A model of ion transport processes along and across the neuronal membrane.
Xiang, Z X; Liu, G Z; Tang, C X; Yan, L X
2017-01-01
In this study, we provide a foundational model of ion transport processes in the intracellular and extracellular compartments of neurons at the nanoscale. There are two different kinds of ionic transport processes: (i) ionic transport across the neuronal membrane (trans-membrane), and (ii) ionic transport along both the intracellular and extracellular surfaces of the membrane. Brownian dynamics simulations are used to give a description of ionic trans-membrane transport. Electro-diffusion is used to model ion transport along the membrane surface, and the two transport processes can be linked analytically. In our model, we found that the interactions between ions and ion channels result in high-frequency ionic oscillations during trans-membrane transport. In ion transport along the membrane, high-frequency ionic oscillations may be evoked on both the intracellular and extracellular surfaces of the plasma membrane. The electric field caused by Coulomb interactions between the ions is found to be the most likely origin of those ionic oscillations.
NMR Studies of Mass Transport in New Conducting Media for Fuel Cells
2009-01-01
PEM films, for example those containing phosphoric acid and ionic liquids . Dynamical processes are probed at the short range by spin-lattice...structural environments of muticomponent PEM films, for example those containing phosphoric acid and ionic liquids . Dynamical processes are probed at the...correlation between water diffusivity and proton conductivity in the nanocomposites Transport properties of several ionic liquids (IL’s) and membranes
Structural control of mixed ionic and electronic transport in conducting polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.
Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less
Structural control of mixed ionic and electronic transport in conducting polymers
Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; ...
2016-04-19
Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less
Dramatic pressure-sensitive ion conduction in conical nanopores.
Jubin, Laetitia; Poggioli, Anthony; Siria, Alessandro; Bocquet, Lydéric
2018-04-17
Ion transporters in Nature exhibit a wealth of complex transport properties such as voltage gating, activation, and mechanosensitive behavior. When combined, such processes result in advanced ionic machines achieving active ion transport, high selectivity, or signal processing. On the artificial side, there has been much recent progress in the design and study of transport in ionic channels, but mimicking the advanced functionalities of ion transporters remains as yet out of reach. A prerequisite is the development of ionic responses sensitive to external stimuli. In the present work, we report a counterintuitive and highly nonlinear coupling between electric and pressure-driven transport in a conical nanopore, manifesting as a strong pressure dependence of the ionic conductance. This result is at odds with standard linear response theory and is akin to a mechanical transistor functionality. We fully rationalize this behavior on the basis of the coupled electrohydrodynamics in the conical pore by extending the Poisson-Nernst-Planck-Stokes framework. The model is shown to capture the subtle mechanical balance occurring within an extended spatially charged zone in the nanopore. The pronounced sensitivity to mechanical forcing offers leads in tuning ion transport by mechanical stimuli. The results presented here provide a promising avenue for the design of tailored membrane functionalities.
Meckes, Brian; Arce, Fernando Teran; Connelly, Laura S.; Lal, Ratnesh
2014-01-01
Biological membranes contain ion channels, which are nanoscale pores allowing controlled ionic transport and mediating key biological functions underlying normal/abnormal living. Synthetic membranes with defined pores are being developed to control various processes, including filtration of pollutants, charge transport for energy storage, and separation of fluids and molecules. Although ionic transport (currents) can be measured with single channel resolution, imaging their structure and ionic currents simultaneously is difficult. Atomic force microscopy enables high resolution imaging of nanoscale structures and can be modified to measure ionic currents simultaneously. Moreover, the ionic currents can also be used to image structures. A simple method for fabricating conducting AFM cantilevers to image pore structures at high resolution is reported. Tungsten microwires with nanoscale tips are insulated except at the apex. This allows simultaneous imaging via cantilever deflections in normal AFM force feedback mode as well as measuring localized ionic currents. These novel probes measure ionic currents as small as picoampere while providing nanoscale spatial resolution surface topography and is suitable for measuring ionic currents and conductance of biological ion channels. PMID:24663394
Harnessing Solid-State Ionic Transport for Nanomanufacturing and Nanodevices
ERIC Educational Resources Information Center
Hsu, Keng Hao
2009-01-01
Through this work a new all-solid, ambient processing condition direct metal patterning technique has been developed and characterized. This ionic-transport-based patterning technique is capable of sub-50nm feature resolution under ambient conditions. It generates features with a rate that is comparable to conventional dry-etching techniques. A…
One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes
Gabitto, Jorge; Tsouris, Costas
2018-01-19
Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less
One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabitto, Jorge; Tsouris, Costas
Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less
Ionic conduction in sodium azide under high pressure: Experimental and theoretical approaches
NASA Astrophysics Data System (ADS)
Wang, Qinglin; Ma, Yanzhang; Sang, Dandan; Wang, Xiaoli; Liu, Cailong; Hu, Haiquan; Wang, Wenjun; Zhang, Bingyuan; Fan, Quli; Han, Yonghao; Gao, Chunxiao
2018-04-01
Alkali metal azides can be used as starting materials for the synthesis of polymeric nitrogen, a potential material of high energy density. In this letter, we report the ionic transport behavior in sodium azide under high pressure by in situ impedance spectroscopy and density functional theory calculations. The ionic transportation consists of ion transfer and Warburg diffusion processes. The ionic migration channels and barrier energy were given for the high-pressure phases. The enhanced ionic conductivity of the γ phase with pressure is because of the formation of space charge regions in the grain boundaries. This ionic conduction and grain boundary effect in NaN3 under pressures could shed light on the better understanding of the conduction mechanism of alkali azides and open up an area of research for polymeric nitrogen in these compounds and other high-energy-density polynitrides.
NASA Astrophysics Data System (ADS)
Dridi, W.; Dangla, P.; Foct, F.; Petre-Lazar, I.
2006-11-01
This paper deals with numerical modelling of rebar corrosion kinetics in unsaturated concrete structures. The corrosion kinetics is investigated in terms of mechanistic coupling between reaction rates at the steel surface and the ionic transport processes in the concrete pore system. The ionic and mass transport model consists of time-dependent equations for the concentration of dissolved species, the liquid pressure and the electrical potential. The complete set of nonlinear equations is solved using the finite-volume method. The nonlinear boundary conditions dealing with corrosion are introduced at the steel-concrete interface where they are implicitly coupled with the mass transport model in the concrete structure. Both the case of free corrosion and potentiostatic polarisation are discussed in a one dimensional model.
NASA Astrophysics Data System (ADS)
Zheng, Q.; Dickson, S.; Guo, Y.
2007-12-01
A good understanding of the physico-chemical processes (i.e., advection, dispersion, attachment/detachment, straining, sedimentation etc.) governing colloid transport in fractured media is imperative in order to develop appropriate bioremediation and/or bioaugmentation strategies for contaminated fractured aquifers, form management plans for groundwater resources to prevent pathogen contamination, and identify suitable radioactive waste disposal sites. However, research in this field is still in its infancy due to the complex heterogeneous nature of fractured media and the resulting difficulty in characterizing this media. The goal of this research is to investigate the effects of aperture field variability, flow rate and ionic strength on colloid transport processes in well characterized single fractures. A combination of laboratory-scale experiments, numerical simulations, and imaging techniques were employed to achieve this goal. Transparent replicas were cast from natural rock fractures, and a light transmission technique was employed to measure their aperture fields directly. The surface properties of the synthetic fractures were characterized by measuring the zeta-potential under different ionic strengths. A 33 (3 increased to the power of 3) factorial experiment was implemented to investigate the influence of aperture field variability, flow rate, and ionic strength on different colloid transport processes in the laboratory-scale fractures, specifically dispersion and attachment/detachment. A fluorescent stain technique was employed to photograph the colloid transport processes, and an analytical solution to the one-dimensional transport equation was fit to the colloid breakthrough curves to calculate the average transport velocity, dispersion coefficient, and attachment/detachment coefficient. The Reynolds equation was solved to obtain the flow field in the measured aperture fields, and the random walk particle tracking technique was employed to model the colloid transport experiments. The images clearly show the development of preferential pathways for colloid transport in the different aperture fields and under different flow conditions. Additionally, a correlation between colloid deposition and fracture wall topography was identified. This presentation will demonstrate (1) differential transport between colloid and solute in single fractures, and the relationship between differential transport and aperture field statistics; (2) the relationship between the colloid dispersion coefficient and aperture field statistics; and (3) the relationship between attachment/detachment, aperture field statistics, fracture wall topography, flow rate, and ionic strength. In addition, this presentation will provide insight into the application of the random walk particle tracking technique for modeling colloid transport in variable-aperture fractures.
Tian, He; Zhao, Lianfeng; Wang, Xuefeng; Yeh, Yao-Wen; Yao, Nan; Rand, Barry P; Ren, Tian-Ling
2017-12-26
Extremely low energy consumption neuromorphic computing is required to achieve massively parallel information processing on par with the human brain. To achieve this goal, resistive memories based on materials with ionic transport and extremely low operating current are required. Extremely low operating current allows for low power operation by minimizing the program, erase, and read currents. However, materials currently used in resistive memories, such as defective HfO x , AlO x , TaO x , etc., cannot suppress electronic transport (i.e., leakage current) while allowing good ionic transport. Here, we show that 2D Ruddlesden-Popper phase hybrid lead bromide perovskite single crystals are promising materials for low operating current nanodevice applications because of their mixed electronic and ionic transport and ease of fabrication. Ionic transport in the exfoliated 2D perovskite layer is evident via the migration of bromide ions. Filaments with a diameter of approximately 20 nm are visualized, and resistive memories with extremely low program current down to 10 pA are achieved, a value at least 1 order of magnitude lower than conventional materials. The ionic migration and diffusion as an artificial synapse is realized in the 2D layered perovskites at the pA level, which can enable extremely low energy neuromorphic computing.
ESM of ionic and electrochemical phenomena on the nanoscale
Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...
2011-01-01
Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less
Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors.
Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin
2015-04-10
Mixed ionic-electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2-δ-CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2-δ-Ce0.8Gd0.2O2-δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic-electronic conductor composites through processing induced modifications of the grain boundary defect distribution.
Terahertz Investigations of Extraordinarily Efficient Conduction in a Redox Active Ionic Liquid.
NASA Astrophysics Data System (ADS)
Thorsmolle, Verner; Brauer, Jan; Rothenberger, Guido; Kuang, Daibin; Zakeeruddin, Shaik; Grätzel, Michael; Moser, Jacques
2009-03-01
Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding expectancy for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. Applying low temperatures, we demonstrate for the first time conduction entirely due to a Grotthus bond-exchange mechanism at iodine concentrations higher than 3.9 M. The terahertz and transport results are reconciled in a model providing a quantitative description of the conduction by physical diffusion and the Grotthus bond-exchange process. These novel results are of great importance for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.
Visualization of TlBr ionic transport mechanism by the Accelerated Device Degradation technique
NASA Astrophysics Data System (ADS)
Datta, Amlan; Becla, Piotr; Motakef, Shariar
2015-06-01
Thallium Bromide (TlBr) is a promising gamma radiation semiconductor detector material. However, it is an ionic semiconductor and suffers from polarization. As a result, TlBr devices degrade rapidly at room temperature. Polarization is associated with the flow of ionic current in the crystal under electrical bias, leading to the accumulation of charged ions at the device's electrical contacts. We report a fast and reliable direct characterization technique to identify the effects of various growth and post-growth process modifications on the polarization process. The Accelerated Device Degradation (ADD) characterization technique allows direct observation of nucleation and propagation of ionic transport channels within the TlBr crystals under applied bias. These channels are observed to be initiated both directly under the electrode as well as away from it. The propagation direction is always towards the anode indicating that Br- is the mobile diffusing species within the defect channels. The effective migration energy of the Br- ions was calculated to be 0.33±0.03 eV, which is consistent with other theoretical and experimental results.
Liang, Yanyan; Liu, Zhengping
2016-12-20
Ionic current rectification of nanofluidic diode membranes has been studied widely in recent years because it is analogous to the functionality of biological ion channels in principle. We report a new method to fabricate ionic current rectification membranes based on mesoporous silica confined in anodic aluminum oxide (AAO) membranes. Two types of mesostructured silica nanocomposites, hexagonal structure and nanoparticle stacked structure, were used to asymmetrically fill nanochannels of AAO membranes by a vapor-phase synthesis (VPS) method with aspiration approach and were further modified via sequence vapor infiltration (SVI) treatment. The ionic current measurements indicated that SVI treatment can modulate the asymmetric ionic transport in prepared membranes, which exhibited clear ionic current rectification phenomenon under optimal conditions. The ionic current rectifying behavior is derived from the asymmetry of surface conformations, silica species components, and hydrophobic wettability, which are created by the asymmetrical filling type, silica depositions on the heterogeneous membranes, and the condensation of silanol groups. This article provides a considerable strategy to fabricate composite membranes with obvious ionic current rectification performance via the cooperation of the VPS method and SVI treatment and opens up the potential of mesoporous silica confined in AAO membranes to mimic fluid transport in biological processes.
Smith, Kelly A; Hao, Jinsong; Li, S Kevin
2009-06-01
Transport across the human nail under hydration can be modeled as hindered transport across aqueous pore pathways. As such, nail permselectivity to charged species can be manipulated by changing the ionic strength of the system in transungual delivery to treat nail diseases. The present study investigated the effects of ionic strength upon transungual passive and iontophoretic transport. Transungual passive and anodal iontophoretic transport experiments of tetraethylammonium ion (TEA) were conducted under symmetric conditions in which the donor and receiver had the same ionic strength in vitro. Experiments under asymmetric conditions were performed to mimic the in vivo conditions. Prior to the transport studies, TEA uptake studies were performed to assess the partitioning of TEA into the nail. Permselectivity towards TEA was inversely related to ionic strength in both passive and iontophoretic transport. The permeability and transference number of TEA were higher at lower ionic strengths under the symmetric conditions due to increased partitioning of TEA into the nail. Transference numbers were smaller under the asymmetric conditions compared with their symmetric counterparts. The results demonstrate significant ionic strength effects upon the partitioning and transport of a cationic permeant in transungual transport, which may be instrumental in the development of transungual delivery systems.
Anisotropic amplification of proton transport in proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Thimmappa, Ravikumar; Fawaz, Mohammed; Devendrachari, Mruthyunjayachari Chattanahalli; Gautam, Manu; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Thotiyl, Musthafa Ottakam
2017-07-01
Though graphene oxide (GO) membrane shuttles protons under humid conditions, it suffer severe disintegration and anhydrous conditions lead to abysmal ionic conductivity. The trade-off between mechanical integrity and ionic conductivity challenge the amplification of GO's ionic transport under anhydrous conditions. We show anisotropic amplification of GO's ionic transport with a selective amplification of in plane contribution under anhydrous conditions by doping it with a plant extract, phytic acid (PA). The hygroscopic nature of PA stabilized interlayer water molecules and peculiar geometry of sbnd OH functionalities around saturated hydrocarbon ring anisotropically enhanced ionic transport amplifying the fuel cell performance metrics.
Colloid transport in porous media: impact of hyper-saline solutions.
Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander
2011-05-01
The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during transport through soil in high salinity solution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Solid-State Ionic Diodes Demonstrated in Conical Nanopores
Plett, Timothy S.; Cai, Wenjia; Le Thai, Mya; ...
2017-02-27
Ionic transport at the nanoscale features phenomena that are not observed in larger systems. Nonlinear current–voltage curves characteristic of ionic diodes as well as ion selectivity are examples of effects observed at the nanoscale. Many man-made nanopore systems are inspired by biological channels in a cell membrane, thus measurements are often performed in aqueous solutions. Consequently, much less is known about ionic transport in nonaqueous systems, especially in solid-state electrolytes. Here we show ionic transport through single pores filled with gel electrolyte of poly(methyl methacrylate) (PMMA) doped with LiClO 4 in propylene carbonate. The system has no liquid interface andmore » the ionic transport occurs through the porous gel structure. We demonstrate that a conically shaped nanopore filled with the gel rectifies the current and works as a solid-state ionic diode.« less
NASA Astrophysics Data System (ADS)
de la Torre-Gamarra, Carmen; Appetecchi, Giovanni Battista; Ulissi, Ulderico; Varzi, Alberto; Varez, Alejandro; Passerini, Stefano
2018-04-01
Ceramic electrolytes are prepared through sintering processes which are carried out at high temperatures and require prolonged operating times, resulting unwelcome in industrial applications. We report a physicochemical characterization on hybrid, sodium conducting, electrolyte systems obtained by coating NASICON ceramic powders with the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. The goal is to realize a ceramic-IL interface with improved sodium mobility, aiming to obtain a solid electrolyte with high ion transport properties but avoiding sintering thermal treatment. The purpose of the present work, however, is showing how simply combining NASICON powder and Py14TFSI does not lead to any synergic effect on the resulting hybrid electrolyte, evidencing that an average functionalization of the ceramic powder surface and/or ionic liquid is needed. Also, the processing conditions for preparing the hybrid samples are found to affect their ion transport properties.
Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Senli; Jesse, Stephen; Kalnaus, Sergiy
2011-01-01
The strong coupling between the molar volume and mobile ion concentration in ionically-conductive solids is used for spatially-resolved studies of ionic transport on the polycrystalline LiCoO2 surface by time-resolved spectroscopy. Strong variability between ionic transport at the grain boundaries and within the grains is observed, and the relationship between relaxation and hysteresis loop formation is established. The use of the strain measurements allows ionic transport be probed on the nanoscale, and suggests enormous potential for probing ionic materials and devices.
Alvi, Mohammed M; Chatterjee, Parnali
2014-04-01
Paracellular route is a natural pathway for the transport of many hydrophilic drugs and macromolecules. The purpose of this study was to prospectively evaluate the ability of novel co-processed non-ionic surfactants to enhance the paracellular permeability of a model hydrophilic drug metformin using Caco-2 (human colonic adenocarcinoma) cell model. A three-tier screen was undertaken to evaluate the co-processed blends based on cytotoxicity, cellular integrity, and permeability coefficient. The relative contribution of the paracellular and the transcellular route in overall transport of metformin by co-processed blends was determined. Immunocytochemistry was conducted to determine the distribution of tight-junction protein claudin-1 after incubation with the co-processed blends. It was found that novel blends of Labrasol and Transcutol-P enhanced metformin permeability by approximately twofold with transient reduction in the transepithelia electrical resistance (TEER) and minimal cytotoxicity compared with the control, with the paracellular pathway as the major route of metformin transport. Maximum permeability of metformin (∼10-fold) was mediated by Tween-20 blends along with >75% reduction in the TEER which was irreversible over 24-h period. A shift in metformin transport from the paracellular to the transcellular route was observed with some Tween-20 blends. Immunocytochemical analysis revealed rearrangement of the cellular borders and fragmentation on treatment with Tween-20 blends. In conclusion, cytotoxicity, cellular integrity, and permeability of the hydrophilic drugs can be greatly influenced by the polyoxyethylene residues and medium chain fatty acids in the non-ionic surfactants at clinically relevant concentrations and therefore should be thoroughly investigated prior to their inclusion in formulations.
NASA Astrophysics Data System (ADS)
Siegel, David; El Gabaly, Farid; Bartelt, Norman; McCarty, Kevin
2014-03-01
Novel electrochemical solutions to problems in energy storage and transportation can drive renewable energy to become an economically viable alternative to fossil fuels. In many electrochemical systems, the behavior of a device can be fundamentally limited by the surface area of a triple phase boundary, the boundary region where a gas-phase species, electrode, and electrolyte coincide. When the electrode is an ionic insulator the triple phase boundary is typically a one-dimensional boundary with nanometer-scale thickness: ions cannot transport through the electrode, while electrons cannot be transported through the electrolyte. Here we present direct experimental measurements of a novel electrolyte-to-electrode transition with photoemission electron microscopy, and observe that the surface of an ionically conductive, electronically insulative solid oxide electrolyte undergoes a transition into a mixed electron-ion conductor in the vicinity of a metal electrode. Our direct experimental measurements allow us to characterize this system and address the mechanisms of ionic reactions and transport through comparisons with theoretical modeling to provide us with a physical picture of the processes involved. Our results provide insight into one of the mechanisms of ion transport in an electrochemical cell that may be generalizable to other systems.
NASA Astrophysics Data System (ADS)
Souquet, Jean Louis
2006-06-01
Ionocovalent crystals or glasses as well as molten salts or salt polymer complexes are currently studied as electrolytes for high energy density batteries. Their large Red/Ox stability range results from their thermodynamic or kinetic characteristics. For all these electrolytes, charge carriers are the consequence of local deviations from electroneutrality, identified as point defects for ionic crystals or partial dissociation in disordered structures. The charge carriers formation derives from a similar activated process. The main difference comes from the migration process, which depends on the dynamic properties of the surrounding medium. When the structural relaxation time is large, an activated process, mainly enthalpic, prevails for charge carriers migration. It is the usual case for ionic crystals or glasses. In the liquid or overcooled liquid states, the structural relaxation time of the medium is shorter that the time required for the activated migration process to occur and a local reorganization of the medium vanishes the energy barrier and provides the free volume necessary to ionic migration. In that case, the migration is mainly an entropic process. The configurational entropy necessary to this process decreases with temperature and vanishes at the so called ideal glass transition temperature which can be estimated by extrapolation of the transport properties or of the thermodynamic characteristics of the medium. However, at the experiment time scale, this configurational entropy disappears at a somewhat higher temperature, the glass transition temperature at which the structural relaxation time corresponds to the measurement time. Some glass forming ionic melts studied in a large temperature scale, over and below the glass transition temperature, evidence the two, enthalpic and entropic, migration mechanisms, allowing the determination of the thermodynamic characteristics of the charge carriers formation and migration. Some recent results indicate that entropic process, associated to long scale deformations, may also exist in crystalline structures.
The fish gill: site of action and model for toxic effects of environmental pollutants.
Evans, D H
1987-01-01
The gill epithelium is the site of gas exchange, ionic regulation, acid-base balance, and nitrogenous waste excretion by fishes. The last three processes are controlled by passive and active transport of various solutes across the epithelium. Various environmental pollutants (e.g., heavy metals, acid rain, and organic xenobiotics) have been found to affect the morphology of the gill epithelium. Associated with these morphological pathologies, one finds alterations in blood ionic levels, as well as gill Na,K-activated ATPase activity and ionic fluxes. Such physiological disturbances may underly the toxicities of these pollutants. In addition, the epithelial transport steps which are affected in the fish gill model resemble those described in the human gut and kidney, sites of action of a variety of environmental toxins. Images FIGURE 1. a FIGURE 1. b FIGURE 3. PMID:3297663
Physicochemical hydrodynamics of porous structures in vascular plants
NASA Astrophysics Data System (ADS)
Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, Taejoo; Lee, Sang Joon
2013-11-01
Transport of sap flow through xylem conduits of vascular plants has been considered as a passive process, because the xylem conduits are regarded as inert, dead wood. However, plants can actively regulate water transport using ion-mediated response for adapting to environmental changes. In order to understand the active regulation mechanism of physicochemical hydrodynamics of porous structures in vascular plants, the effects of specific ion types and their ionic ratios on the water transport were experimentally investigated under in vivocondition. Based on the experimental results, the principle of ionic effects will be explained through in-vitro comparative experiments and theoretical considerations. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).
Electronic and Ionic Transport in Processable Conducting Polymers
1991-05-28
doping with nitrosonium fluoborate. 6. Polypyrrole containing luminescent ions has been shown to be useful as in-situ probes of ion transport during...blends, ion transport, fibers, theoretical calculations ABSTRACT (Continue on reverse if necessary and identify by block number) A summary of the research...polymer/dopant ion interactions, symmereically and asymmetrically substituted poly(di-2-heterocycle-2,5-disubstitutedphenylenes), poly(5
Equations of state and transport properties of mixtures in the warm dense regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Yong; Dai, Jiayu; Kang, Dongdong
2015-02-15
We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide regionmore » of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, P. B., E-mail: anandputhirath@gmail.com, E-mail: jayalekshmi@cusat.ac.in; Jayalekshmi, S., E-mail: anandputhirath@gmail.com, E-mail: jayalekshmi@cusat.ac.in
2014-01-28
Nowadays polymer based solid state electrolytes for applications in rechargeable battery systems are highly sought after materials, pursued extensively by various research groups worldwide. Numerous methods are discussed in literature to improve the fundamental properties like electrical conductivity, mechanical stability and interfacial stability of polymer based electrolytes. The application of these electrolytes in Li-ion cells is still in the amateur state, due to low ionic conductivity, low lithium transport number and the processing difficulties. The present work is an attempt to study the effects of Li doping on the structural and transport properties of the polymer electrolyte, poly-ethelene oxide (PEO)more » (Molecular weight: 200,000). Li doped PEO was obtained by treating PEO with n-Butyllithium in hexane for different doping concentrations. Structural characterization of the samples was done by XRD and FTIR techniques. Impedance measurements were carried out to estimate the ionic conductivity of Li doped PEO samples. It is seen that, the crystallinity of the doped PEO decreases on increasing the doping concentration. XRD and FTIR studies support this observation. It is inferred that, ionic conductivity of the sample is increasing on increasing the doping concentration since less crystallinity permits more ionic transport. Impedance measurements confirm the results quantitatively.« less
Gainaru, Catalin P.; Technische Univ. Dortmund, Dortmund; Stacy, Eric W.; ...
2016-09-28
Combining broadband impedance spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance we analyzed charge and mass transport in two polymerized ionic liquids and one of their monomeric precursors. In order to establish a general procedure for extracting single-particle diffusivity from their conductivity spectra, we critically assessed several approaches previously employed to describe the onset of diffusive charge dynamics and of the electrode polarization in ion conducting materials. Based on the analysis of the permittivity spectra, we demonstrate that the conductivity relaxation process provides information on ion diffusion and the magnitude of cross-correlation effects between ionic motions. A new approach ismore » introduced which is able to estimate ionic diffusivities from the characteristic times of conductivity relaxation and ion concentration without any adjustable parameters. Furthermore, this opens the venue for a deeper understanding of charge transport in concentrated and diluted electrolyte solutions.« less
USDA-ARS?s Scientific Manuscript database
To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...
Ion concentration in micro and nanoscale electrospray emitters.
Yuill, Elizabeth M; Baker, Lane A
2018-06-01
Solution-phase ion transport during electrospray has been characterized for nanopipettes, or glass capillaries pulled to nanoscale tip dimensions, and micron-sized electrospray ionization emitters. Direct visualization of charged fluorophores during the electrospray process is used to evaluate impacts of emitter size, ionic strength, analyte size, and pressure-driven flow on heterogeneous ion transport during electrospray. Mass spectrometric measurements of positively- and negatively-charged proteins were taken for micron-sized and nanopipette emitters under low ionic strength conditions to further illustrate a discrepancy in solution-driven transport of charged analytes. A fundamental understanding of analyte electromigration during electrospray, which is not always considered, is expected to provide control over selective analyte depletion and enrichment, and can be harnessed for sample cleanup. Graphical abstract Fluorescence micrographs of ion migration in nanoscale pipettes while solution is electrosprayed.
NASA Astrophysics Data System (ADS)
Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes
2017-03-01
The extensive production and application of engineered silica nanoparticles (SiO2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO2 NP filtration.
Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta
The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Philip J., E-mail: pgrif@seas.upenn.edu; Holt, Adam P.; Tsunashima, Katsuhiko
2015-02-28
Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less
Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
Lin, Ye; Fang, Shumin; Su, Dong; ...
2015-04-10
Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less
Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
Lin, Ye; Fang, Shumin; Su, Dong; Brinkman, Kyle S; Chen, Fanglin
2015-01-01
Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce0.8Gd0.2O2−δ–CoFe2O4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopant and depletion of oxygen vacancies at the Ce0.8Gd0.2O2−δ–Ce0.8Gd0.2O2−δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. This work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution. PMID:25857355
Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ye; Fang, Shumin; Su, Dong
Mixed ionic–electronic conductors are widely used in devices for energy conversion and storage. Grain boundaries in these materials have nanoscale spatial dimensions, which can generate substantial resistance to ionic transport due to dopant segregation. Here, we report the concept of targeted phase formation in a Ce 0.8Gd 0.2O 2₋δ–CoFe 2O 4 composite that serves to enhance the grain boundary ionic conductivity. Using transmission electron microscopy and spectroscopy approaches, we probe the grain boundary charge distribution and chemical environments altered by the phase reaction between the two constituents. The formation of an emergent phase successfully avoids segregation of the Gd dopantmore » and depletion of oxygen vacancies at the Ce 0.8Gd 0.2O 2₋δ–Ce 0.8Gd 0.2O 2₋δ grain boundary. This results in superior grain boundary ionic conductivity as demonstrated by the enhanced oxygen permeation flux. Lastly, this work illustrates the control of mesoscale level transport properties in mixed ionic–electronic conductor composites through processing induced modifications of the grain boundary defect distribution.« less
Effects of Dopant Ionic Radius on Cerium Reduction in Epitaxial Cerium Oxide Thin Films
Yang, Nan; Orgiani, Pasquale; Di Bartolomeo, Elisabetta; ...
2017-04-17
The role of trivalent rare-earth dopants in ceria epitaxial films on surface ion exchange reactivity and ion conductivity has been systematically studied. Single-crystal epitaxial films with unique crystal orientation and micro-structure nature have allowed us to rule out the influence of structural defects on both transport and surface ion exchange properties. The films conductivities were larger than those reported in literature for both polycrystalline ceramic pellets and crystalline films. An increase in oxygen vacancies and Ce 3+ concentration while decreasing the dopant ionic radius from La 3+ to Yb 3+ was observed, thus explaining the measured increased activation energy andmore » enhanced surface reactivity. The more significant ability of smaller dopant ionic radius in releasing the stress strength induced by the larger Ce 3+ ionic radius allows promoting the formation of oxygen vacancies and Ce 3+, which are two precious species in determining the efficiency of ion transport and surface ion exchange processes. This can open new perspectives in designing ceria-based materials in tailoring functional properties, either ion migration or surface reactivity, by rational cation substitutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Phillip J.; Holt, Adam P.; Tsunashima, Katsuhiko
2015-02-01
Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range-indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less
Ion Transport via Structural Relaxations in Polymerized Ionic Liquids
NASA Astrophysics Data System (ADS)
Ganesan, Venkat; Mogurampelly, Santosh
We study the mechanisms underlying ion transport in poly(1-butyl-3-vinylimidazolium-hexafluorophosphate) polymer electrolytes. We consider polymer electrolytes of varying polymerized ionic liquid to ionic liquid (polyIL:IL) ratios and use atomistic molecular dynamics (MD) simulations to probe the dynamical and structural characteristics of the electrolyte. Our results reveal that anion diffusion along polymer backbone occurs primarily viathe formation and breaking of ion-pairs involving threepolymerized cationic monomers of twodifferent polymer chains. Moreover, we observe that the ionic diffusivities exhibit a direct correlation with the structural relaxation times of the ion-pairs and hydrogen bonds (H-bonds). These results provide new insights into the mechanisms underlying ion transport in polymerized ionic liquid electrolytes.
Chalcogenide Perovskites for Solar Energy Harvesting
NASA Astrophysics Data System (ADS)
Perera, Samanthe
Methylammonium Lead halide perovskites have recently emerged as a promising candidate for realizing high efficient low cost photovoltaic modules. Charge transport properties of the solution processed halide perovskites are comparable to some of the existing absorbers used in the current PV industry which require sophisticated processing techniques. Due to this simple processing required to achieve high efficiencies, halide perovskites have become an active field of research. As a result, perovskite solar cells are rapidly reaching towards theoretical efficiency limit of close to 30%. It's believed that ionicity inherent to perovskite materials is one of the contributing factors for the excellent charge transport properties of perovskites. Despite the growing interest for solar energy harvesting purposes, these halide perovskites have serious limitations such as toxicity and instability that need to be addressed in order to commercialize the solar cells incorporating them. This dissertation focuses on a new class of ionic semiconductors, chalcogenide perovskites for solar energy harvesting purposes. Coming from the family perovskites they are expected to have same excellent charge transport properties inherent to perovskites due to the ionicity. Inspired by few theoretical studies on chalcogenide perovskites, BaZrS3 and its Ti alloys were synthesized by sulfurizing the oxide counterpart. Structural characterizations have confirmed the predicted distorted perovskite phase. Optical characterizations have verified the direct band gap suitable for thin film single junction solar cells. Anion alloying was demonstrated by synthesizing oxysulfides with widely tunable band gap suitable for applications such as solid state lighting and sensing.
Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin
2015-02-03
The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.
Understanding electrical conduction in lithium ion batteries through multi-scale modeling
NASA Astrophysics Data System (ADS)
Pan, Jie
Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si electrodes with high current efficiency and durability through a fundamental understanding of the ionic and electronic conduction in Si and its SEI. Multi-scale physical and chemical processes occur in the electrode during charging and discharging. This thesis, thus, focuses on multi-scale modeling, including developing new methods, to help understand these coupled physical and chemical processes. For example, we developed a new method based on ab initio molecular dynamics to study the effects of stress/strain on Li ion transport in amorphous lithiated Si electrodes. This method not only quantitatively shows the effect of stress on ionic transport in amorphous materials, but also uncovers the underlying atomistic mechanisms. However, the origin of ionic conduction in the inorganic components in SEI is different from that in the amorphous Si electrode. To tackle this problem, we developed a model by separating the problem into two scales: 1) atomistic scale: defect physics and transport in individual SEI components with consideration of the environment, e.g., LiF in equilibrium with Si electrode; 2) mesoscopic scale: defect distribution near the heterogeneous interface based on a space charge model. In addition, to help design better artificial SEI, we further demonstrated a theoretical design of multicomponent SEIs by utilizing the synergetic effect found in the natural SEI. We show that the electrical conduction can be optimized by varying the grain size and volume fraction of two phases in the artificial multicomponent SEI.
The Effect of Voltage Charging on the Transport Properties of Gold Nanotube Membranes.
Experton, Juliette; Martin, Charles R
2018-05-01
Porous membranes are used in chemical separations and in many electrochemical processes and devices. Research on the transport properties of a unique class of porous membranes that contain monodisperse gold nanotubes traversing the entire membrane thickness is reviewed here. These gold nanotubes can act as conduits for ionic and molecular transports through the membrane. Because the tubes are electronically conductive, they can be electrochemically charged by applying a voltage to the membrane. How this "voltage charging" affects the transport properties of gold nanotube membranes is the subject of this Review. Experiments showing that voltage charging can be used to reversibly switch the membrane between ideally cation- and anion-transporting states are reviewed. Voltage charging can also be used to enhance the ionic conductivity of gold nanotube membranes. Finally, voltage charging to accomplish electroporation of living bacteria as they pass through gold nanotube membranes is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrodiffusion kinetics of ionic transport in a simple membrane channel.
Valent, Ivan; Petrovič, Pavol; Neogrády, Pavel; Schreiber, Igor; Marek, Miloš
2013-11-21
We employ numerical techniques for solving time-dependent full Poisson-Nernst-Planck (PNP) equations in 2D to analyze transient behavior of a simple ion channel subject to a sudden electric potential jump across the membrane (voltage clamp). Calculated spatiotemporal profiles of the ionic concentrations and electric potential show that two principal exponential processes can be distinguished in the electrodiffusion kinetics, in agreement with original Planck's predictions. The initial fast process corresponds to the dielectric relaxation, while the steady state is approached in a second slower exponential process attributed to the nonlinear ionic redistribution. Effects of the model parameters such as the channel length, height of the potential step, boundary concentrations, permittivity of the channel interior, and ionic mobilities on electrodiffusion kinetics are studied. Numerical solutions are used to determine spatiotemporal profiles of the electric field, ionic fluxes, and both the conductive and displacement currents. We demonstrate that the displacement current is a significant transient component of the total electric current through the channel. The presented results provide additional information about the classical voltage-clamp problem and offer further physical insights into the mechanism of electrodiffusion. The used numerical approach can be readily extended to multi-ionic models with a more structured domain geometry in 2D or 3D, and it is directly applicable to other systems, such as synthetic nanopores, nanofluidic channels, and nanopipettes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Dolejsi, Moshe
Block copolymer electrolytes (BCEs) represent an attractive choice as solid-state ionic conductors for electrochemical technologies used in energy storage and conversion, water treatment, sensors, and data storage and processing. Unlocking the maximum ionic conductivity of BCEs requires an intimate understanding as to how the microphase separated structure influences transport properties. However, elucidating such knowledge remains elusive due to the challenging task of precisely engineering BCEs with a defined structure in bulk materials. In this work, we examined BCEs in a thin film format because it was amenable to attaining BCEs with a desired nanostructure. Specifically, we systematically investigated anion-conducting BCEsmore » with different degrees of connectivity of the ionic domains. For the first time, we demonstrate that increasing terminal defects in the ionic domain from 1 terminal defect per mu m(2) to 20 terminal defects per mu m(2) ( a relatively small amount of defects) decreased ionic conductivity by 67% compared to the maximum value attained. Conversely, maximizing ionic domain connectivity increased the ionic conductivity by two-fold over a non-ordered BCE film. These experiments highlight that microphase separation alone was insufficient for ameliorating ionic conductivity in BCEs. Rather, microphase separation coupled with complete ionic domain connectivity realized BCEs with significantly enhanced ionic conductivity.« less
NASA Astrophysics Data System (ADS)
Griffin, Philip; Holt, Adam; Wang, Yangyang; Sokolov, Alexei
2015-03-01
Amphiphilic room temperature ionic liquids (ILs) segregate on the nanoscale, forming intricate networks of charge-rich ionic domains intercalated with charge-poor aliphatic domains. While this structural phenomenon has been well established through x-ray diffraction studies and atomistic MD simulations, the precise effects of nanophase segregation on ion transport and structural dynamics in ILs remains poorly understood. Using a combination of broadband dielectric spectroscopy, light scattering spectroscopy, and rheology, we have characterized the ionic conductivity, structural dynamics, and shear viscosity of a homologous series of quaternary ammonium ionic liquids over a wide temperature range. Upon increasing the length and volume fraction of the alkyl side chains of these quaternary ammonium ILs, ionic conductivity decreases precipitously, although no corresponding slowing of the structural dynamics is observed. Instead, we identify the dynamical signature of supramolecular aggregates. Our results directly demonstrate the role that chemical structure and ionic aggregation plays in determining the charge transport properties of amphiphilic ILs.
Molecular and ionic mimicry and the transport of toxic metals
Bridges, Christy C.; Zalups, Rudolfs K.
2008-01-01
Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport of selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues. PMID:15845419
Molecular and ionic mimicry and the transport of toxic metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridges, Christy C.; Zalups, Rudolfs K.
Despite many scientific advances, human exposure to, and intoxication by, toxic metal species continues to occur. Surprisingly, little is understood about the mechanisms by which certain metals and metal-containing species gain entry into target cells. Since there do not appear to be transporters designed specifically for the entry of most toxic metal species into mammalian cells, it has been postulated that some of these metals gain entry into target cells, through the mechanisms of ionic and/or molecular mimicry, at the site of transporters of essential elements and/or molecules. The primary purpose of this review is to discuss the transport ofmore » selective toxic metals in target organs and provide evidence supporting a role of ionic and/or molecular mimicry. In the context of this review, molecular mimicry refers to the ability of a metal ion to bond to an endogenous organic molecule to form an organic metal species that acts as a functional or structural mimic of essential molecules at the sites of transporters of those molecules. Ionic mimicry refers to the ability of a cationic form of a toxic metal to mimic an essential element or cationic species of an element at the site of a transporter of that element. Molecular and ionic mimics can also be sub-classified as structural or functional mimics. This review will present the established and putative roles of molecular and ionic mimicry in the transport of mercury, cadmium, lead, arsenic, selenium, and selected oxyanions in target organs and tissues.« less
Zheng, Jin; Hu, Yan-Yan
2018-01-31
Composite electrolytes are widely studied for their potential in realizing improved ionic conductivity and electrochemical stability. Understanding the complex mechanisms of ion transport within composites is critical for effectively designing high-performance solid electrolytes. This study examines the compositional dependence of the three determining factors for ionic conductivity, including ion mobility, ion transport pathways, and active ion concentration. The results show that with increase in the fraction of ceramic Li 7 La 3 Zr 2 O 12 (LLZO) phase in the LLZO-poly(ethylene oxide) composites, ion mobility decreases, ion transport pathways transit from polymer to ceramic routes, and the active ion concentration increases. These changes in ion mobility, transport pathways, and concentration collectively explain the observed trend of ionic conductivity in composite electrolytes. Liquid additives alter ion transport pathways and increase ion mobility, thus enhancing ionic conductivity significantly. It is also found that a higher content of LLZO leads to improved electrochemical stability of composite electrolytes. This study provides insight into the recurring observations of compositional dependence of ionic conductivity in current composite electrolytes and pinpoints the intrinsic limitations of composite electrolytes in achieving fast ion conduction.
Zhang, Lingling; Huang, Xinyu; Qin, Changyong; Brinkman, Kyle; Gong, Yunhui; Wang, Siwei; Huang, Kevin
2013-08-21
Identification of the existence of pyrocarbonate ion C2O5(2-) in molten carbonates exposed to a CO2 atmosphere provides key support for a newly established bi-ionic transport model that explains the mechanisms of high CO2 permeation flux observed in mixed oxide-ion and carbonate-ion conducting (MOCC) membranes containing highly interconnected three dimensional ionic channels. Here we report the first Raman spectroscopic evidence of C2O5(2-) as an active species involved in the CO2-transport process of MOCC membranes exposed to a CO2 atmosphere. The two new broad peaks centered at 1317 cm(-1) and 1582 cm(-1) are identified as the characteristic frequencies of the C2O5(2-) species. The measured characteristic Raman frequencies of C2O5(2-) are in excellent agreement with the DFT-model consisting of six overlapping individual theoretical bands calculated from Li2C2O5 and Na2C2O5.
Cesium migration in saturated silica sand and Hanford sediments as impacted by ionic strength.
Flury, Markus; Czigány, Szabolcs; Chen, Gang; Harsh, James B
2004-07-01
Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments. Copyright 2003 Elsevier B.V.
Transport Properties of Ionic Liquid Mixtures Containing Heterodications
Lall-Ramnarine, S.; Fernandez, E.; Rodriguez, C.; ...
2016-08-30
This report discusses the transport properties of ionic liquid mixtures that incorporate a series of asymmetrical dications, including heterodications. The dicationic ILs combine either triphenylphosphonium and trimethylammonium cationic sites that are bridged to methylimidazolium or methylpyrrolidinium cationic sites. Mixtures were made of the dicationic bis(trifluoromethylsulfonyl)amide ionic liquids with N-ethoxyethyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide. The IL mixtures were characterized for their transport properties (temperature dependent conductivity and viscosity) and thermal properties (melting point and glass transition point).
Henry, Raymond P.; Lucu, Čedomil; Onken, Horst; Weihrauch, Dirk
2012-01-01
The crustacean gill is a multi-functional organ, and it is the site of a number of physiological processes, including ion transport, which is the basis for hemolymph osmoregulation; acid-base balance; and ammonia excretion. The gill is also the site by which many toxic metals are taken up by aquatic crustaceans, and thus it plays an important role in the toxicology of these species. This review provides a comprehensive overview of the ecology, physiology, biochemistry, and molecular biology of the mechanisms of osmotic and ionic regulation performed by the gill. The current concepts of the mechanisms of ion transport, the structural, biochemical, and molecular bases of systemic physiology, and the history of their development are discussed. The relationship between branchial ion transport and hemolymph acid-base regulation is also treated. In addition, the mechanisms of ammonia transport and excretion across the gill are discussed. And finally, the toxicology of heavy metal accumulation via the gill is reviewed in detail. PMID:23162474
NASA Astrophysics Data System (ADS)
Costa, D.; Pomeroy, J. W.; Wheater, H. S.
2017-12-01
Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.
NASA Astrophysics Data System (ADS)
Clark, M. P.; Nijssen, B.; Lundquist, J. D.; Luce, C. H.; Musselman, K. N.; Wayand, N. E.; Ou, M.; Lapo, K. E.
2016-12-01
Early ionic pulses in spring snowmelt can cause the temporary acidification of streams and account for a significant portion of the total annual nutrient export, particularly in seasonally snow-covered areas where the frozen ground may limit runoff-soil contact and cause the rapid delivery of these ions to streams. Ionic pulses are a consequence of snow ion exclusion, a process induced by snow metamorphism where ions are segregated from the snow grains losing mass to the surface of the grains gaining mass. While numerous studies have been successful in providing quantitative evidence of this process, few mechanistic mathematical models have been proposed for diagnostic and prediction. A few early modelling attempts have been successful in capturing this process assuming transport through porous media with variable porosity, however their implementation is difficult because they require complex models of snow physics to resolve the evolution of in-snow properties and processes during snowmelt, such as heat conduction, metamorphism, melt and water flow. Furthermore, initial snowpack to snow-surface ion concentration ratios are difficult to measure but are required to initiate these models and ion exclusion processes are not represented in a physically-based transparent fashion. In this research, a standalone numerical model has been developed to capture ionic pulses in snowmelt by emulating solute leaching from snow grains during melt and its subsequent transport by the percolating meltwater. Estimating snow porosity and water content dynamics is shown to be a viable alternative to deployment of complex snow physics models for this purpose. The model was applied to four study sites located in the Arctic and in Sierra Nevada to test for different climatic and hydrological conditions. The model compares very well with observations and could capture both the timing and magnitude of early melt ionic pulses accurately. This study demonstrates how physically based approaches can provide successful simulations of the spatial and temporal fluxes of snowmelt ions, which can be used to improve the prediction of nutrient export in cold regions for the spring freshet.
Ionic structures and transport properties of hot dense W and U plasmas
NASA Astrophysics Data System (ADS)
Hou, Yong; Yuan, Jianmin
2016-10-01
We have combined the average-atom model with the hyper-netted chain approximation (AAHNC) to describe the electronic and ionic structure of uranium and tungsten in the hot dense matter regime. When the electronic structure is described within the average-atom model, the effects of others ions on the electronic structure are considered by the correlation functions. And the ionic structure is calculated though using the hyper-netted chain (HNC) approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution in the temperature-depended density functional theory. And electronic and ionic structures are determined self-consistently. On the basis of the ion-ion pair potential, we perform the classical (CMD) and Langevin (LMD) molecular dynamics to simulate the ionic transport properties, such as ionic self-diffusion and shear viscosity coefficients, through the ionic velocity correlation functions. Due that the free electrons become more and more with increasing the plasma temperature, the influence of the electron-ion collisions on the transport properties become more and more important.
Xia, Jun; Li, Xue-Nan; Ge, Jing; Zhang, Cong; Li, Jin-Long
2017-01-01
Transportation is inevitable in the poultry industry, and it can induce stress to chicks in varying degrees, such as mild discomfort, sometimes even death. However, the research about the effects of transport stress on the weight loss and heart injury of chicks is lacking. To elucidate the underlying mechanism of transport stress-induced effects, chicks were transported for 2h, 4h and 8h. The creatinine kinase (CK) activities, the ionic contents, the ATPases activities and the transcription of the ATPase associated subunits in chick heart were detected. The results showed that transport stress increased the weight loss and the CK activity, disturbed the ionic (K+, Ca2+, Mg2+) homeostasis and inhibited the ATPase (Na+-K+-ATPase, Ca2+-ATPase, Mg2+-ATPase and Ca2+-Mg2+-ATPase) activities, increased the ATP content and downregulated the gene expression levels of the ATPase associated subunits in heart. In conclusion, transport stress disturbed the ionic homeostasis via modulating ion transporting ATPases and the transcriptions of the associated subunits, and ultimately induced weight loss and heart injury in chicks. PMID:28445983
Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity
NASA Astrophysics Data System (ADS)
Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.
2015-10-01
Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems. Electronic supplementary information (ESI) available: Experimental procedures, synthesis, and characterization of molecules 1, 2 and 3. Explanation of the electrochemical method for approximating nanopore diameter. Additional XPS spectra. See DOI: 10.1039/C5NR02939B
Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P.-A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert
2011-01-01
The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity. PMID:21878634
Khudyakov, Jane I; D'haeseleer, Patrik; Borglin, Sharon E; Deangelis, Kristen M; Woo, Hannah; Lindquist, Erika A; Hazen, Terry C; Simmons, Blake A; Thelen, Michael P
2012-08-07
To process plant-based renewable biofuels, pretreatment of plant feedstock with ionic liquids has significant advantages over current methods for deconstruction of lignocellulosic feedstocks. However, ionic liquids are often toxic to the microorganisms used subsequently for biomass saccharification and fermentation. We previously isolated Enterobacter lignolyticus strain SCF1, a lignocellulolytic bacterium from tropical rain forest soil, and report here that it can grow in the presence of 0.5 M 1-ethyl-3-methylimidazolium chloride, a commonly used ionic liquid. We investigated molecular mechanisms of SCF1 ionic liquid tolerance using a combination of phenotypic growth assays, phospholipid fatty acid analysis, and RNA sequencing technologies. Potential modes of resistance to 1-ethyl-3-methylimidazolium chloride include an increase in cyclopropane fatty acids in the cell membrane, scavenging of compatible solutes, up-regulation of osmoprotectant transporters and drug efflux pumps, and down-regulation of membrane porins. These findings represent an important first step in understanding mechanisms of ionic liquid resistance in bacteria and provide a basis for engineering microbial tolerance.
Zhang, Wei; Bock, David C.; Pelliccione, Christopher J.; ...
2016-03-08
Metal oxides, such as Fe 3O 4, hold promise for future battery applications due to their abundance, low cost, and opportunity for high lithium storage capacity. In order to better understand the mechanisms of multiple-electron transfer reactions leading to high capacity in Fe 3O 4, a comprehensive investigation on local ionic transport and ordering is made by probing site occupancies of anions (O 2–) and cations (Li +, Fe 3+/Fe 2+) using multiple synchrotron X-ray and electron-beam techniques, in combination with ab-initio calculations. Results from this study provide the first experimental evidence that the cubic-close-packed (ccp) O-anion array in Femore » 3O 4 is sustained throughout the lithiation and delithiation processes, thereby enabling multiple lithium intercalation and conversion reactions. Cation displacement/reordering occurs within the ccp O-anion framework, which leads to a series of phase transformations, starting from the inverse spinel phase and turning into intermediate rock-salt-like phases (Li xFe 3O 4; 0 < x < 2), then into a cation-segregated phase (Li 2O•FeO), and finally converting into metallic Fe and Li 2O. Subsequent delithiation and lithiation processes involve interconversion between metallic Fe and FeO-like phases. Lastly, these results may offer new insights into the structure-determined ionic transport and electrochemical reactions in metal oxides, and those of other compounds sharing a ccp anion framework, reminiscent of magnetite.« less
Aluminium electrodeposition in chloroaluminate ionic liquid.
Zhang, Lipeng; Wang, Enqi; Mu, Jiechen; Yu, Xianjin; Wang, Qiannan; Yang, Lina; Zhao, Zengdian
2014-08-01
An efficient microwave enhanced synthesis of ambient temperature chloroaluminate ionic liquid ([EMIM]Br) that preceeds reaction of 1-methylimidazolium with bromoethane in a closed vessel, was described in our work. The reaction time was drastically reduced as compared to the conventional methods. The electrochemical techniques of impedance spectroscopy, cyclic voltammetry and chronoamperometry were used to investigate the mechanism of Al electrodeposition from 2:1 (molar ratio) AlCl3/[EMIM]Br ionic liquid at room temperature. Results indicated that Al electrode- position from this ionic liqud was a quasi-reversible process, and the kinetic complications during the reaction was probably attributed to the electron transfer or mass transport cooperative controlled processes, instantaneous nucleation with diffusion-controlled growth was also investigated. Electrodepositon experiment was conducted using constant current density of 40 mA·cm(-2) for 20 minutes at room temperature and the qualitative analysis of the deposits were performed using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and energy dispersive spectroscope (EDS). The deposits obtained on copper cathode were dense and compact and most Al crystal shows granular structure spherical with high purity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.
2011-08-01
The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationshipmore » between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.« less
NASA Astrophysics Data System (ADS)
Borodin, Oleg
2010-03-01
Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.
Kerner, Ross A; Rand, Barry P
2018-01-04
Ambipolar transport describes the nonequilibrium, coupled motion of positively and negatively charged particles to ensure that internal electric fields remain small. It is commonly invoked in the semiconductor community where the motion of excess electrons and holes drift and diffuse together. However, the concept of ambipolar transport is not limited to semiconductor physics. Materials scientists working on ion conducting ceramics understand ambipolar transport dictates the coupled diffusion of ions and the rate is limited by the ion with the lowest diffusion coefficient. In this Perspective, we review a third application of ambipolar transport relevant to mixed ionic-electronic conducting materials for which the motion of ions is expected to be coupled to electronic carriers. In this unique situation, the ambipolar diffusion model has been successful at explaining the photoenhanced diffusion of metal ions in chalcogenide glasses and other properties of materials. Recent examples of photoenhanced phenomena in metal halide perovskites are discussed and indicate that mixed ionic-electronic ambipolar transport is similarly important for a deep understanding of these emerging materials.
Ionic Liquids Database- (ILThermo)
National Institute of Standards and Technology Data Gateway
SRD 147 NIST Ionic Liquids Database- (ILThermo) (Web, free access) IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.
Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity?
Düvel, Andre; Heitjans, Paul; Fedorov, Pavel; Scholz, Gudrun; Cibin, Giannantonio; Chadwick, Alan V; Pickup, David M; Ramos, Silvia; Sayle, Lewis W L; Sayle, Emma K L; Sayle, Thi X T; Sayle, Dean C
2017-04-26
Ionic conductivity is ubiquitous to many industrially important applications such as fuel cells, batteries, sensors, and catalysis. Tunable conductivity in these systems is therefore key to their commercial viability. Here, we show that geometric frustration can be exploited as a vehicle for conductivity tuning. In particular, we imposed geometric frustration upon a prototypical system, CaF 2 , by ball milling it with BaF 2 , to create nanostructured Ba 1-x Ca x F 2 solid solutions and increased its ionic conductivity by over 5 orders of magnitude. By mirroring each experiment with MD simulation, including "simulating synthesis", we reveal that geometric frustration confers, on a system at ambient temperature, structural and dynamical attributes that are typically associated with heating a material above its superionic transition temperature. These include structural disorder, excess volume, pseudovacancy arrays, and collective transport mechanisms; we show that the excess volume correlates with ionic conductivity for the Ba 1-x Ca x F 2 system. We also present evidence that geometric frustration-induced conductivity is a general phenomenon, which may help explain the high ionic conductivity in doped fluorite-structured oxides such as ceria and zirconia, with application for solid oxide fuel cells. A review on geometric frustration [ Nature 2015 , 521 , 303 ] remarks that classical crystallography is inadequate to describe systems with correlated disorder, but that correlated disorder has clear crystallographic signatures. Here, we identify two possible crystallographic signatures of geometric frustration: excess volume and correlated "snake-like" ionic transport; the latter infers correlated disorder. In particular, as one ion in the chain moves, all the other (correlated) ions in the chain move simultaneously. Critically, our simulations reveal snake-like chains, over 40 Å in length, which indicates long-range correlation in our disordered systems. Similarly, collective transport in glassy materials is well documented [for example, J. Chem. Phys. 2013 , 138 , 12A538 ]. Possible crystallographic nomenclatures, to be used to describe long-range order in disordered systems, may include, for example, the shape, length, and branching of the "snake" arrays. Such characterizations may ultimately provide insight and differences between long-range order in disordered, amorphous, or liquid states and processes such as ionic conductivity, melting, and crystallization.
Rao, Siyuan; Si, Kae Jye; Yap, Lim Wei; Xiang, Yan; Cheng, Wenlong
2015-11-24
Natural cell membranes can directionally and selectively regulate the ion transport, which is critical for the functioning of living cells. Here, we report on the fabrication of an artificial membrane based on an asymmetric nanoparticle superlattice bilayered nanosheet, which exhibits similar ion transport characteristics. The superlattice nanosheets were fabricated via a drying-mediated self-assembly of polystyrene-capped gold nanoparticles at the liquid-air interface. By adopting a layer-by-layer assembly process, an asymmetric nanomembrane could be obtained consisting of two nanosheets with different nanoparticle size. The resulting nanomembranes exhibit an asymmetric ion transport behavior, and diode-like current-voltage curves were observed. The asymmetric ion transport is attributed to the cone-like nanochannels formed within the membranes, upon which a simulation map was established to illustrate the relationship between the channel structure and the ionic selectivity, in consistency with our experimental results. Our superlattice nanosheet-based design presents a promising strategy for the fabrication of next-generation smart nanomembranes for rationally and selectively regulating the ion transport even at a large ion flux, with potential applications in a wide range of fields, including biosensor devices, energy conversion, biophotonics, and bioelectronics.
Coulombic interactions during advection-dominated transport of ions in porous media
NASA Astrophysics Data System (ADS)
Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo
2017-04-01
Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2 and NaBr) we report results showing the important role of Coulombic interactions in the lateral displacement of the different ionic species for steady-state transport scenarios in which the solutions are continuously injected through different portions of the flow-through chamber [1, 2]. Successively, we focus our attention on transient transport and pulse injection of the electrolytes. In these experiments high-resolution spatial and temporal monitoring of the ions' concentrations (600 samples; 1800 concentration measurements), at closely spaced outlet ports (5 mm), allowed us resolving the effects of charge interactions on the temporal breakthrough and spatial profiles of the cations and anions [3]. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion, as well as the explicit quantification of the dispersive fluxes' cross-coupling due to the Coulombic interactions between the charged species. A new 2-D simulator [4], coupling the solution of the multicomponent ionic transport problem with the geochemical code PHREEQC has been developed and used to quantitatively interpret the experimental results. References [1] Rolle M., Muniruzzaman M., Haberer C.M. and P. Grathwohl (2013). Geochim. Cosmochim. Acta 120, 195-205. [2] Muniruzzaman M., Haberer C.M., Grathwohl P. and M. Rolle (2014). Geochim. Cosmochim. Acta 141, 656-669. [3] Muniruzzaman M. and M. Rolle (2017). Water Resour. Res. (in press). [4] Muniruzzaman M. and M. Rolle (2016). Adv. Water Resour. 98, 1-15.
NASA Astrophysics Data System (ADS)
Sauerteig, Daniel; Hanselmann, Nina; Arzberger, Arno; Reinshagen, Holger; Ivanov, Svetlozar; Bund, Andreas
2018-02-01
The intercalation and aging induced volume changes of lithium-ion battery electrodes lead to significant mechanical pressure or volume changes on cell and module level. As the correlation between electrochemical and mechanical performance of lithium ion batteries at nano and macro scale requires a comprehensive and multidisciplinary approach, physical modeling accounting for chemical and mechanical phenomena during operation is very useful for the battery design. Since the introduced fully-coupled physical model requires proper parameterization, this work also focuses on identifying appropriate mathematical representation of compressibility as well as the ionic transport in the porous electrodes and the separator. The ionic transport is characterized by electrochemical impedance spectroscopy (EIS) using symmetric pouch cells comprising LiNi1/3Mn1/3Co1/3O2 (NMC) cathode, graphite anode and polyethylene separator. The EIS measurements are carried out at various mechanical loads. The observed decrease of the ionic conductivity reveals a significant transport limitation at high pressures. The experimentally obtained data are applied as input to the electrochemical-mechanical model of a prismatic 10 Ah cell. Our computational approach accounts intercalation induced electrode expansion, stress generation caused by mechanical boundaries, compression of the electrodes and the separator, outer expansion of the cell and finally the influence of the ionic transport within the electrolyte.
Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.
Shankla, Manish; Aksimentiev, Aleksei
2017-04-20
Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.
Observable quantities for electrodiffusion processes in membranes.
Garrido, Javier
2008-03-13
Electrically driven ion transport processes in a membrane system are analyzed in terms of observable quantities, such as the apparent volume flow, the time dependence of the electrolyte concentration in one cell compartment, and the electrical potential difference between the electrodes. The relations between the fluxes and these observable quantities are rigorously deduced from balances for constituent mass and solution volume. These relations improve the results for the transport coefficients up to 25% with respect to those obtained using simplified expressions common in the literature. Given the practical importance of ionic transport numbers and the solvent transference number in the phenomenological description of electrically driven processes, the transport equations are presented using the electrolyte concentration difference and the electric current as the drivers of the different constituents. Because various electric potential differences can be used in this traditional irreversible thermodynamics approach, the advantages of the formulation of the transport equations in terms of concentration difference and electric current are emphasized.
Transport processes in magnetically confined plasmas in the nonlinear regime.
Sonnino, Giorgio
2006-06-01
A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.
Aggregate-mediated charge transport in ionomeric electrolytes
NASA Astrophysics Data System (ADS)
Lu, Keran; Maranas, Janna; Milner, Scott
Polymers such PEO can conduct ions, and have been studied as possible replacements for organic liquid electrolytes in rechargeable metal-ion batteries. More generally, fast room-temperature ionic conduction has been reported for a variety of materials, from liquids to crystalline solids. Unfortunately, polymer electrolytes generally have limited conductivity; these polymers are too viscous to have fast ion diffusion like liquids, and too unstructured to promote cooperative transport like crystalline solids. Ionomers are polymer electrolytes in which ionic groups are covalently bound to the polymer backbone, neutralized by free counterions. These materials also conduct ions, and can exhibit strong ionic aggregation. Using coarse-grained molecular dynamics, we explore the forces driving ionic aggregation, and describe the role ion aggregates have in mediating charge transport. The aggregates are string-like such that ions typically have two neighbors. We find ion aggregates self-assemble like worm-like micelles. Excess charge, or free ions, occasionally coordinate with aggregates and are transported along the chain in a Grotthuss-like mechanism. We propose that controlling ionomer aggregate structure through materials design can enhance cooperative ion transport.
Retention and transport of graphene oxide in water-saturated limestone media.
Dong, Shunan; Sun, Yuanyuan; Gao, Bin; Shi, Xiaoqing; Xu, Hongxia; Wu, Jianfeng; Wu, Jichun
2017-08-01
In this work, column experiments were conducted to investigate the transport characteristics of graphene oxide (GO) nanoparticles in limestone media under various electrolytes, solution pH, and humic acid (HA) concentration conditions. In the limestone media, GO exhibited relatively low mobility with the mass recovery rate lower than 65.2%, even when solution ionic strength was low. The presence of HA enhanced its mobility. In addition, the presence of S 2- , a divalent anion, also promoted GO transport in limestone media compared to Cl - under similar ionic strength conditions through neutralizing more positive charge and thus diminishing the cation bridging. Solution pH showed slight effect on the transport of GO in limestone with the mass recovery range from 40.3% to 51.7%. Over all, decreases in solution pH, HA concentration and increases in solution ionic strength reduced the mobility of GO in the limestone media under the tested conditions. These results indicated both environmental conditions and media characteristics played important roles in controlling GO fate and transport in porous media. The one-site kinetic deposition model was applied to describe the interactions between the GO and limestone media and model simulations fitted the observed experimental data very well. As limestone is an important component of aquiferous media in subsurface, findings from this study elucidated the key factors and processes controlling the fate of GO particles in limestone media, which can inform the prediction and assessment of the risks of GO in groundwater environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grotthuss Transport of Iodide in EMIM/I3 Ionic Crystal.
McDaniel, Jesse G; Yethiraj, Arun
2018-01-11
Highly ionic environments can mediate unusual chemical reactions that would otherwise be considered impossible based on chemical intuition. For example, the formation of a chemical bond between two iodide anions to form a divalent polyiodide anion is seemingly prohibited due to Coulombic repulsion. Using ab initio molecular dynamics simulations, we show that in the 1-ethyl-3-methylimidazolium (EMIM)/I 3 ionic crystal, the reactive formation of divalent and even trivalent polyiodide anions occurs with extremely small energetic barriers, due to the electrostatic field of the ionic lattice. A practical consequence of this anomalous reactivity is that iodide anions are efficiently transported within the crystal through a "Grotthuss-exchange" mechanism involving bond-breaking and forming events. We characterize two distinct transport pathways, involving both I 4 2- and I 7 3- intermediates, with fast transport of iodide resulting from the release of an I - anion on the opposite side of the intermediate species from the initial bond formation. The ordered cation arrangement in the crystal provides the necessary electrostatic screening for close approach of anions, suggesting a new counterintuitive approach to obtain high ionic conductivity. This new design principle could be used to develop better solid-state electrolytes for batteries, fuel cells, and supercapacitors.
Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F
2016-06-30
A series of room-temperature ionic liquids (ILs) composed of triethyl(alkyl)phosphonium cations paired with three different aprotic heterocyclic anions (AHAs) (alkyl = butyl ([P2224](+)) and octyl ([P2228](+))) were prepared to investigate the effect of cationic alkyl chain length on transport properties. The transport properties and density of these ILs were measured from 283.15 to 343.15 K at ambient pressure. The dependence of the transport properties (viscosity, ionic conductivity, diffusivity, and molar conductivity) on temperature can be described by the Vogel-Fulcher-Tamman (VFT) equation. The ratio of the molar conductivity obtained from the molar concentration and ionic conductivity measurements to that calculated from self-diffusion coefficients (measured by pulsed gradient spin-echo nuclear magnetic resonance spectroscopy) using the Nernst-Einstein equation was used to quantify the ionicity of these ILs. The molar conductivity ratio decreases with increasing number of carbon atoms in the alkyl chain, indicating that the reduced Coulombic interactions resulting from lower density are more than balanced by the increased van der Waals interactions between the alkyl chains. The results of this study may provide insight into the design of ILs with enhanced dynamics that may be suitable as electrolytes in lithium ion batteries and other electrochemical applications.
Interplay of Transport and Morphology in Nanostructured Ion-Containing Polymers
NASA Astrophysics Data System (ADS)
Park, Moon Jeong
The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community to develop innovative ways to improve energy storage and find more efficient methods of transporting the energy. Polymers containing charged species that show high ionic conductivity and good mechanical integrity are the essential components of these energy storage and transport systems. In this talk, first, I will present a fundamental understanding of the thermodynamics and transport in ion-containing block copolymers with a focus on the structure-property relationships. Tailoring the intermolecular interactions between the polymer matrix and the embedded charges appeared to be vital for controlling the transport properties. Particularly, the achievement of well-defined self-assembled morphologies with three-dimensional symmetries has proven to facilitate fast ion transport by constructing less tortuous ion-conducting pathways. Examples of attained morphologies include disorder, lamellae, gyroid, Fddd, hexagonal cylinder, body-centered cubic, face-centered cubic, and A15 phases. Second, various strategies for accessing high cation transference number as well as improved ionic conductivity from ionic-containing polymers are enclosed; (1) the inclusion of terminal ionic units as a new means to control the nanoscale morphologies and the transport efficiency of block copolymer electrolytes and (2) the addition of zwitterions that offered a polar medium close to water, and accordingly increased the charge density and ionic conductivity. The obtained knowledge on polymer electrolytes could be used in a wide range of emerging nanotechnologies such as fuel cells, lithium batteries, and electro-active actuators.
Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F
2015-12-03
A series of room temperature ionic liquids (RTILs) based on 1-ethyl-3-methylimidazolium ([emim](+)) with different aprotic heterocyclic anions (AHAs) were synthesized and characterized as potential electrolyte candidates for lithium ion batteries. The density and transport properties of these ILs were measured over the temperature range between 283.15 and 343.15 K at ambient pressure. The temperature dependence of the transport properties (viscosity, ionic conductivity, self-diffusion coefficient, and molar conductivity) is fit well by the Vogel-Fulcher-Tamman (VFT) equation. The best-fit VFT parameters, as well as linear fits to the density, are reported. The ionicity of these ILs was quantified by the ratio of the molar conductivity obtained from the ionic conductivity and molar concentration to that calculated from the self-diffusion coefficients using the Nernst-Einstein equation. The results of this study, which is based on ILs composed of both a planar cation and planar anions, show that many of the [emim][AHA] ILs exhibit very good conductivity for their viscosities and provide insight into the design of ILs with enhanced dynamics that may be suitable for electrolyte applications.
Transports of ionic liquids in ionic polymer conductor network composite actuators
NASA Astrophysics Data System (ADS)
Liu, Yang; Liu, Sheng; Lin, Junhong; Wang, Dong; Jain, Vaibhav; Montazami, Reza; Heflin, James R.; Li, Jing; Madsen, Louis; Zhang, Q. M.
2010-04-01
We investigate the influence of ionic liquids on the electromechanical performance of Ionic Polymer Conductor Network Composite (IPCNC) bending actuators. Two imidazolium ionic liquids (ILs) with one cation, which is 1-ethyl-3- methylimidazolium ([EMI+]), and two different anions, which are tetrafluoroborate ([BF4-]) and trifluoromethanesulfonate ([Tf-]), are chosen for the study. By combining the time domain electric and electromechanical responses, we developed a new model that describes the ion transports in IPCNC actuators. The time constant of excess cation and anion migration in various composite electrodes are deduced: 6s and 25s in RuO2/Nafion; 7.9s and 36.3s in RuO2/Aquivion; 4.8s and 53s in Au/PAH, respectively. NMR is also applied to provide quantitative measures of self-diffusion coefficients independently for IL anions and cations both in pure ILs and in ILs absorved into ionomers. All the results indicate that the motion of cation, in the studied pure ionic liquids, polymer matrix and conductor network composites, is faster than that of anion. Moreover, the CNC morphology is playing a crucial role in determining the ion transport in the porous electrodes.
Molecular mobility, morphology, and ion conduction in ionomers for electroactive devices
NASA Astrophysics Data System (ADS)
Tudryn, Gregory J.
A sequential study of ion-containing polymers capable of ion solvation with varied ion content, dielectric constant, and counterions is presented in this dissertation in order to compare ion transport properties in ionomers with various ionic interactions. Structure-property relationships in these ion containing polymers are defined using x-ray scattering, rheology and dielectric spectroscopy, enabling the quantification of ion transport dynamics. Poly(ethylene oxide), (PEO) based ionomers are investigated in order to probe the relation between ion conduction and segmental relaxation, and copolymers of PEO and Poly(tetramethylene oxide), (PTMO) further develop an understanding of the trade-off between ion solvation and segmental dynamics. Ionomers with ionic liquid counterions probe diffuse charge interactions and steric effects on ion transport, and incorporation of ionic liquids into ionomer membranes such as Nafion provides desirable thermal and ion conducting properties which extend the use of such membranes for electroactive devices. PEO ionomers exhibit a strong relation between ionic conductivity and segmental dynamics, providing insight that the glass transition temperature, Tg, dominates the ion conduction mechanism. Increasing temperature induces aggregation of ionic groups as evidenced by the static dielectric constant and X-ray scattering as a function of temperature, revealing the contribution of ionic dipoles in the measured dielectric constant. The trade-off between ion solvation and fast polymer segmental dynamics are quantified in copolymer ionomers of PEO and lower Tg PTMO. While conducting ion content remains nearly unchanged, conductivity is lowered upon incorporation of PTMO, because the vast majority of the PTMO microphase separates from the PEO-rich microdomain that remains continuous and contributes most of the ion conduction. Dielectric constants and X-ray scattering show consistent changes with temperature that suggest a cascading aggregation process in Na ionomers as ionic dipoles thermally randomize and lower the measured dielectric constant of the medium, leading to further aggregation. We observe amplified microphase-separation through ionic groups preferentially solvated by PEO chains, as seen in block copolymers with added salt. Even at 25%PEO / 75%PTMO the ionomers have VFT temperature dependence of conducting ion mobility, meaning that the 25% PEO/ion microphase is still continuous A model is developed to describe the frequency dependent storage and loss modulus and the delay in Rouse motion due to ion association lifetime, as functions of ion content and molecular weight for our low molecular weight ionomers. The ion rearrangement relaxation in dielectric spectroscopy is clearly the ion association lifetime that controls terminal dynamics in linear viscoelasticity, allowing a simple sticky Rouse model, using the most-probable distribution based on NMR Mn, to fully describe master curves of the frequency dependent storage and loss modulus. Using insight from ionic interaction strength, ionic liquids are used as counterions, effectively plasticizing the ionomers without added solvent. Ionic interactions were weakened with increasing counterion size, and with modification of cations using ether-oxygen, promoting self-solvation, which increases conducting ion density by an order of magnitude. Room temperature ionic liquids were subsequently used in combination with NafionRTM membranes as electroactive substrates to correlate ion transport to morphology as a function of volume fraction of ionic liquid. This study illuminated the critical volume uptake of ionic liquid in Nafion, identifying percolation of ionic pathways and a significant increase in dielectric constant at low frequencies, indicating an increase in the number density of ions capable of polarizing at the electrode surface. Consequently, the fundamental information obtained about the structure-property relations of ionomers can be used to predict and design advanced ion-containing polymers to be used in battery membranes and a variety of electroactive devices, including actuators and electromechanical sensors.
An ionic liquid-gated polymer thin film transistor with exceptionally low "on" resistance
NASA Astrophysics Data System (ADS)
Algarni, Saud A.; Althagafi, Talal M.; Smith, Patrick J.; Grell, Martin
2014-05-01
We report the ionic liquid (IL) gating of a solution processed semiconducting polymer, poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). IL gating relies on the poor solubility of PBTTT, which requires hot chlorinated benzenes for solution processing. PBTTT, thus, resists dissolution even in IL, which otherwise rapidly dissolves semiconducting polymers. The resulting organic thin film transistors (OTFTs) display low threshold, very high carrier mobility (>3 cm2/Vs), and deliver high currents (in the order of 1 mA) at low operational voltages. Such OTFTs are interesting both practically, for the addressing of current-driven devices (e.g., organic LEDs), and for the study of charge transport in semiconducting polymers at very high carrier density.
Korte, C; Keppner, J; Peters, A; Schichtel, N; Aydin, H; Janek, J
2014-11-28
A phenomenological and analytical model for the influence of strain effects on atomic transport in columnar thin films is presented. A model system consisting of two types of crystalline thin films with coherent interfaces is assumed. Biaxial mechanical strain ε0 is caused by lattice misfit of the two phases. The conjoined films consist of columnar crystallites with a small diameter l. Strain relaxation by local elastic deformation, parallel to the hetero-interface, is possible along the columnar grain boundaries. The spatial extent δ0 of the strained hetero-interface regions can be calculated, assuming an exponential decay of the deformation-forces. The effect of the strain field on the local ionic transport in a thin film is then calculated by using the thermodynamic relation between (isostatic) pressure and free activation enthalpy ΔG(#). An expression describing the total ionic transport relative to bulk transport of a thin film or a multilayer as a function of the layer thickness is obtained as an integral average over strained and unstrained regions. The expression depends only on known material constants such as Young modulus Y, Poisson ratio ν and activation volume ΔV(#), which can be combined as dimensionless parameters. The model is successfully used to describe own experimental data from conductivity and diffusion studies. In the second part of the paper a comprehensive literature overview of experimental studies on (fast) ion transport in thin films and multilayers along solid-solid hetero-interfaces is presented. By comparing and reviewing the data the observed interface effects can be classified into three groups: (i) transport along interfaces between extrinsic ionic conductors (and insulator), (ii) transport along an open surface of an extrinsic ionic conductor and (iii) transport along interfaces between intrinsic ionic conductors. The observed effects in these groups differ by about five orders of magnitude in a very consistent way. The modified interface transport in group (i) is most probably caused by strain effects, misfit dislocations or disordered transition regions.
Driving mechanisms of ionic polymer actuators having electric double layer capacitor structures.
Imaizumi, Satoru; Kato, Yuichi; Kokubo, Hisashi; Watanabe, Masayoshi
2012-04-26
Two solid polymer electrolytes, composed of a polyether-segmented polyurethaneurea (PEUU) and either a lithium salt (lithium bis(trifluoromethanesulfonyl)amide: Li[NTf2]) or a nonvolatile ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide: [C2mim][NTf2]), were prepared in order to utilize them as ionic polymer actuators. These salts were preferentially dissolved in the polyether phases. The ionic transport mechanism of the polyethers was discussed in terms of the diffusion coefficients and ionic transference numbers of the incorporated ions, which were estimated by means of pulsed-field gradient spin-echo (PGSE) NMR. There was a distinct difference in the ionic transport properties of each polymer electrolyte owing to the difference in the magnitude of interactions between the cations and the polyether. The anionic diffusion coefficient was much faster than that of the cation in the polyether/Li[NTf2] electrolyte, whereas the cation diffused faster than the anion in the polyether/[C2mim][NTf2] electrolyte. Ionic polymer actuators, which have a solid-state electric-double-layer-capacitor (EDLC) structure, were prepared using these polymer electrolyte membranes and ubiquitous carbon materials such as activated carbon and acetylene black. On the basis of the difference in the motional direction of each actuator against applied voltages, a simple model of the actuation mechanisms was proposed by taking the difference in ionic transport properties into consideration. This model discriminated the behavior of the actuators in terms of the products of transference numbers and ionic volumes. The experimentally observed behavior of the actuators was successfully explained by this model.
Modeling electrokinetics in ionic liquids: General
Wang, Chao; Bao, Jie; Pan, Wenxiao; ...
2017-04-01
Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson–Nernst–Planck equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the modified Poisson-Nernst-Planck equations are coupled with Navier–Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electroosmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on amore » curved ionselective surface. Lastly, we also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.« less
Seki, Shiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Serizawa, Nobuyuki; Ono, Shimpei; Takei, Katsuhito; Doi, Hiroyuki; Umebayashi, Yasuhiro
2014-05-01
We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.
Charge transport in metal oxide nanocrystal-based materials
NASA Astrophysics Data System (ADS)
Runnerstrom, Evan Lars
There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and structure. Charge transport can obviously be taken to mean the conduction of electrons, but it also refers to the motion of ions, such as lithium ions and protons. In many cases, the transport of ions is married to the motion of electrons as well, either through an external electrical circuit, or within the same material in the case of mixed ionic electronic conductors. The collective motion of electrons over short length scales, that is, within single nanocrystals, is also a subject of study as it pertains to plasmonic nanocrystals. Finally, charge transport can also be coupled to or result from the formation of defects in metal oxides. All of these modes of charge transport in metal oxides gain further complexity when considered in nanocrystalline systems, where the introduction of numerous surfaces can change the character of charge transport relative to bulk systems, providing opportunities to exploit new physical phenomena. Part I of this dissertation explores the combination of electronic and ionic transport in electrochromic devices based on nanocrystals. Colloidal chemistry and solution processing are used to fabricate nanocomposites based on electrochromic tin-doped indium oxide (ITO) nanocrystals. The nanocomposites, which are completely synthesized using solution processing, consist of ITO nanocrystals and lithium bis(trifluoromethylsulfonyl)amide (LiTFSI) salt dispersed in a lithium ion-conducting polymer matrix of either poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA). ITO nanocrystals are prepared by colloidal synthetic methods and the nanocrystal surface chemistry is modified to achieve favorable nanocrystal-polymer interactions. Homogeneous solutions containing polymer, ITO nanocrystals, and lithium salt are thus prepared and deposited by spin casting. Characterization by DC electronic measurements, microscopy, and x-ray scattering techniques show that the ITO nanocrystals form a complete, connected electrode within a polymer electrolyte matrix, and that the morphology and properties of the nanocomposites can be manipulated by changing the chemical composition of the deposition solution. Careful application of AC impedance spectroscopy techniques and DC measurements are used to show that the nanocomposites exhibit mixed ionic and electronic conductivity, where electronic charge is transported through the ITO nanocrystal phase, and ionic charge is transported through the polymer matrix phase. The synthetic methods developed here and understanding of charge transport ultimately lead to the fabrication of a solid state nanocomposite electrochromic device based on nanocrystals of ITO and cerium oxide. Part II of this dissertation considers electron transport within individual metal oxide nanocrystals themselves. It primarily examines relationships between synthetic chemistry, doping mechanisms in metal oxides, and the accompanying physics of free carrier scattering within the interior of highly doped metal oxide nanocrystals, with particular mind paid to ITO nanocrystals. Additionally, synthetic methods as well as metal oxide defect chemistry influences the balance between activation and compensation of dopants, which limits the nanocrystals' free carrier concentration. Furthermore, because of ionized impurity scattering of the oscillating electrons by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Chang, Kai-Shiun; Lin, Yi-Feng; Tung, Kuo-Lun
A molecular dynamics (MD) simulation is used to reveal the grain boundary effect on the ionic transport of yttria-stabilized zirconia (YSZ). The oxygen ion displacements and diffusivities of the ideal and grain boundary-inserted YSZ models are analyzed at elevated temperatures. An optimized Y 2O 3 concentration within YSZ for the best ionic conductivity is achieved by balancing the trade-off between the increased vacancies and the decreased accessible free space. The mass transfer resistance of the grain boundary in YSZ can be more easily found at higher temperatures by observing the oxygen ion diffusivities or traveling trajectories. At lower temperatures, the grain interior and the grain boundary control the ionic transport. In contrast, the grain boundary effect on the diffusion barrier is gradually eliminated at elevated temperatures. The modeled results in this work agree well with previous experimental data.
Choi, Bong Gill; Hong, Jinkee; Park, Young Chul; Jung, Doo Hwan; Hong, Won Hi; Hammond, Paula T; Park, Hoseok
2011-06-28
The chemistry and structure of ion channels within the polymer electrolytes are of prime importance for studying the transport properties of electrolytes as well as for developing high-performance electrochemical devices. Despite intensive efforts on the synthesis of polymer electrolytes, few studies have demonstrated enhanced target ion conduction while suppressing unfavorable ion or mass transport because the undesirable transport occurs through an identical pathway. Herein, we report an innovative, chemical strategy for the synthesis of polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the ionic (not electronic) conductive, functionalized graphenes and for a fundamental understanding of ion and mass transport occurring in nanoscale ionic clusters. The functionalized graphenes controlled the state of water by means of nanoscale manipulation of the physical geometry and chemical functionality of ionic channels. Furthermore, the confinement of bound water within the reorganized nanochannels of composite membranes was confirmed by the enhanced proton conductivity at high temperature and the low activation energy for ionic conduction through a Grotthus-type mechanism. The selectively facilitated transport behavior of composite membranes such as high proton conductivity and low methanol crossover was attributed to the confined bound water, resulting in high-performance fuel cells.
Wang, Lixin; Yang, Xuezhi; Wang, Qi; Zeng, Yuxuan; Ding, Lei; Jiang, Wei
2017-01-01
The aggregation and deposition of carbon nanotubes (CNTs) determines their transport and fate in natural waters. Therefore, the aggregation kinetics of humic-acid treated multi-walled carbon nanotubes (HA-MWCNTs) was investigated by time-resolved dynamic light scattering in NaCl and CaCl 2 electrolyte solutions. Increased ionic strength induced HA-MWCNT aggregation due to the less negative zeta potential and the reduced electrostatic repulsion. The critical coagulation concentration (CCC) values of HA-MWCNTs were 80mmol/L in NaCl and 1.3mmol/L in CaCl 2 electrolyte, showing that Ca 2+ causes more serious aggregation than Na + . The aggregation behavior of HA-MWCNTs was consistent with Derjaguin-Landau-Verwey-Overbeek theory. The deposition kinetics of HA-MWCNTs was measured by the optical absorbance at 800nm. The critical deposition concentrations for HA-MWCNT in NaCl and CaCl 2 solutions were close to the CCC values, therefore the rate of deposition cannot be increased by changing the ionic strength in the diffusion-limited aggregation regime. The deposition process was correlated to the aggregation since larger aggregates increased gravitational deposition and decreased random Brownian diffusion. HA-MWCNTs hydrodynamic diameters were evaluated at 5, 15 and 25°C. Higher temperature caused faster aggregation due to the reduced electrostatic repulsion and increased random Brownian motion and collision frequency. HA-MWCNTs aggregate faster at higher temperature in either NaCl or CaCl 2 electrolyte due to the decreased electrostatic repulsion and increased random Brownian motion. Our results suggest that CNT aggregation and deposition are two correlated processes governed by the electrolyte, and CNT transport is favored at low ionic strength and low temperature. Copyright © 2016. Published by Elsevier B.V.
Modeling the effects of variable groundwater chemistry on adsorption of molybdate
Stollenwerk, Kenneth G.
1995-01-01
Laboratory experiments were used to identify and quantify processes having a significant effect on molybdate (MoO42−) adsorption in a shallow alluvial aquifer on Cape Cod, assachusetts. Aqueous chemistry in the aquifer changes as a result of treated sewage effluent mixing with groundwater. Molybdate adsorption decreased as pH, ionic strength, and the concentration of competing anions increased. A diffuse-layer surface complexation model was used to simulate adsorption of MoO42−, phosphate (PO43−), and sulfate (SO42−) on aquifer sediment. Equilibrium constants for the model were calculated by calibration to data from batch experiments. The model was then used in a one-dimensional solute transport program to successfully simulate initial breakthrough of MoO42− from column experiments. A shortcoming of the solute transport program was the inability to account for kinetics of physical and chemical processes. This resulted in a failure of the model to predict the slow rate of desorption of MoO42− from the columns. The mobility of MoO42− ncreased with ionic strength and with the formation of aqueous complexes with calcium, magnesium, and sodium. Failure to account for MoO42− speciation and ionic strength in the model resulted in overpredicting MoO42− adsorption. Qualitatively, the laboratory data predicted the observed behavior of MoO42− in the aquifer, where retardation of MoO42− was greatest in uncontaminated roundwater having low pH, low ionic strength, and low concentrations of PO43− and SO42−.
Diddens, Diddo; Heuer, Andreas
2014-01-30
We present an extensive molecular dynamics (MD) simulation study of the lithium ion transport in ternary polymer electrolytes consisting of poly(ethylene oxide) (PEO), lithium-bis(trifluoromethane)sulfonimide (LiTFSI), and the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethane)sulfonimide (PYR13TFSI). In particular, we focus on two different strategies by which the ternary electrolytes can be devised, namely by (a) adding the ionic liquid to PEO20LiTFSI and (b) substituting the PEO chains in PEO20LiTFSI by the ionic liquid. To grasp the changes of the overall lithium transport mechanism, we employ an analytical, Rouse-based cation transport model (Maitra et al. Phys. Rev. Lett. 2007, 98, 227802), which has originally been devised for binary PEO-based electrolytes. This model distinguishes three different microscopic transport mechanisms, each quantified by an individual time scale. In the course of our analysis, we extend this mathematical description to account for an entirely new transport mechanism, namely, the TFSI-supported diffusion of lithium ions decoupled from the PEO chains, which emerges for certain stoichiometries. We find that the segmental mobility plays a decisive role in PEO-based polymer electrolytes. That is, whereas the addition of the ionic liquid to PEO20LiTFSI plasticizes the polymer network and thus also increases the lithium diffusion, the amount of free, mobile ether oxygens reduces when substituting the PEO chains by the ionic liquid, which compensates the plasticizing effect. In total, our observations allow us to formulate some general principles about the lithium ion transport mechanism in ternary polymer electrolytes. Moreover, our insights also shed light on recent experimental observations (Joost et al. Electrochim. Acta 2012, 86, 330).
Lan, Tian; Soavi, Francesca; Marcaccio, Massimo; Brunner, Pierre-Louis; Sayago, Jonathan; Santato, Clara
2018-05-24
The n-type organic semiconductor phenyl-C61-butyric acid methyl ester (PCBM), a soluble fullerene derivative well investigated for organic solar cells and transistors, can undergo several successive reversible, diffusion-controlled, one-electron reduction processes. We exploited such processes to shed light on the correlation between electron transfer properties, ionic and electronic transport as well as device performance in ionic liquid (IL)-gated transistors. Two ILs were considered, based on bis(trifluoromethylsulfonyl)imide [TFSI] as the anion and 1-ethyl-3-methylimidazolium [EMIM] or 1-butyl-1-methylpyrrolidinium [PYR14] as the cation. The aromatic structure of [EMIM] and its lower steric hindrance with respect to [PYR14] favor a 3D (bulk) electrochemical doping. As opposed to this, for [PYR14] the doping seems to be 2D (surface-confined). If the n-doping of the PCBM is pursued beyond the first electrochemical process, the transistor current vs. gate-source voltage plots in [PYR14][TFSI] feature a maximum that points to the presence of finite windows of high conductivity in IL-gated PCBM transistors.
Sequencing proteins with transverse ionic transport in nanochannels.
Boynton, Paul; Di Ventra, Massimiliano
2016-05-03
De novo protein sequencing is essential for understanding cellular processes that govern the function of living organisms and all sequence modifications that occur after a protein has been constructed from its corresponding DNA code. By obtaining the order of the amino acids that compose a given protein one can then determine both its secondary and tertiary structures through structure prediction, which is used to create models for protein aggregation diseases such as Alzheimer's Disease. Here, we propose a new technique for de novo protein sequencing that involves translocating a polypeptide through a synthetic nanochannel and measuring the ionic current of each amino acid through an intersecting perpendicular nanochannel. We find that the distribution of ionic currents for each of the 20 proteinogenic amino acids encoded by eukaryotic genes is statistically distinct, showing this technique's potential for de novo protein sequencing.
Final Report for DE-FG02-93ER14376,Ionic Transport in Electrochemical Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. W. Halley
This project was a molecular dynamics study of the relevant issues associated with the structure and transport of lithium in polymer electrolytes such as polyethylene oxide(PEO). In close collaboration with quantum chemist Larry Curtiss and neutron scatterers David Lee Price and Marie-Louise Saboungi at Argonne, we used molecular dynamics to study the local structure and dynamics and ion transport in the polymer. The studies elucidated the mechanism of Li transport in PEO, revealing that the rate limiting step is extremely sensitive to the magnitude of the torsion forces in the backbone of the polymer. Because the torsion forces are difficultmore » to manipulate chemically, this makes it easier to understand why improving the conductivity of PEO based electrolytes has proven to be very difficult. We studied the transport properties of cations in ionic liquids as possible additives to polymer membranes for batteries and fuel cells and found preliminary indications that the transport is enhanced near phase separation in acid-ionic liquid mixtures.« less
Modeling electrokinetics in ionic liquids: General
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chao; Bao, Jie; Pan, Wenxiao
2017-04-07
Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow onmore » a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.« less
NASA Astrophysics Data System (ADS)
Hou, Yong; Fu, Yongsheng; Bredow, Richard; Kang, Dongdong; Redmer, Ronald; Yuan, Jianmin
2017-03-01
The average-atom model combined with the hyper-netted chain approximation is an efficient tool for electronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to describe non-equilibrium states with different electron and ion temperature as produced in laser-matter interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the electron densities in the framework of temperature-depended density functional theory. Using this ion-ion potential we perform molecular dynamics simulations in order to determine the ionic transport properties such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation functions.
Isotopic NO as a Chemical Tracer in the Global Stratosphere
NASA Technical Reports Server (NTRS)
Aikin, A. C.
2000-01-01
Stratospheric NO originates from nitrous oxide reacting with O(1D) and ion-molecule reactions. Most ionic reactions take place in the mesosphere and lower thermosphere. The resulting NO is transported into the stratosphere at high latitudes. Cosmic radiation and tropospheric lightning also produce nitric oxide. This NO originates from ion reactions involving N2. Ionic reactions preserve the N(15)/N(14) ratio present in atmospheric N2. Nitrous oxide has a mass-dependent sink that varies with altitude so that there is an altitude-dependent isotopic distinction in nitrous oxide. This difference will appear in NO formed from N2O. The expected NO isotopic distribution under different conditions will be a combination of NO derived from nitrous oxide with different masses and NO from ion reactions. The expected NO isotopic distribution will be presented talking into account the different processes, including particle events and downward transport in winter.
[Process and mechanism of plants in overcoming acid soil aluminum stress].
Zhao, Tian-Long; Xie, Guang-Ning; Zhang, Xiao-Xia; Qiu, Lin-Quan; Wang, Na; Zhang, Su-Zhi
2013-10-01
Aluminum (Al) stress is one of the most important factors affecting the plant growth on acid soil. Currently, global soil acidification further intensifies the Al stress. Plants can detoxify Al via the chelation of ionic Al and organic acids to store the ionic Al in vacuoles and extrude it from roots. The Al extrusion is mainly performed by the membrane-localized anion channel proteins Al(3+)-activated malate transporter (ALMT) and multi-drug and toxin extrusion (MATE). The genes encoding ABC transporter and zinc-finger protein conferred plant Al tolerance have also been found. The identification of these Al-resistant genes makes it possible to increase the Al resistance of crop plants and enhance their production by the biological methods such as gene transformation and mark-associated breeding. The key problems needed to be solved and the possible directions in the researches of plant Al stress resistance were proposed.
Ionic liquid gating reveals trap-filled limit mobility in low temperature amorphous zinc oxide
NASA Astrophysics Data System (ADS)
Bubel, S.; Meyer, S.; Kunze, F.; Chabinyc, M. L.
2013-10-01
In low-temperature solution processed amorphous zinc oxide (a-ZnO) thin films, we show the thin film transistor (TFT) characteristics for the trap-filled limit (TFL), when the quasi Fermi energy exceeds the conduction band edge and all tail-states are filled. In order to apply gate fields that are high enough to reach the TFL, we use an ionic liquid tape gate. Performing capacitance voltage measurements to determine the accumulated charge during TFT operation, we find the TFL at biases higher than predicted by the electronic structure of crystalline ZnO. We conclude that the density of states in the conduction band of a-ZnO is higher than in its crystalline state. Furthermore, we find no indication of percolative transport in the conduction band but trap assisted transport in the tail-states of the band.
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bennett, William R.; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.
2014-01-01
We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N -methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 xLi+ 0.33) and temperature (298 K T 393 K). Structurally, Li+ is shown to be solvated by three anion neigh- bors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi+ we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi+, the contribution of Li+ to ionic conductivity increases until reach- ing a saturation doping level of xLi+ 0.10. Comparatively, the Li+ conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. Our transport results also demonstrate the necessity of long MD simulation runs ( 200 ns) required to converge transport properties at room T. The differences in Li+ transport are reflected in the residence times of Li+ with the anions (Li), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li+ transport in each liquid, we find that while the net motion of Li+ with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of transport through anion exchange (hopping) increases at high xLi+ and in liquids with large anions.
Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M
2016-03-18
Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. Copyright © 2016 Elsevier B.V. All rights reserved.
Nuclear quantum dynamics in dense hydrogen
Kang, Dongdong; Sun, Huayang; Dai, Jiayu; Chen, Wenbo; Zhao, Zengxiu; Hou, Yong; Zeng, Jiaolong; Yuan, Jianmin
2014-01-01
Nuclear dynamics in dense hydrogen, which is determined by the key physics of large-angle scattering or many-body collisions between particles, is crucial for the dynamics of planet's evolution and hydrodynamical processes in inertial confinement confusion. Here, using improved ab initio path-integral molecular dynamics simulations, we investigated the nuclear quantum dynamics regarding transport behaviors of dense hydrogen up to the temperatures of 1 eV. With the inclusion of nuclear quantum effects (NQEs), the ionic diffusions are largely higher than the classical treatment by the magnitude from 20% to 146% as the temperature is decreased from 1 eV to 0.3 eV at 10 g/cm3, meanwhile, electrical and thermal conductivities are significantly lowered. In particular, the ionic diffusion is found much larger than that without NQEs even when both the ionic distributions are the same at 1 eV. The significant quantum delocalization of ions introduces remarkably different scattering cross section between protons compared with classical particle treatments, which explains the large difference of transport properties induced by NQEs. The Stokes-Einstein relation, Wiedemann-Franz law, and isotope effects are re-examined, showing different behaviors in nuclear quantum dynamics. PMID:24968754
NASA Astrophysics Data System (ADS)
Bocquet, Lyderic; Secchi, Eleonora; Nigues, Antoine; Siria, Alessandro
2015-11-01
We perform an experimental study of ionic transport and current fluctuations inside individual Carbon Nanotubes (CNT) with a size ranging from 40 down to 7 nanometers in radius. The conductance exhibits a power law behavior dependence on the salinity, with an exponent close to 1/3. This is in contrast to Boron-Nitride nanotubes which exhibits a constant surface conductance. This scaling behavior is rationalized in terms of a model accounting for hydroxide adsorption at the (hydrophobic) carbon surface. This predicts a density dependent surface charge with a exponent 1/3 in full agreement with the experimental observations. Then we measure the low frequency noise of the ionic current in single CNTs. The noise exhibits a robust 1/f characteristic, with an amplitude which scales proportionaly to the surface charge measured independently. Data for the various CNT at a given pH do collapse on a master curve. This behavior is rationalized in terms of the fluctuations of the surface charge based on the adsorption behavior. This suggests that the low frequency noise takes its origin in the process occuring at the surface of the carbon nanotube.
Kinetics of electrically and chemically induced swelling in polyelectrolyte gels
NASA Astrophysics Data System (ADS)
Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.
1990-09-01
Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.
Ion Conduction in Polymerized Ionic Liquids with Different Pendant Groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Fei; Wang, Yangyang; Hong, Tao
2015-07-17
Polymerized ionic liquids (PolyILs) are promising candidates for energy storage and electrochemical devices applications. Understanding their ionic transport mechanism is the key for designing highly conductive PolyILs. By using broadband dielectric spectroscopy (BDS), rheology, and differential scanning calorimetry (DSC), a systematic study has been carried out to provide a better understanding of the ionic transport mechanism in PolyILs with different pendant groups. The variation of pendant groups results in different dielectric, mechanical, and thermal properties of these PolyILs. The Walden plot analysis shows that the data points for all these PolyILs fall above the ideal Walden line, and the deviationmore » from the ideal line increases upon approaching the glass transition temperature (T g). Moreover, the conductivity for these PolyILs at their Tgs are much higher than the usually reported value 10 15 S/cm for polymer electrolytes, in which the ionic transport is closely coupled to the segmental dynamics. These results indicate a decoupling of ionic conductivity from the segmental relaxation in these materials. The degree of decoupling increases with the increase of the fragility of polymer segmental relaxation. Finally, we relate this observation to a decrease in polymer packing efficiency with an increase in fragility.« less
Dielectric Modulation of Ion Transport near Interfaces
NASA Astrophysics Data System (ADS)
Antila, Hanne S.; Luijten, Erik
2018-03-01
Ion mobility and ionic conductance in nanodevices are known to deviate from bulk behavior, a phenomenon often attributed to surface effects. We demonstrate that dielectric mismatch between the electrolyte and the surface can qualitatively alter ionic transport in a counterintuitive manner. Instead of following the polarization-induced modulation of the concentration profile, mobility is enhanced or reduced by changes in the ionic atmosphere near the interface and affected by a polarization force parallel to the surface. In addition to revealing this mechanism, we explore the effect of salt concentration and electrostatic coupling.
Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems
NASA Astrophysics Data System (ADS)
Montanino, M.; Moreno, M.; Carewska, M.; Maresca, G.; Simonetti, E.; Lo Presti, R.; Alessandrini, F.; Appetecchi, G. B.
2014-12-01
The thermal, transport, rheological and flammability properties of electrolyte mixtures, proposed for safer lithium-ion battery systems, were investigated as a function of the mole composition. The blends were composed of a lithium salt (LiTFSI), organic solvents (namely EC, DEC) and an ionic liquid (PYR13TFSI). The main goal is to combine the fast ion transport properties of the organic compounds with the safe issues of the non-flammable and non-volatile ionic liquids. Preliminary tests in batteries have evidenced cycling performance approaching that observed in commercial organic electrolytes.
Correlating morphology to dc conductivity in polymerized ionic liquids
NASA Astrophysics Data System (ADS)
Iacob, Ciprian; Matusmoto, Atsushi; Inoue, Tadashi; Runt, James
Polymerized ionic liquids (PILs) combine the attractive mechanical characteristics of polymers and unique physico-chemical properties of low molecular weight ionic liquids in the same material. PILs have shown remarkable advantages when employed in electrochemical devices such as dye-sensitized solar cells and lithium batteries, among others. Understanding their ionic transport mechanism is the key for designing highly conductive PILs. In the current study, the correlation between morphology and charge transport in two homologous series of PILs with systematic variation of the alkyl chain length and anions is investigated using broadband dielectric spectroscopy, rheology, differential scanning calorimetry and X-ray scattering. As the alkyl chain length increases, the backbone-to-backbone separation increases, and dc-conductivity consequently decreases. The cations dominate structural dynamics since they are attached to the polymer chains, while the anions are smaller and more mobile ionic species thereby controlling the ionic conductivity. Further interpretation of decoupling of dc conductivity from the segmental relaxation enabled the correlation between polymer morphology and dc conductivity. Supported by the National Science Foundation, Polymers Program.
Ca2+ transport and signalling in enamel cells
Nurbaeva, Meerim K.; Eckstein, Miriam; Feske, Stefan
2016-01-01
Abstract Dental enamel is one of the most remarkable examples of matrix‐mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage‐dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca2+ is the most abundant ion, yet how ameloblasts modulate Ca2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca2+ transport, the intracellular Ca2+ buffering systems expressed in ameloblasts and provides an up‐dated view of current models concerning Ca2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca2+ transport by the enamel organ. PMID:27510811
2017-05-12
were resolved by a technical approach that included three well-integrated experimental tasks follows: Task A: Quantify the impact of time- dependent ...aggregate breakdown and colloid dispersion depending on the extent of Fe(III) reduction and altered the pore structure and chemical reactivity of the porous...have significant effect on the transport of molecular and colloidal tracers (but not on the ionic tracer Br-) and colloid generation depending on
First examples of organosilica-based ionogels: synthesis and electrochemical behavior
Löbbicke, Ruben; Kirchner, Barbara; Leroux, Fabrice
2017-01-01
The article describes the synthesis and properties of new ionogels for ion transport. A new preparation process using an organic linker, bis(3-(trimethoxysilyl)propyl)amine (BTMSPA), yields stable organosilica matrix materials. The second ionogel component, the ionic liquid 1-methyl-3-(4-sulfobutyl)imidazolium 4-methylbenzenesulfonate, [BmimSO3H][PTS], can easily be prepared with near-quantitative yields. [BmimSO3H][PTS] is the proton conducting species in the ionogel. By combining the stable organosilica matrix with the sulfonated ionic liquid, mechanically stable, and highly conductive ionogels with application potential in sensors or fuel cells can be prepared. PMID:28487817
Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes
NASA Astrophysics Data System (ADS)
Yu, Anthony S.
Ceramic membranes based on Mixed-Ionic-and-Electronic-Conducting (MIEC) oxides are capable of separating oxygen from air in the presence of an oxygen partial-pressure gradient. These MIEC membranes show great promise for oxygen consuming industrial processes, such as the production of syngas from steam reforming of natural gas (SRM), as well as for electricity generation in Solid Oxide Fuel Cells (SOFC). For both applications, the overall performance is dictated by the rate of oxygen transport across the membrane. Oxygen transport across MIEC membranes is composed of a bulk oxygen-ion diffusion process and surface processes, such as surface reactions and adsorption/desorption of gaseous reactants/products. The main goal of this thesis was to determine which process is rate-limiting in order to significantly enhance the overall rate of oxygen transport in MIEC membrane systems. The rate-limiting step was determined by evaluating the total resistance to oxygen transfer, Rtot. Rtot is the sum of a bulk diffusion resistance in the membrane itself, Rb, and interfacial loss components, Rs. Rb is a function of the membrane's ionic conductivity and thickness, while Rs arises primarily from slow surface-exchange kinetics that cause the P(O2) at the surfaces of the membrane to differ from the P(O 2) in the adjacent gas phases. Rtot can be calculated from the Nernst potential across the membrane and the measured oxygen flux. The rate-limiting process can be determined by evaluating the relative contributions of the various losses, Rs and Rb, to Rtot. Using this method, this thesis demonstrates that for most membrane systems, Rs is the dominating factor. In the development of membrane systems with high oxygen transport rates, thin membranes with high ionic conductivities are required to achieve fast bulk oxygen-ion diffusion. However, as membrane thickness is decreased, surface reaction kinetics become more important in determining the overall transport rate. The two approaches to increase surface reaction kinetics and decrease Rs that were examined in this thesis involved modifying the surface microstructure, as well as adding both metallic (e.g. Pt) and oxide (e.g. CeO2, La0.8Sr0.2FeO3) catalysts to both membrane surfaces. These two approaches were investigated for single-phase MIEC membrane reactors (La0.9Ca0.1FeO3-delta ), as well as composite membrane reactors composed of an electronic conductor (La0.8Sr-0.2CrO3-delta) and an ionic conductor (YSZ). The use of catalysts and microstructure modifications to decrease interfacial losses is equally important for SOFCs. In this thesis, the electrochemical activity and microstructure of metallic catalysts formed by "ex-solving" metals from an oxide lattice, and oxide catalysts deposited by Atomic Layer Deposition (ALD) were investigated. It is shown that these methods for depositing catalysts resulted in very different effects on electrode performance when compared to the same catalysts deposited by wet impregnation. For example, when transition metals, such as Ni and Co, were "ex-solved" from a La0.8Sr0.2CrO3-delta anode lattice, these "ex-solved" metal particles not only exhibited great catalytic activity, they were also less prone to coking compared to their wet impregnated counterparts. On the cathode side, thin layers of various oxides (e.g. Al 2O3, CeOx, SrO) that were deposited using ALD also exhibited drastically different electrochemical activity compared to their wet impregnated counterparts. It was determined that differences in electrochemical activity could be attributed to a difference in the oxide morphology, showing that a catalyst's microstructure and morphology are very important in dictating its overall activity in SOFC electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Qing; Gerhardt, Michael R.; Aziz, Michael J.
We measure the polarization characteristics of a quinone-bromide redox flow battery with interdigitated flow fields, using electrochemical impedance spectroscopy and voltammetry of a full cell and of a half cell against a reference electrode. We find linear polarization behavior at 50% state of charge all the way to the short-circuit current density of 2.5 A/cm 2. We uniquely identify the polarization area-specific resistance (ASR) of each electrode, the membrane ASR to ionic current, and the electronic contact ASR. We use voltage probes to deduce the electronic current density through each sheet of carbon paper in the quinone-bearing electrode. By alsomore » interpreting the results using the Newman 1-D porous electrode model, we deduce the volumetric exchange current density of the porous electrode. We uniquely evaluate the power dissipation and identify a correspondence to the contributions to the electrode ASR from the faradaic, electronic, and ionic transport processes. We find that, within the electrode, more power is dissipated in the faradaic process than in the electronic and ionic conduction processes combined, despite the observed linear polarization behavior. We examine the sensitivity of the ASR to the values of the model parameters. The greatest performance improvement is anticipated from increasing the volumetric exchange current density.« less
The mechanisms governing the transport and retention kinetics of titanium dioxide (TiO2, rutile) nanoparticle (NP) aggregates were investigated in saturated porous media. Experiments were carried out under a range of well-controlled ionic strength (from DI water up to 1 mM) and...
Highly Conductive Anion Exchange Block Copolymers
We are developing a comprehensive fundamental understanding of the interplay between transport and morphology in newly synthesized hydroxide...conducting block copolymers. We are synthesizing hydroxide conducting block copolymers of various (1) morphology types, (2) ionic concentrations, and (3...ionic domain sizes. We are carefully characterizing the morphology and transport properties using both conventional and new advanced in situ techniques
Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength
NASA Astrophysics Data System (ADS)
Ams, D.; Swanson, J. S.; Reed, D. T.
2010-12-01
Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic strength effects as the electronic double layer is compressed with increasing ionic strength. These results further highlight the importance of electrostatic interactions in the adsorption process between dissolved metals and bacterial surfaces. This work expands the understanding of actinide-bacteria adsorption phenomena to high ionic strength environmental conditions that are relevant as an aid to predicting Np(V) fate and transport behavior in areas such as the vicinity of salt-based nuclear waste repositories and high ionic-strength groundwaters at DOE sites.
High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.
Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul
2016-04-13
A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.
Biredox ionic liquids: new opportunities toward high performance supercapacitors.
Bodin, C; Mourad, E; Zigah, D; Le Vot, S; Freunberger, S A; Favier, F; Fontaine, O
2018-01-01
Nowadays commercial supercapacitors are based on purely capacitive storage at the porous carbons that are used for the electrodes. However, the limits that capacitive storage imposes on energy density calls to investigate new materials to improve the capacitance of the device. This new type of electrodes (e.g., RuO 2 , MnO 2 …) involves pseudo-capacitive faradaic redox processes with the solid material. Ion exchange with solid materials is, however, much slower than the adsorption process in capacitive storage and inevitably leads to significant loss of power. Faradaic process in the liquid state, in contrast can be similarly fast as capacitive processes due to the fast ion transport. Designing new devices with liquid like dynamics and improved specific capacitance is challenging. We present a new approach to increase the specific capacitance using biredox ionic liquids, where redox moieties are tethered to the electrolyte ions, allowing high redox concentrations and significant pseudo-capacitive storage in the liquid state. Anions and cations are functionalized with anthraquinone (AQ) and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) moieties, respectively. Glassy carbon, carbon-onion, and commercial activated carbon electrodes that exhibit different double layer structures and thus different diffusion dynamics were used to simultaneously study the electrochemical response of biredox ionic liquids at the positive and negative electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; ...
2015-07-10
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less
2015-01-01
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials. PMID:27162971
Using FT-IR Spectroscopy to Measure Charge Organization in Ionic Liquids
Burba, Christopher M.; Janzen, Jonathan; Butson, Eric D.; Coltrain, Gage L.
2013-01-01
A major goal in the field of ionic liquids is correlating transport property trends with the underlying liquid structure of the compounds, such as the degree of charge organization among the constituent ions. Traditional techniques for experimentally assessing charge organization are specialized and not readily available for routine measurements. This represents a significant roadblock in elucidating these correlations. We use a combination of transmission and polarized-ATR infrared spectroscopy to measure the degree of charge organization for ionic liquids. The technique is illustrated with a family of 1-alkyl-3-methylimidazolium trifluoromethansulfonate ionic liquids at 30°C. As expected, the amount of charge organization decreases as the alkyl side chain is lengthened, highlighting the important role of short-range repulsive interactions in defining quasilattice structure. Inherent limitations of the method are identified and discussed. The quantitative measurements of charge organization are then correlated with trends in the transport properties of the compounds to highlight the relationship between charge and momentum transport and the underlying liquid structure. Most research laboratories possess infrared spectrometers capable of conducting these measurements, thus, the proposed method may represent a cost-effective solution for routinely measuring charge organization in ionic liquids. PMID:23781877
High H⁻ ionic conductivity in barium hydride.
Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S
2015-01-01
With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.
NASA Astrophysics Data System (ADS)
Chu, Weijing; Yang, Junyou; Jiang, Qinghui; Li, Xin; Xin, Jiwu
2018-05-01
The quality of interface between the electron transport layer (ETL) and perovskite is very crucial to the photovoltaic performance of a flexible perovskite solar cell fabricated under low-temperature process. This work demonstrates a room temperature ionic liquid modification strategy to the interface between ZnO layer and MAPbI3 film for high performance flexible perovskite solar cells based on a PET substrate. [BMIM]BF4 ionic liquid modification can significantly improve the surface quality and wettability of the ZnO ETL, thus greatly increase the charge mobility of ZnO ETL and improve the crystalline of perovskite film based on it. Moreover, the dipolar polarization layer among the ZnO ETL with perovskite, built by modification, can adjust the energy level between the ZnO ETL and perovskite and facilitates the charge extraction. Therefore, an overall power conversion efficiency (PCE) of 12.1% have been achieved under standard illumination, it increases by 1.4 times of the flexible perovskite solar cells on a pristine ZnO ETL.
Extensional ionomeric polymer conductor composite actuators with ionic liquids
NASA Astrophysics Data System (ADS)
Liu, Sheng; Lin, Minren; Zhang, Qiming
2008-03-01
Although the Ionic Polymer-Metal Composite (IPMC) actuators developed up to date are in the form of bending actuators, development of extensional actuators based on IMPC is highly desirable from practical applications and fundamental understanding points of view. This talk presents the design, fabrication and characterization of a recent work on an extensional Ionic Polymer-Metal Composite actuator. The extensional actuator consists of the Nafion ionomer as the matrix and the sub-micron size RuO II particles as the conductive filler for the conductor/ionomr composites. In this investigation, several ionic liquids (IL) were investigated. For a Nafion/RuO II composite with 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf) IL, it was found that as the ions are driven into the ionomer/RuO II composite (the composite under negative voltage), an extensional strain of 0.9% was observed; while as the ions were expelled from the ionomer/RuO II composite (under positive voltage), a contraction of -1.2% was observed. The results indicate that multiple ions are participating in charge transport and actuation process. In this paper, we also discuss several design considerations for future extensional actuators with fast response, much improved strain and stress level. Especially an actuator based on multilayer configuration can significantly increase the electric field level in the actuator and consequently significantly improve the actuator speed. The extensional actuator investigated here provides a unique platform to investigate various phenomena related to ion transport and their interaction with the ionomer/conductor matrix to realize high electromechanical performance.
The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...
Ionic Transport Through Metal-Rich Organic Coatings
2016-08-19
COVERED October 2013-Septermber 2015 4. TITLE AND SUBTITLE Ionic Transport Through Metal-Rich Organic Coatings 5a. CONTRACT NUMBER 5b. GRANT...NOTES 14. ABSTRACT Organic coatings are commonly used on aircraft and in the automotive industry to protect against corrosive environments. Although...volume (MPV) percent, solvent polarity, and resin molecular weight impact corrosion protection of metal-rich organic (MRO) coatings. Following design
Ionic Transport Through Metal-Rich Organic Coatings
2016-08-19
COVERED October 2013-Septermber 2015 4. TITLE AND SUBTITLE Ionic Transport Through Metal-Rich Organic Coatings 5a. CONTRACT NUMBER 5b. GRANT...14. ABSTRACT Organic coatings are commonly used on aircraft and in the automotive industry to protect against corrosive environments. Although...volume (MPV) percent, solvent polarity, and resin molecular weight impact corrosion protection of metal-rich organic (MRO) coatings. Following design of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas
Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.
Charge Dynamics and Bending Actuation in Aquivion Membrane Swelled with Ionic Liquids.
Lin, Junhong; Liu, Yang; Zhang, Q M
2011-01-21
The actuation strain and speed of ionic electroactive polymer (EAP) actuators are mainly determined by the charge transport through the actuators and excess ion storage near the electrodes. We employ a recently developed theory on ion transport and storage to investigate the charge dynamics of short-side-chain Aquivion® (Hyflon®) membranes with different uptakes of ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf). The results reveal the existence of a critical uptake of ionic liquids above which the membrane exhibit a high ionic conductivity (σ>5×10(-2) mS/cm). Especially, we investigate the charge dynamics under voltages which are in the range for practical device operation (~1 volts and higher). The results show that the ionic conductivity, ionic mobility, and mobile ion concentration do not change with the applied voltage below 1 volt (and for σ below 4 volts). The results also show that bending actuation of the Aquivion membrane with 40 wt% EMI-Tf is much larger than that of Nafion, indicating that the shorter flexible side chains improve the electromechanical coupling between the excess ions and the membrane backbones, while not affect the actuation speed.
Charge Dynamics and Bending Actuation in Aquivion Membrane Swelled with Ionic Liquids
Lin, Junhong; Liu, Yang; Zhang, Q. M.
2011-01-01
The actuation strain and speed of ionic electroactive polymer (EAP) actuators are mainly determined by the charge transport through the actuators and excess ion storage near the electrodes. We employ a recently developed theory on ion transport and storage to investigate the charge dynamics of short-side-chain Aquivion® (Hyflon®) membranes with different uptakes of ionic liquid (IL) 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI-Tf). The results reveal the existence of a critical uptake of ionic liquids above which the membrane exhibit a high ionic conductivity (σ>5×10−2 mS/cm). Especially, we investigate the charge dynamics under voltages which are in the range for practical device operation (~1 volts and higher). The results show that the ionic conductivity, ionic mobility, and mobile ion concentration do not change with the applied voltage below 1 volt (and for σ below 4 volts). The results also show that bending actuation of the Aquivion membrane with 40 wt% EMI-Tf is much larger than that of Nafion, indicating that the shorter flexible side chains improve the electromechanical coupling between the excess ions and the membrane backbones, while not affect the actuation speed. PMID:21339839
Cowan, Matthew G; Gin, Douglas L; Noble, Richard D
2016-04-19
The recycling or sequestration of carbon dioxide (CO2) from the waste gas of fossil-fuel power plants is widely acknowledged as one of the most realistic strategies for delaying or avoiding the severest environmental, economic, political, and social consequences that will result from global climate change and ocean acidification. For context, in 2013 coal and natural gas power plants accounted for roughly 31% of total U.S. CO2 emissions. Recycling or sequestering this CO2 would reduce U.S. emissions by ca. 1800 million metric tons-easily meeting the U.S.'s currently stated CO2 reduction targets of ca. 17% relative to 2005 levels by 2020. This situation is similar for many developed and developing nations, many of which officially target a 20% reduction relative to 1990 baseline levels by 2020. To make CO2 recycling or sequestration processes technologically and economically viable, the CO2 must first be separated from the rest of the waste gas mixture-which is comprised mostly of nitrogen gas and water (ca. 85%). Of the many potential separation technologies available, membrane technology is particularly attractive due to its low energy operating cost, low maintenance, smaller equipment footprint, and relatively facile retrofit integration with existing power plant designs. From a techno-economic standpoint, the separation of CO2 from flue gas requires membranes that can process extremely high amounts of CO2 over a short time period, a property defined as the membrane "permeance". In contrast, the membrane's CO2/N2 selectivity has only a minor effect on the overall cost of some separation processes once a threshold permeability selectivity of ca. 20 is reached. Given the above criteria, the critical properties when developing membrane materials for postcombustion CO2 separation are CO2 permeability (i.e., the rate of CO2 transport normalized to the material thickness), a reasonable CO2/N2 selectivity (≥20), and the ability to be processed into defect-free thin-films (ca. 100-nm-thick active layer). Traditional polymeric membrane materials are limited by a trade-off between permeability and selectivity empirically described by the "Robeson upper bound"-placing the desired membrane properties beyond reach. Therefore, the investigation of advanced and composite materials that can overcome the limitations of traditional polymeric materials is the focus of significant academic and industrial research. In particular, there has been substantial work on ionic-liquid (IL)-based materials due to their gas transport properties. This review provides an overview of our collaborative work on developing poly(ionic liquid)/ionic liquid (PIL/IL) ion-gel membrane technology. We detail developmental work on the preparation of PIL/IL composites and describe how this chemical technology was adapted to allow the roll-to-roll processing and preparation of membranes with defect-free active layers ca. 100 nm thick, CO2 permeances of over 6000 GPU, and CO2/N2 selectivity of ≥20-properties with the potential to reduce the cost of CO2 removal from coal-fired power plant flue gas to ca. $15 per ton of CO2 captured. Additionally, we examine the materials developments that have produced advanced PIL/IL composite membranes. These advancements include cross-linked PIL/IL blends, step-growth PIL/IL networks with facilitated transport groups, and PIL/IL composites with microporous additives for CO2/CH4 separations.
Haskins, Justin B; Bennett, William R; Wu, James J; Hernández, Dionne M; Borodin, Oleg; Monk, Joshua D; Bauschlicher, Charles W; Lawson, John W
2014-09-25
We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N-methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 ≤ xLi(+) ≤ 0.33) and temperature (298 K ≤ T ≤ 393 K). Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi(+) we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD simulations and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi(+), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi(+) = 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 and 0.3 mS/cm. Our transport results also demonstrate the necessity of long MD simulation runs (∼200 ns) to converge transport properties at room temperature. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions (τ(Li/-)), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li(+) transport in each liquid, we find that while the net motion of Li(+) with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of transport through anion exchange increases at high xLi(+) and in liquids with large anions.
Surface effects on ionic Coulomb blockade in nanometer-size pores
NASA Astrophysics Data System (ADS)
Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano
2018-01-01
Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.
Surface effects on ionic Coulomb blockade in nanometer-size pores.
Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di
2018-01-12
Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.
Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition.
Weber, Matthieu; Koonkaew, Boonprakrong; Balme, Sebastien; Utke, Ivo; Picaud, Fabien; Iatsunskyi, Igor; Coy, Emerson; Miele, Philippe; Bechelany, Mikhael
2017-05-17
In this work, we report the design and the fine-tuning of boron nitride single nanopore and nanoporous membranes by atomic layer deposition (ALD). First, we developed an ALD process based on the use of BBr 3 and NH 3 as precursors in order to synthesize BN thin films. The deposited films were characterized in terms of thickness, composition, and microstructure. Next, we used the newly developed process to grow BN films on anodic aluminum oxide nanoporous templates, demonstrating the conformality benefit of BN prepared by ALD, and its scalability for the manufacturing of membranes. For the first time, the ALD process was then used to tune the diameter of fabricated single transmembrane nanopores by adjusting the BN thickness and to enable studies of the fundamental aspects of ionic transport on a single nanopore. At pH = 7, we estimated a surface charge density of 0.16 C·m -2 without slip and 0.07 C·m -2 considering a reasonable slip length of 3 nm. Molecular dynamics simulations performed with experimental conditions confirmed the conductivities and the sign of surface charges measured. The high ion transport results obtained and the ability to fine-tune nanoporous membranes by such a scalable method pave the way toward applications such as ionic separation, energy harvesting, and ultrafiltration devices.
Elucidating the correlation between morphology and ion dynamics in polymerized ionic liquids.
NASA Astrophysics Data System (ADS)
Heres, Maximilian; Cosby, Tyler; Iacob, Ciprian; Runt, James; Benson, Roberto; Liu, Hongjun; Paddison, Stephen; Sangoro, Joshua
Charge transport and dynamics are investigated for a series of poly-ammonium and poly-imidazolium-based polymerized ionic liquids (polyIL) with a common bis(trifluoromethylsulfonyl)imide anion using broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry. A significant enhancement of the Tg independent ionic conductivity is observed for ammonium based polyIL with shorter pendant groups, in comparison to imidazolium based systems. These results emphasize the importance of polymer backbone spacing as well as counter-ion size on ionic conductivity in polymerized ionic liquids. NSF DMR 1508394.
An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations.
Pitsch, Fee; Krull, Florian F; Agel, Friederike; Schulz, Peter; Wasserscheid, Peter; Melin, Thomas; Wessling, Matthias
2012-08-16
An adaptive self-healing ionic liquid nanocomposite membrane comprising a multi-layer support structure hosting the ionic salt [Ag](+) [Tf(2) N](-) is used for the separation of the olefin propylene and the paraffin propane. The ionic salt renders liquid like upon complexation with propylene, resulting in facilitated transport of propylene over propane at benchmark-setting selectivity and permeance levels. The contacting with acetylene causes the ionic salt to liquefy without showing evidence of forming explosive silver acetylide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic liquid electrolytes for dye-sensitized solar cells.
Gorlov, Mikhail; Kloo, Lars
2008-05-28
The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.
Individual and Co Transport Study of Titanium Dioxide NPs and Zinc Oxide NPs in Porous Media
Kumari, Jyoti; Mathur, Ankita; Rajeshwari, A.; Venkatesan, Arthi; S, Satyavati; Pulimi, Mrudula; Chandrasekaran, Natarajan; Nagarajan, R.; Mukherjee, Amitava
2015-01-01
The impact of pH and ionic strength on the mobility (individual and co-transport) and deposition kinetics of TiO2 and ZnO NPs in porous media was systematically investigated in this study. Packed column experiments were performed over a series of environmentally relevant ionic strengths with both NaCl (0.1−10 mM) and CaCl2 (0.01–0.1mM) solutions and at pH 5, 7, and 9. The transport of TiO2 NPs at pH 5 was not significantly affected by ZnO NPs in solution. At pH 7, a decrease in TiO2 NP transport was noted with co-existence of ZnO NPs, while at pH 9 an increase in the transport was observed. At pH 5 and 7, the transport of ZnO NPs was decreased when TiO2 NPs was present in the solution, and at pH 9, an increase was noted. The breakthrough curves (BTC) were noted to be sensitive to the solution chemistries; the decrease in the breakthrough plateau with increasing ionic strength was observed under all examined pH (5, 7, and 9). The retention profiles were the inverse of the plateaus of BTCs, as expected from mass balance considerations. Overall, the results from this study suggest that solution chemistries (ionic strength and pH) are likely the key factors that govern the individual and co-transport behavior of TiO2 and ZnO NPs in sand. PMID:26252479
From Solvent-Free to Dilute Electrolytes: Essential Components for a Continuum Theory.
Gavish, Nir; Elad, Doron; Yochelis, Arik
2018-01-04
The increasing number of experimental observations on highly concentrated electrolytes and ionic liquids show qualitative features that are distinct from dilute or moderately concentrated electrolytes, such as self-assembly, multiple-time relaxation, and underscreening, which all impact the emergence of fluid/solid interfaces, and the transport in these systems. Because these phenomena are not captured by existing mean-field models of electrolytes, there is a paramount need for a continuum framework for highly concentrated electrolytes and ionic liquid mixtures. In this work, we present a self-consistent spatiotemporal framework for a ternary composition that comprises ions and solvent employing a free energy that consists of short- and long-range interactions, along with an energy dissipation mechanism obtained by Onsager's relations. We show that the model can describe multiple bulk and interfacial morphologies at steady-state. Thus, the dynamic processes in the emergence of distinct morphologies become equally as important as the interactions that are specified by the free energy. The model equations not only provide insights into transport mechanisms beyond the Stokes-Einstein-Smoluchowski relations but also enable qualitative recovery of three distinct regions in the full range of the nonmonotonic electrical screening length that has been recently observed in experiments in which organic solvent is used to dilute ionic liquids.
Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Dai, Shuge; Xi, Yi; Hu, Chenguo; Yue, Xule; Cheng, Lu; Wang, Guo
2014-10-01
KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper reports a novel and high performance supercapacitor based on hybrid carbon particles and KCu7S4 (C/KCu7S4) electrode. For the hybrid structure with different proportions of C and KCu7S4, the C/KCu7S4 (1:10) hybrid supercapacitor shows preferable electrochemical performance and large specific capacitance (469 mF cm-2) at high charge-discharge rate (2 mA), still retaining ∼95% of the capacitance over 5000 cycles by charge-discharge process at a fixed current of 10 mA. Three supercapacitor units in series can light 50 light-emitting diodes (LEDs) for 2.5 min, 10 LEDs for 4 min, one LED for 5.5 min. The much-increased capacity, rate capability, and cycling stability may be attributed to the superionic conductive KCu7S4 nanowires and C/KCu7S4 hybrid structure, which improve ionic and electronic transport, enhance the kinetics of redox reactions through the electrode system.
Characterization of Nano-scale Aluminum Oxide Transport through Porous Media
NASA Astrophysics Data System (ADS)
Norwood, S.; Reynolds, M.; Miao, Z.; Brusseau, M. L.; Johnson, G. R.
2011-12-01
Colloidal material (including that in the nanoparticle size range) is naturally present in most subsurface environments. Mobilization of these colloidal materials via particle disaggregation may occur through abrupt changes in flow rate and/or via chemical perturbations, such as rapid changes in ionic strength or solution pH. While concentrations of natural colloidal materials in the subsurface are typically small, those concentrations may be greatly increased at contaminated sites such as following the application of metal oxides for groundwater remediation efforts. Additionally, while land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers, biosolids have been shown to contain a significant fraction of organic and inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of nano-scale colloidal materials through the soil column and their potential participation in the facilitated transport of contaminants, such as heavy metals and emerging pollutants. The purpose of this study was to investigate the transport behavior of aluminum oxide (Al2O3) nanoparticles through porous media. The impacts of pH, ionic strength, pore-water velocity (i.e., residence time), and aqueous-phase concentration on transport was investigated. All experiments were conducted with large injection pulses to fully characterize the impact of long-term retention and transport behavior relevant for natural systems wherein multiple retention processes may be operative. The results indicate that the observed nonideal transport behavior of the nano-scale colloids is influenced by multiple retention mechanisms/processes. Given the ubiquitous nature of these nano-scale colloids in the environment, a clear understanding of their transport and fate is necessary in further resolving the potential for facilitated transport of toxins through the subsurface and into our surface and groundwater bodies.
2011-04-01
filament. The filament may be composed of the metal electrode which is transported into the insulator or due to the formation of sub-oxides. During the...possibility that ionic transport and red-ox processes are at the basis of the resistive switching. The idea is that the oxidation of the active metal...oxide layer and subsequent discard at the inert metal counter-electrode. This mechanism should lead to the formation of metal dendrimers inside the
Communication: Unusual structure and transport in ionic liquid-hexane mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Min; Khatun, Sufia; Castner, Edward W., E-mail: ecastner@rci.rutgers.edu
2015-03-28
Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C{sub 6}D{sub 14} with this ionic liquid. High-energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C{sub 6}D{sub 14}. Nuclear magnetic resonance self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C{sub 6}D{sub 14}more » is on average a factor of 21 times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.« less
NASA Astrophysics Data System (ADS)
Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna
2016-05-01
Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.
NASA Astrophysics Data System (ADS)
Mogurampelly, Santosh; Ganesan, Venkat
2017-02-01
We use all atom molecular dynamics simulations to investigate the influence of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) ionic liquid on the structure and transport properties of poly(ethylene oxide) (PEO) polymer electrolytes doped with LiPF6 salt. We observe enhanced diffusivities of the Li+, PF6-, and BMIM+ ions with increasing loading of the ionic liquid. Interplay between the different ion-ion and ion-polymer interactions is seen to lead to a destabilization of the Li-PF6 coordination and increase in the strength of association between the Li+ cations and the polymer backbone. As a consequence, the polymer segmental relaxation times are shown to be only moderately affected by the addition of ionic liquids. The ionic-liquid induced changes in the mobilities of Li+ ions are seen to be correlated to polymer segmental relaxation times. However, the mobilities of BMIM+ ions are seen to be more strongly correlated to the BMIM-PF6 ion-pair relaxation times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com
2016-05-06
Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governedmore » by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.« less
Effect of Aprotic Solvents on the Dynamics of a Room Temperature Ionic Liquid
NASA Astrophysics Data System (ADS)
Osti, Naresh; van Aken, Katherine; Thompson, Matthew; Tiet, Felix; Jiang, De-En; Cummings, Peter; Gogotsi, Yury; Mamontov, Eugene
Room temperature ionic liquids (RTILs) have attracted much attention as electrolytes in energy storage devices because of their peculiar physical and chemical characteristics. However, their remarkably high viscosity, which results in low conductivity and diffusivity, may adversely affect the charging and discharging rates. Despite changing molecular configurations, use of aprotic solvent allows to enhance the transport properties of ionic liquids by disrupting the cation-anion interactions. We explore the impact of dipole moment of aprotic solvents on the cation-anion interaction and transport in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMIM +][Tf2N-], RTIL using molecular dynamics (MD) simulations and quasi-elastic neutrons scattering (QENS) measurements. We observed an increase in cation diffusivity with the increasing dipole moment of the solvent. This effect is due to a decrease in the solvation free energy induced by the increasing solvent polarity. A clear nano-phase separation into ionic liquid-rich and ionic liquid-poor phases as observed by QENS will be also discussed.
Communication: Unusual structure and transport in ionic liquid-hexane mixtures
Liang, Min; Khatun, Sufia; Castner, Edward W.
2015-03-28
Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C 6D 14 with this ionic liquid. High- energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C 6D 14. NMR self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C 6D 14 ismore » on average a factor of 21 times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.« less
Ca2+ transport and signalling in enamel cells.
Nurbaeva, Meerim K; Eckstein, Miriam; Feske, Stefan; Lacruz, Rodrigo S
2017-05-15
Dental enamel is one of the most remarkable examples of matrix-mediated biomineralization. Enamel crystals form de novo in a rich extracellular environment in a stage-dependent manner producing complex microstructural patterns that are visually stunning. This process is orchestrated by specialized epithelial cells known as ameloblasts which themselves undergo striking morphological changes, switching function from a secretory role to a cell primarily engaged in ionic transport. Ameloblasts are supported by a host of cell types which combined represent the enamel organ. Fully mineralized enamel is the hardest tissue found in vertebrates owing its properties partly to the unique mixture of ionic species represented and their highly organized assembly in the crystal lattice. Among the main elements found in enamel, Ca 2+ is the most abundant ion, yet how ameloblasts modulate Ca 2+ dynamics remains poorly known. This review describes previously proposed models for passive and active Ca 2+ transport, the intracellular Ca 2+ buffering systems expressed in ameloblasts and provides an up-dated view of current models concerning Ca 2+ influx and extrusion mechanisms, where most of the recent advances have been made. We also advance a new model for Ca 2+ transport by the enamel organ. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Current rectification for transport of room-temperature ionic liquids through conical nanopores
Jiang, Xikai; Liu, Ying; Qiao, Rui
2016-02-09
Here, we studied the transport of room-temperature ionic liquids (RTILs) through charged conical nanopores using a Landau-Ginzburg-type continuum model that takes steric effect and strong ion-ion correlations into account. When the surface charge is uniform on the pore wall, weak current rectification is observed. When the charge density near the pore base is removed, the ionic current is greatly suppressed under negative bias voltage while nearly unchanged under positive bias voltage, thereby leading to enhanced current rectification. These predictions agree qualitatively with prior experimental observations, and we elucidated them by analyzing the different components of the ionic current and themore » structural changes of electrical double layers (EDLs) at the pore tip under different bias voltages and surface charge patterns. These analyses reveal that the different modifications of the EDL structure near the pore tip by the positive and negative bias voltages cause the current rectification and the observed dependence on the distribution of surface charge on the pore wall. The fact that the current rectification phenomena are captured qualitatively by the simple model originally developed for describing EDLs at equilibrium conditions suggests that this model may be promising for understanding the ionic transport under nonequilibrium conditions when the EDL structure is strongly perturbed by external fields.« less
A Rayleighian approach for modeling kinetics of ionic transport in polymeric media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev
2017-02-14
Here, we report a theoretical approach for analyzing impedance of ionic liquids (ILs) and charged polymers such as polymerized ionic liquids (PolyILs) within linear response. The approach is based on the Rayleigh dissipation function formalism, which provides a computational framework for a systematic study of various factors, including polymer dynamics, in affecting the impedance. We present an analytical expression for the impedance within linear response by constructing a one-dimensional model for ionic transport in ILs/PolyILs. This expression is used to extract mutual diffusion constants, the length scale of mutual diffusion, and thicknesses of a low-dielectric layer on the electrodes frommore » the broadband dielectric spectroscopy (BDS) measurements done for an IL and three PolyILs. Also, static dielectric permittivities of the IL and the PolyILs are determined. The extracted mutual diffusion constants are compared with the self diffusion constants of ions measured using pulse field gradient (PFG) fluorine nuclear magnetic resonance (NMR). For the first time, excellent agreements between the diffusivities extracted from the Electrode Polarization spectra (EPS) of IL/PolyILs and those measured using the PFG-NMR are found, which allows the use of the EPS and the PFG-NMR techniques in a complimentary manner for a general understanding of the ionic transport.« less
Temperature dependence of electrical conduction in PEMA-EMITFSI film
NASA Astrophysics Data System (ADS)
Zain, N. F.; Megat Hasnan, M. M. I.; Sabri, M. F. M.; Said, S. M.; Mohamed, N. S.; Salleh, F.
2018-04-01
Transparent and flexible film of poly (ethyl methacrylate) incorporated with 1-ethyl-3-methyl imidazolium bis(trifluorosulfonyl) imide ionic liquid (PEMA-EMITFSI) with thickness between 100 and 200 µm was fabricated by using solution casting technique. From the ionic transport measurement, it is confirmed that the electrical conduction in PEMA-EMITFSI film is mainly contributed by ionic transport. Moreover, the temperature-dependence of electrical conductivity measurement for 7 days reveals that the electrical properties of PEMA-EMITFSI film could be able to withstand a number of thermal cycles and be lasting for a period of time for potentially used as thermoelectric material through thermal heating.
Ionic Channels as Natural Nanodevices
2006-05-01
introduce the numerical techniques required to simulate charge transport in ion channels. [1] Using Poisson- Nernst -Planck-type (PNP) equations ...Eisenberg. 2003. Ionic diffusion through protein channels: from molecular description to continuum equations . Nanotech 2003, 3: 439-442. 4...Nadler, B., Schuss, Z., Singer, A., and R. S. Eisenberg. 2004. Ionic diffusion through confined geometries: from Langevin equations to partial
Minimal models of electric potential oscillations in non-excitable membranes.
Perdomo, Guillermo; Hernández, Julio A
2010-01-01
Sustained oscillations in the membrane potential have been observed in a variety of cellular and subcellular systems, including several types of non-excitable cells and mitochondria. For the plasma membrane, these electrical oscillations have frequently been related to oscillations in intracellular calcium. For the inner mitochondrial membrane, in several cases the electrical oscillations have been attributed to modifications in calcium dynamics. As an alternative, some authors have suggested that the sustained oscillations in the mitochondrial membrane potential induced by some metabolic intermediates depends on the direct effect of internal protons on proton conductance. Most theoretical models developed to interpret oscillations in the membrane potential integrate several transport and biochemical processes. Here we evaluate whether three simple dynamic models may constitute plausible representations of electric oscillations in non-excitable membranes. The basic mechanism considered in the derivation of the models is based upon evidence obtained by Hattori et al. for mitochondria and assumes that an ionic species (i.e., the proton) is transported via passive and active transport systems between an external and an internal compartment and that the ion affects the kinetic properties of transport by feedback regulation. The membrane potential is incorporated via its effects on kinetic properties. The dynamic properties of two of the models enable us to conclude that they may represent alternatives enabling description of the generation of electrical oscillations in membranes that depend on the transport of a single ionic species.
Transport Properties of Complex Oxides: New Ideas and Insights from Theory and Simulation
NASA Astrophysics Data System (ADS)
Benedek, Nicole
Complex oxides are one of the largest and most technologically important materials families. The ABO3 perovskite oxides in particular display an unparalleled variety of physical properties. The microscopic origin of these properties (how they arise from the structure of the material) is often complicated, but in many systems previous research has identified simple guidelines or `rules of thumb' that link structure and chemistry to the physics of interest. For example, the tolerance factor is a simple empirical measure that relates the composition of a perovskite to its tendency to adopt a distorted structure. First-principles calculations have shown that the tendency towards ferroelectricity increases systematically as the tolerance factor of the perovskite decreases. Can we uncover a similar set of simple guidelines to yield new insights into the ionic and thermal transport properties of perovskites? I will discuss recent research from my group on the link between crystal structure and chemistry, soft phonons and ionic transport in a family of layered perovskite oxides, the Ln2NiO4+δ Ruddlesden-Popper phases. In particular, we show how the lattice dynamical properties of these materials (their tendency to undergo certain structural distortions) can be correlated with oxide ion transport properties. Ultimately, we seek new ways to understand the microscopic origins of complex transport processes and to develop first-principles-based design rules for new materials based on our understanding.
Ionic Liquids and Relative Process Design
NASA Astrophysics Data System (ADS)
Zhang, S.; Lu, X.; Zhang, Y.; Zhou, Q.; Sun, J.; Han, L.; Yue, G.; Liu, X.; Cheng, W.; Li, S.
Ionic liquids have gained increasing attention in recent years due to their significant advantages, not only as alternative solvents but also as new materials and catalysts. Until now, most research work on ionic liquids has been at the laboratory or pilot scale. In view of the multifarious applications of ionic liquids, more new knowledge is needed and more systematic work on ionic liquids should be carried out deeply and broadly in order to meet the future needs of process design. For example, knowledge of the physicochemical properties is indispensable for the design of new ionic liquids and for the development of novel processes. The synthesis and application of ionic liquids are fundamental parts of engineering science, and the toxicity and environmental assessment of ionic liquids is critical importance for their large scale applications, especially for process design. These research aspects are closely correlated to the industrial applications of ionic liquids and to sustainable processes. However, material process design in the industrial applications of ionic liquids has hardly been implemented. Therefore, this chapter reviews several essential issues that are closely related to process design, such as the synthesis, structure-property relationships, important applications, and toxicity of ionic liquids.
NASA Astrophysics Data System (ADS)
Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.
2013-11-01
Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.
Thermoelectricity in Heterogeneous Nanofluidic Channels.
Li, Long; Wang, Qinggong
2018-05-01
Ionic fluids are essential to energy conversion, water desalination, drug delivery, and lab-on-a-chip devices. Ionic transport in nanoscale confinements and complex physical fields still remain elusive. Here, a nanofluidic system is developed using nanochannels of heterogeneous surface properties to investigate transport properties of ions under different temperatures. Steady ionic currents are observed under symmetric temperature gradients, which is equivalent to generating electricity using waste heat (e.g., electronic chips and solar panels). The currents increase linearly with temperature gradient and nonlinearly with channel size. Contributions to ion motion from temperatures and channel properties are evaluated for this phenomenon. The findings provide insights into the study of confined ionic fluids in multiphysical fields, and suggest applications in thermal energy conversion, temperature sensors, and chip-level thermal management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media
NASA Astrophysics Data System (ADS)
Muniruzzaman, Muhammad; Rolle, Massimo
2016-04-01
Multicomponent ionic interactions have been increasingly recognized as important factors for the displacement of charged species in porous media under both diffusion- [1,2] and advection-dominated flow regimes [3,4]. In this study we investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross-coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also significant differences in the dilution of the distinct ionic plumes, quantified using the flux-related dilution index at the laboratory bench scale [5], were measured at the outflow of the flow-through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow-through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow-through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between the transported ions in the flow-through system. The results of purely forward simulations show a very good agreement with the high-resolution measurements performed at the outlet of the flow-through setup and illustrate the importance of charge effects on pH fronts propagation in porous media. [1] Giambalvo, E. R., C. I. Steefel, A. T. Fisher, N. D. Rosenberg, and C. G. Wheat (2002), Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan de Fuca Ridge, Geochim. Cosmochim. Acta, 66, 1739-1757. [2] Appelo, C. A. J., and P. Wersin (2007), Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in opalinus clay, Environ. Sci. Technol., 41, 5002-5007. [3] Rolle, M., M. Muniruzzaman, C. M. Haberer, and P. Grathwohl (2013), Coulombic effects in advection-dominated transport of electrolytes in porous media: Multicomponent ionic dispersion, Geochim. Cosmochim. Acta, 120, 195-205. [4] Muniruzzaman, M., C. M. Haberer, P. Grathwohl, and M. Rolle (2014), Multicomponent ionic dispersion during transport of electrolytes in heterogeneous porous media: Experiments and model-based interpretation, Geochim. Cosmochim. Acta, 141, 656-669. [5] Rolle, M., G. Chiogna, D. L. Hochstetler, and P. K. Kitanidis (2013), On the importance of diffusion and compound-specific mixing for groundwater transport: An investigation from pore to field scale, J. Contam. Hydrol., 153, 51-68.
Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.
Tian, Huanhuan; Zhang, Li; Wang, Moran
2015-08-15
Understanding ionic transport in nanochannels has attracted broad attention from various areas in energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely to nanofluidic systems to obtain ionic concentration and electrical potential at channel-reservoir interfaces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theories with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be questionable when the transport at nanochannel-reservoir interface is strongly non-equilibrium. In this work, the Poisson-Nernst-Planck model for ion transport is numerically solved to obtain the exact distributions of ionic concentration and electrical potential. The numerical results are quantitatively compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore justified by changing channel length, reservoir ionic concentration, surface charge density and channel height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to measure the non-equilibrium extent and the relation between Q and the working conditions is studied in detail. Copyright © 2015 Elsevier Inc. All rights reserved.
Mixed conduction and grain boundary effect in lithium niobate under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qinglin; Center for High Pressure Science and Technology Advanced Research, Changchun 130012; Liu, Cailong
2015-03-30
The charge transport behavior of lithium niobate has been investigated by in situ impedance measurement up to 40.6 GPa. The Li{sup +} ionic conduction plays a dominant role in the transport process. The relaxation process is described by the Maxwell-Wagner relaxation arising at the interfaces between grains and grain boundaries. The grain boundary microstructure rearranges after the phase transition, which improves the bulk dielectric performance. The theoretical calculations show that the decrease of bulk permittivity with increasing pressure in the Pnma phase is caused by the pressure-induced enhancement of electron localization around O atoms, which limits the polarization of Nb-O electricmore » dipoles.« less
Functional membranes. Present and future
NASA Technical Reports Server (NTRS)
Kunitake, T.
1982-01-01
The present situation and the future development of the functional membrane are discussed. It is expected that functional membranes will play increasingly greater roles in the chemical industry of the coming decade. These membranes are formed from polymer films, liquid membranes or bilayer membranes. The two most important technologies based on the polymeric membrane are reverse osmosis and ion exchange. The liquid membrane is used for separation of ionic species; an extension of the solvent extraction process. By using appropriate ligands and ionophores, highly selective separations are realized. The active transport is made possible if the physical and chemical potentials are applied to the transport process. More advanced functional membranes may be designed on the basis of the synthetic bilayer membrane.
Dissection of the Voltage Losses of an Acidic Quinone Redox Flow Battery
Chen, Qing; Gerhardt, Michael R.; Aziz, Michael J.
2017-03-28
We measure the polarization characteristics of a quinone-bromide redox flow battery with interdigitated flow fields, using electrochemical impedance spectroscopy and voltammetry of a full cell and of a half cell against a reference electrode. We find linear polarization behavior at 50% state of charge all the way to the short-circuit current density of 2.5 A/cm 2. We uniquely identify the polarization area-specific resistance (ASR) of each electrode, the membrane ASR to ionic current, and the electronic contact ASR. We use voltage probes to deduce the electronic current density through each sheet of carbon paper in the quinone-bearing electrode. By alsomore » interpreting the results using the Newman 1-D porous electrode model, we deduce the volumetric exchange current density of the porous electrode. We uniquely evaluate the power dissipation and identify a correspondence to the contributions to the electrode ASR from the faradaic, electronic, and ionic transport processes. We find that, within the electrode, more power is dissipated in the faradaic process than in the electronic and ionic conduction processes combined, despite the observed linear polarization behavior. We examine the sensitivity of the ASR to the values of the model parameters. The greatest performance improvement is anticipated from increasing the volumetric exchange current density.« less
Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.
Green, R; Giebisch, G
1975-11-01
Simultaneous perfusion of peritubular capillaries and proximal convoluted tubules was used to study the effect of varying transepithelial ionic gradients on ionic fluxes. Results show that net sodium influx and volume flux was one-third of normal when bicarbonate was absent, no chloride gradient existed, and glucose and amino acids were absent. Addition of bicarbonate to the luminal fluid did not restore the flux to normal, but peritubular bicarbonate did restore it. A chloride gradient imposed when no bicarbonate was present could only increase the fluxes slightly, but his flux was significant even after cyanide had poisoned transport. Reversing the chloride concentration gradient decreased the net sodium and volume fluxes whether bicarbonate was present or not. Glucose had no effect on fluxes, but substitution of Na by choline abolished them entirely. It is concluded that sodium is actively transported, that a chloride concentration gradient from lumen to plasma could account for up to 20% of net transport, and that peritubular bicarbonate is necessary for normal rates of sodium and fluid absorption.
Quevillon, Michael J; Whitmer, Jonathan K
2018-01-02
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.
Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes
NASA Astrophysics Data System (ADS)
Hoarfrost, Megan Lane
Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene-
Investigation of ionic transport in sodium scandium phosphate (NSP) and related compounds
NASA Astrophysics Data System (ADS)
Bhat, Kaustubh; Blügel, Stefan; Lustfeld, Hans
Sodium ionic conductors offer significant advantages for application in large scale energy storage systems. In this study, we investigate the different pathways available for sodium ion conduction in NSP and calculate energy barriers for ionic transport using Density Functional Theory (DFT) and the Nudged Elastic Band Method. We identify the structural parameters that reduce the energy barrier, by calculating the influence of positive and negative external pressure on the energy barrier. Lattice strain can be introduced by cation or anion substitution within the NASICON structure. We substitute the scandium atom with other trivalent atoms such as aluminium and yttrium, and calculate the resulting energy barriers. Sodium thiophosphate (Na3PS4) has previously shown about two orders of magnitude higher ionic conductivity than sodium phosphate (Na3PO4). We investigate the effect of substituting oxygen with sulphur in NSP. We acknowledge discussions with our experimental colleagues F. Tietz and M. Guin toward this work
Polymerized Paired Ions as Polymeric Ionic Liquid-Proton Conductivity.
Gu, Hong; Yan, Feng; Texter, John
2016-07-01
A new polymerized ionic liquid has been derived by photopolymerization of a stimuli-responsive ionic liquid surfactant, ILAMPS, which is composed of polymerizable, paired ions. The cation is 1-methyl-3-[11-(acryloyloxy)undecyl] imidazolium (IL), and the anion is 2-acrylamido-2-methyl-1-propanesulfonate (AMPS). This ion combination is a new ionic liquid. The resulting hygroscopic resins are highly polarizable, suitable for sensor design and for ultracapacitor fabrication and proton conducting. Interactions of imidazolium with anions provide basis for stimuli-responsiveness, and are used to promote proton transport. Doping with one equivalent of HPF6 at 0% relative humidity produces a 100-fold increase in proton conductivity at 100-125 °C and activation energies for proton transport lower than those of Nafion at water loadings less than 5 per sulfonate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation
NASA Astrophysics Data System (ADS)
Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin
2016-02-01
Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.
NASA Astrophysics Data System (ADS)
Jing, Benxin; Lan, Nan; Zhu, Y. Elaine
2013-03-01
An explosion in the research activities using ionic liquids (ILs) as new ``green'' chemicals in several chemical and biomedical processes has resulted in the urgent need to understand their impact in term of their transport and toxicity towards aquatic organisms. Though a few experimental toxicology studies have reported that some ionic liquids are toxic with increased hydrophobicity of ILs while others are not, our understanding of the molecular level mechanism of IL toxicity remains poorly understood. In this talk, we will discuss our recent study of the interaction of ionic liquids with model cell membranes. We have found that the ILs could induce morphological change of lipid bilayers when a critical concentration is exceeded, leading to the swelling and tube-like formation of lipid bilayers. The critical concentration shows a strong dependence on the length of hydrocarbon tails and hydrophobic counterions. By SAXS, Langmuir-Blodgett (LB) and fluorescence microscopic measurement, we have confirmed that tube-like lipid complexes result from the insertion of ILs with long hydrocarbon chains to minimize the hydrophobic interaction with aqueous media. This finding could give insight to the modification and adoption of ILs for the engineering of micro-organisms.
Determination of Physical Properties of Ionic Liquids Using Molecular Simulations
2010-08-20
That is, most groups rely on relatively short (100-500 ps) simulations and evaluate the viscosity via conventional Green - Kubo integration . In this...and can contribute to higher than expected viscosities . The liquid structure of the energetic ionic liquid 2-hydroxyethylhydrizinium nitrate was...claimed previously that neglect of polarizability leads to inaccuracies in the computed transport properties of ionic liquids such as viscosities
Ionic conductors for solid oxide fuel cells
Krumpelt, Michael; Bloom, Ira D.; Pullockaran, Jose D.; Myles, Kevin M.
1993-01-01
An electrolyte that operates at temperatures ranging from 600.degree. C. to 800.degree. C. is provided. The electrolyte conducts charge ionically as well as electronically. The ionic conductors include molecular framework structures having planes or channels large enough to transport oxides or hydrated protons and having net-positive or net-negative charges. Representative molecular framework structures include substituted aluminum phosphates, orthosilicates, silicoaluminates, cordierites, apatites, sodalites, and hollandites.
Akaighe, Nelson; Depner, Sean W; Banerjee, Sarbajit; Sohn, Mary
2013-07-01
The transport and deposition of silver nanoparticles (AgNPs) formed from Ag(+) reduction by Suwannee River Humic Acid (SRHA) and Suwannee River Natural Organic Matter (SRNOM) utilizing a silica matrix is reported. The morphology and stability of the AgNPs was analyzed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. The percentage conversion of the initial [Ag(+)] to [AgNPs] was determined from a combination of atomic absorption (AAS) and UV-Vis spectroscopy, and centrifugation techniques. The results indicate higher AgNP transport and consequently low deposition in the porous media at basic pH conditions and low ionic strength. However, at low acidic pH and high ionic strength, especially with the divalent metallic cations, the mobility of the AgNPs in the porous media was very low, most likely due to NP aggregation. Overall, the results suggest the potential for AgNP contamination of subsurface soils and groundwater aquifers is mostly dependent on their aggregation state, controlled by the soil water and sediment ionic strength and pH. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mixed ionic and electronic conducting membranes for hydrogen generation and separation
NASA Astrophysics Data System (ADS)
Cui, Hengdong
Dense mixed ionic and electronic conducting (MIEC) membranes are receiving increasing attention due to their potential for application as gas separation membranes to separate oxygen from air. The objective of this work is to study a novel, chemically-assisted separation process that utilizes oxygen-ion and electron-conducting MIECs for generating and separating hydrogen from steam. This research aims at exploring new routes and materials for high-purity hydrogen production for use in fuel cells and hydrogen-based internal combustion (IC) engines. In this approach, hydrocarbon fuel such as methane is fed to one side of the membrane, while steam is fed to the other side. The MIEC membrane separation process involves steam dissociation and oxidation of the fuel. The oxygen ions formed as a result of steam dissociation are transported across the membrane in a coupled transport process with electrons being transported in the opposite direction. Upon reaching the fuel side of the membrane, the oxygen ions oxidize the hydrocarbon. This process results in hydrogen production on the steam side of the membrane. The oxygen partial pressure gradient across the membrane is the driving force for this process. In this work, a novel, dual-phase composite MIEC membrane system comprising of rare-earth doped ceria with high oxygen ion conductivity and donor-doped strontium titanate with high electronic conductivity were investigated. The chemical diffusion coefficient and surface exchange coefficient have been measured using the electrical conductivity relaxation (ECR) technique. These two parameters control the rate of oxygen permeation across the membrane. The permeation data have been fit with a kinetic model that incorporates oxygen surface exchange on two sides of the membrane and bulk transport of oxygen through the membrane. This material has higher bulk diffusion coefficient and surface exchange reaction rate compared to other known MIEC conductors under the process conditions of interest. Over 10 mumol·cm-2·s-1 (micromoles per square cm per second) of area specific hydrogen flux has been achieved employing a membrane of this material with thickness of 0.2 mm. This flux is several orders of magnitude higher than the hydrogen generation rates reported using other MIEC materials under similar operating conditions.
Understanding transport mechanisms in ionic liquid/carbonate solvent electrolyte blends.
Oldiges, K; Diddens, D; Ebrahiminia, M; Hooper, J B; Cekic-Laskovic, I; Heuer, A; Bedrov, D; Winter, M; Brunklaus, G
2018-06-20
To unravel mechanistic details of the ion transport in liquid electrolytes, blends of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), ethylene carbonate (EC) and dimethyl carbonate (DMC) with the conducting salts lithium hexafluorophosphate (LiPF6) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were investigated as a function of the IL concentration. Electrochemical impedance, Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR) and Raman spectroscopy supported by Molecular Dynamics (MD) simulations allowed the structural and dynamic correlations of the ion motions to be probed. Remarkably, we identified that though the individual correlations among different ion types exhibit a clear concentration dependence, their net effect is nearly constant throughout the entire concentration range, resulting in approximately equal transport and transference numbers, despite a monitored cross-over from carbonate-based lithium coordination to a TFSI-based ion coordination. In addition, though dynamical ion correlation could be found, the absolute values of the ionic conductivity are essentially determined by the overall viscosity of the electrolyte. The IL/carbonate blends with a Pyr14TFSI fraction of ∼10 wt% are found to be promising electrolyte solvents, with ionic conductivities and lithium ion transference numbers comparable to those of standard carbonate-based electrolytes while the thermal and electrochemical stabilities are considerably improved. In contrast, the choice of the conducting salt only marginally affects the transport properties.
Donnan membrane technique (DMT) for anion measurement.
Vega, Flora Alonso; Weng, Liping; Temminghoff, Erwin J M; Van Riemsdijk, Willem H
2010-04-01
Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl(-), 1-2 days for NO(3)(-), 1-4 days for SO(4)(2-) and SeO(4)(2-), and 1-14 days for H(2)PO(4)(-) in a background of 2-200 mM KCl or K(2)SO(4). The strongest effect of ionic strength on equilibrium time is found for H(2)PO(4)(-), followed by SO(4)(2-) and SeO(4)(2-), and then by Cl(-) and NO(3)(-). The negatively charged organic particles of fulvic and humic acids do not pass the membrane. Two approaches for the measurement of different anion species of the same element, such as SeO(4)(2-) and HSeO(3)(-), using DMT are proposed and tested. These two approaches are based on transport kinetics or response to ionic strength difference. A transport model that was developed previously for cation DMT is applied in this work to analyze the rate-limiting step in the anion DMT. In the absence of mobile/labile complexes, transport tends to be controlled by diffusion in solution at a low ionic strength, whereas at a higher ionic strength, diffusion in the membrane starts to control the transport.
NASA Astrophysics Data System (ADS)
MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Bagtzoglou, A. C.
2017-12-01
Although hyporheic zones are often modeled at the reach scale as homogeneous "boxes" of exchange, heterogeneity caused by variations of pore sizes and connectivity is not uncommon. This heterogeneity leads to the creation of more- and less-mobile zones of hydraulic exchange that influence reactive solute transport processes. Whereas fluid sampling is generally sensitive to more-mobile zones, geoelectrical measurement is sensitive to ionic tracer dynamics in both less- and more-mobile zones. Heterogeneity in pore connectivity leads to a lag between fluid and bulk electrical conductivity (EC) resulting in a hysteresis loop, observed during tracer breakthrough tests, that contains information about the less-mobile porosity attributes of the medium. Here, we present a macro-scale model of solute transport and electrical conduction developed using COMSOL Multiphysics. The model is used to simulate geoelectrical monitoring of ionic transport for bed sediments based on (1) a stochastic sand-and-cobble mixture and (2) a dune feature with strong permeability layering. In both of these disparate sediment types, hysteresis between fluid and bulk EC is observed, and depends in part on fluid flux rate through the model domain. Using the hysteresis loop, the ratio of less-mobile to mobile porosity and mass-transfer coefficient are estimated graphically. The results indicate the presence and significance of less-mobile porosity in the hyporheic zones and demonstrate the capability of the proposed model to detect heterogeneity in flow processes and estimate less-mobile zone parameters.
Ward, Ashleigh L; Doris, Sean E; Li, Longjun; Hughes, Mark A; Qu, Xiaohui; Persson, Kristin A; Helms, Brett A
2017-05-24
Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device's active materials when they enter the membrane's pore. This transformation has little influence on the membrane's ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development.
2017-01-01
Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptive ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium–sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. The origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development. PMID:28573201
Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media
NASA Astrophysics Data System (ADS)
Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie
2016-10-01
Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30-40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks.
Colloid-Mediated Transport of Pharmaceutical and Personal Care Products through Porous Media
Xing, Yingna; Chen, Xijuan; Chen, Xin; Zhuang, Jie
2016-01-01
Pharmaceutical and personal care products (PPCPs) enter soils through reclaimed water irrigation and biosolid land applications. Colloids, such as clays, that are present in soil may interact with PPCPs and thus affect their fate and transport in the subsurface environment. This study addresses the influence of soil colloids on the sorption and transport behaviors of PPCPs through laboratory column experiments. Results show that the affinities of PPCPs for colloids vary with their molecular chemistry and solution ionic strength. The presence of colloids promotes the breakthrough of ciprofloxacin (over 90% sorbed on colloids) from ~4% to 30–40%, and the colloid-facilitated effect was larger at lower ionic strength (e.g., 2 mM). In comparison, the net effect of colloids on the transport of tetracycline (~50% sorbed on colloids) could be facilitation or inhibition, depending on solution chemistry. This dual effect of colloids is primarily due to the opposite response of migration of dissolved and colloid-bound tetracycline to the change in solution ionic strength. Colloids could also facilitate the transport of ibuprofen (~10% sorbed on colloids) by ~50% due likely to exclusion of dispersion pathways by colloid straining. This study suggests that colloids are significant carriers or transport promoters of some PPCPs in the subsurface environment and could affect their off-site environmental risks. PMID:27734948
2018-01-01
Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure–constant temperature ensemble. These materials exhibit a distinct “smectic” liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications. PMID:29301305
Jin, Xinfang; White, Ralph E.; Huang, Kevin
2016-10-04
With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less
NASA Astrophysics Data System (ADS)
Garner, K.; Keller, A. A.
2014-12-01
The technical complexity of measuring ENM fate and transport processes in all environments necessitates identifying trends in these same processes. As part of our research, we collected emerging information on the environmental fate and toxicity of many ENMs and investigated transportation and transformation processes in air, water, and soil. Generally, studies suggest that (i) ENMs will have limited transport in the atmosphere, because they settle rapidly; (ii) ENMs are more stable in freshwater and stormwater than in seawater or groundwater primarily due to variations in ionic strength and the presence of natural organic matter; and (iii) in soil, the fate of ENMs strongly depends on the size of the ENM aggregates and groundwater chemistry, as well as pore and soil particle size. Emerging patterns regarding ENM fate, transport, and exposure combined with emerging information on toxicity indicate the risk is low for most ENMs although current exposure estimates compared with current data on toxicity indicate that at current production and release levels, exposure to Ag, nZVI, and ZnO may cause a toxic response to freshwater and marine species.
Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing
2017-09-04
Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Vishwakarma, Vivek; Jain, Ankur
2017-09-01
While Gel Polymer Electrolytes (GPEs) have been widely investigated for use in next-generation Li-ion cells due to the potential for improved thermal safety, thermal transport within a GPE is still poorly understood. Among all materials in a Li-ion cell, the GPE has the lowest thermal conductivity, and hence determines the overall rate of heat flow in a Li-ion cell. This makes it critical to measure and understand thermal transport in a GPE and investigate trade-offs between thermal and ionic transport. This paper presents measurements of thermal and ionic conductivities in a PVdF-based GPE. The effect of incorporating BN/Al2O3 ceramic nano/microparticles in the GPE on thermal and ionic transport is characterized. Measurements indicate up to 2.5X improvement in thermal conductivity of activated GPE membranes, with relatively minor effect on electrochemical performance of GPE-based single-layer cells. The measured enhancement in thermal conductivity is in very good agreement with theoretical calculations based on the effective medium theory that accounts for thermal transport in a dispersed, two-phase medium such as a GPE. The fundamental insights gained in this work on thermal transport in a GPE and the role of nano/microparticle inclusions may facilitate thermal-electrochemical optimization and design of GPEs for safe, high-performance Li-ion cells.
Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes
NASA Astrophysics Data System (ADS)
Berrod, Q.; Ferdeghini, F.; Judeinstein, P.; Genevaz, N.; Ramos, R.; Fournier, A.; Dijon, J.; Ollivier, J.; Rols, S.; Yu, D.; Mole, R. A.; Zanotti, J.-M.
2016-04-01
Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators.Water confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01445c
Clustering effects in ionic polymers: Molecular dynamics simulations.
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S
2015-08-01
Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. These ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Decrease in electrostatic interaction significantly enhances the mobility of the polymer.
Electronic and Ionic Transport in Processable Conducting Polymers
1990-04-10
Multiangle laser light scanting molecular weight GPC studies of a number of different samples of poly(3-octylhiophenc) has shown a’variation from...photochemistry at chemically modified electrodes offers a powerful ro ute to catalyst generation at, the surface.( 0!" 20. DISTRIBUTION /AVAILABILITY OF ABSTRACT...unsymmetric molecules. Oxidative polymerization has been accomplished using both chemical (FeC13) and electrochemical methods. In the case of the 2
Status of the Electroforming Shield Design (ESD) project
NASA Technical Reports Server (NTRS)
Fletcher, R. E.
1977-01-01
The utilization of a digital computer to augment electrodeposition/electroforming processes in which nonconducting shielding controls local cathodic current distribution is reported. The primary underlying philosophy of the physics of electrodeposition was presented. The technical approach taken to analytically simulate electrolytic tank variables was also included. A FORTRAN computer program has been developed and implemented. The program utilized finite element techniques and electrostatic theory to simulate electropotential fields and ionic transport.
Rose, Marcus; Korenblit, Yair; Kockrick, Emanuel; Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan; Yushin, Gleb
2011-04-18
Ordered mesoporous carbide-derived carbon (OM-CDC) materials produced by nanocasting of ordered mesoporous silica templates are characterized by a bimodal pore size distribution with a high ratio of micropores. The micropores result in outstanding adsorption capacities and the well-defined mesopores facilitate enhanced kinetics in adsorption processes. Here, for the first time, a systematic study is presented, in which the effects of synthesis temperature on the electrochemical performance of these materials in supercapacitors based on a 1 M aqueous solution of sulfuric acid and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid are reported. Cyclic voltammetry shows the specific capacitance of the OM-CDC materials exceeds 200 F g(-1) in the aqueous electrolyte and 185 F g(-1) in the ionic liquid, when measured in a symmetric configuration in voltage ranges of up to 0.6 and 2 V, respectively. The ordered mesoporous channels in the produced OM-CDC materials serve as ion-highways and allow for very fast ionic transport into the bulk of the OM-CDC particles. At room temperature the enhanced ion transport leads to 75% and 90% of the capacitance retention at current densities in excess of ∼10 A g(-1) in ionic liquid and aqueous electrolytes, respectively. The supercapacitors based on 250-300 μm OM-CDC electrodes demonstrate an operating frequency of up to 7 Hz in aqueous electrolyte. The combination of high specific capacitance and outstanding rate capabilities of the OM-CDC materials is unmatched by state-of-the art activated carbons and strictly microporous CDC materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ion transport: Tipping a cell's ionic balance
NASA Astrophysics Data System (ADS)
Davis, Jeffery T.
2014-10-01
A synthetic compound that transports chloride across membranes can kill both normal cells and cancer cells in vitro. The transporter works together with sodium channels to move NaCl into the cells, which triggers cell death.
Solid State Ionics: from Michael Faraday to green energy-the European dimension.
Funke, Klaus
2013-08-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.
Solid State Ionics: from Michael Faraday to green energy—the European dimension
Funke, Klaus
2013-01-01
Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalarvo, Niina H; Gourdon, Olivier; Bi, Zhonghe
2013-01-01
Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activationmore » energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.« less
Changes in membrane conductances and areas associated with bicarbonate secretion in turtle bladder.
Rich, A; Dixon, T E; Clausen, C
1990-02-01
Transepithelial impedance-analysis studies were performed in turtle bladder epithelium in order to measure changes in the different epithelial membranes resulting from stimulation of electrogenic bicarbonate secretion. Changes in membrane conductance relate to changes in ionic permeability, whereas changes in membrane capacitance relate to changes in membrane area, since most biological membranes exhibit a specific capacitance of approximately 1 muF/cm2. The results of this investigation are summarized as follows: (i) cAMP and carbachol, agents which have been shown previously to stimulate electrogenic bicarbonate secretion, result in increases in apical-membrane conductance and capacitance; (ii) these changes occur concomitantly with the observed change in transport (measured using the short-circuit-current technique), thereby suggesting that bicarbonate secretion may be regulated in part by changes in the chloride conductance of the apical membrane; (iii) the increase in conductance does not reflect an increase in the membrane's specific conductance, thereby indicating that it results from the addition of membrane possessing similar ionic permeability as the existing apical membrane; (iv) the magnitude of the changes in capacitance indicate that a minor cell population (beta-type carbonic-anhydrase-rich cells) increase their apical-membrane area by several-fold; (v) a lack of transport-associated changes in the basolateral-membrane parameters suggest that transport is not regulated by alterations in basolateral-membrane ionic conductance or area; (vi) a lack of colchicine sensitivity, coupled with the magnitude of the changes in apical-membrane capacitance, indicate that the membrane remodeling processes are different from those involved in the regulation of proton secretion in a different cell population (alpha-type carbonic-anhydrase-rich cells).
Noise and Ionic Conductivity in Glass Nanochannels
NASA Astrophysics Data System (ADS)
Wiener, Benjamin; Siria, Alessandro; Bocquet, Lydéric; Stein, Derek
2015-03-01
Ion transport in nanochannels is relevant to processes in biology and has technological applications like batteries, fuel cells, and water desalination. We report experimental studies of the ionic conductance and noise characteristics of pulled glass capillaries with openings on the order of 200 nanometers. We employed an AC measurement technique to probe very low frequency fluctuations in the conductivity and to test a theory attributing these to chemical fluctuations in the surface charge density of the glass. We also investigate Hooge's empirical description of the noise power spectrum and its relationship to current rectification observed in nanochannels in the surface dominated ``Dukhin'' regime. Finally, we test the effects of anion and cation mobility on the direction and magnitude of the observed rectification. Research supported by NSF Grant DMR-1409577 and Oxford Nanopore Technologies.
The Drift, Diffusion, and Reactions of Slow Ions in Gases.
1980-02-28
explaining plasma chemistry ; ionic transport data are required for the accurate determination of these rate coefficients. Observations on ionic identity and...34Studies of Ion Plasma Chemistry with Drift Tube Mass Spectrometers", Third International Symposium on Plasma Chemistry , Limoges, France, (July 1977
The Electrolyte Factor in O2 Reduction Electrocatalysis
1993-04-23
molecule thick and does not seem to interfere with 02 and water/proton transport at this interface. This layer resembles a self-ordered Langmuir - Blodgett ... liquid electrolyte from within the polymer is in contact with the catalyst and completes the ionic circuit between the ionic conducting polymer and the...the free energy of adsorption of H2 0 and ionic components because of the lower effective dielectric constant in the electrolyte phase immediately
Kirch, Alexsandro; de Almeida, James M; Miranda, Caetano R
2018-05-10
The complexity displayed by nanofluidic-based systems involves electronic and dynamic aspects occurring across different size and time scales. To properly model such kind of system, we introduced a top-down multilevel approach, combining molecular dynamics simulations (MD) with first-principles electronic transport calculations. The potential of this technique was demonstrated by investigating how the water and ionic flow through a (6,6) carbon nanotube (CNT) influences its electronic transport properties. We showed that the confinement on the CNT favors the partially hydrated Na, Cl, and Li ions to exchange charge with the nanotube. This leads to a change in the electronic transmittance, allowing for the distinguishing of cations from anions. Such an ionic trace may handle an indirect measurement of the ionic current that is recorded as a sensing output. With this case study, we are able to show the potential of this top-down multilevel approach, to be applied on the design of novel nanofluidic devices.
Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids
Fan, Fei; Wang, Weiyu; Holt, Adam P.; ...
2016-06-07
The unique properties of ionic liquids (ILs) have made them promising candidates for electrochemical applications. Polymerization of the corresponding ILs results in a new class of materials called polymerized ionic liquids (PolyILs). Though PolyILs offer the possibility to combine the high conductivity of ILs and the high mechanical strength of polymers, their conductivities are typically much lower than that of the corresponding small molecule ILs. In this study, seven PolyILs were synthesized having degrees of polymerization ranging from 1 to 333, corresponding to molecular weights (MW) from 482 to 160 400 g/mol. Depolarized dynamic light scattering, broadband dielectric spectroscopy, rheology,more » and differential scanning calorimetry were employed to systematically study the influence of MW on the mechanism of ionic transport and segmental dynamics in these materials. Finally, the modified Walden plot analysis reveals that the ion conductivity transforms from being closely coupled with structural relaxation to being strongly decoupled from it as MW increases.« less
Effect of Molecular Weight on the Ion Transport Mechanism in Polymerized Ionic Liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Fei; Wang, Weiyu; Holt, Adam P.
The unique properties of ionic liquids (ILs) have made them promising candidates for electrochemical applications. Polymerization of the corresponding ILs results in a new class of materials called polymerized ionic liquids (PolyILs). Though PolyILs offer the possibility to combine the high conductivity of ILs and the high mechanical strength of polymers, their conductivities are typically much lower than that of the corresponding small molecule ILs. In this study, seven PolyILs were synthesized having degrees of polymerization ranging from 1 to 333, corresponding to molecular weights (MW) from 482 to 160 400 g/mol. Depolarized dynamic light scattering, broadband dielectric spectroscopy, rheology,more » and differential scanning calorimetry were employed to systematically study the influence of MW on the mechanism of ionic transport and segmental dynamics in these materials. Finally, the modified Walden plot analysis reveals that the ion conductivity transforms from being closely coupled with structural relaxation to being strongly decoupled from it as MW increases.« less
Kim, Sung Yeon; Kim, Suhan; Park, Moon Jeong
2010-10-05
Proton exchange fuel cells (PEFCs) have the potential to provide power for a variety of applications ranging from electronic devices to transportation vehicles. A major challenge towards economically viable PEFCs is finding an electrolyte that is both durable and easily passes protons. In this article, we study novel anhydrous proton-conducting membranes, formed by incorporating ionic liquids into synthetic block co-polymer electrolytes, poly(styrenesulphonate-b-methylbutylene) (S(n)MB(m)), as high-temperature PEFCs. The resulting membranes are transparent, flexible and thermally stable up to 180 °C. The increases in the sulphonation level of S(n)MB(m) co-polymers (proton supplier) and the concentration of the ionic liquid (proton mediator) produce an overall increase in conductivity. Morphology effects were studied by X-ray scattering and electron microscopy. Compared with membranes having discrete ionic domains (including Nafion 117), the nanostructured membranes revealed over an order of magnitude increase in conductivity with the highest conductivity of 0.045 S cm(-1) obtained at 165 °C.
Ionic liquids for addressing unmet needs in healthcare
Agatemor, Christian; Ibsen, Kelly N.; Tanner, Eden E. L.
2018-01-01
Abstract Advances in the field of ionic liquids have opened new applications beyond their traditional use as solvents into other fields especially healthcare. The broad chemical space, rich with structurally diverse ions, and coupled with the flexibility to form complementary ion pairs enables task‐specific optimization at the molecular level to design ionic liquids for envisioned functions. Consequently, ionic liquids now are tailored as innovative solutions to address many problems in medicine. To date, ionic liquids have been designed to promote dissolution of poorly soluble drugs and disrupt physiological barriers to transport drugs to targeted sites. Also, their antimicrobial activity has been demonstrated and could be exploited to prevent and treat infectious diseases. Metal‐containing ionic liquids have also been designed and offer unique features due to incorporation of metals. Here, we review application‐driven investigations of ionic liquids in medicine with respect to current status and future potential. PMID:29376130
Communication: Influence of nanophase segregation on ion transport in room temperature ionic liquids
Griffin, Philip J.; Wang, Yangyang; Holt, Adam P.; ...
2016-04-21
In this paper, we report measurements of the ionic conductivity, shear viscosity, and structural dynamics in a homologous series of quaternary ammonium ionic liquids (ILs) and a prototypical imidazolium-based IL over a wide range of temperatures down to the glass transition. We find that the ionic conductivity of these materials generally decreases, while the shear viscosity correspondingly increases, with increasing volume fraction of aliphatic side groups. Upon crossing an aliphatic volume fraction of ~0.40, we observe a sharp, order-of-magnitude decrease in ionic conductivity and enhancement of viscosity, which coincides with the presence of long-lived, nanometer-sized alkyl aggregates. These strong changesmore » in dynamics are not mirrored in the ionicity of these ILs, which decreases nearly linearly with aliphatic volume fraction. Finally, our results demonstrate that nanophase segregation in neat ILs strongly reduces ionic conductivity primarily due to an aggregation-induced suppression of dynamics.« less
Fluid breakup in carbon nanotubes: An explanation of ultrafast ion transport
NASA Astrophysics Data System (ADS)
Gao, Xiang; Zhao, Tianshou; Li, Zhigang
2017-09-01
Ultrafast ion transport in carbon nanotubes (CNTs) has been experimentally observed, but the underlying mechanism is unknown. In this work, we investigate ion transport in CNTs through molecular dynamics (MD) simulations. It is found that the flow in CNTs undergoes a transition from the passage of a continuous liquid chain to the transport of isolated ion-water clusters as the CNT length or the external electric filed strength is increased. The breakup of the liquid chain in CNTs greatly reduces the resistance caused by the hydrogen bonds of water and significantly enhances the ionic mobility, which explains the two-order-magnitude enhancement of ionic conductance in CNTs reported in the literature. A theoretical criterion for fluid breakup is proposed, which agrees well with MD results. The fluid breakup phenomenon provides new insights into enhancing ion transport in nanoconfinements.
NASA Astrophysics Data System (ADS)
Morales, V. L.; Gao, B.; Steenhuis, T. S.
2008-12-01
Soil colloids and biocolloids can facilitate contaminant transport within the soil profile through the complexation of pollutants previously thought to have limited mobility. Dissolved organic substances are qualitatively known to alter the behavior of colloids and surface chemistry of soil particles in aquatic environments when adsorbed to their surfaces. Specifically, it has been observed that even small amounts of adsorbed humic acids result in a pronounced increase in colloid mobility in saturated porous systems, presumably by a combination of electrostatic and steric stabilization. However, the degree to which adsorbed humic acids stabilize colloidal suspension is highly sensitive to the system's solution chemistry; mainly in terms of pH, ionic strength, and metal ions present. The objective of this study is to expound quantitatively on the role that combined stabilizing and destabilizing solution chemistry components have on humic acid-colloid transport in unsaturated media by isolating experimentally some underlying mechanisms that regulate colloid transport in realistic aquatic systems. We hypothesize that in chemically heterogeneous porous media, with ionic strength values above 0 and pH ranges from 4 to 9, the effect of humic acid on colloid suspensions cannot be simply characterized by increased stability and mobility. That a critical salt concentration must exists for a given humic acid concentration and pH, above which the network of humic acid collapses by forming coordination complexes with other suspended or adsorbed humic acids, thus increasing greatly the retention of colloids in the porous medium by sweep flocculation. In addition, capillary forces in unsaturated media may contribute further to overcome repulsive forces that prevent flocculation of humic acid-colloid complexes. The experimental work in this study will include: jar tests to determine critical solution concentration combinations for desired coagulation/flocculation rates, column experiments to obtain effluent breakthrough data, in-situ visualization of internal processes with bright field microscopy, batch adsorption measurements, and changes in hydrophobic interaction energy of colloid and media surfaces for realistic aqueous ionic strength and pH ranges. Such experimental results are expected to provide sufficient evidence to corroborate our speculations that under natural soil water conditions, humic acids may greatly contribute to the immobilization of colloidal particles.
NASA Astrophysics Data System (ADS)
Siu, Ana Rosa
Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol decreased when the content of free water in the membranes decreased. Variation in permeability trends observed for the different polymer classes of the same content of free water was explained on the basis of tortuosity and interaction of methanol within the ionic network. Finally, a novel set of polymers containing non-ionic hydrophilic segments were examined for enhanced water transport in order to see if such domains might offset the flux of water due to electro-osmosis.
Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes.
Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric
2016-04-15
In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH.
Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric
2016-04-01
In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1 /3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given p H .
Clustering effects in ionic polymers: Molecular dynamics simulations
Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.
2015-08-18
Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing themore » electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.« less
Petrowsky, Matt; Frech, Roger
2010-07-08
Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.
Meng, Zhenyu; Kubar, Tomas; Mu, Yuguang; Shao, Fangwei
2018-05-08
Charge transport (CT) through biomolecules is of high significance in the research fields of biology, nanotechnology, and molecular devices. Inspired by our previous work that showed the binding of ionic liquid (IL) facilitated charge transport in duplex DNA, in silico simulation is a useful means to understand the microscopic mechanism of the facilitation phenomenon. Here molecular dynamics simulations (MD) of duplex DNA in water and hydrated ionic liquids were employed to explore the helical parameters. Principal component analysis was further applied to capture the subtle conformational changes of helical DNA upon different environmental impacts. Sequentially, CT rates were calculated by a QM/MM simulation of the flickering resonance model based upon MD trajectories. Herein, MD simulation illustrated that the binding of ionic liquids can restrain dynamic conformation and lower the on-site energy of the DNA base. Confined movement among the adjacent base pairs was highly related to the increase of electronic coupling among base pairs, which may lead DNA to a CT facilitated state. Sequentially combining MD and QM/MM analysis, the rational correlations among the binding modes, the conformational changes, and CT rates illustrated the facilitation effects from hydrated IL on DNA CT and supported a conformational-gating mechanism.
Yan, Guang; Xu, Qingfang; Anissimov, Yuri G; Hao, Jinsong; Higuchi, William I; Li, S Kevin
2008-03-01
As a continuing effort to understand the mechanisms of alternating current (AC) transdermal iontophoresis and the iontophoretic transport pathways in the stratum corneum (SC), the objectives of the present study were to determine the interplay of AC frequency, AC voltage, and iontophoretic transport of ionic and neutral permeants across human epidermal membrane (HEM) and use AC as a means to characterize the transport pathways. Constant AC voltage iontophoresis experiments were conducted with HEM in 0.10 M tetraethyl ammonium pivalate (TEAP). AC frequencies ranging from 0.0001 to 25 Hz and AC applied voltages of 0.5 and 2.5 V were investigated. Tetraethyl ammonium (TEA) and arabinose (ARA) were the ionic and neutral model permeants, respectively. In data analysis, the logarithm of the permeability coefficients of HEM for the model permeants was plotted against the logarithm of the HEM electrical resistance for each AC condition. As expected, linear correlations between the logarithms of permeability coefficients and the logarithms of resistances of HEM were observed, and the permeability data were first normalized and then compared at the same HEM electrical resistance using these correlations. Transport enhancement of the ionic permeant was significantly larger than that of the neutral permeant during AC iontophoresis. The fluxes of the ionic permeant during AC iontophoresis of 2.5 V in the frequency range from 5 to 1,000 Hz were relatively constant and were approximately 4 times over those of passive transport. When the AC frequency decreased from 5 to 0.001 Hz at 2.5 V, flux enhancement increased to around 50 times over passive transport. While the AC frequency for achieving the full effect of iontophoretic enhancement at low AC frequency was lower than anticipated, the frequency for approaching passive diffusion transport at high frequency was higher than expected from the HEM morphology. These observations are consistent with a transport model of multiple barriers in series and the previous hypothesis that the iontophoresis pathways across HEM under AC behave like a series of reservoirs interconnected by short pore pathways.
Ward, Ashleigh L.; Doris, Sean E.; Li, Longjun; ...
2017-04-27
Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptivemore » ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. Furthermore, the origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Ashleigh L.; Doris, Sean E.; Li, Longjun
Selective ion transport across membranes is critical to the performance of many electrochemical energy storage devices. While design strategies enabling ion-selective transport are well-established, enhancements in membrane selectivity are made at the expense of ionic conductivity. To design membranes with both high selectivity and high ionic conductivity, there are cues to follow from biological systems, where regulated transport of ions across membranes is achieved by transmembrane proteins. The transport functions of these proteins are sensitive to their environment: physical or chemical perturbations to that environment are met with an adaptive response. Here we advance an analogous strategy for achieving adaptivemore » ion transport in microporous polymer membranes. Along the polymer backbone are placed redox-active switches that are activated in situ, at a prescribed electrochemical potential, by the device’s active materials when they enter the membrane’s pore. This transformation has little influence on the membrane’s ionic conductivity; however, the active-material blocking ability of the membrane is enhanced. We show that when used in lithium-sulfur batteries, these membranes offer markedly improved capacity, efficiency, and cycle-life by sequestering polysulfides in the cathode. Furthermore, the origins and implications of this behavior are explored in detail and point to new opportunities for responsive membranes in battery technology development« less
Kowsari, Mohammad H; Ebrahimi, Soraya
2018-05-16
Comprehensive molecular dynamics simulations are performed to study the average single-particle dynamics and the transport properties of 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [bmim][FAP], ionic liquids (ILs) at 400 K. We applied one of the most widely used nonpolarizable all-atom force fields for ILs, both with the original unit (±1) charges on each ion and with the partial charges uniformly scaled to 80-85%, taking into account the average polarizability and tracing the experimentally compatible transport properties. In all simulations, [bmim]+ was considered to be flexible, while the effect of a flexible vs. rigid structure of the anions and the effect of two applied charge sets on the calculated properties were separately investigated in detail. The simulation results showed that replacing [PF6]- with [FAP]-, considering anion flexibility, and applying the charge-scaled model significantly enhanced the ionic self-diffusion, ionic conductivity, inverse viscosity, and hyper anion preference (HAP). Both of the calculated self-diffusion coefficients from the long-time linear slope of the mean-square displacement (MSD) and from the integration of the velocity autocorrelation function (VACF) for the centers of mass of the ions were used for evaluation of the ionic transference number, HAP, ideal Nernst-Einstein ionic conductivity (σNE), and the Stokes-Einstein viscosity. In addition, for quantification of the degree of complicated ionic association (known as the Nernst-Einstein deviation parameter, Δ) and ionicity phenomena in the two studied ILs, the ionic conductivity was determined more rigorously by the Green-Kubo integral of the electric-current autocorrelation function (ECACF), and then the σGK/σNE ratio was evaluated. It was found that the correlated motion of the (cationanion) neighbors in [bmim][FAP] is smaller than in [bmim][PF6]. The relaxation times of the normalized reorientational autocorrelation functions were computed to gain a deep, molecular-level insight into the rotational motion of the ions. The geometric shape of the ion is a key factor in determining its reorientational dynamics. [bmim]+ shows faster translational and slower rotational dynamics in contrast to [PF6]-.
Lodge, Timothy P; Ueki, Takeshi
2016-01-01
Room temperature ionic liquids are of great interest for many advanced applications, due to the combination of attractive physical properties with essentially unlimited tunability of chemical structure. High chemical and thermal stability, favorable ionic conductivity, and complete nonvolatility are just some of the most important physical characteristics that make ionic liquids promising candidates for emerging technologies. Examples include separation membranes, actuators, polymer gel electrolytes, supercapacitors, ion batteries, fuel cell membranes, sensors, printable plastic electronics, and flexible displays. However, in these and other applications, it is essential to solidify the ionic liquid, while retaining the liquid state properties of interest. A broadly applicable solidification strategy relies on gelation by addition of suitable triblock copolymers with the ABA architecture, producing ion gels or ionogels. In this paradigm, the A end blocks are immiscible with the ionic liquid, and consequently self-assemble into micellar cores, while some fraction of the well-solvated B midblocks bridge between micelles, forming a percolating network. The chemical structures of the A and B repeat units, the molar mass of the blocks, and the concentration of the copolymer in the ionic liquid are all independently tunable to attain desired property combinations. In particular, the modulus of the resulting ion gel can be readily varied between 100 Pa and 1 MPa, with little sacrifice of the transport properties of the ionic liquid, such as ionic conductivity or gas diffusivity. Suitable A blocks can impart thermoreversible gelation (with solidification either on heating or cooling) or even photoreversible gelation. By virtue of the nonvolatility of ionic liquids, a wide range of processing strategies can be employed directly to prepare ion gels in thin or thick film forms, including solvent casting, spin coating, aerosol jet printing, photopatterning, and transfer printing. For higher modulus ion gels it is even possible to employ a manual "cut and stick" strategy for easy device fabrication. Ion gels prepared from common triblock copolymers, for example, with A = polystyrene and B = poly(ethylene oxide) or poly(methyl methacrylate), in imidazolium based ionic liquids provide exceptional performance in membranes for separating CO 2 from N 2 or CH 4 . The same materials also are the best available gate dielectrics for printed plastic electronics, because their high capacitance endows organic transistors with milliamp output currents for sub-1 V applied bias, with switching speeds that can go well beyond 100 kHz, while being amenable to large area roll-to-roll printing. Incorporation of well-designed electroluminescent (e.g., Ru(bpy) 3 -based) or electrochromic (e.g., viologen-based) moieties into ion gels held between transparent electrodes yields flexible color displays operating with sub-1 V dc inputs.
Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties
Tafur, Juan P.; Santos, Florencio; Fernández Romero, Antonio J.
2015-01-01
Gel Polymer Electrolytes (GPEs) composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2. PMID:26610580
Hybrid Organic–Inorganic Perovskites on the Move
2016-01-01
Conspectus Hybrid organic–inorganic perovskites (HOIPs) are crystals with the structural formula ABX3, where A, B, and X are organic and inorganic ions, respectively. While known for several decades, HOIPs have only in recent years emerged as extremely promising semiconducting materials for solar energy applications. In particular, power-conversion efficiencies of HOIP-based solar cells have improved at a record speed and, after only little more than 6 years of photovoltaics research, surpassed the 20% threshold, which is an outstanding result for a solution-processable material. It is thus of fundamental importance to reveal physical and chemical phenomena that contribute to, or limit, these impressive photovoltaic efficiencies. To understand charge-transport and light-absorption properties of semiconducting materials, one often invokes a lattice of ions displaced from their static positions only by harmonic vibrations. However, a preponderance of recent studies suggests that this picture is not sufficient for HOIPs, where a variety of structurally dynamic effects, beyond small harmonic vibrations, arises already at room temperature. In this Account, we focus on these effects. First, we review structure and bonding in HOIPs and relate them to the promising charge-transport and absorption properties of these materials, in terms of favorable electronic properties. We point out that HOIPs are much “softer” mechanically, compared to other efficient solar-cell materials, and that this can result in large ionic displacements at room temperature. We therefore focus next on dynamic structural effects in HOIPs, going beyond a static band-structure picture. Specifically, we discuss pertinent experimental and theoretical findings as to phase-transition behavior and molecular/octahedral rearrangements. We then discuss atomic diffusion phenomena in HOIPs, with an emphasis on the migration of intrinsic and extrinsic ionic species. From this combined perspective, HOIPs appear as highly dynamic materials, in which structural fluctuations and long-range ionic motion have an unusually strong impact on charge-transport and optical properties. We highlight the potential implications of these effects for several intriguing phenomenological observations, ranging from scattering mechanisms and lifetimes of charge carriers to light-induced structural effects and ionic conduction. PMID:26878152
NASA Astrophysics Data System (ADS)
Chang, Longfei; Asaka, Kinji; Zhu, Zicai; Wang, Yanjie; Chen, Hualing; Li, Dichen
2014-06-01
Ionic Polymer-Metal Composite (IPMC) has been well-documented of being a promising functional material in extensive applications. In its most popular and traditional manufacturing technique, roughening is a key process to ensure a satisfying performance. In this paper, based on a lately established multi-physical model, the effect of roughening process on the inner mass transportation and the electro-active output of IPMC were investigated. In the model, the electro-chemical field was monitored by Poisson equation and a properly simplified Nernst-Planck equation set, while the mechanical field was evaluated on the basis of volume strain effect. Furthermore, with Ramo-Shockley theorem, the out-circuit current and accumulated charge on the electrode were bridged with the inner cation distribution. Besides, nominal current and charge density as well as the curvature of the deformation were evaluated to characterize the performance of IPMC. The simulation was implemented by Finite Element Method with Comsol Multi-physics, based on two groups of geometrical models, those with various rough interface and those with different thickness. The results of how the roughening impact influences on the performance of IPMC were discussed progressively in three aspects, steady-state distribution of local potential and mass concentration, current response and charge accumulation, as well as the curvature of deformation. Detailed explanations for the performance improvement resulted from surface roughening were provided from the micro-distribution point of view, which can be further explored for the process optimization of IPMC.
THEORETICAL AND EXPERIMENTAL MODELING OF MULTI-SPECIES TRANSPORT IN SOILS UNDER ELECTRIC FIELDS
Electrokinetics employs the use of electrodes implanted in soils-contaminated media. Electrodes are supplied with direct current (dc) facilitating ionic transport and subsequent removal. This project investigates the feasibility and efficiency of electrokinetic transport of lea...
Jia, Wei; Tang, Beibei; Wu, Peiyi
2017-05-03
Nafion-boron nitride (NBN) nanocomposites with a Nafion-functionalized periphery are prepared via a convenient and ecofriendly Nafion-assisted water-phase exfoliation method. Nafion and the boron nitride nanosheet present strong interactions in the NBN nanocomposite. Then the NBN nanocomposites were blended with Nafion to prepare NBN Nafion composite proton exchange membranes (PEMs). NBN nanocomposites show good dispersibility and have a noticeable impact on the aggregation structure of the Nafion matrix. Connected long-range ionic nanochannels containing exaggerated (-SO 3 - ) n ionic clusters are constructed during the membrane-forming process via the hydrophilic and H-bonding interactions between NBN nanocomposites and Nafion matrix. The addition of NBN nanocomposites with sulfonic groups also provides additional proton transportation spots and enhances the water uptake of the composite PEMs. The proton conductivity of the NBN Nafion composite PEMs is significantly increased under various conditions relative to that of recast Nafion. At 80 °C-95% relative humidity, the proton conductivity of 0.5 NBN Nafion is 0.33 S·cm -1 , 6 times that of recast Nafion under the same conditions.
Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.
Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang
2010-07-27
Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.
Ionic transport in high-energy-density matter
Stanton, Liam G.; Murillo, Michael S.
2016-04-08
Ionic transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. Here, we developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. These results have been validated with molecular-dynamics simulations for self-diffusion, interdiffusion, viscosity, and thermal conductivity. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. By using a velocity-dependent screening model, we examine the role of dynamical screening in transport. Implications of thesemore » results for Coulomb logarithm approaches are discussed.« less
Enzyme catalysis with small ionic liquid quantities.
Fischer, Fabian; Mutschler, Julien; Zufferey, Daniel
2011-04-01
Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed.
Molecular Dynamics Studies of Structure and Functions of Water-Membrane Interfaces
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
A large number of essential cellular processes occur at the interfaces between water and membranes. The selectivity and dynamics of these processes are largely determined by the structural and electrical properties of the water-membrane interface. We investigate these properties by the molecular dynamics method. Over the time scales of the simulations, the membrane undergoes fluctuations described by the capillary wave model. These fluctuations produce occasional thinning defects in the membrane which provide effective pathways for passive transport of ions and small molecules across the membrane. Ions moving through the membrane markedly disrupt its structure and allow for significant water penetration into the membrane interior. Selectivity of transport, with respect to ionic charge, is determined by the interfacial electrostatic potential. Many small molecules. of potential significance in catalysis, bioenergetics and pharmacology, are shown to bind to the interface. The energetics and dynamics of this process will be discussed.
Ion Conduction in Perfectly Aligned Block Copolymer-Ionic Liquid Mixtures
NASA Astrophysics Data System (ADS)
Choi, Jae-Hong; Elabd, Yossef A.; Winey, Karen I.
2011-03-01
Our earlier work to correlate the transport measurements in diblock copolymer-ionic liquid mixtures was limited by our bulk samples that have only partial alignment. Here, thin films with perfect alignment of lamellar microdomains from mixtures of a poly(methyl methacrylate- b -styrene) diblock copolymer and an ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, have been studied. The morphologies will be characterized by cross-sectional transmission electron microscopy. Ion conduction will be presented within and through the thin film.
2016-02-10
potential in making high- performance solid state lithium ion batteries [1,2]. Among them, the polyethylene oxide-alkali salts systems PEO6:XPF6 (X = H...electrolytes for magnesium batteries incorporating chloro- or iodo- ionic liquids. Much of this work was done in collaboration with the experimental group...magnesium batteries incorporating chloro- or iodo- ionic liquids. Much of this work was done in collaboration with the experimental group of Prof. Vito Di
Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes
Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric
2016-01-01
In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH. PMID:27127970
NASA Astrophysics Data System (ADS)
Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon
2009-07-01
To develop artificial muscles with improved performance, a novel ionic polymer-metal composite (IPMC) actuator was developed by employing the newly-synthesized ionic networking film of poly (styrene-alt-maleimide) (PSMI)- incorporated poly (vinylidene fluoride) (PVDF). Scanning electron microscope and transmission electron microscopy revealed that much smaller and more uniform nano-sized platinum particles were formed on the surfaces of the film as well as within its polymer matrix after the electroless-plating process. Fourier transform infrared results suggested that no hydrolysis occurred for the as-prepared film actuator before and after the exposure to the elevated PH solutions at 25°C for 48h. The new actuator showed much larger tip displacement than that of a Nafion-based counterpart under the applied electrical stimulus, and overcame the back relaxation of the traditional IPMC actuator under the constant voltage. The current actuator was operated over 6.5h at high-frequency sinusoidal excitation, and its tip displacement was still comparable to that of the referenced Nafion actuator when the test was terminated. The excellent electromechanical performance is due to the inherent large ionic-exchange capacity and the unique hydrophilic nano-channels of the ionic networking film. Furthermore, the working principle of the developed IPMC actuator is thought to be based on a combination of piezoelectricity and ionic transport. The film of PSMI-incorporated PVDF has some advantages over the most widely-used Nafion-based one by diversifying niche applications in biomimetic motion, and the present study is believed to open a new avenue for the design and fabrication of the electro-active polymer film with unique functional properties.
Parthier, Daniel; Frings, Stephan; Möhrlen, Frank
2015-01-01
Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum. PMID:26558388
Controlling Ionic Transport for Device Design in Synthetic Nanopores
NASA Astrophysics Data System (ADS)
Kalman, Eric Boyd
Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water which should theoretically outperform currently available devices, as through our previous work we have developed techniques allowing for transport manipulation not current accessible in traditional membrane motifs.
Nilsson, Martin; Frenning, Göran; Gråsjö, Johan; Alderborn, Göran; Strømme, Maria
2006-10-19
The present study aims at contributing to a complete understanding of the water-induced ionic charge transport in cellulose. The behavior of this transport in loosely compacted microcrystalline cellulose (MCC) powder was investigated as a function of density utilizing a new type of measurement setup, allowing for dielectric spectroscopy measurement in situ during compaction. The ionic conductivity in MCC was found to increase with increasing density until a leveling-out was observed for densities above approximately 0.7 g/cm3. Further, it was shown that the ionic conductivity vs density followed a percolation type behavior signifying the percolation of conductive paths in a 3D conducting network. The density percolation threshold was found to be between approximately 0.2 and 0.4 g/cm3, depending strongly on the cellulose moisture content. The observed percolation behavior was attributed to the forming of interparticulate bonds in the MCC and the percolation threshold dependence on moisture was linked to the moisture dependence of particle rearrangement and plastic deformation in MCC during compaction. The obtained results add to the understanding of the density-dependent water-induced ionic transport in cellulose showing that, at given moisture content, the two major parameters determining the magnitude of the conductivity are the connectedness of the interparticluate bonds and the connectedness of pores with a diameter in the 5-20 nm size range. At densities between approximately 0.7 and 1.2 g/cm3 both the bond and the pore networks have percolated, facilitating charge transport through the MCC compact.
Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadeeva, Tatiana A.; DeVine, Jessalyn A.; Castner, Edward W., E-mail: ed.castner@rutgers.edu
2015-08-14
We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyzemore » the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.« less
Molecular dynamics simulation of low dielectric constant polymer electrolytes
NASA Astrophysics Data System (ADS)
Wheatle, Bill; Lynd, Nathaniel; Ganesan, Venkat
Recent experimental studies measured the ionic conductivities of a series of poly(glycidyl ether)s with varying neat dielectric constants (ɛ), viscosities (η), and glass transition temperatures (Tg), as hosts for lithium bistrifluoromethanesulfonimide (LiTFSI) salt. In such a context, it was demonstrated that the ionic conductivity of these polymer electrolytes was a function of ɛ rather than Tg or η, suggesting that there may exist regimes in which ionic conductivity is not limited by slow segmental dynamics but rather by low ionic dissociation. Motivated by such results, we used atomistic molecular dynamics to study the structure and transport characteristics of the same set of host polymers. We found that the coordination number of TFSI- about Li+ in the first solvation shell and the total fraction of free ions increased as a function of ɛ, implying the polymer hosts enhanced ion dissociation. In addition, we found that increasing the dielectric constant of the host polymer enhanced self-correlated ion transport, as evidenced by an increase in the diffusion coefficients of each ion species. Overall, we confirmed that limited ion dissociation in low- ɛ polymer electrolyte hosts hampers ionic conductivity. We would like to thank the National Science Foundation Graduate Research Fellowship Program for funding this research endeavor.
Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries
Ma, Cheng; Cheng, Yongqiang; Chen, Kai; ...
2016-03-29
In Li-ion-conducting solid electrolytes can simultaneously overcome two grand challenges for Li-ion batteries: the severe safety concerns that limit the large-scale application and the poor electrolyte stability that forbids the use of high-voltage cathodes. Nevertheless, the ionic conductivity of solid electrolytes is typically low, compromising the battery performances. Precisely determining the ionic transport mechanism(s) is a prerequisite for the rational design of highly conductive solid electrolytes. For decades, the research on this subject has primarily focused on the atomic and microscopic scales, where the main features of interest are unit cells and microstructures, respectively. We show that the largely overlookedmore » mesoscopic scale lying between these extremes could be the key to fast ionic conduction. In a prototype system, (Li 0.33La 0.56)TiO 3, a mesoscopic framework is revealed for the first time by state-of-the-art scanning transmission electron microscopy. Corroborated by theoretical calculations and impedance measurements, it is demonstrated that such a unique configuration maximizes the number of percolation directions and thus most effectively improves the ionic conductivity. Finally, this discovery reconciles the long-standing structure–property inconsistency in (Li 0.33La 0.56)TiO 3 and also identifies mesoscopic ordering as a promising general strategy for optimizing Li+ conduction.« less
NASA Astrophysics Data System (ADS)
Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens
2018-05-01
We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.
Coupled ion redistribution and electronic breakdown in low-alkali boroaluminosilicate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Doo Hyun, E-mail: cooldoo@add.re.kr; Randall, Clive, E-mail: car4@psu.edu; Furman, Eugene, E-mail: euf1@psu.edu
2015-08-28
Dielectrics with high electrostatic energy storage must have exceptionally high dielectric breakdown strength at elevated temperatures. Another important consideration in designing a high performance dielectric is understanding the thickness and temperature dependence of breakdown strengths. Here, we develop a numerical model which assumes a coupled ionic redistribution and electronic breakdown is applied to predict the breakdown strength of low-alkali glass. The ionic charge transport of three likely charge carriers (Na{sup +}, H{sup +}/H{sub 3}O{sup +}, Ba{sup 2+}) was used to calculate the ionic depletion width in low-alkali boroaluminosilicate which can further be used for the breakdown modeling. This model predictsmore » the breakdown strengths in the 10{sup 8}–10{sup 9 }V/m range and also accounts for the experimentally observed two distinct thickness dependent regions for breakdown. Moreover, the model successfully predicts the temperature dependent breakdown strength for low-alkali glass from room temperature up to 150 °C. This model showed that breakdown strengths were governed by minority charge carriers in the form of ionic transport (mostly sodium) in these glasses.« less
Laboratory comparison of several tests for evaluating the transport properties of concrete.
DOT National Transportation Integrated Search
2006-01-01
The transport properties of concrete are a primary element in determining the durability of concrete. In this study, several new test methods that directly measure aspects of fluid and ionic transport in concrete were examined. ASTM C 1543 and ASTM C...
Ion age transport: developing devices beyond electronics
NASA Astrophysics Data System (ADS)
Demming, Anna
2014-03-01
There is more to current devices than conventional electronics. Increasingly research into the controlled movement of ions and molecules is enabling a range of new technologies. For example, as Weihua Guan, Sylvia Xin Li and Mark Reed at Yale University explain, 'It offers a unique opportunity to integrate wet ionics with dry electronics seamlessly'. In this issue they provide an overview of voltage-gated ion and molecule transport in engineered nanochannels. They cover the theory governing these systems and fabrication techniques, as well as applications, including biological and chemical analysis, and energy conversion [1]. Studying the movement of particles in nanochannels is not new. The transport of materials in rock pores led Klinkenberg to describe an analogy between diffusion and electrical conductivity in porous rocks back in 1951 [2]. And already in 1940, Harold Abramson and Manuel Gorin noted that 'When an electric current is applied across the living human skin, the skin may be considered to act like a system of pores through which transfer of substances like ragweed pollen extract may be achieved both by electrophoretic and by diffusion phenomena' [3]. Transport in living systems through pore structures on a much smaller scale has attracted a great deal of research in recent years as well. The selective transport of ions and small organic molecules across the cell membrane facilitates a number of functions including communication between cells, nerve conduction and signal transmission. Understanding these processes may benefit a wide range of potential applications such as selective separation, biochemical sensing, and controlled release and drug delivery processes. In Germany researchers have successfully demonstrated controlled ionic transport through nanopores functionalized with amine-terminated polymer brushes [4]. The polymer nanobrushes swell and shrink in response to changes in temperature, thus opening and closing the nanopore passage to ionic molecules. 'This process should permit the thermal gating and controlled release of ionic drug molecules through the nanopores modified with thermoresponsive polymer chains across the membrane,' they explain. With their intrinsic nanoscale features, carbon nanomaterials often feature as possible nanochannel systems. The intrinsic two-dimensional nanochannel structures formed by carbon nanotubes led Jae Hyun Park, Susan Sinnott and Narayana Aluru to pursue molecular dynamics simulations of Y-junction carbon nanotubes. Their results suggest that when the nanotubes of the different arms of the Y have different diameters they could be used in a type of permselectivity to separate K+ and Cl- ions from a KCl solution [5]. Guohui Hu, Mao Mao and Sandip Ghosal in China and the US also used molecular dynamics simulations to investigate the mechanisms at play in the ionic transport of NaCl in solution through a graphene nanopore under an applied electric field. Their results confirm that the electric conductance is proportional to the nanopore [6], and help to understand how these structures can be exploited in applications. In fact nanopores were among the early suggestions for fast DNA sequencing as Massimiliano Di Ventra points out in his perspective [7]. If the pore is large enough to allow DNA bases through but small enough to allow only one to pass at a time, current values can be assigned to each base and the DNA sequenced by measuring the ionic currents. It is clear that at these scales the characteristics of transport phenomena can be hugely valuable for developing new technologies. In this issue Weihua Guan, Sylvia Xin Li and Mark Reed provide an overview of voltage-gated nanochannels in systems that have three or more terminals, similar to metal-oxide-semiconductor field-effect transistors [1]. They describe the potential profiles in the nanochannels and the theory behind some of the effects that originate from the nanoscale feature sizes such as ion permselectivity. They also describe bottom-up and top-down approaches to fabricating nanochannels in different dimensions—nanopores, nanotubes and nanoslits—and their applications. Fifty years ago a visit to the 1964 New York World's Fair inspired Isaac Asimov to postulate on the exhibits of the World's Fair of 2014, and he did so with an eery accuracy [8]. As well as ready meals and skype type video communications, his projections correctly forecast a prevalence of electronic devices—and cordless devices too. But perhaps even one of the world's most celebrated science fiction writers did not foresee that the current in a lot of next-generation devices might be in some ways 'electronic-less' as well. References [1] Guan Weihua, Li Sylvia Xin and Reed Mark A 2014 Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications Nanotechnology 25 122001 [2] Klinkenberg L J 1951 Analogy between diffusion and electrical conductivity in porous rocks Bull. Geol. Soc. Am. 62 559-64 [3] Abramson H A and Gorin M H 1940 Skin reactions. IX—the electrophoretic demonstration of the patent pores of the living human skin; its relation to the charge of the skin J. Phys. Chem. 44 1094-102 [4] Nasir S, Ali M and Ensinger W 2012 Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes Nanotechnology 23 225502 [5] Park J H, Sinnott S B and Aluru N R 2006 Ion separation using a Y-junction carbon nanotube Nanotechnology 17 895-900 [6] Hu G, Mao M and Ghosal S 2012 Ion transport through a graphene nanopore Nanotechnology 23 395501 [7] Di Ventra M 2013 Fast DNA sequencing by electrical means inches closer Nanotechnology 24 342501 [8] Asimov I 1964 Visit to the World's Fair of 2014 New York Times (www.nytimes.com/books/97/03/23/lifetimes/asi-v-fair.html)
Jin, Liyu; Nairn, Kate M; Forsyth, Craig M; Seeber, Aaron J; MacFarlane, Douglas R; Howlett, Patrick C; Forsyth, Maria; Pringle, Jennifer M
2012-06-13
Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P(1,2,2,4)][PF(6)]). This material displays rich phase behavior and advantageous ionic conductivities, with three solid-solid phase transitions and a highly "plastic" and conductive final solid phase in which the conductivity reaches 10(-3) S cm(-1). The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the (1)H, (19)F, and (31)P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P(1,2,2,4)][PF(6)]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.
Bridge, Jonathan W; Banwart, Steven A; Heathwaite, A Louise
2006-10-01
We demonstrate noninvasive quantitative imaging of colloid and solute transport at millimeter to decimeter (meso-) scale. Ultraviolet (UV) excited fluorescent solute and colloid tracers were independently measured simultaneously during co-advection through saturated quartz sand. Pulse-input experiments were conducted at constant flow rates and ionic strengths 10(-3), 10(-2) and 10(-1) M NaCl. Tracers were 1.9 microm carboxylate latex microspheres and disodium fluorescein. Spatial moments analysis was used to quantify relative changes in mass distribution of the colloid and solute tracers over time. The solute advected through the sand at a constant velocity proportional to flow rate and was described well by a conservative transport model (CXTFIT). In unfavorable deposition conditions increasing ionic strength produced significant reduction in colloid center of mass transport velocity over time. Velocity trends correlated with the increasing fraction of colloid mass retained along the flowpath. Attachment efficiencies (defined by colloid filtration theory) calculated from nondestructive retained mass data were 0.013 +/- 0.03, 0.09 +/- 0.02, and 0.22 +/- 0.05 at 10(-3), 10(-2), and 10(-1) M ionic strength, respectively, which compared well with previously published data from breakthrough curves and destructive sampling. Mesoscale imaging of colloid mass dynamics can quantify key deposition and transport parameters based on noninvasive, nondestructive, spatially high-resolution data.
Transport of viruses through saturated and unsaturated columns packed with sand
Anders, R.; Chrysikopoulos, C.V.
2009-01-01
Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173-179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid-solid and liquid to air-liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media. ?? Springer Science+Business Media B.V. 2008.
Nguyen, Chien A; Xiong, Shanxin; Ma, Jan; Lu, Xuehong; Lee, Pooi See
2011-08-07
Solid polymer electrolytes with excellent ionic conductivity (above 10(-4) S cm(-1)), which result in high optical modulation for solid electrochromic (EC) devices are presented. The combination of a polar host matrix poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and a solid plasticized of a low molecular weight poly(ethylene oxide) (PEO) (M(w)≤ 20,000) blended polymer electrolyte serves to enhance both the dissolution of lithium salt and the ionic transport. Calorimetric measurement shows a reduced crystallization due to a better intermixing of the polymers with small molecular weight PEO. Vibrational spectroscopy identifies the presence of free ions and ion pairs in the electrolytes with PEO of M(w)≤ 8000. The ionic dissolution is improved using PEO as a plasticizer when compared to liquid propylene carbonate, evidently shown in the transference number analysis. Ionic transport follows the Arrhenius equation with a low activation energy (0.16-0.2 eV), leading to high ionic conductivities. Solid electrochromic devices fabricated with the blended P(VDF-TrFE)/PEO electrolytes and polyaniline show good spectroelectrochemical performance in the visible (300-800 nm) and near-infrared (0.9-2.4 μm) regions with a modulation up to 60% and fast switching speed of below 20 seconds. The successful introduction of the solid polymer electrolytes with its best harnessed qualities helps to expedite the application of various electrochemical devices. This journal is © the Owner Societies 2011
NASA Astrophysics Data System (ADS)
Prédélus, Dieuseul; Lassabatere, Laurent; Louis, Cédric; Gehan, Hélène; Brichart, Thomas; Winiarski, Thierry; Angulo-Jaramillo, Rafael
2017-03-01
This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO2-FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10-2 M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.
Positron transport in solids and the interaction of positrons with surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Yuan.
1991-01-01
In studying positron transport in solids, a two-stream model is proposed to account for the epithermal positrons. Thus positron implantation, thermalization, and diffusion processes are completely modeled. Experimentally, positron mobility in thermally grown SiO[sub 2] is measured in a sandwiched structure by using the Doppler broadening technique. Positron drift motion and the electric field configuration in a Si surface buried under overlayers are measured with the positron annihilation [gamma]-ray centroid shift technique. These studies are not only important in measuring positron transport and other properties in complicated systems, they are also of practical significance for material characterizations. In studying positronmore » interactions with surfaces, a multiple-encounter picture is proposed of thermal positrons participating in the surface escape processes. Positron trapping into the surface image potential is also studied, considering the long-range nature of the image potential. Experimentally, the positron annihilation induced Auger electron spectroscopy (PAES) is used to study an ionic insulator surface KCl(100).« less
Assessing Electrolyte Transport Properties with Molecular Dynamics
Jones, R. E.; Ward, D. K.; Gittleson, F. S.; ...
2017-04-15
Here in this work we use estimates of ionic transport properties obtained from molecular dynamics to rank lithium electrolytes of different compositions. We develop linear response methods to obtain the Onsager diffusivity matrix for all chemical species, its Fickian counterpart, and the mobilities of the ionic species. We apply these methods to the well-studied propylene carbonate/ethylene carbonate solvent with dissolved LiBF 4 and O 2. The results show that, over a range of lithium concentrations and carbonate mixtures, trends in the transport coefficients can be identified and optimal electrolytes can be selected for experimental focus; however, refinement of these estimationmore » techniques is necessary for a reliable ranking of a large set of electrolytes.« less
Dependence of Ion Transport on the Electronegativity of the Constituting Atoms in Ionic Crystals.
Zhang, Qian; Kaghazchi, Payam
2017-04-19
Ion transport in electrode and electrolyte materials is a key process in Li-based batteries. In this work, we study the mechanism and activation energy of ion transport (Ea ) in rock-salt Li-based LiX (X=Cl, Br, and I) materials. It is found that Ea at low external voltages, where Li-X Schottky pairs are the most favorable defect types, is about 0.42 times the Gibbs energy of formation of LiX compound (ΔGf ). The value of 0.42 is the slope of the electronegativity of anions of binary Li-based materials as a function of ΔGf . At high voltages, where the Fermi level is located very close to the valence band maximum (VBM), electrons can be excited from the VB to Li vacancy-induced states close to the Fermi level. Under this condition, the formation of Li vacancies that are compensated by holes is energetically more favorable than that of Li-X Schottky pairs, and therefore, the activation energies are lower in the former case. The wide range of reported experimental values of activation energies lies between calculated values at low and high voltage regimes. This work motivates further studies on the relation between the activation energy for ionic conductivity in solid materials and the intrinsic ground-state properties of their free atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method and apparatus for lysing and processing algae
Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto
2013-03-05
Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.
N7-(carboxymethyl)guanine-Lithium Crystalline Complex: A Bioinspired Solid Electrolyte
Dutta, Dipak; Nagapradeep, N.; Zhu, Haijin; Forsyth, Maria; Verma, Sandeep; Bhattacharyya, Aninda J.
2016-01-01
Electrochemical device with components having direct significance to biological life processes is a potent futuristic strategy for the realization of all-round green and sustainable development. We present here synthesis design, structural analysis and ion transport of a novel solid organic electrolyte (G7Li), a compound reminiscent of ion channels, derived from regioisomeric N7-guanine-carboxylate conjugate and Li-ions. G7Li, with it’s in-built supply of Li+-ions, exhibited remarkably high lithium-ion transference number (= 0.75) and tunable room temperature ionic conductivity spanning three decades (≈10−7 to 10−3 Ω−1 cm−1) as a function of moisture content. The ionic conductivity show a distinct reversible transition around 80–100 °C, from a dual Li+ and H+ (<100 °C) to a pure Li+ conductor (>100 °C). Systematic studies reveal a transition from water-assisted Li-ion transport to Li hopping-like mechanism involving guanine-Li coordination. While as-synthesized G7Li has potential in humidity sensors, the anhydrous G7Li is attractive for rechargeable batteries. PMID:27091631
Belousov, Valery V
2017-02-21
High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.
Amarasekara, Ananda S
2016-05-25
Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.
Vapour growth of argyrodite-type ionic conductors Cu 6PS 5Hal
NASA Astrophysics Data System (ADS)
Fiechter, S.; Eckstein, J.; Nitsche, R.
1983-03-01
Cu 6PS 5Hal compounds (with Hal = Cl, Br or I) have been crystallized around 950 K by CVT with P, S and Hal (and combinations thereof). Chemical insight into the transport processes was gained from dissociation pressure measurements and spectroscopic vapour analysis. Lacking thermochemical data of the compounds were obtained from Cp measurements. Models, derived for the CVT mechanisms, yield transport rates and directions which agree qualitatively with experiments. The main vapour species (for Hal = C1) are PSCI 3, S 2, PCI 3, P 4S 3 and (CuCl) 3. With a surplus of CuHal, VLS growth via liquid CuHal/Cu 2S phases was observed.
Horno, J; González-Caballero, F; González-Fernández, C F
1990-01-01
Simple techniques of network thermodynamics are used to obtain the numerical solution of the Nernst-Planck and Poisson equation system. A network model for a particular physical situation, namely ionic transport through a thin membrane with simultaneous diffusion, convection and electric current, is proposed. Concentration and electric field profiles across the membrane, as well as diffusion potential, have been simulated using the electric circuit simulation program, SPICE. The method is quite general and extremely efficient, permitting treatments of multi-ion systems whatever the boundary and experimental conditions may be.
Rapid Polymer Transport in a Single Nanometer-Scale Pore
NASA Astrophysics Data System (ADS)
Kasianowicz, J. J.
1998-03-01
Protein ion channels are nanometer-scale pores that control the transport of ions and polymers across cell membranes. We compared the ability of charged and nonelectrolyte linear polymers to partition into a single channel reconstituted into a planar lipid bilayer membrane. The entry of each polymer (e.g. monodisperse length single-stranded homopolymeric RNA1 or poly(ethylene glycol)2,3) into the pore caused characteristic transient decreases in the channel's ionic conductance. The ionic current blockades yield detailed information about the physical properties of the polymers and the pore. The biological and technological significance of the results will be discussed.
Ion transport and softening in a polymerized ionic liquid
Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; ...
2014-11-13
Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this paper, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current–voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as themore » Wien effect). Onsager's theory of the Wien effect coupled with the Poisson–Nernst–Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. Finally, the observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.« less
A model problem concerning ionic transport in microstructured solid electrolytes
NASA Astrophysics Data System (ADS)
Curto Sillamoni, Ignacio J.; Idiart, Martín I.
2015-11-01
We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.
Diffusion of Magnetized Binary Ionic Mixtures at Ultracold Plasma Conditions
NASA Astrophysics Data System (ADS)
Vidal, Keith R.; Baalrud, Scott D.
2017-10-01
Ultracold plasma experiments offer an accessible means to test transport theories for strongly coupled systems. Application of an external magnetic field might further increase their utility by inhibiting heating mechanisms of ions and electrons and increasing the temperature at which strong coupling effects are observed. We present results focused on developing and validating a transport theory to describe binary ionic mixtures across a wide range of coupling and magnetization strengths relevant to ultracold plasma experiments. The transport theory is an extension of the Effective Potential Theory (EPT), which has been shown to accurately model correlation effects at these conditions, to include magnetization. We focus on diffusion as it can be measured in ultracold plasma experiments. Using EPT within the framework of the Chapman-Enskog expansion, the parallel and perpendicular self and interdiffusion coefficients for binary ionic mixtures with varying mass ratios are calculated and are compared to molecular dynamics simulations. The theory is found to accurately extend Braginskii-like transport to stronger coupling, but to break down when the magnetization strength becomes large enough that the typical gyroradius is smaller than the interaction scale length. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0221.
Dynamics of water in sulfonated poly(phenylene) membranes
NASA Astrophysics Data System (ADS)
Osti, Naresh; Etampawala, Thusitha; Shrestha, Umesh; Perahia, Dvora; Cornelius, Christopher
2011-03-01
The dynamics of water in networks formed by highly rigid ionic polymers, sulfonated poly(phenylene) as observed by quasi elastic neutron scattering (QENS) is presented. These rigid ionic polymers have potential as effective ion exchange membranes with impact on a large number of applications from water purification to clean energy, where its rigidity distinguishes it from other ionic polymers. Its transport characteristics are affected by its rigidness as well as by direct interactions with the solvent. Our QENS studies as a function of sulfonation levels, temperature and solvent content have shown that on the time scale of the measurement, the polymers are rigid. While macroscopically all samples swell, and transport water, the water molecules appear locally rather confined. Water however remind non-frozen to subzero temperatures. The results will be discussed in view of theoretical models including continues diffusion and hopping of solvent molecules.
Design principles for solid-state lithium superionic conductors.
Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand
2015-10-01
Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.
Ionic liquid versus SiO 2 gated a-IGZO thin film transistors: A direct comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.
Here, ionic liquid gated field effect transistors have been extensively studied due to their low operation voltage, ease of processing and the realization of high electric fields at low bias voltages. Here, we report ionic liquid (IL) gated thin film transistors (TFTs) based on amorphous Indium Gallium Zinc Oxide (a-IGZO) active layers and directly compare the characteristics with a standard SiO 2 gated device. The transport measurements of the top IL gated device revealed the n-channel property of the IGZO thin film with a current ON/OFF ratio ~10 5, a promising field effect mobility of 14.20 cm 2V –1s –1,more » and a threshold voltage of 0.5 V. Comparable measurements on the bottom SiO2 gate insulator revealed a current ON/OFF ratio >108, a field effect mobility of 13.89 cm 2V –1s –1 and a threshold voltage of 2.5 V. Furthermore, temperature-dependent measurements revealed that the ionic liquid electric double layer can be “frozen-in” by cooling below the glass transition temperature with an applied electrical bias. Positive and negative freezing bias locks-in the IGZO TFT “ON” and “OFF” state, respectively, which could lead to new switching and possibly non-volatile memory applications.« less
Ionic liquid versus SiO 2 gated a-IGZO thin film transistors: A direct comparison
Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony T.; ...
2015-08-12
Here, ionic liquid gated field effect transistors have been extensively studied due to their low operation voltage, ease of processing and the realization of high electric fields at low bias voltages. Here, we report ionic liquid (IL) gated thin film transistors (TFTs) based on amorphous Indium Gallium Zinc Oxide (a-IGZO) active layers and directly compare the characteristics with a standard SiO 2 gated device. The transport measurements of the top IL gated device revealed the n-channel property of the IGZO thin film with a current ON/OFF ratio ~10 5, a promising field effect mobility of 14.20 cm 2V –1s –1,more » and a threshold voltage of 0.5 V. Comparable measurements on the bottom SiO2 gate insulator revealed a current ON/OFF ratio >108, a field effect mobility of 13.89 cm 2V –1s –1 and a threshold voltage of 2.5 V. Furthermore, temperature-dependent measurements revealed that the ionic liquid electric double layer can be “frozen-in” by cooling below the glass transition temperature with an applied electrical bias. Positive and negative freezing bias locks-in the IGZO TFT “ON” and “OFF” state, respectively, which could lead to new switching and possibly non-volatile memory applications.« less
Membrane separation of ionic liquid solutions
Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart
2015-09-01
A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.
Vicario-Parés, Unai; Lacave, Jose M; Reip, Paul; Cajaraville, Miren P; Orbea, Amaia
2018-01-01
Due to their antimicrobial, electrical and magnetic properties, copper nanoparticles (NPs) are suitable for a vast array of applications. Copper can be toxic to biota, making it necessary to assess the potential hazard of copper nanomaterials. Zebrafish (Danio rerio) were exposed to 10 µg Cu/L of CuO NPs of ≈100 nm (CuO-poly) or ionic copper to compare the effects provoked after 3 and 21 days of exposure and at 6 months post-exposure (mpe). At 21 days, significant copper accumulation was only detected in fish exposed to ionic copper. Exposure to both copper forms caused histopathological alterations that could reduce gill functionality, more markedly in the case of ionic copper. Nevertheless, at 6 mpe higher prevalences of gill lesions were detected in fish previously exposed to CuO-poly NPs. No relevant histological alterations were detected in liver, but the lysosomal membrane stability test showed significantly impaired general health status after exposure to both metal forms that lasted up to 6 mpe. 69 transcripts appeared regulated after 3 days of exposure to CuO-poly NPs, suggesting that NPs could produce oxidative stress and reduce metabolism and transport processes. Thirty transcripts were regulated after 21 days of exposure to ionic copper, indicating possible DNA damage. Genes of the circadian clock were identified as the key genes involved in time-dependent differences between the two copper forms. In conclusion, each copper form showed a distinct pattern of liver transcriptome regulation, but both caused gill histopathological alterations and long lasting impaired health status in adult zebrafish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimon, E.S.; Shirokov, A.V.; Kovynev, N.P.
1995-04-01
Transport properties of solid-electrolyte layers (SEL) formed in lithium-iodine batteries were studied by the galvanostatic pulse technique. It was found that the rate of the anodic process at the lithium electrode is determined by the formation of an ionic space charge of lithium cations injected into solid-electrolyte layers. The mobility and concentration of mobile lithium cations in SELs at various depths of discharge of the power source were determined.
1991-10-21
incorporated using a Grignard coupling reaction. 19 The derivatives with long alkoxy side groups were successfully halogenated with elemental bromine in CC14...transmetallation reaction of 2-thienyllithium with 7 anhydrous zinc chloride. This reagent was treated with the 1,4-dibromo-2,5- disubstitutedbenzene...were attributed to the steric effects in polymer 7c and the regiospecificity in the alkoxy substituted polymers. Experimental Section Reagents and
Atomistic Simulation of Interfaces in Materials of Solid State Ionics
NASA Astrophysics Data System (ADS)
Ivanov-Schitz, A. K.; Mazo, G. N.
2018-01-01
The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.
Rüther, Thomas; Kanakubo, Mitsuhiro; Best, Adam S; Harris, Kenneth R
2017-04-19
Transport properties are examined in some detail for samples of the low temperature molten salt N-propyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide [Pyr 13 ][FSI] from two different commercial suppliers. A similar set of data is presented for two different concentrations of binary lithium-[Pyr 13 ][FSI] salt mixtures from one supplier. A new and significantly different production process is used for the synthesis of Li[FSI] as well as the [Pyr 13 ] + salt used in the mixtures. Results for the viscosity, conductivity, and self-diffusion coefficients, together with the density and expansivity and apparent molar volume, are reported over the temperature range of (0 to 80) °C. The data for neat [Pyr 13 ][FSI] are discussed in the context of velocity cross correlation (VCC or f ij ) and Laity resistance (r ij ) coefficients. Unusually, f +- ∼ f ++ < f -- . The three resistance coefficients are of similar magnitude indicating all three ion-ion interactions contribute to the transport properties, not just the cation-anion interaction. The composition dependence of the transport properties is compared to previously reported data for the same and related compounds: in contrast to high-temperature molten salt mixtures, this is an exponential dependence. The Nernst-Einstein parameter Δ, which contains information on the correlations of the ionic velocities and is determined by differences in the VCC for the various ion-ion combinations, was calculated for both the neat ionic liquid and its binary mixture. It increases with increasing lithium concentration. The new data set also allows some conclusions with regards to the lithium-[FSI] - coordination environment.
NASA Astrophysics Data System (ADS)
Carrad, Damon J.; Mostert, Bernard; Meredith, Paul; Micolich, Adam P.
2016-09-01
A key task in bioelectronics is the transduction between ionic/protonic signals and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics. We present our work on a new class of organic-inorganic transducing interface utilising semiconducting InAs and GaAs nanowires directly gated with a proton transporting hygroscopic polymer consisting of undoped polyethylene oxide (PEO) patterned to nanoscale dimensions by a newly developed electron-beam lithography process [1]. Remarkably, we find our undoped PEO polymer electrolyte gate dielectric [2] gives equivalent electrical performance to the more traditionally used LiClO4-doped PEO [3], with an ionic conductivity three orders of magnitude higher than previously reported for undoped PEO [4]. The observed behaviour is consistent with proton conduction in PEO. We attribute our undoped PEO-based devices' performance to the small external surface and high surface-to-volume ratio of both the nanowire conducting channel and patterned PEO dielectric in our devices, as well as the enhanced hydration afforded by device processing and atmospheric conditions. In addition to studying the basic transducing mechanisms, we also demonstrate high-fidelity ionic to electronic conversion of a.c. signals at frequencies up to 50 Hz. Moreover, by combining complementary n- and p-type transducers we demonstrate functional hybrid ionic-electronic circuits can achieve logic (NOT operation), and with some further engineering of the nanowire contacts, potentially also amplification. Our device structures have significant potential to be scaled towards realising integrated bioelectronic circuitry. [1] D.J. Carrad et al., Nano Letters 14, 94 (2014). [2] D.J. Carrad et al., Manuscript in preparation (2016). [3] S.H. Kim et al., Advanced Materials 25, 1822 (2013). [4] S.K. Fullerton-Shirey et al., Macromolecules 42, 2142 (2009).
High-performance ionic diode membrane for salinity gradient power generation.
Gao, Jun; Guo, Wei; Feng, Dan; Wang, Huanting; Zhao, Dongyuan; Jiang, Lei
2014-09-03
Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ∼7 nm, negatively charged) and macroporous alumina (pore size ∼80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m(2) is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.
Ionic liquids in chemical engineering.
Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter
2010-01-01
The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.
NASA Astrophysics Data System (ADS)
Bradford, S. A.
2016-12-01
The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, radionuclides, pesticides, and antibiotics). This presentation highlights our research activities to better understand and predict the influence of specific biogeochemical processes on colloid and colloid-facilitated transport. Results demonstrate the sensitivity of colloid transport, retention, release, and clogging to transients in solution chemistry (e.g., ionic strength, pH, cation and anion type, and surfactants), water velocity and saturation, and preferential flow. Mathematical modeling at interface-, pore-, and continuum-scales is shown to be a critical tool to quantify the relative importance and coupling of these biogeochemical factors on colloid and contaminant transport and fate, which otherwise might be experimentally intractable. Existing gaps in knowledge and model limitations are identified.
NASA Astrophysics Data System (ADS)
Vargas-Barbosa, Nella M.; Roling, Bernhard
2018-05-01
The potential of zero charge (PZC) is a fundamental property that describes the electrode/electrolyte interface. The determination of the PZC at electrode/ionic liquid interfaces has been challenging due to the lack of models that fully describe these complex interfaces as well as the non-standardized approaches used to characterize them. In this work, we present a method that combines electrode immersion transient and impedance measurements for the determination of the PZC. This combined approach allows the distinction of the potential of zero free charge (pzfc), related to fast double layer charging on a millisecond timescale, from a potential of zero charge on a timescale of tens of seconds related to slower ion transport processes at the interface. Our method highlights the complementarity of these electrochemical techniques and the importance of selecting the correct timescale to execute experiments and interpret the results.
Ionic-Liquid-Based CO2 Capture Systems: Structure, Interaction and Process.
Zeng, Shaojuan; Zhang, Xiangping; Bai, Lu; Zhang, Xiaochun; Wang, Hui; Wang, Jianji; Bao, Di; Li, Mengdie; Liu, Xinyan; Zhang, Suojiang
2017-07-26
The inherent structure tunability, good affinity with CO 2 , and nonvolatility of ionic liquids (ILs) drive their exploration and exploitation in CO 2 separation field, and has attracted remarkable interest from both industries and academia. The aim of this Review is to give a detailed overview on the recent advances on IL-based materials, including pure ILs, IL-based solvents, and IL-based membranes for CO 2 capture and separation from the viewpoint of molecule to engineering. The effects of anions, cations and functional groups on CO 2 solubility and selectivity of ILs, as well as the studies on degradability of ILs are reviewed, and the recent developments on functionalized ILs, IL-based solvents, and IL-based membranes are also discussed. CO 2 separation mechanism with IL-based solvents and IL-based membranes are explained by combining molecular simulation and experimental characterization. Taking into consideration of the applications and industrialization, the recent achievements and developments on the transport properties of IL fluids and the process design of IL-based processes are highlighted. Finally, the future research challenges and perspectives of the commercialization of CO 2 capture and separation with IL-based materials are posed.
Characterization of Thallium Bromide (TlBr) for Room Temperature Radiation Detectors
NASA Astrophysics Data System (ADS)
Smith, Holland McTyeire
Thallium bromide (TlBr) has emerged as a remarkably well-suited material for room temperature radiation detection. The unique combination of high-Z elements, high density, suitable band gap, and excellent electrical transport properties present in TlBr have brought device performance up to par with CdZnTe (CZT), the current market-leading room temperature radiation detector material. TlBr research is at an earlier stage than that of CZT, giving hope that the material will see even further improvement in electronic properties. Improving a resistive semiconductor material requires knowledge of deep levels present in the material and the effects of these deep levels on transport properties. Very few deep level studies have been conducted on TlBr, and none with the depth required to generate useful growth suggestions. In this dissertation, deep levels in nominally undoped and doped TlBr samples are studied with electrical and optical methods. Photo-Induced Conductivity Transient Spectroscopy (PICTS) is used to discover many deep levels in TlBr electrically. These levels are compared to sub-band gap optical transitions originating from defects observed in emission spectra. The results of this research indicate that the origin of resistivity in TlBr is likely due to deep level defects pinning the Fermi level at least ˜0.7 eV from either the conduction or valence band edge. The effect of dopants and deep levels on transport in TlBr is assessed with microwave photoconductivity decay analysis. It is found that Pb-, Se-, and O-doping decreases carrier lifetime in TlBr, whereas C-doping does not. TlBr exhibits weak ionic conductivity at room temperature, which both negatively affects the leakage current of detectors and leads to device degradation over time. Researchers are actively looking for ways to reduce or eliminate the ionic conductivity, but are faced with an intriguing challenge of materials engineering: is it possible to mitigate the ionic conduction of TlBr without harming the excellent electronic transport properties? Doping TlBr in order to control the ionic conductivity has been proposed and shown to be effective in reducing dark ionic current, but the electronic effects of the dopants has not been previously studied in detail. In this dissertation, the electronic effects of dopants introduced for ionic reasons are evaluated.
A microdot multilayer oxide device: let us tune the strain-ionic transport interaction.
Schweiger, Sebastian; Kubicek, Markus; Messerschmitt, Felix; Murer, Christoph; Rupp, Jennifer L M
2014-05-27
In this paper, we present a strategy to use interfacial strain in multilayer heterostructures to tune their resistive response and ionic transport as active component in an oxide-based multilayer microdot device on chip. For this, fabrication of strained multilayer microdot devices with sideways attached electrodes is reported with the material system Gd0.1Ce0.9O(2-δ)/Er2O3. The fast ionic conducting Gd0.1Ce0.9O(2-δ) single layers are altered in lattice strain by the electrically insulating erbia phases of a microdot. The strain activated volume of the Gd0.1Ce0.9O(2-δ) is investigated by changing the number of individual layers from 1 to 60 while keeping the microdot at a constant thickness; i.e., the proportion of strained volume was systematically varied. Electrical measurements showed that the activation energy of the devices could be altered by Δ0.31 eV by changing the compressive strain of a microdot ceria-based phase by more than 1.16%. The electrical conductivity data is analyzed and interpreted with a strain volume model and defect thermodynamics. Additionally, an equivalent circuit model is presented for sideways contacted multilayer microdots. We give a proof-of-concept for microdot contacting to capture real strain-ionic transport effects and reveal that for classic top-electrode contacting the effect is nil, highlighting the need for sideways electric contacting on a nanoscopic scale. The near order ionic transport interaction is supported by Raman spectroscopy measurements. These were conducted and analyzed together with fully relaxed single thin film samples. Strain states are described relative to the strain activated volumes of Gd0.1Ce0.9O(2-δ) in the microdot multilayer. These findings reveal that strain engineering in microfabricated devices allows altering the ionic conduction over a wide range beyond classic doping strategies for single films. The reported fabrication route and concept of strained multilayer microdots is a promising path for applying strained multilayer oxides as active new building blocks relevant for a broad range of microelectrochemical devices, e.g., resistive switching memory prototypes, resistive or electrochemical sensors, or as active catalytic solid state surface components for microfuel cells or all-solid-state batteries.
Method and apparatus for processing algae
Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto
2012-07-03
Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.
Solangi, Amber; Bond, Alan M; Burgar, Iko; Hollenkamp, Anthony F; Horne, Michael D; Rüther, Thomas; Zhao, Chuan
2011-06-02
Electrochemical studies in room temperature ionic liquids are often hampered by their relatively high viscosity. However, in some circumstances, fast exchange between participating electroactive species has provided beneficial enhancement of charge transport. The iodide (I¯)/iodine (I(2))/triiodide (I(3)¯) redox system that introduces exchange via the I¯ + I(2) ⇌ I(3)¯ process is a well documented example because it is used as a redox mediator in dye-sensitized solar cells. To provide enhanced understanding of ion movement in RTIL media, a combined electrochemical and NMR study of diffusion in the {SeCN¯-(SeCN)(2)-(SeCN)(3)¯} system has been undertaken in a selection of commonly used RTILs. In this system, each of the Se, C and N nuclei is NMR active. The electrochemical behavior of the pure ionic liquid, [C(4)mim][SeCN], which is synthesized and characterized here for the first time, also has been investigated. Voltammetric studies, which yield readily interpreted diffusion-limited responses under steady-state conditions by means of a Random Assembly of Microdisks (RAM) microelectrode array, have been used to measure electrochemically based diffusion coefficients, while self-diffusion coefficients were measured by pulsed field gradient NMR methods. The diffusivity data, derived from concentration and field gradients respectively, are in good agreement. The NMR data reveal that exchange processes occur between selenocyanate species, but the voltammetric data show the rates of exchange are too slow to enhance charge transfer. Thus, a comparison of the iodide and selenocyanate systems is somewhat paradoxical in that while the latter give RTILs of low viscosity, sluggish exchange kinetics prevent any significant enhancement of charge transfer through direct electron exchange. In contrast, faster exchange between iodide and its oxidation products leads to substantial electron exchange but this effect does not compensate sufficiently for mass transport limitations imposed by the higher viscosity of iodide RTILs.
Cacace, V I; Montalbetti, N; Kusnier, C; Gomez, M P; Fischbarg, J
2011-09-01
The corneal endothelium is a fluid-transporting epithelium. As other similar tissues, it displays an electrical potential of ~1 mV (aqueous side negative) across the entire layer [transendothelial potential difference (TEPD)]. It appears that this electrical potential is mainly the result of the transport of anions across the cell layer (from stroma to aqueous). There is substantial evidence that the TEPD is related linearly to fluid transport; hence, under proper conditions, its measure could serve as a measure of fluid transport. Furthermore, the TEPD is not steady; instead, it displays a spectrum of frequency components (0-15 Hz) recognized recently using Fourier transforms. Such frequency components appear due to charge-separating (electrogenic) processes mediated by epithelial plasma membrane proteins (both ionic channels and ionic cotransporters). In particular, the endothelial TEPD oscillations of the highest amplitude (1-2 Hz) were linked to the operation of so-called sodium bicarbonate cotransporters. However, no time localization of that activity could be obtained with the Fourier methodology utilized. For that reason we now characterize the TEPD using wavelet analysis with the aim to localize in time the variations in TEPD. We find that the mentioned high-amplitude oscillatory components of the TEPD appear cyclically during the several hours that an endothelial preparation survives in vitro. They have a period of 4.6 ± 0.4 s on average (n=4). The wavelet power value at the peak of such oscillations is 1.5 ± 0.1 mV(2) Hz on average (n = 4), and is remarkably narrow in its distribution.
Symmetric supercapacitor: Sulphurized graphene and ionic liquid.
Shaikh, Jasmin S; Shaikh, Navajsharif S; Kharade, Rohini; Beknalkar, Sonali A; Patil, Jyoti V; Suryawanshi, Mahesh P; Kanjanaboos, Pongsakorn; Hong, Chang Kook; Kim, Jin Hyeok; Patil, Pramod S
2018-10-01
Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature. For high performance supercapacitor, the interaction between ionic liquid electrolyte and graphene are crucial for better charge transportation. In respect of this, a three-dimensional (3D) nanoporous honeycomb shaped sulfur embedded graphene (S-graphene) has been synthesized by simple chemical method. Here, the fabrication of high performance symmetric supercapacitor is done by using S-graphene as an electrode and [BMIM-PF 6 ] as an electrolyte. The particular architecture of S-graphene benefited to reduce the ion diffusion resistance, providing the large surface area for charge transportation and efficient charge storage. The S-graphene and ionic liquid-based symmetric supercapacitor device showed the large potential window of 3.2 V with high energy density 124 Wh kg -1 at 0.2 A g -1 constant applied current density. Furthermore, this device shows good cycling performance (stability) with a capacitive retention of 95% over 20,000 cycles at a higher current density of 2 A g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.
Capacitive Deionization of High-Salinity Solutions
Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; ...
2014-12-22
Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride ( 6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride ( 6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionicmore » concentration profiles inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.« less
NASA Technical Reports Server (NTRS)
Haskins, Justin Bradley; Bennett, William Raymond; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W., Jr.; Watson, John W.
2014-01-01
Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li (-) salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing xLi, the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Bennett, William R.; Hernandez-Lugo, Dione M.; Wu, James; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.
2014-01-01
Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-Nbutylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-Npropylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of x(sub Li) we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing x(sub Li), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of x(sub Li) is approximately 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 - 0.3 mS/cm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).
Co-transport of gold nanospheres with single-walled carbon nanotubes in saturated porous media.
Afrooz, A R M Nabiul; Das, Dipesh; Murphy, Catherine J; Vikesland, Peter; Saleh, Navid B
2016-08-01
Porous media transport of engineered nanomaterials (ENMs) is typically assessed in a controlled single-particulate environment. Presence of a secondary particle (either natural or engineered) in the natural environment though likely, is rarely taken into consideration in assessing ENMs' transport behavior. This study systematically assesses the effect of a secondary ENM (i.e., pluronic acid modified single-walled carbon nanotubes, PA-SWNTs) on a primary particle (i.e., gold nanospheres, AuNSs) transport through saturated porous media under a wide range of aquatic conditions (1-100 mM NaCl). AuNS hetero-dispersions (i.e., with PA-SWNTs) are transported through saturated sand columns, and the transport behavior is compared to AuNS-only homo-dispersion cases, which display classical ionic strength-dependent behavior. AuNS hetero-dispersion, however, is highly mobile with little to no ionic strength-dependent effects. This study also assesses the role of pre-coating of the collectors with PA-SWNTs on AuNSs' mobility, thereby elucidating the role played by the order of introduction of the secondary particles. Pre-existence of the secondary particles in the porous media shows enhanced filtration of primary AuNSs. However, the presence of natural organic matter (NOM) slightly increases AuNS mobility through PA-SWNT coated sand at 10 mM ionic strength. The study results demonstrate that the presence and order of addition of the secondary particles strongly influence primary particles' mobility. Thus ENMs can demonstrate facilitated transport or enhanced removal, depending on the presence of the secondary particulate matter and background solution chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution
Mohamed, Elsayed T.; Wang, Shizeng; Lennen, Rebecca M.; ...
2017-11-16
There is a need to replace petroleum-derived with sustainable feedstocks for chemical production. Certain biomass feedstocks can meet this need as abundant, diverse, and renewable resources. Specific ionic liquids (ILs) can play a role in this process as promising candidates for chemical pretreatment and deconstruction of plant-based biomass feedstocks as they efficiently release carbohydrates which can be fermented. However, the most efficient pretreatment ILs are highly toxic to biological systems, such as microbial fermentations, and hinder subsequent bioprocessing of fermentative sugars obtained from IL-treated biomass. To generate strains capable of tolerating residual ILs present in treated feedstocks, a tolerance adaptivemore » laboratory evolution (TALE) approach was developed and utilized to improve growth of two different Escherichia coli strains, DH1 and K-12 MG1655, in the presence of two different ionic liquids, 1-ethyl-3-methylimidazolium acetate ([C 2C 1Im][OAc] ) and 1-butyl-3-methylimidazolium chloride ([C 4C 1Im]Cl). For multiple parallel replicate populations of E. coli, cells were repeatedly passed to select for improved fitness over the course of approximately 40 days. Clonal isolates were screened and the best performing isolates were subjected to whole genome sequencing. The most prevalent mutations in tolerant clones occurred in transport processes related to the functions of mdtJI, a multidrug efflux pump, and yhdP, an uncharacterized transporter. Additional mutations were enriched in processes such as transcriptional regulation and nucleotide biosynthesis. Finally, the best-performing strains were compared to previously characterized tolerant strains and showed superior performance in tolerance of different IL and media combinations (i.e., cross tolerance) with robust growth at 8.5% (w/v) and detectable growth up to 11.9% (w/v) [C 2C 1Im][OAc]. The generated strains thus represent the best performing platform strains available for bioproduction utilizing IL-treated renewable substrates, and the TALE method was highly successful in overcoming the general issue of substrate toxicity and has great promise for use in tolerance engineering.« less
Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Elsayed T.; Wang, Shizeng; Lennen, Rebecca M.
There is a need to replace petroleum-derived with sustainable feedstocks for chemical production. Certain biomass feedstocks can meet this need as abundant, diverse, and renewable resources. Specific ionic liquids (ILs) can play a role in this process as promising candidates for chemical pretreatment and deconstruction of plant-based biomass feedstocks as they efficiently release carbohydrates which can be fermented. However, the most efficient pretreatment ILs are highly toxic to biological systems, such as microbial fermentations, and hinder subsequent bioprocessing of fermentative sugars obtained from IL-treated biomass. To generate strains capable of tolerating residual ILs present in treated feedstocks, a tolerance adaptivemore » laboratory evolution (TALE) approach was developed and utilized to improve growth of two different Escherichia coli strains, DH1 and K-12 MG1655, in the presence of two different ionic liquids, 1-ethyl-3-methylimidazolium acetate ([C 2C 1Im][OAc] ) and 1-butyl-3-methylimidazolium chloride ([C 4C 1Im]Cl). For multiple parallel replicate populations of E. coli, cells were repeatedly passed to select for improved fitness over the course of approximately 40 days. Clonal isolates were screened and the best performing isolates were subjected to whole genome sequencing. The most prevalent mutations in tolerant clones occurred in transport processes related to the functions of mdtJI, a multidrug efflux pump, and yhdP, an uncharacterized transporter. Additional mutations were enriched in processes such as transcriptional regulation and nucleotide biosynthesis. Finally, the best-performing strains were compared to previously characterized tolerant strains and showed superior performance in tolerance of different IL and media combinations (i.e., cross tolerance) with robust growth at 8.5% (w/v) and detectable growth up to 11.9% (w/v) [C 2C 1Im][OAc]. The generated strains thus represent the best performing platform strains available for bioproduction utilizing IL-treated renewable substrates, and the TALE method was highly successful in overcoming the general issue of substrate toxicity and has great promise for use in tolerance engineering.« less
Biologically Inspired Electronic, Photovoltaic and Microfluidic Devices Based on Aqueous Soft Matter
NASA Astrophysics Data System (ADS)
Koo, Hyung Jun
Hydrogels are a water-based soft material where three dimensional networks of hydrophilic polymer retain large amounts of water. We developed hydrogel based devices with new functionalities inspired by materials, structures and processes in nature. The advantages, such as softness, biocompatibility and high ionic conductivity, could enable hydrogels to be novel materials for biomimetic devices operated by ionic current. Moreover, microfluidic patterns are easily embedded in moldable hydrogels and allow for unique convective/diffusive transport mechanism in porous gel to be used for uniform delivery of reagent solution. We first developed and characterized a device with unidirectional ionic current flow across a SiO2/Gel junction, which showed highly efficient rectification of the ionic current by non-linear conductivity of SiO2 films. Addition of polyelectrolytes and salt to the gel layer significantly improved the performance of the new diode device because of the enhanced gel conductance. A soft matter based diode composed of hydrogel and liquid metal (eutectic gallium indium, EGaIn) was also presented. The ability to control the thickness, and thus resistivity, of an insulating oxide skin on the metal enables the current rectification. The effect of ionic conductivity and pH on the formation of the insulating oxide was investigated in a simple model system with liquid metal/electrolyte solution or hydrogel/Pt interfaces. Finally, we present a diode composed entirely of soft materials by replacing the platinum electrode with a second liquid metal electrode. A new type of hydrogel-based photovoltaic systems (HGPVs) was constructed. Two photosensitive ionized molecules embedded in aqueous gel served as photoactive species. The HGPVs showed performance comparable with or higher than those of some other biomimetic or ionic photovoltaic systems reported recently. We suggest a provisional mechanism of the device operation, based on a synergetic effect of the two dye molecules. To reduce the fabrication cost without efficiency loss, we found an inexpensive replacement of the expensive Pt counter-electrode with copper coated with carbon materials. Biologically derived photoactive molecules, such as Chlorophyll and Photosystem II, were successfully operated in the aqueous gel of such HGPVs. As a proof of demonstration of biomimetic structures, a light driven biomimetic reactor was developed by using hydrogel media with embedded photocatalytic TiO2 nanoparticles. Uniform supply of the reactants and extraction of the products was accomplished via a microfluidic channel network, broadly similar to the vein structure of live leaves. The dyes were transported in the gel between the microchannels and degraded by photocatalytic oxidation by the illuminated TiO2 particles. Quantitative analysis of the photocatalytic degradation rate of the injected dyes revealed that the microvascular reactor has high quantum efficiency per catalyst mass. Numerical modeling was performed to explore how a soluble reagent could be supplied rapidly and efficiently through microfluidic channel networks embedded in hydrogels. The computational model takes into account the fluid transport in porous media and the solute convection and diffusion, to simulate the solute distribution and outflux with time in microfluidic hydrogel media. The effect of the channel dimensions and shapes on mass transport rapidity and efficiency was quantitatively evaluated. Experimental data proved the validity of the time dependent concentration profile calculated by the simulation. Lastly, a microfluidic hydrogel solar cell with biomimetic regeneration functionality was demonstrated as a result of the above experimental and modeling studies. A new concept of open and replenishable photovoltaics was constructed on the basis of dye-sensitized solar cells. Photovoltaic reagents, dyes and redox electrolytes, were uniformly delivered via microfluidic networks embedded in a hydrogel, resulting in increase of photocurrent generation. The regeneration process was established, based on the pH dependence of adsorption/desorption kinetics of the dye molecules on a TiO2 photoanode. Complete and reliable recovery of the photocurrent after an accelerated photodegradation in the biomimetic photovoltaics was demonstrated.
Role of bundle helices in a regulatory crosstalk in the trimeric betaine transporter BetP.
Gärtner, Rebecca M; Perez, Camilo; Koshy, Caroline; Ziegler, Christine
2011-12-02
The Na(+)-coupled betaine symporter BetP regulates transport activity in response to hyperosmotic stress only in its trimeric state, suggesting a regulatory crosstalk between individual protomers. BetP shares the overall fold of two inverted structurally related five-transmembrane (TM) helix repeats with the sequence-unrelated Na(+)-coupled symporters LeuT, vSGLT, and Mhp1, which are neither trimeric nor regulated in transport activity. Conformational changes characteristic for this transporter fold involve the two first helices of each repeat, which form a four-TM-helix bundle. Here, we identify two ionic networks in BetP located on both sides of the membrane that might be responsible for BetP's unique regulatory behavior by restricting the conformational flexibility of the four-TM-helix bundle. The cytoplasmic ionic interaction network links both first helices of each repeat in one protomer to the osmosensing C-terminal domain of the adjacent protomer. Moreover, the periplasmic ionic interaction network conformationally locks the four-TM-helix bundle between the same neighbor protomers. By a combination of site-directed mutagenesis, cross-linking, and betaine uptake measurements, we demonstrate how conformational changes in individual bundle helices are transduced to the entire bundle by specific inter-helical interactions. We suggest that one purpose of bundle networking is to assist crosstalk between protomers during transport regulation by specifically modulating the transition from outward-facing to inward-facing state. Copyright © 2011 Elsevier Ltd. All rights reserved.
Size and Charge Dependence of Ion Transport in Human Nail Plate
Baswan, Sudhir M.; Li, S. Kevin; LaCount, Terri D.; Kasting, Gerald B.
2016-01-01
The electrical properties of human nail plate are poorly characterized, yet are a key determinate of the potential to treat nail diseases such as onychomycosis using iontophoresis. In order to address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of −1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were three-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upwards of 5 Å (approximately MW ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. PMID:26886342
Yamaguchi, Tsuyoshi; Yonezawa, Takuya; Koda, Shinobu
2015-07-15
The frequency-dependent viscosity and conductivity of three imidazolium-based ionic liquids were measured at several temperatures in the MHz region, and the results are compared with the intermediate scattering functions determined by neutron spin echo spectroscopy. The relaxations of both the conductivity and the viscosity agree with that of the intermediate scattering function at the ionic correlation when the relaxation time is short. As the relaxation time increases, the relaxations of the two transport properties deviate to lower frequencies than that of the ionic structure. The deviation begins at a shorter relaxation time for viscosity than for conductivity, which explains the fractional Walden rule between the zero-frequency values of the shear viscosity and the molar conductivity.
Communication: Dimensionality of the ionic conduction pathways in glass and the mixed-alkali effect.
Novy, Melissa; Avila-Paredes, Hugo; Kim, Sangtae; Sen, Sabyasachi
2015-12-28
A revised empirical relationship between the power law exponent of ac conductivity dispersion and the dimensionality of the ionic conduction pathway is established on the basis of electrical impedance spectroscopic (EIS) measurements on crystalline ionic conductors. These results imply that the "universal" ac conductivity dispersion observed in glassy solids is associated with ionic transport along fractal pathways. EIS measurements on single-alkali glasses indicate that the dimensionality of this pathway D is ∼2.5, while in mixed-alkali glasses, D is lower and goes through a minimum value of ∼2.2 when the concentrations of the two alkalis become equal. D and σ display similar variation with alkali composition, thus suggesting a topological origin of the mixed-alkali effect.
Khatri, Natasha; Man, Heng-Ye
2013-01-01
Powered by glucose metabolism, the brain is the most energy-demanding organ in our body. Adequate ATP production and regulation of the metabolic processes are essential for the maintenance of synaptic transmission and neuronal function. Glutamatergic synaptic activity utilizes the largest portion of bioenergy for synaptic events including neurotransmitter synthesis, vesicle recycling, and most importantly, the postsynaptic activities leading to channel activation and rebalancing of ionic gradients. Bioenergy homeostasis is coupled with synaptic function via activities of the sodium pumps, glutamate transporters, glucose transport, and mitochondria translocation. Energy insufficiency is sensed by the AMP-activated protein kinase (AMPK), a master metabolic regulator that stimulates the catalytic process to enhance energy production. A decline in energy supply and a disruption in bioenergy homeostasis play a critical role in multiple neuropathological conditions including ischemia, stroke, and neurodegenerative diseases including Alzheimer’s disease and traumatic brain injuries. PMID:24376435
Balme, Sébastien; Picaud, Fabien; Manghi, Manoel; Palmeri, John; Bechelany, Mikhael; Cabello-Aguilar, Simon; Abou-Chaaya, Adib; Miele, Philippe; Balanzat, Emmanuel; Janot, Jean Marc
2015-01-01
Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 μm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10−2 C m−2 needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed. PMID:26036687
Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M.
2004-01-01
The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.
Structure and Dynamics Ionic Block co-Polymer Melts: Computational Study
NASA Astrophysics Data System (ADS)
Aryal, Dipak; Perahia, Dvora; Grest, Gary S.
Tethering ionomer blocks into co-polymers enables engineering of polymeric systems designed to encompass transport while controlling structure. Here the structure and dynamics of symmetric pentablock copolymers melts are probed by fully atomistic molecular dynamics simulations. The center block consists of randomly sulfonated polystyrene with sulfonation fractions f = 0 to 0.55 tethered to a hydrogenated polyisoprene (PI), end caped with poly(t-butyl styrene). We find that melts with f = 0.15 and 0.30 consist of isolated ionic clusters whereas melts with f = 0.55 exhibit a long-range percolating ionic network. Similar to polystyrene sulfonate, a small number of ionic clusters slow the mobility of the center of mass of the co-polymer, however, formation of the ionic clusters is slower and they are often intertwined with PI segments. Surprisingly, the segmental dynamics of the other blocks are also affected. NSF DMR-1611136; NERSC; Palmetto Cluster Clemson University; Kraton Polymers US, LLC.
Self‐Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery
Wu, Feng; Chen, Nan; Zhu, Qizhen; Tan, Guoqiang; Li, Li
2016-01-01
The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator‐based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable “nanogelator” that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid‐like apparent ionic conductivity of 2.93 × 10−3 S cm−1 at room temperature. The results show that the nanogelator, which possess self‐regulating ability, is able to immobilize imidazolium‐, pyrrolidinium‐, or piperidinium‐based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti‐nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes. PMID:27774385
Wu, Feng; Chen, Nan; Chen, Renjie; Zhu, Qizhen; Tan, Guoqiang; Li, Li
2016-01-01
The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator-based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable "nanogelator" that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid-like apparent ionic conductivity of 2.93 × 10 -3 S cm -1 at room temperature. The results show that the nanogelator, which possess self-regulating ability, is able to immobilize imidazolium-, pyrrolidinium-, or piperidinium-based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti-nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes.
In Situ Probing of Ion Ordering at an Electrified Ionic Liquid/Au Interface
Sitaputra, Wattaka; Stacchiola, Dario; Wishart, James F.; ...
2017-05-12
Charge transport at the interface of electrodes and ionic liquids is critical for the use of the latter as electrolytes. In this study, a room-temperature ionic liquid, 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (EMMIM TFSI), is investigated in situ under applied bias voltage with a novel method using low-energy electron and photoemission electron microscopy. Changes in photoelectron yield as a function of bias applied to electrodes provide a direct measure of the dynamics of ion reconfiguration and electrostatic responses of the EMMIM TFSI. Finally, long-range and correlated ionic reconfigurations that occur near the electrodes are found to be a function of temperature and thickness,more » which, in turn, relate to ionic mobility and different configurations for out-of-plane ordering near the electrode interfaces, with a critical transition in ion mobility for films thicker than three monolayers.« less
Robust and versatile ionic liquid microarrays achieved by microcontact printing
NASA Astrophysics Data System (ADS)
Gunawan, Christian A.; Ge, Mengchen; Zhao, Chuan
2014-04-01
Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.
Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, Allan J.; Morgan, Dane; Grey, Clare
2014-08-31
The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B 2O 5+x, where A = rare earth ion, Y and B = Ba, Sr were studied.more » The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo 2O 5+x and NdBaCo 2O 5+x, PrBaCo 2-xFexO 6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO 6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr 3YCo 4O 10.5, YBaMn 2O 5+x. A 0.5A’ 0.5BO 3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr, Ba; and B= Fe, Co, Mn, Ni), Ba 2In 2O 5, and La 1 xSr xCoO 3-δ /(La 1-ySry) 2CoO 4±δ interfaces.« less
Multiple functions of neuronal plasma membrane neurotransmitter transporters.
Raiteri, Luca; Raiteri, Maurizio
2015-11-01
Removal from receptors of neurotransmitters just released into synapses is one of the major steps in neurotransmission. Transporters situated on the plasma membrane of nerve endings and glial cells perform the process of neurotransmitter (re)uptake. Because the density of transporters in the membranes can fluctuate, transporters can determine the transmitter concentrations at receptors, thus modulating indirectly the excitability of neighboring neurons. Evidence is accumulating that neurotransmitter transporters can exhibit multiple functions. Being bidirectional, neurotransmitter transporters can mediate transmitter release by working in reverse, most often under pathological conditions that cause ionic gradient dysregulations. Some transporters reverse to release transmitters, like dopamine or serotonin, when activated by 'indirectly acting' substrates, like the amphetamines. Some transporters exhibit as one major function the ability to capture transmitters into nerve terminals that perform insufficient synthesis. Transporter activation can generate conductances that regulate directly neuronal excitability. Synaptic and non-synaptic transporters play different roles. Cytosolic Na(+) elevations accompanying transport can interact with plasmalemmal or/and mitochondrial Na(+)/Ca(2+) exchangers thus generating calcium signals. Finally, neurotransmitter transporters can behave as receptors mediating releasing stimuli able to cause transmitter efflux through multiple mechanisms. Neurotransmitter transporters are therefore likely to play hitherto unknown roles in multiple therapeutic treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Patuzzi, Robert
2011-07-01
This paper reviews some of what is known about ion transport through the cells of the mammalian stria vascularis, and discusses how the endolymph and endocochlear potential in scala media are produced by the stria's main cell types. It discusses the role of each cells' ion transport proteins from an engineering perspective, and the advantages and disadvantages in using the different transport proteins in the different cells to perform their different roles. To aid this discussion, the use of spreadsheet analysis in the modelling of ion transport in single cells and homogenous epithelia is outlined, including the current-voltage (IV) characteristics of the three main categories of transport proteins (pores, ports and pumps), and the constraint equations that apply under various conditions (the voltage or ionic steady states in the open- and closed-circuit conditions). Also discussed are the circulation of K(+) within the cochlea, and the chloride, salt and water balance of scala media and stria vascularis, and what transport processes may be required to maintain such a balance. Copyright © 2011 Elsevier B.V. All rights reserved.
Dubinin, M V; Vedernikov, A A; Khoroshavina, E I; Samartsev, V N
2014-06-01
In liver mitochondria loaded with Ca2+ or Sr(2+), α,ω-hexadecanedioic acid (HDA) can induce nonspecific permeability of the inner membrane (mitochondrial pore) by the mechanism insensitive to cyclosporin A (CsA). In this work we studied the effect of ionic strength of the incubation medium on the kinetics of the processes that accompany Ca2+-dependent induction of the mitochondrial pore by fatty acid: organelle swelling, Ca2+ release from the matrix, changes in transmembrane potential (Δψ) and rate of oxygen consumption, and the release of cytochrome c from the intermembrane space. Two basic incubation media were used: sucrose medium and isotonic ionic medium containing KCl without sucrose. We found that 200 μM Ca2+ and 20 μM HDA in the presence of CsA effectively induce high-amplitude swelling of mitochondria both in the case of sucrose and in the ionic incubation medium. In the presence of CsA, mitochondria can rapidly absorb Ca2+ and retain it in the matrix for a while without reducing Δψ. Upon incubation in the ionic medium, mitochondria retain most of the added Ca2+ in the matrix for a short time without reducing the Δψ. In both cases the addition of HDA to the mitochondria 2 min after the introduction of Ca2+ leads to the rapid release of these ions from the matrix and total drop in Δψ. The mitochondrial swelling induced by Ca2+ and HDA in non-ionic medium is accompanied by almost maximal stimulation of respiration. Under the same conditions, but during incubation of mitochondria in the ionic medium, it is necessary to add cytochrome c for significant stimulation of respiration. The mitochondrial swelling induced by Ca2+ and HDA leads to the release of cytochrome c in a larger amount in the case of ionic medium than for the sucrose medium. We conclude that high ionic strength of the incubation medium determines the massive release of cytochrome c from mitochondria and liberates it from the respiratory chain, which leads to blockade of electron transport along the respiratory chain and consequently to disruption of the energy functions of the organelles.
Conductivities of the ionic complexes of two cyclic polyethers
NASA Technical Reports Server (NTRS)
Fielder, W. L.; Odonnell, P. M.
1975-01-01
The conductivities of the solid potassium thiocyanate complex of both dicyclohexyl-18-crown-6 and dibenzo-18-crown-6 were measured at 300K (27 C). Saturated aqueous potassium thiocyanate and graphite were used as ion-transporting and ion-blocking electrodes, respectively. The ionic conductivity predominated for both samples, but it was many orders of magnitude smaller than the value previously reported. The ionic conductivity of the dicyclohexyl complex (the better conductor) was 0.000003 ohm/cm. Crown complexes, in general, do not appear promising as potassium ion solid electrolytes contrary to claims in the patent literature.
NASA Astrophysics Data System (ADS)
Szymanski, Marek Z.; Kulszewicz-Bajer, Irena; Faure-Vincent, Jérôme; Djurado, David
2012-08-01
We have studied hole transport in triarylamine based dendrimer using space-charge-limited current transient technique. A mobility of 8 × 10-6 cm2/(V s) and a characteristic detrapping time of about 100 ms have been obtained. We found that quasi-ohmic contact is formed with gold. The obtained mobility differs from the apparent one given by the analysis of stationary current-voltage characteristics because of a limited contact efficiency. The comparison between transients obtained from fresh and aged samples reveals no change in mobility with aging. The deterioration of electrical properties is exclusively caused by trap formation and accumulation of ionic conducting impurities. Finally, repeated transient measurements have been applied to analyze the dynamics of charge trapping process.
NASA Astrophysics Data System (ADS)
Kelly, Mark A.
2011-07-01
Biophysics is the study of the complex physical processes occurring in biological systems that are responsible for life. This dissertation addresses three important topics in biophysics: ionic transport, biomineralization, and force spectroscopy. Ionic transport involves the passage of ions through a special class of hollow, transmembrane proteins called ion channels which regulate the movement of charged species across nearly all biological membranes with varying degrees of specificity. Despite the fundamental importance of these channels to many physiological processes little is known about how channel structure and composition couple to determine its function. Deriving inspiration from these systems, a simple computational platform is developed to study the salient features of these channels in order to better understand the fundamental physics of these systems. The results of this work indicate that a converging-diverging region formed within the pore to create a single constriction is the most effective method to regulate the passage of ions through the pore. By controlling the geometry of the constriction the local potential and chemical gradients can be manipulated to tailor the channel for specific applications. The process of selective extraction and incorporation of local elements from the surrounding environment into functional structures under strict biological control is known as biomineralization. As an initial step to gain a more fundamental understanding of directed crystallization of zinc oxide molecular dynamics simulations were performed to study the conformational behavior of two experimentally derived biomimetic peptides in a precursor solution. Substantial differences in the conformational properties and affinity for zinc and hydroxide ions in solution were observed. These findings are in qualitative agreement with experimental observations. The mechanical response of biopolymers such as RNA and DNA to externally applied forces is a topic that has received wide interest both experimentally and theoretically. In the first of two separate force spectroscopy studies, the mechanical response of linear uncharged polymer chains of variable molecular weight subjected to repeated pulling-retraction cycles in poor solvent was investigated. It was found that the observed hysteresis in this system is highly dependent on the speed at which the chain is perturbed. In the second study, the force-induced globule-coil transition of a linear polyelectrolyte chain in poor solvent was examined. It was observed that the magnitude of the change in the degree of ionization of the chain at the transition is a strong function of counterion size and Coulombic strength.
Soft nanoparticles: nano ionic networks of associated ionic polymers
Aryal, Dipak; Grest, Gary S.; Perahia, Dvora
2017-01-01
Directing the formation of nanostructures that serve as building blocks of membranes presents an immense step towards engineering controlled polymeric ion transport systems. Here, using the exquisite atomic detail captured by molecular dynamics simulations, we follow the assembly of a co-polymer that consists of polystyrene sulfonate tethered symmetrically to hydrophobic blocks, realizing a new type of long lived solvent-responsive soft nanoparticle.
NASA Astrophysics Data System (ADS)
Xu, S.; Walczak, J. J.; Wang, L.; Bardy, S. L.; Li, J.
2010-12-01
In this research, we investigate the effects of starvation on the transport of E. coli K12 in saturated porous media. Particularly, we examine the relationship between such effects and the pH and ionic strength of the electrolyte solutions that were used to suspend bacterial cells. E. coli K12 (ATCC 10798) cells were cultured using either Luria-Bertani Miller (LB-Miller) broth (10 g trypton, 5 g yeast extract and 10 g NaCl in 1 L of deionized water) or LB-Luria broth (10 g tryptone, 5 g yeast extract and 0.5 g NaCl in 1 L of deionized water). Both broths had similar pH (~7.1) but differed in ionic strength (LB-Miller: ~170 mM, LB-Luria: ~ 8 mM). The bacterial cells were then harvested and suspended using one of the following electrolyte solutions: phosphate buffered saline (PBS) (pH ~7.2; ionic strength ~170 mM), 168 mM NaCl (pH ~5.7), 5% of PBS (pH ~ 7.2; ionic strength ~ 8 mM) and 8 mM NaCl (pH ~ 5.7). Column transport experiments were performed at 0, 21 and 48 hours following cell harvesting to evaluate the change in cell mobility over time under “starvation” conditions. Our results showed that 1) starvation increased the mobility of E. coli K12 cells; 2) the most significant change in mobility occurred when bacterial cells were suspended in an electrolyte solution that had different pH and ionic strength (i.e., LB-Miller culture suspended in 8 mM NaCl and LB-Luria culture suspended in 168 mM Nacl); and 3) the change in cell mobility primarily occurred within the first 21 hours. The size of the bacterial cells was measured and the surface properties (e.g., zeta potential, hydrophobicity, cell-bound protein, LPS sugar content, outer membrane protein profiles) of the bacterial cells were characterized. We found that the measured cell surface properties could not fully explain the observed changes in cell mobility caused by starvation.
Alteration of corneal epithelial ion transport by sympathectomy.
Klyce, S D; Beuerman, R W; Crosson, C E
1985-04-01
The cornea is dually innervated, receiving afferent nerves from the trigeminal ganglion and efferent nerves from the superior cervical ganglion. This study examines the specific effects of superior cervical ganglionectomy (SCGX) on the in vitro ion transport characteristics of the rabbit corneal epithelium. Two weeks after SCGX, epithelial Cl--dependent transport and total ionic conductance were increased in comparison to values obtained in paired control eyes. This increased transport level appeared to be independent of membrane receptor activity as demonstrated by lack of responsiveness to alpha-adrenergic, beta-adrenergic, serotonergic, dopaminergic, nicotinic cholinergic, or muscarinic cholinergic blockade. Nevertheless, SCGX produced a supersensitivity to epinephrine-stimulated transport as measured by the responsiveness of the ion transport current. Furthermore, SCGX abolished the responsiveness of the epithelium to serotonin. On the basis of these and earlier findings, the authors conclude that corneal sympathetic innervation influences membrane and receptor properties. Autonomic neurotrophic effects in the corneal epithelium include suppression of apical membrane Cl- permeability and of beta-adrenoreceptor sensitivity to biogenic amines. It is proposed that the corneal serotonergic receptors that activate Cl- transport lie on the sympathetic nerve terminals and stimulate this transport process by causing the neural release of a catecholamine.
Ultra-thin solid oxide fuel cells: Materials and devices
NASA Astrophysics Data System (ADS)
Kerman, Kian
Solid oxide fuel cells are electrochemical energy conversion devices utilizing solid electrolytes transporting O2- that typically operate in the 800 -- 1000 °C temperature range due to the large activation barrier for ionic transport. Reducing electrolyte thickness or increasing ionic conductivity can enable lower temperature operation for both stationary and portable applications. This thesis is focused on the fabrication of free standing ultrathin (<100 nm) oxide membranes of prototypical O 2- conducting electrolytes, namely Y2O3-doped ZrO2 and Gd2O3-doped CeO2. Fabrication of such membranes requires an understanding of thin plate mechanics coupled with controllable thin film deposition processes. Integration of free standing membranes into proof-of-concept fuel cell devices necessitates ideal electrode assemblies as well as creative processing schemes to experimentally test devices in a high temperature dual environment chamber. We present a simple elastic model to determine stable buckling configurations for free standing oxide membranes. This guides the experimental methodology for Y 2O3-doped ZrO2 film processing, which enables tunable internal stress in the films. Using these criteria, we fabricate robust Y2O3-doped ZrO2 membranes on Si and composite polymeric substrates by semiconductor and micro-machining processes, respectively. Fuel cell devices integrating these membranes with metallic electrodes are demonstrated to operate in the 300 -- 500 °C range, exhibiting record performance at such temperatures. A model combining physical transport of electronic carriers in an insulating film and electrochemical aspects of transport is developed to determine the limits of performance enhancement expected via electrolyte thickness reduction. Free standing oxide heterostructures, i.e. electrolyte membrane and oxide electrodes, are demonstrated. Lastly, using Y2O3-doped ZrO2 and Gd2O 3-doped CeO2, novel electrolyte fabrication schemes are explored to develop oxide alloys and nanoscale compositionally graded membranes that are thermomechanically robust and provide added interfacial functionality. The work in this thesis advances experimental state-of-the-art with respect to solid oxide fuel cell operation temperature, provides fundamental boundaries expected for ultrathin electrolytes, develops the ability to integrate highly dissimilar material (such as oxide-polymer) heterostructures, and introduces nanoscale compositionally graded electrolyte membranes that can lead to monolithic materials having multiple functionalities.
Tuning the metal-insulator crossover and magnetism in SrRuO 3 by ionic gating
Yi, Hee Taek; Gao, Bin; Xie, Wei; ...
2014-10-13
Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. We report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO 3. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90–250 K and 70–100 K,more » respectively, by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.« less
Field Effect Transistors Using Atomically Thin Layers of Copper Indium Selenide (CuInSe)
NASA Astrophysics Data System (ADS)
Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat
We will report fabrication of field-effect transistors (FETs) using few-layers of Copper Indium Selenide (CuInSe) flakes exfoliated from crystals grown using chemical vapor transport technique. Our transport measurements indicate n-type FET with electron mobility µ ~ 3 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. Mobility can be further increased significantly when ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) is used as top gate. Similarly subthreshold swing can be further improved from 103 V/dec to 0.55 V/dec by using ionic liquid as a top gate. We also found ON/OFF ratio of ~ 102 for both top and back gate. Comparison between ionic liquid top gate and SiO2 back gate will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.
Large apparent electric size of solid-state nanopores due to spatially extended surface conduction.
Lee, Choongyeop; Joly, Laurent; Siria, Alessandro; Biance, Anne-Laure; Fulcrand, Rémy; Bocquet, Lydéric
2012-08-08
Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based on analogies with electric circuits, the surface conductance inside the nanopore is shown to perturb the three-dimensional electric current streamlines far outside the nanopore in order to meet charge conservation at the pore entrance. This unexpected contribution to the ionic conductance can be interpreted in terms of an apparent electric size of the solid-state nanopore, which is much larger than its geometric counterpart whenever the number of charges carried by the nanopore surface exceeds its bulk counterpart. This apparent electric size, which can reach hundreds of nanometers, can have a major impact on the electrical detection of translocation events through nanopores, as well as for ionic transport in biological nanopores.
Tuning the metal-insulator crossover and magnetism in SrRuO₃ by ionic gating.
Yi, Hee Taek; Gao, Bin; Xie, Wei; Cheong, Sang-Wook; Podzorov, Vitaly
2014-10-13
Reversible control of charge transport and magnetic properties without degradation is a key for device applications of transition metal oxides. Chemical doping during the growth of transition metal oxides can result in large changes in physical properties, but in most of the cases irreversibility is an inevitable constraint. Here we report a reversible control of charge transport, metal-insulator crossover and magnetism in field-effect devices based on ionically gated archetypal oxide system - SrRuO₃. In these thin-film devices, the metal-insulator crossover temperature and the onset of magnetoresistance can be continuously and reversibly tuned in the range 90-250 K and 70-100 K, respectively, by application of a small gate voltage. We infer that a reversible diffusion of oxygen ions in the oxide lattice dominates the response of these materials to the gate electric field. These findings provide critical insights into both the understanding of ionically gated oxides and the development of novel applications.
Decoupled Ion Transport in a Protein-Based Solid Ion Conductor.
Fu, Xuewei; Jewel, Yead; Wang, Yu; Liu, Jin; Zhong, Wei-Hong
2016-11-03
Simultaneous achievement of good electrochemical and mechanical properties is crucial for practical applications of solid ion conductors. Conventional polymer conductors suffer from low conductivity, low transference number, and deteriorated mechanical properties with the enhancement of conductivity, resulting from the coupling between ion transport and polymer movement. Here we present a successful fabrication and fundamental understanding of a high performance soy protein-based solid conductor. The conductor shows ionic conductivity of ∼10 -5 S/cm, transference number of 0.94, and modulus of 1 GPa at room temperature, and still remains flexible and easily processable. Molecular simulations indicate that this is due to appropriate manipulation of the protein structures for effective exploitation of protein functional groups. A decoupled transport mechanism, which is able to explain all results, is proposed. The new insights can be utilized to provide guidelines for design, optimization, and fabrication of high performance biosolid conductors.
High-fidelity plasma codes for burn physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, James; Graziani, Frank; Marinak, Marty
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less
Chen, Ming; Wang, Dengjun; Yang, Fan; Xu, Xiaoyun; Xu, Nan; Cao, Xinde
2017-11-01
Land application of biochar has been increasingly recommended as a powerful strategy for carbon sequestration and soil remediation. However, the biochar particles, especially those in the nanoscale range, may migrate or carry the inherent contaminants along the soil profile, posing a potential risk to the groundwater. This study investigated the transport and retention of wood chip-derived biochar nanoparticles (NPs) in water-saturated columns packed with a paddy soil. The environmentally-relevant soil solution chemistry including ionic strength (0.10-50 mM), electrolyte type (NaCl and CaCl 2 ), and natural organic matter (0-10 mg L -1 humic acid) were tested to elucidate their effects on the biochar NPs transport. Higher mobility of biochar NPs was observed in the soil at lower ionic strengths, with CaCl 2 electrolyte being more effective than NaCl in decreasing biochar NPs transport. The retained biochar NPs in NaCl was re-entrained (∼57.7%) upon lowering transient pore-water ionic strength, indicating that biochar NPs were reversibly retained in the secondary minimum. In contrast, negligible re-entrainment of biochar NPs occurred in CaCl 2 due to the primary minimum and/or particle aggregation. Humic acid increased the mobility of biochar NPs, likely due to enhanced electrosteric repulsive interactions. The transport behaviors of biochar NPs can be well interpreted by a two-site kinetic retention model that assumes reversible retention for one site, and irreversible retention for the other site. Our findings indicated that the transport of wood chip biochar NPs is significant in the paddy soil, highlighting the importance of understanding the mobility of biochar NPs in natural soils for accurately assessing their environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fang, Minfeng
Despite the aggressive development and deployment of new renewable and nuclear technologies, petroleum-derived transportation fuels---gasoline, diesel and jet fuels---will continue to dominate the markets for decades. Environmental legislation imposes severe limits on the tolerable proportion of aromatics, sulfur and nitrogen contents in transportation fuels, which is difficult to achieve with current refining technologies. Catalytic hydrogenation plays an important role in the production of cleaner fuels, both as a direct means to reduce the aromatics and as a key step in the hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) processes. However, conventional catalysts require drastic conditions and/or are easily poisoned by S or N aromatics. Therefore, there is still a need for new efficient catalysts for hydrogenation reactions relevant to the production of cleaner fossil fuels. Our catalyst design involves metallic nanoparticles intimately associated with a basic support, with the aim of creating a nanostructure capable of promoting the heterolytic activation of hydrogen and ionic hydrogenation mechanisms, as a strategy to avoid catalyst poisoning and enhance catalytic activity. We have designed and prepared a new nanostructured catalytic material composed of RuNPs immobilized on the basic polymer P4VPy. We have demonstrated that the Ru/P4VPy catalyst can promote heterolytic hydrogen activation and a unique surface ionic hydrogenation mechanism for the efficient hydrogenation of N-aromatics. This is the first time these ionic hydrogenation pathways have been demonstrated on solid surfaces. For the RuNPs surfaces without basic sites in close proximity, the conventional homolytic H2 splitting is otherwise involved. Using the mechanistic concepts from Ru/P4VPy, we have designed and prepared the Ru/MgO catalyst, with the aim to improve the catalytic efficiency for the hydrogenation of heteroatom aromatics operating by the ionic hydrogenation mechanism. The Ru/MgO catalyst significantly improves the catalytic efficiency for hydrogenation of a variety of N-/S-heteroaromatics and mono-/polycyclic aromatic hydrocarbons representative of components of petroleum-derived fuels. The catalyst is superior to the few other known supported noble metal catalysts for these reactions. Mechanistic studies also point to the ionic hydrogenation mechanism on the Ru/MgO surfaces. In addition, the Ru/MgO catalyst is highly recyclable and long-lived.
Simulation of Ionic Aggregation and Ion Dynamics in Model Ionomers
NASA Astrophysics Data System (ADS)
Frischknecht, Amalie L.
2012-02-01
Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. A single-ion conducting polymer electrolyte would be safer and have higher efficiency than the currently-used liquid electrolytes. However, to date ionomeric materials do not have sufficiently high conductivities for practical application. This is most likely because the ions tend to form aggregates, leading to slow ion transport. A key question is therefore how molecular structure affects the ionic aggregation and ion dynamics. To probe these structure-property relationships, we have performed molecular simulations of a set of recently synthesized poly(ethylene-co-acrylic acid) copolymers and ionomers, with a focus on the morphology of the ionic aggregates. The ionomers have a precise, constant spacing of charged groups, making them ideal for direct comparisons with simulations. Ab initio calculations give insight into the expected coordination of cations with fragments of the ionomers. All-atom molecular dynamics (MD) simulations of the ionomer melt show aggregation of the ionic groups into extended string-like clusters. An extensive set of coarse-grained molecular dynamics simulations extend the results to longer times and larger length scales. The structure factors calculated from the MD simulations compare favorably with x-ray scattering data. Furthermore, the simulations give a detailed picture of the sizes, shapes, and composition of the ionic aggregates, and how they depend on polymer architecture. Implications for ion transport will be discussed. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; ...
2015-12-24
Our study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Moreover, quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Aminated pores, unlike hydrogenatedmore » pores, do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.« less
NASA Astrophysics Data System (ADS)
Starovoytov, Oleg; Hooper, Justin; Borodin, Oleg; Smith, Grant
2010-03-01
Atomistic polarizable force field has been developed for a number of azide anion containing ionic liquids and crystals. Hybrid Molecular Dynamics/Monte Carlo (MD/MC) simulations were performed on methylguanazinium azide and 1-(2-butynyl)-3-methyl-imidazolium azide crystals, while 1-butyl-2,3-dimethylimidazolium azide and 1-amino-3-methyl-1,2,3-triazolium azide ionic liquids were investigated using MD simulations. Crystal cell parameters and crystal structures of 1-(2-butynyl)-3-methyl-imidazolium azide were found in good agreement with X-ray experimental data. Density and ion transport of 1-butyl-2,3-dimethylimidazolium azide predicted from MD simulations were in good agreement with experiments. Details of the ionic liquid structure and relaxation mechanism will be discussed.
Lead iodide perovskite light-emitting field-effect transistor
Chin, Xin Yu; Cortecchia, Daniele; Yin, Jun; Bruno, Annalisa; Soci, Cesare
2015-01-01
Despite the widespread use of solution-processable hybrid organic–inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature. PMID:26108967
Mummery, C L; van der Saag, P T; de Laat, S W
1983-01-01
Mouse neuroblastoma cells (clone N1E-115) differentiate in culture upon withdrawal of serum growth factors and acquire the characteristics of neurons. We have shown tht exponentially growing N1E-115 cells possess functional epidermal growth factor (EGF) receptors but that the capacity for binding EGF and for stimulation of DNA synthesis is lost as the cells differentiate. Furthermore, in exponentially growing cells, EGF induces a rapid increase in amiloride-sensitive Na+ influx, followed by stimulation of the (Na+-K+)ATPase, indicating that activation of the Na+/H+ exchange mechanism in N1E-115 cells [1] may be induced by EGF. The ionic response is also lost during differentiation, but we have shown that the stimulation of both Na+ and K+ influx is directly proportional to the number of occupied receptors in all cells whether exponentially growing or differentiating, thus only indirectly dependent on the external EGF concentration. The linearity of the relationships indicates that there is no rate-limiting step between EGF binding and the ionic response. Our data would suggest that as neuroblastoma cells differentiate and acquire neuronal properties, their ability to respond to mitogens, both biologically and in the activation of cation transport processes, progressively decreases owing to the loss of the appropriate receptors.
Esfandyari Bayat, Ali; Junin, Radzuan; Derahman, Mohd Nawi; Samad, Adlina Abdul
2015-09-01
The impact of ionic strength (from 0.003 to 500mM) and salt type (NaCl vs MgCl2) on transport and retention of titanium dioxide (TiO2) nanoparticles (NPs) in saturated limestone porous media was systematically studied. Vertical columns were packed with limestone grains. The NPs were introduced as a pulse suspended in aqueous solutions and breakthrough curves in the column outlet were generated using an ultraviolent-visible spectrometry. Presence of NaCl and MgCl2 in the suspensions were found to have a significant influence on the electrokinetic properties of the NP aggregates and limestone grains. In NaCl and MgCl2 solutions, the deposition rates of the TiO2-NP aggregates were enhanced with the increase in ionic strength, a trend consistent with traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Furthermore, the NP aggregates retention increased in the porous media with ionic strength. The presence of salts also caused a considerable delay in the NPs breakthrough time. MgCl2 as compared to NaCl was found to be more effective agent for the deposition and retention of TiO2-NPs. The experimental results followed closely the general trends predicted by the filtration and DLVO calculations. Overall, it was found that TiO2-NP mobility in the limestone porous media depends on ionic strength and salt type. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, P.
2012-04-01
Nanotechnology is one of the most important technologies in this century and it is evoking a new industrial revolution. Carbon nanotubes (CNTs) are important engineered nanoparticles with unique and beneficial properties. As a result, CNT has been used in a wide range of commercial products including electronics, optical devices and drug delivery leading to their disposal in the natural environment. Literature studies have investigated the mobility of CNTs in saturated porous media under differing physical and chemical conditions. However CNT transport in temporarily changing porous media water content has not been investigated thus far (a common scenario with rainfall/infiltration events in the vadose zone). This study investigated the mobilization of multi-walled CNTs (MCNTs) in repeated wetting and drying cycles with varying flow rates and ionic strength of the inflow solution. Imbibition-drainage-imbibition cycle experiments suggest that MCNTs mobilization increased with increase in flow rates. MCNTs mobilization occurred only with first imbibition events at low ionic strengths however less mobilization happened for higher ionic strength inflow solution in the first imbibition cycle and additional MCNTs were found in the outflow solution in second imbibition cycle, using low ionic strength solution. This observation was likely due to the attachment force between MCNTs and sand surface. Most of the MCNT mobilization occurred during liquid-gas interface movement with less chance of MCNTs to jump the energy barrier at higher ionic strength solution. As a result, less detachment of MCNTs occurred from the sand surface during drainage.
Process intensification of biodiesel production by using microwave and ionic liquids as catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handayani, Prima Astuti; Chemical Engineering Program, Faculty of Engineering, Semarang State University; Abdullah
The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will bemore » discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.« less
Process intensification of biodiesel production by using microwave and ionic liquids as catalyst
NASA Astrophysics Data System (ADS)
Handayani, Prima Astuti; Abdullah, dan Hadiyanto
2015-12-01
The energy crisis pushes the development and intensification of biodiesel production process. Biodiesel is produced by transesterification of vegetable oils or animal fats and conventionally produced by using acid/base catalyst. However, the conventional method requires longer processing time and obtains lower yield of biodiesel. The microwave has been intensively used to accelerate production process and ionic liquids has been introduced as source of catalyst. This paper discusses the overview of the development of biodiesel production through innovation using microwave irradiation and ionic liquids catalyst to increase the yield of biodiesel. The potential microwave to reduce the processing time will be discussed and compared with other energy power, while the ionic liquids as a new generation of catalysts in the chemical industry will be also discussed for its use. The ionic liquids has potential to enhance the economic and environmental aspects because it has a low corrosion effect, can be recycled, and low waste form.
Siqueira, Leonardo J A; Ribeiro, Mauro C C
2007-10-11
Thermodynamics, structure, and dynamics of an ionic liquid based on a quaternary ammonium salt with ether side chain, namely, N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM2E TFSI, are investigated by molecular dynamics (MD) simulations. Average density and configurational energy of simulated MOENM2E TFSI are interpreted with models that take into account empirical ionic volumes. A throughout comparison of the equilibrium structure of MOENM2E TFSI with previous results for the more common ionic liquids based on imidazolium cations is provided. Several time correlation functions are used to reveal the microscopic dynamics of MOENM2E TFSI. Structural relaxation is discussed by the calculation of simultaneous space-time correlation functions. Temperature effects on transport coefficients (diffusion, conductivity, and viscosity) are investigated. The ratio between the actual conductivity and the estimate from ionic diffusion by the Nernst-Einstein equation indicates that correlated motion of neighboring ions in MOENM2E TFSI is similar to imidazolium ionic liquids. In line with experiment, Walden plot of conductivity and viscosity indicates that simulated MOENM2E TFSI should be classified as a poor ionic liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmeide, Katja; Fritsch, Katharina; Lippold, Holger
2016-02-29
The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol kg -1) and the background electrolyte (NaCl, CaCl 2, MgCl 2).
Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media
NASA Astrophysics Data System (ADS)
Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.
2017-12-01
Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.
Physics of transduction in ionic liquid-swollen Nafion membranes
NASA Astrophysics Data System (ADS)
Bennett, Matthew; Leo, Donald
2006-03-01
Ionic polymer transducers are a class of electroactive polymers that are able to generate large strains (1-5%) in response to low voltage inputs (1-5 V). Additionally, these materials generate electrical charge in response to mechanical strain and are therefore able to operate as soft, distributed sensors. Traditionally, ionic polymer transducers have been limited in their application by their hydration dependence. This work seeks to overcome this limitation by replacing the water with an ionic liquid. Ionic liquids are molten salts that exhibit very high thermal and electrochemical stability while also possessing high ionic conductivity. Results have shown that an ionic liquid-swollen ionic polymer transducer can operate for more than 250,000 cycles in air as compared to about 2,000 cycles for a water-swollen transducer. The current work examines the mechanisms of transduction in ionic liquid-swollen transducers based on Nafion polymer membranes. Specifically, the morphology and relevant ion associations within these membranes are investigated by the use of small-angle X-ray scattering (SAXS), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). These results reveal that the ionic liquid interacts with the membrane in much the same way that water does, and that the counterions of the Nafion polymer are the primary charge carriers. The results of these analyses are compared to the macroscopic transduction behavior in order to develop a model of the charge transport mechanism responsible for electromechanical coupling in these membranes.
The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes
Assaha, Dekoum V. M.; Ueda, Akihiro; Saneoka, Hirofumi; Al-Yahyai, Rashid; Yaish, Mahmoud W.
2017-01-01
Ionic stress is one of the most important components of salinity and is brought about by excess Na+ accumulation, especially in the aerial parts of plants. Since Na+ interferes with K+ homeostasis, and especially given its involvement in numerous metabolic processes, maintaining a balanced cytosolic Na+/K+ ratio has become a key salinity tolerance mechanism. Achieving this homeostatic balance requires the activity of Na+ and K+ transporters and/or channels. The mechanism of Na+ and K+ uptake and translocation in glycophytes and halophytes is essentially the same, but glycophytes are more susceptible to ionic stress than halophytes. The transport mechanisms involve Na+ and/or K+ transporters and channels as well as non-selective cation channels. Thus, the question arises of whether the difference in salt tolerance between glycophytes and halophytes could be the result of differences in the proteins or in the expression of genes coding the transporters. The aim of this review is to seek answers to this question by examining the role of major Na+ and K+ transporters and channels in Na+ and K+ uptake, translocation and intracellular homeostasis in glycophytes. It turns out that these transporters and channels are equally important for the adaptation of glycophytes as they are for halophytes, but differential gene expression, structural differences in the proteins (single nucleotide substitutions, impacting affinity) and post-translational modifications (phosphorylation) account for the differences in their activity and hence the differences in tolerance between the two groups. Furthermore, lack of the ability to maintain stable plasma membrane (PM) potentials following Na+-induced depolarization is also crucial for salt stress tolerance. This stable membrane potential is sustained by the activity of Na+/H+ antiporters such as SOS1 at the PM. Moreover, novel regulators of Na+ and K+ transport pathways including the Nax1 and Nax2 loci regulation of SOS1 expression and activity in the stele, and haem oxygenase involvement in stabilizing membrane potential by activating H+-ATPase activity, favorable for K+ uptake through HAK/AKT1, have been shown and are discussed. PMID:28769821
NASA Astrophysics Data System (ADS)
Sanoja, Gabriel; Popere, Bhooshan; Beckingham, Bryan; Evans, Christopher; Lynd, Nathaniel; Segalman, Rachel
Elucidating the relationship between chemical structure, morphology, and ionic conductivity is essential for designing novel materials for electrochemical applications. In this work, the effect of lamellar domain spacing (d) on ionic conductivity (σ) is investigated for a model system of hydrated block copolymer based on a protic polymerized ionic liquid. We present a strategy that allows for the synthesis of a well-defined series of narrowly dispersed PS- b - PIL with constant volume fraction of ionic liquid moieties (fIL ~ 0.39). These materials self-assemble into ordered lamellar morphologies with variable domain spacing (23-59 nm) as demonstrated by SAXS. PS- b - PIL membranes exhibit ionic conductivities above 10-4 S/cm at room temperature, which are independent of domain spacing. The conductivity scaling relationship demonstrated in this work suggests that a mechanically robust membrane can be designed without compromising its ability to transport ions. In addition, PIL-based membranes exhibit lower water uptake (λ = 10) in comparison with many proton-conducting systems reported elsewhere. The low water content of these materials makes them promising candidates for solar-fuels electrochemical devices.
Synthesis of Long-Chain-Branched (LCB) Polysulfones for Multifunctional Transport Membranes
2010-09-01
R.; Dutta, N. K. Interfacial Interactions in Aprotic Ionic Liquid Based Protonic Membrane and Its Correlation with High Temperature Conductivity...rigidity. The series of novel polymers was characterized for chemical structure, thermal transitions, and molecular weight. Ionic conductivity was tested...Although much progress exists based on perfluorosulfonated platforms ( Nafion , σ ≈ 10-1 – 10-2 S/cm) new and more complicated parameters arise as
Conductance valve and pressure-to-conductance transducer method and apparatus
Schoeniger, Joseph S.; Cummings, Eric B.; Brennan, James S.
2005-01-18
A device for interrupting or throttling undesired ionic transport through a fluid network is disclosed. The device acts as a fluid valve by reversibly generating a fixed "bubble" in the conducting solvent solution carried by the network. The device comprises a porous hydrophobic structure filling a portion of a connecting channel within the network and optionally incorporates flow restrictor elements at either end of the porous structure that function as pressure isolation barriers, and a fluid reservoir connected to the region of the channel containing the porous structure. Also included is a pressure pump connected to the fluid reservoir. The device operates by causing the pump to vary the hydraulic pressure to a quantity of solvent solution held within the reservoir and porous structure. At high pressures, most or all of the pores of the structure are filled with conducting liquid so the ionic conductance is high. At lower pressures, only a fraction of the pores are filled with liquid, so ionic conductivity is lower. Below a threshold pressure, the porous structure contains only vapor, so there is no liquid conduction path. The device therefore effectively throttles ionic transport through the porous structure and acts as a "conductance valve" or "pressure-to-conductance" transducer within the network.
Size and Charge Dependence of Ion Transport in Human Nail Plate.
Baswan, Sudhir M; Li, S Kevin; LaCount, Terri D; Kasting, Gerald B
2016-03-01
The electrical properties of human nail plate are poorly characterized yet are a key determinate of the potential to treat nail diseases, such as onychomycosis, using iontophoresis. To address this deficiency, molar conductivities of 17 electrolytes comprising 12 ionic species were determined in hydrated human nail plate in vitro. Cation transport numbers across the nail for 11 of these electrolytes were determined by the electromotive force method. Effective ionic mobilities and diffusivities at infinite dilution for all ionic species were determined by regression analysis. The ratios of diffusivities in nail to those in solution were found to correlate inversely with the hydrodynamic radii of the ions according to a power law relationship having an exponent of -1.75 ± 0.27, a substantially steeper size dependence than observed for similar experiments in skin. Effective diffusivities of cations in nail were 3-fold higher than those of comparably sized anions. These results reflect the strong size and charge selectivity of the nail plate for ionic conduction and diffusion. The analysis implies that efficient transungual iontophoretic delivery of ionized drugs having radii upward of 5 Å (molecular weight, ca. ≥ 340 Da) will require chemical or mechanical alteration of the nail plate. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals.
Ståhlberg, Tim; Fu, Wenjing; Woodley, John M; Riisager, Anders
2011-04-18
The synthesis of 5-(hydroxymethyl)furfural (HMF) in ionic liquids is a field that has grown rapidly in recent years. Unique dissolving properties for crude biomass in combination with a high selectivity for HMF formation from hexose sugars make ionic liquids attractive reaction media for the production of chemicals from renewable resources. A wide range of new catalytic systems that are unique for the transformation of glucose and fructose to HMF in ionic liquids has been found. However, literature examples of scale-up and process development are still scarce, and future research needs to complement the new chemistry with studies on larger scales in order to find economically and environmentally feasible processes for HMF production in ionic liquids. This Minireview surveys important progress made in catalyst development for the synthesis of HMF in ionic liquids, and proposes future research directions in process technology. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies
NASA Astrophysics Data System (ADS)
Lewandowski, Andrzej; Świderska-Mocek, Agnieszka
The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.
The effect of varying linker length on ion-transport properties in polymeric ionic liquids
NASA Astrophysics Data System (ADS)
Keith, Jordan; Mogurampelly, Santosh; Wheatle, Bill; Ganesan, Venkat
We report results of atomistic molecular dynamics simulations on polymerized 1-butyl-3-(n-alkyl)imidazolium ionic liquids with PF6- counterions. Consistent with experimental observations, we observe that the mobility of the PF6- ions increases with increasing n-alkyl linker length. Analysis of our results suggests that the motion of PF6- ions is driven by intermolecular ion hopping between chains, which in turn is influenced by ion-pair coordination numbers and intermolecular ionic separation distances. With increasing linker length, we observe 1) the anions coordinating less closely with cations and 2) intermolecular hopping distances decreasing.
Impact of gate geometry on ionic liquid gated ionotronic systems
Wong, Anthony T.; Noh, Joo Hyon; Pudasaini, Pushpa Raj; ...
2017-01-23
Ionic liquid electrolytes are gaining widespread application as a gate dielectric used to control ion transport in functional materials. This letter systematically examines the important influence that device geometry in standard “side gate” 3-terminal geometries plays in device performance of a well-known oxygen ion conductor. We show that the most influential component of device design is the ratio between the area of the gate electrode and the active channel, while the spacing between these components and their individual shapes has a negligible contribution. Finally, these findings provide much needed guidance in device design intended for ionotronic gating with ionic liquids.
Ionic Liquids in Lithium-Ion Batteries.
Balducci, Andrea
2017-04-01
Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.
Gate modulation of proton transport in a nanopore.
Mei, Lanju; Yeh, Li-Hsien; Qian, Shizhi
2016-03-14
Proton transport in confined spaces plays a crucial role in many biological processes as well as in modern technological applications, such as fuel cells. To achieve active control of proton conductance, we investigate for the first time the gate modulation of proton transport in a pH-regulated nanopore by a multi-ion model. The model takes into account surface protonation/deprotonation reactions, surface curvature, electroosmotic flow, Stern layer, and electric double layer overlap. The proposed model is validated by good agreement with the existing experimental data on nanopore conductance with and without a gate voltage. The results show that the modulation of proton transport in a nanopore depends on the concentration of the background salt and solution pH. Without background salt, the gated nanopore exhibits an interesting ambipolar conductance behavior when pH is close to the isoelectric point of the dielectric pore material, and the net ionic and proton conductance can be actively regulated with a gate voltage as low as 1 V. The higher the background salt concentration, the lower is the performance of the gate control on the proton transport.
Two-dimensional Transport and Retention of Graphene Oxide in Porous Media
NASA Astrophysics Data System (ADS)
Dong, S.; Sun, Y.; Gao, B.; Wu, J.; Shi, X.; Xu, H.
2017-12-01
Graphene oxide (GO) as an exceptional carbon nanomaterial has been used in a wide variety of applications. It is important to understand the fate and transport behaviors of GO in porous media. Lots of laboratory and model studies have focused on the mobility of GO in porous media, indicating complex mechanism such as solution chemistry, media characters, and particle input conditions all influenced GO transport and retention behavior. However, all of the previous studies of GO fate and transport were conducted in column equipment, which were insufficient with its extremely limited boundary conditions. In this work, 2-D homogeneous and heterogeneous sand tank experiments visualized by light transmission were used to examine the fate of graphene oxide (GO) nanoparticles in 2-D porous media under various conditions. A two-dimensional model was applied to describe GO retention and transport in 2-D porous media. The visualized experimental pictures and model results both showed that GO retention and transport in all 2-D porous media were influenced by media grain size, ionic strength, structural heterogeneity and injected location. The retention of GO particles in 2-D porous media increased when the gain size and the ionic strength. In addition, even though the preferential flow phenomena in 2-D heterogeneous porous media dramatically influence the transport of GO, the injected location of GO also has the important effects on its transport. Interestingly, the deposition of GO in 2-D heterogeneous fine sand layer was higher than in corresponding 2-D homogeneous porous media, even though under low ionic strength condition. For all the sand tanks, partly previous retained GO particles that were trapped in the secondary minimum energy well could be instantaneous remobilized from sand grain surface by reducing solution IS, but a portion of GO still retained in 2-D porous media and could not be remobilized. This result demonstrated that extra mechanism also control the transport and deposition behavior of GO particles in porous media. These results reflected the typical transport and retention behavior of GO particles in 2-D porous media. Simulations from the two-dimensional model matched the experimental results well.
Jarial, M S; Wilkins, J H
2003-10-01
The ultrastructure of the external gill epithelium of the axolotl, Ambystoma mexicanum, has been examined using conventional transmission electron microscopy to elucidate its role in ionic transport. Four cell types are identified in the gill filament and primary gill bar epithelium. These are granular, ciliated, Leydig and basal cells. A fifth cell type, the flat mitochondria-rich cell is only found in the gill bar epithelium. The predominant granular cells display microvilli at their surface and their cytoplasm contains abundant mitochondria, rough endoplasmic reticulum, Golgi complexes, vesicles and PAS+ secretory granules that are extruded at the surface, which along with secretions from the Leydig cells form a mucous coat. The granular cells are joined apically by junctional complexes consisting of zonulae occludens, zonulae adherens and desmosomes. The lateral membranes of granular cells enclose large intercellular spaces that are closed at the apical ends but remain open at the basal ends adjoining capillaries. In AgNO3-treated axolotl, the gills become darkly stained, the silver grains penetrate apical membranes and appear in the cytoplasm, accumulating near the lateral membranes and also enter the intercellular spaces. These findings are consistent with the dual role of the gill epithelium in mucus production and active ionic transport.
Bostick, David L.; Brooks, Charles L.
2009-01-01
To provide utility in understanding the molecular evolution of ion-selective biomembrane channels/transporters, globular proteins, and ionophoric compounds, as well as in guiding their modification and design, we present a statistical mechanical basis for deconstructing the impact of the coordination structure and chemistry of selective multidentate ionic complexes. The deconstruction augments familiar ideas in liquid structure theory to realize the ionic complex as an open ion-ligated system acting under the influence of an “external field” provided by the host (or surrounding medium). Using considerations derived from this basis, we show that selective complexation arises from exploitation of a particular ion's coordination preferences. These preferences derive from a balance of interactions much like that which dictates the Hofmeister effect. By analyzing the coordination-state space of small family IA and VIIA ions in simulated fluid media, we derive domains of coordinated states that confer selectivity for a given ion upon isolating and constraining particular attributes (order parameters) of a complex comprised of a given type of ligand. We demonstrate that such domains may be used to rationalize the ion-coordinated environments provided by selective ionophores and biological ion channels/transporters of known structure, and that they can serve as a means toward deriving rational design principles for ion-selective hosts. PMID:19486671
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Wang, Yonggang; Li, Shuai
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less
Wojnarowska, Zaneta; Feng, Hongbo; Diaz, Mariana; ...
2017-09-05
Polymerized ionic liquids (polyILs), composed mostly of organic ions covalently bonded to the polymer backbone and free counterions, are considered as an ideal electrolytes for various electrochemical devices, including fuel cells, supercapacitors and batteries. Despite large structural diversity of these systems, all of them reveal a universal but poorly understood feature - a charge transport faster than the segmental dynamics. Here, to address this issue, we have studied three novel polymer electrolyte membrane for fuel cells as well as four single-ion conductors including highly conductive siloxane-based polyIL. Our ambient and high pressure studies revealed fundamental differences in the conducting propertiesmore » of the examined systems. Finally, we demonstrate that the proposed methodology is a powerful tool to identify the charge transport mechanism in polyILs in general and thereby contribute to unraveling the microscopic nature of the decoupling phenomenon in these materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojnarowska, Zaneta; Feng, Hongbo; Diaz, Mariana
Polymerized ionic liquids (polyILs), composed mostly of organic ions covalently bonded to the polymer backbone and free counterions, are considered as an ideal electrolytes for various electrochemical devices, including fuel cells, supercapacitors and batteries. Despite large structural diversity of these systems, all of them reveal a universal but poorly understood feature - a charge transport faster than the segmental dynamics. Here, to address this issue, we have studied three novel polymer electrolyte membrane for fuel cells as well as four single-ion conductors including highly conductive siloxane-based polyIL. Our ambient and high pressure studies revealed fundamental differences in the conducting propertiesmore » of the examined systems. Finally, we demonstrate that the proposed methodology is a powerful tool to identify the charge transport mechanism in polyILs in general and thereby contribute to unraveling the microscopic nature of the decoupling phenomenon in these materials.« less
Non-scaling behavior of electroosmotic flow in voltage-gated nanopores
Lian, Cheng; Gallegos, Alejandro; Liu, Honglai; ...
2016-11-17
Ionic transport through nanopores is of fundamental importance for the design and development of nanofiltration membranes and novel electrochemical devices including supercapacitors, fuel cells and batteries. Recent experiments have shown an unusual variation of electrical conductance with the pore size and the electrolyte parameters that defies conventional scaling relations. Here ionic transport through voltage-gated nanopores was studied by using the classical density functional theory for ion distributions in combination with the Navier–Stokes equation for the electroosmotic flow. We also identified a significant influence of the gating potential on the scaling behavior of the conductance with changes in the pore sizemore » and the salt concentration. Finally, for ion transport in narrow pores with a high gating voltage, the conductivity shows an oscillatory dependence on the pore size owing to the strong overlap of electric double layers.« less
Kassem, M; Alekseev, I; Bokova, M; Le Coq, D; Bychkov, E
2018-04-12
Conductivity isotherms of (CdTe) x (AgI) 0.5- x/2 (As 2 Te 3 ) 0.5- x/2 glasses (0.0 ≤ x ≤ 0.15) reveal a nonmonotonic behavior with increasing CdTe content reminiscent of mixed cation effect in oxide and chalcogenide glasses. Nevertheless, the apparent similarity appears to be partly incorrect. Using 110m Ag tracer diffusion measurements, we show that semiconducting CdTe additions produce a dual effect: (i) decreasing the Ag + ion transport by a factor of ≈200 with a simultaneous increase of the diffusion activation energy and (ii) increasing the electronic conductivity by 1.5 orders of magnitude. Consequently, the conductivity minimum at x = 0.05 reflects an ionic-to-electronic transport crossover; the silver-ion transport number decreases by 3 orders of magnitude with increasing x.
Zhu, Jinlong; Wang, Yonggang; Li, Shuai; ...
2016-06-02
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na 3OBr, as well as the modified layered antiperovskite Na 4OI 2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na 3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br - ions are not involved in the tetragonal Namore » 4OI 2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I - ions.« less
Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi
2018-06-13
Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.
Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
Guo, Wei; Tian, Ye; Jiang, Lei
2013-12-17
Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct different environmental conditions in the electrolyte solutions on either side of the nanochannel. The novel and well-controlled nanofluidic phenomena have become the foundation for many promising applications, and we have highlighted several representative examples. Inspired by the electrogenic cell of the electric eel, we have demonstrated a proof-of-concept nanofluidic reverse electrodialysis system (NREDS) that converts salinity gradient energy into electricity by means of net diffusion current. We have also constructed chirality analysis systems into nanofluidic architectures and monitored these sensing events as the change in the degree of ionic current rectification. Moreover, we have developed a biohybrid nanosystem, in which we reconstituted the F0F1-ATPase on a liposome-coated, solid-state nanoporous membrane. By applying a transmembrane proton concentration gradient, the biohybrid nanodevice can synthesize ATP in vitro. These findings have improved our understanding of the asymmetric ion transport phenomena in synthetic nanofluidic systems and offer innovative insights into the design of functional nanofluidic devices.
Effect of screening on the transport of polyelectrolytes through nanopores
NASA Astrophysics Data System (ADS)
Oukhaled, G.; Bacri, L.; Mathé, J.; Pelta, J.; Auvray, L.
2008-05-01
We study the transport of dextran sulfate molecules (Mw=8000 Da) through a bacterial α-hemolysin channel inserted into a bilayer lipid membrane submitted to an external electric field. We detect the current blockades induced by the molecules threading through one pore and vary the ionic strength in an unexplored range starting at 10-3 M. In the conditions of the experiment, the polyelectrolyte molecules enter the pore only if the Debye screening length is smaller than the pore radius in agreement with theory. We also observe that large potentials favour the passage of the molecules. The distribution of blockade durations suggests that a complex process governs the kinetics of the molecules. The dwelling time increases sharply as the Debye length increases and approaches the pore radius.
Majumder, Mainak; Keis, Karin; Zhan, Xin; Meadows, Corey; Cole, Jeggan
2013-01-01
A membrane structure consisting of an aligned array of open ended carbon nanotubes (~ 7 nm i.d.) spanning across an inert polymer matrix allows the diffusive transport of aqueous ionic species through CNT cores. The plasma oxidation process that opens CNTs tips inherently introduces carboxylic acid groups at the CNT tips, which allows for a limited amount of chemical functional at the CNT pore entrance. However for numerous applications, it is important to increase the density of carboxylic acid groups at the pore entrance for effective separation processes. Aqueous diazonium based electro-chemistry significantly increases the functional density of carboxylic acid groups. pH dependent dye adsorption-desorption and interfacial capacitance measurements indicate ~ 5–6 times increase in functional density. To further control the spatial location of the functional chemistry, a fast flowing inert liquid column inside the CNT core is found to restrict the diazonium grafting to the CNT tips only. This is confirmed by the increased flux of positively charged Ru(bi-py)3+2 with anionic functionality. The electrostatic enhancement of ion diffusion is readily screened in 0.1(M) electrolyte solution consistent with the membrane pore geometry and increased functional density. PMID:25132719
Mesh-structured N-doped graphene@Sb2Se3 hybrids as an anode for large capacity sodium-ion batteries.
Zhao, Wenxi; Li, Chang Ming
2017-02-15
A mesh-structured N-doped graphene@Sb 2 Se 3 (NGS) hybrid was one-pot prepared to realize N-doping, nanostructuring and hybridization for a sodium-ion battery anode to deliver much larger reversible specific capacity, faster interfacial electron transfer rate, better ionic and electronic transport, higher rate performance and longer cycle life stability in comparison to the plain Sb 2 Se 3 one. The better performance is ascribed to the unique intertwined porous mash-like structure associated with a strong synergistic effect of N-doped graphene for dramatic improvement of electronic and ionic conductivity by the unique porous structure, the specific capacity of graphene from N doping and fast interfacial electron transfer rate by N-doping induced surface effect and the structure-shortening insertion/desertion pathway of Na + . The detail electrochemical process on the NGS electrode is proposed and analyzed in terms of the experimental results. Copyright © 2016 Elsevier Inc. All rights reserved.
Nanothorn electrodes for ionic polymer-metal composite artificial muscles
Palmre, Viljar; Pugal, David; Kim, Kwang J.; Leang, Kam K.; Asaka, Kinji; Aabloo, Alvo
2014-01-01
Ionic polymer-metal composites (IPMCs) have recently received tremendous interest as soft biomimetic actuators and sensors in various bioengineering and human affinity applications, such as artificial muscles and actuators, aquatic propulsors, robotic end-effectors, and active catheters. Main challenges in developing biomimetic actuators are the attainment of high strain and actuation force at low operating voltage. Here we first report a nanostructured electrode surface design for IPMC comprising platinum nanothorn assemblies with multiple sharp tips. The newly developed actuator with the nanostructured electrodes shows a new way to achieve highly enhanced electromechanical performance over existing flat-surfaced electrodes. We demonstrate that the formation and growth of the nanothorn assemblies at the electrode interface lead to a dramatic improvement (3- to 5-fold increase) in both actuation range and blocking force at low driving voltage (1–3 V). These advances are related to the highly capacitive properties of nanothorn assemblies, increasing significantly the charge transport during the actuation process. PMID:25146561
Novel applications of ionic liquids in materials processing
NASA Astrophysics Data System (ADS)
Reddy, Ramana G.
2009-05-01
Ionic liquids are mixtures of organic and inorganic salts which are liquids at room temperature. Several potential applications of ionic liquids in the field of materials processing are electrowinning and electrodeposition of metals and alloys, electrolysis of active metals at low temperature, liquid-liquid extraction of metals. Results using 1-butyl-3-methylimidazolium chloride with AlCl3 at low temperatures yielded high purity aluminium deposits (>99.9% pure) and current efficiencies >98%. Titanium and aluminium were co-deposited with/without the addition of TiCl4 with up to 27 wt% Ti in the deposit with current efficiencies in the range of 78-85 %. Certain ionic liquids are potential replacements for thermal oils and molten salts as heat transfer fluids in solar energy applications due to high thermal stability, very low corrosivity and substantial sensible heat retentivity. The calculated storage densities for several chloride and fluoride ionic liquids are in the range of 160-210 MJ/m3. A 3-D mathematical model was developed to simulate the large scale electrowinning of aluminium. Since ionic liquids processing results in their low energy consumption, low pollutant emissions many more materials processing applications are expected in future.
Physicochemical factors influencing the preferential transport of Escherichia coli in soils
USDA-ARS?s Scientific Manuscript database
Laboratory and numerical studies were conducted to investigate the transport and release of Escherichia coli D21g in preferential flow systems with artificial macropores under different ionic strength (IS) conditions. Macropores were created by embedding coarse sand lenses in a fine sand matrix and ...
Perspective on concentration polarization effects in electrochromatographic separations.
Tallarek, Ulrich; Leinweber, Felix C; Nischang, Ivo
2005-01-01
This work illustrates the appearance and electrohydrodynamic consequences of concentration polarization in the particulate and monolithic fixed beds used in capillary electrochromatography and related electrical-field assisted processes. Key property of most porous materials is the co-existence of bulk, quasi-electroneutral macroporous regions and mesoporous compartments which are ion-permselective (due to electrical double-layer overlap) causing different transport numbers for co-ionic and counterionic species, e.g., background electrolyte components, or the analytes. For a cathodic electroosmotic flow the (cation) permselectivity, together with diffusive and electrokinetic transport induces depleted and enriched concentration polarization zones at the anodic and cathodic interfaces, respectively, in dependence of the mobile phase ionic strength and applied electrical fields. At high field strength a secondary, nonequilibrium electrical double layer may be created in the depleted concentration polarization zones of a material stimulating electroosmosis of the second kind. The potential of this induced-charge electroosmosis with respect to nonlinear flow velocities and electrokinetic instability mixing (basically destroying the concentration polarization zones) is analyzed in view of the pore space morphology in random-close packings of spherical-shaped, porous particles and hierarchically structured monoliths. Possible applications based on a fine-tuning of the illustrated effects emerge for microfluidic pumping and mixing, or the intensification of sample recovery in adsorption processes. With this perspective we want to focus the attention on concentration polarization in electrochromatographic systems by presenting and discussing original data acquired on relevant microscopic as well as macroscopic scales, and point towards the importance of related effects in colloid and membrane science.*
Self-regenerating column chromatography
Park, Woo K.
1995-05-30
The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.
Predicting Carbonate Species Ionic Conductivity in Alkaline Anion Exchange Membranes
2012-06-01
This method has been used previously with both PEM and AEM fuel cells and demonstrated its ability to accurately predict ionic conductivity [2,9,24...water. In an AMFC, the mobile species is a hydroxide ion (OH - ) and in a PEM fuel cell , the proton is solvated with a water molecule forming...membrane synthesis techniques have produced polymer electrolyte membranes that are capable of transporting anions in alkaline membrane fuel cells
Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun
2016-07-13
Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.
Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.
Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo
2017-06-01
Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Acid and alkali doped PBI electrolyte in electrochemical system
NASA Astrophysics Data System (ADS)
Xing, Baozhong
In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism was established. In solution the cations and OH- all participate in the transport of current. It is the OH- that breaks the bonds between PBI molecules and enables the cations pass through the membrane. The performance of alkali doped PBI (doped under optimum conditions) in fuel cell as PEM is as good as NafionRTM.
On the density scaling of pVT data and transport properties for molecular and ionic liquids.
López, Enriqueta R; Pensado, Alfonso S; Fernández, Josefa; Harris, Kenneth R
2012-06-07
In this work, a general equation of state (EOS) recently derived by Grzybowski et al. [Phys. Rev. E 83, 041505 (2011)] is applied to 51 molecular and ionic liquids in order to perform density scaling of pVT data employing the scaling exponent γ(EOS). It is found that the scaling is excellent in most cases examined. γ(EOS) values range from 6.1 for ammonia to 13.3 for the ionic liquid [C(4)C(1)im][BF(4)]. These γ(EOS) values are compared with results recently reported by us [E. R. López, A. S. Pensado, M. J. P. Comuñas, A. A. H. Pádua, J. Fernández, and K. R. Harris, J. Chem. Phys. 134, 144507 (2011)] for the scaling exponent γ obtained for several different transport properties, namely, the viscosity, self-diffusion coefficient, and electrical conductivity. For the majority of the compounds examined, γ(EOS) > γ, but for hexane, heptane, octane, cyclopentane, cyclohexane, CCl(4), dimethyl carbonate, m-xylene, and decalin, γ(EOS) < γ. In addition, we find that the γ(EOS) values are very much higher than those of γ for alcohols, pentaerythritol esters, and ionic liquids. For viscosities and the self-diffusion coefficient-temperature ratio, we have tested the relation linking EOS and dynamic scaling parameters, proposed by Paluch et al. [J. Phys. Chem. Lett. 1, 987-992 (2010)] and Grzybowski et al. [J. Chem. Phys. 133, 161101 (2010); Phys. Rev. E 82, 013501 (2010)], that is, γ = (γ(EOS)/φ) + γ(G), where φ is the stretching parameter of the modified Avramov relation for the density scaling of a transport property, and γ(G) is the Grüneisen constant. This relationship is based on data for structural relaxation times near the glass transition temperature for seven molecular liquids, including glass formers, and a single ionic liquid. For all the compounds examined in our much larger database the ratio (γ(EOS)/φ) is actually higher than γ, with the only exceptions of propylene carbonate and 1-methylnaphthalene. Therefore, it seems the relation proposed by Paluch et al. applies only in certain cases, and is really not generally applicable to liquid transport properties such as viscosities, self-diffusion coefficients or electrical conductivities when examined over broad ranges of temperature and pressure.
NASA Astrophysics Data System (ADS)
Khalfan, Amish N.
This dissertation investigates the structural and dynamical properties of polymer electrolyte materials for applications to lithium-ion batteries and fuel cells. The nuclear magnetic resonance (NMR) technique was used to characterize these materials. NMR aids in understanding the local environments of nuclei and the mobility of a molecular/ionic species. Five research projects were carried out, and they have been outlined in this work. NASA has developed rod-coil block copolymers for use as electrolytes in lithium-ion batteries. The copolymers exhibit a microphase separation within their structure leading to the formation of ionically conducting channels. We studied ion transport properties of the copolymers, and determined the predominant mechanism for transport to occur in the amorphous phase. Seven gel polymer electrolytes, each containing a mixture of LiBETI salt and organic solvents, were studied. Two of them incorporated BMI (1-n-butyl-3-methylimidazolium) ionic liquid. Ionic liquids are room temperature molten salts. BMI had been thought to enhance ion mobility. However, the BMI component was observed to restrict ion mobility. Gel polymer electrolytes containing LiTFSI salt and P13TFSI ionic liquid with or without the inclusion of ethylene carbonate (EC) were studied for application to lithium metal/air batteries, which have high theoretical energy densities. The addition of EC was found to improve lithium ion transport. The gels with EC therefore prove to be favorable for use as electrolytes in lithium metal/air batteries. Highly sulfonated poly(arylenethioethersulfone) (SPTES) membranes were examined for use in direct methanol fuel cells (DMFCs) as an alternative to the Nafion membrane. DMFCs use methanol as a fuel instead of reformed hydrogen as in conventional proton exchange membrane fuel cells. Compared to Nafion, the SPTES membranes were shown to retain water better at high temperatures and yield lower methanol diffusion. SPTES membranes with the addition of fluorine groups (6F-SPTES) were also studied, and these membranes had been thought to show an improvement in water transport properties over SPTES. However, water diffusion studies of the 6F-SPTES membranes revealed the fluorinated membranes to be unfavorable. The morphology of the FSPTES is suspected to be more susceptible to the loss of bound water at higher temperatures than SPTES.
Probing DNA in nanopores via tunneling: from sequencing to ``quantum'' analogies
NASA Astrophysics Data System (ADS)
di Ventra, Massimiliano
2012-02-01
Fast and low-cost DNA sequencing methods would revolutionize medicine: a person could have his/her full genome sequenced so that drugs could be tailored to his/her specific illnesses; doctors could know in advance patients' likelihood to develop a given ailment; cures to major diseases could be found faster [1]. However, this goal of ``personalized medicine'' is hampered today by the high cost and slow speed of DNA sequencing methods. In this talk, I will discuss the sequencing protocol we suggest which requires the measurement of the distributions of transverse currents during the translocation of single-stranded DNA into nanopores [2-5]. I will support our conclusions with a combination of molecular dynamics simulations coupled to quantum mechanical calculations of electrical current in experimentally realizable systems [2-5]. I will also discuss recent experiments that support these theoretical predictions. In addition, I will show how this relatively unexplored area of research at the interface between solids, liquids, and biomolecules at the nanometer length scale is a fertile ground to study quantum phenomena that have a classical counterpart, such as ionic quasi-particles, ionic ``quantized'' conductance [6,7] and Coulomb blockade [8]. Work supported in part by NIH. [4pt] [1] M. Zwolak, M. Di Ventra, Physical Approaches to DNA Sequencing and Detection, Rev. Mod. Phys. 80, 141 (2008).[0pt] [2] M. Zwolak and M. Di Ventra, Electronic signature of DNA nucleotides via transverse transport, Nano Lett. 5, 421 (2005).[0pt] [3] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Fast DNA sequencing via transverse electronic transport, Nano Lett. 6, 779 (2006).[0pt] [4] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport, Biophys. J. 93, 2384 (2007).[0pt] [5] M. Krems, M. Zwolak, Y.V. Pershin, and M. Di Ventra, Effect of noise on DNA sequencing via transverse electronic transport, Biophys. J. 97, 1990, (2009).[0pt] [6] M. Zwolak, J. Lagerqvist, and M. Di Ventra, Ionic conductance quantization in nanopores, Phys. Rev.Lett. 103, 128102 (2009).[0pt] [7] M. Zwolak, J. Wilson, and M. Di Ventra, Dehydration and ionic conductance quantization in nanopores, J. Phys. Cond. Matt. 22 454126 (2011). [0pt] [8] M. Krems and M. Di Ventra, Ionic Coulomb blockade in nanopores arXiv:1103.2749.
Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V
2016-01-14
In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.
Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids
NASA Astrophysics Data System (ADS)
Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro
2015-03-01
A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.
Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; ...
2016-05-18
Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as micro-solid oxide fuel cells, electrolysers, sensors and memristors. In this paper we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol% of samaria, an enhancement in the defect association was observed by Raman spectroscopy. The role of such defect associates on the films` oxygen ion transport and exchange was investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has amore » sharp maximum in ionic conductivity and drop in its activation energy down to 0.6 eV for 20 mol% doping. Increasing the doping concentration further up to 40 mol%, raises the activation energy substantially by a factor of two. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first order reversal curve measurements indicate that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol% of samaria. We reveal in a model experiment through a solid solution series of samaria doped ceria epitaxial films that the occurrence of associate defects in the bulk affects the surface charging state of the films to increase the exchange rates. Lastly, the implication of these findings are the design of coatings with tuned oxygen surface exchange by control of bulk associate clusters for future electro-catalytic applications.« less
Turner, Lucy M; Webster, Simon G; Morris, Stephen
2013-04-01
There is a growing body of evidence implicating the involvement of crustacean hyperglycaemic hormone (CHH) in ionic homeostasis in decapod crustaceans. However, little is known regarding hormonally influenced osmoregulatory processes in terrestrial decapods. As many terrestrial decapods experience opposing seasonal demands upon ionoregulatory physiologies, we reasoned that these would make interesting models in which to study the effect of CHH upon these phenomena. In particular, those (tropical) species that also undergo seasonal migrations might be especially informative, as we know relatively little regarding the nature of CHHs in terrestrial decapods, and hormonally mediated responses to seasonal changes in metabolic demands might also be superimposed or otherwise integrated with those associated with ionic homeostasis. Using Discoplax celeste as a model crab that experiences seasonal extremes in water availability, and exhibits diurnal and migratory activity patterns, we identified two CHHs in the sinus gland. We biochemically characterised (cDNA cloning) one CHH and functionally characterised (in terms of dose-dependent hyperglycaemic responses and glucose-dependent negative feedback loops) both CHHs. Whole-animal in situ branchial chamber (22)NaCl perfusion experiments showed that injection of both CHHs increased gill Na(+) uptake in a seasonally dependent manner, and (51)Cr-EDTA clearance experiments demonstrated that CHH increased urine production by the antennal gland. Seasonal and salinity-dependent differences in haemolymph CHH titre further implicated CHH in osmoregulatory processes. Intriguingly, CHH appeared to have no effect on gill Na(+)/K(+)-ATPase or V-ATPase activity, suggesting unknown mechanisms of this hormone's action on Na(+) transport across gill epithelia.
AC impedance spectroscopy of NASICON type Na3Fe2(PO4)3 ceramic
NASA Astrophysics Data System (ADS)
Mandal, Biswajit; Thakur, A. K.
2018-05-01
Super ionic conductors (e.g.; A3M2(XO4)3, A=Li, Na) have received attention in applied research due to their interesting electrochemical property and inherently high ionic conductivity [1]. However, structural and compatibility requirements for fast ion transport is stringent and it plays a crucial role. In A3M2(XO4)3, a suitable cage formation in the crystal framework due to corner sharing arrangement of XO4 tetrahedra and MO6 octahedra creates voids that acts as host/guest site for cation transport. In this work, we report Nasicon structure Na3Fe2(PO4)3 (NFP) prepared via sol-gel route mediated by citric acid. Structural analysis confirmed that NFP sample belongs to monoclinic crystal structure having Cc space group (S. G. No 9) with lattice parameters, a=15.106 Å, b=8.722 Å, c=8.775 Å and β=124.96°. Electrical properties of the prepared sample have been studied by AC impedance spectroscopy technique. The AC conductivity results indicated typical signature of ionically conducting system.
Salinity-dependent diatom biosilicification implies an important role of external ionic strength
Vrieling, Engel G.; Sun, Qianyao; Tian, Mingwen; Kooyman, Patricia J.; Gieskes, Winfried W. C.; van Santen, Rutger A.; Sommerdijk, Nico A. J. M.
2007-01-01
The role of external ionic strength in diatom biosilica formation was assessed by monitoring the nanostructural changes in the biosilica of the two marine diatom species Thalassiosira punctigera and Thalassiosira weissflogii that was obtained from cultures grown at two distinct salinities. Using physicochemical methods, we found that at lower salinity the specific surface area, the fractal dimensions, and the size of mesopores present in the biosilica decreased. Diatom biosilica appears to be denser at the lower salinity that was applied. This phenomenon can be explained by assuming aggregation of smaller coalescing silica particles inside the silica deposition vesicle, which would be in line with principles in silica chemistry. Apparently, external ionic strength has an important effect on diatom biosilica formation, making it tempting to propose that uptake of silicic acid and other external ions may take place simultaneously. Uptake and transport of reactants in the proximity of the expanding silica deposition vesicle, by (macro)pinocytosis, are more likely than intracellular stabilization and transport of silica precursors at the high concentrations that are necessary for the formation of the siliceous frustule components. PMID:17563373
Octanol-water distribution of engineered nanomaterials.
Hristovski, Kiril D; Westerhoff, Paul K; Posner, Jonathan D
2011-01-01
The goal of this study was to examine the effects of pH and ionic strength on octanol-water distribution of five model engineered nanomaterials. Distribution experiments resulted in a spectrum of three broadly classified scenarios: distribution in the aqueous phase, distribution in the octanol, and distribution into the octanol-water interface. Two distribution coefficients were derived to describe the distribution of nanoparticles among octanol, water and their interface. The results show that particle surface charge, surface functionalization, and composition, as well as the solvent ionic strength and presence of natural organic matter, dramatically impact this distribution. Distributions of nanoparticles into the interface were significant for nanomaterials that exhibit low surface charge in natural pH ranges. Increased ionic strengths also contributed to increased distributions of nanoparticle into the interface. Similarly to the octanol-water distribution coefficients, which represent a starting point in predicting the environmental fate, bioavailability and transport of organic pollutants, distribution coefficients such as the ones described in this study could help to easily predict the fate, bioavailability, and transport of engineered nanomaterials in the environment.
Otvagina, Ksenia V.; Mochalova, Alla E.; Sazanova, Tatyana S.; Petukhov, Anton N.; Moskvichev, Alexandr A.; Vorotyntsev, Andrey V.; Afonso, Carlos A. M.; Vorotyntsev, Ilya V.
2016-01-01
CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C. PMID:27294964
Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.
The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energymore » efficient manner.« less
NASA Astrophysics Data System (ADS)
Faulkner, Ankita Shah
As the demand for clean energy sources increases, large investments have supported R&D programs aimed at developing high power lithium ion batteries for electric vehicles, military, grid storage and space applications. State of the art lithium ion technology cannot meet power demands for these applications due to high internal resistances in the cell. These resistances are mainly comprised of ionic and electronic resistance in the electrode and electrolyte. Recently, much attention has been focused on the use of nanoscale lithium ion active materials on the premise that these materials shorten the diffusion length of lithium ions and increase the surface area for electrochemical charge transfer. While, nanomaterials have allowed significant improvements in the power density of the cell, they are not a complete solution for commercial batteries. Due to their large surface area, they introduce new challenges such as a poor electrode packing densities, high electrolyte reactivity, and expensive synthesis procedures. Since greater than 70% of the cost of the electric vehicle is due to the cost of the battery, a cost-efficient battery design is most critical. To address the limitations of nanomaterials, efficient transport pathways must be engineered in the bulk electrode. As a part of nanomanufacturing research being conducted the Center for High-rate Nanomanufacturing at Northeastern University, the first aim of the proposed work is to develop electrode architectures that enhance electronic and ionic transport pathways in large and small area lithium ion electrodes. These architectures will utilize the unique electronic and mechanical properties of carbon nanotubes to create robust electrode scaffolding that improves electrochemical charge transfer. Using extensive physical and electrochemical characterization, the second aim is to investigate the effect of electrode parameters on electrochemical performance and evaluate the performance against standard commercial electrodes. These parameters include surface morphology, electrode composition, electrode density, and operating temperature. Finally, the third aim is to investigate commercial viability of the electrode architecture. This will be accomplished by developing pouch cell prototypes using a high-rate and low cost scale-up process. Through this work, we aim to realize a commercially viable high-power electrode technology.
Atomistic origin of superior performance of ionic liquid electrolytes for Al-ion batteries.
Kamath, Ganesh; Narayanan, Badri; Sankaranarayanan, Subramanian K R S
2014-10-14
Encouraged by recent experimental findings, here we report on an in silico investigation to probe the atomistic origin behind the superior performance of ionic liquids (ILs) over traditional carbonate electrolytes for Al-ion batteries. Fundamental insights from computationally derived thermodynamic and kinetic considerations coupled with an atomistic-level description of the solvation dynamics is used to elucidate the performance improvements. The formation of low-stability ion-solvent complexes in ILs facilitates rapid Al-ion solvation-desolvation and translates into favorable transport properties (viscosity and ionic conductivity). Our results offer encouraging prospects for this approach in the a priori prediction of optimal IL formulations for Al-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Adam; Pati, Soobhankar
2012-03-11
Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat andmore » mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.« less
Mapping Ionic Currents and Reactivity on the Nanoscale: Electrochemical Strain Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, S.V.
2010-10-19
Solid-state electrochemical processes in oxides underpin a broad spectrum of energy and information storage devices, ranging from Li-ion and Li-air batteries, to solid oxide fuel cells (SOFC) to electroresistive and memristive systems. These functionalities are controlled by the bias-driven diffusive and electromigration transport of mobile ionic species, as well as intricate a set of electrochemical and defect-controlled reactions at interfaces and in bulk. Despite the wealth of device-level and atomistic studies, little is known on the mesoscopic mechanisms of ion diffusion and electronic transport on the level of grain clusters, individual grains, and extended defects. The development of the capabilitymore » for probing ion transport on the nanometer scale is a key to deciphering complex interplay between structure, functionality, and performance in these systems. Here we introduce Electrochemical Strain Microscopy, a scanning probe microscopy technique based on strong strain-bias coupling in the systems in which local ion concentrations are changed by electrical fields. The imaging capability, as well as time- and voltage spectroscopies analogous to traditional current based electrochemical characterization methods are developed. The reversible intercalation of Li and mapping electrochemical activity in LiCoO2 is demonstrated, illustrating higher Li diffusivity at non-basal planes and grain boundaries. In Si-anode device structure, the direct mapping of Li diffusion at extended defects and evolution of Li-activity with charge state is explored. The electrical field-dependence of Li mobility is studied to determine the critical bias required for the onset of electrochemical transformation, allowing reaction and diffusion processes in the battery system to be separated at each location. Finally, the applicability of ESM for probing oxygen vacancy diffusion and oxygen reduction/evolution reactions is illustrated, and the high resolution ESM maps are correlated with aberration corrected scanning transmission electron microscopy imaging. The future potential for deciphering mechanisms of electrochemical transformations on an atomically-defined single-defect level is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; Qu, Ge; Zhang, Fengjiao; Zhao, Xikang; Mei, Jianguo; Zuo, Jian-Min; Shukla, Diwakar; Diao, Ying
2017-01-01
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results in highly aligned, highly crystalline donor–acceptor polymer thin films over large area (>1 cm2) and promoted charge transport along both the polymer backbone and the π–π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment. PMID:28703136
Mohammadi, Erfan; Zhao, Chuankai; Meng, Yifei; ...
2017-07-13
Solution processable semiconducting polymers have been under intense investigations due to their diverse applications from printed electronics to biomedical devices. However, controlling the macromolecular assembly across length scales during solution coating remains a key challenge, largely due to the disparity in timescales of polymer assembly and high-throughput printing/coating. Herein we propose the concept of dynamic templating to expedite polymer nucleation and the ensuing assembly process, inspired by biomineralization templates capable of surface reconfiguration. Molecular dynamic simulations reveal that surface reconfigurability is key to promoting template–polymer interactions, thereby lowering polymer nucleation barrier. Employing ionic-liquid-based dynamic template during meniscus-guided coating results inmore » highly aligned, highly crystalline donor-acceptor polymer thin films over large area (41cm 2) and promoted charge transport along both the polymer backbone and the π-π stacking direction in field-effect transistors. We further demonstrate that the charge transport anisotropy can be reversed by tuning the degree of polymer backbone alignment.« less
The Transport of Salt and Water across Isolated Rat Ileum
Clarkson, T. W.
1967-01-01
The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854
Dennewald, Danielle; Hortsch, Ralf; Weuster-Botz, Dirk
2012-01-01
As clear structure-activity relationships are still rare for ionic liquids, preliminary experiments are necessary for the process development of biphasic whole-cell processes involving these solvents. To reduce the time investment and the material costs, the process development of such biphasic reaction systems would profit from a small-scale high-throughput platform. Exemplarily, the reduction of 2-octanone to (R)-2-octanol by a recombinant Escherichia coli in a biphasic ionic liquid/water system was studied in a miniaturized stirred-tank bioreactor system allowing the parallel operation of up to 48 reactors at the mL-scale. The results were compared to those obtained in a 20-fold larger stirred-tank reactor. The maximum local energy dissipation was evaluated at the larger scale and compared to the data available for the small-scale reactors, to verify if similar mass transfer could be obtained at both scales. Thereafter, the reaction kinetics and final conversions reached in different reactions setups were analysed. The results were in good agreement between both scales for varying ionic liquids and for ionic liquid volume fractions up to 40%. The parallel bioreactor system can thus be used for the process development of the majority of biphasic reaction systems involving ionic liquids, reducing the time and resource investment during the process development of this type of applications. Copyright © 2011. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Chondroudis, Konstantinos; Mitzi, David B.
2000-01-01
The conversion of two neutral dye molecules (D) to ionic salts (H2N-D-NH2ṡ2HX) and their utilization as emitting layers in organic light-emitting diodes (OLEDs) is described. The dye salts, AEQTṡ2HCl and APTṡ2HCl, can be deposited as amorphous films using conventional evaporation techniques. X-ray diffraction and scanning electron microscopy analysis, coupled with thermal annealing studies, demonstrate the resistance of the films to crystallization. This stability is attributed to strong ionic forces between the relatively rigid molecules. OLEDs incorporating such salts for emitting layers exhibit better thermal stability compared with devices made from the corresponding neutral dyes (H2N-D-NH2). These results suggest that ionic salts may more generally enable the formation of thermally stable, amorphous emitting, and charge transporting layers.
Nanoscale structure and morphology of sulfonated polyphenylenes via atomistic simulations
Abbott, Lauren J.; Frischknecht, Amalie L.
2017-01-23
We performed atomistic simulations on a series of sulfonated polyphenylenes systematically varying the degree of sulfonation and water content to determine their effect on the nanoscale structure, particularly for the hydrophilic domains formed by the ionic groups and water molecules. We found that the local structure around the ionic groups depended on the sulfonation and hydration levels, with the sulfonate groups and hydronium ions less strongly coupled at higher water contents. In addition, we characterized the morphology of the ionic domains employing two complementary clustering algorithms. At low sulfonation and hydration levels, clusters were more elongated in shape and poorlymore » connected throughout the system. As the degree of sulfonation and water content were increased, the clusters became more spherical, and a fully percolated ionic domain was formed. As a result, these structural details have important implications for ion transport.« less
Borodin, Oleg
2009-09-10
A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.
NASA Astrophysics Data System (ADS)
Paulsen, Bryan D.; Frisbie, C. Daniel
2012-02-01
Ionic liquids, used in place of traditional gate dielectric materials, allow for the accumulation of very high 2D and 3D charge densities (>10^14 #/cm^2 and >10^21 #/cm^3 respectively) at low voltage (<5 V). Here we study the electrochemical gating of the benchmark semiconducting polymer poly(3-hexylthiophene) (P3HT) with the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([EMI][FAP]). The electrochemical stability of [EMI][FAP] allowed the reproducible accumulation of 2 x 10^21 hole/cm^3, or one hole (and stabilizing anion dopant) per every two thiophene rings. A finite potential/charge density window of high electrical conductivity was observed with hole mobility reaching a maximum of 0.86 cm^2/V s at 0.12 holes per thiophene ring. Displacement current measurements, collected versus a calibrated reference electrode, allowed the mapping of the highly structured and extremely broad density of states of the P3HT/[EMI][FAP] doped composite. Variable temperature and charge density hole transport measurements revealed hole transport to be thermally activated and non-monotonic, displaying a activation energy minimum of ˜20 meV in the region of maximum conductivity and hole mobility. To show the generality of this result, the study was extended to an additional four ionic liquids and three semiconducting polymers.
Cluster approach to the prediction of thermodynamic and transport properties of ionic liquids
NASA Astrophysics Data System (ADS)
Seeger, Zoe L.; Kobayashi, Rika; Izgorodina, Ekaterina I.
2018-05-01
The prediction of physicochemical properties of ionic liquids such as conductivity and melting point would substantially aid the targeted design of ionic liquids for specific applications ranging from solvents for extraction of valuable chemicals to biowaste to electrolytes in alternative energy devices. The previously published study connecting the interaction energies of single ion pairs (1 IP) of ionic liquids to their thermodynamic and transport properties has been extended to larger systems consisting of two ion pairs (2 IPs), in which many-body and same-ion interactions are included. Routinely used cations, of the imidazolium and pyrrolidinium families, were selected in the study coupled with chloride, tetrafluoroborate, and dicyanamide. Their two ion pair clusters were subjected to extensive configuration screening to establish most stable structures. Interaction energies of these clusters were calculated at the spin-ratio scaled MP2 (SRS-MP2) level for the correlation interaction energy, and a newly developed scaled Hartree-Fock method for the rest of energetic contributions to interaction energy. A full geometry screening for each cation-anion combination resulted in 192 unique structures, whose stability was assessed using two criteria—widely used interaction energy and total electronic energy. Furthermore, the ratio of interaction energy to its dispersion component was correlated with experimentally observed melting points in 64 energetically favourable structures. These systems were also used to test the correlation of the dispersion contribution to interaction energy with measured conductivity.
Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu0) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic...
Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes
Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui; ...
2016-01-14
Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI) 2, acetonitrile Zn(CF 3SO 3) 2, and propylene carbonate Zn(TFSI) 2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates thatmore » the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes« less
Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofu, Maiko; Inamura, Yasuhiro; Miyazaki, Kyoko
2015-12-21
Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (E{sub a}) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionicmore » diffusion processes, E{sub a} increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.« less
Photoelectrochemical electrodes
NASA Technical Reports Server (NTRS)
Williams, R. M.; Rembaum, A. (Inventor)
1983-01-01
The surface of a moderate band gap semiconductor such as p-type molybdenum sulfide is modified to contain an adherent film of charge mediating ionene polymer containing an electroactive unit such as bipyridimium. Electron transport between the electrode and the mediator film is favorable and photocorrosion and recombination processes are suppressed. Incorporation of particles of catalyst such as platinum within the film provides a reduction in overvoltage. The polymer film is readily deposited on the electrode surface and can be rendered stable by ionic or addition crosslinking. Catalyst can be predispersed in the polymer film or a salt can be impregnated into the film and reduced therein.
Boundary layer charge dynamics in ionic liquid-ionic polymer transducers
NASA Astrophysics Data System (ADS)
Davidson, Jacob D.; Goulbourne, N. C.
2011-01-01
Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites, are soft sensors and actuators which operate through a coupling of microscale chemical, electrical, and mechanical interactions. The use of an ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. In this work, we apply Nernst-Planck/Poisson theory to model charge transport in an ionic liquid IPT by considering a certain fraction of the ionic liquid ions as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs compared to their water-based counterparts. Numerical simulations are performed using the finite element method to examine how the introduction of another pair of mobile ions affects boundary layer charge dynamics, concentration, and charge density distributions in the electric double layer, and the overall charge transferred and current response of the IPT. Due to interactions with the Nafion ionomer, not all of the ionic liquid ions will function as mobile charge carriers; only a certain fraction will exist as "free" ions. The presence of mobile ionic liquid ions in the transducer will increase the overall charge transferred when a voltage is applied, and cause the current in the transducer to decay more slowly. The additional mobile ions also cause the ionic concentration profiles to exhibit a nonlinear dynamic response, characterized by nonmonotonic ionic concentration profiles in space and time. Although the presence of mobile ionic liquid ions increases the overall amount of charge transferred, this additional charge transfer occurs in a somewhat symmetric manner. Therefore, the additional charge transferred due to the ionic liquid ions does not greatly increase the net bending moment of the transducer; in fact, it is possible that ionic liquid ion movement actually decreases the observed bending response. This suggests that an optimal electromechanical conversion efficiency for bending actuation is achieved by using an ionic liquid where only a relatively small fraction of the ionic liquid ions exist as free ions. Conversely, if it is desired to increase the overall amount of charge transferred, an ionic liquid with a large fraction of free ions should be used. These theoretical considerations are found to be in good qualitative agreement with recent experimental results.
Thermal Decomposition Mechanism of 1-ethyl-3-methylimidazolium Bromide Ionic Liquid (Preprint)
2011-09-14
TetraethylammoniumTrifluoromentanesulfonate Ionic Liquid and Neutralized Nafion 117 for High-Temperature Fuel Cells J. Am. Chem. Soc. 2010, 132, 2183-2195. (7) Kim, S. Y.; Kim, S...bromide 5b. GRANT NUMBER ionic liquid (Preprint) 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steven D. Chambreau, Jerry A. Boatz, Ghanshyam L. Vaaghjiani...In order to better understand the volatilization process for ionic liquids , the vapor evolved from heating the ionic liquid 1-ethyl-3
Rodríguez de San Miguel, Eduardo; Vital, Xóchitl; de Gyves, Josefina
2014-05-30
Chromium(VI) transport through a supported liquid membrane (SLM) system containing the commercial ionic liquid CYPHOS IL101 as carrier was studied. A reducing stripping phase was used as a mean to increase recovery and to simultaneously transform Cr(VI) into a less toxic residue for disposal or reuse. General functions which describe the time-depending evolution of the metal fractions in the cell compartments were defined and used in data evaluation. An experimental design strategy, using factorial and central-composite design matrices, was applied to assess the influence of the extractant, NaOH and citrate concentrations in the different phases, while a desirability function scheme allowed the synchronized optimization of depletion and recovery of the analyte. The mechanism for chromium permeation was analyzed and discussed to contribute to the understanding of the transfer process. The influence of metal concentration was evaluated as well. The presence of different interfering ions (Ca(2+), Al(3+), NO3(-), SO4(2-), and Cl(-)) at several Cr(VI): interfering ion ratios was studied through the use of a Plackett and Burman experimental design matrix. Under optimized conditions 90% of recovery was obtained from a feed solution containing 7mgL(-1) of Cr(VI) in 0.01moldm(-3) HCl medium after 5h of pertraction. Copyright © 2014 Elsevier B.V. All rights reserved.
Pore-Scale Transport of Strontium During Dynamic Water Content Changes in the Unsaturated Zone
NASA Astrophysics Data System (ADS)
Weaver, W.; Kibbey, T. C. G.; Papelis, C.
2016-12-01
Dynamic water content changes in the unsaturated zone caused by natural and manmade processes, such as evaporation, rainfall, and irrigation, have an effect on contaminant mobility. In general, in the unsaturated zone, evaporation causes an increase in contaminant concentrations, potentially leading to sorption of contaminants on aquifer materials or precipitation of crystalline or amorphous phases. On the other hand, increase of water content may result in dissolution of precipitated phases and increased mobility of contaminants. The objective of this study was to develop a quantitative model for the transport of strontium through sand under dynamic water content conditions, as a function of strontium concentration, pH, and ionic strength. Strontium was selected as a surrogate for strontium-90, a by-product of nuclear reactions. The dynamic water content was determined using an automated device for rapidly measuring the hysteretic capillary pressure—saturation relationship, followed by ambient air evaporation, and gravimetric water content measurement. Strontium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Flow interruption experiments were conducted to determine whether equilibrium conditions existed for a given flowrate. Scanning electron microscopy (SEM) was used to visualize the treated quartz sand particles and the distribution of strontium on sand grains was determined using elemental maps created by energy-dispersive x-ray spectroscopy (EDX). Strontium behavior appears to be pH dependent as well as ionic strength dependent under these conditions.
Oxygen, water, and sodium chloride transport in soft contact lenses materials.
Gavara, Rafael; Compañ, Vicente
2017-11-01
Oxygen permeability, diffusion coefficient of the sodium ions and water flux and permeability in different conventional hydrogel (Hy) and silicone-hydrogel (Si-Hy) contact lenses have been measured experimentally. The results showed that oxygen permeability and transmissibility requirements of the lens have been addressed through the use of siloxane containing hydrogels. In general, oxygen and sodium chloride permeability values increased with the water content of the lens but there was a percolation phenomenon from a given value of water uptake mainly in the Si-Hy lenses which appeared to be related with the differences between free water and bound water contents. The increase of ion permeability with water content did not follow a unique trend indicating a possible dependence of the chemical structure of the polymer and character ionic and non-ionic of the lens. Indeed, the salt permeability values for silicone hydrogel contact lenses were one order of magnitude below those of conventional hydrogel contact lenses, which can be explained by a diffusion of sodium ions occurring only through the hydrophilic channels. The increase of the ionic permeability in Si-Hy materials may be due to the confinement of ions in nanoscale water channels involving possible decreased degrees of freedom for diffusion of both water and ions. In general, ionic lenses presented values of ionic permeability and diffusivity higher than most non-ionic lenses. The tortuosity of the ionic lenses is lower than the non-ionic Si-Hy lenses. Frequency 55 and PureVision exhibited the highest water permeability and flux values and, these parameters were greater for ionic Si-Hy lenses than for ionic conventional hydrogel lenses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2218-2231, 2017. © 2016 Wiley Periodicals, Inc.
Chen, Season S; Sun, Yuqing; Tsang, Daniel C W; Graham, Nigel J D; Ok, Yong Sik; Feng, Yujie; Li, Xiang-Dong
2017-04-01
Produced water is a type of wastewater generated from hydraulic fracturing, which may pose a risk to the environment and humans due to its high ionic strength and the presence of elevated concentrations of metals/metalloids that exceed maximum contamination levels. The mobilization of As(V) and Se(VI) in produced water and selected soils from Qingshankou Formation in the Songliao Basin in China were investigated using column experiments and synthetic produced water whose quality was representative of waters arising at different times after well creation. Temporal effects of produced water on metal/metalloid transport and sorption/desorption were investigated by using HYDRUS-1D transport modelling. Rapid breakthrough and long tailings of As(V) and Se(VI) transport were observed in Day 1 and Day 14 solutions, but were reduced in Day 90 solution probably due to the elevated ionic strength. The influence of produced water on the hydrogeological conditions (i.e., change between equilibrium and non-equilibrium transport) was evidenced by the change of tracer breakthrough curves before and after the leaching of produced water. This possibly resulted from the sorption of polyacrylamide (PAM (-CH 2 CHCONH 2 -) n ) onto soil surfaces, through its use as a friction reducer in fracturing solutions. The sorption was found to be reversible in this study. Minimal amounts of sorbed As(V) were desorbed whereas the majority of sorbed Se(VI) was readily leached out, to an extent which varied with the composition of the produced water. These results showed that the mobilization of As(V) and Se(VI) in soil largely depended on the solution pH and ionic strength. Understanding the differences in metal/metalloid transport in produced water is important for proper risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of evolution-related aspects of bacterial rhodopsins
NASA Technical Reports Server (NTRS)
1994-01-01
We have investigated evolution-related aspects of bacterial rhodopsins, the unique retinal-based energy transducing systems of halophilic archae. The approach was to describe both structural and functional aspects: the structure by sequencing genes to explore which regions are conserved, and the function by comparing proton and chloride transport in the closely related systems, bacteriorhodopsin and halorhodopsin, respectively. In the latter, we have made a good start toward the ultimate goal of separating the attributes of the general principles of retinal-based ionic pumps from those of the specific ion specificities, by determining the thermodynamics of the internal steps of the protein-mediated active transport process, as well as some of the intraprotein ion-transfer steps. Our present emphasis is on continuing to acquire the tools for studying what distinguishes proton transport from chloride transport. We consider it important, therefore, that we have been able to provide firm mathematical grounds for the kinetics analyses which underlies these studies. Our molecular biological studies have received a great boost from the expression vector for the bop gene based on a halobacterial plasmid, that we recently developed.
Emerson, H P; Zengotita, F; Richmann, M; Katsenovich, Y; Reed, D T; Dittrich, T M
2018-10-01
The results presented in this paper highlight the complexity of adsorption and incorporation processes of Nd with dolomite and significantly improve upon previous work investigating trivalent actinide and lanthanide interactions with dolomite. Both batch and mini column experiments were conducted at variable ionic strength. These data highlight the strong chemisorption of Nd to the dolomite surface (equilibrium K d 's > 3000 mL/g) and suggest that equilibrium adsorption processes may not be affected by ionic strength based on similar results at 0.1 and 5.0 M ionic strength in column breakthrough and equilibrium batch (>5 days) results. Mini column experiments conducted over approximately one year also represent a significant development in measurement of sorption of Nd in the presence of flow as previous large-scale column experiments did not achieve breakthrough likely due to the high loading capacity of dolomite for Nd (up to 240 μg/g). Batch experiments in the absence of flow show that the rate of Nd removal increases with increasing ionic strength (up to 5.0 M) with greater removal at greater ionic strength for a 24 h sampling point. We suggest that the increasing ionic strength induces increased mineral dissolution and re-precipitation caused by changes in activity with ionic strength that lead to increased removal of Nd through co-precipitation processes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jiang, Fangming; Peng, Peng
2016-01-01
Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, Scott; Poeppelmeier, Ken; Mason, Tom
This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encounteredmore » in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.« less
Effect of surface bilayer charges on the magnetic field around ionic channels
NASA Astrophysics Data System (ADS)
Gomes Soares, Marília Amável; Cortez, Celia Martins; Oliveira Cruz, Frederico Alan de; Silva, Dilson
2017-01-01
In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na+ and K+-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na+ and K+ permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K+-channel is very less sensible to temperature changes than the current density through a Na+- channel, active Na+-channels do not directly interfere with the K+-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.
Zhang, Biao; Sudre, Guillaume; Quintard, Guilhem; Serghei, Anatoli; David, Laurent; Bernard, Julien; Fleury, Etienne; Charlot, Aurélia
2017-02-10
In this study, we report on the simple and straightforward preparation of ionogels arising from the addition of guar gum (a plant-based polysaccharide) in a solution of precisely-defined poly(ionic liquid) chains (PIL) in imidazolium-based ionic liquid (IL). The development of intermolecular polar interactions (mainly hydrogen bonds) and topologic chain entanglements induces the formation of physical biohybrid ionogels, whose elastic properties can be easily tuned by varying the composition (up to 30000Pa). The combined presence of guar gum and PIL confers excellent dimensional stability to the ionogels with no IL exudation combined with high thermal properties (up to 310°C). The resulting materials are shown to exhibit gel scattering profiles and high conductivities (> 10 -4 S/cm at 30°C). The benefit linked to the formation of guar/PIL associations in IL medium enables to find a good compromise between the mechanical cohesion and the mobility ensuring the ionic transport. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.
Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li
2016-02-08
The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.
Ion-Transport Design for High-Performance Na+-Based Electrochromics.
Li, Ran; Li, Kerui; Wang, Gang; Li, Lei; Zhang, Qiangqiang; Yan, Jinhui; Chen, Yao; Zhang, Qinghong; Hou, Chengyi; Li, Yaogang; Wang, Hongzhi
2018-04-24
Sodium ion (Na + )-based electrochemical systems have been extensively investigated in batteries and supercapacitors and also can be quality candidates for electrochromic (EC) devices. However, poor diffusion kinetics and severe EC performance degradation occur during the intercalation/deintercalation processes because the ionic radii of Na + are larger than those of conventional intercalation ions. Here, through intentional design of ion-transport channels in metal-organic frameworks (MOFs), Na + serves as an efficient intercalation ion for incorporation into a nanostructured electrode with a high diffusion coefficient of approximately 10 -8 cm 2 s -1 . As a result, the well-designed MOF-based EC device demonstrates desirable Na + EC performance, including fast switching speed, multicolor switching, and high stability. A smart "quick response code" display is fabricated using a mask-free laser writing method for application in the "Internet of Things". In addition, the concept of ion transport pathway design can be widely adopted for fabricating high-performance ion intercalation materials and devices for consumer electronics.
Vadose Zone Transport Field Study: Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gee, Glendon W.; Ward, Anderson L.
2001-11-30
Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of themore » past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.« less
NASA Technical Reports Server (NTRS)
Spjeldvik, W. N.
1981-01-01
Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.
Electrodics: mesoscale physicochemical interactions in lithium-ion batteries
NASA Astrophysics Data System (ADS)
Mukherjee, Partha P.; Chen, Chien-Fan
2014-06-01
Recent years have witnessed an explosion of interest and research endeavor in lithium-ion batteries to enable vehicle electrification. In particular, a critical imperative is to accelerate innovation for improved performance, life and safety of lithium-ion batteries for electric drive vehicles. Lithium ion batteries are complex, dynamical systems which include a multitude of coupled physicochemical processes encompassing electronic/ionic/diffusive transport in solid/electrolyte phases, electrochemical and phase change reactions and diffusion induced stress generation in multi-scale porous electrode microstructures. While innovations in nanomaterials and nanostructures have spurred the recent advancements, fundamental understanding of the electrode processing - microstructure - performance interplay is of paramount importance. In this presentation, mesoscale physicochemical interactions in lithium-ion battery electrodes will be elucidated.
Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert
2016-01-01
We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866
Thermoelectric transport in Cu7PSe6 with high copper ionic mobility.
Weldert, Kai S; Zeier, Wolfgang G; Day, Tristan W; Panthöfer, Martin; Snyder, G Jeffrey; Tremel, Wolfgang
2014-08-27
Building on the good thermoelectric performances of binary superionic compounds like Cu2Se, Ag2Se and Cu2S, a better and more detailed understanding of phonon-liquid electron-crystal (PLEC) thermoelectric materials is desirable. In this work we present the thermoelectric transport properties of the compound Cu7PSe6 as the first representative of the class of argyrodite-type ion conducting thermoelectrics. With a huge variety of possible compositions and high ionic conductivity even at room temperature, the argyrodites represent a very good model system to study structure-property relationships for PLEC thermoelectric materials. We particularly highlight the extraordinary low thermal conductivity of Cu7PSe6 below the glass limit, which can be associated with the molten copper sublattice leading to a softening of phonon modes.
Photo-switchable two-dimensional nanofluidic ionic diodes.
Wang, Lili; Feng, Yaping; Zhou, Yi; Jia, Meijuan; Wang, Guojie; Guo, Wei; Jiang, Lei
2017-06-01
The bottom-up assembly of ion-channel-mimetic nanofluidic devices and materials with two-dimensional (2D) nano-building blocks paves a straightforward way towards the real-world applications of the novel transport phenomena on a nano- or sub-nanoscale. One immediate challenge is to provide the 2D nanofluidic systems with adaptive responsibilities and asymmetric ion transport characteristics. Herein, we introduce a facile and general strategy to provide a graphene-oxide-based 2D nanofluidic system with photo-switchable ionic current rectification (ICR). The degree of ICR can be prominently enhanced upon UV irradiation and it can be perfectly retrieved under irradiation with visible light. A maximum ICR ratio of about 48 was achieved. The smart and functional nanofluidic devices have applications in energy conversion, chemical sensing, water treatment, etc .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jinlong; Wang, Yonggang; Li, Shuai
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-state battery. In this work, the sodium ionic transport pathways of the parent compound Na3OBr, as well as the modified layered antiperovskite Na4OI2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions hop within and among oxygen octahedra, and Br- ions are not involved. In the tetragonal Na4OI2 antiperovskite, Na ions, which connectmore » octahedra in the ab plane, have the lowest activation energy barrier. The transport of sodium ions along the c axis is assisted by I- ions.« less
Low-Temperature Carrier Transport in Ionic-Liquid-Gated Hydrogen-Terminated Silicon
NASA Astrophysics Data System (ADS)
Sasama, Yosuke; Yamaguchi, Takahide; Tanaka, Masashi; Takeya, Hiroyuki; Takano, Yoshihiko
2017-11-01
We fabricated ionic-liquid-gated field-effect transistors on the hydrogen-terminated (111)-oriented surface of undoped silicon. Ion implantation underneath electrodes leads to good ohmic contacts, which persist at low temperatures down to 1.4 K. The sheet resistance of the channel decreases by more than five orders of magnitude as the gate voltage is changed from 0 to -1.6 V at 220 K. This is caused by the accumulation of hole carriers. The sheet resistance shows thermally activated behavior at temperatures below 10 K, which is attributed to hopping transport of the carriers. The activation energy decreases towards zero with increasing carrier density, suggesting the approach to an insulator-metal transition. We also report the variation of device characteristics induced by repeated sweeps of the gate voltage.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.
2002-01-01
Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.
Nonequilibrium Simulations of Ion Dynamics in Ionomer Melts
NASA Astrophysics Data System (ADS)
Frischknecht, Amalie
Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. However, to date ionomers do not have sufficiently high conductivities for practical application, most likely because the ions tend to form aggregates, leading to slow ion transport. To build a better understanding of the relationships among ionomer chemistry, morphology, and ion transport, we have performed a series of molecular dynamics simulations and connected aspects of these simulations with experiment. In previous work using both atomistic and coarse-grained models, we showed that precise ionomers (with a fixed spacing between ionic groups along the polymer backbone) exhibit a range of ionic aggregate morphologies, from discrete clusters to percolated aggregates. In this talk I will describe recent simulations of our coarse-grained ionomer melts in an applied electric field. From a constant applied field, we are able to extract the ion mobilities and hence conductivities. We find that ionomers with percolated ionic aggregate morphologies have higher ion mobilities and hence higher conductivities. Application of an oscillating electric field enables us to calculate the frequency-dependent conductivity of the model ionomer melts. The real part of the conductivity has a high frequency peak associated with plasma oscillations, and a very broad low frequency peak associated with ion motions in ionic aggregates. I will end with comments on the connections to atomistic simulations and to experimental probes of ion dynamics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Laser-driven fusion etching process
Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.
1989-01-01
The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.
Drüschler, Marcel; Borisenko, Natalia; Wallauer, Jens; Winter, Christian; Huber, Benedikt; Endres, Frank; Roling, Bernhard
2012-04-21
Ionic liquids are of high interest for the development of safe electrolytes in modern electrochemical cells, such as batteries, supercapacitors and dye-sensitised solar cells. However, electrochemical applications of ionic liquids are still hindered by the limited understanding of the interface between electrode materials and ionic liquids. In this article, we first review the state of the art in both experiment and theory. Then we illustrate some general trends by taking the interface between the extremely pure ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and an Au(111) electrode as an example. For the study of this interface, electrochemical impedance spectroscopy was combined with in situ STM and in situ AFM techniques. In addition, we present new results for the temperature dependence of the interfacial capacitance and dynamics. Since the interfacial dynamics are characterised by different processes taking place on different time scales, the temperature dependence of the dynamics can only be reliably studied by recording and carefully analysing broadband capacitance spectra. Single-frequency experiments may lead to artefacts in the temperature dependence of the interfacial capacitance. We demonstrate that the fast capacitive process exhibits a Vogel-Fulcher-Tamman temperature dependence, since its time scale is governed by the ionic conductivity of the ionic liquid. In contrast, the slower capacitive process appears to be Arrhenius activated. This suggests that the time scale of this process is determined by a temperature-independent barrier, which may be related to structural reorganisations of the Au surface and/or to charge redistributions in the strongly bound innermost ion layer. This journal is © the Owner Societies 2012
Space charge induced surface stresses: implications in ceria and other ionic solids.
Sheldon, Brian W; Shenoy, Vivek B
2011-05-27
Volume changes associated with point defects in space charge layers can produce strains that substantially alter thermodynamic equilibrium near surfaces in ionic solids. For example, near-surface compressive stresses exceeding -10 GPa are predicted for ceria. The magnitude of this effect is consistent with anomalous lattice parameter increases that occur in ceria nanoparticles. These stresses should significantly alter defect concentrations and key transport properties in a wide range of materials (e.g., ceria electrolytes in fuel cells). © 2011 American Physical Society
Kanti Sen, Tushar; Khilar, Kartic C
2006-02-28
In this review article, the authors present up-to-date developments on experimental, modeling and field studies on the role of subsurface colloidal fines on contaminant transport in saturated porous media. It is a complex phenomenon in porous media involving several basic processes such as colloidal fines release, dispersion stabilization, migration and fines entrapment/plugging at the pore constrictions and adsorption at solid/liquid interface. The effects of these basic processes on the contaminant transport have been compiled. Here the authors first present the compilation on in situ colloidal fines sources, release, stabilization of colloidal dispersion and migration which are a function of physical and chemical conditions of subsurface environment and finally their role in inorganic and organic contaminants transport in porous media. The important aspects of this article are as follows: (i) it gives not only complete compilation on colloidal fines-facilitated contaminant transport but also reviews the new role of colloidal fines in contaminant retardation due to plugging of pore constrictions. This plugging phenomenon also depends on various factors such as concentration of colloidal fines, superficial velocity and bead-to-particle size ratio. This plugging-based contaminant transport can be used to develop containment technique in soil and groundwater remediation. (ii) It also presents the importance of critical salt concentration (CSC), critical ionic strength for mixed salt, critical shear stressor critical particle concentration (CPC) on in situ colloidal fines release and migration and consequently their role on contaminant transport in porous media. (iii) It also reviews another class of colloidal fines called biocolloids and their transport in porous media. Finally, the authors highlight the future research based on their critical review on colloid-associated contaminant transport in saturated porous media.
Voltammetric studies of porous molybdenum electrodes for the alkali metal thermoelectric converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.M.; Bankston, C.P.; Khanna, S.K.
1986-11-01
Voltammetry of partially oxidized porous molybdenum alkali metal thermoelectric converter (AMTEC) electrodes from --600 to --1000 K revealed a series of redox processes within the operational voltage range of the AMTEC device. The most important of these processes involve reactions that add sodium to MoO/sub 2/, Na/sub 2/Mo/sub 3/O/sub 6/, and Na/sub 2/MoO/sub 4/. The redox processes can be used as an in situ analytical probe of oxide species in porous molybdenum electrodes. These constituents are important in establishing the electronic and ionic conductivities of AMTEC electrodes. The estimated equilibrium potentials of these reactions provide improved estimates of the freemore » energies of formation of Na/sub 2/Mo/sub 3/O/sub 6/, NaMoO/sub 2/, and Na/sub 3/MoO/sub 4/. In the AMTEC operating regime, there is evidence for the comparatively slow corrosive attack by Na/sub 2/MoO/sub 4/ on molybdenum. The ionic conductivity of Na/sub 2/MoO/sub 4/ measured from 600 to over 1000 K shows sharp increases in conductivity at --750, 865, and 960 K. The conductivity is sufficiently large at T > 700 K to explain the observed electrochemical phenomena, as well as enhanced sodium transport in AMTEC electrodes below the freezing point (960 K) of Na/sub 2/MoO/sub 4/.« less
Foroutan, Masumeh; Fatemi, S Mahmood; Esmaeilian, Farshad
2017-02-01
During the past decade, the research on fluids in nanoconfined geometries has received considerable attention as a consequence of their wide applications in different fields. Several nanoconfined systems such as water and ionic liquids, together with an equally impressive array of nanoconfining media such as carbon nanotube, graphene and graphene oxide have received increasingly growing interest in the past years. Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences. Water is often considered as a highly nanoconfined system, due to its reduction to a few layers of water molecules between the extended surface of large macromolecules. The second system discussed here is ionic liquids, which have been widely studied in the modern green chemistry movement. Considering the great importance of ionic liquids in industry, and also their oil/water counterpart, nanoconfined ionic liquid system has become an important area of research with many fascinating applications. Furthermore, the method of molecular dynamics simulation is one of the major tools in the theoretical study of water and ionic liquids in nanoconfinement, which increasingly has been joined with experimental procedures. In this way, the choice of water and ionic liquids in nanoconfinement is justified by applying molecular dynamics simulation approaches in this review article.
Long-range electrostatic screening in ionic liquids
Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.
2015-01-01
Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001
Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.
Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A
2007-02-15
Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was <1.5% relative to the solubility in pure water. This decrease of solubility is insufficient to account for the observed increase of sorption by K-smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.
Millivolt Modulation of Plasmonic Metasurface Optical Response via Ionic Conductance.
Thyagarajan, Krishnan; Sokhoyan, Ruzan; Zornberg, Leonardo; Atwater, Harry A
2017-08-01
A plasmonic metasurface with an electrically tunable optical response that operates at strikingly low modulation voltages is experimentally demonstrated. The fabricated metasurface shows up to 30% relative change in reflectance in the visible spectral range upon application of 5 mV and 78% absolute change in reflectance upon application of 100 mV of bias. The designed metasurface consists of nanostructured silver and indium tin oxide (ITO) electrodes which are separated by 5 nm thick alumina. The millivolt-scale optical modulation is attributed to a new modulation mechanism, in which transport of silver ions through alumina dielectric leads to bias-induced nucleation and growth of silver nanoparticles in the ITO counter-electrode, altering the optical extinction response. This transport mechanism, which occurs at applied electric fields of 1 mV nm -1 , provides a new approach to use of ionic transport for electrical control over light-matter interactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
McDonald, Michael B; Hammond, Paula T
2018-05-09
In this work, an all-functional polymer material composed of the electrically conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) and lithium-conducting poly(ethylene oxide) (PEO) was developed to form a dual conductor for three-dimensional electrodes in electrochemical applications. The composite exhibits enhanced ionic conductivity (∼10 -4 S cm -1 ) and, counterintuitively, electronic conductivity (∼45 S cm -1 ) with increasing PEO proportion, optimal at a monomer ratio of 20:1 PEO:PEDOT. Microscopy reveals a unique morphology, where PSS interacts favorably with PEO, destabilizing PEDOT to associate into highly branched, interconnected networks that allow for more efficient electronic transport despite relatively low concentrations. Thermal and X-ray techniques affirm that the PSS-PEO domain suppresses crystallinity, explaining the high ionic conductivity. Electrochemical experiments in lithium cell environments indicate stability as a function of cycling and improved overpotential due to dual transport characteristics despite known issues with both individual components.
Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Huang, Xia
2016-09-01
Bioelectrochemical systems (BESs) are integrated water treatment technologies that generate electricity using organic matter in wastewater. In situ use of bioelectricity can direct the migration of ionic substances in a BES, thereby enabling water desalination, resource recovery, and valuable substance production. Recently, much attention has been placed on the microbial desalination cells in BESs to drive water desalination, and various configurations have optimized electricity generation and desalination performance and also coupled hydrogen production, heavy metal reduction, and other reactions. In addition, directional transport of other types of charged ions can remediate polluted groundwater, recover nutrient, and produce valuable substances. To better promote the practical application, the use of BESs as directional drivers of ionic substances requires further optimization to improve energy use efficiency and treatment efficacy. This article reviews existing researches on BES-driven directional ion transport to treat wastewater and identifies a few key factors involved in efficiency optimization. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui
Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI) 2, acetonitrile Zn(CF 3SO 3) 2, and propylene carbonate Zn(TFSI) 2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates thatmore » the solvents play an important role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xinfang; White, Ralph E.; Huang, Kevin
With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less
Nguyen, Huu-Dat; Assumma, Luca; Judeinstein, Patrick; Mercier, Regis; Porcar, Lionel; Jestin, Jacques; Iojoiu, Cristina; Lyonnard, Sandrine
2017-01-18
Proton-conducting multiblock polysulfones bearing perfluorosulfonic acid side chains were designed to encode nanoscale phase-separation, well-defined hydrophilic/hydrophobic interfaces, and optimized transport properties. Herein, we show that the superacid side chains yield highly ordered morphologies that can be tailored by best compromising ion-exchange capacity and block lengths. The obtained microstructures were extensively characterized by small-angle neutron scattering (SANS) over an extended range of hydration. Peculiar swelling behaviors were evidenced at two different scales and attributed to the dilution of locally flat polymer particles. We evidence the direct correlation between the quality of interfaces, the topology and connectivity of ionic nanodomains, the block superstructure long-range organization, and the transport properties. In particular, we found that the proton conductivity linearly depends on the microscopic expansion of both ionic and block domains. These findings indicate that neat nanoscale phase-separation and block-induced long-range connectivity can be optimized by designing aromatic ionomers with controlled architectures to improve the performances of polymer electrolyte membranes.
Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations.
Wade, R C; Gabdoulline, R R; Lüdemann, S K; Lounnas, V
1998-05-26
To bind at an enzyme's active site, a ligand must diffuse or be transported to the enzyme's surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and beta-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as "ionic tethering." We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme's surroundings even when the substrate is nonpolar.
Water dynamics in rigid ionomer networks.
Osti, N C; Etampawala, T N; Shrestha, U M; Aryal, D; Tyagi, M; Diallo, S O; Mamontov, E; Cornelius, C J; Perahia, D
2016-12-14
The dynamics of water within ionic polymer networks formed by sulfonated poly(phenylene) (SPP), as revealed by quasi-elastic neutron scattering (QENS), is presented. These polymers are distinguished from other ionic macromolecules by their rigidity and therefore in their network structure. QENS measurements as a function of temperature as the fraction of ionic groups and humidity were varied have shown that the polymer molecules are immobile while absorbed water molecules remain dynamic. The water molecules occupy multiple sites, either bound or loosely constrained, and bounce between the two. With increasing temperature and hydration levels, the system becomes more dynamic. Water molecules remain mobile even at subzero temperatures, illustrating the applicability of the SPP membrane for selective transport over a broad temperature range.
Transport and spectroscopic studies of liquid and polymer electrolytes
NASA Astrophysics Data System (ADS)
Bopege, Dharshani Nimali
Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.
Transport of citrate-coated silver nanoparticles in unsaturated sand
NASA Astrophysics Data System (ADS)
Kumahor, Samuel; Hron, Pavel; Metreveli, George; Schaumann, Gabriele; Vogel, Hans-Jörg
2015-04-01
Chemical factors and physical constraints lead to coupled effects during particle transport in unsaturated porous media. Unlike for saturated transport, studies on unsaturated transport as typical for soil are currently scarce. We investigated the mobility of citrate-coated Ag NPs in unsaturated sand (grain diameter: 0.1-0.3 mm). For three flux rates and a given pore-water ionic strength (1 mM KNO3), the citrate-coated Ag NPs were less mobile at pH = 5 compared to pH = 9. The classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory suggests unfavorable deposition conditions at both, the air-water interface and solid-water interface. Breakthrough curves measured under quasi-steady state unsaturated flow showed retardation of the citrate-coated Ag NPs compared to inert solute (KBr). After flushing with nanoparticle-free 1 mM KNO3 solution (pH-adjusted), retention was much lower in deeper depths compared to the surface where the particles entered the flow field. The results show a non-linear dependence of nanoparticle (NP) mobility on flux rate and water content. Especially the observed retardation similar to equilibrium sorption is in contrast to observations under saturated flow conditions. A convection-dispersion and reaction model that combines a reversible equilibrium process and a non-equilibrium interaction process reproduced the measured breakthrough curves reasonably well. From comparison between saturated and unsaturated experiments we conclude that the air-water interface is responsible for the reversible equilibrium process while the water-solid interface accounts for irreversible soption.
Rout, Alok; Kotlarska, Justyna; Dehaen, Wim; Binnemans, Koen
2013-10-21
The ionic liquids 1-hexyl-3-methylimidazolium bis(2-ethylhexyl)phosphate, [C6mim][DEHP], 1-hexyl-1-methylpyrrolidinium bis(2-ethylhexyl)phosphate, [C6mpyr][DEHP], and tetrabutylammonium bis(2-ethylhexyl)phosphate, [N4444][DEHP], were prepared and characterized using (1)H and (13)C NMR spectroscopy. The extraction behavior of neodymium(iii) from nitrate medium by these ionic liquids, diluted with the room temperature ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][NTf2], 1-hexyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [C6mpyr][NTf2], and tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N1444][NTf2], was studied. The distribution ratio of neodymium(iii) was measured as a function of various parameters, such as pH, concentration of the ionic liquid extractant, nature of diluents, concentration of ionic liquid cations and nitrate anions in the aqueous phase. The extraction behavior was compared with that obtained for a solution of the molecular extractant bis(2-ethylhexyl)phosphoric acid (DEHPA) in an ionic liquid diluent. The extraction of neodymium(iii) in the ionic liquids [C6mim][DEHP] and [C6mpyr][DEHP] showed markedly different extraction properties in comparison with that of the quaternary ammonium analogue [N4444][DEHP], especially concerning the pH dependence of the extraction process. These results show that the extraction process can be tuned by the selection of the ionic liquid cation. The extraction experiments also included the trivalent rare-earth ions lanthanum(iii), cerium(iii), praseodymium(iii), ytterbium(iii) and yttrium(iii). Studies of the stripping behavior and the reusability of the ionic liquids were carried out, which indicate that the ionic liquids can be reused with no loss in activity.
Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.
Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan
2017-10-19
In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.
Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J
2013-07-24
In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.
Mixed ionic-electronic conductors for electrodes of barium cerate-based SOFCS
NASA Astrophysics Data System (ADS)
Wu, Zhonglin
Gadolinium doped barium cerates (BCGs) have been identified as promising electrolyte materials for intermediate-temperature solid oxide fuel cells (SOFCs). It is crucial to develop compatible electrode materials for such electrolytes. Mixed ionic-electronic conductor (MIEC) electrode materials developed for SOFCs based on yttrium-stabilized zirconia (YSZ) may be used as electrode materials for BCG-based SOFCs; but a careful re-evaluation is required due to the intrinsic differences between BCG and YSZ. The performance of these electrode materials depends critically the transport of ionic and electronic species as well as gas. Accordingly, a profound understanding of transport in MIEC electrodes is imperative to effective design of high performance SOFCs. In this thesis, ambipolar transport in composite MIEC electrodes has been modeled using percolation theory to predict the effect of volume fractions of constituent phases and porosity on ambipolar conductivity. Transport and electrode kinetics of homogeneous MIEC electrodes have also been formulated under a steady-state condition to predict the distributions of ionic defects and current carried by each defect in such electrodes. Effects of catalytic properties, transport properties, and microstructure of porous electrodes and interfaces on the electrode performance are investigated. Under the guidelines of the theoretical modeling, several MIEC electrode materials are developed. Lasb{1-x}Srsb{x}Cosb{1-x}Fesb{y}Osb{3-delta} homogeneous materials are studied as cathode materials. However, the interfacial resistance seems too high due to the lack of catalytic activity at intermediate temperatures. Results indicate that Ag-Bisb{1.5}Ysb{0.5}Osb3 composite MIECs are good cathode materials when the volume fractions of constituent phases and porosity are carefully controlled. Such electrodes have low interfacial resistance, better binding strength, and smaller thermal mismatch with the BCG electrolyte, compared to other metal electrodes (such as Pt and Ag). Ni-BCG composite MIECs are studied as anode materials. It is found that electrodes prepared from NiO and reduced to Ni in situ is not catalytically active because of diffusion of NiO into BCG, which forms a resistive layer. Electrodes prepared from Ni metal and fired in an inert or reducing atmosphere exhibit low interfacial resistance and good compatibility with BCG electrolyte. Stability of these developed electrode materials is investigated under conditions pertinent to SOFCs.
NASA Astrophysics Data System (ADS)
Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.
2016-08-01
Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.
Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming
2015-01-01
A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.
Reddy, Th Dhileep N; Mallik, Bhabani S
2017-04-19
This study is aimed at characterising the structure, dynamics and thermophysical properties of five alkylammonium carboxylate ionic liquids (ILs) from classical molecular dynamics simulations. The structural features of these ILs were characterised by calculating the site-site radial distribution functions, g(r), spatial distribution functions and structure factors. The structural properties demonstrate that ILs show greater interaction between cations and anions when alkyl chain length increases on the cation or anion. In all ILs, spatial distribution functions show that the anion is close to the acidic hydrogen atoms of the ammonium cation. We determined the role of alkyl group functionalization of the charged entities, cations and anions, in the dynamical behavior and the transport coefficients of this family of ionic liquids. The dynamics of ILs are described by studying the mean square displacement (MSD) of the centres of mass of the ions, diffusion coefficients, ionic conductivities and hydrogen bonds as well as residence dynamics. The diffusion coefficients and ionic conductivity decrease with an increase in the size of the cation or anion. The effect of alkyl chain length on ionic conductivity calculated in this article is consistent with the findings of other experimental studies. Hydrogen bond lifetimes and residence times along with structure factors were also calculated, and are related to alkyl chain length.
Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy
Collins, Liam; Jesse, Stephen; Kilpatrick, J.; ...
2015-01-19
Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q watermore » and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.« less
Deepa, Melepurath; Awadhia, Arvind; Bhandari, Shweta
2009-07-21
Electrochromic devices based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the cathodic coloring electrode and polyaniline (PANI) or Prussian blue (PB) as the counter electrode containing a highly conductive, self-supporting, distensible and transparent polymer-gel electrolyte film encapsulating an ionic liquid, 1-butyl-1-methylpyrrolidiniumbis-(trifluoromethylsulfonyl)imide, have been fabricated. Polarization, charge transfer and diffusion processes control the electrochemistry of the functional electrodes during coloration and bleaching and these phenomena differ when PEDOT and PANI/PB were employed alternately as working electrodes. While the electrochemical impedance response shows good similitude for PEDOT and PANI electrodes, the responses of PEDOT and PB were significantly different in the PEDOT-PB device, especially during reduction of PB, wherein the overall amplitude of the impedance response is enormous. Large values of the coloration efficiency maxima of 281 cm2 C(-1) (lambda = 583 nm) and 274 cm2 C(-1) (lambda = 602 nm), achieved at -1.0 and -1.5 V for the PEDOT PANI and PEDOT-PB devices have been correlated to the particularly low magnitude of charge transfer resistance and high polarization capacitance operative at the PEDOT ionic liquid based electrolyte interface at these dc potentials, thus allowing facile ion-transport and consequently resulting in enhanced absorption modulation. Moderately fast switching kinetics and the ability of these devices to sustain about 2500 cycles of clear-to-dark and dark-to-clear without incurring major losses in the optical contrast, along with the ease of construction of these cells in terms of high scalability and reproducibility of the synthetic procedure for fabrication of the electrochromic films and the ionic liquid based gel electrolyte film, are indicators of the promise these devices hold for practical applications like electrochromic windows and displays.
Proteins in Ionic Liquids: Current Status of Experiments and Simulations.
Schröder, Christian
2017-04-01
In the last two decades, while searching for interesting applications of ionic liquids as potent solvents, their solvation properties and their general impact on biomolecules, and in particular on proteins, gained interest. It turned out that ionic liquids are excellent solvents for protein refolding and crystallization. Biomolecules showed increased solubilities and stabilities, both operational and thermal, in ionic liquids, which also seem to prevent self-aggregation during solubilization. Biomolecules can be immobilized, e.g. in highly viscous ionic liquids, for particular biochemical processes and can be designed to some extent by the proper choice of the ionic liquid cations and anions, which can be characterized by the Hofmeister series.
Application of Ionic Liquids in Hydrometallurgy
Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung
2014-01-01
Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864
Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air
Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin
2016-01-01
Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m2/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection. PMID:27070588
Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.
Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin
2016-04-08
Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.
Recent developments in biocatalysis in multiphasic ionic liquid reaction systems.
Meyer, Lars-Erik; von Langermann, Jan; Kragl, Udo
2018-06-01
Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.
Bielejewski, M; Rachocki, A; Kaszyńska, J; Tritt-Goc, J
2018-02-21
This paper reports the interdisciplinary study on molecular dynamics, ionic interactions and electrical conductivity in a quaternary ammonium salt (TMABr) ionogel based on a low molecular weight gelator (LMWG) in a wide range of electrolyte molar concentrations. The thermal scanning conductometry (TSC) was used to investigate the electric properties of the ionogels. The prepared TMABr/H 2 O/LMWG ionogel exhibits better ion transport properties than the dissociated TMA + cation in solution. The enhanced ionic conductivity effect (EICE) was observed in the concentration range of the TMABr salt up to 1 M. To investigate the transport properties of the TMA + cation and solvent molecules in the gel and sol phase, the NMR diffusiometry method was used. The field-cycling relaxometry method (FFC NMR) was applied to study the local motions of the electrolyte at the surface of the gelator matrix. On the basis of the obtained data, the higher ionic conductivity observed in the gel phase has been related to the microstructure of the gel matrix. The possible explanation for the origin of this effect has been given. The investigated system is a thermally reversible physical gel, all registered data were reproducible upon transforming the sample from gel to sol and back to the gel state, confirming the enhancement effect as a permanent property of the investigated ionogels. Therefore, the EICE has been proposed to be used as an internal sensor to monitor the condition of the ionogel phase, thus making them smart materials.
Crystal-Physical Model of Ion Transport in Nonlinear Optical Crystals of KTiOPO4
NASA Astrophysics Data System (ADS)
Sorokin, N. I.; Shaldin, Yu. V.
2018-04-01
The ionic conductivity along the principal axes a, b, and c of the unit cell of the nonlinear-optical high-resistance KTiOPO4 single crystals (rhombic syngony, space group Pna21), which are as-grown and after thermal annealing in vacuum, has been investigated by the method of impedance spectroscopy. The crystals were grown from a solution-melt by the Czochralski method. The as-grown KTiOPO4 crystals possess a quasi-one-dimensional conductivity along the crystallographic c axis, which is caused by the migration of K+ cations: σ║ c = 1.0 × 10-5 S/cm at 573 K. Wherein the characteristics of the anisotropy of ionic conductivity of the crystals is equal to σ║ c /σ║ a = 3 and σ║ c /σ║ b = 24. The thermal annealing at 1000 K for 10 h in vacuum increases the magnitude of σ║ c of KTiOPO4 by a factor of 28 and leads to an increase in the ratio σ║ c /σ║ b = 2.1 × 103 at 573 K. A crystal-physical model of ionic transport in KTiOPO4 crystals has been proposed.
Wojnarowska, Zaneta; Feng, Hongbo; Fu, Yao; ...
2017-08-21
Conductivity in polymer electrolytes has been generally discussed with the assumption that the segmental motions control charge transport. However, much less attention has been paid to the mechanism of ion conductivity where the motions of ions are less dependent (decoupled) on segmental dynamics. We present that this phenomenon is observed in ionic materials as they approach their glass transition temperature and becomes essential for design and development of highly conducting solid polymer electrolytes. In this paper, we study the effect of chain rigidity on the decoupling of ion transport from segmental motion in three polymerized ionic liquids (polyILs) containing themore » same cation–anion pair but differing in flexibility of the polymer backbones and side groups. Analysis of dielectric and rheology data reveals that decoupling is strong in vinyl-based rigid polymers while almost negligible in novel siloxane-based flexible polyILs. To explain this behavior, we investigated ion and chain dynamics at ambient and elevated pressure. Our results suggest that decoupling has a direct relationship to the frustration in chain packing and free volume. Finally, these conclusions are also supported by coarse-grained molecular dynamics simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojnarowska, Zaneta; Feng, Hongbo; Fu, Yao
Conductivity in polymer electrolytes has been generally discussed with the assumption that the segmental motions control charge transport. However, much less attention has been paid to the mechanism of ion conductivity where the motions of ions are less dependent (decoupled) on segmental dynamics. We present that this phenomenon is observed in ionic materials as they approach their glass transition temperature and becomes essential for design and development of highly conducting solid polymer electrolytes. In this paper, we study the effect of chain rigidity on the decoupling of ion transport from segmental motion in three polymerized ionic liquids (polyILs) containing themore » same cation–anion pair but differing in flexibility of the polymer backbones and side groups. Analysis of dielectric and rheology data reveals that decoupling is strong in vinyl-based rigid polymers while almost negligible in novel siloxane-based flexible polyILs. To explain this behavior, we investigated ion and chain dynamics at ambient and elevated pressure. Our results suggest that decoupling has a direct relationship to the frustration in chain packing and free volume. Finally, these conclusions are also supported by coarse-grained molecular dynamics simulations.« less
Composite Polymer-Garnet Solid State Electrolytes
NASA Astrophysics Data System (ADS)
Villa, Andres; Oduncu, Muhammed R.; Scofield, Gregory D.; Marinero, Ernesto E.; Forbey, Scott
Solid-state electrolytes provide a potential solution to the safety and reliability issues of Li-ion batteries. We have synthesized cubic-phase Li7-xLa3Zr2-xBixO12 compounds utilizing inexpensive, scalable Sol-gel synthesis and obtained ionic conductivities 1.2 x 10-4 S/cm at RT in not-fully densified pellets. In this work we report on the fabrication of composite polymer-garnet ceramic particle electrolytes to produce flexible membranes that can be integrated with standard battery electrodes without the need for a separator. As a first step we incorporated the ceramic particles into polyethylene oxide polymers (PEO) to form flexible membranes. Early results are encouraging yielding ionic conductivity values 1.0 x 10-5 S/cm at RT. To increment the conductivity in the membranes, we are optimizing amongst other: the ceramic particle size distribution and weight load, the polymer molecular weight and chemical composition and the solvated Li-salt composition and content. Unhindered ion transport across interfaces between the composites and the battery electrode materials is paramount for battery performance. To this end, we are investigating the effect of interface morphology, its atomic composition and exploring novel electrode structures that facilitate ionic transport.
NASA Astrophysics Data System (ADS)
Mueller, A. V.; Hemond, H.
2009-12-01
The capability for comprehensive, real-time, in-situ characterization of the chemical constituents of natural waters is a powerful tool for the advancement of the ecological and geochemical sciences, e.g. by facilitating rapid high-resolution adaptive sampling campaigns and avoiding the potential errors and high costs related to traditional grab sample collection, transportation and analysis. Portable field-ready instrumentation also promotes the goals of large-scale monitoring networks, such as CUASHI and WATERS, without the financial and human resources overhead required for traditional sampling at this scale. Problems of environmental remediation and monitoring of industrial waste waters would additionally benefit from such instrumental capacity. In-situ measurement of all major ions contributing to the charge makeup of natural fresh water is thus pursued via a combined multi-sensor/multivariate signal processing architecture. The instrument is based primarily on commercial electrochemical sensors, e.g. ion selective electrodes (ISEs) and ion selective field-effect transistors (ISFETs), to promote low cost as well as easy maintenance and reproduction,. The system employs a novel architecture of multivariate signal processing to extract accurate information from in-situ data streams via an "unmixing" process that accounts for sensor non-linearities at low concentrations, as well as sensor cross-reactivities. Conductivity, charge neutrality and temperature are applied as additional mathematical constraints on the chemical state of the system. Including such non-ionic information assists in obtaining accurate and useful calibrations even in the non-linear portion of the sensor response curves, and measurements can be made without the traditionally-required standard additions or ionic strength adjustment. Initial work demonstrates the effectiveness of this methodology at predicting inorganic cations (Na+, NH4+, H+, Ca2+, and K+) in a simplified system containing only a single anion (Cl-) in addition to hydroxide, thus allowing charge neutrality to be easily and explicitly invoked. Calibration of every probe relative to each of the five cations present is undertaken, and resulting curves are used to create a representative environmental data set based on USGS data for New England waters. Signal processing methodologies, specifically artificial neural networks (ANNs), are extended to use a feedback architecture based on conductivity measurements and charge neutrality calculations. The algorithms are then tuned to optimize performance of the algorithm at predicting actual concentrations from these simulated signals. Results are compared to use of component probes as stand-alone sensors. Future extension of this instrument for multiple anions (including carbonate and bicarbonate, nitrate, and sulfate) will ultimately provide rapid, accurate field measurements of the entire charge balance of natural waters at high resolution, improving sampling abilities while reducing costs and errors related to transport and analysis of grab samples.
Colloid-Mediated Transport of PPCPs through Porous Media
NASA Astrophysics Data System (ADS)
Chen, Xijuan; Xing, Yingna; Chen, Xin; Zhuang, Jie
2017-04-01
Pharmaceutical and personal care products (PPCPs) enter the soil through reclaimed water irrigation and biosolid land application. Colloids, such as clays that are present in soil, may interact with PPCPs to affect their fate and transport in the subsurface environment. This study addresses how soil colloids mediate the sorption and transport behaviors of PPCPs through laboratory column experiments. The affinities of PPCPs for colloids as well as the influence factors were investigated. For PPCPs that have high sorption (e.g., ciprofloxacin with Kd ˜104-5 L/kg) on soil colloids, the transport is dominantly controlled by colloids, with a higher extent of colloid-facilitated effect at lower ionic strength. For PPCPs that have intermediate sorption (e.g., tetracycline with Kd ˜103-4 L/kg) on soil colloids, the mobility of dissolved and colloid-bound PPCPs respond oppositely to the effect of changes in solution ionic strength, making the net effect of soil colloids on PPCP transport variable with soil solution chemistry. For PPCPs with low sorption (e.g., ibuprofen with Kd ˜102-3 L/kg) on soil colloids, other measures (such as pre-filtration) must be taken. This study suggested that colloids are significant carriers of PPCPs in the subsurface environment and could affect their off-site environmental risks.
The electrode/ionic liquid interface: electric double layer and metal electrodeposition.
Su, Yu-Zhuan; Fu, Yong-Chun; Wei, Yi-Min; Yan, Jia-Wei; Mao, Bing-Wei
2010-09-10
The last decade has witnessed remarkable advances in interfacial electrochemistry in room-temperature ionic liquids. Although the wide electrochemical window of ionic liquids is of primary concern in this new type of solvent for electrochemistry, the unusual bulk and interfacial properties brought about by the intrinsic strong interactions in the ionic liquid system also substantially influence the structure and processes at electrode/ionic liquid interfaces. Theoretical modeling and experimental characterizations have been indispensable in reaching a microscopic understanding of electrode/ionic liquid interfaces and in elucidating the physics behind new phenomena in ionic liquids. This Minireview describes the status of some aspects of interfacial electrochemistry in ionic liquids. Emphasis is placed on high-resolution and molecular-level characterization by scanning tunneling microscopy and vibrational spectroscopies of interfacial structures, and the initial stage of metal electrodeposition with application in surface nanostructuring.
Isothermal transport properties and majority-type defects of BaCo(0.70)Fe(0.22)Nb(0.08)O(3-δ).
Lee, Taewon; Cho, Deok-Yong; Kwon, Hyung-Soon; Yoo, Han-Ill
2015-01-28
(Ba,Sr)(Co,Fe)O3-δ based mixed conducting oxides, e.g. (Ba0.5Sr0.5)(Co1-xFex)O3-δ and Ba(Co0.7Fe0.3-xNbx)O3-δ, are promising candidates for oxygen permeable membranes and SOFC cathodes due to their excellent ambipolar conductivities. Despite these excellent properties, however, their mass/charge transport properties have not been fully characterized and hence, their defect structure has not been clearly elucidated. Until now, the majority types of ionic and electronic defects have been regarded as oxygen vacancies and localized holes. Holes, whether localized or not, are acceptable as majority electronic carriers on the basis of the as-measured total conductivity, which is essentially electronic, and electronic thermopower. On the other hand, the proposal of oxygen vacancies as majority ionic carriers lacks solid evidence. In this work, we document all the isothermal transport properties of Ba(Co0.70Fe0.22Nb0.08)O3-δ in terms of a 2 × 2 Onsager transport coefficient matrix and its steady-state electronic thermopower against oxygen activity at elevated temperatures, and determine the valences of Co and Fe via soft X-ray absorption spectroscopy. It turns out that the ionic and electronic defects in majority should be oxygen interstitials and at least two kinds of holes, one free and the other trapped. Furthermore, the lattice molecule should be Ba(Co0.7Fe0.3-xNbx)O2+δ, not Ba(Co0.7Fe0.3-xNbx)O3-δ, to be consistent with all the results observed.
NASA Astrophysics Data System (ADS)
Gamazo, Pablo; Schijven, Jack; Victoria, Matias; Alvareda, Elena; López Tort, Fernando; Ramos, Julián; Lizasoain, Andrés; Sapriza, Gonzalo; Castells, Matias; Colina, Rodney
2017-04-01
In Uruguay, as in many developed and developing countries, rotavirus and norovirus are major causes of diarrhea and others symptoms of acute gastroenteritis. In some areas of Uruguay, groundwater is the only source of water for human consumption. In the rural area of the Salto district, virus contamination has been detected in several groundwater wells. Because sewer coverage is low, the most probable sources of contamination are nearby septic systems. This work aims to evaluate the transport of rotavirus and norovirus from clinic samples in two sets of column experiments under saturated conditions: 6.7-cm columns with quartz sand (ionic strength 1mM, pH 7.0) and with sand from the Salto aquifer (Uruguay) (9,2% coarse sand, 47,8% medium sand, 40,5% fine sand, magnesium/calcium bicarbonate water, Ionic strength 15.1 mM, pH 7.2). Both viruses were seeded for 2 pore volumes onto the columns. Samples were collected at the column outlet and viruses were enumerated by Q-PRCR. Breakthrough curves were constructed and fitted to a two-site kinetic attachment/detachment model, including blocking using Hydrus-1D. In the quartz sand column, both rotavirus and norovirus were removed two orders in magnitude. In the Salto sand column, rotavirus was removed 2 log10 as well, but norovirus was removed 4 log10. The fitting of the breakthrough curves indicated that blocking played a role for rotavirus in the Salto sand column. These results are consistent with the field observation where only rotavirus was detected in the Salto aquifer, while similar concentrations in Salto sewer effluent were measured for both viruses. This work, besides reporting actual parameters values for human virus transport modelling, shows the significant differences in transport that human viruses can have in standardised and natural soil-water systems.
Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch
Blees, Andreas; Reichel, Katrin; Trowitzsch, Simon; Fisette, Olivier; Bock, Christoph; Abele, Rupert; Hummer, Gerhard; Schäfer, Lars V.; Tampé, Robert
2015-01-01
Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity. PMID:26611325
Effect of physicochemical factors on transport and retention of graphene oxide in saturated media.
Chen, Chong; Shang, Jianying; Zheng, Xiaoli; Zhao, Kang; Yan, Chaorui; Sharma, Prabhakar; Liu, Kesi
2018-05-01
Fate and transport of graphene oxide (GO) have received much attention recently with the increase of GO applications. This study investigated the effect of salt concentration on the transport and retention behavior of GO particles in heterogeneous saturated porous media. Transport experiments were conducted in NaCl solutions with three concentrations (1, 20, and 50 mM) using six structurally packed columns (two homogeneous and four heterogeneous) which were made of fine and coarse grains. The results showed that GO particles had high mobility in all the homogeneous and heterogeneous columns when solution ionic strength (IS) was low. When IS was high, GO particles showed distinct transport ability in six structurally heterogeneous porous media. In homogeneous columns, decreasing ionic strength and increasing grain size increased the mobility of GO. For the column containing coarse-grained channel, the preferential flow path resulted in an early breakthrough of GO, and further larger contact area between coarse and fine grains caused a lower breakthrough peak and a stronger tailing at different IS. In the layered column, there was significant GO retention at coarse-fine grain interface where water flowed from coarse grain to fine grain. Our results indicated that the fate and transport of GO particles in the natural heterogeneous porous media was highly related to the coupled effect of medium structure and salt solution concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).
Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe
2016-10-26
Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.
Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory
Sjostrom, Travis; Daligault, Jérôme
2015-12-09
We validate the application of our recent orbital-free density functional theory (DFT) approach, [Phys. Rev. Lett. 113, 155006 (2014)], for the calculation of ionic and electronic transport properties of dense plasmas. To this end, we calculate the self-diffusion coefficient, the viscosity coefficient, the electrical and thermal conductivities, and the reflectivity coefficient of hydrogen and aluminum plasmas. Very good agreement is found with orbital-based Kohn-Sham DFT calculations at lower temperatures. Because the computational costs of the method do not increase with temperature, we can produce results at much higher temperatures than is accessible by the Kohn-Sham method. Our results for warmmore » dense aluminum at solid density are inconsistent with the recent experimental results reported by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)].« less
Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold
Taylor, Andrew F.; Rylott, Elizabeth L.; Anderson, Christopher W. N.; Bruce, Neil C.
2014-01-01
We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake. PMID:24736522
Viscosity, conductivity, and electrochemical property of dicyanamide ionic liquids
NASA Astrophysics Data System (ADS)
Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong
2018-03-01
The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.
Effects of pH on transport properties of articular cartilages.
Loret, Benjamin; Simões, Fernando M F
2010-02-01
Articular cartilages swell and shrink depending on the ionic strength of the electrolyte they are in contact with. This electro-chemo-mechanical coupling is due to the presence of fixed electrical charges on proteoglycans (PGs). In addition, at nonphysiological pH, collagen fibers become charged. Therefore, variation of the pH of the electrolyte has strong implications on the electrical charge of cartilages and, by the same token, on their transport and mechanical properties. Articular cartilages are viewed as three-phase multi-species porous media. The constitutive framework is phrased in the theory of thermodynamics of porous media. Acid-base reactions, as well as calcium binding, are embedded in this framework. Although macroscopic in nature, the model accounts for a number of biochemical details defining collagen and PGs. The change of the electrical charge is due to the binding of hydrogen ions on specific sites of PGs and collagen. Simulations are performed mimicking laboratory experiments where either the ionic strength or the pH of the bath, the cartilage piece is in contact with, is varied. They provide the evolutions of the chemical compositions of mobile ions, of the sites of acid-base reactions and calcium binding, and of the charges of collagen and glycosaminoglycans, at constant volume fraction of water. Emphasis is laid on the effects of pH, ionic strength and calcium binding on the transport properties of cartilages, and, in particular, on the electrical conductivity and electro-osmotic coefficient.
Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids
Yuan, Wen-Li; Yang, Xiao; He, Ling; Xue, Ying; Qin, Song; Tao, Guo-Hong
2018-01-01
The instructive structure-property relationships of ionic liquids (ILs) can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA) ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN)2], [C4m2im][N(CN)2], N4442[N(CN)2], and N8444[N(CN)2]) including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs), which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III) in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip), the diffusion coefficients (Do), the charge transfer rate constants (ks) of Eu(III) in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands. PMID:29600245
Effect of SO2 on the transport properties of an imidazolium ionic liquid and its lithium solution.
Monteiro, Marcelo J; Ando, Rômulo A; Siqueira, Leonardo J A; Camilo, Fernanda F; Santos, Paulo S; Ribeiro, Mauro C C; Torresi, Roberto M
2011-08-11
Transport coefficients have been measured as a function of the concentration of sulfur dioxide, SO(2), dissolved in 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, [BMMI][Tf(2)N], as well as in its lithium salt solution, Li[Tf(2)N]. The SO(2) reduces viscosity and density and increases conductivity and diffusion coefficients in both the neat [BMMI][Tf(2)N] and the [BMMI][Tf(2)N]-Li[Tf(2)N] solution. The conductivity enhancement is not assigned to a simple viscosity effect; the weakening of ionic interactions upon SO(2) addition also plays a role. Microscopic details of the SO(2) effect were unraveled using Raman spectroscopy and molecular dynamics (MD) simulations. The Raman spectra suggest that the Li(+)-[Tf(2)N] interaction is barely affected by SO(2), and the SO(2)-[Tf(2)N] interaction is weaker than previously observed in an investigation of an ionic liquid containing the bromide anion. Transport coefficients calculated by MD simulations show the same trend as the experimental data with respect to SO(2) content. The MD simulations provide structural information on SO(2) molecules around [Tf(2)N], in particular the interaction of the sulfur atom of SO(2) with oxygen and fluorine atoms of the anion. The SO(2)-[BMMI] interaction is also important because the [BMMI] cations with above-average mobility have a larger number of nearest-neighbor SO(2) molecules. © 2011 American Chemical Society
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...
USDA-ARS?s Scientific Manuscript database
Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...
This study investigated the stability and transport of CeO2 NPs under the influence of pH, natural/manmade organic matter, and electrolyte (NaCl) concentrations. In column test, effluent concentration of CeO2 NPs was close to the influent at pH 10, while most NPs deposited on san...
Distinct effects of humic acid (HA, 0 – 10 mg L-1) on the transport of titanium dioxide (rutile) nanoparticles (nTiO2) through saturated sand columns were observed under conditions of environmental relevance (ionic strength 3 – 200 mM NaCl, pH 5.7 and 9.0). Specifical...
Chemical factors influencing colloid-facilitated transport of contaminants in porous media
Roy, Sujoy B.; Dzombak, David A.
1997-01-01
The effects of colloids on the transport of two strongly sorbing solutesa hydrophobic organic compound, phenanthrene, and a metal ion, Ni2+were studied in sand-packed laboratory columns under different pH and ionic strength conditions. Two types of column experiments were performed as follows: (i) sorption/mobilization experiments where the contaminant was first sorbed in the column under conditions where no colloids were released and mobilized under conditions where colloids were released as a result of ionic strength reduction in the influent; and (ii) transport experiments where the contaminant, dissolved or sorbed on colloids, was injected into columns packed with a strongly sorbing porous medium. In the first type of experiment, contaminant mobilization was significant only when all releasable colloids were flushed from the column. In all other cases, although high colloid particle concentrations were encountered, there was no marked effect on total contaminant concentrations. In the second type of experiment, colloid deposition efficiencies were shown to control the enhancement of transport. The deposition efficiency was a function of the pH (for a high organic content sand) and of the contaminant concentration (for a charged species such as Ni2+).
NASA Astrophysics Data System (ADS)
Minnick, David L.
Lignocellulose is the most abundant biopolymer on earth making it a promising feedstock for the production of renewable chemicals and fuels. However, utilization of biomass remains a challenge as recalcitrance of cellulose and hemicellulose hinder separation and conversion of these carbohydrates. For instance, the complex inter- and intra- molecular hydrogen bonding network of cellulose renders it insoluble in nearly all aqueous and organic solvents. Alternatively, select ionic liquids (ILs) dissolve significant quantities. Through an ionic liquid mediated dissolution and precipitation process cellulose crystallinity is significantly reduced consequently enhancing subsequent chemical and biochemical reaction processes. Therefore, understanding the thermodynamics of ionic liquid - cellulose mixtures is imperative to developing an IL based biomass processing system. This dissertation illustrates solid-liquid phase equilibrium results for the dissolution and precipitation of cellulose in various IL/cosolvent, IL/antisolvent, and IL/mixed solvent systems with the ionic liquid 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIm][DEP]). Molecular interactions between the ionic liquid, organic solvents, and cellulose are assessed by spectroscopic techniques including Kamlet-Taft solvatochromic analysis, FTIR, and NMR. Additionally, this dissertation discusses how preferential solvation of the IL cation and anion by co- and anti-solvents impact the ability of IL ions to interact with cellulose thus affecting the cellulose dissolution capacity of the various IL-solvent mixtures.
Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong
2018-03-24
Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.
Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.
Meagher, Richard B; Heaton, Andrew C P
2005-12-01
Plants have many natural properties that make them ideally suited to clean up polluted soil, water, and air, in a process called phytoremediation. We are in the early stages of testing genetic engineering-based phytoremediation strategies for elemental pollutants like mercury and arsenic using the model plant Arabidopsis. The long-term goal is to develop and test vigorous, field-adapted plant species that can prevent elemental pollutants from entering the food-chain by extracting them to aboveground tissues, where they can be managed. To achieve this goal for arsenic and mercury, and pave the way for the remediation of other challenging elemental pollutants like lead or radionucleides, research and development on native hyperaccumulators and engineered model plants needs to proceed in at least eight focus areas: (1) Plant tolerance to toxic elementals is essential if plant roots are to penetrate and extract pollutants efficiently from heterogeneous contaminated soils. Only the roots of mercury- and arsenic-tolerant plants efficiently contact substrates heavily contaminated with these elements. (2) Plants alter their rhizosphere by secreting various enzymes and small molecules, and by adjusting pH in order to enhance extraction of both essential nutrients and toxic elements. Acidification favors greater mobility and uptake of mercury and arsenic. (3) Short distance transport systems for nutrients in roots and root hairs requires numerous endogenous transporters. It is likely that root plasma membrane transporters for iron, copper, zinc, and phosphate take up ionic mercuric ions and arsenate. (4) The electrochemical state and chemical speciation of elemental pollutants can enhance their mobility from roots up to shoots. Initial data suggest that elemental and ionic mercury and the oxyanion arsenate will be the most mobile species of these two toxic elements. (5) The long-distance transport of nutrients requires efficient xylem loading in roots, movement through the xylem up to leaves, and efficient xylem unloading aboveground. These systems can be enhanced for the movement of arsenic and mercury. (6) Aboveground control over the electrochemical state and chemical speciation of elemental pollutants will maximize their storage in leaves, stems, and vascular tissues. Our research suggests ionic Hg(II) and arsenite will be the best chemical species to trap aboveground. (7) Chemical sinks can increase the storage capacity for essential nutrients like iron, zinc, copper, sulfate, and phosphate. Organic acids and thiol-rich chelators are among the important chemical sinks that could trap maximal levels of mercury and arsenic aboveground. (8) Physical sinks such as subcellular vacuoles, epidermal trichome cells, and dead vascular elements have shown the evolutionary capacity to store large quantities of a few toxic pollutants aboveground in various native hyperaccumulators. Specific plant transporters may already recognize gluthione conjugates of Hg(II) or arsenite and pump them into vacuole.
Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN; Culbertson, Christopher T [Oak Ridge, TN; Whitten, William B [Lancing, TN; Foote, Robert S [Oak Ridge, TN
2011-12-27
A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either ionic current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to a variety of processes, including electrokinetically induced pressure flow in a region of a microchannel that is not influenced by an electric field, sample concentration enhancement and injection, as well as improving the analysis of materials where it is desired to eliminate electrophoretic bias. Other applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN; Culbertson, Christopher T [Oak Ridge, TN; Whitten, William B [Lancing, TN; Foote, Robert S [Oak Ridge, TN
2011-04-26
A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either ionic current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to a variety of processes, including electrokinetically induced pressure flow in a region of a microehannel that is not influenced by an electric field, sample concentration enhancement and injection, as well as improving the analysis of materials where it is desired to eliminate electrophoretic bias. Other applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN; Culbertson, Christopher T [Oak Ridge, TN; Whitten, William B [Lancing, TN; Foote, Robert S [Oak Ridge, TN
2011-03-22
A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either ionic current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to a variety of processes, including electrokinetically induced pressure flow in a region of a microchannel that is not influenced by an electric field, sample concentration enhancement and injection, as well as improving the analysis of materials where it is desired to eliminate electrophoretic bias. Other applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
Jacobson, Stephen C.; Ramsey, J. Michael
2007-11-20
A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either ionic current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to a variety of processes, including electrokinetically induced pressure flow in a region of a microchannel that is not influenced by an electric field, sample concentration enhancement and injection, as well as improving the analysis of materials where it is desired to eliminate electrophoretic bias. Other applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
Jacobson, Stephen C.; Ramsey, J. Michael; Culbertson, Christopher T.; Whitten, William B.; Foote, Robert S.
2004-02-03
A microfabricated device employing a bridging membrane and methods for electrokinetic transport of a liquid phase biological or chemical material using the same are described. The bridging membrane is deployed in or adjacent to a microchannel and permits either ionic current flow or the transport of gas species, while inhibiting the bulk flow of material. The use of bridging membranes in accordance with this invention is applicable to a variety of processes, including electrokinetically induced pressure flow in a region of a microchannel that is not influenced by an electric field, sample concentration enhancement and injection, as well as improving the analysis of materials where it is desired to eliminate electrophoretic bias. Other applications of the bridging membranes according to this invention include the separation of species from a sample material, valving of fluids in a microchannel network, mixing of different materials in a microchannel, and the pumping of fluids.
A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells
NASA Astrophysics Data System (ADS)
Hou, Yi; Du, Xiaoyan; Scheiner, Simon; McMeekin, David P.; Wang, Zhiping; Li, Ning; Killian, Manuela S.; Chen, Haiwei; Richter, Moses; Levchuk, Ievgen; Schrenker, Nadine; Spiecker, Erdmann; Stubhan, Tobias; Luechinger, Norman A.; Hirsch, Andreas; Schmuki, Patrik; Steinrück, Hans-Peter; Fink, Rainer H.; Halik, Marcus; Snaith, Henry J.; Brabec, Christoph J.
2017-12-01
A major bottleneck delaying the further commercialization of thin-film solar cells based on hybrid organohalide lead perovskites is interface loss in state-of-the-art devices. We present a generic interface architecture that combines solution-processed, reliable, and cost-efficient hole-transporting materials without compromising efficiency, stability, or scalability of perovskite solar cells. Tantalum-doped tungsten oxide (Ta-WOx)/conjugated polymer multilayers offer a surprisingly small interface barrier and form quasi-ohmic contacts universally with various scalable conjugated polymers. In a simple device with regular planar architecture and a self-assembled monolayer, Ta-WOx-doped interface-based perovskite solar cells achieve maximum efficiencies of 21.2% and offer more than 1000 hours of light stability. By eliminating additional ionic dopants, these findings open up the entire class of organics as scalable hole-transporting materials for perovskite solar cells.
NASA Astrophysics Data System (ADS)
DeGostin, Matthew B.; Peracchio, Aldo A.; Myles, Timothy D.; Cassenti, Brice N.; Chiu, Wilson K. S.
2016-03-01
In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design.
Strategies for the Engineered Phytoremediation of Mercury and Arsenic Pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhankher, Om Parkash; Meagher, Richard B.
2003-03-26
Phytoremediation is the use of plants to extract, transport, detoxify and/or sequester pollutants of the land, water or air. Mercury and arsenic are among the worst environmental pollutants, adversely affecting the health of hundreds of millions of people worldwide. We have demonstrated that plants can be engineered to take up and tolerate several times the levels of mercury and arsenic that would kill most plant species. Starting with methylmercury and/or ionic mercury contamination, mercury is detoxified, stored below or above ground, and even volatilized as part of the transpiration process and keeping it out of the food chain. Initial effortsmore » with arsenate demonstrate that it can be taken up, transported aboveground, electrochemically reduced to arsenite in leaves and sequestered in thiol-rich peptide complexes. The transgenic mercury remediation strategies also worked in cultivated and wild plant species like canola, rice and cottonwood.« less
NASA Astrophysics Data System (ADS)
Liu, Dan; Zhou, Jingjing; Zhang, Wenjing; Huan, Ying; Yu, Xipeng; Li, Fulin; Chen, Xuequn
2017-01-01
Colloids act as vectors for pollutants in groundwater, thereby creating a series of environmental problems. While managed aquifer recharge plays an important role in protecting groundwater resources and controlling land subsidence, it has a significant effect on the transport of colloids. In this study, particle size and zeta potential of colloidal humic acid (HA) have been measured to determine the effects of different hydrochemistry conditions. Column experiments were conducted to examine the effects on the transport of colloidal HA under varying conditions of pH (5, 7, 9), ionic strength (<0.0005, 0.02, 0.05 M), cation valence (Na+, Ca2+) and flow rate (0.1, 0.2, 0.4 ml/min) through collectors (glass beads) to model the properties and quality of artificial recharge water and changes in the hydrodynamic field. Breakthrough curves showed that the behavior of colloidal HA being transported varied depending on the conditions. Colloid transport was strongly influenced by hydrochemical and hydrodynamic conditions. With decreasing pH or increasing ionic strength, a decrease in the peak effluent concentration of colloidal HA and increase in deposition could be clearly seen. Comparison of different cation valence tests indicated that changes in transport and deposition were more pronounced with divalent Ca2+ than with monovalent Na+. Changes in hydrodynamic field (flow rate) also had an impact on transportation of colloidal HA. The results of this study highlight the need for further research in this area.
Scanning thermo-ionic microscopy for probing local electrochemistry at the nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eshghinejad, Ahmadreza; Nasr Esfahani, Ehsan; Wang, Peiqi
2016-05-28
Conventional electrochemical characterization techniques based on voltage and current measurements only probe faradaic and capacitive rates in aggregate. In this work we develop a scanning thermo-ionic microscopy (STIM) to probe local electrochemistry at the nanoscale, based on imaging of Vegard strain induced by thermal oscillation. It is demonstrated from both theoretical analysis and experimental validation that the second harmonic response of thermally induced cantilever vibration, associated with thermal expansion, is present in all solids, whereas the fourth harmonic response, caused by local transport of mobile species, is only present in ionic materials. The origin of STIM response is further confirmedmore » by its reduced amplitude with respect to increased contact force, due to the coupling of stress to concentration of ionic species and/or electronic defects. The technique has been applied to probe Sm-doped Ceria and LiFePO{sub 4}, both of which exhibit higher concentrations of mobile species near grain boundaries. The STIM gives us a powerful method to study local electrochemistry with high sensitivity and spatial resolution for a wide range of ionic systems, as well as ability to map local thermomechanical response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Sang D.; Borodin, Oleg; Seo, D. M.
Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).
Ihlefeld, Jon F.; Gurniak, Emily; Jones, Brad H.; ...
2016-05-04
Preparation of sodium zirconium silicate phosphate (NaSICon), Na 1+xZr 2Si xP 3–xO 12 (0.25 ≤ x ≤ 1.0), thin films has been investigated via a chemical solution approach on platinized silicon substrates. Increasing the silicon content resulted in a reduction in the crystallite size and a reduction in the measured ionic conductivity. Processing temperature was also found to affect microstructure and ionic conductivity with higher processing temperatures resulting in larger crystallite sizes and higher ionic conductivities. The highest room temperature sodium ion conductivity was measured for an x = 0.25 composition at 2.3 × 10 –5 S/cm. In conclusion, themore » decreasing ionic conductivity trends with increasing silicon content and decreasing processing temperature are consistent with grain boundary and defect scattering of conducting ions.« less
Liu, Hao; Hu, Liangbin; Meng, Ying Shirley; Li, Quan
2013-11-07
A configuration of three-dimensional Ni-Si nanocable array anodes is proposed to overcome the severe volume change problem of Si during the charging-discharging process. In the fabrication process, a simple and low cost electrodeposition is employed to deposit Si instead of the common expansive vapor phase deposition methods. The optimum composite nanocable array electrode achieves a high specific capacity ~1900 mA h g(-1) at 0.05 C. After 100 cycles at 0.5 C, 88% of the initial capacity (~1300 mA h g(-1)) remains, suggesting its good capacity retention ability. The high performance of the composite nanocable electrode is attributed to its excellent adhesion of the active material on the three-dimensional current collector and short ionic/electronic transport pathways during cycling.