-sourced collagen in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.
Protat, Marine; Bodin, Noémie; Gobeaux, Frédéric; Malloggi, Florent; Daillant, Jean; Pantoustier, Nadège; Guenoun, Patrick; Perrin, Patrick
2016-09-22
Multiple water-in-oil-in-water (W/O/W) emulsions are promising materials in designing carriers of hydrophilic molecules or drug delivery systems, provided stability issues are solved and biocompatible chemicals can be used. In this work, we designed a biocompatible amphiphilic copolymer, poly(dimethylsiloxane)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMS-b-PDMAEMA), that can stabilize emulsions made with various biocompatible oils. The hydrophilic/hydrophobic properties of the copolymer can be adjusted using both pH and ionic strength stimuli. Consequently, the making of O/W (oil in water), W/O (water in oil), and W/O/W emulsions can be achieved by sweeping the pH and ionic strength. Of importance, W/O/W emulsions are formulated over a large pH and ionic strength domain in a one-step emulsification process via transitional phase inversion and are stable for several months. Cryo-TEM and interfacial tension studies show that the formation of these W/O/W emulsions is likely to be correlated to the interfacial film curvature and microemulsion morphology.
Influence of the DNA structure on the free radical induction due to proflavine and light treatment.
Piette, J; Calberg-Bacq, C M; Van de Vorst, A
1979-04-30
Induction of peroxide free radicals (detected by Electron Paramagnetic Resonance at 77 K) due to the photodynamic activity of proflavine was measured on bacteriophage phi X174 DNA either single-stranded (ss) as isolated from the virion, or double-stranded supercoiled (RFI) as isolated from the infected bacteria. Comparison was made with calf thymus DNA photosensitization. In order to use equivalent DNA-proflavine complexes, binding of the dye to the three DNA's was first determined under those conditions of high ionic strength favourable to the photodynamic reaction. Free radical induction was maximal for definite amounts of bound proflavine (which varied depending upon the DNA substrate) and at an ionic strength value of 0.5. The level of the maximal reaction increased in the following order: from phi Xss DNA to calf thymus DNA and finally to phi XRFI DNA. The conformation of the proflavine-DNA complex was thus a determinant for the efficiency of the photodynamic process. The ionic strength effect could not be explained by the evolution of the proflavine triplet state in irradiated proflavine-calf thymus DNA complexes.
Goldmann, W H; Hess, D; Isenberg, G
1999-03-01
We employed quasi-elastic light scattering and electron microscopy to investigate the influence of intact talin and talin tail fragment on actin filament dynamics and network structure. Using these methods, we confirm previous reports that intact talin induces cross-linking as well as filament shortening on actin networks. We now show that the effect of intact talin as well as talin tail fragment on actin networks is controlled by pH and ionic strength. At pH 7.5, actin filament dynamics in the presence of intact talin and talin tail fragment are characterized by a rapid decay of the dynamic structure factor and by a square root power law for the stretched exponential decay which is in contrast with the theory for pure actin solutions. At pH 6 and low ionic strength, intact talin cross-links actin filaments more tightly than talin tail fragment. Talin head fragment showed no effect on actin networks, indicating that the actin binding sites reside probably exclusively within the tail domain.
Wang, X; Xu, D; Chen, L; Tan, X; Zhou, X; Ren, A; Chen, Ch
2006-04-01
The effects of pH (pH=2-12), ionic strength (0.01-2 mol/l NaNO(3)) and humic acid on the sorption and complexation of Eu(III) on alumina were investigated by using batch techniques. The experiments were carried out at room temperature and under ambient conditions. The results indicate that the sorption of Eu(III) on alumina is strongly influenced by humic acid. The sorption of Eu(III) on alumina is significantly dependent on pH values and independent of ionic strength. The sorption of Eu(III) on alumina may be attributed to surface complexation. The species of Eu(III) on HA-alumina colloids is dominated by both HA and alumina, and the addition sequences of HA or Eu(III) to the ternary system do not influence the sorption of Eu(III) to HA-coated alumina. Kinetic dissociation of Eu(III) from bare and HA-coated alumina was also studied by using the chelating resin. The result was discussed by a pseudo-first-order kinetics model.
Golunski, Simone; Silva, Marceli F; Marques, Camila T; Rosseto, Vanusa; Kaizer, Rosilene R; Mossi, Altemir J; Rigo, Diane; Dallago, Rogério M; DI Luccio, Marco; Treichel, Helen
2017-01-01
The present study evaluated the purification of inulinase by changing the ionic strength of the medium by addition of NaCl and CaCl2 followed by precipitation with n-propyl alcohol or iso-propyl alcohol. The effects of the concentration of alcohols and the rate of addition of alcohols in the crude extract on the purification yield and purification factor were evaluated. Precipitation caused an activation of enzyme and allowed purification factors up to 2.4-fold for both alcohols. The purification factor was affected positively by the modification of the ionic strength of the medium to 0.5 mol.L-1 NaCl before precipitation with the alcohol (n-propyl or iso-propyl). A purification factor of 4.8-fold and an enzyme yield of 78.1 % could be achieved by the addition of 0.5 mol.L-1 of NaCl to the crude extract, followed by the precipitation with 50 % (v/v) of n-propyl alcohol, added at a flow rate of 19.9 mL/min.
Salinity-dependent diatom biosilicification implies an important role of external ionic strength
Vrieling, Engel G.; Sun, Qianyao; Tian, Mingwen; Kooyman, Patricia J.; Gieskes, Winfried W. C.; van Santen, Rutger A.; Sommerdijk, Nico A. J. M.
2007-01-01
The role of external ionic strength in diatom biosilica formation was assessed by monitoring the nanostructural changes in the biosilica of the two marine diatom species Thalassiosira punctigera and Thalassiosira weissflogii that was obtained from cultures grown at two distinct salinities. Using physicochemical methods, we found that at lower salinity the specific surface area, the fractal dimensions, and the size of mesopores present in the biosilica decreased. Diatom biosilica appears to be denser at the lower salinity that was applied. This phenomenon can be explained by assuming aggregation of smaller coalescing silica particles inside the silica deposition vesicle, which would be in line with principles in silica chemistry. Apparently, external ionic strength has an important effect on diatom biosilica formation, making it tempting to propose that uptake of silicic acid and other external ions may take place simultaneously. Uptake and transport of reactants in the proximity of the expanding silica deposition vesicle, by (macro)pinocytosis, are more likely than intracellular stabilization and transport of silica precursors at the high concentrations that are necessary for the formation of the siliceous frustule components. PMID:17563373
Sheng, Guodong; Hu, Jun; Wang, Xiangke
2008-10-01
Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH<3, and is independent of ionic strength at pH>3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO(4)(-), NO(3)(-) and Cl(-)) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data (DeltaH(0), DeltaS(0), DeltaG(0)) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.
Octanol-water distribution of engineered nanomaterials.
Hristovski, Kiril D; Westerhoff, Paul K; Posner, Jonathan D
2011-01-01
The goal of this study was to examine the effects of pH and ionic strength on octanol-water distribution of five model engineered nanomaterials. Distribution experiments resulted in a spectrum of three broadly classified scenarios: distribution in the aqueous phase, distribution in the octanol, and distribution into the octanol-water interface. Two distribution coefficients were derived to describe the distribution of nanoparticles among octanol, water and their interface. The results show that particle surface charge, surface functionalization, and composition, as well as the solvent ionic strength and presence of natural organic matter, dramatically impact this distribution. Distributions of nanoparticles into the interface were significant for nanomaterials that exhibit low surface charge in natural pH ranges. Increased ionic strengths also contributed to increased distributions of nanoparticle into the interface. Similarly to the octanol-water distribution coefficients, which represent a starting point in predicting the environmental fate, bioavailability and transport of organic pollutants, distribution coefficients such as the ones described in this study could help to easily predict the fate, bioavailability, and transport of engineered nanomaterials in the environment.
The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation.
Lee, Jaewoong; Bartelt-Hunt, Shannon L; Li, Yusong; Gilrein, Erica Jeanne
2016-07-01
This study investigated the aggregation of n-TiO2 in the presence of humic acid (HA) and/or 17β-estradiol (E2) under high ionic strength conditions simulating levels detected in landfill leachate. Aggregation of n-TiO2 was strongly influenced by ionic strength as well as ionic valence in that divalent cations (Ca(2+)) were more effective than monovalent (Na(+)) at the surface modification. HA or E2 enhanced aggregation of n-TiO2 in 20 mM CaCl2, however little aggregation was observed in 100 mM NaCl. Similarly, we observed only the increased aggregation of n-TiO2 in the presence of HA/E2. These results showed the critical role of particles' surface charges on the aggregation behaviors of n-TiO2 that HA plays more significantly than E2. However, the slightly increased zeta potential and aggregation of n-TiO2 in the combination of HA and E2 at both 20 mM CaCl2 and 100 mM NaCl means that E2 has influenced on the surface modification of n-TiO2 by adsorption. Based on the aggregation of n-TiO2 under high ionic strength with HA and/or E2, we simulated the mobility of aggregated n-TiO2 in porous media. As a result, we observed that the mobility distance of aggregated n-TiO2 was dramatically influenced by the surface modification with both HA and/or E2 between particles and media. Furthermore, larger mobility distance was observed with larger aggregation of n-TiO2 particles that can be explained by clean bed filtration (CFT) theory. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.
2013-11-01
Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.
Excessive Counterion Condensation on Immobilized ssDNA in Solutions of High Ionic Strength
Rant, Ulrich; Arinaga, Kenji; Fujiwara, Tsuyoshi; Fujita, Shozo; Tornow, Marc; Yokoyama, Naoki; Abstreiter, Gerhard
2003-01-01
We present experiments on the bias-induced release of immobilized, single-stranded (ss) 24-mer oligonucleotides from Au-surfaces into electrolyte solutions of varying ionic strength. Desorption is evidenced by fluorescence measurements of dye-labeled ssDNA. Electrostatic interactions between adsorbed ssDNA and the Au-surface are investigated with respect to 1), a variation of the bias potential applied to the Au-electrode; and 2), the screening effect of the electrolyte solution. For the latter, the concentration of monovalent salt in solution is varied from 3 to 1600 mM. We find that the strength of electric interaction is predominantly determined by the effective charge of the ssDNA itself and that the release of DNA mainly occurs before the electrochemical double layer has been established at the electrolyte/Au interface. In agreement with Manning's condensation theory, the measured desorption efficiency (ηrel) stays constant over a wide range of salt concentrations; however, as the Debye length is reduced below a value comparable to the axial charge spacing of the DNA, ηrel decreases substantially. We assign this effect to excessive counterion condensation on the DNA in solutions of high ionic strength. In addition, the relative translational diffusion coefficient of ssDNA in solution is evaluated for different salt concentrations. PMID:14645075
Excessive counterion condensation on immobilized ssDNA in solutions of high ionic strength.
Rant, Ulrich; Arinaga, Kenji; Fujiwara, Tsuyoshi; Fujita, Shozo; Tornow, Marc; Yokoyama, Naoki; Abstreiter, Gerhard
2003-12-01
We present experiments on the bias-induced release of immobilized, single-stranded (ss) 24-mer oligonucleotides from Au-surfaces into electrolyte solutions of varying ionic strength. Desorption is evidenced by fluorescence measurements of dye-labeled ssDNA. Electrostatic interactions between adsorbed ssDNA and the Au-surface are investigated with respect to 1), a variation of the bias potential applied to the Au-electrode; and 2), the screening effect of the electrolyte solution. For the latter, the concentration of monovalent salt in solution is varied from 3 to 1600 mM. We find that the strength of electric interaction is predominantly determined by the effective charge of the ssDNA itself and that the release of DNA mainly occurs before the electrochemical double layer has been established at the electrolyte/Au interface. In agreement with Manning's condensation theory, the measured desorption efficiency (etarel) stays constant over a wide range of salt concentrations; however, as the Debye length is reduced below a value comparable to the axial charge spacing of the DNA, etarel decreases substantially. We assign this effect to excessive counterion condensation on the DNA in solutions of high ionic strength. In addition, the relative translational diffusion coefficient of ssDNA in solution is evaluated for different salt concentrations.
Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint.
Pourret, Olivier; Houben, David
2018-02-01
The ability of biochar to immobilize metals relies on the amount of functional groups at its surface but the contribution of each functional groups (e.g. carboxylic, phenolic) to metal bonding is poorly known. Using a new approach based on previous works on rare earth element (REE) interactions with humic substances, we aim at elucidating the relative contribution of these binding sites to metal sorption under various conditions (i.e. pH and ionic strengths, IS). Using batch experiments, REE sorption onto biochar was analyzed from pH 3 to 9 and IS 10 -1 mol/L to 10 -3 mol/L. Rare earth element patterns show a Middle REE (MREE) downward concavity at acidic pH and low ionic strength. These patterns are in good agreement with existing datasets quantifying REE binding with humic substances. Indeed, the MREE downward concavity displayed by REE-biochar complexation pattern compares well with REE patterns with various organic compounds. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in biochar. Overall, our results indicate that the strength of the metal bonding with biochar increases when pH and IS increase, suggesting that biochar is more efficient for long-term metal immobilization at near neutral pH and high ionic strength.
Ma, Yingfang; Acosta, Diana M; Whitney, Jon R; Podgornik, Rudolf; Steinmetz, Nicole F; French, Roger H; Parsegian, V Adrian
2015-01-01
Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.
NASA Astrophysics Data System (ADS)
Yang, Huachao; Bo, Zheng; Yang, Jinyuan; Yan, Jianhua; Cen, Kefa
2017-10-01
Solid-liquid interactions are considered to play a crucial role in charge storage capability of electric double-layer capacitors (EDLCs). In this work, effects of van der Waals (VDW) strengths on the EDL structures and capacitive performances within two representative electrolytes of solvated aqueous solutions and solvent-free ionic liquids are illuminated by molecular dynamics simulations. Single crystalline metals with similar lattice constant but diverse VDW potentials are employed as electrodes. Upon enhancing VDW strengths, capacitance of aqueous electrolytes first increases conspicuously by ∼34.0% and then descends, manifesting a non-monotonic trend, which goes beyond traditional perspectives. Such unusual observation is interpreted by the excluded-volume effects stemmed from ion-solvent competitions. Stimulated by predominant coulombic interactions, more ions are aggregated at the interface despite of the increasing VDW potentials, facilitating superior screening efficiency and capacitance. However, further enhancing strengths preferentially attracts more solvents instead of ions to the electrified surface, which in turn strikingly repels ions from Helmholtz layers, deteriorating electrode capacitance. An essentially similar feather is also recognized for ionic liquids, while the corresponding mechanisms are prominently ascribed to the suppressed ionic separations issued from cation-anion competitions. We highlight that constructing electrode materials with a moderate-hydrophilicity could further advance the performances of EDLCs.
Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani
2015-01-09
A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05μgL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mekic, Majda; Brigante, Marcello; Vione, Davide; Gligorovski, Sasho
2018-07-01
There is increasing evidence that aqueous-phase atmospheric chemistry is an important source of secondary organic aerosols (SOA), but the related processes are currently not adequately represented in atmospheric chemistry models. Here we show that the absorption spectrum of pyruvic acid (PA) exhibits both an increase of the absorption intensity and a red shift of 13 nm while going from a dilute aqueous phase to a solution containing the inert salt sodium perchlorate (5M NaClO4). If this phenomenon turns out to be more general, many compounds that do not absorb actinic light in clouds and fog could become light absorbers at elevated salt concentrations in aerosol deliquescent particles. Compared to the direct photolysis of PA in dilute aqueous solution, the photolysis rate is increased by three times at high ionic strength (5M NaClO4). Such a considerable enhancement can be rationalized in the framework of the Debye-McAulay approach for reactions of ionic + neutral (or neutral + neutral) species, considering that the PA direct photolysis likely involves interaction between the photogenerated triplet state and water. This is, to our knowledge, the first report of a significant effect of the ionic strength on the rate of an atmospheric photochemical reaction. The phenomenon has important implications for the fate of PA and, potentially, of other organic compounds in atmospheric aerosol deliquescent particles.
Akhond, Morteza; Absalan, Ghodratollah; Pourshamsi, Tayebe; Ramezani, Amir M
2016-07-01
Gas-assisted dispersive liquid-phase microextraction (GA-DLPME) has been developed for preconcentration and spectrophotometric determination of copper ion in different water samples. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate and argon gas, respectively, were used as the extracting solvent and disperser. The procedure was based on direct reduction of Cu(II) to Cu(I) by hydroxylamine hydrochloride, followed by extracting Cu(I) into ionic liquid phase by using neocuproine as the chelating agent. Several experimental variables that affected the GA-DLPME efficiency were investigated and optimized. Under the optimum experimental conditions (IL volume, 50µL; pH, 6.0; acetate buffer, 1.5molL(-1); reducing agent concentration, 0.2molL(-1); NC concentration, 120µgmL(-1); Ar gas bubbling time, 6min; argon flow rate, 1Lmin(-1); NaCl concentration, 6% w/w; and centrifugation time, 3min), the calibration graph was linear over the concentration range of 0.30-2.00µgmL(-1) copper ion with a limit of detection of 0.07µgmL(-1). Relative standard deviation for five replicate determinations of 1.0µgmL(-1) copper ion was found to be 3.9%. The developed method was successfully applied to determination of both Cu(I) and Cu(II) species in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, K.S.; Kent, J.C.; Parthasarathy, N.
1980-10-01
Chromatin is a nucleohistone complex which exhibits a repeat unit structure as inferred from nuclease digestion studies. The repeat unit, or nucleosome, is defined as approx. 200 base pairs of DNA wrapped about the surface of an octameric histone complex (two copies each of the histones H2A, H2B, H3, and H4). We report in this communication preliminary studies on the conformation of chromatin mononucleosomes and oligonucleosomes as a function of temperature and ionic strength. The methods used were conductivity, fluorescence of bound proflavine, and quasielastic light scattering.
Electronegativity, charge transfer, crystal field strength, and the point charge model revisited.
Tanner, Peter A; Ning, Lixin
2013-02-21
Although the optical spectra of LnCl(6)(3-) systems are complex, only two crystal field parameters, B(40) and B(60), are required to model the J-multiplet crystal field splittings in octahedral symmetry. It is found that these parameters exhibit R(-5) and R(-7) dependence, respectively, upon the ionic radius Ln(3+)(VI), but not upon the Ln-Cl distance. More generally, the crystal field strengths of LnX(6) systems (X = Br, Cl, F, O) exhibit linear relationships with ligand electronegativity, charge transfer energy, and fractional ionic character of the Ln-X bond.
2010-01-01
mg/L; low ionic strength (conductivity milliSiemens per centimeter [mS/cm]); a pH of 6.5 to 8; and relatively low concentrations of TCE, 1,2-DCA...include: • Groundwater dissolved oxygen (DO) levels as low as 0.01 mg/L and as high as 8 mg/L; • Groundwater with low ionic strength (conductivity ...held at 980°C. The chlorinated ethene was oxidized in the oven to CO2 and water. The water was removed via a Nafion ™ membrane water trap and the CO2
Hess, Andreas; Aksel, Nuri
2013-09-10
The yield stress of polyelectrolyte multilayer modified suspensions exhibits a surprising dependence on the polyelectrolyte conformation of multilayer films. The rheological data scale onto a universal master curve for each polyelectrolyte conformation as the particle volume fraction, φ, and the ionic strength of the background fluid, I, are varied. It is shown that rough films with highly coiled, brushy polyelectrolytes significantly enhance the yield stress. Moreover, via the ionic strength I of the background fluid, the dynamic yield stress of brushy polyelectrolyte multilayers can be finely adjusted over 2 decades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Richmann, Michael K.; Reed, Donald T.
2015-10-30
The degree of conservatism in the estimated sorption partition coefficients (K ds) used in a performance assessment model is being evaluated based on a complementary batch and column method. The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected at the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV).
Shen, Sufen; Zhao, Huawen; Huang, Chengzhi; Wu, Liping
2010-02-01
The ability to construct self-assembled architectures is essential for the exploration of nanoparticle-structured properties. It is one of good strategies by employing molecule-modificated nanoparticles to prepare new materials with particular properties. Herein, we found that captopril (Cap), a biocompatible medicament, could adjust and control the formation of self-assembled gold nanorods (Au-NRs) in high ionic strength solutions. The assembly is in higher-order structures containing both end-to-end and side-by-side orientations. Furthermore, these structures of Au-NRs could be served as plasmonic waveguide in future biological nanodevices.
Infrared spectroscopy of hydrated polycyclic aromatic hydrocarbon cations: naphthalene+-water.
Chatterjee, Kuntal; Dopfer, Otto
2017-12-13
Polycyclic aromatic hydrocarbons (PAHs) are suggested to occur in interstellar media and ice grains. It is important to characterize hydrated PAHs and their cations to explore their stability in interstellar and biological media. Herein, the infrared photodissociation (IRPD) spectrum of the naphthalene + -H 2 O radical cation (Np + -H 2 O) recorded in the O-H and C-H stretch range is analysed by dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level to determine its structure and intermolecular bonding. Monohydration of Np + in its 2 A u ground electronic state leads to the formation of a bifurcated CHO ionic hydrogen bond (H-bond), in which the lone pairs of H 2 O bind to two adjacent CH proton donors of the two aromatic rings. The frequency-dependent branching ratios observed for IRPD of cold Np + -H 2 O-Ar clusters allows the estimation of the dissociation energy of Np + -H 2 O as D 0 ∼ 2800 ± 300 cm -1 . The monohydration motif of Np + differs qualitatively from that of the benzene cation in both structure and binding energy, indicating the strong influence of the multiple aromatic rings on the hydration of PAH + cations. This difference is rationalized by natural bond orbital analysis of the ionic H-bond motif. Comparison with neutral Np-H 2 O reveals the large change in structure and bond strength of the hydrated PAHs upon ionization. While neutral Np-H 2 O is stabilized by weak π H-bonds (OHπ, π-stacking), strong cation-dipole forces favour a planar bifurcated CHO ionic H-bond in Np + -H 2 O.
Trujillo-Rodríguez, María J; Nacham, Omprakash; Clark, Kevin D; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M
2016-08-31
This work describes the applicability of magnetic ionic liquids (MILs) in the analytical determination of a group of heavy polycyclic aromatic hydrocarbons. Three different MILs, namely, benzyltrioctylammonium bromotrichloroferrate (III) (MIL A), methoxybenzyltrioctylammonium bromotrichloroferrate (III) (MIL B), and 1,12-di(3-benzylbenzimidazolium) dodecane bis[(trifluoromethyl)sulfonyl)]imide bromotrichloroferrate (III) (MIL C), were designed to exhibit hydrophobic properties, and their performance examined in a microextraction method for hydrophobic analytes. The magnet-assisted approach with these MILs was performed in combination with high performance liquid chromatography and fluorescence detection. The study of the extraction performance showed that MIL A was the most suitable solvent for the extraction of polycyclic aromatic hydrocarbons and under optimum conditions the fast extraction step required ∼20 μL of MIL A for 10 mL of aqueous sample, 24 mmol L(-1) NaOH, high ionic strength content of NaCl (25% (w/v)), 500 μL of acetone as dispersive solvent, and 5 min of vortex. The desorption step required the aid of an external magnetic field with a strong NdFeB magnet (the separation requires few seconds), two back-extraction steps for polycyclic aromatic hydrocarbons retained in the MIL droplet with n-hexane, evaporation and reconstitution with acetonitrile. The overall method presented limits of detection down to 5 ng L(-1), relative recoveries ranging from 91.5 to 119%, and inter-day reproducibility values (expressed as relative standard derivation) lower than 16.4% for a spiked level of 0.4 μg L(-1) (n = 9). The method was also applied for the analysis of real samples, including tap water, wastewater, and tea infusion. Copyright © 2016 Elsevier B.V. All rights reserved.
Jia, Yuqian; Zhao, Yanfang; Zhao, Mei; Wang, Zhenhua; Chen, Xiangfeng; Wang, Minglin
2018-05-25
A core-shell discoid shaped indium (III) sulfide@metal-organic framework (MIL-125(Ti)) nanocomposite was synthesized by a solvothermal method and explored as an adsorbent material for dispersive solid-phase extraction (d-SPE). The as-synthesized sorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N 2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The extraction performance was evaluated by the d-SPE of 16 nitro-polycyclic aromatic hydrocarbons (NPAHs) from water samples. The analysis was carried out by gas chromatography (GC) coupled with triple quadruple mass spectrometer in negative chemical ionization (NCI) mode. The selected ion monitoring (SIM) was used in the quantification of the target NPAHs. Extraction factors affecting the d-SPE, including the ionic strength, extraction temperature, and extraction time were optimized by the response surface methodology. The developed d-SPE method showed good linear correlations from 10 to 1000 ng L -1 (r > 0.99), low detection limits (2.9-83.0 ng L -1 ), satisfactory repeatability (relative standard deviation of <10%, n = 6), and acceptable recoveries (71.3%-112.2%) for water samples. The developed method was used for the food and environmental sample analysis. The results demonstrated that the method could be used for sample preparation of trace NPAHs in real samples. Copyright © 2018. Published by Elsevier B.V.
Dou, Haiyang; Bai, Guoyi; Ding, Liang; Li, Yueqiu; Lee, Seungho
2015-11-27
In this study, sedimentation field-flow fractionation (SdFFF) was, for the first time, applied for determination of size distribution of Hβ zeolite particles modified by citric acid (CA-Hβ). Effects of the particle dispersion and the carrier liquid composition (type of dispersing reagent (surfactant) and salt added in the carrier liquid, ionic strength, and pH) on SdFFF elution behavior of CA-Hβ zeolite particles were systematically investigated. Also the SdFFF separation efficiency of the particles was discussed in terms of the forces such as van der Waals, hydrophobic, and induced-dipole interactions. Results reveal that the type of salt and pH of the carrier liquid significantly affect the SdFFF separation efficiency of the zeolite particles. It was found that addition of a salt (NaN3) into the carrier liquid affects the characteristic of the SdFFF channel surface. It was found that the use of an acidic medium (pH 3.2) leads to a particle-channel interaction, while the use of a basic medium (pH 10.6) promotes an inter-particle hydrophobic interaction. Result from SdFFF was compared with those from scanning electron microscopy (SEM) and dynamic light scattering (DLS). It seems that, once the experimental conditions are optimized, SdFFF becomes a valuable tool for size characterization of the zeolite particles. Copyright © 2015 Elsevier B.V. All rights reserved.
Tuzen, Mustafa; Pekiner, Ozlem Zeynep
2015-12-01
A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cacho, Juan Ignacio; Campillo, Natalia; Viñas, Pilar; Hernández-Córdoba, Manuel
2016-01-01
A new procedure based on direct insert microvial thermal desorption injection allows the direct analysis of ionic liquid extracts by gas chromatography and mass spectrometry (GC-MS). For this purpose, an in situ ionic liquid dispersive liquid-liquid microextraction (in situ IL DLLME) has been developed for the quantification of bisphenol A (BPA), bisphenol Z (BPZ) and bisphenol F (BPF). Different parameters affecting the extraction efficiency of the microextraction technique and the thermal desorption step were studied. The optimized procedure, determining the analytes as acetyl derivatives, provided detection limits of 26, 18 and 19 ng L(-1) for BPA, BPZ and BPF, respectively. The release of the three analytes from plastic containers was monitored using this newly developed analytical method. Analysis of the migration test solutions for 15 different plastic containers in daily use identified the presence of the analytes at concentrations ranging between 0.07 and 37 μg L(-1) in six of the samples studied, BPA being the most commonly found and at higher concentrations than the other analytes.
A new percolation model for composite solid electrolytes and dispersed ionic conductors
NASA Astrophysics Data System (ADS)
Risyad Hasyim, Muhammad; Lanagan, Michael T.
2018-02-01
Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor-insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell’s equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.
NASA Astrophysics Data System (ADS)
Zhou, Siwen; Zhu, Guanglai; Kang, Xianqu; Li, Qiang; Sha, Maolin; Cui, Zhifeng; Xu, Xinsheng
2018-06-01
Using molecular dynamics simulation, the research obtained the thermodynamic properties and microstructures of the mixture of N-octylpyridinium tetrafluoroborate and acetonitrile, including density, self-diffusion coefficients, excess properties, radial distribution functions (RDFs) and spatial distribution functions (SDFs). Both RDFs and SDFs indicate that the local microstructure of the polar region is different from the nonpolar region with different mole fraction of ionic liquids. Acetonitrile could increase the order of the polar regions. While with acetonitrile increasing, the orderliness of the nonpolar region increases firstly and then decreases. In relatively dilute solution, ionic liquids were dispersed to form small aggregates wrapped by acetonitrile.
Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.
Lovelock, Kevin R J
2017-12-01
For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.
Quantifying intermolecular interactions of ionic liquids using cohesive energy densities
2017-01-01
For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254
Amde, Meseret; Tan, Zhi-Qiang; Liu, Rui; Liu, Jing-Fu
2015-05-22
Using a nanofluid obtained by dispersing ZnO nanoparticles (ZnO NPs) in 1-hexyl-3-methylimidazolium hexafluorophosphate, new single drop microextraction method was developed for simultaneous extraction of three fungicides (chlorothalonil, kresoxim-methyl and famoxadone) in water samples prior to their analysis by high performance liquid chromatography (HPLC-VWD). The parameters affecting the extraction efficiency such as amount of ZnO NPs in the nanofluid, solvent volume, extraction time, stirring rate, pH and ionic strength of the sample solution were optimized. Under the optimized conditions, the limits of detection were in the range of 0.13-0.19ng/mL, the precision of the method assessed with intra-day and inter-day relative standard deviations were <4.82% and <7.04%, respectively. The proposed method was successfully applied to determine the three fungicides in real water samples including lake water, river water, as well as effluent and influent of wastewater treatment plant, with recoveries in the range of 74.94-96.11% at 5ng/mL spiking level. Besides to being environmental friendly, the high enrichment factor and the data quality obtained with the proposed method demonstrated its potential for application in multi residue analysis of fungicides in actual water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Statistical aspects of the failure of organic-fiber-reinforced plastics
NASA Astrophysics Data System (ADS)
Bazhenov, S. L.; Kuperman, A. M.; Puchkov, L. V.; Zelenskii, É. S.; Berlin, Al. Al.; Kharchenko, E. F.; Kul'kov, A. A.
1985-11-01
Dispersion of the strength of filaments and of the Weibull coefficient β leads to a drop in strength of a strand compared with the strength of the components when the adhesion by gluing together does not amount to 2-5%. The drop in strength is determined by the dispersion of strength which depends on the length of the tested specimens. Gluing together of the fibers in filaments changes the nature of the load diagrams σ-ɛ of a filament when its length exceeds δ0. A consequence is that the mechanism of rupture of the strand changes, and this leads to an additional drop of its strength. When specimens are 500 mm long, the drop in strength of the strand compared with the mean strength of the filaments amounts to 10%. Because of the dispersion of the Weibull coefficient β, the strength of filaments does not correspond exactly to the strength of the microplastic obtained from these filaments. When there is dispersion of the strength of the filaments, failure of the plastic proceeds by failure of the microplastics as a whole. Gluing together of fibers has a double effect on the strength of the material: increased degree of gluing together of the fibers reduces the "noneffective length" from δ0 to 0.4-0.5 mm, and this leads to an increase of approximately 50% of the strength of the microplastic; increased gluing together leads to a change in the mechanism of failure of the strand and of the organic-fiber-plastic made from it if there is dispersion of the strength of the component filaments, and this reduces the strength of the material in accordance with (3) (by 12-14% in our case). The longitudinal instability of the properties of the filament leads to an additional drop in strength of the material by 4.5%.
Rolfe, M; Parmar, A; Hoy, T G; Coakley, W T
2001-01-01
The topology of the cell-cell contact seam formed when normal or pronase pre-treated (PPT) erythrocytes are exposed to wheat germ agglutinin (WGA) in isotonic media of different ionic strengths was examined here. Lectin uptake and cell agglutination were also quantified. Agglutination of normal cells was gradually and significantly inhibited as ionic strength (IS) was reduced from 0.15 (buffered 145 mm NaCl) to 0.105. Agglutination was less inhibited in PPT cells, even when IS was reduced to 0.09. Cell contact seams formed during agglutination showed patterns of localized contacts. The scale of the patterns, i.e. the average lateral separation distance of contact regions, was 0.62 microm for normal cells and was significantly shorter, at 0.44 microm, for PPT cells at an IS of 0.15. The scale increased significantly for both cell types when the IS was reduced to 0.09. Flow cytometry measurements showed that WGA uptake by normal cells increased slightly, whilst that for PPT cells was unchanged, as IS was decreased from 0.15 to 0.09. The results imply that, whilst ionic strength change does not exert a strong influence on intermolecular WGA-ligand binding, physico-chemical modification of the interaction between cells modulates not only the extent and progression of the biospecific lectin-induced cell-cell agglutination but also the topology of the contact seam. The IS dependence of contact separation in WGA-agglutinated cells is contrasted here with that reported for cells adhering in dextran solutions. The influence of IS change and pronase pre-treatment on contact pattern are consistent with predictions, from interfacial instability theory, of punctuate thinning of the aqueous layer separating bilayer membranes in close apposition.
Wang, Lixin; Yang, Xuezhi; Wang, Qi; Zeng, Yuxuan; Ding, Lei; Jiang, Wei
2017-01-01
The aggregation and deposition of carbon nanotubes (CNTs) determines their transport and fate in natural waters. Therefore, the aggregation kinetics of humic-acid treated multi-walled carbon nanotubes (HA-MWCNTs) was investigated by time-resolved dynamic light scattering in NaCl and CaCl 2 electrolyte solutions. Increased ionic strength induced HA-MWCNT aggregation due to the less negative zeta potential and the reduced electrostatic repulsion. The critical coagulation concentration (CCC) values of HA-MWCNTs were 80mmol/L in NaCl and 1.3mmol/L in CaCl 2 electrolyte, showing that Ca 2+ causes more serious aggregation than Na + . The aggregation behavior of HA-MWCNTs was consistent with Derjaguin-Landau-Verwey-Overbeek theory. The deposition kinetics of HA-MWCNTs was measured by the optical absorbance at 800nm. The critical deposition concentrations for HA-MWCNT in NaCl and CaCl 2 solutions were close to the CCC values, therefore the rate of deposition cannot be increased by changing the ionic strength in the diffusion-limited aggregation regime. The deposition process was correlated to the aggregation since larger aggregates increased gravitational deposition and decreased random Brownian diffusion. HA-MWCNTs hydrodynamic diameters were evaluated at 5, 15 and 25°C. Higher temperature caused faster aggregation due to the reduced electrostatic repulsion and increased random Brownian motion and collision frequency. HA-MWCNTs aggregate faster at higher temperature in either NaCl or CaCl 2 electrolyte due to the decreased electrostatic repulsion and increased random Brownian motion. Our results suggest that CNT aggregation and deposition are two correlated processes governed by the electrolyte, and CNT transport is favored at low ionic strength and low temperature. Copyright © 2016. Published by Elsevier B.V.
Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping
2009-08-01
The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.
Viscoelastic properties of cationic starch adsorbed on quartz studied by QCM-D.
Tammelin, Tekla; Merta, Juha; Johansson, Leena-Sisko; Stenius, Per
2004-12-07
The adsorption and viscoelastic properties of layers of a cationic polyelectrolyte (cationic starch, CS, with 2-hydroxy-3-trimethylammoniumchloride as the substituent) adsorbed from aqueous solutions (pH 7.5, added NaCl 0, 1, 100, and 500 mM) on silica were studied with a quartz crystal microbalance with dissipation (QCM-D). Three different starches were investigated (weight-average molecular weights M(w) approximately 8.7 x 10(5) and 4.5 x 10(5) with degree of substitution DS = 0.75 and M(w) approximately 8.8 x 10(5) with DS = 0.2). At low ionic strength, the adsorbed layers are thin and rigid and the amount adsorbed can be calculated using the Sauerbrey equation. When the ionic strength is increased, significant changes take place in the amount of adsorbed CS and the viscoelasticity of the adsorbed layer. These changes were analyzed assuming that the layer can be described as a Voigt element on a rigid surface in contact with purely viscous solvent. It was found that CS with low charge density forms a thicker and more mobile layer with higher viscosity and elasticity than CS with high charge density. The polymers adsorbed on the silica even when the ionic strength was so high that electrostatic interactions were effectively screened. At this high ionic strength, it was possible to study the effect of molecular weight and molecular weight distribution of the CS on the properties of the adsorbed film. Increasing the molecular weight of CS resulted in a larger hydrodynamic thickness. CS with a narrow molecular weight distribution formed a more compact and rigid layer than broadly distributed CS, presumably due to the better packing of the molecules.
Lamb, John D; Simpson, David; Jensen, Bryce D; Gardner, Joseph S; Peterson, Quinn P
2006-06-16
Macrocycle-based ion chromatography provides a convenient, reliable method for the determination of perchlorate ion, which is currently of great interest to the environmental community. This study shows that effective perchlorate determinations can be made using standard conductimetric detection by combining an 18-crown-6-based mobile phase with an underivatized reversed-phase mobile phase ion chromatography (MPIC) column. One unique feature of this method is the flexibility in column capacity that is achieved through simple variations in eluent concentrations of 18-crown-6 and KOH, facilitating the separation of target analyte anions such as perchlorate. Using a standard anion exchange column as concentrator makes possible the determination of perchlorate as low as 0.2 ug/L in low ionic strength matrices. Determination of perchlorate at the sub-ug/L level in pure water and in spiked local city hard water samples with high background ion concentrations can be achieved this way. However, like other IC techniques, this method is challenged to achieve analyses at the ug/L level in the demanding high ionic strength matrix described by the United States Environmental Protection Agency (EPA) (1,000 mg/L chloride, sulfate and carbonate). We approached this challenge by use of the Cryptand C1 concentrator column, provided by Dionex Corporation, to effectively preconcentrate perchlorate while reducing background ion concentrations in the high ionic strength matrix. The retention characteristics of the concentrator column were studied in order to maximize its effectiveness for perchlorate determinations. The method makes possible the determination of perchlorate at the 5 ug/L level in the highest ionic strength matrix described by the EPA.
Modeling the effects of variable groundwater chemistry on adsorption of molybdate
Stollenwerk, Kenneth G.
1995-01-01
Laboratory experiments were used to identify and quantify processes having a significant effect on molybdate (MoO42−) adsorption in a shallow alluvial aquifer on Cape Cod, assachusetts. Aqueous chemistry in the aquifer changes as a result of treated sewage effluent mixing with groundwater. Molybdate adsorption decreased as pH, ionic strength, and the concentration of competing anions increased. A diffuse-layer surface complexation model was used to simulate adsorption of MoO42−, phosphate (PO43−), and sulfate (SO42−) on aquifer sediment. Equilibrium constants for the model were calculated by calibration to data from batch experiments. The model was then used in a one-dimensional solute transport program to successfully simulate initial breakthrough of MoO42− from column experiments. A shortcoming of the solute transport program was the inability to account for kinetics of physical and chemical processes. This resulted in a failure of the model to predict the slow rate of desorption of MoO42− from the columns. The mobility of MoO42− ncreased with ionic strength and with the formation of aqueous complexes with calcium, magnesium, and sodium. Failure to account for MoO42− speciation and ionic strength in the model resulted in overpredicting MoO42− adsorption. Qualitatively, the laboratory data predicted the observed behavior of MoO42− in the aquifer, where retardation of MoO42− was greatest in uncontaminated roundwater having low pH, low ionic strength, and low concentrations of PO43− and SO42−.
Nielsen, L; Khurana, R; Coats, A; Frokjaer, S; Brange, J; Vyas, S; Uversky, V N; Fink, A L
2001-05-22
In the search for the molecular mechanism of insulin fibrillation, the kinetics of insulin fibril formation were studied under different conditions using the fluorescent dye thioflavin T (ThT). The effect of insulin concentration, agitation, pH, ionic strength, anions, seeding, and addition of 1-anilinonaphthalene-8-sulfonic acid (ANS), urea, TMAO, sucrose, and ThT on the kinetics of fibrillation was investigated. The kinetics of the fibrillation process could be described by the lag time for formation of stable nuclei (nucleation) and the apparent rate constant for the growth of fibrils (elongation). The addition of seeds eliminated the lag phase. An increase in insulin concentration resulted in shorter lag times and faster growth of fibrils. Shorter lag times and faster growth of fibrils were seen at acidic pH versus neutral pH, whereas an increase in ionic strength resulted in shorter lag times and slower growth of fibrils. There was no clear correlation between the rate of fibril elongation and ionic strength. Agitation during fibril formation attenuated the effects of insulin concentration and ionic strength on both lag times and fibril growth. The addition of ANS increased the lag time and decreased the apparent growth rate for insulin fibril formation. The ANS-induced inhibition appears to reflect the formation of amorphous aggregates. The denaturant, urea, decreased the lag time, whereas the stabilizers, trimethylamine N-oxide dihydrate (TMAO) and sucrose, increased the lag times. The results indicated that both nucleation and fibril growth were controlled by hydrophobic and electrostatic interactions. A kinetic model, involving the association of monomeric partially folded intermediates, whose concentration is stimulated by the air-water interface, leading to formation of the critical nucleus and thence fibrils, is proposed.
Chemical modeling for precipitation from hypersaline hydrofracturing brines.
Zermeno-Motante, Maria I; Nieto-Delgado, Cesar; Cannon, Fred S; Cash, Colin C; Wunz, Christopher C
2016-10-15
Hypersaline hydrofracturing brines host very high salt concentrations, as high as 120,000-330,000 mg/L total dissolved solids (TDS), corresponding to ionic strengths of 2.1-5.7 mol/kg. This is 4-10 times higher than for ocean water. At such high ionic strengths, the conventional equations for computing activity coefficients no longer apply; and the complex ion-interactive Pitzer model must be invoked. The authors herein have used the Pitzer-based PHREEQC computer program to compute the appropriate activity coefficients when forming such precipitates as BaSO4, CaSO4, MgSO4, SrSO4, CaCO3, SrCO3, and BaCO3 in hydrofracturing waters. The divalent cation activity coefficients (γM) were computed in the 0.1 to 0.2 range at 2.1 mol/kg ionic strength, then by 5.7 mol/kg ionic strength, they rose to 0.2 for Ba(2+), 0.6 for Sr(2+), 0.8 for Ca(2+), and 2.1 for Mg(2+). Concurrently, the [Formula: see text] was 0.02-0.03; and [Formula: see text] was 0.01-0.02. While employing these Pitzer-derived activity coefficients, the authors then used the PHREEQC model to characterize precipitation of several of these sulfates and carbonates from actual hydrofracturing waters. Modeled precipitation matched quite well with actual laboratory experiments and full-scale operations. Also, the authors found that SrSO4 effectively co-precipitated radium from hydrofracturing brines, as discerned when monitoring (228)Ra and other beta-emitting species via liquid scintillation; and also when monitoring gamma emissions from (226)Ra. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Zhibing; Sun, Rui; Wang, Yuanpeng; Li, Na; Lei, Lei; Yang, Xiao; Yu, Aimin; Qiu, Fangping; Zhang, Hanqi
2014-10-15
The silica-supported ionic liquid (S-SIL) was prepared by impregnation and used as the dispersion adsorbent of matrix solid phase dispersion (MSPD) for the simultaneous extraction of eight phenolic acids and flavonoids, including caffeic acid, ferulic acid, morin, luteolin, quercetin, apigenin, chrysin, and kaempferide in raw propolis. High performance liquid chromatography with a Zorbax SB-C18 column (150mm×4.6mm, 3.5μm) was used for separation of the analytes. The mobile phase consisted of 0.2% phosphoric acid aqueous solution and acetonitrile and the flow rate of the mobile phase was 0.5mL/min. The experimental conditions for silica-supported ionic liquid-based matrix solid phase dispersion (S-SIL-based MSPD) were optimized. S-SIL containing 10% [C6MIM]Cl was used as dispersant, 20mL of n-hexane as washing solvent and 15mL of methanol as elution solvent. The ratio of S-SIL to sample was selected to be 4:1. The standard curves showed good linear relationship (r>0.9995). The limits of detection and quantification were in the range of 5.8-22.2ngmL(-1) and 19.2-74.0ngmL(-1), respectively. The relative standard deviations (RSDs) of intra-day and inter-day determination were lower than 8.80% and 11.19%, respectively. The recoveries were between 65.51% and 92.32% with RSDs lower than 8.95%. Compared with ultrasound-assisted extraction (UAE) and soxhlet extraction, the present method consumed less sample, organic solvent, and extraction time, although the extraction yields obtained by S-SIL-based MSPD are slightly lower than those obtained by UAE. Copyright © 2014 Elsevier B.V. All rights reserved.
Luo, Shusheng; Fang, Ling; Wang, Xiaowei; Liu, Hongtao; Ouyang, Gangfeng; Lan, Chongyu; Luan, Tiangang
2010-10-22
A simple and fast sample preparation method for the determination of nonylphenol (NP) and octylphenol (OP) in aqueous samples by simultaneous derivatization and dispersive liquid-liquid microextraction (DLLME) was investigated using gas chromatography-mass spectrometry (GC/MS). In this method, a combined dispersant/derivatization catalyst (methanol/pyridine mixture) was firstly added to an aqueous sample, following which a derivatization reagent/extraction solvent (methyl chloroformate/chloroform) was rapidly injected to combine in situ derivatization and extraction in a single step. After centrifuging, the sedimented phase containing the analytes was injected into the GC port by autosampler for analysis. Several parameters, such as extraction solvent, dispersant solvent, amount of derivatization reagent, derivatization and extraction time, pH, and ionic strength were optimized to obtain higher sensitivity for the detection of NP and OP. Under the optimized conditions, good linearity was observed in the range of 0.1-1000 μg L⁻¹ and 0.01-100 μg L⁻¹ with the limits of detection (LOD) of 0.03 μg L⁻¹ and 0.002 μg L⁻¹ for NP and OP, respectively. Water samples collected from the Pearl River were analyzed with the proposed method, the concentrations of NP and OP were found to be 2.40 ± 0.16 μg L⁻¹ and 0.037 ± 0.001 μg L⁻¹, respectively. The relative recoveries of the water samples spiked with different concentrations of NP and OP were in the range of 88.3-106.7%. Compared with SPME and SPE, the proposed method can be successfully applied to the rapid and convenient determination of NP and OP in aqueous samples. Copyright © 2010 Elsevier B.V. All rights reserved.
Homem, Vera; Alves, Alice; Alves, Arminda; Santos, Lúcia
2016-01-01
A rapid and simple method for the simultaneous determination of twelve synthetic musks in water samples, using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was successfully developed. The influence of seven factors (volume of the extraction solvent and disperser solvent, sample volume, extraction time, ionic strength, type of extraction and disperser solvent) affecting the UA-DLLME extraction efficiency was investigated using a screening design. The significant factors were selected and optimised employing a central composite design: 80 μL of chloroform, 880 μL of acetonitrile, 6 mL of sample volume, 3.5% (wt) of NaCl and 2 min of extraction time. Under the optimised conditions, this methodology was successfully validated for the analysis of 12 synthetic musk compounds in different aqueous samples (tap, sea and river water, effluent and influent wastewater). The proposed method showed enrichment factors between 101 and 115 depending on the analyte, limits of detection in the range of 0.004-54 ng L(-1) and good repeatability (most relative standard deviation values below 10%). No significant matrix effects were found, since recoveries ranged between 71% and 118%. Finally, the method was satisfactorily applied to the analysis of five different aqueous samples. Results demonstrated the existence of a larger amount of synthetic musks in wastewaters than in other water samples (average concentrations of 2800 ng L(-1) in influent and 850 ng L(-1) in effluent). Galaxolide, tonalide and exaltolide were the compounds most detected. Copyright © 2015 Elsevier B.V. All rights reserved.
Khani, Rouhollah; Ghasemi, Jahan B; Shemirani, Farzaneh
2014-03-25
A powerful and efficient signal-preprocessing technique that combines local and multiscale properties of the wavelet prism with the global filtering capability of orthogonal signal correction (OSC) is applied for pretreatment of spectroscopic data of parabens as model compounds after their preconcentration by robust ionic liquid-based dispersive liquid-liquid microextraction method (IL-DLLME). In the proposed technique, a mixture of a water-immiscible ionic liquid (as extraction solvent) [Hmim][PF6] and disperser solvent is injected into an aqueous sample solution containing one of the IL's ions, NaPF6, as extraction solvent and common ion source. After preconcentration, the absorbance of the extracted compounds was measured in the wavelength range of 200-700 nm. The wavelet orthogonal signal correction with partial least squares (WOSC-PLS) method was then applied for simultaneous determination of each individual compound. Effective parameters, such as amount of IL, volume of the disperser solvent and amount of NaPF6, were inspected by central composite design to identify the most important parameters and their interactions. The effect of pH on the sensitivity and selectivity was studied according to the net analyte signal (NAS) for each component. Under optimum conditions, enrichment factors of the studied compounds were 75 for methyl paraben (MP) and 71 for propyl paraben (PP). Limits of detection for MP and PP were 4.2 and 4.8 ng mL(-)(1), respectively. The root mean square errors of prediction for MP and PP were 0.1046 and 0.1275 μg mL(-)(1), respectively. The practical applicability of the developed method was examined using hygienic, cosmetic, pharmaceutical and natural water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Investigation on properties of P((MAA-co-DMAEMA)-g-EG) polyampholyte nanogels
NASA Astrophysics Data System (ADS)
Deng, Liandong; Zhai, Yinglei; Guo, Shutao; Jin, Fengmin; Xie, Zhaopeng; He, Xiaohua; Dong, Anjie
2009-02-01
P((MAA-co-DMAEMA)-g-EG) polyampholyte nanogels (PANGs) were prepared by distillation-dispersion copolymerization of poly(ethylene glycol) methyl ether methacrylate (MPEGMA), N, N-dimethylaminoethyl methacrylate (DMAEMA), and methacrylic acid (MAA) using acetonitrile (AN) as dispersion medium. The results of FTIR spectra indicate that the composition of P((MAA-co-DMAEMA)-g-EG) PANGs is consistent with the designed structure. The results of TEM and laser particle size analyzer (LPSA) show that P((MAA-co-DMAEMA)-g-EG) PANGs present spherical morphology and a bimodal size distribution after and before swelling. P((MAA-co-DMAEMA)-g-EG) PANGs have typically amphoteric characters responding to pH, whose isoelectric point (IEP) increases with decreasing the ratio of MAA/DMAEMA and equilibrium swelling degree (ESD) is greater than that at IEP when the pH value is distant from IEP. P((MAA-co-DMAEMA)-g-EG) PANGs also represent ionic strength sensitivity. Using the water-soluble chitosan (CS, Mn = 5 kDa) as model drug, in vitro release indicates that CS can be effectively incorporated into PANGs and the release rate of CS at pH 1.89 is an order of magnitude greater than that at pH 8.36. P((MAA-co-DMAEMA)-g-EG) PANGs may be useful in biomedicine, especially in oral drug delivery of biomacromolecule.
Duan, Xiaochuan; Kim, Tongil; Li, Di; Ma, Jianmin; Zheng, Wenjun
2013-05-03
Well-dispersed ammonium aluminum carbonate hydroxide (NH4-Dw) and γ-AlOOH nanostructures with controlled morphologies have been synthesized by employing an ionic-liquid-assisted hydrothermal process. The basic strategies that were used in this work were: 1) A controllable phase transition from NH4-Dw to γ-AlOOH could be realized by increasing the reaction temperature and 2) the morphological evolution of NH4-Dw and γ-AlOOH nanostructures could be influenced by the concentration of the ionic liquid. Based on these experimental results, the main objective of this work was to clarify the effect models of the ionic liquids on the synthesis of NH4-Dw and γ-AlOOH nanostructures, which could be divided into cationic- or anionic-dominant effect models, as determined by the different surface structures of the targets. Specifically, under the cationic-dominant regime, the ionic liquids mainly showed dispersion effects for the NH4-Dw nanostructures, whereas the anionic-dominant model could induce the self-assembly of the γ-AlOOH particles to form hierarchical structures. Under the guidance of the proposed models, the effect of the ionic liquids would be optimized by an appropriate choice of cations or anions, as well as by considering the different effect models with the substrate surface. We expect that such effect models between ionic liquids and the target products will be helpful for understanding and designing rational ionic liquids that contain specific functional groups, thus open up new opportunities for the synthesis of inorganic nanomaterials with new morphologies and improved properties. In addition, these as-prepared NH4-Dw and γ-AlOOH nanostructures were converted into porous γ-Al2O3 nanostructures by thermal decomposition, whilst preserving the same morphology. By using HRTEM and nitrogen-adsorption analysis, the obtained γ-Al2O3 samples were found to have excellent porous properties and, hence, may have applications in catalysis and adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koga, Hirotaka; Nogi, Masaya; Isogai, Akira
2017-11-22
Functional molecules play a significant role in the development of high-performance composite materials. Functional molecules should be well dispersed (ideally dissolved) and supported within an easy-to-handle substrate to take full advantage of their functionality and ensure easy handling. However, simultaneously achieving the dissolution and support of functional molecules remains a challenge. Herein, we propose the combination of a nonvolatile ionic liquid and an easy-to-handle cellulose paper substrate for achieving this goal. First, the photochromic molecule, i.e., diarylethene, was dissolved in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim]NTf 2 ). Then, diarylethene/[bmim]NTf 2 was supported on cellulose fibers within the paper, through hydrogen bonding between [bmim] cations of the ionic liquid and the abundant hydroxyl groups of cellulose. The as-prepared paper composites exhibited reversible, rapid, uniform, and vivid coloration and bleaching upon ultraviolet and visible light irradiation. The photochromic performance was superior to that of the paper prepared in the absence of [bmim]NTf 2 . This concept could be applied to other functional molecules. For example, lithium perchlorate/[bmim] tetrafluoroborate supported within cellulose paper acted as a flexible electrolyte to provide a paper-based electrochromic device. These findings are expected to further the development of composite materials with high functionality and practicality.
Cluster approach to the prediction of thermodynamic and transport properties of ionic liquids
NASA Astrophysics Data System (ADS)
Seeger, Zoe L.; Kobayashi, Rika; Izgorodina, Ekaterina I.
2018-05-01
The prediction of physicochemical properties of ionic liquids such as conductivity and melting point would substantially aid the targeted design of ionic liquids for specific applications ranging from solvents for extraction of valuable chemicals to biowaste to electrolytes in alternative energy devices. The previously published study connecting the interaction energies of single ion pairs (1 IP) of ionic liquids to their thermodynamic and transport properties has been extended to larger systems consisting of two ion pairs (2 IPs), in which many-body and same-ion interactions are included. Routinely used cations, of the imidazolium and pyrrolidinium families, were selected in the study coupled with chloride, tetrafluoroborate, and dicyanamide. Their two ion pair clusters were subjected to extensive configuration screening to establish most stable structures. Interaction energies of these clusters were calculated at the spin-ratio scaled MP2 (SRS-MP2) level for the correlation interaction energy, and a newly developed scaled Hartree-Fock method for the rest of energetic contributions to interaction energy. A full geometry screening for each cation-anion combination resulted in 192 unique structures, whose stability was assessed using two criteria—widely used interaction energy and total electronic energy. Furthermore, the ratio of interaction energy to its dispersion component was correlated with experimentally observed melting points in 64 energetically favourable structures. These systems were also used to test the correlation of the dispersion contribution to interaction energy with measured conductivity.
NASA Technical Reports Server (NTRS)
Gratz, Andrew J.; Bird, Peter
1993-01-01
The range of the measured quartz dissolution rates, as a function of temperature and pOH, extent of saturation, and ionic strength, is extended to cover a wider range of solution chemistries, using the negative crystal methodology of Gratz et al. (1990) to measure the dissolution rate. A simple rate law describing the quartz dissolution kinetics above the point of zero charge of quartz is derived for ionic strengths above 0.003 m. Measurements were performed on some defective crystals, and the mathematics of step motion was developed for quartz dissolution and was compared with rough-face behavior using two different models.
Multilaboratory study of the shifts in the IEP of anatase at high ionic strengths.
Kosmulski, Marek; Dukhin, Andrei S; Priester, Torsten; Rosenholm, Jarl B
2003-07-01
The zeta-potentials of anatase at pH 2-11 in 0.1, 0.3, 0.5, and 1 moldm(-3) NaI were studied using the DT 1200 in three laboratories. At [NaI]=1 moldm(-3) the zeta-potentials were positive over the entire pH range. The previously observed tendency of the isoelectric point of anatase to shift to high pH at high ionic strength (M. Kosmulski, J.B. Rosenholm, J. Phys. Chem. 100 (1996) 11681) and the salt specificity of this effect were confirmed. The zeta-potentials obtained in different laboratories using DT 1200 are consistent within 3 mV.
Solution structure of detergent micelles at conditions relevant to membrane protein crystallization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Littrell, K.; Thiyagarajan, P.; Tiede, D.
1999-07-02
In this study small angle neutron scattering was used to characterize the formation of micelles in aqueous solutions of the detergents DMG and SPC as a function of detergent concentration and ionic strength of the solvent. The effects on the micelle structure of the additives glycerol and PEG, alone as well as in combination typical for actual membrane protein crystallization, were also explored. This research suggests that the micelles are cigar-like in form at the concentrations studied. The size of the micelles was observed to increase with increasing ionic strength but decrease with the addition of glycerol or PEG.
Veen, Sandra J; Kegel, Willem K
2009-11-19
We demonstrate a new structural instability of shell-like assemblies of polyoxometalates. Besides the colloidal instability, that is, the formation of aggregates that consist of many single layered POM-shells, these systems also display an instability on a structural scale within the shell-like assemblies. This instability occurs at significantly lower ionic strength than the colloidal stability limit and only becomes evident after a relatively long time. For the polyoxometalate, abbreviated as {Mo(72)Fe(30)}, it is shown that the structural stability limit of POM-shells lies between a NaCl concentration of 1.00 and 5.00 mM in aqueous solution.
Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M
2016-03-18
Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. Copyright © 2016 Elsevier B.V. All rights reserved.
Mikac, U; Sepe, A; Kristl, J; Baumgartner, I
2012-01-01
Modified-release matrix tablets have been extensively used by the pharmaceutical industry as one of the most successful oral drug-delivery systems. The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. Magnetic resonance imaging (MRI) is a powerful, non-invasive technique that can help improve our understanding of the gel layer formed on swellable, polymer-matrix tablets, as well as the layer's properties and its influence on the drug release. The aim was to investigate the effects of pH and ionic strength on swelling and to study the influence of structural changes in xanthan gel on drug release. For this purpose a combination of different MRI methods for accurate determination of penetration, swelling and erosion fronts was used. The position of the penetration and swelling fronts were the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers.
Polyvinyl alcohol-based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium.
Mola Ali Abasiyan, Sara; Mahdavinia, Gholam Reza
2018-05-01
In this study, magnetic nanocomposite hydrogels based on polyvinyl alcohol were synthesized. Magnetic polyvinyl alcohol/laponite RD (PVA-mLap) nanocomposites were characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results indicated that PVA-mLap had desirable magnetic-sorption properties and magnetic-laponite nanoparticles were successfully synthesized and added to polyvinyl alcohol. The present nanocomposites were applied to remove Cd 2+ from aqueous solution. The influence of initial Cd 2+ concentration, magnetic-laponite concentration, pH, and ionic strength on adsorption isotherm was investigated. Heterogeneity of adsorption sites was intensified by increasing magnetic concentration of adsorbents and by rising pH value. Results of ionic strength studies indicated that by increasing ionic strength more than four times, the adsorption of Cd 2+ has only decreased around 15%. According to the results, the dominant mechanism of Cd 2+ sorption by the present adsorbents was determined chemical and specific sorption. Therefore, the use of the present nanocomposites as a powerful adsorbent of Cd 2+ in the wastewater treatment is suggested. Isotherm data were described by using Freundlich and Langmuir models, and better fitting was introduced Langmuir model.
A model study of factors involved in adhesion of Pseudomonas fluorescens to meat.
Piette, J P; Idziak, E S
1992-01-01
A study was undertaken to investigate the factors involved in the adhesion of Pseudomonas fluorescens to model meat surfaces (tendon slices). Adhesion was fast (less than 2.5 min) and was not suppressed by killing the cells with UV, gamma rays, or heat, indicating that physiological activity was not required. In various salt solutions (NaCl, KCl, CaCl2, MgCl2), adhesion increased with increasing ionic strength up to 10 to 100 mM, suggesting that, at low ionic strengths, electrostatic interactions were involved in the adhesion process. At higher ionic strengths (greater than 10 to 100 mM) or in the presence of Al3+ ions, adhesion was sharply reduced. Selectively blocking of carboxyl or amino groups at the cell surface by chemical means did not affect adhesion. These groups are therefore not directly involved in an adhesive bond with tendon. Given a sufficient cell concentration (10(10) CFU.ml-1) in the adhesion medium, the surface of tendon was almost entirely covered with adherent bacteria. This suggests that if the adhesion is specific, the attachment sites on the tendon surface must be located within collagen or proteoglycan molecules. Images PMID:1444387
On the acid-base properties of humic acid in soil.
Cooke, James D; Hamilton-Taylor, John; Tipping, Edward
2007-01-15
Humic acid was isolated from three contrasting organic-rich soils and acid-base titrations performed over a range of ionic strengths. Results obtained were unlike most humic acid data sets; they showed a greater ionic strength dependency at low pH than at high pH. Forward- and back-titrations with the base and acid revealed hysteresis, particularly at low pH. Previous authors attributed this type of hysteresis to humic acid aggregates-created during the isolation procedure-being redissolved during titration as the pH increased and regarded the results as artificial. However, forward- and back-titrations with organic-rich soils also demonstrated a similar hysteretic behavior. These observations indicate (i) that titrations of humic acid in aggregated form (as opposed to the more usual dissolved form) are more representative of the acid-base properties of humic acid in soil and (ii) that the ionic strength dependency of proton binding in humic acid is related to its degree of aggregation. Thus, the current use of models based on data from dissolved humic substances to predictthe acid-base properties of humic acid in soil under environmental conditions may be flawed and could substantially overestimate their acid buffering capacity.
New recommendations for measuring collagen solubility.
Latorre, María E; Lifschitz, Adrian L; Purslow, Peter P
2016-08-01
The heat-solubility of intramuscular collagen is usually conducted in 1/4 Ringer's solution at pH7.4, despite this ionic strength and pH being inappropriate for post-rigor meat. The current work studied the percentage of soluble collagen and hydrothermal isometric tension characteristics of perimysial strips on bovine semitendinosus muscles in either 1/4 Ringer's solution, distilled water, PBS, or a solution of the same salt concentration as 1/4 Ringer's but at pH5.6. Values of % soluble collagen were lower at pH7.4 than 5.6. Increasing ionic strength reduced % soluble collagen. The maximum perimysial isometric tension was independent of the bathing medium, but the percent relaxation was higher at pH7.4 than at pH5.6, and increased with ionic strength of the media. It is recommended that future measurements of collagen solubility and tests on connective tissue components of post-rigor meat should be carried out in a solution of concentrations NaCl and KCl equivalent to those in 1/4 Ringer's, but at pH5.6, a pH relevant to post-rigor meat. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of the statistical thermodynamic model for nonlinear binary protein adsorption equilibria.
Zhou, Xiao-Peng; Su, Xue-Li; Sun, Yan
2007-01-01
The statistical thermodynamic (ST) model was used to study nonlinear binary protein adsorption equilibria on an anion exchanger. Single-component and binary protein adsorption isotherms of bovine hemoglobin (Hb) and bovine serum albumin (BSA) on DEAE Spherodex M were determined by batch adsorption experiments in 10 mM Tris-HCl buffer containing a specific NaCl concentration (0.05, 0.10, and 0.15 M) at pH 7.40. The ST model was found to depict the effect of ionic strength on the single-component equilibria well, with model parameters depending on ionic strength. Moreover, the ST model gave acceptable fitting to the binary adsorption data with the fitted single-component model parameters, leading to the estimation of the binary ST model parameter. The effects of ionic strength on the model parameters are reasonably interpreted by the electrostatic and thermodynamic theories. The effective charge of protein in adsorption phase can be separately calculated from the two categories of the model parameters, and the values obtained from the two methods are consistent. The results demonstrate the utility of the ST model for describing nonlinear binary protein adsorption equilibria.
Yang, Xinyao; Lin, Shihong; Wiesner, Mark R
2014-01-15
Interactions between organic matter (OM) and engineered polymer coatings as they affect the retention of polyvinylpyrrolidone (PVP) polymer-coated silver nanoparticles (AgNPs) were studied. Two distinct types of OM-cysteine representing low molecular weight multivalent functional groups, and Suwannee River Humic Acid (HA) representing high molecular weight polymers, were investigated with respect to their effects on particle stability in aggregation and deposition. Aggregation of the PVP coated AgNPs (PVP-AgNPs) was enhanced by cysteine addition at high ionic strengths, which was attributed to cysteine binding to the AgNPs and replacing the otherwise steric stabilizing agent PVP. In contrast the addition of HA did not increase aggregation rates and decreased PVP-AgNP deposition to the silica porous medium, consistent with enhanced electrosteric stabilization by the HA. Although cysteine also reduced deposition in the porous medium, the mechanisms of reduced deposition appear to be enhanced electric double layer (EDL) interaction at low ionic strengths. At higher ionic strengths, aggregation was favored leading to lower deposition due to smaller diffusion coefficients and single collector efficiencies despite the reduced EDL interactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M.
2004-01-01
The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.
Greyling, Guilaume; Pasch, Harald
2017-08-25
Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.
Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength
NASA Astrophysics Data System (ADS)
Bryan, Allison L.; Dong, Shuofei; Wilkes, Elise B.; Wasylenki, Laura E.
2015-05-01
Marine ferromanganese sediments represent one of the largest sinks from global seawater for Zn, a critical trace metal nutrient. These sediments are variably enriched in heavier isotopes of Zn relative to deep seawater, and some are among the heaviest natural samples analyzed to date. New experimental results demonstrate that adsorption of Zn to poorly crystalline Mn oxyhydroxide results in preferential association of heavier isotopes with the sorbent phase. At low ionic strength our experimental system displayed a short-lived kinetic isotope effect, with light isotopes adsorbed to birnessite (Δ66/64Znadsorbed-dissolved ∼ -0.2‰). After 100 h the sense of fractionation was opposite, such that heavier isotopes were preferentially adsorbed at steady state, but the magnitude of Δ66/64Znadsorbed-dissolved was indistinguishable from zero (+0.05 ± 0.08‰). At high ionic strength, we observed preferential sorption of heavy isotopes, with a strong negative correlation between Δ66/64Znadsorbed-dissolved and the percentage of Zn on the birnessite. Values of Δ66/64Znadsorbed-dissolved ranged from nearly +3‰ at low surface loading to +0.16‰ at high surface loading. Based on previous EXAFS work we infer that Zn adsorbs first as tetrahedral, inner-sphere complexes at low surface loading, with preferential incorporation of heavier isotopes relative to the octahedral Zn species predominating in solution. As surface loading increases, so does the proportion of Zn adsorbing as octahedral complexes, thus diminishing the magnitude of fractionation between the dissolved and adsorbed pools of Zn. The magnitude of fractionation at high ionic strength is also governed by aqueous speciation of Zn in synthetic seawater; a substantial fraction of Zn ions reside in chloro complexes, which preferentially incorporate light Zn isotopes, and this drives the adsorbed pool to be heavier relative to the bulk solution than it was at low ionic strength. Our results explain the observation that ferromanganese sediments are enriched in heavier isotopes of Zn relative to deep seawater. This represents a step towards building a robust mass balance model for Zn isotopes in the oceans and potentially using Zn isotopes to trace biogeochemical cycling of this important element in the modern and ancient oceans.
A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.
Buschmann, M D; Grodzinsky, A J
1995-05-01
Measured values of the swelling pressure of charged proteoglycans (PG) in solution (Williams RPW, and Comper WD; Biophysical Chemistry 36:223, 1990) and the ionic strength dependence of the equilibrium modulus of PG-rich articular cartilage (Eisenberg SR, and Grodzinsky AJ; J Orthop Res 3: 148, 1985) are compared to the predictions of two models. Each model is a representation of electrostatic forces arising from charge present on spatially fixed macromolecules and spatially mobile micro-ions. The first is a macroscopic continuum model based on Donnan equilibrium that includes no molecular-level structure and assumes that the electrical potential is spatially invariant within the polyelectrolyte medium (i.e. zero electric field). The second model is based on a microstructural, molecular-level solution of the Poisson-Boltzmann (PB) equation within a unit cell containing a charged glycosaminoglycan (GAG) molecule and its surrounding atmosphere of mobile ions. This latter approach accounts for the space-varying electrical potential and electrical field between the GAG constituents of the PG. In computations involving no adjustable parameters, the PB-cell model agrees with the measured pressure of PG solutions to within experimental error (10%), whereas the ideal Donnan model overestimates the pressure by up to 3-fold. In computations involving one adjustable parameter for each model, the PB-cell model predicts the ionic strength dependence of the equilibrium modulus of articular cartilage. Near physiological ionic strength, the Donnan model overpredicts the modulus data by 2-fold, but the two models coincide for low ionic strengths (C0 < 0.025M) where the spatially invariant Donnan potential is a closer approximation to the PB potential distribution. The PB-cell model result indicates that electrostatic forces between adjacent GAGs predominate in determining the swelling pressure of PG in the concentration range found in articular cartilage (20-80 mg/ml). The PB-cell model is also consistent with data (Eisenberg and Grodzinsky, 1985, Lai WM, Hou JS, and Mow VC; J Biomech Eng 113: 245, 1991) showing that these electrostatic forces account for approximately 1/2 (290kPa) the equilibrium modulus of cartilage at physiological ionic strength while absolute swelling pressures may be as low as approximately 25-100kPa. This important property of electrostatic repulsion between GAGs that are highly charged but spaced a few Debye lengths apart allows cartilage to resist compression (high modulus) without generating excessive intratissue swelling pressures.
Ma, Si; Liu, Changli; Yang, Kun; Lin, Daohui
2012-11-15
Discharged carbon nanotubes (CNTs) can adsorb the widely-distributed humic acid (HA) in aquatic environments and thus be stabilized. HA-stabilized CNTs can find their way into and challenge the potable water treatment system. This study investigated the efficiency of coagulation and sedimentation techniques in the removal of the HA-stabilized multi-walled carbon nanotubes (MWCNTs) using polyaluminum chloride (PACl) as a coagulant, with a focus on the effects of hydraulic conditions and water chemistry. Stirring speeds in the mixing and reacting stages were gradually changed to examine the effect of the hydraulic conditions on the removal rate. The stirring speed in the reacting stage affected floc formation and thereby had a greater impact on the removal rate than the stirring speed in the mixing stage. Water chemistry factors such as pH and ionic strength had a significant effect on the stability of MWCNT suspension and the removal efficiency. Low pH (4-7) was favorable for saving the coagulant and maintaining high removal efficiency. High ionic strength facilitated the destabilization of the HA-stabilized MWCNTs and thereby lowered the required PACl dosage for the coagulation. However, excessively high ionic strength (higher than the critical coagulation concentration) decreased the maximum removal rate, probably by inhibiting ionic activity of PACl hydrolyzate in water. These results are expected to shed light on the potential improvement of coagulation removal of aqueous stabilized MWCNTs in water treatment systems. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanoja, Gabriel; Popere, Bhooshan; Beckingham, Bryan; Evans, Christopher; Lynd, Nathaniel; Segalman, Rachel
Elucidating the relationship between chemical structure, morphology, and ionic conductivity is essential for designing novel materials for electrochemical applications. In this work, the effect of lamellar domain spacing (d) on ionic conductivity (σ) is investigated for a model system of hydrated block copolymer based on a protic polymerized ionic liquid. We present a strategy that allows for the synthesis of a well-defined series of narrowly dispersed PS- b - PIL with constant volume fraction of ionic liquid moieties (fIL ~ 0.39). These materials self-assemble into ordered lamellar morphologies with variable domain spacing (23-59 nm) as demonstrated by SAXS. PS- b - PIL membranes exhibit ionic conductivities above 10-4 S/cm at room temperature, which are independent of domain spacing. The conductivity scaling relationship demonstrated in this work suggests that a mechanically robust membrane can be designed without compromising its ability to transport ions. In addition, PIL-based membranes exhibit lower water uptake (λ = 10) in comparison with many proton-conducting systems reported elsewhere. The low water content of these materials makes them promising candidates for solar-fuels electrochemical devices.
Zhou, Caihong; Tong, Shanshan; Chang, Yunxia; Jia, Qiong; Zhou, Weihong
2012-04-01
Ionic liquid (IL) based dispersive liquid-liquid microextraction (DLLME) with back-extraction coupled with capillary electrophoresis ultraviolet detection was developed to determine four phenolic compounds (bisphenol-A, β-naphthol, α-naphthol, 2, 4-dichlorophenol) in aqueous cosmetics. The developed method was used to preconcentrate and clean up the four phenolic compounds including two steps. The analytes were transferred into room temperature ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate, [C(8) MIM][PF(6) ]) rich-phase in the first step. In the second step, the analytes were back-extracted into the alkaline aqueous phase. The effects of extraction parameters, such as type and volume of extraction solvent, type and volume of disperser, extraction and centrifugal time, sample pH, salt addition, and concentration and volume of NaOH in back-extraction were investigated. Under the optimal experimental conditions, the preconcentration factors were 60.1 for bisphenol-A, 52.7 for β-naphthol, 49.2 for α-naphthol, and 18.0 for 2, 4-dichlorophenol. The limits of detection for bisphenol-A, β-naphthol, α-naphthol and 2, 4-dichlorophenol were 5, 5, 8, and 100 ng mL(-1), respectively. Four kinds of aqueous cosmetics including toner, soften lotion, make-up remover, and perfume were analyzed and yielded recoveries ranging from 81.6% to 119.4%. The main advantages of the proposed method are quick, easy, cheap, and effective. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Allahham, Ayman; Stewart, Peter J; Das, Shyamal C
2013-11-30
Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.
Mikac, Ursa; Sepe, Ana; Kristl, Julijana; Baumgartner, Sasa
2010-08-03
The key element in drug release from hydrophilic matrix tablets is the gel layer that regulates the penetration of water and controls drug dissolution and diffusion. We have selected magnetic resonance imaging (MRI) as the method of choice for visualizing the dynamic processes occurring during the swelling of xanthan tablets in a variety of media. The aims were (i) to develop a new method using MRI for accurate determination of penetration, swelling and erosion fronts, (ii) to investigate the effects of pH and ionic strength on swelling, and (iii) to study the influence of structural changes in xanthan gel on drug release. Two dimensional (2D) MRI and one dimensional single point imaging (SPI) of swollen xanthan tablets were recorded, together with T(2) mapping. The border between dry and hydrated glassy xanthan-the penetration front-was determined from 1D SPI signal intensity profiles. The erosion front was obtained from signal intensity profiles of 2D MR images. The swelling front, where xanthan is transformed from a glassy to a rubbery state (gel formation), was determined from T(2) profiles. Further, the new combination of MRI methods for swelling front determination enables to explain the appearance of the unusual "bright front" observed on 2D MR images in tablets swollen in HCl pH 1.2 media, which represents the position of swelling front. All six media studied, differing in pH and ionic strength, penetrate through the whole tablet in 4h+/-0.3h, but formation of the gel layer is significantly delayed. Unexpectedly, the position of the swelling front was the same, independently of the different xanthan gel structures formed under different conditions of pH and ionic strength. The position of the erosion front, on the other hand, is strongly dependent on pH and ionic strength, as reflected in different thicknesses of the gel layers. The latter are seen to be the consequence of the different hydrodynamic radii of the xanthan molecules, which affect the drug release kinetics. The slowest release of pentoxifylline was observed in water where the thickest gel was formed, whereas the fastest release was observed in HCl pH 1.2, in which the gel layer was thinnest. Moreover, experiments simulating physiological conditions showed that changes of pH and ionic strength influence the xanthan gel structure relatively quickly, and consequently the drug release kinetics. It is therefore concluded that drug release is greatly influenced by changes in the xanthan molecular conformation, as reflected in changed thickness of the gel layer. A new method utilizing combination of SPI, multi-echo MRI and T(2) mapping eliminates the limitations of standard methods used in previous studies for determining moving fronts and improves current understanding of the dynamic processes involved in polymer swelling. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Wang, Lingling; Zhang, Danfeng; Xu, Xu; Zhang, Lei
2016-04-15
Ionic liquid (IL) dispersive liquid-liquid microextraction (DLLME) method was successfully developed for extracting three endocrine disrupting compounds (EDCs) (bisphenol A, bisphenol AF and bisphenol AP) from the food packaging. 1-Octyl-3-methylimidazoliumhexafluorophosphate ([C8MIM][PF6]) was selected as extraction solution. The extraction procedure did not require a dispersive solvent. Three EDCs extraction kinetics were found to be very fast and the equilibrium was attained within 3.0 min following the pseudo-first-order model. The H-bonding and hydrophobic interactions play an important role in the partitioning of EDCs into IL from aqueous solution. The recovered IL could be reused for three runs without significant loss of extraction efficiencies. The spiked recoveries of three targets in food packaging were in the range of 97.8-103.1%. The limits of detection ranged from 0.50 to 1.50 ng mL(-1) (S/N=3). As a result, this method has been successfully applied for the sensitive detection of three EDCs in real samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mondragón, Rosa; Juliá, J Enrique; Cabedo, Luis; Navarrete, Nuria
2018-05-14
Nanoparticles have been used in thermal applications to increase the specific heat of the molten salts used in Concentrated Solar Power plants for thermal energy storage. Although several mechanisms for abnormal enhancement have been proposed, they are still being investigated and more research is necessary. However, this nanoparticle-salt interaction can also be found in chemical applications in which nanoparticles have proved suitable to be used as an adsorbent for nitrate removal given their high specific surface, reactivity and ionic exchange capacity. In this work, the ionic exchange capacity mechanism for the nanoparticles functionalization phenomenon was evaluated. The ionic exchange capacity of silica and alumina nanoparticles dispersed in lithium, sodium and potassium nitrates was measured. Fourier-transform infrared spectroscopy tests confirmed the adsorption of nitrate ions on the nanoparticle surface. A relationship between the ionic exchange capacity of nanoparticles and the specific heat enhancement of doped molten salts was proposed for the first time.
NASA Astrophysics Data System (ADS)
Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.
2018-04-01
Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.
Dope dyeing of lyocell fiber with NMMO-based carbon black dispersion.
Zhang, Liping; Sun, Weize; Xu, Dan; Li, Min; Agbo, Christiana; Fu, Shaohai
2017-10-15
NMMO-based carbon black (CB) dispersion was prepared and its properties as well as its compatibility with lyocell spinning solution were further investigated. Modified lignosulfonate (SP) was verified to be the preeminent dispersant for the preparation of NMMO-based CB dispersion with mass ratio of SP to CB 20% and water to NMMO 13%. The compatibility of NMMO-based CB dispersion with lyocell spinning solution had close relation with dispersant structure and CB content. Mass ratio of CB to cellulose affects the mechanical properties, color strength and crystallinity of lyocell fiber. 0.5% CB increased the breaking strength and elongation of lyocell fiber, whiles breaking strength and elongation of the lyocell fiber were reduced slightly when 2.0% CB was used. The dope dyed fiber showed excellent rubbing and washing fastness as well as migration resistance to water, ethanol and acetone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Guan, Jin; Zhang, Chi; Wang, Yang; Guo, Yiguang; Huang, Peiting; Zhao, Longshan
2016-11-01
A new analytical method was developed for simultaneous determination of 12 pharmaceuticals using ultrasound-assisted dispersive liquid-liquid microextraction (DLLME) followed by ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS). Six nonsteroidal anti-inflammatory drugs (NSAIDs, ketoprofen, mefenamic acid, tolfenamic acid, naproxen, sulindac, and piroxicam) and six antibiotics (tinidazole, cefuroxime axetil, ciprofloxacin, sulfamethoxazole, sulfadiazine, and chloramphenicol) were extracted by ultrasound-assisted DLLME using dichloromethane (800 μL) and methanol/acetonitrile (1:1, v/v, 1200 μL) as the extraction and dispersive solvents, respectively. The factors affecting the extraction efficiency, such as the type and volume of extraction and dispersive solvent, vortex and ultrasonic time, sample pH, and ionic strength, were optimized. The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution by using a small volume of dispersive solvent, which increased the extraction efficiency and reduced the equilibrium time. Under the optimal conditions, the calibration curves showed good linearity in the range of 0.04-20 ng mL -1 (ciprofloxacin and sulfadiazine), 0.2-100 ng mL -1 (ketoprofen, tinidazole, cefuroxime axetil, naproxen, sulfamethoxazole, and sulindac), and 1-200 ng mL -1 (mefenamic acid, tolfenamic acid, piroxicam, and chloramphenicol). The LODs and LOQs of the method were in the range of 0.006-0.091 and 0.018-0.281 ng mL -1 , respectively. The relative recoveries of the target analytes were in the range from 76.77 to 99.97 % with RSDs between 1.6 and 8.8 %. The developed method was successfully applied to the extraction and analysis of 12 pharmaceuticals in five kinds of water samples (drinking water, running water, river water, influent and effluent wastewater) with satisfactory results. Graphical Abstract Twelve pharmaceuticals in water samples analyted by UHPLC-MS/MS using ultrasound-assisted DLLME.
Tuning the Selectivity of Single-Site Supported Metal Catalysts with Ionic Liquids
Babucci, Melike; Fang, Chia -Yu; Hoffman, Adam S.; ...
2017-09-11
1,3-Dialkylimidazolium ionic liquid coatings act as electron donors, increasing the selectivity for partial hydrogenation of 1,3-butadiene catalyzed by iridium complexes supported on high-surface-area γ-Al 2O 3. High-energy-resolution fluorescence detection X-ray absorption near-edge structure (HERFD XANES) measurements quantify the electron donation and are correlated with the catalytic activity and selectivity. Furthermore, the results demonstrate broad opportunities to tune electronic environments and catalytic properties of atomically dispersed supported metal catalysts.
Costa, Luciano T; Ribeiro, Mauro C C
2006-05-14
Molecular dynamics (MD) simulations have been performed for prototype models of polymer electrolytes in which the salt is an ionic liquid based on 1-alkyl-3-methylimidazolium cations and the polymer is poly(ethylene oxide), PEO. The MD simulations were performed by combining the previously proposed models for pure ionic liquids and polymer electrolytes containing simple inorganic ions. A systematic investigation of ionic liquid concentration, temperature, and the 1-alkyl- chain length, [1,3-dimethylimidazolium]PF6, and [1-butyl-3-methylimidazolium]PF6, effects on resulting equilibrium structure is provided. It is shown that the ionic liquid is dispersed in the polymeric matrix, but ionic pairs remain in the polymer electrolyte. Imidazolium cations are coordinated by both the anions and the oxygen atoms of PEO chains. Probability density maps of occurrences of nearest neighbors around imidazolium cations give a detailed physical picture of the environment experienced by cations. Conformational changes on PEO chains upon addition of the ionic liquid are identified. The equilibrium structure of simulated systems is also analyzed in reciprocal space by using the static structure factor, S(k). Calculated S(k) display a low wave-vector peak, indicating that spatial correlation in an extended-range order prevail in the ionic liquid polymer electrolytes. Long-range correlations are assigned to nonuniform distribution of ionic species within the simulation box.
Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa
2015-04-01
A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ionic Liquid Microstrips Impregnated with Magnetic Nanostirrers for Sensitive Gas Sensors.
Gondosiswanto, Richard; Hibbert, D Brynn; Fang, Yu; Zhao, Chuan
2017-12-13
Ionic liquids (IL) have been regarded as promising electrolytes as substitutes for volatile aqueous or organic solvents for electrochemical gas sensors. However, ILs are viscous, and the slow diffusion of gas molecules leads to poor sensitivity and sluggish response times. Herein, we describe a strategy using an array of microstrips of IL containing magnetic nanoparticles as nanostirrers for enhanced mass transport and gas sensing. Magnetic CoFe 2 O 4 nanoparticles are synthesized and dispersed in a hydrophobic IL [BMP][Ntf 2 ]. First, the convection effect of the IL dispersion was studied using the reversible redox couple ferrocene/ferrocenium ion. In a rotating magnetic field, steady-state currents for oxidation of dissolved ferrocene are three to five times greater than that in an unstirred solution. Then, the IL dispersion is micropatterned onto a gold electrode using microcontact printing. A self-assembled monolayer was printed onto a gold surface creating 70 μm wide hydrophobic lines with a 30 μm gap between them. Upon applying the IL dispersion into the gap, a 30 μm wide array of microstrips was successfully fabricated. The system is demonstrated as an oxygen sensor in the range of volume fraction of O 2 of 50-500 ppm giving a linear calibration with a sensitivity of 1.94 nA cm -2 ppm -1 .
Ullah, Habib; Wilfred, Cecilia Devi; Shaharun, Maizatul Shima
2018-06-06
The present work reports the extraction of phenolic compounds from Polygonum minus using ionic liquid as extracting solvent. In this work, 1-Butyl-3-methylimidazolium hydrogen sulfate [BMIM][HSO 4 ] was used for the extraction of bioactive compounds. Accordingly, ionic liquids based microwave-assisted extraction treatment for separating of bioactive compounds from polygonum minus was first performed in the present study. The results obtained in this work have high extraction yield in comparison with conventional solvent. UV/Vis results showed that microwave synthesis was fast, well dispersed and nanosized copper nanoparticle (CuNPs) in comparison with conventional synthesis. CuNPs was characterized by X-Rays diffractometer (XRD), Fourier transform infrared (FTIR), dynamic light scattering (DLS), field emission scanning electron microscopy combined with energy dispersive x-rays (FESEM-EDX), and thermogravimetric analysis (TGA). All the instrumental analyses confirmed the particles were nanosized. Furthermore, the antibacterial activity of as-synthesized CuNPs showed effective inhibitory zone against three different bacteria. The photocatalytic degradation of copper nanoparticles was studied using methylene blue (MB) and methyl orange (MO) dyes under UV light and degraded 99.9% within short time 8 and 7 minutes.
Biata, N Raphael; Nyaba, Luthando; Ramontja, James; Mketo, Nomvano; Nomngongo, Philiswa N
2017-12-15
The aim of this study was to develop a simple and fast ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction (UA-IL-DLLME) method for preconcetration of trace antimony and tin in beverage samples. The novelty of this study was based on the application of ligandless UA-IL-DLLME using low-density ionic liquid and organic solvents for preconcentration of Sb and Sn. The concentration of Sb and Sn were quantified using ICP-OES. Under the optimum conditions, the calibration graph was found to be LOQ-250µgL -1 (r 2 =0.9987) for Sb and LOQ-350µgL -1 for Sn. The LOD and LOQ of Sb and Sn ranged from 1.2to 2.5ngL -1 and 4.0 to 8.3ngL -1 , respectively, with high preconcentration factors. The precisions (%RSD) of the proposed method ranged from 2.1% to 2.5% and 3.9% to 4.7% for Sb and Sn, respectively. The proposed method was successfully applied for determination of Sb and Sn in beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quan, Ji; Hu, Zeshu
2018-01-01
Food safety issues closely related to human health have always received widespread attention from the world society. As a basic food source, wheat is the fundamental support of human survival; therefore, the detection of pesticide residues in wheat is very necessary. In this work, the ultrasonic-assisted ionic liquid-dispersive liquid-liquid microextraction (DLLME) method was firstly proposed, and the extraction and analysis of three organophosphorus pesticides were carried out by combining high-performance liquid chromatography (HPLC). The extraction efficiencies of three ionic liquids with bis(trifluoromethylsulfonyl)imide (Tf2N) anion were compared by extracting organophosphorus in wheat samples. It was found that the use of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIM][Tf2N]) had both high enrichment efficiency and appropriate extraction recovery. Finally, the method was used for the determination of three wheat samples, and the recoveries of them were 74.8–112.5%, 71.8–104.5%, and 83.8–115.5%, respectively. The results show that the method proposed is simple, fast, and efficient, which can be applied to the extraction of organic matters in wheat samples. PMID:29854562
NASA Astrophysics Data System (ADS)
Liu, Dan; Li, Gang; Liu, Haiou
2018-01-01
A kind of multi-functional sites metal-organic framework (MOF) composite (MIL-101-IMBr) was successfully prepared by post-synthesis modification of MIL-101 with imidazolium-based ionic liquids. The ionic liquids not only functionalize as basic sites but also provide halide anions, which serve as a nucleophile in cycloaddition reaction. The prepared functional MOF materials were characterized by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption-desorption and CO2 temperature programmed desorption. The results of fourier transform infrared spectroscopy and energy dispersive spectroscopy show that the MIL-101-IMBr composite was successfully synthesized. The N2 adsorption-desorption results clearly demonstrated that the modified composites still preserve high BET surface area and total pore volume. The composite exhibits high catalytic activity for the cycloaddition of CO2 with epoxides under mild and co-catalyst free conditions. The conversion of propylene oxide was 95.8% and the selectivity of cyclic carbonate was 97.6% under 0.8 MPa at 80 °C for 4 h. Moreover, the catalyst can be used for at least five times.
An oxide dispersion strengthened Ni-W-Al alloy with superior high temperature strength
NASA Technical Reports Server (NTRS)
Glasgow, T. K.
1976-01-01
Oxide dispersion strengthened alloys based on the WAZ-20 nickel-base alloy were prepared by the mechanical alloying process described by Benjamin (1973), and evaluated. The results of microstructural examinations and mechanical property determinations are discussed. It is shown that WAZ-20, a high gamma-prime fraction alloy having a high gamma-prime solvus temperature, can be effectively dispersion strengthened. The strengths obtained were outstanding, especially at 1150 and 1205 C. The strength is attributed to a combination of highly alloyed matrix, elongated grain structure, and hard phase dispersion. Tensile ductility can be improved by post-recrystallization heat treatment. The new alloy shows some potential for low stress post-extrusion forming.
Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water.
Zhang, Liwen; Petersen, Elijah J; Zhang, Wen; Chen, Yongsheng; Cabrera, Miguel; Huang, Qingguo
2012-07-01
Carbon nanotubes are often modified to be stable in the aqueous phase by adding extensive hydrophilic surface functional groups. The stability of such CNTs in water with soil or sediment is one critical factor controlling their environmental fate. We conducted a series of experiments to quantitatively assess the association between water dispersed multi-walled carbon nanotubes (MWCNTs) and three soil minerals (kaolinite, smectite, or shale) in aqueous solution under different sodium concentrations. (14)C-labeling was used in these experiments to unambiguously quantify MWCNTs. The results showed that increasing ionic strength strongly promoted the removal of MWCNTs from aqueous phase. The removal tendency is inversely correlated with the soil minerals' surface potential and directly correlated with their hydrophobicity. This removal can be interpreted by the extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory especially for kaolinite and smectite. Shale, which contains large and insoluble organic materials, sorbed MWCNTs the most strongly. Copyright © 2012 Elsevier Ltd. All rights reserved.
Micellization and Single-Particle Encapsulation with Dimethylammoniopropyl Sulfobetaines
2017-01-01
Sulfobetaines (SBs) are a class of zwitterionic surfactants with a reputation for enhancing colloidal stability at high salt concentrations. Here, we present a systematic study on the self-assembly of SB amphiphiles (sultaines or hydroxysultaines) in aqueous solutions, as a function of chain length and composition, ionic strength, and in the presence of alkanethiol-coated Au nanoparticles (GNPs). The diameters of the micelles assembled from SB and amidosulfobetaine (ASB) generally increase monotonically with chain length, although ASB micelles are smaller relative to alkyl SB micelles with similarly sized tailgroups, and oleyl sulfobetaine (OSB) micelles are slightly larger. SB amphiphiles can stabilize alkanethiol-coated GNPs in physiologically relevant buffers at concentrations well below their CMC, with size increases corresponding to single-particle encapsulation. SB-encapsulated GNPs were prepared by three different methods with SB:GNP weight ratios of 10:1, followed by dispersion in water or 1 M NaCl. The low hydrodynamic size of the SB micelles and SB-coated NPs is within the range needed for efficient renal clearance. PMID:28474008
Micellization and Single-Particle Encapsulation with Dimethylammoniopropyl Sulfobetaines.
Wang, Jianxin; Morales-Collazo, Oscar; Wei, Alexander
2017-04-30
Sulfobetaines (SBs) are a class of zwitterionic surfactants with a reputation for enhancing colloidal stability at high salt concentrations. Here, we present a systematic study on the self-assembly of SB amphiphiles (sultaines or hydroxysultaines) in aqueous solutions, as a function of chain length and composition, ionic strength, and in the presence of alkanethiol-coated Au nanoparticles (GNPs). The diameters of the micelles assembled from SB and amidosulfobetaine (ASB) generally increase monotonically with chain length, although ASB micelles are smaller relative to alkyl SB micelles with similarly sized tailgroups, and oleyl sulfobetaine (OSB) micelles are slightly larger. SB amphiphiles can stabilize alkanethiol-coated GNPs in physiologically relevant buffers at concentrations well below their CMC, with size increases corresponding to single-particle encapsulation. SB-encapsulated GNPs were prepared by three different methods with SB:GNP weight ratios of 10:1, followed by dispersion in water or 1 M NaCl. The low hydrodynamic size of the SB micelles and SB-coated NPs is within the range needed for efficient renal clearance.
Second-Order Vibrational Lineshapes from the Air/Water Interface.
Ohno, Paul E; Wang, Hong-Fei; Paesani, Francesco; Skinner, James L; Geiger, Franz M
2018-05-10
We explore by means of modeling how absorptive-dispersive mixing between the second- and third-order terms modifies the imaginary χ total (2) responses from air/water interfaces under conditions of varying charge densities and ionic strength. To do so, we use published Im(χ (2) ) and χ (3) spectra of the neat air/water interface that were obtained either from computations or experiments. We find that the χ total (2) spectral lineshapes corresponding to experimentally measured spectra contain significant contributions from both interfacial χ (2) and bulk χ (3) terms at interfacial charge densities equivalent to less than 0.005% of a monolayer of water molecules, especially in the 3100 to 3300 cm -1 frequency region. Additionally, the role of short-range static dipole potentials is examined under conditions mimicking brine. Our results indicate that surface potentials, if indeed present at the air/water interface, manifest themselves spectroscopically in the tightly bonded H-bond network observable in the 3200 cm -1 frequency range.
Alkyl Passivation and Amphiphilic Polymer Coating of Silicon Nanocrystals for Diagnostic Imaging
Hessel, Colin M.; Rasch, Michael R.; Hueso, Jose L.; Goodfellow, Brian W.; Akhavan, Vahid A.; Puvanakrishnan, Priyaveena; Tunnell, James W.
2011-01-01
We show a method to produce biocompatible polymer-coated silicon (Si) nanocrystals for medical imaging. Silica-embedded Si nanocrystals are formed by HSQ thermolysis. The nanocrystals are then liberated from the oxide and terminated with Si-H bonds by HF etching, followed by alkyl monolayer passivation by thermal hydrosilylation. The Si nanocrystals have an average diameter of 2.1 ± 0.6 nm and photoluminesce (PL) with a peak emission wavelength of 650 nm, which lies within the transmission window of 650–900 nm that is useful for biological imaging. The hydrophobic Si nanocrystals are then coated with an amphiphilic polymer for dispersion in aqueous media with pH ranging between 7 and 10 and ionic strength between 30 mM and 2 M, while maintaining a bright and stable PL and a hydrodynamic radius of only 20 nm. Fluorescence imaging of polymer-coated Si nanocrystals in a biological tissue host is demonstrated, showing the potential for in vivo imaging. PMID:20818646
Multifunctional nanoparticulate polyelectrolyte complexes.
Hartig, Sean M; Greene, Rachel R; DasGupta, Jayasri; Carlesso, Gianluca; Dikov, Mikhail M; Prokop, Ales; Davidson, Jeffrey M
2007-12-01
Water-soluble, biodegradable, polymeric, polyelectrolyte complex dispersions (PECs) have evolved because of the limitations, in terms of toxicity, of the currently available systems. These aqueous nanoparticulate architectures offer a significant advantage for products that may be used as drug delivery systems in humans. PECs are created by mixing oppositely charged polyions. Their hydrodynamic diameter, surface charge, and polydispersity are highly dependent on concentration, ionic strength, pH, and molecular parameters of the polymers that are used. In particular, the complexation between polyelectrolytes with significantly different molecular weights leads to the formation of water-insoluble aggregates. Several PEC characteristics are favorable for cellular uptake and colloidal stability, including hydrodynamic diameter less than 200 nm, surface charge of >30 mV or <-30 mV, spherical morphology, and polydispersity index (PDI) indicative of a homogeneous distribution. Maintenance of these properties is critical for a successful delivery vehicle. This review focuses on the development and potential applications of PECs as multi-functional, site-specific nanoparticulate drug/gene delivery and imaging devices.
Effect of bioparticle size on dispersion and retention in monolithic and perfusive beds
Trilisky, Egor I.; Lenhoff, Abraham M.
2010-01-01
Single-component pulse response studies were used to compare the retention and transport behavior of small molecules, proteins, and a virus on commercially available monolithic and perfusive ion-exchangers. Temporal distortion and extra-column effects were corrected for using a simple algorithm based on the method of moments. It was found that temporal distortion is inversely related to the number of theoretical plates. With increasing bioparticle size, retention increased and the transition from a non-eluting to a non-adsorbing state with increasing ionic strength became more abrupt. Both of these observations are qualitatively explained by calculations of particle-surface electrostatic attractive energy. Calculations also show that, for sufficiently large bioparticles, such as viruses or cells, hydrodynamic drag can promote elution. Under non-adsorbing conditions, plate height increased only weakly with flow rate and the skew remained unchanged. With increasing retention, plate height increased dramatically for proteins. Plate height was scaled by permeability rather than bead diameter to enable comparison among different stationary phases. PMID:20951383
Polyetherimide/bucky gels nanocomposites with superior conductivity and thermal stability.
Chen, Ye; Tao, Jing; Deng, Lin; Li, Liang; Li, Jun; Yang, Yang; Khashab, Niveen M
2013-08-14
Polyetherimide (PEI) nanocomposites comprising bucky gels of industrial-grade multiwalled carbon nanotubes (MWCNTs) and ionic liquid (IL, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIM][PF6])) were prepared. The processing framework for this nanocomposite is simple, reproducible, and easily scalable. The strong interaction between IL and MWCNTs caused the latter to uniformly disperse in the PEI matrix while IL flowed into the gaps between the nanotubes' walls. The nanocomposite exhibited an enhanced conductivity of 2.01 × 10(4) Ω·cm volume resistivity at room temperature; the value decreased dramatically by 12 orders of magnitude, compared to pristine PEI. The IL free ions and MWCNTs networks provided excellent channels for electron transfer. PEI/bucky gels nanocomposites also showed improved thermal stability and high tensile strength. Other than having antiwear properties, this material can have numerous applications in the aerospace and electronics industries. Moreover, our work presents a "green" method toward modified nanocomposites industrial production as IL is environmentally safe and is easily recyclable.
Swelling, Structure, and Phase Stability of Soft, Compressible Microgels
NASA Astrophysics Data System (ADS)
Denton, Alan R.; Urich, Matthew
Microgels are soft colloidal particles that swell when dispersed in a solvent. The equilibrium particle size is governed by a delicate balance of osmotic pressures, which can be tuned by varying single-particle properties and externally controlled conditions, such as temperature, pH, ionic strength, and concentration. Because of their tunable size and ability to encapsulate dye or drug molecules, microgels have practical relevance for biosensing, drug delivery, carbon capture, and filtration. Using Monte Carlo simulation, we model suspensions of microgels that interact via Hertzian elastic interparticle forces and can expand or contract via trial size changes governed by the Flory-Rehner free energy of cross-linked polymer gels. We analyze the influence of particle compressibility and size fluctuations on bulk structural and thermal properties by computing swelling ratios, radial distribution functions, static structure factors, osmotic pressures, and freezing densities. With increasing density, microgels progressively deswell and their intrinsic polydispersity broadens, while compressibility acts to forestall crystallization. This work was supported by the National Science Foundation under Grant No. DMR- 1106331.
NASA Astrophysics Data System (ADS)
Rufchahi, E. O. Moradi; Gilani, A. Ghanadzadeh; Taghvaei, V.; Karimi, R.; Ramezanzade, N.
2016-03-01
Malondianilide (I) derived from p-chloroaniline was cyclized to 6-chloro-4-hydroxyquinoline-2(1H)-one (II) in moderately good yield using polyphosphoric acid as catalyst. This compound was then coupled with some diazotized aromatic amines to give the corresponding azo disperse dyes 1-12. A systematic study of the effect of solvent, acid, base and pH upon the electronic absorption spectra of the dyes 1-12 was carried out. In DMSO, DMF, CH3CN, CHCl3, EtOH and acidic media (CH3COOH, acidified EtOH) these dyes that theoretically may be involved in azo-hydrazone tautomerism have been detected only as hydrazone tautomers T1 and T2. The acidic dissociation constants of the dyes were measured in 80 vol% ethanol-water solution at room temperature and ionic strength of 0.1. The results were correlated by the Hammett-type equation using the substituent constants σx.
Pusztai, A.
1965-01-01
1. The conditions of extracting nitrogenous, phosphorus-containing and glucosamine-containing components of the seeds of kidney bean have been studied. 2. The dispersing of proteins was incomplete below pH 7, and the exact amount of protein extracted depended on the pH and the ionic strength of the solvent. 3. The extraction of proteins was practically complete in the range pH 7–9, but the relative amounts of the individual proteins obtained still depended on the pH of the extracting media, indicating a pH-dependent association–dissociation reaction between the protein molecules present. 4. The extraction of phosphorus-containing material showed an optimum at pH 6–7, and only a part of this was removed on dialysis. The precipitates obtained with trichloroacetic acid, on the other hand, retained very little phosphorus-containing material. 5. The significance of these findings is discussed. PMID:14340051
NASA Astrophysics Data System (ADS)
Ma, Lan; He, Yi; Luo, Pingya; Zhang, Liyun; Yu, Yalu
2018-02-01
Nanoparticles have been known as the useful materials in working fluids for petroleum industry. But the stabilization of nano-scaled materials in water-based working fluids at high salinities is still a big challenge. In this study, we successfully prepared the anionic polymer/multi-walled carbon nanotubes (MWNTs) composites by covalently wrapping of MWNTs with poly (sodium 4-styrenesulfonate) (PSS) to improve the stability of MWNTs in high concentration electrolytes. The PSS/MWNTs composites can automatically disperse in salinity up to 15 wt% NaCl and API brines (8 wt% NaCl + 2 wt% CaCl2). Hydrodynamic diameters of composites were measured as a function of ionic strength and API brines by dynamic light scattering (DLS). By varying the concentration of brines, hydrodynamic diameter of PSS/MWNTs composites in brines fluctuated between 545 ± 110 nm for 14 days and 673 ± 171 nm for 30 days. Above results showed that PSS/MWNTs could be well stable in high salts solutions for a long period of time. After wrapped with PSS, the diameters of nanotubes changed from 30 40 to 430 nm, the thickness of wrapped polymer is about 400 nm by analysis of morphologies. The zeta potentials of PSS/MWNTs composites in various salinity of brines kept at approximately - 41 - 52 mV. Therefore, the well dispersion of PSS/MWNTs in high salinity is due to large negative charges of poly (sodium 4-styrenesulfonate), which provide enough electrostatic repulsion and steric repulsion to hinder compression of electric double layer caused by high concentration electrolytes.
Dipole oscillator strength properties and dispersion energies for SiH 4
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Mukesh; Meath, William J.
2003-01-01
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silane (SiH 4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for the molecule. A pseudo-DOSD for SiH 4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C 6, for the interaction of silane with itself and with forty-four other species, and the triple-dipole dispersion energy coefficient C 9 for (SiH 4) 3.
Dipole oscillator strengths, dipole properties and dispersion energies for SiF4
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Kumar, Mukesh; Meath, William J.
2003-01-01
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the silicon tetrafluoride (SiF4) molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength data. The constraints are furnished by experimental molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums and mean excitation energies for the molecule. A pseudo-DOSD for SiF4 is also presented which is used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interaction of SiF4 with itself and with 43 other species and the triple-dipole dispersion energy coefficient C9 for (SiF4)3.
Osmotic pressures and second virial coefficients for aqueous saline solutions of lysozyme
Moon, Y. U.; Anderson, C. O.; Blanch, H. W.; ...
2000-03-27
Experimental data at 25 °C are reported for osmotic pressures of aqueous solutions containing lysozyme and any one of the following salts: ammonium sulfate, ammonium oxalate and ammonium phosphate at ionic strength 1 or 3M. Data were obtained using a Wescor Colloid Membrane Osmometer at lysozyme concentrations from about 4 to 20 grams per liter at pH 4, 7 or 8. Osmotic second virial coefficients for lysozyme were calculated from the osmotic-pressure data. All coefficients were negative, increasing in magnitude with ionic strength. Furthermore, tesults are insensitive to the nature of the anion, but rise slightly in magnitude as themore » size of the anion increases.« less
Pawlik, M; Laskowski, J S; Ansari, A
2003-04-15
The adsorption of sodium carboxymethyl cellulose from aqueous solutions varying in ionic strength from that of distilled water to 50% NaCl/KCl brine (about 3.5 mol/dm(3)) onto illite and dolomite has been studied. The purpose of this work was to investigate the solvency effects in the phenomena underlying the potash flotation process that is carried out in saturated brine. Based on viscosity measurements, the adsorption results were analyzed in terms of a simple model of polymer macromolecules in solution. Suspension stability measurements carried out concomitantly with adsorption tests showed the ranges of carboxymethyl cellulose concentration over which the tested suspensions either were aggregated or were restabilized.
Chromatographic Separation, and Characteristics of Nucleic Acids from HeLa Cells
Philipson, Lennart
1961-01-01
The application of the phenol-duponol method to extraction of nucleic acids from HeLa cells is described. Chromatography of the phenol extract on an esterified bovine serum albumin column with a salt gradient of sodium chloride gives separation of soluble RNA, DNA, and two different high molecular RNA fractions. Ultracentrifugation of the DNA eluted from the column gives a sedimentation coefficient (s 20 o,w) of 38, which agrees with ultracentrifugation data on the phenol extract. The eluted RNA appears polydisperse at low ionic strength, but at high ionic strength and after alcohol precipitation two fractions with the sedimentation coefficients of 16 and 25 to 29, respectively, were obtained. PMID:13735276
Xiong, Yongliang; Kirkes, Leslie; Westfall, Terry
2017-04-01
In this study, solubility measurements on di-calcium ethylenediaminetetraacetic acid [Ca 2C 10H 12N 2O 8(s), abbreviated as Ca 2EDTA(s)] as a function of ionic strength are conducted in NaCl solutions up to I = 5.0 mol•kg –1 and in MgCl 2 solutions up to I = 7.5 mol•kg –1, at room temperature (22.5 ± 0.5oC).
Bargagna, M; Sabelli, M; Giacomelli, C
1982-01-01
Ninety experimental bloodstains, were examined, with the intention of detecting the principal Rh antigens, by using a micro-elution method improved by the use of low ionic strength solution (LISS) and papain-treated red cells. This method makes it possible to employ most commercially produced sera in routine forensic haematology laboratory work. The antigens could regularly be detected in stains of the following ages: D, C and c in stains of at least 6 months, E in stains of at least 4 months, and e in stains of at least 2 months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.
2013-06-01
Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less
Pellegrino, J; Wright, S; Ranvill, J; Amy, G
2005-01-01
Flow-Field Flow Fractionation (FI-FFF) is an idealization of the cross flow membrane filtration process in that, (1) the filtration flux and crossflow velocity are constant from beginning to end of the device, (2) the process is a relatively well-defined laminar-flow hydrodynamic condition, and (3) the solutes are introduced as a pulse-input that spreads due to interactions with each other and the membrane in the dilute-solution limit. We have investigated the potential for relating FI-FFF measurements to membrane fouling. An advection-dispersion transport model was used to provide 'ideal' (defined as spherical, non-interacting solutes) solute residence time distributions (RTDs) for comparison with 'real' RTDs obtained experimentally at different cross-field velocities and solution ionic strength. An RTD moment analysis based on a particle diameter probability density function was used to extract "effective" characteristic properties, rather than uniquely defined characteristics, of the standard solute mixture. A semi-empirical unsteady-state, flux decline model was developed that uses solute property parameters. Three modes of flux decline are included: (1) concentration polarization, (2) cake buildup, and (3) adsorption on/in pores, We have used this model to test the hypothesis-that an analysis of a residence time distribution using FI-FFF can describe 'effective' solute properties or indices that can be related to membrane flux decline in crossflow membrane filtration. Constant flux filtration studies included the changes of transport hydrodynamics (solvent flux to solute back diffusion (J/k) ratios), solution ionic strength, and feed water composition for filtration using a regenerated cellulose ultrafiltration membrane. Tests of the modeling hypothesis were compared with experimental results from the filtration measurements using several correction parameters based on the mean and variance of the solute RTDs. The corrections used to modify the boundary layer mass transfer coefficient and the specific resistance of cake or adsorption layers demonstrated that RTD analysis is potentially useful technique to describe colloid properties but requires improvements.
Son, Jino; Hooven, Louisa A; Harper, Bryan; Harper, Stacey L
2015-12-15
Encapsulation of pesticide active ingredients in polymers has been widely employed to control the release of poorly water-soluble active ingredients. Given the high dispersibility of these encapsulated pesticides in water, they are expected to behave differently compared to their active ingredients; however, our current understanding of the fate and effects of encapsulated pesticides is still limited. In this study, we employed a central composite design (CCD) to investigate how pH and ionic strength (IS) affect the hydrodynamic diameter (HDD) and zeta potential of encapsulated λ-cyhalothrin and how those changes affect the exposure and toxicity to Daphnia magna. R(2) values greater than 0.82 and 0.84 for HDD and zeta potential, respectively, irrespective of incubation time suggest those changes could be predicted as a function of pH and IS. For HDD, the linear factor of pH and quadratic factor of pH×pH were found to be the most significant factors affecting the change of HDD at the beginning of incubation, whereas the effects of IS and IS×IS became significant as incubation time increased. For zeta potential, the linear factor of IS and quadratic factor of IS×IS were found to be the most dominant factors affecting the change of zeta potential of encapsulated λ-cyhalothrin, irrespective of incubation time. The toxicity tests with D. magna under exposure conditions in which HDD or zeta potential of encapsulated λ-cyhalothrin was maximized or minimized in the overlying water also clearly showed the worst-case exposure condition to D. magna was when the encapsulated λ-cyhalothrin is either stable or small in the overlying water. Our results show that water quality could modify the fate and toxicity of encapsulated λ-cyhalothrin in aquatic environments, suggesting understanding their aquatic interactions are critical in environmental risk assessment. Herein, we discuss the implications of our findings for risk assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
Soft but Powerful Artificial Muscles Based on 3D Graphene-CNT-Ni Heteronanostructures.
Kim, Jaehwan; Bae, Seok-Hu; Kotal, Moumita; Stalbaum, Tyler; Kim, Kwang J; Oh, Il-Kwon
2017-08-01
Bioinspired soft ionic actuators, which exhibit large strain and high durability under low input voltages, are regarded as prospective candidates for future soft electronics. However, due to the intrinsic drawback of weak blocking force, the feasible applications of soft ionic actuators are limited until now. An electroactive artificial muscle electro-chemomechanically reinforced with 3D graphene-carbon nanotube-nickel heteronanostructures (G-CNT-Ni) to improve blocking force and bending deformation of the ionic actuators is demonstrated. The G-CNT-Ni heteronanostructure, which provides an electrically conductive 3D network and sufficient contact area with mobile ions in the polymer electrolyte, is embedded as a nanofiller in both ionic polymer and conductive electrodes of the ionic actuators. An ionic exchangeable composite membrane consisting of Nafion, G-CNT-Ni and ionic liquid (IL) shows improved tensile modulus and strength of up to 166% and 98%, respectively, and increased ionic conductivity of 0.254 S m -1 . The ionic actuator exhibits enhanced actuation performances including three times larger bending deformation, 2.37 times higher blocking force, and 4 h durability. The electroactive artificial muscle electro-chemomechanically reinforced with 3D G-CNT-Ni heteronanostructures offers improvements over current soft ionic actuator technologies and can advance the practical engineering applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution.
Lehmann, Christian; Bocola, Marco; Streit, Wolfgang R; Martinez, Ronny; Schwaneberg, Ulrich
2014-06-01
Chemoenzymatic cellulose degradation is one of the key steps for the production of biomass-based fuels under mild conditions. An effective cellulose degradation process requires diverse physico-chemical dissolution of the biomass prior to enzymatic degradation. In recent years, "green" solvents, such as ionic liquids and, more recently, deep eutectic liquids, have been proposed as suitable alternatives for biomass dissolution by homogenous catalysis. In this manuscript, a directed evolution campaign of an ionic liquid tolerant β-1,4-endoglucanase (CelA2) was performed in order to increase its performance in the presence of choline chloride/glycerol (ChCl:Gly) or 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), as a first step to identify residues which govern ionic strength resistance and obtaining insights for employing cellulases on the long run in homogenous catalysis of lignocellulose degradation. After mutant library screening, variant M4 (His288Phe, Ser300Arg) was identified, showing a dramatically reduced activity in potassium phosphate buffer and an increased activity in the presence of ChCl:Gly or [BMIM]Cl. Further characterization showed that the CelA2 variant M4 is activated in the presence of these solvents, representing a first report of an engineered enzyme with an ionic strength activity switch. Structural analysis revealed that Arg300 could be a key residue for the ionic strength activation through a salt bridge with the neighboring Asp287. Experimental and computational results suggest that the salt bridge Asp287-Arg300 generates a nearly inactive CelA2 variant and activity is regained when ChCl:Gly or [BMIM]Cl are supplemented (~5-fold increase from 0.64 to 3.37 μM 4-MU/h with the addition ChCl:Gly and ~23-fold increase from 3.84 to 89.21 μM 4-pNP/h with the addition of [BMIM]Cl). Molecular dynamic simulations further suggest that the salt bridge between Asp287 and Arg300 in variant M4 (His288Phe, Ser300Arg) modulates the observed salt activation.
d'Orlyé, Fanny; Varenne, Anne; Georgelin, Thomas; Siaugue, Jean-Michel; Teste, Bruno; Descroix, Stéphanie; Gareil, Pierre
2009-07-01
In view of employing functionalized nanoparticles (NPs) in the context of an immunodiagnostic, aminated maghemite/silica core/shell particles were synthesized so as to be further coated with an antibody or an antigen via the amino groups at their surface. Different functionalization rates were obtained by coating these maghemite/silica core/shell particles with 3-(aminopropyl)triethoxysilane and 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane at different molar ratios. Adequate analytical performances with CE coupled with UV-visible detection were obtained through semi-permanent capillary coating with didodecyldimethyl-ammonium bromide, thus preventing particle adsorption. First, the influence of experimental conditions such as electric field strength, injected particle amount as well as electrolyte ionic strength and pH, was evaluated. A charge-dependent electrophoretic mobility was evidenced and the separation selectivity was tuned according to electrolyte ionic strength and pH. The best resolutions were obtained at pH 8.0, high ionic strength (ca. 100 mM), and low total particle volume fraction (ca. 0.055%), thus eliminating interference effects between different particle populations in mixtures. A protocol derived from Kaiser's original description was performed for quantitation of the primary amino groups attached onto the NP surface. Thereafter a correlation between particle electrophoretic mobility and the density of amino groups at their surface was established. Eventually, CE proved to be an easy, fast, and reliable method for the determination of NP effective surface charge density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Zhizhang; Ilton, Eugene S.; Prange, Micah P.
Classical molecular dynamics (MD) simulations were used to study the interactions of up to 2 M NaCl and NaNO3 aqueous solutions with the presumed inert boehmite (010) and gibbsite (001) surfaces. The force field parameters used in these simulations were validated against density functional theory calculations of Na+ and Cl- hydrated complexes adsorbed at the boehmite (010) surface. In all the classical MD simulations and regardless of the ionic strength or the nature of the anion, Na+ ions were found to preferably form inner-sphere complexes over outer-sphere complexes at the aluminum (oxy)hydroxide surfaces, adsorbing closer to the surface than bothmore » water molecules and anions. In contrast, Cl- ions were distributed almost equally between inner- and outer-sphere positions. The resulting asymmetry in adsorption strengths offers molecular-scale evidence for the observed isoelectric point (IEP) shift to higher pH at high ionic strength for aluminum (oxy)hydroxides. As such, the MD simulations also provided clear evidence against the assumption that the basal surfaces of boehmite and gibbsite are inert to background electrolytes. Finally, the MD simulations indicated that, although the adsorption behavior of Na+ in NaNO3 and NaCl solutions was similar, the different affinities of NO3- and Cl- for the aluminum (oxy)hydroxide surfaces might have macroscopic consequences, such as difference in the sensitivity of the IEP to the electrolyte concentration.« less
Zhuang, Jie; McCarthy, John F; Tyner, John S; Perfect, Edmund; Flury, Markus
2007-05-01
Colloid transport may facilitate off-site transport of radioactive wastes at the Hanford site, Washington State. In this study, column experiments were conducted to examine the effect of irrigation schedule on releases of in situ colloids from two Hanford sediments during saturated and unsaturated transientflow and its dependence on solution ionic strength, irrigation rate, and sediment texture. Results show that transient flow mobilized more colloids than steady-state flow. The number of short-term hydrological pulses was more important than total irrigation volume for increasing the amount of mobilized colloids. This effect increased with decreasing ionic strength. At an irrigation rate equal to 5% of the saturated hydraulic conductivity, a transient multipulse flow in 100 mM NaNO3 was equivalent to a 50-fold reduction of ionic strength (from 100 mM to 2 mM) with a single-pulse flow in terms of their positive effects on colloid mobilization. Irrigation rate was more important for the initial release of colloids. In addition to water velocity, mechanical straining of colloids was partly responsible for the smaller colloid mobilization in the fine than in the coarse sands, although the fine sand contained much larger concentrations of colloids than the coarse sand.
Wang, Guohui; Um, Wooyong
2013-03-15
Significantly enhanced immobilization of radionuclides (such as (90)Sr and (137)Cs) due to adsorption and coprecipitation with neo-formed colloid-sized secondary precipitates has been reported at the U.S. Department of Energy's Hanford Site. However, the stability of these secondary precipitates containing radionuclides in the subsurface under changeable field conditions is not clear. Here, the authors tested the remobilization possibility of Sr-containing secondary precipitates (nitrate-cancrinite) in the subsurface using saturated column experiments under different geochemical and flow conditions. The columns were packed with quartz sand that contained secondary precipitates (nitrate-cancrinite containing Sr), and leached using colloid-free solutions under different flow rates, varying pH, and ionic strength conditions. The results indicate remobilization of the neo-formed secondary precipitates could be possible given a change of pH of ionic strength and flow rate conditions. The remobility of the neo-formed precipitates increased with the rise in the leaching solution flow rate and pH (in a range of pH 4-11), as well as with decreasing solution ionic strength. The increased mobility of Sr-containing secondary precipitates with changing background conditions can be a potential source for additional radionuclide transport in Hanford Site subsurface environments. Published by Elsevier B.V.
Effects of ionic strength on the antimicrobial photodynamic efficiency of methylene blue.
Núñez, Silvia Cristina; Garcez, Aguinaldo Silva; Kato, Ilka Tiemy; Yoshimura, Tania Mateus; Gomes, Laércio; Baptista, Maurício Silva; Ribeiro, Martha Simões
2014-03-01
Antimicrobial photodynamic therapy (APDT) may become a useful clinical tool to treat microbial infections, and methylene blue (MB) is a well-known photosensitizer constantly employed in APDT studies, and although MB presents good efficiency in antimicrobial studies, some of the MB photochemical characteristics still have to be evaluated in terms of APDT. This work aimed to evaluate the role of MB solvent's ionic strength regarding dimerization, photochemistry, and photodynamic antimicrobial efficiency. Microbiological survival fraction assays on Escherichia coli were employed to verify the solution's influence on MB antimicrobial activity. MB was evaluated in deionized water and 0.9% saline solution through optical absorption spectroscopy; the solutions were also analysed via dissolved oxygen availability and reactive oxygen species (ROS) production. Our results show that bacterial reduction was increased in deionized water. Also we demonstrated that saline solution presents less oxygen availability than water, the dimer/monomer ratio for MB in saline is smaller than in water and MB presented a higher production of ROS in water than in 0.9% saline. Together, our results indicate the importance of the ionic strength in the photodynamic effectiveness and point out that this variable must be taken into account to design antimicrobial studies and to evaluate similar studies that might present conflicting results.
Zheng, Shaokui; Li, Xiaofeng; Zhang, Xueyu; Wang, Wei; Yuan, Shengliu
2017-09-01
This study investigated the potential effect of four frequently used inorganic regenerant properties (i.e., ionic strength, cation type, anion type, and regeneration solution volume) on the desorption and adsorption performance of 14 pharmaceuticals, belonging to 12 therapeutic classes with different predominant chemical forms and hydrophobicities, using polymeric anion exchange resin (AER)-packed fixed-bed column tests. After preconditioning with NaCl, NaOH, or saline-alkaline (SA) solutions, all resulting mobile counterion types of AERs effectively adsorbed all 14 pharmaceuticals, where the preferential magnitude of OH - -type = Cl - + OH - -type > Cl - -type. During regeneration, ionic strength (1 M versus 3 M NaCl) had no significant influence on desorption performance for any of the 14 pharmaceuticals, while no regenerant cation (HCl versus NaCl) or anion type (NaCl versus NaOH and SA) achieved higher desorption efficiencies for all pharmaceuticals. A volumetric increase in 1 M or 3 M NaCl solutions significantly improved the desorption efficiencies of most pharmaceuticals, irrespective of ionic strength. The results indicate that regeneration protocols, including regenerant cation type, anion type and volume, should be optimized to improve pharmaceutical removal by AERs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Linear and circular dichroism characterization of thionine binding mode with DNA polynucleotides
NASA Astrophysics Data System (ADS)
Tuite, Eimer Mary; Nordén, Bengt
2018-01-01
The binding mode of thionine (3,7-diamino-5-phenothiazinium) with alternating and non-alternating DNA polynucleotides at low binding ratios was conclusively determined using linear and circular dichroism spectroscopies. The binding to [poly(dG-dC)]2 and poly(dG)·poly(dC) was purely intercalative and was insensitive to ionic strength. Intercalative binding to [poly(dA-dT)]2 is observed at low ionic strength, but a shift of some dye to an non-intercalative mode is observed as the background salt concentration increases. With poly(dA)·poly(dT), intercalative binding is unfavourable, although some dye molecules may intercalate at low ionic strength, and groove binding is strongly promoted with increasing concentration of background salt. However, stacking with bases is observed with single-stranded poly(dA) and with triplex poly(dT)*poly(dA)·poly(dT) which suggests that the unusual structure of poly(dA)·poly(dT) precludes intercalation. Thionine behaves similarly to the related dye methylene blue, and small differences may be attributed either to the ability of thionine to form H-bonds that stabilize intercalation or to its improved stacking interactions in the basepair pocket on steric grounds.
NASA Astrophysics Data System (ADS)
Castelain, Mickaël; Pignon, Frédéric; Piau, Jean-Michel; Magnin, Albert; Mercier-Bonin, Muriel; Schmitz, Philippe
2007-10-01
In agroindustry, the hygiene of solid surfaces is of primary importance in order to ensure that products are safe for consumers. To improve safety, one of the major ways consists in identifying and understanding the mechanisms of microbial cell adhesion to nonporous solid surfaces or filtration membranes. In this paper we investigate the adhesion of the yeast cell Saccharomyces cerevisiae (about 5μm in diameter) to a model solid surface, using well-defined hydrophilic glass substrates. An optical tweezer device developed by Piau [J. Non-Newtonian Fluid Mech. 144, 1 (2007)] was applied to yeast cells in contact with well-characterized glass surfaces. Two planes of observation were used to obtain quantitative measurements of removal forces and to characterize the corresponding mechanisms at a micrometer length scale. The results highlight various adhesion mechanisms, depending on the ionic strength, contact time, and type of yeast. The study has allowed to show a considerable increase of adhering cells with the ionic strength and has provided a quantitative measurement of the detachment forces of cultured yeast cells. Force levels are found to grow with ionic strength and differences in mobility are highlighted. The results clearly underline that a microrheological approach is essential for analyzing the adhesion mechanisms of biological systems at the relevant local scales.
Self-Healable Electrical Insulation for High Voltage Applications
NASA Technical Reports Server (NTRS)
Williams, Tiffany S.
2017-01-01
Polymeric aircraft electrical insulation normally degrades by partial discharge with increasing voltage, which causes excessive localized Joule heating in the material and ultimately leads to dielectric failure of the insulator through thermal breakdown. Developing self-healing insulation could be a viable option to mitigate permanent mechanical degradation, thus increasing the longevity of the insulation. Instead of relying on catalyst and monomer-filled microcapsules to crack, flow, and cure at the damaged sites described in well-published mechanisms, establishment of ionic crosslinks could allow for multiple healing events to occur with the added benefit of achieving full recovery strength under certain thermal environments. This could be possible if the operating temperature of the insulator is the same as or close to the temperature where ionic crosslinks are formed. Surlyn, a commercial material with ionic crosslinks, was investigated as a candidate self-healing insulator based off prior demonstrations of self-healing behavior. Thin films of varying thicknesses were investigated and the effects of thickness on the dielectric strength were evaluated and compared to representative polymer insulators. The effects of thermal conditioning on the recovery strength and healing were observed as a function of time following dielectric breakdown. Moisture absorption was also studied to determine if moisture absorption rates in Surlyn were lower than that of common polyimides.
Xiong, Yongliang
2015-05-06
In this article, solubility measurements of lead carbonate, PbCO 3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO 3 up to I = 1.2 mol•kg –1 and in the mixtures of NaHCO 3 and Na 2CO 3 up to I = 5.2 mol•kg –1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log K sp) for cerussite, PbCO 3(cr) = Pb 2+ + CO 3 2- was determined as –13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO 3(aq), Pb(CO 3) 2more » 2-, and Pb(CO 3)Cl – with the bulk-supporting electrolytes, based on the Pitzer model. The model developed in this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.« less
A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air
NASA Astrophysics Data System (ADS)
Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan
2005-05-01
The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.
Haberler, Michael; Steinhauser, Othmar
2011-10-28
The solvation of the protein ubiquitin (PDB entry "1UBQ") in hydrated molecular ionic liquids was studied for varying water content or, equivalently, a diversity of ionic strengths. The cations and anions were 1-ethyl-3-methylimidazolium and trifluoromethanesulfonate, respectively. The protein's shape and stability as well as the solvation structure, the shell dynamics and the shell resolved dielectric properties were investigated by means of molecular dynamics simulations. The respective simulation trajectories covered 200 nanoseconds. Besides the characteristic point already found for the zinc finger motif at the transition from the pure aqueous environment to the ionic solution an even more pronounced state is found where several properties show extremal behaviour (maximum or minimum). This second characteristic point occurs at the transition from the ionic solution to the hydrated ionic melt where water changes its role from a solvent to a co-solvent. Most of the data analysis presented here is based on the Voronoi decomposition of space. This journal is © the Owner Societies 2011
Chopade, Sujay A; Anderson, Evan L; Schmidt, Peter W; Lodge, Timothy P; Hillmyer, Marc A; Bühlmann, Philippe
2017-10-27
Interfaces of ionic liquids and aqueous solutions exhibit stable electrical potentials over a wide range of aqueous electrolyte concentrations. This makes ionic liquids suitable as bridge materials that separate in electroanalytical measurements the reference electrode from samples with low and/or unknown ionic strengths. However, methods for the preparation of ionic liquid-based reference electrodes have not been explored widely. We have designed a convenient and reliable synthesis of ionic liquid-based reference electrodes by polymerization-induced microphase separation. This technique allows for a facile, single-pot synthesis of ready-to-use reference electrodes that incorporate ion conducting nanochannels filled with either 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-dodecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide as ionic liquid, supported by a mechanically robust cross-linked polystyrene phase. This synthesis procedure allows for the straightforward design of various reference electrode geometries. These reference electrodes exhibit a low resistance as well as good reference potential stability and reproducibility when immersed into aqueous solutions varying from deionized, purified water to 100 mM KCl, while requiring no correction for liquid junction potentials.
Ionic structure in liquids confined by dielectric interfaces
NASA Astrophysics Data System (ADS)
Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica
2015-11-01
The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.
Mechanical heterogeneity in ionic liquids
NASA Astrophysics Data System (ADS)
Veldhorst, Arno A.; Ribeiro, Mauro C. C.
2018-05-01
Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [CnC1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [CnC1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K∞ and G∞, depend on the alkyl chain length because of a density effect. Both K∞ and G∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [CnC1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.
Suárez, Dimas; Díaz, Natalia; Francisco, Evelio; Martín Pendás, Angel
2018-04-17
The interacting quantum atoms (IQA) method can assess, systematically and in great detail, the strength and physics of both covalent and noncovalent interactions. The lack of a pair density in density functional theory (DFT), which precludes the direct IQA decomposition of the characteristic exchange-correlation energy, has been recently overcome by means of a scaling technique, which can largely expand the applicability of the method. To better assess the utility of the augmented IQA methodology to derive quantum chemical decompositions at the atomic and molecular levels, we report the results of Hartree-Fock (HF) and DFT calculations on the complexes included in the S66 and the ionic H-bond databases of benchmark geometry and binding energies. For all structures, we perform single-point and geometry optimizations using HF and selected DFT methods with triple-ζ basis sets followed by full IQA calculations. Pairwise dispersion energies are accounted for by the D3 method. We analyze the goodness of the HF-D3 and DFT-D3 binding energies, the magnitude of numerical errors, the fragment and atomic distribution of formation energies, etc. It is shown that fragment-based IQA decomposes the formation energies in comparable terms to those of perturbative approaches and that the atomic IQA energies hold the promise of rigorously quantifying atomic and group energy contributions in larger biomolecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The interface of SrTiO3 and H2O from density functional theory molecular dynamics
Spijker, P.; Foster, A. S.
2016-01-01
We use dispersion-corrected density functional theory molecular dynamics simulations to predict the ionic, electronic and vibrational properties of the SrTiO3/H2O solid–liquid interface. Approximately 50% of surface oxygens on the planar SrO termination are hydroxylated at all studied levels of water coverage, the corresponding number being 15% for the planar TiO2 termination and 5% on the stepped TiO2-terminated surface. The lateral ordering of the hydration structure is largely controlled by covalent-like surface cation to H2O bonding and surface corrugation. We find a featureless electronic density of states in and around the band gap energy region at the solid–liquid interface. The vibrational spectrum indicates redshifting of the O–H stretching band due to surface-to-liquid hydrogen bonding and blueshifting due to high-frequency stretching vibrations of OH fragments within the liquid, as well as strong suppression of the OH stretching band on the stepped surface. We find highly varying rates of proton transfer above different SrTiO3 surfaces, owing to differences in hydrogen bond strength and the degree of dissociation of incident water. Trends in proton dynamics and the mode of H2O adsorption among studied surfaces can be explained by the differential ionicity of the Ti–O and Sr–O bonds in the SrTiO3 crystal. PMID:27713660
Formation of positively charged gold nanoparticle monolayers on silica sensors.
Oćwieja, Magdalena; Maciejewska-Prończuk, Julia; Adamczyk, Zbigniew; Roman, Maciej
2017-09-01
Formation of positively charged gold nanoparticle monolayers on the Si/SiO 2 was studied under in situ conditions using quartz microbalance (QCM). The gold nanoparticles were synthesized in a chemical reduction method using sodium borohydride as reducing agent. Cysteamine hydrochloride was applied to generate a positive surface charge of nanoparticles. The micrographs obtained from transmission electron microscopy (TEM) revealed that the average size of nanoparticles was equal to 12±3nm. The stability of nanoparticle suspensions under controlled pH and ionic strength was determined by dynamic light scattering (DLS). The electrophoretic mobility measurements showed that the zeta potential of nanoparticles was positive, decreasing with ionic strength and pH from 56mV at pH 4.2 and I=10 -4 M to 22mV at pH 8.3 and I=3×10 -3 M. The surface enhanced Raman spectroscopy (SERS) confirmed chemisorption of cysteamine on nanoparticles and the contribution of amine moieties in the generation of nanoparticle charge. The influence of suspension concentration, ionic strength and flow rate on the kinetics of nanoparticle deposition on the sensors was quantitatively determined. It was confirmed that the deposition for the low coverage regime is governed by the bulk mass transfer that results in a linear increase of the coverage with time. The significant increase in the maximum coverage of gold monolayers with ionic strength was interpreted as due to the decreasing range of the electrostatic interactions among deposited particles. Moreover, the hydratation of formed monolayers, their structure and the stability were determined by the comparison of the QCM results with those obtained by AFM and SEM. The experimental data were adequately interpreted in terms of the extended random sequential adsorption (eRSA) model that considers the bulk and surface transfer steps in a rigorous way. The obtained results are useful for a facile fabrication of gold nanoparticle-based biosensors capable to bind target molecules via available amine moieties. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion.
Solon, Kimberly; Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Volcke, Eveline I P; Tait, Stephan; Batstone, Damien; Gernaey, Krist V; Jeppsson, Ulf
2015-03-01
Plant-wide models of wastewater treatment (such as the Benchmark Simulation Model No. 2 or BSM2) are gaining popularity for use in holistic virtual studies of treatment plant control and operations. The objective of this study is to show the influence of ionic strength (as activity corrections) and ion pairing on modelling of anaerobic digestion processes in such plant-wide models of wastewater treatment. Using the BSM2 as a case study with a number of model variants and cationic load scenarios, this paper presents the effects of an improved physico-chemical description on model predictions and overall plant performance indicators, namely effluent quality index (EQI) and operational cost index (OCI). The acid-base equilibria implemented in the Anaerobic Digestion Model No. 1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects for ionic strength via the Davies approach to consider chemical activities instead of molar concentrations. A speciation sub-routine based on a multi-dimensional Newton-Raphson (NR) iteration method is developed to address algebraic interdependencies. The model also includes ion pairs that play an important role in wastewater treatment. The paper describes: 1) how the anaerobic digester performance is affected by physico-chemical corrections; 2) the effect on pH and the anaerobic digestion products (CO2, CH4 and H2); and, 3) how these variations are propagated from the sludge treatment to the water line. Results at high ionic strength demonstrate that corrections to account for non-ideal conditions lead to significant differences in predicted process performance (up to 18% for effluent quality and 7% for operational cost) but that for pH prediction, activity corrections are more important than ion pairing effects. Both are likely to be required when precipitation is to be modelled. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schachermeyer, Samantha; Ashby, Jonathan; Kwon, MinJung; Zhong, Wenwan
2012-01-01
Flow field flow fractionation (F4) is an invaluable separation tool for large analytes, including nanoparticles and biomolecule complexes. However, sample loss due to analyte-channel membrane interaction limits extensive usage of F4 at present, which could be strongly affected by the carrier fluid composition. This work studied the impacts of carrier fluid (CF) composition on nanoparticle (NP) recovery in F4, with focus on high ionic strength conditions. Successful analysis of NPs in a biomolecules-friendly environment could expand the applicability of F4 to the developing field of nanobiotechnology. Recovery of the unfunctionalized polystyrene NPs of 199-, 102-, and 45-nm in CFs with various pH (6.2, 7.4 and 8.2), increasing ionic strength (0–0.1 M), and different types of co- and counter-ions, were investigated. Additionally, elution of the 85-nm carboxylate NPs and two proteins, human serum albumin (HSA) and immunoglobulin (IgG), at high ionic strengths (0–0.15 M) was investigated. Our results suggested that; 1) Electrostatic repulsion between the negatively charged NPs and the regenerated cellulose membrane was the main force to avoid particle adsorption on the membrane; 2) Larger particles experienced higher attractive force and thus were influenced more by variation in CF composition; and 3) Buffers containing weak anions or NPs with weak anion as the surface functional groups provided higher tolerance to the increase in ionic strength, owing to more anions being trapped inside the NP porous structure. Protein adsorption onto the membrane was also briefly investigated in salted CFs, using human serum albumin and immunoglobulin. We believe our findings could help to identify the basic carrier fluid composition for higher sample recovery in F4 analysis of nanoparticles in a protein-friendly environment, which will be useful for applying F4 in bioassays and in nanotoxicology studies. PMID:23058938
Influence of Ionic Strength on the Deposition of Metal-Phenolic Networks.
Guo, Junling; Richardson, Joseph J; Besford, Quinn A; Christofferson, Andrew J; Dai, Yunlu; Ong, Chien W; Tardy, Blaise L; Liang, Kang; Choi, Gwan H; Cui, Jiwei; Yoo, Pil J; Yarovsky, Irene; Caruso, Frank
2017-10-10
Metal-phenolic networks (MPNs) are a versatile class of self-assembled materials that are able to form functional thin films on various substrates with potential applications in areas including drug delivery and catalysis. Different metal ions (e.g., Fe III , Cu II ) and phenols (e.g., tannic acid, gallic acid) have been investigated for MPN film assembly; however, a mechanistic understanding of the thermodynamics governing MPN formation remains largely unexplored. To date, MPNs have been deposited at low ionic strengths (<5 mM), resulting in films with typical thicknesses of ∼10 nm, and it is still unclear how a bulk complexation reaction results in homogeneous thin films when a substrate is present. Herein we explore the influence of ionic strength (0-2 M NaCl) on the conformation of MPN precursors in solution and how this determines the final thickness and morphology of MPN films. Specifically, the film thickness increases from 10 nm in 0 M NaCl to 12 nm in 0.5 M NaCl and 15 nm in 1 M NaCl, after which the films grow rougher rather than thicker. For example, the root-mean-square roughness values of the films are constant below 1 M NaCl at 1.5 nm; in contrast, the roughness is 3 nm at 1 M NaCl and increases to 5 nm at 2 M NaCl. Small-angle X-ray scattering and molecular dynamics simulations allow for comparisons to be made with chelated metals and polyelectrolyte thin films. For example, at a higher ionic strength (2 M NaCl), sodium ions shield the galloyl groups of tannic acid, allowing them to extend away from the Fe III center and interact with other MPN complexes in solution to form thicker and rougher films. As the properties of films determine their final performance and application, the ability to tune both thickness and roughness using salts may allow for new applications of MPNs.
Löfgren, Stefan; Gustafsson, Jon Petter; Bringmark, Lage
2010-12-01
Numerous studies report increased concentrations of dissolved organic carbon (DOC) during the last two decades in boreal lakes and streams in Europe and North America. Recently, a hypothesis was presented on how various spatial and temporal factors affect the DOC dynamics. It was concluded that declining sulphur deposition and thereby increased DOC solubility, is the most important driver for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength declines due to the reduced input of SO(4)(2-) ions. In this project a geochemical model was set up to calculate the net humic charge and DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm Humic Model was used to investigate whether the observed DOC solubility is related to the humic charge and to examine how pH and ionic strength influence it. Soil water data from recharge and discharge areas, covering both podzols and riparian soils, were used. The model exercise showed that the increased net charge following the pH increase was in many cases counteracted by a decreased ionic strength, which acted to decrease the net charge and hence the DOC solubility. Thus, the recovery from acidification does not necessarily have to generate increasing DOC trends in soil solution. Depending on changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or indifferent. Due to the high hydraulic connectivity with the streams, the explanations to the DOC trends in surface waters should be searched for in discharge areas and peat lands. Copyright © 2010 Elsevier B.V. All rights reserved.
Colloid transport in porous media: impact of hyper-saline solutions.
Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander
2011-05-01
The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during transport through soil in high salinity solution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Experimental and Modeling Study on Detachment of Silver Nanoparticles in Saturated Granular Media
NASA Astrophysics Data System (ADS)
Kim, I.; Jeon, C. H.; Lawler, D. F.
2017-12-01
The detachment of citrate-capped silver nanoparticles (AgNPs) previously captured in a column packed with 350-μm glass beads was investigated either by increasing the hydrodynamic force (filtration velocity) or by reducing electrosteric attraction. Overall, the physical enforcement showed negligible (0.4 0.7%) release of attached AgNPs while the chemically-driven force resulted in the noticeable release up to 25.5% of attached AgNPs. Among the chemical parameters tested in this study, Na ionic strength reduction clearly demonstrated the reversible deposition in the secondary energy minimum of classical DLVO theory, yielding the most significant release of the attached AgNPs. The immediate and transient AgNP release after the ionic strength reduction further corroborated the weak deposition. However, an insignificant release was observed with Ca ionic strength reduction due to the strong Ca-citrate complexation and the subsequent deposition in the primary energy minimum; calculations indicated that the depth of the secondary energy minimum was only 1/10 that of the Na ion case. The natural organic matter (NOM) coating on both AgNPs and granular media resulted in approximately 6.1% greater AgNP release compared to the case without NOM coating, indicating additional weak deposition due to the reduced steric attraction between AgNPs and granular media. A modified filtration model in agreement with the experimental data provided the estimated detachment coefficient as a transient AgNP releasing capacity independent of the amount of attached AgNPs. The marginal difference between the detachment coefficients from Na ionic strength reduction and NOM coating indicates the release potential by NOM coating was possibly underestimated in the experimental study due to a lesser amount of the initially attached AgNPs. The findings provide insights into chemical factors on possible reentrainment behavior of the engineered nanoparticles in soil and groundwater contamination.
Ravelo-Pérez, Lidia M; Hernández-Borges, Javier; Asensio-Ramos, María; Rodríguez-Delgado, Miguel Angel
2009-10-23
This paper describes a dispersive liquid-liquid microextraction (DLLME) procedure using room temperature ionic liquids (RTILs) coupled to high-performance liquid chromatography with diode array detection capable of quantifying trace amounts of eight pesticides (i.e. thiophanate-methyl, carbofuran, carbaryl, tebuconazole, iprodione, oxyfluorfen, hexythiazox and fenazaquin) in bananas. Fruit samples were first homogenized and extracted (1g) with acetonitrile and after suitable evaporation and reconstitution of the extract in 10 mL of water, a DLLME procedure using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM][PF(6)]) as extraction solvent was used. Experimental conditions affecting the DLLME procedure (sample pH, sodium chloride percentage, ionic liquid amount and volume of disperser solvent) were optimized by means of an experimental design. In order to determine the presence of a matrix effect, calibration curves for standards and fortified banana extracts (matrix matched calibration) were studied. Mean recovery values of the extraction of the pesticides from banana samples were in the range of 69-97% (except for thiophanate-methyl and carbofuran, which were 53-63%) with a relative standard deviation lower than 8.7% in all cases. Limits of detection achieved (0.320-4.66 microg/kg) were below the harmonized maximum residue limits established by the European Union (EU). The proposed method, was also applied to the analysis of this group of pesticides in nine banana samples taken from the local markets of the Canary Islands (Spain). To the best of our knowledge, this is the first application of RTILs as extraction solvents for DLLME of pesticides from samples different than water.
Escudero, Leticia B; Berton, Paula; Martinis, Estefanía M; Olsina, Roberto A; Wuilloud, Rodolfo G
2012-01-15
In the present work, a simple and highly sensitive analytical methodology for determination of Tl(+) and Tl(3+) species, based on the use of modern and non-volatile solvents, such as ionic liquids (ILs), was developed. Initially, Tl(+) was complexed by iodide ion at pH 1 in diluted sulfuric acid solution. Then, tetradecyl(trihexyl)phosphonium chloride ionic liquid (CYPHOS(®) IL 101) was used as ion-pairing reagent and a dispersive liquid-liquid microextraction (DLLME) procedure was developed by dispersing 60 mg of 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6) mim][PF(6)] with 500 μL of ethanol in the aqueous solution. After the microextraction procedure was finished, the final IL phase was solubilized in methanol and directly injected into the graphite furnace of an electrothermal atomic absorption spectrometer (ETAAS). An extraction efficiency of 77% and a sensitivity enhancement factor of 100 were obtained with only 5.00 mL of sample. The limit of detection (LOD) was 3.3 ng L(-1) Tl while the relative standard deviation (RSD) was 5.3% (at 0.4 μg L(-1) Tl and n=10), calculated from the peak height of absorbance signals. The method was finally applied to determine Tl species in tap and river water samples after separation of Tl(3+) species. To the best of our knowledge, this work reports the first application of ILs for Tl extraction and separation in the analytical field. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Kun; Jiang, Jia; Kang, Mingqin; Li, Dan; Zang, Shuang; Tian, Sizhu; Zhang, Hanqi; Yu, Aimin; Zhang, Ziwei
2017-04-01
The homogeneous ionic liquid microextraction combined with magnetical hollow fiber bar collection was developed for extracting triazine herbicides from water samples. These analytes were separated and determined by high performance liquid chromatography. The triazines were quickly extracted into ionic liquid microdroplets dispersed in solution, and then these microdroplets were completely collected with magnetical hollow fiber bars; the pores of which were impregnated with hydrophobic ionic liquid, which makes the phase separation simplified with no need of centrifugation. Some experimental parameters, such as the type of ionic liquid, ultrasonic immersion time of hollow fiber, pH of sample solution, volume of hydrophilic ionic liquid, amount of ion-pairing agent NH 4 PF 6 , NaCl concentration, number of magnetical hollow fiber bar, stirring rate, and collection time were investigated and optimized. When the present method was applied to the analysis of real water samples, the precision and recoveries of six triazine herbicides vary from 0.1 to 9.2% and 73.4 to 118.5%, respectively. The detection limits for terbumeton, ametryn, prometryn, terbutryn, trietazine, and dimethametryn were 0.48, 0.15, 0.15, 0.14, 0.35, and 0.16 μg L -1 , respectively.
Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers
NASA Technical Reports Server (NTRS)
Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.
2007-01-01
Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.
The role of grain size and shape in strengthening of dispersion hardened nickel alloys.
NASA Technical Reports Server (NTRS)
Wilcox, B. A.; Clauer, A. H.
1972-01-01
Thermomechanical processing was used to develop various microstructures in Ni, Ni-2ThO2, Ni-20Cr, Ni-20Cr-2ThO2, Ni-20Cr-10W and Ni-20Cr-10W-2ThO2, and the influence of microstructure on room temperature and elevated temperature strength was investigated. The yield strength at 25 C increased with substructure refinement according to the Hall-Petch relation. It was found that substructure refinement was a much more potent means of strengthening at room temperature than was dispersion hardening. At elevated temperature (1093 C), the most important microstructural feature affecting strength of dispersion hardened nickel alloys was the grain aspect ratio, i.e. grain length, L, divided by grain width,l. The yield strength and creep strength increased linearly with increasing L/l.
Farajzadeh, Mir Ali; Mohebbi, Ali; Feriduni, Behruz
2016-05-12
In this study, a rapid, simple, and efficient sample preparation method based on continuous dispersive liquid-liquid microextraction has been developed for the extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples prior to their analysis by gas chromatography-flame ionization detection. In this method, two parallel glass tubes with different diameters are connected with a teflon stopcock and used as an extraction device. A mixture of disperser and extraction solvents is transferred into one side (narrow tube) of the extraction device and an aqueous phase containing the analytes is filled into the other side (wide tube). Then the stopcock is opened and the mixture of disperser and extraction solvents mixes with the aqueous phase. By this action, the extraction solvent is dispersed continuously as fine droplets into the aqueous sample and the target analytes are extracted into the fine droplets of the extraction solvent. The fine droplets move up through the aqueous phase due to its low density compared to aqueous phase and collect on the surface of the aqueous phase as an organic layer. Finally an aliquot of the organic phase is removed and injected into the separation system for analysis. Several parameters that can affect extraction efficiency including type and volume of extraction and disperser solvents, sample pH, and ionic strength were investigated and optimized. Under the optimum extraction conditions, the extraction recoveries and enrichment factors ranged from 49 to 74% and 1633 to 2466, respectively. Relative standard deviations were in the ranges of 3-6% (n = 6, C = 30 μg L(-1)) for intra-day and 4-7% (n = 4, C = 30 μg L(-1)) for inter-day precisions. The limits of detection were in the range of 0.20-0.86 μg L(-1). Finally the proposed method was successfully applied to determine the target herbicides in fruit juice and vegetable samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Hamid, Rossuriati Dol; Swedlund, Peter J; Song, Yantao; Miskelly, Gordon M
2011-11-01
The effect of ionic strength on reactions at aqueous interfaces can provide insights into the nature of the chemistry involved. The adsorption of H(4)SiO(4) on iron oxides at low surface silicate concentration (Γ(Si)) forms monomeric silicate complexes with Fe-O-Si linkages, but as Γ(Si) increases silicate oligomers with Si-O-Si linkages become increasingly prevalent. In this paper, the effect of ionic strength (I) on both Γ(Si) and the extent of silicate oligomerization on the ferrihydrite surface is determined at pH 4, 7, and 10, where the surface is, respectively, positive, nearly neutral, and negatively charged. At pH 4, an increase in ionic strength causes Γ(Si) to decrease at a given H(4)SiO(4) solution concentration, while the proportion of oligomers on the surface at a given Γ(Si) increases. At pH 10, the opposite is observed; Γ(Si) increases as I increases, while the proportion of surface oligomers at a given Γ(Si) decreases. Ionic strength has only a small effect on the surface chemistry of H(4)SiO(4) at pH 7, but at low Γ(Si) this effect is in the direction observed at pH 4 while at high Γ(Si) the effect is in the direction observed at pH 10. The pH where the surface has zero charge decreases from ≈8 to 6 as Γ(Si) increases so that the surface potential (Ψ) is positive at pH 4 for all Γ(Si) and at pH 7 with low Γ(Si). Likewise, Ψ < 0 at pH 10 for all Γ(Si) and at pH 7 with high Γ(Si). The diffuse layer model is used to unravel the complex and subtle interactions between surface potential (Ψ) and chemical parameters that influence interfacial silicate chemistry. This analysis reveals that the decrease in the absolute value of Ψ as I increases causes Γ(Si) to decrease or increase where Ψ is, respectively, positive or negative. Therefore, at a given Γ(Si), the solution H(4)SiO(4) concentration changes with I, and because oligomerization has a higher H(4)SiO(4) stoichiometry coefficient than monomer adsorption, this results in the observed dependence of the extent of silicate oligomerization on I.
Smalley, John F.
2017-04-06
In this study, we demonstrate how small and rapid temperature perturbations (produced by the indirect laser-induced temperature jump (ILIT) technique) of solid metal electrode|electrolyte solution interfaces may be used to determine the potential of zero (total) charge (E pzc) and its temperature derivativemore » $$\\left(\\frac{dEpzc}{dT}\\right)$$ of Au(111) electrode surfaces modified by alkanethiol self-assembled monolayers in contact with high ionic strength (i.e., 1.0 M) aqueous electrolyte solutions. The E pzc’s measured for two different types of SAMs (made from either HS(CH 2) n-1CH 3 (5 ≤ n ≤ 12, E pzc = -(0.99 ± 0.12) V vs SSCE) or HS(CH 2) nOH (3 ≤ n ≤ 16, E pzc = (0.46 ± 0.22) V vs SSCE)) are considerably different than those measured previously at much lower electrolyte solution ionic strengths. For mixed monolayers made from both HS(CH 2) n-1CH 3 and HS(CH 2) nFc (where Fc refers to ferrocene), the difference in Epzc decreases as a function of the surface concentration of the Fc moiety (i.e., [Fc]), and it completely disappears at a surprisingly small [Fc] (~4.0 × 10 –11 mol cm –2). These observations for the Au(111)|hydrophobic (neat and mixed) SAM|aqueous electrolyte solution interfaces, along with the surface potentials (g Sml(dip)) evaluated for the contacting electrolyte solution surfaces of these interfaces, are consistent with a structure for the water molecule components of these surfaces where there is a net orientation of the dipoles of these molecules. Accordingly, the negative (oxygen) ends of these molecules point toward the SAM surface. The positive values of g Sml(dip) evaluated for hydrophilic SAM (e.g., made from HS(CH 2) nOH)|aqueous electrolyte solution interfaces) also indicate that the structure of these interfaces is similar to that of the hydrophobic interfaces. However, g Sml(dip) decreases with increasing ionic strength for the hydrophilic interfaces, while it increases with increasing ionic strength for the hydrophobic interfaces. The data (and calculations) reported in the present work and other studies of hydrophobic (and hydrophilic)|aqueous solution interfaces are as yet insufficient to support a complete explanation for the effects of ionic strength observed in the present study. Nevertheless, an analysis based upon the value of $$\\left(\\frac{dEpzc}{dT}\\right)$$ (= (0.51 ± 0.12) mV/K, essentially the same for SAMs made from both HS(CH 2) n-1CH 3 and HS(CH 2) nOH), determined in the present study provides a further indication that upon formation of the SAM there is a partial charge transfer of electrons from the relevant gold atoms on the Au(111) surface to the sulfur atoms of the alkanethiols.« less
Conductometry of electrolyte solutions
NASA Astrophysics Data System (ADS)
Safonova, Lyubov P.; Kolker, Arkadii M.
1992-09-01
A review is given of the theories of the electrical conductance of electrolyte solutions of different ionic strengths and concentrations, and of the models of ion association. An analysis is made of the methods for mathematical processing of experimental conductometric data. An account is provided of various theories describing the dependence of the limiting value of the ionic electrical conductance on the properties of the solute and solvent. The bibliography includes 115 references.
Chen, Yuehua; Wang, Huiyong; Wang, Jianji
2014-05-01
Thermodynamic dissociation constants of the Brønsted acidic ionic liquids (ILs) are important for their catalytic and separation applications. In this work, a series of imidazolium bromides with one carboxylic acid substitute group in their alkyl chain ([{(CH2)nCOOH}mim]Br, n = 1,3,5,7) have been synthesized, and their dissociation constants (pKa) at different ionic strengths have been determined in aqueous and aqueous organic solvents at 0.1 mole fraction (x) of ethanol, glycol, iso-propanol, and dimethyl sulfoxide by potentiometric titrations at 298.2 K. The standard thermodynamic dissociation constants (pKa(T)) of the ILs in these solvents were calculated from the extended Debye-Hückel equation. It was found that the pKa values increased with the increase of ionic strength of the media and of the addition of organic solvent in water. The pKa(T) values also increased with the increase of the alkyl chain length of cations of the ILs. In addition, the effect of solvent nature on pKa(T) values is interpreted from solvation of the dissociation components and their Gibbs energy of transfer from water to aqueous organic solutions.
Zou, Nan; Gu, Kejia; Liu, Shaowen; Hou, Yanbing; Zhang, Jialei; Xu, Xiang; Li, Xuesheng; Pan, Canping
2016-03-01
An analytical method based on dispersive solid-phase extraction with a multiwalled carbon nanotubes sorbent coupled with positive pulse glow discharge ion mobility spectrometry was developed for analysis of 30 pesticide residues in drinking water samples. Reduced ion mobilities and the mass-mobility correlation of 30 pesticides were measured. The pesticides were divided into five groups to verify the separation capability of pulse glow discharge in mobility spectrometry. The extraction conditions such as desorption solvent, ionic strength, conditions of adsorption and desorption, the amounts of multiwalled carbon nanotubes, and solution pH were optimized. The enrichment factors of pesticides were 5.4- to 48.7-fold (theoretical enrichment factor was 50-fold). The detection limits of pesticides were 0.01∼0.77 μg/kg. The linear range was 0.005-0.2 mg/L for pesticide standard solutions, with determination coefficients from 0.9616 to 0.9999. The method was applied for the analysis of practical and spiked drinking water samples. All results were confirmed by high-performance liquid chromatography with tandem mass spectrometry. The proposed method was proven to be a commendably rapid screening qualitative and semiquantitative technique for the analysis of pesticide residues in drinking water samples on site. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yao, Lingmin; Pan, Zhongbin; Zhai, Jiwei; Chen, Haydn H D
2017-03-23
Nanocomposites in capacitors combining highly aligned one dimension ferroelectric nanowires with polymer would be more desirable for achieving higher energy density. However, the synthesis of the well-isolated ferroelectric oxide nanorod arrays with a high orientation has been rather scant, especially using glass-made substrates. In this study, a novel design that is capable of fabricating a highly [110]-oriented BaTiO 3 (BT) nanorod array was proposed first, using a three-step hydrothermal reaction on glass-made substrates. The details for controlling the dispersion of the nanorod array, the orientation and the aspect ratio are also discussed. It is found that the alkaline treatment of the TiO 2 (TO) nanorod array, rather than the completing transformation into sodium titanate, favors the transformation of the TO into the BT nanorod array, as well as protecting the glass-made substrate. The dispersity of the nanorod array can be controlled by the introduction of a glycol ether-deionized water mixed solvent and soluble salts. Moreover, the orientation of the nanorod arrays could be tuned by the ionic strength of the solution. This novel BT nanorod array was used as a filler in a nanocomposite capacitor, demonstrating that a large energy density (11.82 J cm -3 ) can be achieved even at a low applied electric field (3200 kV cm -1 ), which opens us a new application in nanocomposite capacitors.
Khalil, E; Sallam, A
1999-04-01
The copolymer of ammoniomethacrylate Eudragit RL (ERL) interacted with diclofenac acid salts (sodium and diethylamine salts) in aqueous solutions, forming a complex. Sorption experiments were done in aqueous solutions of either sodium lauryl sulfate (SLS), Tween 20, or Tween 80. The SLS competed strongly with the drug, even at low concentrations, and reduced significantly the amount of drug sorbed by ERL. Tweens at high concentrations exhibited two phase profiles: the sorption phase, which was short and during which drug concentration dropped sharply, and the release phase, during which the drug was released slowly over 24 hr and which was accompanied by dispersion of ERL particles into the colloidal dispersion. The interaction was dependent on temperature, ionic strength, and nature of the additives. The extent of interaction in water and phosphate buffer solutions was in the following order: water > pH 6 > pH 7-8. In-vitro dissolution studies of the dried complex were done over 24 hr. In water, the drug remained bound to the polymer. In aqueous surfactant solutions (SLS, Tween 20, and Tween 80) and phosphate buffer at pH 6.8, a linear relationship between drug concentration and the square root of time was obtained, indicating a matrix diffusion-controlled mechanism. However, 100% release was not reached, and resorption was observed in the phosphate buffer solution.
Khodadoust, S; Ghaedi, M; Hadjmohammadi, M R
2013-11-15
A new extraction method, based on Dispersive Nano-Solid material-Ultrasound Assisted Micro-Extraction (DNSUAME), was used for the preconcentration of the bendiocarb and promecarb pesticides in the water samples prior to high performance liquid chromatography (HPLC). The properties of NiZnS nanomaterial loaded on activated carbon (NiZnS-AC) are characterized by FT-IR, TEM, and BET. This novel nanomaterial showed great adsorptive ability towards the bendiocarb and promecarb pesticides. The effective variables such as the amount of adsorbent (mg: NiZnS-AC), the pH and ionic strength of sample solution, the vortex and ultrasonic time (min), the ultrasonic temperature (°C), and desorption volume (mL) are investigated by screening 2(7-4) experiments of Plackett-Burman (PB) design. The important variables optimized by using a central composite design (CCD) were combined by a desirability function (DF). At optimum conditions, the method has linear response over 0.0033-10 µg mL(-1) with detection limit between 0.0010 and 0.0015 µg mL(-1) with relative standard deviations (RSDs) less than 5.5% (n=3). The method has been successfully applied for the determination of the bendiocarb and promecarb pesticides in the water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Dual aging behaviour in a clay-polymer dispersion.
Zulian, Laura; Augusto de Melo Marques, Flavio; Emilitri, Elisa; Ruocco, Giancarlo; Ruzicka, Barbara
2014-07-07
Clay-polymer compounds have recently attracted increasing attention due to their intriguing physical properties in colloidal science and their rheological non-trivial behaviour in technological applications. Aqueous solutions of Laponite clay spontaneously age from a liquid up to an arrested state of different nature (gel or glass) depending on the colloidal volume fraction and ionic strength. We have investigated, through dynamic light scattering, how the aging dynamics of Laponite dispersions at fixed clay concentration (Cw = 2.0%) is modified by the addition of various amounts of poly(ethylene oxide) (PEO) (CPEO = (0.05 ÷ 0.50) %) at two different molecular weights (Mw = 100 kg mol(-1) and Mw = 200 kg mol(-1)). A surprising and intriguing phenomenon has been observed: the existence of a critical polymer concentration C that discriminates between two different aging dynamics. With respect to pure Laponite systems the aging will be assisted (faster) or hindered (slower) for PEO concentrations respectively lower (CPEO < C) or higher (CPEO > C) than the critical concentration. In this way a control on the aging dynamics of PEO-Laponite systems is obtained. A possible explanation based on the balance of competitive mechanisms related to the progressive saturation of the clay surface by polymers is proposed. This study shows how a real control on the aging speed of the PEO-Laponite system is at hand and renders possible a real control of the complex interparticle interaction potential.
NASA Astrophysics Data System (ADS)
Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K. G.
2009-05-01
We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times.
Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K G
2009-05-28
We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times.
Kydd, Richard; Scott, Jason; Teoh, Wey Yang; Chiang, Ken; Amal, Rose
2010-02-02
A nonaqueous photodeposition procedure for forming Au nanoparticles on semiconducting supports (TiO(2), CeO(2), and ZrO(2)) was investigated. Intrinsic excitation of the support was sufficient to induce Au(0) nucleation, without the need for an organic hole-scavenging species. Photoreduction rates were higher over TiO(2) and ZrO(2) than over CeO(2), likely due to a lower rate of photogenerated electron recombination. Illumination resulted in metallization of the adsorbed Au species and formation of crystalline Au nanoparticles dispersed across the oxide surfaces. On the basis of transmission electron microscopy (TEM) evidence of a strong Au particle-metal oxide interaction, it is proposed that Au deposit formation proceeds via the nucleation of highly dispersed clusters which can diffuse and amalgamate at room temperature to form larger surface-defect-immobilized clusters, with the final particle size being significantly smaller than that achieved by conventional aqueous photodeposition. From this work, it is possible to draw several new fundamental insights, with regards to both the nonaqueous photodeposition process and the general mechanism by which dispersed metallic Au nanoparticles are formed from ionic precursors adsorbed upon metal oxide supports.
The ionic versus metallic nature of 2D electrides: a density-functional description.
Dale, Stephen G; Johnson, Erin R
2017-10-18
The two-dimensional (2D) electrides are a highly unusual class of materials, possessing interstitial electron layers sandwiched between cationic atomic layers of the solid. In this work, density-functional theory, with the exchange-hole dipole moment dispersion correction, is used to investigate exfoliation and interlayer sliding of the only two experimentally known 2D electrides: [Ca 2 N] + e - and [Y 2 C] 2+ (2e - ). Examination of the valence states during exfoliation identifies intercalated electrons in the bulk and weakly-bound surface-states in the fully-expanded case. The calculated exfoliation energies for the 2D electrides are found to be much higher than for typical 2D materials, which is attributed to the ionic nature of the electrides and the strong Coulomb forces governing the interlayer interactions. Conversely, the calculated sliding barriers are found to be quite low, comparable to those for typical 2D materials, and are effectively unchanged by exclusion of dispersion. We conjecture that the metallic nature of the interstitial electrons allows the atomic layers to move relative to each other without significantly altering the interlayer binding. Finally, comparison with previous works reveals the importance of a system-dependent dispersion correction in the density-functional treatment.
Structure and osmotic pressure of ionic microgel dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedrick, Mary M.; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050; Chung, Jun Kyung
We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute bothmore » macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.« less