Science.gov

Sample records for ionic-liquid buffer electrolytes

  1. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    DOEpatents

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  2. Room-temperature ionic liquid battery electrolytes

    SciTech Connect

    Carlin, R.T.; Fuller, J.

    1997-12-01

    The room-temperature molten salts possess a number of unique properties that make them ideal battery electrolytes. In particular, they are nonflammable, nonvolatile, and chemically inert, and they display wide electrochemical windows, high inherent conductivities, and wide thermal operating ranges. Although the ionic liquids have excellent characteristics, the chemical and electrochemical properties of desirable battery electrode materials are not well understood in these electrolytes. The research has focused on rechargeable electrodes and has included work on metallic lithium and sodium anodes in buffered neutral chloroaluminate melts, graphite-intercalation electrodes in neutral chloroaluminate and non-chloroaluminate melts, and silane-imidazole polymeric cathodes in acidic chloroaluminate melts. This paper will provide an overview of the research in these areas.

  3. Ionic liquids behave as dilute electrolyte solutions

    PubMed Central

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  4. Ionic liquids behave as dilute electrolyte solutions.

    PubMed

    Gebbie, Matthew A; Valtiner, Markus; Banquy, Xavier; Fox, Eric T; Henderson, Wesley A; Israelachvili, Jacob N

    2013-06-11

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force-distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin-Landau-Verwey-Overbeek theory with an additive repulsive steric (entropic) ion-surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high-free-ion density ionic liquids and ionic liquid blends.

  5. Magnesium Battery Electrolytes in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Watkins, Tylan Strike

    A lack of adequate energy storage technologies is arguably the greatest hindrance to a modern sustainable energy infrastructure. Chemical energy storage, in the form of batteries, is an obvious solution to the problem. Unfortunately, today's state of the art battery technologies fail to meet the desired metrics for full scale electric grid and/or electric vehicle role out. Considerable effort from scientists and engineers has gone into the pursuit of battery chemistries theoretically capable of far outperforming leading technologies like Li-ion cells. For instance, an anode of the relatively abundant and cheap metal, magnesium, would boost the specific energy by over 4.6 times that of the current Li-ion anode (LiC6). The work presented here explores the compatibility of magnesium electrolytes in TFSI---based ionic liquids with a Mg anode (TFSI = bis(trifluoromethylsulfonyl)imide). Correlations are made between the Mg2+ speciation conditions in bulk solutions (as determined via Raman spectroscopy) and the corresponding electrochemical behavior of the electrolytes. It was found that by creating specific chelating conditions, with an appropriate Mg salt, the desired electrochemical behavior could be obtained, i.e. reversible electrodeposition and dissolution. Removal of TFSI -- contact ion pairs from the Mg2+ solvation shell was found to be essential for reversible electrodeposition. Ionic liquids with polyethylene glycol chains pendent from a parent pyrrolidinium cation were synthesized and used to create the necessary complexes with Mg 2+, from Mg(BH4)2, so that reversible electrodeposition from a purely ionic liquid medium was achieved. The following document discusses findings from several electrochemical experiments on magnesium electrolytes in ionic liquids. Explanations for the failure of many of these systems to produce reversible Mg electrodeposition are provided. The key characteristics of ionic liquid systems that are capable of achieving reversible Mg

  6. Ionic liquid electrolytes for dye-sensitized solar cells.

    PubMed

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  7. An imidazolium based ionic liquid electrolyte for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Kwang; Matic, Aleksandar; Ahn, Jou-Hyeon; Jacobsson, Per

    An electrolyte for lithium batteries based on the ionic liquid 3-methy-1-propylimidazolium bis(trifluoromethysulfony)imide (PMIMTFSI) complexed with lithium bis(trifluoromethysulfony)imide (LiTFSI) at a molar ratio of 1:1 has been investigated. The electrolyte shows a high ionic conductivity (∼1.2 × 10 -3 S cm -1) at room temperature. Over the whole investigated temperature range the ionic conductivity is more than one order of magnitude higher than for an analogue electrolyte based on N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py 14TFSI) complexed with LiTFSI and used here as a benchmark. Raman results indicate furthermore that the degree of lithium coordinated TFSI is slightly lower in the electrolyte based on PMIMTFSI and thus that the Li + charge carriers should be higher than in electrolytes based on Py 14TFSI. An ionic liquid gel electrolyte membrane was obtained by soaking a fibrous fully interconnected membrane, made of electrospun P(VdF-HFP), in the electrolyte. The gel electrolyte was cycled in Li/ionic liquid polymer electrolyte/Li cells over 15 days and in Li/LiFePO 4 cells demonstrating good interfacial stability and highly stable discharge capacities with a retention of >96% after 50 cycles (∼146 mAh g -1).

  8. Electrolytic Conductivity of Four Imidazolium-Based Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Calado, Marta S.; Diogo, João C. F.; Correia da Mata, José L.; Caetano, Fernando J. P.; Visak, Zoran P.; Fareleira, João M. N. A.

    2013-07-01

    In this article, electrolytic (ionic) conductivity measurements of four ionic liquids (ILs), namely, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([Cmim][NTf]), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([Cmim][OTf]), 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Cmim][NTf]), and 1-ethyl-3-methylimidazolium ethyl sulfate ([Cmim][EtSO]) (ECOENG212), were performed in a temperature range of (288.15 to 333.15) K. [Cmim][NTf] was chosen to be a reference ionic liquid for several properties, including the electrolytic conductivity by the IUPAC Project 2002-005-1-100. For that reason, the measurements performed with that ionic liquid primarily serve the purpose to validate the instrumentation and the experimental procedure used in this work. The measurements were carried out using a complex impedance method, applying a novel electronic device designed and constructed for this purpose. The complete setup includes a Schott Instruments LF 913 T, used as a four-electrode conductivity cell, and a lock-in amplifier. The cell was calibrated using standard reference KCl aqueous solutions. The measurements of the impedance of the conductivity cell were carried out along a range of frequencies from (0.2 to 30) kHz, and the results were extrapolated to infinite frequency, in order to determine the electrolytic conductivity of the liquid samples. The results obtained for the ionic liquid [Cmim][NTf] were compared to reference data, and it was estimated that the overall uncertainty of the present results is better than 2 %. All the data obtained were compared with available literature data, and were analyzed and discussed in respect to the effect of temperature, cation alkyl chain length, and anion.

  9. Physical Properties of Substituted Imidazolium Based Ionic Liquids Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Sutto, Thomas E.; De Long, Hugh C.; Trulove, Paul C.

    2002-11-01

    The physical properties of solid gel electrolytes of either polyvinylidene diflurohexafluoropropylene or a combination of polyvinylidene hexafluoropropylene and polyacrylic acid, and the molten salts 1-ethyl-3-methylimidazolium tetrafluoroborate, 1,2-dimethyl-3-n-propylimidazolium tetrafluoroborate, and the new molten salts 1,2-dimethyl-3-n-butylimidazolium tetrafluoroborate, and 1,2-dimethyl-3-n-butylimidazolium hexafluorophosphate were characterized by temperature dependent ionic conductivity measurements for both the pure molten salt and of the molten salt with 0.5 M Li+ present. Ionic conductivity data indicate that for each of the molten salts, the highest concentration of molten salt allowable in a single component polymer gel was 85%, while gels composed of 90%molten salt were possible when using both polyvinylidene hexafluorophosphate and polyacrylic acid. For polymer gel composites prepared using lithium containing ionic liquids, the optimum polymer gel composite consisted of 85% of the 0.5 M Li+/ionic liquid, 12.75% polyvinylidene hexafluoropropylene, and 2.25% poly (1-carboxyethylene). The highest ionic conductivity observed was for the gel containing 90%1-ethyl-3-methyl-imidazolium tetrafluoroborate, 9.08 mS/cm. For the lithium containing ionic liquid gels, their ionic conductivity ranged from 1.45 to 0.05 mS/cm, which is comparable to the value of 0.91 mS/cm, observed for polymer composite gels containing 0.5 M LiBF4 in propylene carbonate.

  10. Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper

    NASA Astrophysics Data System (ADS)

    Pettersson, F.; Keskinen, J.; Remonen, T.; von Hertzen, L.; Jansson, E.; Tappura, K.; Zhang, Y.; Wilén, C.-E.; Österbacka, R.

    2014-12-01

    Environmentally friendly supercapacitors are fabricated using commercial grade aluminum coated paper as a substrate and symmetrical activated carbon electrodes as large area electrodes. Different choline chloride-based eutectic solvents are used as electrolyte. These are inexpensive, environmentally friendly and have a larger operating window compared to that of water electrolytes. As the entire device is printed and the materials used are inexpensive, both small- and large-area power sources can be fabricated to be used in cheap, disposable and recyclable devices. Supercapacitors with different eutectic solvents are measured using cyclic charge-discharge and impedance spectroscopy measurements and compared to one widely used and one "green" imidazolium ionic liquid; EMIM:TFSI and EcoEng 212™, respectively. A mixture of ethylene glycol and choline chloride, Glyceline™, show the highest capacitance and power densities of the electrolytes being tested, including the imidazolium alternatives.

  11. Mixed ionic liquid as electrolyte for lithium batteries

    NASA Astrophysics Data System (ADS)

    Diaw, M.; Chagnes, A.; Carré, B.; Willmann, P.; Lemordant, D.

    Ionic liquids like 1-butyl-3-methylimidazolium tetrafluoroborate (IMIBF 4) or hexafluorophosphate (IMIPF 6) and 1-butyl-4-methylpyridinium tetrafluoroborate (PyBF 4) were mixed with organic solvents such as butyrolactone (BL) and acetonitrile (ACN). A lithium salt (LiBF 4 or LiPF 6) was added to these mixtures for possible application in the field of energy storage (batteries or supercapacitors). Viscosities, conductivities and electrochemical windows at a Pt electrode of these electrolytes were investigated. All studied electrolytes are stable toward oxidation and exhibit a vitreous phase transition, which has been determined by application of the VTF theory to conductivity measurements. Mixtures containing the BF 4- anion exhibit the lowest viscosity and the highest conductivity. Two mixtures have been optimized in terms of conductivity: BL/IMIBF 4 (60/40, v/v) and ACN/IMIBF 4 (70/30, v/v).

  12. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents

    NASA Astrophysics Data System (ADS)

    Li, Song; Zhang, Pengfei; Fulvio Pasquale, F.; Hillesheim Patrick, C.; Feng, Guang; Dai, Sheng; Cummings Peter, T.

    2014-07-01

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance-electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation.

  13. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents.

    PubMed

    Li, Song; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Feng, Guang; Dai, Sheng; Cummings Peter, T

    2014-07-16

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance-electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation.

  14. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOEpatents

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  15. Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems

    NASA Astrophysics Data System (ADS)

    Montanino, M.; Moreno, M.; Carewska, M.; Maresca, G.; Simonetti, E.; Lo Presti, R.; Alessandrini, F.; Appetecchi, G. B.

    2014-12-01

    The thermal, transport, rheological and flammability properties of electrolyte mixtures, proposed for safer lithium-ion battery systems, were investigated as a function of the mole composition. The blends were composed of a lithium salt (LiTFSI), organic solvents (namely EC, DEC) and an ionic liquid (PYR13TFSI). The main goal is to combine the fast ion transport properties of the organic compounds with the safe issues of the non-flammable and non-volatile ionic liquids. Preliminary tests in batteries have evidenced cycling performance approaching that observed in commercial organic electrolytes.

  16. Polymer--Ionic liquid Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Ketabi, Sanaz

    Polymer electrolyte, comprised of ionic conductors, polymer matrix, and additives, is one of the key components that control the performance of solid flexible electrochemical capacitors (ECs). Ionic liquids (ILs) are highly promising ionic conductors for next generation polymer electrolytes due to their excellent electrochemical and thermal stability. Fluorinated ILs are the most commonly applied in polymer-IL electrolytes. Although possessing high conductivity, these ILs have low environmental favorability. The aim of this work was to develop environmentally benign polymer-ILs for both electrochemical double layer capacitors (EDLCs) and pseudocapacitors, and to provide insights into the influence of constituent materials on the ion conduction mechanism and the structural stability of the polymer-IL electrolytes. Solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and 1-ethyl-3-methylimidazolium hydrogen sulfate (EMIHSO4) were investigated for ECs. The material system was optimized to achieve the two criteria for high performance polymer-ILs: high ionic conductivity and highly amorphous structure. Thermal and structural analyses revealed that EMIHSO4 acted as an ionic conductor and a plasticizer that substantially decreased the crystallinity of PEO. Two types of inorganic nanofillers were incorporated into these polymer electrolytes. The effects of SiO2 and TiO2 nanofillers on ionic conductivity, crystallinity, and dielectric properties of PEO-EMIHSO 4 were studied over a temperature range from -10 °C and 80 °C. Using an electrochemical capacitor model, impedance (complex capacitance) and dielectric analyses were performed to understand the ionic conduction process with and without fillers in both semi crystalline and amorphous states of the polymer electrolytes. Despite their different nanostructures, both SiO2 and TiO2 promoted an amorphous structure in PEO-EMIHSO 4 and increased the ionic conductivity 2-fold. While in the amorphous state, the

  17. A disiloxane-functionalized phosphonium-based ionic liquid as electrolyte

    SciTech Connect

    Weng, Wei; Zhang, Zhengcheng; Lu, Jun; Amine, Khalil

    2011-01-01

    A disiloxane-functionalized ionic liquid based on a phosphonium cation and a bis(trifluoromethylsulfonyl)imide (TFSI) anion was synthesized and characterized. This new ionic liquid electrolyte showed good stability with a lithium transition metal oxide cathode and a graphite anode in lithium ion cells.

  18. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  19. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    PubMed Central

    Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  20. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  1. Investigation of Interface between Ge Electrodes and Ionic Liquid Electrolytes for Electric Double Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Abeysinghe, R. M.; Oguchi, H.; Kuwano, H.

    2016-11-01

    This study discusses novel way of use of ionic liquids to develop Ge-based electrodes for electric double layer capacitors (EDLC). We found that ionic liquids change their electrochemical properties depending on the amount of the absorbed water. Wet ionic liquids work as solvents to dissolve Ge and make porous structures, whereas dry ones work as electrolytes of the EDLCs. The former property was used to increase surface area of the electrodes which is desired to increase the capacity of EDLCs. This method showed another advantage in contrast to the dry ionic liquids; wet ones could fill the complex Ge pores in parallel to porous structure formation. Finally, after porous formation, we dried the ionic liquid at 100 °C and prepared the EDLCs composed of Ge porous electrodes. Cyclic voltammetry and impedance measurements indicated that the obtained devices can work as EDLCs.

  2. Atomistic Simulations of Ternary Polymer Electrolytes Containing Ionic Liquids: Ion Transport and Viscoelastic Behavior

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Ganesan, Venkat

    Influence of the BMIMPF6 ionic liquid on ion transport and viscoelastic properties of ternary polymer electrolytes containing polyethylene oxide solvated with LiPF6 salt and the underlying mechanisms are investigated. By employing atomistic molecular dynamics and trajectory extended kinetic Monte Carlo simulation techniques, we observe enhanced ionic mobilities and conductivities of the PEOLiPF6-BMIMPF ternary electrolytes upon the addition ionic liquid into the PEOLiPF6 binary electrolyte. The dispersion of the BMIMPF6 ionic liquid into the PEOLiPF6 electrolyte is found to (a) promote dissociation of existing LiPF6 ion-pairs and (b) slightly accelerate the polymer segmental dynamics. Together, these effects are observed to collectively give rise to an increase in ionic mobilities and conductivities of the ternary polymer electrolyte. On the other hand, Rouse analysis reveals that the storage and loss modulus of the ternary polymer electrolytes are coupled to their ion conducting properties.

  3. Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping.

    PubMed

    Li, Nian-Wu; Yin, Ya-Xia; Li, Jin-Yi; Zhang, Chang-Huan; Guo, Yu-Guo

    2017-02-01

    Hybrid electrolyte of ionic liquid and ethers is used to passivate the surface of Li metal surface via modification of the as-formed solid electrolyte interphase with N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide (Py13TFSI), thereby reducing the side reactions between the Li metal and electrolyte, leading to remarkably suppressed Li dendrite growth and mitigating Li metal corrosion.

  4. Quasi-solid electrolyte: a thixotropic gel of imogolite and an ionic liquid.

    PubMed

    Shikinaka, K; Taki, N; Kaneda, K; Tominaga, Y

    2017-01-03

    We report a quasi-solid electrolyte comprising a transparent thixotropic gel swelled by an ionic liquid that is formed by a framework of single-walled aluminosilicate cylindrical inorganic "imogolite" nanotubes. The quasi-solid electrolyte shows moldability, thermal stability, and high ionic conductivity, and has potential applications in free-moldable conductive and anti-icing coatings, or electrolytes for batteries.

  5. Enhanced electrical transport in ionic liquid dispersed TMAI-PEO solid polymer electrolyte

    SciTech Connect

    Gupta, Neha; Rathore, Munesh Dalvi, Anshuman; Kumar, Anil

    2014-04-24

    A polymer composite is prepared by dispersing ionic liquid [Bmim][BF{sub 4}] in Polyethylene oxide-tetra methyl ammonium iodide composite and subsequent microwave treatment. X-ray diffraction patterns confirm the composite nature. To explore possibility of proton conductivity in these films, electrical transport is studied by impedance spectroscopy and DC polarization. It is revealed that addition of ionic liquid in host TMAI-PEO solid polymer electrolyte enhances the conductivity by ∼ 2 orders of magnitude. Polarization measurements suggest that composites are essentially ion conducting in nature. The maximum ionic conductivity is found to be ∼2 × 10{sup −5} for 10 wt % ionic liquid.

  6. Determination of preservatives in soft drinks by capillary electrophoresis with ionic liquids as the electrolyte additives.

    PubMed

    Sun, Bingbing; Qi, Li; Wang, Minglin

    2014-08-01

    A capillary electrophoresis method for separating preservatives with various ionic liquids as the electrolyte additives has been developed. The performances for separation of the preservatives using five ionic liquids with different anions and different substituted group numbers on imidazole ring were studied. After investigating the influence of the key parameters on the separation (the concentration of ionic liquids, pH, and the concentration of borax), it has been found that the separation efficiency could be improved obviously using the ionic liquids as the electrolyte additives and tested preservatives were baseline separated. The proposed capillary electrophoresis method exhibited favorable quantitative analysis property of the preservatives with good linearity (r(2) = 0.998), repeatability (relative standard deviations ≤ 3.3%) and high recovery (79.4-117.5%). Furthermore, this feasible and efficient capillary electrophoresis method was applied in detecting the preservatives in soft drinks, introducing a new way for assaying the preservatives in food products.

  7. Higher energy and safety of lithium-ion batteries with ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Komaba, Shinichi; Yabuuchi, Naoaki; Katayama, Yasushi; Miura, Takashi

    2010-04-01

    Ionic liquid has been utilized as safe electrolyte solution for lithium-ion batteries. Reversible charge / discharge cycling of the graphite electrode in the ionic liquid has been achieved with polyacrylic acid polymer binder, which can suppress the organic cation intercalation to the graphite. Cycleability of the graphite-silicon composite electrodes prepared with polyacrylate binder was significantly improved in comparison to the conventional PVdF binder, and it has been demonstrated that the reversible cycling with 1000 mAh g-1 for 30 cycling test is possible in ionic liquid. The possibility of the safe and high-energy lithium-ion battery is discussed through the preliminary study on Li2MnO3-LiCo1/3Ni1/3Mn1/3O2 based positive electrode and graphite-silicon-polyacrylate composite negative electrode with the ionic liquid electrolyte.

  8. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    PubMed Central

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2009-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

  9. Novel hydrophobic ionic liquids electrolyte based on cyclic sulfonium used in dye-sensitized solar cells

    SciTech Connect

    Guo, Lei; Pan, Xu; Wang, Meng; Zhang, Changneng; Fang, Xiaqin; Chen, Shuanghong; Dai, Songyuan

    2011-01-15

    A novel series of hydrophobic room temperature ionic liquids based on six cyclic sulfonium cations were first time synthesized and applied in dye-sensitized solar cells as pure solvents for electrolyte system. The chronoamperograms result showed that the length of substituent on sulfonium cations could inhibit the I{sub 3}{sup -} diffusion and the five-ring structure of sulfonium was benefit for fast triiodide ion diffusion. The electrochemical impendence spectra measurement of dye-sensitized solar cells with these ionic liquid electrolytes was carried out and the result indicated that the cations' structure had indeed influence on the cells' performance especially for the fill factor, which was further proved by the measurement result of I-V curves of these dye-sensitized solar cells. The conclusion was obtained that the electron exchange reaction on Pt counter electrode/electrolyte interface dominated the cells' performance for these ionic liquid electrolyte-based DSCs. (author)

  10. Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.

    PubMed

    Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan

    2017-10-04

    In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al2O3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al2O3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li(+) ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li(+) ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.

  11. Ion Transport and Structural Properties of Polymeric Electrolytes and Ionic Liquids from Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Borodin, Oleg

    2010-03-01

    Molecular dynamics simulations are well suited for exploring electrolyte structure and ion transport mechanisms on the nanometer length scale and the nanosecond time scales. In this presentation we will describe how MD simulations assist in answering fundamental questions about the lithium transport mechanisms in polymeric electrolytes and ionic liquids. In particular, in the first part of the presentation the extent of ion aggregation, the structure of ion aggregates and the lithium cation diffusion in binary polymeric electrolytes will be compared with that of single-ion conducting polymers. In the second part of the talk, the lithium transport in polymeric electrolytes will be compared with that of three ionic liquids ( [emim][FSI] doped with LiFSI , [pyr13][FSI] doped with LiFSI, [emim][BF4] doped with LiBF4). The relation between ionic liquid self-diffusion, conductivity and thermodynamic properties will be discussed in details. A number of correlations between heat of vaporization Hvap, cation-anion binding energy (E+/-), molar volume (Vm), self-diffusion coefficient (D) and ionic conductivity for 29 ionic liquids have been investigated using MD simulations. A significant correlation between D and Hvap has been found, while best correlation was found for -log((D Vm)) vs. Hvap+0.28E+/-. A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids.

  12. Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Byrne, N.; Howlett, P. C.; MacFarlane, D. R.; Smith, M. E.; Howes, A.; Hollenkamp, A. F.; Bastow, T.; Hale, P.; Forsyth, M.

    An understanding of the solid electrolyte interphase (SEI) that forms on the lithium-metal surface is essential to the further development of rechargeable lithium-metal batteries. Currently, the formation of dendrites during cycling, which can lead to catastrophic failure of the cell, has mostly halted research on these power sources. The discovery of ionic liquids as electrolytes has rekindled the possibility of safe, rechargeable, lithium-metal batteries. The current limitation of ionic liquid electrolytes, however, is that when compared with conventional non-aqueous electrolytes the device rate capability is limited. Recently, we have shown that the addition of a zwitterion such as N-methyl- N-(butyl sulfonate) pyrrolidinium resulted in enhancement of the achievable current densities by 100%. It was also found that the resistance of the SEI layer in the presence of a zwitterion is 50% lower. In this study, a detailed chemical and electrochemical analysis of the SEI that forms in both the presence and absence of a zwitterion has been conducted. Clear differences in the chemical nature and also the thickness of the SEI are observed and these may account for the enhancement of operating current densities.

  13. Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations.

    PubMed

    Angenendt, Knut; Johansson, Patrik

    2011-06-23

    The solvation of lithium salts in ionic liquids (ILs) leads to the creation of a lithium ion carrying species quite different from those found in traditional nonaqueous lithium battery electrolytes. The most striking differences are that these species are composed only of ions and in general negatively charged. In many IL-based electrolytes, the dominant species are triplets, and the charge, stability, and size of the triplets have a large impact on the total ion conductivity, the lithium ion mobility, and also the lithium ion delivery at the electrode. As an inherent advantage, the triplets can be altered by selecting lithium salts and ionic liquids with different anions. Thus, within certain limits, the lithium ion carrying species can even be tailored toward distinct important properties for battery application. Here, we show by DFT calculations that the resulting charge carrying species from combinations of ionic liquids and lithium salts and also some resulting electrolyte properties can be predicted.

  14. Templated electrodeposition of silver nanowires in a nanoporous polycarbonate membrane from a nonaqueous ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Kazeminezhad, I.; Barnes, A. C.; Holbrey, J. D.; Seddon, K. R.; Schwarzacher, W.

    2007-03-01

    Template electrodeposition has been used to prepare a wide range of nanostructures but has generally been restricted to aqueous electrolytes. We report the deposition of silver nanowires in a commercial nuclear track-etched polycarbonate template from the nonaqueous ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) using silver electrochemically dissolved from the anode. Transmission electron microscopy (TEM) shows that the nanowires have a very high aspect ratio with an average diameter of 80 nm and length of 5 μm. Ionic liquid electrolytes should greatly extend the range of metals that can be electrodeposited as nanowires using templates.

  15. Capacitance of Ti3C2Tx MXene in Ionic Liquid Electrolyte

    DOE PAGES

    Lin, Zifeng; Barbara, Daffos; Taberna, Pierre-Louis; ...

    2016-04-14

    Ti3C2Tx MXene, a two-dimensional (2D) early transition metal carbide, has shown an extremely high volumetric capacitance in aqueous electrolytes, but in a narrow voltage window (less than 1.23 V). The utilization of MXene materials in ionic liquid electrolytes with a large voltage window has never been addressed. Here, we report the preparation of the Ti3C2Tx MXene ionogel film by vacuum filtration for use as supercapacitor electrodes operating in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) neat ionic liquid electrolyte. Due to the disordered structure of the Ti3C2Tx hydrogel film and a stable spacing after vacuum drying, achieved through ionic liquid electrolyte immersion of themore » Ti3C2Tx hydrogel film, the Ti3C2Tx surface became accessible to EMI+ and TFSI- ions. A capacitance of 70 F g-1 together with a large voltage window of 3 V was obtained at a scan rate of 20 mV s-1 in neat EMI-TFSI electrolyte. The electrochemical signature indicates a capacitive behavior even at a high scan rate (500 mV s-1) and a high power performance. This work opens up the possibilities of using MXene materials with various ionic liquid electrolytes.« less

  16. Capacitance of Ti3C2Tx MXene in ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Lin, Zifeng; Barbara, Daffos; Taberna, Pierre-Louis; Van Aken, Katherine L.; Anasori, Babak; Gogotsi, Yury; Simon, Patrice

    2016-09-01

    Ti3C2Tx MXene, a two-dimensional (2D) early transition metal carbide, has shown an extremely high volumetric capacitance in aqueous electrolytes, but in a narrow voltage window (less than 1.23 V). The utilization of MXene materials in ionic liquid electrolytes with a large voltage window has never been addressed. Here, we report the preparation of the Ti3C2Tx MXene ionogel film by vacuum filtration for use as supercapacitor electrodes operating in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) neat ionic liquid electrolyte. Due to the disordered structure of the Ti3C2Tx hydrogel film and a stable spacing after vacuum drying, achieved through ionic liquid electrolyte immersion of the Ti3C2Tx hydrogel film, the Ti3C2Tx surface became accessible to EMI+ and TFSI- ions. A capacitance of 70 F g-1 together with a large voltage window of 3 V was obtained at a scan rate of 20 mV s-1 in neat EMI-TFSI electrolyte. The electrochemical signature indicates a capacitive behavior even at a high scan rate (500 mV s-1) and a high power performance. This work opens up the possibilities of using MXene materials with various ionic liquid electrolytes.

  17. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids

    NASA Astrophysics Data System (ADS)

    Kim, G. T.; Appetecchi, G. B.; Carewska, M.; Joost, M.; Balducci, A.; Winter, M.; Passerini, S.

    In this manuscript is reported an attempt to prepare high ionic conductivity lithium polymer electrolytes by UV cross-linking the poly(ethyleneoxide) (briefly called PEO) polymer matrix in presence of the plasticizing lithium salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and an ionic liquid of the pyrrolidinium family (N-alkyl- N-methylpyrrolidinium TFSI) having a common anion with the lithium salt. It is demonstrated that polymer electrolytes with room temperature ionic conductivities of nearly 10 -3 S cm -1 could be obtained as a result of the reduced crystallinity of the ternary electrolytes. The results clearly indicate that the cross-linked ternary electrolyte shows superior mechanical properties with respect to the non-cross-linked electrolytes and higher conductivities with respect to polymer electrolytes containing none or less ionic liquid.

  18. In-situ Analysis of Zinc Electrodeposition within an Ionic Liquid Electrolyte

    NASA Astrophysics Data System (ADS)

    Keist, Jayme Scot

    Ionic liquids have received considerable attention as an alternative electrolyte for rechargeable battery systems. The goal of this investigation is to develop an understanding on the electrodeposition behavior of zinc within ionic liquid electrolytes and determine whether the unique properties of ionic liquids may allow for enhanced cyclability of the zinc electrode for rechargeable battery systems. Three different analysis techniques are employed for the investigation of the zinc deposition behavior within an imidazolium based ionic liquid electrolyte. First, the electrochemical behavior of the electrodeposition behavior is analyzed by cyclic voltammetry and potential step methods. Second, in-situ atomic force microscopy (AFM) is conducted to investigate the morphological evolution of zinc during electrodeposition. Finally, in-situ ultra-small-angle X-ray scattering (USAXS) is conducted during the electrodeposition of zinc to understand how the electrode surface evolves during electrodeposition and help confirm the results obtained from the in-situ AFM analysis. The ionic liquid electrolyte chosen for the investigation of zinc electrodeposition is an imidazolium based system consisting of zinc trifluoromethanesulfonate (Zn(OTf)2) dissolved within 1-butyl-3-methyl-imidazolium trifluoromethanesulfonate (BMIm OTf), and electrodeposition analysis is conducted on a Pt disk electrode. The behavior of Zn/Zn(II) within the ionic liquid electrolyte is analyzed at various deposition overpotentials, Zn(OTf)2 concentrations, and temperatures. Three distinct morphological behaviors are observed during the in-situ AFM analysis: growth of boulder like morphology, growth dominated by favorably oriented grains, and the formation of surface instabilities that manifested as agglomerate islands. The electrodeposition growth of Zn dominated by favorably oriented grains obtains a steady state where the surface roughness remained constant despite continued growth. The in-situ USAXS

  19. Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows.

    PubMed

    Chen, Fei; Ren, Yongyuan; Guo, Jiangna; Yan, Feng

    2017-01-31

    Thermo- and electro-dual responsive poly(ionic liquid) (PIL) based electrolytes were synthesized by co-polymerization of N-isopropylacrylamide (NIPAM) with (or without) 3-butyl-1-vinyl-imidazolium bromide ([BVIm][Br]) using diallyl-viologen (DAV) as both the cross-linking agent and electrochromic material.

  20. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolytes

    NASA Astrophysics Data System (ADS)

    Appetecchi, Giovanni B.; Montanino, Maria; Balducci, Andrea; Lux, Simon F.; Winterb, Martin; Passerini, Stefano

    In this paper we report the results of chemical-physical investigation performed on ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. The ternary electrolytes were made by mixing N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide (PYR 13FSI) and N-butyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR 14TFSI) ionic liquids with lithium hexafluorophosphate (LiPF 6) or lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The mixtures were developed based on preliminary results on the cyclability of graphite electrodes in the IL-LiX binary electrolytes. The results clearly show the beneficial synergic effect of the two ionic liquids on the electrochemical properties of the mixtures.

  1. The Role of Dissolved Gas in Ionic Liquid Electrolytes for Secondary Lithium Metal Batteries

    DTIC Science & Technology

    2013-01-07

    devices use lithium - ion batteries comprised of a graphite anode and metal oxide cathode. Lithium , being the third-lightest element, is already synonymous...support shuttling lithium ions ( battery cycling) such as the separator, electrolyte, and cathode and anode superstructures contribute most of the...The Role of Dissolved Gas in Ionic Liquid Electrolytes for Secondary Lithium Metal Batteries Johanna K. Stark1, Yi Ding2, and Paul A. Kohl1

  2. Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries.

    PubMed

    Vogl, T; Menne, S; Balducci, A

    2014-12-07

    In this study we investigated the chemical-physical properties of mixtures containing the protic ionic liquid (PIL) N-butyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYRH4TFSI), propylene carbonate (PC) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in view of their use as electrolytes for lithium-ion batteries (LIBs). We showed that these electrolytic solutions might display conductivity and viscosity comparable to those of conventional electrolytes. Depending on the amount of PIL present inside the mixtures, such mixtures might also display the ability to suppress the anodic dissolution of Al. Furthermore, we showed that the coordination of lithium ions by TFSI in PIL-PC mixtures appears to be different than the one observed for mixtures of PC and aprotic ionic liquids (AILs). When used in combination with a battery electrode, e.g. lithium iron phosphate (LFP), these mixtures allow the achievement of high performance also at a very high C-rate.

  3. Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries

    NASA Astrophysics Data System (ADS)

    Appetecchi, G. B.; Kim, G.-T.; Montanino, M.; Carewska, M.; Marcilla, R.; Mecerreyes, D.; De Meatza, I.

    The electrochemical properties of solvent-free, ternary polymer electrolytes based on a novel poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide polymeric ionic liquid (PIL) as polymer host and incorporating PYR 14TFSI ionic liquid and LiTFSI salt are reported. The PIL-LiTFSI-PYR 14TFSI electrolyte membranes were found to be chemically stable even after prolonged storage times in contact with lithium anode and thermally stable up to 300 °C. Particularly, the PIL-based electrolytes exhibited acceptable room temperature conductivity with wide electrochemical stability window, time-stable interfacial resistance values and good lithium stripping/plating performance. Preliminary battery tests have shown that Li/LiFePO 4 solid-state cells are capable to deliver above 140 mAh g -1 at 40 °C with very good capacity retention up to medium rates.

  4. Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.

    PubMed

    Kim, Jae-Kwang; Mueller, Franziska; Kim, Hyojin; Jeong, Sangsik; Park, Jeong-Sun; Passerini, Stefano; Kim, Youngsik

    2016-01-08

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage.

  5. An imidazolium-based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yin, Kun; Zhang, Zhengxi; Yang, Li; Hirano, Shin-Ichi

    2014-07-01

    An imidazolium-based polymerized ionic liquid (PIL), poly(1-ethyl-3-vinylimidazolium bis(trifluoromethanesulfonylimide)) is successfully synthesized via a new three-step process comprising the direct radical polymerization of the 1-vinylimidazole monomer, and subsequent quaternization reaction followed by an anion exchange procedure. Furthermore, polymer electrolytes are prepared by blending as-obtained PIL as the polymer host with an ionic liquid and LiTFSI salt. Electrochemical measurements demonstrate that compared with polymer electrolytes containing the PIL host synthesized by the conventional route, polymer electrolytes containing the PIL host obtained by new synthetic process exhibit significantly improved capacity and cycling performance, which is due to higher ionic liquid content.

  6. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    PubMed

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries.

  7. Lithium-sulphur battery with activated carbon cloth-sulphur cathode and ionic liquid as electrolyte

    NASA Astrophysics Data System (ADS)

    Swiderska-Mocek, Agnieszka; Rudnicka, Ewelina

    2015-01-01

    In this study a binder-free activated carbon cloth-sulphur (ACC-S) composite cathode is presented. Such a cathode was obtained using the impregnating technique of microporous activated carbon cloth with elemental melted sulphur. The surface morphology of an activated carbon cloth-sulphur electrode was studied using a scanning electron microscope (SEM), which was equipped with an EDX spectroscopy attachment. Electrochemical properties of the ACC-S composite cathode was tested in an ionic liquid electrolyte consisting of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulphonyl)imide (EtMeImNTf2) and bis(trifluoromethanesulphonyl)imide (LiNTf2). The ACC-sulphur cathode working together with lithium anode was tested with the use of cyclic voltammetry (CV), galvanostatic charge/discharge cycles and electrochemical impedance spectroscopy (EIS). The capacity and cyclic stability of the ACC-S composite cathode were much better than those for the sulphur cathode (a mixture of sulphur from graphene nanoplatelets and carbon black) tested in the same ionic liquid electrolyte. The ACC-sulphur cathode showed good cyclability and coulombic efficiency (99%) with the ionic liquid electrolyte. The reversible capacity of the ACC-S|electrolyte|Li cell was ca. 830 mAh g-1 after 50 cycles.

  8. Silicon microhole arrays architecture for stable and efficient photoelectrochemical cells using ionic liquids electrolytes

    NASA Astrophysics Data System (ADS)

    Shen, Xiaojuan; Chen, Ling; Li, Junnan; Zhao, Jie

    2016-06-01

    Silicon microhole arrays (SiMHs) structure is constructed and fabricated by a low-cost maskless anodic etching process, which is applied as the photoanode for the silicon photoelectrochemical (PEC) cells. The depths of silicon microhole arrays can be independently controlled by the etching time. The light-scattering properties are also investigated. Additionally, surface morphology analysis show that large hole diameters of SiMHs is very favourable for the full-filling of ionic liquids electrolyte. Therefore, better electrochemical contact as well as high ionic conductivity of the ionic liquids electrolyte renders the PEC SiMHs solar cells to exhibit more excellent performance. After optimization, the maximum PCE could be achieved at 4.04% for the SiMHs cell. The performance of the SiMHs cell is highly comparable to that of silicon nanowires cell. More importantly, the liquid-state electrolyte is confined in the unique microhole structure, which can obviously prevent the leakage of the ionic liquids electrolyte, resulting in much better long-term stability than the reference devices. These preliminary results validate the concept of interpenetrating networks with semiconductor structure/ILs junction to develop stable and efficient PEC cells.

  9. Formulation of ionic liquid electrolyte to expand the voltage window of supercapacitors

    DOE PAGES

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    2015-03-18

    We report an effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic liquid (IL) electrolytes. Moreover, using model electrochemical cells based on two identical onion like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte’s cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Additionally, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  10. Formulation of ionic liquid electrolyte to expand the voltage window of supercapacitors

    SciTech Connect

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    2015-03-18

    We report an effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic liquid (IL) electrolytes. Moreover, using model electrochemical cells based on two identical onion like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte’s cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Additionally, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  11. Structure and mechanisms underlying ion transport in ternary polymer electrolytes containing ionic liquids

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Ganesan, Venkat

    2017-02-01

    We use all atom molecular dynamics simulations to investigate the influence of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) ionic liquid on the structure and transport properties of poly(ethylene oxide) (PEO) polymer electrolytes doped with LiPF6 salt. We observe enhanced diffusivities of the Li+, PF6-, and BMIM+ ions with increasing loading of the ionic liquid. Interplay between the different ion-ion and ion-polymer interactions is seen to lead to a destabilization of the Li-PF6 coordination and increase in the strength of association between the Li+ cations and the polymer backbone. As a consequence, the polymer segmental relaxation times are shown to be only moderately affected by the addition of ionic liquids. The ionic-liquid induced changes in the mobilities of Li+ ions are seen to be correlated to polymer segmental relaxation times. However, the mobilities of BMIM+ ions are seen to be more strongly correlated to the BMIM-PF6 ion-pair relaxation times.

  12. Engineering the Electrode-Electrolyte Interface: From Electrode Architecture to Zinc Redox in Ionic Liquid Electrolytes

    NASA Astrophysics Data System (ADS)

    Engstrom, Erika

    2011-12-01

    The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic

  13. Perfluoro anion based binary and ternary ionic liquids as electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan

    2016-04-01

    In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.

  14. Ionic liquid electrolyte based on S-propyltetrahydrothiophenium iodide for dye-sensitized solar cells

    SciTech Connect

    Guo, Lei; Pan, Xu; Zhang, Changneng; Liu, Weiqing; Wang, Meng; Fang, Xiaqin; Dai, Songyuan

    2010-03-15

    A new ionic liquid S-propyltetrahydrothiophenium iodide (T{sub 3}I) was developed as the solvent and iodide ion source in electrolyte for dye-sensitized solar cells. The electrochemical behavior of the I{sub 3}{sup -}/I{sup -} redox couple and effect of additives in this ionic liquid system was tested and the results showed that this ionic liquid electrolyte revealed good conducting abilities and potential application for solar devices. The effects of LiI and dark-current inhibitors were investigated. The dye-sensitized solar cell with the electrolyte (0.1 mol L{sup -1} LiI, 0.35 mol L{sup -1} I{sub 2}, 0.5 mol L{sup -1} NMBI in pure T{sub 3}I) gave short-circuit photocurrent density (J{sub sc}) of 11.22 mA cm{sup 2}, open-circuit voltage (V{sub oc}) of 0.61 V and fill factor (FF) of 0.51, corresponding to the photoelectric conversion efficiency ({eta}) of 3.51% under one Sun (AM1.5). (author)

  15. Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent.

    PubMed

    Saito, Yuria; Umecky, Tatsuya; Niwa, Junichi; Sakai, Tetsuo; Maeda, Seiji

    2007-10-11

    Ionization conditions of each ionic species in lithium ionic liquid electrolytes, LiTFSI/BMI-TFSI and LiTFSI/BDMI-TFSI, were confirmed based on the diffusion coefficients of the species measured by the pulsed gradient spin-echo (PGSE) NMR technique. We found that the diffusion coefficient ratios of the cation and anion species D(Li)(obs)/D(F)(obs) of the lithium salt and D(H)(obs)/D(F)(obs) of the ionic liquid solvent were effective guides to evaluate the ionization condition responsible for their mobility. Lithium ions were found to be stabilized, forming the solvated species as Li(TFSI)3(2-). TFSI- anion coordination could be relaxed by the dispersion of silica to form a gel electrolyte, LiTFSI/BDMI-TFSI/silica. It is expected that the oxygen sites on the silica directly attract Li+, releasing the TFSI- coordination. The lithium species, loosing TFSI- anions, kept a random walk feature in the gel without the diffusion restriction attributed from the strong chemical and morphological effect as that in the gel with the polymer. We can conclude that the silica dispersion is a significant approach to provide the appropriate lithium ion condition as a charge-transporting species in the ionic liquid electrolytes.

  16. Molar conductivity behavior of ionic liquid compare to inorganic salt in electrolyte solution at ambien temperature

    NASA Astrophysics Data System (ADS)

    Hanibah, H.; Hashim, N. Z. Nor; Shamsudin, I. J.

    2017-09-01

    Molar Conductivity (Λ) behaviour of 1-butyl-3-methylimidazolium (Bmin) acetate and Bmin chloride (Bmin Cl) ionic liquids compared to lithium perchlorate (LiClO4) has been studied in aqueous and acetonitrile (ACN) solution at ambient temperature. The limiting molar conductivity (Λ0) was obtained using the Kohlrausch's and Ostwald's equation for the investigated systems. The results show that the Λ0 value for LiClO4 in both aqueous or acetonitrile (ACN) electrolyte system with a highest value as compare to ionic liquid electrolyte systems. This might as a result of ions association of LiClO4 in aqueous medium as the concentration of the solute increases in the solvent. In addition, the partial dissociation behaviour of LiClO4 in less polar solvent such as ACN also significantly affects the Λ0 value for this electrolyte system. However, for Bmin acetate and Bmin Cl in the aqueous or ACN medium show a much lower Λ0 value as compare to LiClO4 electrolyte system, 45.64, 74.63 and 107.32 S cm2 mol-1 respectively. This as a result of the nature behaviour of ionic liquid itself that present as free moving ions at room temperature before any dissolution into the solvent. In addition, a vice versa trend of Λ0 value is noted for Bmin acetate and Bmin Cl, 21.34 and 14.56 S cm2 mol-1 respectively in ACN electrolyte system. This indicated the solvent and the size of the anion play an important role in the estimation of limiting molar conductivity values which significantly affect the present of total free moving ions in an electrolyte system.

  17. Ionic liquid electrolytes for Li-air batteries: lithium metal cycling.

    PubMed

    Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano

    2014-05-08

    In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li-air cells.

  18. Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling

    PubMed Central

    Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano

    2014-01-01

    In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li–air cells. PMID:24815072

  19. Capacitive Energy Storage from - 50o to 100o Using an Ionic Liquid Electrolyte

    SciTech Connect

    Lin, Rongying; Taberna, Pierre-Louis; Santini, Sebastien; Presser, Volker; Perez, Carlos R.; Malbosc, Francois; Rupesinghe, Nalin L.; Teo, Kenneth B. K.; Gogotsi, Yury G.; Simon, Patrice

    2011-01-01

    Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from 50 to 100 C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s.

  20. Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties

    NASA Astrophysics Data System (ADS)

    Wilken, Susanne; Xiong, Shizhao; Scheers, Johan; Jacobsson, Per; Johansson, Patrik

    2015-02-01

    Ionic liquids have been highlighted as non-flammable, environmentally friendly, and suggested as possible solvents in lithium ion battery electrolytes. Here, the application of two ionic liquids from the EMIm-family in a state-of-the-art carbonate solvent based electrolyte is studied with a focus on safety improvement. The impact of the composition on physical and safety related properties is investigated for IL concentrations of additive (∼5 wt%) up to co-solvent concentrations (∼60 wt%). Furthermore, the role of the lithium salt concentration is separately addressed by studying a set of electrolytes at 0.5 M, 1 M, and 2 M LiPF6 concentrations. A large impact on the electrolyte properties is found for the electrolytes containing EMImTFSI and high salt concentrations. The composition 2 M LiPF6 EC:DEC:IL (1:1:3 wt%) is found non-flammable for both choices of ILs added. The macroscopic observations are complemented by a Raman spectroscopy analysis whereby a change in the Li+ solvation is detected for IL concentrations >4.5 mol%.

  1. High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Dahbi, Mouad; Fukunishi, Mika; Horiba, Tatsuo; Yabuuchi, Naoaki; Yasuno, Satoshi; Komaba, Shinichi

    2017-09-01

    Electrochemical performance of the red phosphorus electrode was examined in ionic-liquid electrolyte, 0.25 mol dm-3 sodium bisfluorosulfonylamide (NaFSA) dissolved N-methyl-N-propylpyridinium-bisfluorosulfonylamide (MPPFSA), at room temperature. We compared its electrochemical performance to conventional EC/PC/DEC, EC/DEC, and PC solutions containing 1 mol dm-3 NaPF6. The electrode in NaFSA/MPPFSA demonstrated a reversible capacity of 1480 mAh g-1 and excellent capacity retention of 93% over 80 cycles, which is much better than those in the conventional electrolytes. The difference in capacity retention for the electrolytes correlates to the different solid electrolyte interphase (SEI) layer formed on the phosphorus electrode. To understand the SEI formation in NaFSA/MPPFSA and its evolution during cycling, we investigate the surface layer of the red phosphorus electrodes with hard X-ray photoelectron spectroscopy (HAXPES) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). A detailed analysis of HAXPES spectra demonstrates that SEI layer consists of major inorganic and minor organic species, originating from decomposition of MPP+ and FSA-. Homogenous surface layer is formed during the first cycle in NaFSA/MPPFSA while in alkyl carbonate ester electrolytes, continuous growth of surface film up to the 20th cycle is observed. Possibility of red phosphorous electrode for battery applications with pure ionic liquid is discussed.

  2. Electrochemical properties of the double layer of an ionic liquid using a dimer model electrolyte and density functional theory.

    PubMed

    Henderson, Douglas; Wu, Jianzhong

    2012-03-01

    Most theoretical studies of the properties of an electrolyte, including an ionic liquid, treat the electrolyte as a mixture of charged hard spheres in a solvent modeled as a dielectric continuum. However, ionic liquids generally consist of nonspherical ions that are not dissolved in a solvent. A simple extension of the primitivel model of electrolytes is to represent an ionic liquid as a mixture of charged hard spheres (negative monovalent ions in our case) and nonspherical ions consisting of a dimer of two touching hard spheres, one of which is charged (monovalent and positive in our case) and the other is neutral. This simple model has been used previously by Federov et al. and by ourselves. Here, we use the classical density functional theory to study the interfacial properties of the model ionic liquid over a range of electrode charges and two electrolyte concentrations. For simplicity, all of the spheres have the same diameter. In contrast to the simulations of Federov and Kornyshev, we find that a plot of the differential capacitance of the dimer electrolyte versus the surface potential typically exhibits only a single hump. Also, differing from the studies of Lamperski et al. for a spherical electrolyte, which showed a decline of the maximal differential capacitance as the ionic concentration decreases, the maximum of the differential capacitance of the dimer electrolyte increases slightly with decreasing ionic concentration. Our theoretical results show other unexpected effects of the geometry of ionic species on the electrochemical properties of the electric double layer of an ionic liquid.

  3. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    PubMed

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li(+) transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. TFSI and TDI Anions: Probes for Solvate Ionic Liquid and Disproportionation-Based Lithium Battery Electrolytes.

    PubMed

    Jankowski, Piotr; Dranka, Maciej; Wieczorek, Władysław; Johansson, Patrik

    2017-08-03

    Highly concentrated electrolytes based on Li-salts and chelating solvents, such as glymes, are promising as electrolytes for lithium batteries. This is due to their unique properties, such as higher electrochemical stabilities, compliance with high-voltage electrodes, low volatility and flammability, and inertness toward aluminum current collector corrosion. The nature of these properties originates from the molecular-level structure created in either solvate ionic liquids (SILs) or the less common ionic aggregates by disproportionation reactions. The nature of the anion plays a crucial role, and here, we present a computational study using TFSI and TDI anions as probes, revealing increasing differences upon increased salt concentration. TFSI-based electrolytes preferably form SILs, while TDI-based electrolytes form ionic aggregates. The latter lead to an unexpected creation of "free" cationic species even at (very) high salt concentrations and thus promise of ample lithium ion transport.

  5. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    SciTech Connect

    Liao, Chen; Sun, Xiao-Guang; Dai, Sheng

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  6. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ardebili, Haleh

    2016-01-01

    The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.

  7. Carbon nanotube spaced graphene aerogels with enhanced capacitance in aqueous and ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Shao, Qingguo; Tang, Jie; Lin, Yuexian; Li, Jing; Qin, Faxiang; Yuan, Jinshi; Qin, Lu-Chang

    2015-03-01

    Carbon nanotube spaced graphene aerogels have been prepared by a hydrothermal method and used for supercapacitor applications. The specific surface area and specific capacitance can be controlled by tuning the amount of added carbon nanotubes. The as-prepared composite aerogels retain the advantage of aerogel structure in providing macropores to ensure electrodes fast wetted by the electrolyte ions and also possess additional mesopores created by the carbon nanotube spacers for more ion adsorption. Benefited from that, the composite aerogels exhibit significantly enhanced supercapacitor properties in both aqueous and ionic liquid electrolyte. Compared with graphene aerogels, the composite aerogels show a 37% larger specific capacitance of 245.5 F g-1 at a current density of 2.5 A g-1 and high rate capability of 197.0 F g-1 at a high current density of 80 A g-1 in aqueous electrolyte. Moreover, the composite aerogels deliver a 33% larger specific capacitance of 183.3 F g-1 at 0.5 A g-1 and a high energy density of 80 Wh kg-1 when using an ionic liquid (EMIMBF4) as the electrolyte.

  8. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties

    PubMed Central

    Tafur, Juan P.; Santos, Florencio; Fernández Romero, Antonio J.

    2015-01-01

    Gel Polymer Electrolytes (GPEs) composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2. PMID:26610580

  9. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties.

    PubMed

    Tafur, Juan P; Santos, Florencio; Romero, Antonio J Fernández

    2015-11-19

    Gel Polymer Electrolytes (GPEs) composed by ZnTf₂ salt, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP) as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf₂ concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf₂ salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn(2+) and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer's matrix turns out to be a key factor for improving the Zn(2+) transport inside the GPE due to the interaction between Zn(2+) cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110-120 mAh·g(-1) have been obtained for Zn/IL-GPE/MnO₂ batteries discharged at -1 mA·cm(-2).

  10. Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, Ashok

    2016-10-01

    Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.

  11. Good's buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research.

    PubMed

    Taha, Mohamed; E Silva, Francisca A; Quental, Maria V; Ventura, Sónia P M; Freire, Mara G; Coutinho, João A P

    2014-06-01

    This work reports a promising approach to the development of novel self-buffering and biocompatible ionic liquids for biological research in which the anions are derived from biological buffers (Good's buffers, GB). Five Good's buffers (Tricine, TES, CHES, HEPES, and MES) were neutralized with four suitable hydroxide bases (1-ethyl-3-methylimidazolium, tetramethylammonium, tetraethylammonium, and tetrabutylammonium) producing 20 Good's buffer ionic liquids (GB-ILs). The presence of the buffering action of the synthesized GB-ILs was ascertained by measuring their pH-profiles in water. Moreover, a series of mixed GB-ILs with wide buffering ranges were formulated as universal buffers. The impact of GB-ILs on bovine serum albumin (BSA), here used as a model protein, is discussed and compared with more conventional ILs using spectroscopic techniques, such as infrared and dynamic light scattering. They appear to display, in general, a greater stabilizing effect on the protein secondary structure than conventional ILs. A molecular docking study was also carried out to investigate on the binding sites of GB-IL ions to BSA. We further used the QSAR-human serum albumin binding model, log K(HSA), to calculate the binding affinity of some conventional ILs/GB-ILs to HSA. The toxicity of the GB and GB-ILs was additionally evaluated revealing that they are non-toxic against Vitro fischeri. Finally, the GB-ILs were also shown to be able to form aqueous biphasic systems when combined with aqueous solutions of inorganic or organic salts, and we tested their extraction capability for BSA. These systems were able to extract BSA with an outstanding extraction efficiency of 100% in a single step for the GB-IL-rich phase, and, as a result, the use of GB-IL-based ABS for the separation and extraction of other added-value biomolecules is highly encouraging and worthy of further investigation.

  12. Good’s buffers as a basis for developing self-buffering and biocompatible ionic liquids for biological research†

    PubMed Central

    Taha, Mohamed; e Silva, Francisca A.; Quental, Maria V.; Ventura, Sónia P. M.; Freire, Mara G.; Coutinho, João A. P.

    2014-01-01

    This work reports a promising approach to the development of novel self-buffering and biocompatible ionic liquids for biological research in which the anions are derived from biological buffers (Good’s buffers, GB). Five Good’s buffers (Tricine, TES, CHES, HEPES, and MES) were neutralized with four suitable hydroxide bases (1-ethyl-3-methylimidazolium, tetramethylammonium, tetraethylammonium, and tetrabutylammonium) producing 20 Good’s buffer ionic liquids (GB-ILs). The presence of the buffering action of the synthesized GB-ILs was ascertained by measuring their pH-profiles in water. Moreover, a series of mixed GB-ILs with wide buffering ranges were formulated as universal buffers. The impact of GB-ILs on bovine serum albumin (BSA), here used as a model protein, is discussed and compared with more conventional ILs using spectroscopic techniques, such as infrared and dynamic light scattering. They appear to display, in general, a greater stabilizing effect on the protein secondary structure than conventional ILs. A molecular docking study was also carried out to investigate on the binding sites of GB-IL ions to BSA. We further used the QSAR-human serum albumin binding model, log K(HSA), to calculate the binding affinity of some conventional ILs/GB-ILs to HSA. The toxicity of the GB and GB-ILs was additionally evaluated revealing that they are non-toxic against Vitro fischeri. Finally, the GB-ILs were also shown to be able to form aqueous biphasic systems when combined with aqueous solutions of inorganic or organic salts, and we tested their extraction capability for BSA. These systems were able to extract BSA with an outstanding extraction efficiency of 100% in a single step for the GB-IL-rich phase, and, as a result, the use of GB-IL-based ABS for the separation and extraction of other added-value biomolecules is highly encouraging and worthy of further investigation. PMID:25729325

  13. Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Xiong, Shizhao; Xie, Kai; Blomberg, Erik; Jacobsson, Per; Matic, Aleksandar

    2014-04-01

    We have investigated the formation of the solid electrolyte interphase (SEI) on lithium electrodes in the presence of an ionic liquid electrolyte with a particular focus on the influence of polysulfides present in the electrolyte on the SEI. The electrochemical performance of symmetric cells with lithium electrodes and electrolytes composed of N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14-TFSI) and LiTFSI, with and without the addition of polysulfides, were analyzed as well as the chemical composition of the SEI, before and after cycling. The cycling behavior of the symmetrical cells shows that the SEI films are relatively stable in the ionic liquid electrolyte, also in the presence of polysulfides. However, the presence of polysulfides results in a higher SEI layer resistance (RSEI) and a higher activation energy. From X-ray photoelectron spectroscopy spectra (XPS), with argon-ion sputtering for depth profiling, we find that the SEI is formed by decomposition products from both cations and anions of the electrolyte. The XPS spectra show that the presence of polysulfides alters the decomposition process of the electrolyte, resulting in a SEI film with different chemical composition and structure, in line with the results from the electrochemical performance.

  14. Dissimilar Crystal Dependence of Vanadium Oxide Cathodes in Organic Carbonate and Safe Ionic Liquid Electrolytes.

    PubMed

    Tartaj, Pedro; Amarilla, Jose M; Morales, Enrique; Vazquez-Santos, Maria B

    2016-01-27

    Advances in Li metal anode stabilization, solid-state electrolytes, and capabilities to insert a variety of active ions (Li(+), Na(+), Mg(2+), and Al(3+)) have renewed the interest in layered vanadium oxides. Here we show that crystal characteristics such as size and crystallinity are fundamental variables that control the dissimilar electrochemical capabilities of 1D vanadium oxides immersed in different electrolytes (organic carbonates and safe electrolytes containing 80% of ionic liquid). We show that this opposite behavior can be understood in terms of a subtle interplay between crystal characteristics (size and crystallinity), electrolyte degradability, and the ionic conductivity of the electrolyte. Thus, through this control we are able to obtain pure 1D vanadium oxides that show reversibility in carbonate electrolytes at a cutoff voltage of 1.5 V (voltage region where insertion of more than two lithium ions is possible). Furthermore, these materials are able to uptake ca. 1.0 mol of Li at a rate of 20C (1C = 295 mAh/g) and retain excellent capabilities (Coulombic efficiency of 98% after 200 cycles at a rate of 5C). Finally, what, to our knowledge, is really remarkable is that this optimization allows building vanadium oxide electrodes with an excellent electrochemical response in a safe electrolyte composition (80% of ionic liquid). Specifically, we reach uptakes also at a cutoff voltage of 1.5 V of ca. 1.0 mol of Li after 200 cycles at 5C (charge/discharge) with Coulombic efficiencies higher than 99.5%.

  15. Towards safer sodium-ion batteries via organic solvent/ionic liquid based hybrid electrolytes

    NASA Astrophysics Data System (ADS)

    Monti, Damien; Ponrouch, Alexandre; Palacín, M. Rosa; Johansson, Patrik

    2016-08-01

    Hybrid electrolytes aimed at application in sodium-ion batteries (SIB) consisting of an organic solvent mixture (EC:PC) and different ionic liquids (ILs); EMImTFSI, BMImTFSI, and Pyr13TFSI, and with the NaTFSI salt providing the Na+ charge carriers have here been extensively studied. The physico-chemical and electrochemical characterisation includes ionic conductivity, viscosity, density, cation coordination and solvation, various safety measures, and electrochemical stability window (ESW). Hybrid electrolytes with 10-50% of IL content were found to have ionic conductivities on par with comparable organic solvent based electrolytes, but with highly enhanced safety properties. A systematic Raman spectroscopy study of the cation coordination and solvation before and after electrolyte safety tests by ignition suggest that IL cations and TFSI remain stable when ignited while organic solvents are consumed. Finally, the solid electrolyte interphase (SEI) formed when using hybrid electrolytes has both better mechanical and electrochemical stability than the SEI derived from pure IL based electrolytes. For a half-cell with a hard carbon (HC) electrode and a hybrid electrolyte with a composition of 0.8 m NaTFSI in EC0.45:PC0.45:Pyr13TFSI0.10 encouraging results were obtained for IL based electrolytes - ca. 182 mAhg-1 at C/10 over 40 cycles.

  16. Characteristics of an ionic liquid electrolyte for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hasa, Ivana; Passerini, Stefano; Hassoun, Jusef

    2016-01-01

    We study the liquid mixture of sodium bis(trifluoromethanesulfonyl)imide in N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI-NaTFSI) for application in sodium-ion batteries. The ionic liquid-based electrolyte is characterized in terms of electrochemical and thermal properties. Ionic conductivity and electrochemical stability windows are evaluated through electrochemical impedance spectroscopy (EIS) measurements and voltammetry tests, respectively. The thermal stability is evaluated by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Moreover, the suitability of the IL-electrolyte is preliminary verified in half and in full-cells at room temperature, using P2-Na0.6Ni0.22Fe0.11Mn0.66O2 layered oxide cathode and nanostructured Sb-C composite anode. The cell shows promising characteristics with a working voltage of about 2.7 V and a delivered capacity of about 100 mAh g-1. Despite requiring further optimization in terms of cycle life and energy density, the data here reported suggest the suitability of the ionic liquid electrolyte for application in sodium-ion battery.

  17. Structural and electrochemical properties of succinonitrile-based gel polymer electrolytes: role of ionic liquid addition.

    PubMed

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S A

    2013-06-20

    Experimental studies on the novel compositions of gel polymer electrolytes, comprised of plastic crystal succinonitrile (SN) dispersed with pyrrolidinium and imidazolium-based ionic liquids (ILs) entrapped in a host polymer poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP), are reported. The gel electrolytes are in the form of free-standing films with excellent mechanical, thermal, and electrochemical stability. The introduction of even a small content (~1 wt %) of ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethyl-sulfonyl)imide (BMPTFSI) or 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMITf) in the PVdF-HFP/SN system (1:4 w/w) enhances the electrical conductivity by 4 orders of magnitude, that is, from ~10(-7) to ~10(-3) S cm(-1) at room temperature. The structural changes due to the entrapment of SN or SN/ILs mixtures and ion-SN-polymer interactions are examined by Fourier transform infrared (FTIR)/Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimmetry (DSC). Various physicochemical properties and fast ion conduction in the gel polymer membranes show their promising characteristics as electrolytes in different ionic devices including supercapacitors.

  18. Improved dye-sensitized solar cells by composite ionic liquid electrolyte incorporating layered titanium phosphate

    SciTech Connect

    Cheng, Ping; Lan, Tian; Wang, Wanjun; Wu, Haixia; Yang, Haijun; Guo, Shouwu

    2010-05-15

    We reported a composite electrolyte prepared by incorporating layered {alpha}-titanium phosphate ({alpha}-TiP) into a binary ionic liquid of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF{sub 4}) (volume ratio, 13:7) electrolyte. The addition of {alpha}-TiP markedly improved the photovoltaic properties of dye-sensitized solar cells (DSSCs) compared to that without {alpha}-TiP. The enhancement was explained by improved diffusion of tri-iodide (I{sub 3}{sup -}) ions, suppressed electron recombination with I{sub 3}{sup -} in the electrolyte and increased lifetime of electrons in mesoscopic TiO{sub 2} film. (author)

  19. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    NASA Astrophysics Data System (ADS)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ˜2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ˜127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ˜76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  20. Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery

    NASA Astrophysics Data System (ADS)

    Usui, Hiroyuki; Domi, Yasuhiro; Shimizu, Masahiro; Imoto, Akinobu; Yamaguchi, Kazuki; Sakaguchi, Hiroki

    2016-10-01

    The anode properties of Nb-doped rutile TiO2 electrodes were investigated in an ionic liquid electrolyte comprised of N-methyl-N-propylpyrrolidinium cation and bis(fluorosulfonyl)amide anion for use in a safe Na-ion battery. Although the electrolyte's conductivity was lower than that of a conventional organic electrolyte at 30 °C, it showed high conductivity comparable to that of the organic electrolyte at 60 °C. The Nb-doped TiO2 electrode showed excellent cyclability in the ionic liquid electrolyte at 60 °C: a high capacity retention of 97% was observed even at the 350th cycle, which is comparable to value in the organic electrolyte (91%). In a non-flammability test in a closed system, no ignition was observed with the ionic liquid electrolyte even at 300 °C. These results indicate that combination of a Nb-doped TiO2 anode and ionic liquid electrolyte gives not only an excellent cyclability but also high safety for a Na-ion battery operating at a temperature below the sodium's melting point of 98 °C.

  1. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    NASA Astrophysics Data System (ADS)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  2. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes

    PubMed Central

    Lau, Genevieve P. S.; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M.; Grätzel, Michael; Dyson, Paul J.

    2015-01-01

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm−2, an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability. PMID:26670595

  3. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes

    NASA Astrophysics Data System (ADS)

    Lau, Genevieve P. S.; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M.; Grätzel, Michael; Dyson, Paul J.

    2015-12-01

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm-2, an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability.

  4. Novel biocompatible and self-buffering ionic liquids for biopharmaceutical applications.

    PubMed

    Taha, Mohamed; Almeida, Mafalda R; Silva, Francisca A E; Domingues, Pedro; Ventura, Sónia P M; Coutinho, João A P; Freire, Mara G

    2015-03-16

    Antibodies obtained from egg yolk of immunized hens, immunoglobulin Y (IgY), are an alternative to the most focused mammal antibodies, because they can be obtained in higher titers by less invasive approaches. However, the production cost of high-quality IgY for large-scale applications remains higher than that of other drug therapies due to the lack of efficient purification methods. The search for new purification platforms is thus vital. The solution could be liquid-liquid extraction by using aqueous biphasic systems (ABS). Herein, we report the extraction and attempted purification of IgY from chicken egg yolk by using a new ABS composed of polymers and Good's buffer ionic liquids (GB-ILs). New self-buffering and biocompatible ILs based on the cholinium cation and anions derived from Good's buffers were synthesized and the self-buffering characteristics and toxicity were characterized. Moreover, when these GB-ILs are combined with PPG 400 (poly(propylene) glycol with a molecular weight of 400 g mol(-1)) to form ABS, extraction efficiencies, of the water-soluble fraction of proteins, ranging between 79 and 94% were achieved in a single step. Based on computational investigations, we also demonstrate that the preferential partitioning of IgY for the GB-IL-rich phase is dominated by hydrogen-bonding and van der Waals interactions.

  5. Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions.

    PubMed

    Kim, Sung Yeon; Kim, Suhan; Park, Moon Jeong

    2010-10-05

    Proton exchange fuel cells (PEFCs) have the potential to provide power for a variety of applications ranging from electronic devices to transportation vehicles. A major challenge towards economically viable PEFCs is finding an electrolyte that is both durable and easily passes protons. In this article, we study novel anhydrous proton-conducting membranes, formed by incorporating ionic liquids into synthetic block co-polymer electrolytes, poly(styrenesulphonate-b-methylbutylene) (S(n)MB(m)), as high-temperature PEFCs. The resulting membranes are transparent, flexible and thermally stable up to 180 °C. The increases in the sulphonation level of S(n)MB(m) co-polymers (proton supplier) and the concentration of the ionic liquid (proton mediator) produce an overall increase in conductivity. Morphology effects were studied by X-ray scattering and electron microscopy. Compared with membranes having discrete ionic domains (including Nafion 117), the nanostructured membranes revealed over an order of magnitude increase in conductivity with the highest conductivity of 0.045 S cm(-1) obtained at 165 °C.

  6. Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes for Lithium Sulfur Batteries

    SciTech Connect

    Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; Dai, Sheng

    2014-11-26

    A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAhg-1 (second cycle) by using 40% 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-Npropylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60% 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower than that obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAhg1 even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity.

  7. Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes for Lithium Sulfur Batteries

    SciTech Connect

    Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; Dai, Sheng

    2014-11-26

    Here we report a strategy of mixing both the ionic liquid and sulfone with synergistic effects of reducing viscosity, increasing ionic conductivity, reducing the polysulfide dissolution, and improving the safety. The mixtures of the ionic liquids and sulfones also show distinctly different physicochemical properties, including the thermal properties and crystallization behavior. Using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAh g-1 (second cycle) by using 40% 1.0 M LiTFSI in MPPY∙TFSI with 60% 1.0 M LiTFSI in MIPS in the first cycle. This capacity is slightly lower than what was obtained in the pure 1.0 M LiTFSI in the sulfone electrolytes; however, it exhibits an excellent cycling stability and remains as high as 655 mAh g-1 even after 50 cycles. Our strategy provides a method to alleviate the polysulfide dissolution and redox shuttle phenomenon, with an improved ionic conductivity at the same time.

  8. Synergistic effects of mixing sulfone and ionic liquid as safe electrolytes for lithium sulfur batteries.

    PubMed

    Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; Dai, Sheng

    2015-01-01

    A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAh g(-1) (second cycle) by using 40 % 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60 % 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower than that obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAh g(-1) even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Counterintuitive trends of the wetting behavior of ionic liquid-based electrolytes on modified lithium electrodes.

    PubMed

    Schmitz, Paulo; Kolek, Martin; Diddens, Diddo; Stan, Marian Cristian; Jalkanen, Kirsi; Winter, Martin; Bieker, Peter

    2017-07-26

    The demand for high energy densities has brought rechargeable lithium metal batteries back into the research focus. Ionic liquids (ILs) are considered as suitable electrolyte components for these systems. In this work, the wetting behavior of 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([C2MIm]TFSI), 1-butyl-3-methylimidazolium bis-((trifluoromethyl)sulfonyl)imide ([C4MIm]TFSI), 1-hexyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([C6MIm]TFSI), and N-butyl-N-methylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide (Pyr14TFSI) on mechanically modified lithium electrodes, with and without lithium bis((trifluoromethyl)sulfonyl)imide (LiTFSI) conducting salt, is investigated and is compared to an organic carbonate-based electrolyte. Three different patterns were chosen for the lithium modification, enabling a surface area increase of 12%, 20%, and 56% for the modified lithium electrodes. Especially for pure ILs, the contact angle on lithium was significantly larger with higher surface areas of the lithium electrodes. Since the addition of LiTFSI remarkably decreased the contact angles of the ILs on the modified lithium surfaces, it could be shown that the effect of LiTFSI can be attributed to a decreased surface tension. This observation could be explained by an interruption of the ordering of ionic liquid cations and anions, which is supported by Raman spectroscopy and molecular dynamics (MD) simulations.

  10. Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes for Lithium Sulfur Batteries

    DOE PAGES

    Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; ...

    2014-11-26

    A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAhg-1 (second cycle) by using 40% 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-Npropylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60% 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower than thatmore » obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAhg1 even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity.« less

  11. Impact of polyethyleneglycol addition on diffusion coefficients in binary ionic liquid electrolytes composed of dicationic ionic liquid and polyethyleneglycol.

    PubMed

    Wu, Tzi-Yi; Su, Shyh-Gang; Chiu, Chuen-Lin; Kuo, Chung-Wen; Tung, Yi-Hsuan

    2017-05-12

    We conduct a comparative study of conductivity and diffusion coefficient of two dicationic ionic liquids (3,3'-(octane-1,8-diyl)bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMCI][TFSI], S1) and 3,3'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMOI][TFSI], S2)) at various temperatures. The diffusion coefficients of cation and anion in ionic liquids are determined by using pulse gradient spin-echo nuclear magnetic resonance method. S2 shows lower viscosity, higher conductivity, and higher diffusion coefficient than those of S1. Moreover, the influence of polyethyleneglycol (PEG200, Mw  = 200) addition in PEG200/IL binary solutions is investigated. PEG200/S1 binary solutions show lower viscosity, higher conductivity, and higher diffusion coefficient than those of neat S1. The experimental molar conductivity (Λ) of neat IL and PEG200/IL binary solutions is lower than that of the calculated molar conductivity (ΛNMR ) from pulse gradient spin-echo nuclear magnetic resonance method at various temperatures, indicating that not all the diffusion species belong to the ionic conduction. In other words, NMR diffusion measurements comprise charged and paired (without charge) ions. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Azepanium-based ionic liquids as green electrolytes for high voltage supercapacitors

    NASA Astrophysics Data System (ADS)

    Pohlmann, S.; Olyschläger, T.; Goodrich, P.; Alvarez Vicente, J.; Jacquemin, J.; Balducci, A.

    2015-01-01

    This work provides a first-time-study of Azepanium-based ionic liquids (ILs) as electrolyte components for electrochemical double layer capacitors (EDLCs). Herein, two Azepanium-based ILs, namely N-methyl, N-butyl-azepanium bis(trifluoromethanesulfonyl)imide (Azp14TFSI) and N-methyl, N-hexyl-azepanium bis(trifluoromethanesulfonyl)imide (Azp16TFSI) were compared with the established IL N-butyl, N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) in terms of viscosity, conductivity, thermal stability and electrochemical behavior in EDLC systems. The ILs' operative potentials were found to be comparable, leading to operative voltages up to 3.5 V without significant electrolyte degradation.

  13. Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries.

    PubMed

    Navarra, M A; Manzi, J; Lombardo, L; Panero, S; Scrosati, Bruno

    2011-01-17

    Gel-type polymer electrolytes are formed by immobilizing a solution of lithium N,N-bis(trifluoromethanesulfonyl)imide (LiTFSI) in N-n-butyl-N-ethylpyrrolidinium N,N-bis(trifluoromethanesulfonyl)imide (Py₂₄TFSI) ionic liquid (IL) with added mixtures of organic solvents, such as ethylene, propylene and dimethyl carbonates (EC, PC, and DMC, respectively), into a poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) matrix, and their properties investigated. The addition of the organic solvent mixtures results in an improvement of the ionic conductivity and in the stabilization of the interface with the lithium electrode. Conductivity values in the range of 10⁻³-10⁻²  S cm⁻¹ are obtained in a wide temperature range. These unique properties allow the effective use of these membranes as electrolytes for the development of advanced polymer batteries based on a lithium metal anode and an olivine-type lithium iron phosphate cathode.

  14. Non-aqueous aluminium-air battery based on ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Revel, Renaud; Audichon, Thomas; Gonzalez, Serge

    2014-12-01

    A promising metal-air secondary battery based on aluminium-oxygen couple is described. In this paper, we observed that an aluminium-air battery employing EMImCl, AlCl3 room temperature ionic liquid (RTIL) as electrolyte and aluminium as negative electrode, has an exceptional reduced self-discharged rate. Due to its new and innovative type of electrolyte, this aluminium-air battery can support relatively high current densities (up to 0.6 mA cm-2) and an average voltage of 0.6-0.8 V. Such batteries may find immediate applications, as they can provide an internal, built-in autonomous and self-sustained energy source.

  15. Sodium-ion electrolytes based on ionic liquids: a role of cation-anion hydrogen bonding.

    PubMed

    Chaban, Vitaly V; Andreeva, Nadezhda A

    2016-08-01

    Recent success of the sodium-ion batteries fosters an academic interest for their investigation. Room-temperature ionic liquids (RTILs) constitute universal solvents providing non-volatility and non-flammability to electrolytes. In the present work, we consider four families of RTILs as prospective solvents for NaBF4 and NaNO3 with an inorganic salt concentration of 25 and 50 mol%. We propose a methodology to rate RTILs according to their solvation capability using parameters of the computed radial distribution functions. Hydrogen bonds between the cations and the anions of RTILs were found to indirectly favor sodium solvation, irrespective of the particular RTIL and its concentration. The best performance was recorded in the case of cholinium nitrate. The reported observations and correlations of ionic structures and properties offer important assistance to an emerging field of sodium-ion batteries. Graphical Abstract Sodium-ion electrolytes.

  16. An advanced lithium-air battery exploiting an ionic liquid-based electrolyte.

    PubMed

    Elia, G A; Hassoun, J; Kwak, W-J; Sun, Y-K; Scrosati, B; Mueller, F; Bresser, D; Passerini, S; Oberhumer, P; Tsiouvaras, N; Reiter, J

    2014-11-12

    A novel lithium-oxygen battery exploiting PYR14TFSI-LiTFSI as ionic liquid-based electrolyte medium is reported. The Li/PYR14TFSI-LiTFSI/O2 battery was fully characterized by electrochemical impedance spectroscopy, capacity-limited cycling, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The results of this extensive study demonstrate that this new Li/O2 cell is characterized by a stable electrode-electrolyte interface and a highly reversible charge-discharge cycling behavior. Most remarkably, the charge process (oxygen oxidation reaction) is characterized by a very low overvoltage, enhancing the energy efficiency to 82%, thus, addressing one of the most critical issues preventing the practical application of lithium-oxygen batteries.

  17. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    SciTech Connect

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  18. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.

    PubMed

    Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W

    2016-12-20

    The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.

  19. Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good's buffers ionic liquids.

    PubMed

    Taha, Mohamed; Quental, Maria V; Correia, Isabel; Freire, Mara G; Coutinho, João A P

    2015-07-01

    Good's buffers ionic liquids (GB-ILs), composed of cholinium-based cations and Good's buffers anions, display self-buffering characteristics in the biological pH range, and their polarity and hydrophobicity can be easily tuned by a proper manipulation of their ions chemical structures. In this work, the extraction ability for bovine serum albumin (BSA) of aqueous biphasic systems (ABS) formed by polypropylene glycol 400 (PPG 400) and several GB-ILs was evaluated. ABS formed by PPG 400 and cholinium chloride ([Ch]Cl), GBs, and sucrose were also investigated for comparison purposes. It is shown that BSA preferentially migrates for the GB-IL-rich phase, with extraction efficiencies of 100%, achieved in a single-step. Dynamic light scattering, and circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopies were employed to evaluate the effect of the investigated cholinium-based GB-ILs on the BSA stability, and compared with results obtained for the respective GBs precursors, [Ch]Cl and sucrose, a well-known protein stabilizer. Molecular docking studies were also carried out to investigate on the binding sites of GB-IL ions to BSA. The experimental results confirm that BSA has a higher stability in GB-ILs than in any of the other compounds investigated.

  20. Good's buffers as novel phase-forming components of ionic-liquid-based aqueous biphasic systems.

    PubMed

    Luís, Andreia; Dinis, Teresa B V; Passos, Helena; Taha, Mohamed; Freire, Mara G

    2015-09-15

    Aiming at the development of self-buffering and benign extraction/separation processes, this work reports a novel class of aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and organic biological buffers (Good's buffers, GBs). A large array of ILs and GBs was investigated, revealing than only the more hydrophobic and fluorinated ILs are able to form ABS. For these systems, the phase diagrams, tie-lines, tie-line lengths, and critical points were determined at 25 °C. The ABS were then evaluated as alternative liquid-liquid extraction strategies for two amino acids (L-phenylalanine and L-tryptophan). The single-step extraction efficiencies for the GB-rich phase range between 22.4 and 100.0 % (complete extraction). Contrarily to the most conventional IL-salt ABS, in most of the systems investigated, the amino acids preferentially migrate for the most biocompatible and hydrophilic GB-rich phase. Remarkably, in two of the studied ABS, L-phenylalanine completely partitions to the GB-rich phase while L-tryptophan shows a preferential affinity for the opposite phase. These results show that the extraction efficiencies of similar amino acids can be tailored by the design of the chemical structures of the phase-forming components, creating thus new possibilities for the use of IL-based ABS in biotechnological separations.

  1. Advances in the electrodeposition of aluminum from ionic liquid based electrolytes

    NASA Astrophysics Data System (ADS)

    Leadbetter, Kirt C.

    Aluminum plating is of considerable technical and economic interest because it provides an eco-friendly substitute for cadmium coatings used on many military systems. However, cadmium has been determined to be a significant environmental safety and occupational health (ESOH) hazard because of its toxicity and carcinogenic nature. Furthermore, the cost of treating and disposing of generated wastes, which often contain cyanide, is costly and is becoming prohibitive in the face of increasingly stringent regulatory standards. The non-toxic alternative aluminum is equivalent or superior in performance to cadmium. In addition, it could serve to provide an alternative to hexavalent chromium coatings used on military systems for similar reasons to that of cadmium. Aluminum is a beneficial alternative in that it demonstrates self-healing corrosion resistance in the form of a tightly-bound, impervious oxide layer. A successfully plated layer would be serviceable over a wider temperature range, 925 °F for aluminum compared to 450 oF for cadmium. In addition, an aluminum layer can be anodized to make it non-conducting and colorable. In consideration of the plating process, aluminum cannot be deposited from aqueous solutions because of its reduction potential. Therefore, nonaqueous electrolytes are required for deposition. Currently, aluminum can be electrodeposited in nonaqueous processes that use hazardous chemicals such as toluene and pyrophoric aluminum alkyls. Electrodeposition from ionic liquids provides the potential for a safer method that could be easily scaled up for industrial application. The plating process could be performed at a lower temperature and higher current density than other commercially available aluminum electrodeposition processes; thus a reduced process cost could be possible. The current ionic liquid based electrolytes are more expensive; however production on a larger scale and a long electrolyte lifetime are associated with a reduction in price

  2. Bicyclic imidazolium ionic liquids as potential electrolytes for rechargeable lithium ion batteries

    SciTech Connect

    Liao, Chen; Shao, Nan; Bell, Jason R; Guo, Bingkun; Luo, Huimin; Jiang, Deen; Dai, Sheng

    2013-01-01

    A bicyclic imidazolium ionic liquids, 1-ethyl-2,3-trimethyleneimidazolium bis(tri fluoromethane sulfonyl)imide ([ETMIm][TFSI]), and reference imidazolium compounds, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide ([EMIm][TFSI]) and 1, 2-dimethyl-3-butylimidazolium bis(trifluoromethane sulfonyl)imide ([DMBIm][TFSI]), were synthesized and investigated as solvents for lithium ion batteries. Although the alkylation at the C-2 position of the imidazolium ring does not affect the thermal stability of the ionic liquids, with or without the presence of 0.5 molar lithium bis(trifluoromethane sulfonyl)imide (LiTFSI), the stereochemical structure of the molecules has shown profound influences on the electrochemical properties of the corresponding ionic liquids. [ETMIm][TFSI] shows better reduction stability than do [EMIm][TFSI] and [DMBIm][TFSI], as confirmed by both linear sweep voltammery (LSV) and theoretical calculation. The Li||Li cell impedance of 0.5M LiTFSI/[ETMIm][TFSI] is stabilized, whereas that of 0.5M LiTFSI/[DMBIm][TFSI] is still fluctuating after 20 hours, indicating a relatively stable solid electrolyte interphase (SEI) is formed in the former. Furthermore, the Li||graphite half-cell based on 0.5M LiTFSI/[BTMIm][TFSI] exhibits reversible capacity of 250mAh g-1 and 70mAh g-1 at 25 C, which increases to 330 mAh g-1 and 250 mAh g-1 at 50 C, under the current rate of C/20 and C/10, respectively. For comparison, the Li||graphite half-cell based on 0.5M LiTFSI/[DMBIm][TFSI] exhibits poor capacity retention under the same current rate at both temperatures.

  3. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective.

    PubMed

    Kar, Mega; Simons, Tristan J; Forsyth, Maria; MacFarlane, Douglas R

    2014-09-21

    Metal-air batteries are a well-established technology that can offer high energy densities, low cost and environmental responsibility. Despite these favourable characteristics and utilisation of oxygen as the cathode reactant, these devices have been limited to primary applications, due to a number of problems that occur when the cell is recharged, including electrolyte loss and poor efficiency. Overcoming these obstacles is essential to creating a rechargeable metal-air battery that can be utilised for efficiently capturing renewable energy. Despite the first metal-air battery being created over 100 years ago, the emergence of reactive metals such as lithium has reinvigorated interest in this field. However the reactivity of some of these metals has generated a number of different philosophies regarding the electrolyte of the metal-air battery. Whilst much is already known about the anode and cathode processes in aqueous and organic electrolytes, the shortcomings of these electrolytes (i.e. volatility, instability, flammability etc.) have led some of the metal-air battery community to study room temperature ionic liquids (RTILs) as non-volatile, highly stable electrolytes that have the potential to support rechargeable metal-air battery processes. In this perspective, we discuss how some of these initial studies have demonstrated the capabilities of RTILs as metal-air battery electrolytes. We will also show that much of the long-held mechanistic knowledge of the oxygen electrode processes might not be applicable in RTIL based electrolytes, allowing for creative new solutions to the traditional irreversibility of the oxygen reduction reaction. Our understanding of key factors such as the effect of catalyst chemistry and surface structure, proton activity and interfacial reactions is still in its infancy in these novel electrolytes. In this perspective we highlight the key areas that need the attention of electrochemists and battery engineers, in order to progress

  4. Li-Doped Ionic Liquid Electrolytes: From Bulk Phase to Interfacial Behavior

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Lawson, John W.

    2016-01-01

    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries. We present an extensive computational analysis supported by experimental comparisons of the bulk and interfacial properties of a representative set of these electrolytes as a function of Li-salt doping. We begin by investigating the bulk electrolyte using quantum chemistry and ab initio molecular dynamics to elucidate the solvation structure of Li(+). MD simulations using the polarizable force field of Borodin and coworkers were then performed, from which we obtain an array of thermodynamic and transport properties. Excellent agreement is found with experiments for diffusion, ionic conductivity, and viscosity. Combining MD simulations with electronic structure computations, we computed the electrochemical window of the electrolytes across a range of Li(+)-doping levels and comment on the role of the liquid environment. Finally, we performed a suite of simulations of these Li-doped electrolytes at ideal electrified interfaces to evaluate the differential capacitance and the equilibrium Li(+) distribution in the double layer. The magnitude of differential capacitance is in good agreement with our experiments and exhibits the characteristic camel-shaped profile. In addition, the simulations reveal Li(+) to be highly localized to the second molecular layer of the double layer, which is supported by additional computations that find this layer to be a free energy minimum with respect to Li(+) translation.

  5. Molecular dynamics simulation of polymer electrolytes based on poly(ethylene oxide) and ionic liquids. II. Dynamical properties

    NASA Astrophysics Data System (ADS)

    Costa, Luciano T.; Ribeiro, Mauro C. C.

    2007-10-01

    Dynamical properties of polymer electrolytes based on poly(ethylene oxide) (PEO) and ionic liquids of 1-alkyl-3-methylimidazolium cations were calculated by molecular dynamics simulations with previously proposed models [L. T. Costa and M. C. Ribeiro, J. Chem. Phys. 124, 184902 (2006)]. The effect of changing the ionic liquid concentration, temperature, and the 1-alkyl-chain lengths, [1,3-dimethylimidazolium]PF6 and [1-butyl-3-methylimidazolium]PF6 ([dmim]PF6 and [bmim]PF6), was investigated. Cation diffusion coefficient is higher than those of anion and oxygen atoms of PEO chains. Ionic mobility in PEO /[bmim]PF6 is higher than in PEO /[dmim]PF6, so that the ionic conductivity κ of the former is approximately ten times larger than the latter. The ratio between κ and its estimate from the Nernst-Einstein equation κ /κNE, which is inversely proportional to the strength of ion pairs, is higher in ionic liquid polymer electrolytes than in polymer electrolytes based on inorganic salts with Li+ cations. Calculated time correlation functions corroborate previous evidence from the analysis of equilibrium structure that the ion pairs in ionic liquid polymer electrolytes are relatively weak. Structural relaxation at distinct spatial scales is revealed by the calculation of the intermediate scattering function at different wavevectors. These data are reproduced with stretched exponential functions, so that temperature and wavevector dependences of best fit parameters can be compared with corresponding results for polymer electrolytes containing simpler ions.

  6. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  7. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  8. Direct extraction of genomic DNA from maize with aqueous ionic liquid buffer systems for applications in genetically modified organisms analysis.

    PubMed

    Gonzalez García, Eric; Ressmann, Anna K; Gaertner, Peter; Zirbs, Ronald; Mach, Robert L; Krska, Rudolf; Bica, Katharina; Brunner, Kurt

    2014-12-01

    To date, the extraction of genomic DNA is considered a bottleneck in the process of genetically modified organisms (GMOs) detection. Conventional DNA isolation methods are associated with long extraction times and multiple pipetting and centrifugation steps, which makes the entire procedure not only tedious and complicated but also prone to sample cross-contamination. In recent times, ionic liquids have emerged as innovative solvents for biomass processing, due to their outstanding properties for dissolution of biomass and biopolymers. In this study, a novel, easily applicable, and time-efficient method for the direct extraction of genomic DNA from biomass based on aqueous-ionic liquid solutions was developed. The straightforward protocol relies on extraction of maize in a 10 % solution of ionic liquids in aqueous phosphate buffer for 5 min at room temperature, followed by a denaturation step at 95 °C for 10 min and a simple filtration to remove residual biopolymers. A set of 22 ionic liquids was tested in a buffer system and 1-ethyl-3-methylimidazolium dimethylphosphate, as well as the environmentally benign choline formate, were identified as ideal candidates. With this strategy, the quality of the genomic DNA extracted was significantly improved and the extraction protocol was notably simplified compared with a well-established method.

  9. Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes

    NASA Astrophysics Data System (ADS)

    Leyva-García, Sarai; Lozano-Castelló, Dolores; Morallón, Emilia; Vogl, Thomas; Schütter, Christoph; Passerini, Stefano; Balducci, Andrea; Cazorla-Amorós, Diego

    2016-12-01

    The electrochemical behaviour of a superporous activated carbon (named as ANK3) with a tailored porosity (high apparent specific surface area and a high volume of micropores with an average pore size of around 1.4 nm) is analysed in different non-aqueous electrolytes. ANK3 shows very high capacitance (higher than 160 F g-1) values in solvent-free electrolytes at different temperatures (20, 40 and 60 °C) as well as in 1 M Et4N BF4/PC, 1 M PYR14 BF4/PC and 1 M PYR14 TFSI/PC. The tailored porosity of the ANK3, makes possible to obtain very high capacitance values, making this superporous activated carbon a promising candidate to be used as electrode for electrochemical capacitors using both organic and ionic liquid electrolytes. It is also confirmed that several parameters, such as the ion/pore size ratio, the ion shape, the ion solvation and the conductivity and viscosity of the electrolyte have a strong influence on the electrochemical behaviour of the ANK3.

  10. Polymeric ionic liquid-plastic crystal composite electrolytes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Zhang, Zhengxi; Li, Sijian; Yang, Li; Hirano, Shin-ichi

    2016-03-01

    In this work, composite polymer electrolytes (CPEs), that is, 80%[(1-x)PIL-(x)SN]-20%LiTFSI, are successfully prepared by using a pyrrolidinium-based polymeric ionic liquid (P(DADMA)TFSI) as a polymer host, succinonitrile (SN) as a plastic crystal, and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a lithium salt. XRD and DSC measurements confirm that the as-obtained CPEs have amorphous structures. The 80%[50%PIL-50%SN]-20%LiTFSI (50% SN) electrolyte reveals a high room temperature ionic conductivity of 5.74 × 10-4 S cm-1, a wide electrochemical window of 5.5 V, as well as good mechanical strength with a Young's modulus of 4.9 MPa. Li/LiFePO4 cells assembled with the 50% SN electrolyte at 0.1C rate can deliver a discharge capacity of about 150 mAh g-1 at 25 °C, with excellent capacity retention. Furthermore, such cells are able to achieve stable discharge capacities of 131.8 and 121.2 mAh g-1 at 0.5C and 1.0C rate, respectively. The impressive findings demonstrate that the electrolyte system prepared in this work has great potential for application in lithium ion batteries.

  11. Characterisation of the solid electrolyte interface during lithiation/delithiation of germanium in an ionic liquid.

    PubMed

    Lahiri, Abhishek; Borisenko, Natalia; Borodin, Andriy; Olschewski, Mark; Endres, Frank

    2016-02-21

    In this paper, we present investigations of the interface of electrodeposited Ge during lithiation/delithiation in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide containing 0.5 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI/[Py1,4]TFSI). Cyclic voltammetry (CV) and infrared spectroscopy were used to study the electrochemistry and the changes in the electrolyte during the Li intercalation/deintercalation processes. From infrared spectroscopic analysis, it was found that the TFSI(-) anion decomposes during the lithiation process, resulting in the formation of a solid-liquid interface (SEI) layer. X-ray photoelectron spectroscopy was used to analyse the composition of the SEI layer and the changes in the electrodeposited germanium. Furthermore, atomic force microscopy (AFM) was used to evaluate the changes in the SEI layer which showed that the SEI layer was inhomogenous and changed during the lithiation/delithiation processes.

  12. Observation of electrodeposited lithium by optical microscope in room temperature ionic liquid-based electrolyte

    NASA Astrophysics Data System (ADS)

    Sano, H.; Sakaebe, H.; Matsumoto, H.

    Room temperature ionic liquids (RTILs) were applied to a lithium (Li) metal battery system, and the behavior of Li electrodeposition on nickel electrodes in RTILs was investigated using in situ optical microscopy with/without an organic additive, vinylene carbonate (VC), in the RTILs. Two RTILs, PP13[TFSA] (N-methyl- N-propylpiperidinium bis(trifluoromethanesulfonyl)amide) and EMI[FSA] (1-ethyl-3-methylimidazolium bis(fluorosulfonyl)amide), were chosen as the base electrolytes. Dendritic particles were obtained in the case of EMI[FSA] with and without VC, and PP13[TFSA] without VC, while non-dendritic fine particles were obtained in the case of PP13[TFSA] with VC.

  13. Thermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius.

    PubMed

    Lin, X; Kavian, R; Lu, Y; Hu, Q; Shao-Horn, Y; Grinstaff, M W

    2015-11-13

    Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature.

  14. Morphology and Ionic Conductivity of Block Copolymer Electrolytes Containing Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Park, Moon Jeong

    2015-03-01

    The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community towards the development of efficient electrochemical devices. Polymers containing charged species have the potential to serve as electrolytes in next-generation devices and achieving high ion transport properties in these electrolytes is the key to improving their efficiency. Although the synthesis and characterization of a wide variety of ion-containing polymers have been extensively reported over the last decade, quantitative understanding of the factors governing the ion transport properties of these materials is in its infancy. In this talk, I will present the current understanding of the diverse factors affecting the thermodynamics, morphologies and ion transport of ion-containing polymers by focusing on the use of ionic liquids (ILs). Various strategies for accessing improved transport properties of IL-containing polymers are elucidated by focusing on the role of IL-polymer interactions. The major accomplishment of obtaining well-defined morphologies for these IL-containing polymers by the use of block copolymer is particularly emphasized as a novel means of controlling the transport properties. The application of IL-incorporated polymer electrolytes in high temperature fuel cells and electro-active actuators is also enclosed.

  15. Ether and siloxane functionalized ionic liquids and their mixtures as electrolyte for lithium-ion batteries.

    PubMed

    Chavan, Santosh N; Tiwari, Aarti; Nagaiah, Tharamani C; Mandal, Debaprasad

    2016-06-28

    The present study deals with an investigation of two novel imidazolium ionic liquids bearing ether-ether (1O2O2-Im-2O1) or ether-siloxane (1O2O2-Im-1SiOSi) functionalities with TFSI anion and their mixtures with propylene carbonate as electrolytes in lithium-ion batteries. The electrochemical stability and conductivity of these novel ILs were analyzed by electrochemical studies, such as cyclic voltammetry, linear sweep voltammetry and impedance measurements. The applicability of these ILs as electrolytes in Li-ion batteries was studied in the presence of a high concentration of LiTFSI (1 mol kg(-1) electrolyte) and the ether-ether IL was shown to possess a high electrochemical stability window (ESW) of 5.9 V and good conductivity of 2.2 mS cm(-1). The electrochemical stability and conductivity were further complimented by self-diffusion of different ions using pulsed gradient spin-echo (PGSE) NMR, viscosity and thermal properties like TGA and DSC analysis. More importantly, we explored the effect of temperature on the electrochemical stability and conductivity of these ILs by electrochemical impedance spectroscopy.

  16. Biocompatible ionic liquid-biopolymer electrolyte-enabled thin and compact magnesium-air batteries.

    PubMed

    Jia, Xiaoteng; Yang, Yang; Wang, Caiyun; Zhao, Chen; Vijayaraghavan, R; MacFarlane, Douglas R; Forsyth, Maria; Wallace, Gordon G

    2014-12-10

    With the surge of interest in miniaturized implanted medical devices (IMDs), implantable power sources with small dimensions and biocompatibility are in high demand. Implanted battery/supercapacitor devices are commonly packaged within a case that occupies a large volume, making miniaturization difficult. In this study, we demonstrate a polymer electrolyte-enabled biocompatible magnesium-air battery device with a total thickness of approximately 300 μm. It consists of a biocompatible polypyrrole-para(toluene sulfonic acid) cathode and a bioresorbable magnesium alloy anode. The biocompatible electrolyte used is made of choline nitrate (ionic liquid) embedded in a biopolymer, chitosan. This polymer electrolyte is mechanically robust and offers a high ionic conductivity of 8.9 × 10(-3) S cm(-1). The assembled battery delivers a maximum volumetric power density of 3.9 W L(-1), which is sufficient to drive some types of IMDs, such as cardiac pacemakers or biomonitoring systems. This miniaturized, biocompatible magnesium-air battery may pave the way to a future generation of implantable power sources.

  17. Co-electroosmotic capillary electrophoresis of basic proteins with 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids as non-covalent coating agents of the fused-silica capillary and additives of the electrolyte solution.

    PubMed

    Corradini, Danilo; Nicoletti, Isabella; Bonn, Günther K

    2009-06-01

    The paper reports the results of a study carried out to evaluate the use of three 1-alkyl-3-methylimidazolium-based ionic liquids as non-covalent coating agents for bare fused-silica capillaries and additives of the electrolyte solutions (BGE) for CE of basic proteins in the co-EOF separation mode. The three ionic liquids are differentiated from each other by the length of the alkyl group on the imidazolium cation, consisting of either an ethyl, butyl or octyl substituent, whereas tetrafluoroborate is the common anionic component of the ionic liquids. Coating the capillary with the ionic liquid resulted in improved peak shape and protein separation, while the EOF was maintained cathodic. This indicates that each ionic liquid is effective at masking the protein interaction sites on the inner surface of the capillary, also when its adsorption onto the capillary wall has not completely neutralized all the negative charges arising from the ionization of the silanol groups and the ionic liquid is not incorporated into the BGE employed for separation. Using the coated capillaries with BGE containing the ionic liquid employed for the coating, at concentration low enough to maintaining the EOF cathodic, both peak shape and protein separation varied to different extents, based on the particular ionic liquid used and its concentration. Fast and efficient separation of the model basic protein mixture in co-electroosmotic CE is obtained with the 1-butyl-3-methylimidazolium tetrafluoroborate coated capillary and 100 mM acetate buffer (pH 4.0) containing 4.4 mM 1-butyl-3-methylimidazolium tetrafluoroborate as the BGE.

  18. Ionic liquids as an electrolyte for the electro synthesis of organic compounds.

    PubMed

    Kathiresan, Murugavel; Velayutham, David

    2015-12-25

    The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.

  19. Highly Safe Ionic Liquid Electrolytes for Sodium-Ion Battery: Wide Electrochemical Window and Good Thermal Stability.

    PubMed

    Wu, Feng; Zhu, Na; Bai, Ying; Liu, Libin; Zhou, Hang; Wu, Chuan

    2016-08-24

    Novel ionic liquid (IL) electrolytes are prepared by mixing 1-ethyl-3-methylimidazolium-bis-tetrafluoroborate (EMIBF4) with different concentrations of sodium salt (NaBF4). The as-prepared IL electrolytes display wide electrochemical windows of ∼4 V (1-5 V), which are consistent with the quantum chemical theoretical calculation. The IL electrolyte with 0.1 M NaBF4 shows excellent ionic conductivity, namely, 9.833 × 10(-3) S cm(-1) at 20 °C. In addition, nonflammability and good thermal stability are exhibited by combustion test and thermogravimetric analysis (TGA), which indicate the high safety of the IL electrolyte.

  20. Nanocrystalline porous TiO2 electrode with ionic liquid impregnated solid polymer electrolyte for dye sensitized solar cells.

    PubMed

    Singh, Pramod K; Kim, Kang-Wook; Kim, Ki-Il; Park, Nam-Gyu; Rhee, Hee-Woo

    2008-10-01

    This communication reports the detailed fabrication of electrodes and solid polymer electrolyte with ionic liquid (IL) as an electrolyte for dye sensitized solar cell (DSSC). Thick porous TiO2 film has been obtained by spreading and sintering TiO2 colloidal paste using "doctor blade" and characterized by SEM, TEM and XRD. The polymer electrolyte was PEO:KI/I2 incorporated with 1-ethyl 3-methylimidazolium thiocyanate (EMImSCN) as IL. Dispersal of IL in the polymer electrolyte improved the ionic conductivity and cell efficiency.

  1. Bis(fluoromalonato)borate (BFMB) anion based ionic liquid as an additive for lithium-ion battery electrolytes

    SciTech Connect

    Sun, Xiao-Guang; Liao, Chen; Baggetto, Loïc; Guo, Bingkun; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng

    2014-02-21

    Propylene carbonate (PC) is a good solvent for lithium ion battery applications due to its low melting point and high dielectric constant. But, PC is easily intercalated into graphite causing it to exfoliate, killing its electrochemical performance. We report on the synthesis of a new ionic liquid electrolyte based on partially fluorinated borate anion, 1-butyl-1,2-dimethylimidazolium bis(fluoromalonato)borate (BDMIm.BFMB), which can be used as an additive in 1 M LiPF6/PC electrolyte to suppress graphite exfoliation and improve cycling performance. Additionally, both PC and BDMIm.BFMB can be used synergistically as additive to 1.0M LiPF6/methyl isopropyl sulfone (MIPS) to dramatically improve its cycling performance. It is also found that the chemistry nature of the ionic liquids has dramatic effect on their role as additive in PC based electrolyte.

  2. Anionic structure-dependent photoelectrochemical responses of dye-sensitized solar cells based on a binary ionic liquid electrolyte.

    PubMed

    Hao, Feng; Lin, Hong; Liu, Yizhu; Li, Jianbao

    2011-04-14

    Room temperature ionic liquids (RTILs) have been used as electrolytes to investigate the anionic structure dependence of the photoelectrochemical responses of dye-sensitized solar cells (DSCs). A series of RTILs with a fixed cation structure coupling with various anion structures are employed, in which 1-methyl-3-propylimidazolium iodide (PMII) and I(2) are dissolved as redox couples. It is found that both the diffusivity of the electrolyte and the photovoltaic performance of the device show a strong dependence on the fluidity of the ionic liquids, which is primarily altered by the anion structure. Further insights into the structure-dependent physical properties of the employed RTILs are discussed in terms of the reported van der Waals radius, the atomic charge distribution over the anion backbones, the interaction energy of the anion and cation, together with the existence of ion-pairs and ion aggregates. Particularly, both the short-circuit photocurrent and open-circuit voltage exhibit obvious fluidity dependence. Electrochemical impedance and intensity-modulated photovoltage/photocurrent spectroscopy analysis further reveal that increasing the fluidity of the ionic liquid electrolytes could significantly decrease the diffusion resistance of I(3)(-) in the electrolyte, and retard the charge recombination between the injected electrons with triiodide in the high-viscous electrolyte, thus improving the electron diffusion length in the device, as well as the photovoltaic response. However, the variation of the electron diffusion coefficients is trivial primarily due to the effective charge screening of the high cation concentration.

  3. Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes.

    PubMed

    Chattoraj, Joyjit; Diddens, Diddo; Heuer, Andreas

    2014-01-14

    We perform extensive molecular dynamics simulations of a poly(ethylene oxide)-based polymer electrolyte material containing lithium bis(trifluoromethanesulfonyl)imide salt for a wide temperature regime above and below the experimental crystallization temperature with and without N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid (IL). The impact of the IL-concentration on the cation dynamics is studied. The increase of the cation mobility upon addition of IL is significant but temperature-independent. This can be related to distinct variations of the underlying transport properties as expressed within the previously introduced transport model of polymer electrolytes. Even for the largest IL concentration the transport model perfectly predicts the non-trivial time-dependence of the cationic mean square displacement for all temperatures. Finally, we compare our numerical and theoretical findings with the results of recent nuclear magnetic resonance experiments. In this way we can exclusively relate the strong experimentally observed dependence of the low-temperature Li-diffusivity on the IL concentration to the impact of IL on crystallization.

  4. Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes

    NASA Astrophysics Data System (ADS)

    Chattoraj, Joyjit; Diddens, Diddo; Heuer, Andreas

    2014-01-01

    We perform extensive molecular dynamics simulations of a poly(ethylene oxide)-based polymer electrolyte material containing lithium bis(trifluoromethanesulfonyl)imide salt for a wide temperature regime above and below the experimental crystallization temperature with and without N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid (IL). The impact of the IL-concentration on the cation dynamics is studied. The increase of the cation mobility upon addition of IL is significant but temperature-independent. This can be related to distinct variations of the underlying transport properties as expressed within the previously introduced transport model of polymer electrolytes. Even for the largest IL concentration the transport model perfectly predicts the non-trivial time-dependence of the cationic mean square displacement for all temperatures. Finally, we compare our numerical and theoretical findings with the results of recent nuclear magnetic resonance experiments. In this way we can exclusively relate the strong experimentally observed dependence of the low-temperature Li-diffusivity on the IL concentration to the impact of IL on crystallization.

  5. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.

    PubMed

    Han, Yining; Huang, Shanghui; Yan, Tianying

    2014-07-16

    The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.

  6. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte.

    PubMed

    Maiti, Sandipan; Pramanik, Atin; Chattopadhyay, Shreyasi; De, Goutam; Mahanty, Sourindra

    2016-02-15

    Exploring new electrode materials is the key to realize high performance energy storage devices for effective utilization of renewable energy. Natural clays with layered structure and high surface area are prospective materials for electrical double layer capacitors (EDLC). In this work, a novel hybrid composite based on acid-leached montmorillonite (K10), multi-walled carbon nanotube (MWCNT) and manganese dioxide (MnO2) was prepared and its electrochemical properties were investigated by fabricating two-electrode asymmetric supercapacitor cells against activated carbon (AC) using 1.0M tetraethylammonium tetrafluroborate (Et4NBF4) in acetonitrile (AN) as electrolyte. The asymmetric supercapacitors, capable of operating in a wide potential window of 0.0-2.7V, showed a high energy density of 171Whkg(-1) at a power density of ∼1.98kWkg(-1). Such high EDLC performance could possibly be linked to the acid-base interaction of K10 through its surface hydroxyl groups with the tetraethylammonium cation [(C2H5)4N(+) or TEA(+)] of the ionic liquid electrolyte. Even at a very high power density of 96.4kWkg(-1), the cells could still deliver an energy density of 91.1Whkg(-1) exhibiting an outstanding rate capability. The present study demonstrates for the first time, the excellent potential of clay-based composites for high power energy storage device applications.

  7. Lithium-Ion-Conducting Electrolytes: From an Ionic Liquid to the Polymer Membrane

    PubMed Central

    Fernicola, A.; Weise, F. C.; Greenbaum, S. G.; Kagimoto, J.; Scrosati, B.; Soleto, A.

    2009-01-01

    This work concerns the design, the synthesis, and the characterization of the N-butyl-N-ethylpiperidinium N,N-bis(trifluoromethane)sulfonimide (PP24TFSI) ionic liquid (IL). To impart Li-ion transport, a suitable amount of lithium N,N-bis-(trifluoromethane)sulfonimide (LiTFSI) is added to the IL. The Li–IL mixture displays ionic conductivity values on the order of 10−4 S cm−1 and an electrochemical stability window in the range of 1.8–4.5 V vs Li+/Li. The voltammetric analysis demonstrates that the cathodic decomposition gives rise to a passivating layer on the surface of the working electrode, which kinetically extends the stability of the Li/IL interface as confirmed by electrochemical impedance spectroscopy measurements. The LiTFSI–PP24TFSI mixture is incorporated in a poly(vinylidene fluoride-co-hexafluoropropylene) matrix to form various electrolyte membranes with different LiTFSI–PP24TFSI contents. The ionic conductivity of all the membranes resembles that of the LiTFSI–IL mixture, suggesting an ionic transport mechanism similar to that of the liquid component. NMR measurements demonstrate a reduction in the mobility of all ions following the addition of LiTFSI to the PP24TFSI IL and when incorporating the mixture into the membrane. Finally, an unexpected but potentially significant enhancement in Li transference number is observed in passing from the liquid to the membrane electrolyte system. PMID:20354582

  8. Lithium-Ion-Conducting Electrolytes: From an Ionic Liquid to the Polymer Membrane.

    PubMed

    Fernicola, A; Weise, F C; Greenbaum, S G; Kagimoto, J; Scrosati, B; Soleto, A

    2009-05-05

    This work concerns the design, the synthesis, and the characterization of the N-butyl-N-ethylpiperidinium N,N-bis(trifluoromethane)sulfonimide (PP(24)TFSI) ionic liquid (IL). To impart Li-ion transport, a suitable amount of lithium N,N-bis-(trifluoromethane)sulfonimide (LiTFSI) is added to the IL. The Li-IL mixture displays ionic conductivity values on the order of 10(-4) S cm(-1) and an electrochemical stability window in the range of 1.8-4.5 V vs Li(+)/Li. The voltammetric analysis demonstrates that the cathodic decomposition gives rise to a passivating layer on the surface of the working electrode, which kinetically extends the stability of the Li/IL interface as confirmed by electrochemical impedance spectroscopy measurements. The LiTFSI-PP(24)TFSI mixture is incorporated in a poly(vinylidene fluoride-co-hexafluoropropylene) matrix to form various electrolyte membranes with different LiTFSI-PP(24)TFSI contents. The ionic conductivity of all the membranes resembles that of the LiTFSI-IL mixture, suggesting an ionic transport mechanism similar to that of the liquid component. NMR measurements demonstrate a reduction in the mobility of all ions following the addition of LiTFSI to the PP(24)TFSI IL and when incorporating the mixture into the membrane. Finally, an unexpected but potentially significant enhancement in Li transference number is observed in passing from the liquid to the membrane electrolyte system.

  9. Effects of ionic liquids on cation dynamics in amorphous polyethylene oxide electrolytes

    SciTech Connect

    Chattoraj, Joyjit Diddens, Diddo; Heuer, Andreas

    2014-01-14

    We perform extensive molecular dynamics simulations of a poly(ethylene oxide)-based polymer electrolyte material containing lithium bis(trifluoromethanesulfonyl)imide salt for a wide temperature regime above and below the experimental crystallization temperature with and without N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid (IL). The impact of the IL-concentration on the cation dynamics is studied. The increase of the cation mobility upon addition of IL is significant but temperature-independent. This can be related to distinct variations of the underlying transport properties as expressed within the previously introduced transport model of polymer electrolytes. Even for the largest IL concentration the transport model perfectly predicts the non-trivial time-dependence of the cationic mean square displacement for all temperatures. Finally, we compare our numerical and theoretical findings with the results of recent nuclear magnetic resonance experiments. In this way we can exclusively relate the strong experimentally observed dependence of the low-temperature Li-diffusivity on the IL concentration to the impact of IL on crystallization.

  10. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    PubMed

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  11. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes.

    PubMed

    Kang, Yu Jin; Chung, Haegeun; Han, Chi-Hwan; Kim, Woong

    2012-02-17

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf(2)]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g(-1) at a current density of 2 A g(-1), when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg(-1) and 41 Wh kg(-1), respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications.

  12. Electrochemical Behavior of PEDOT/Lignin in Ionic Liquid Electrolytes: Suitable Cathode/Electrolyte System for Sodium Batteries.

    PubMed

    Casado, Nerea; Hilder, Matthias; Pozo-Gonzalo, Cristina; Forsyth, Maria; Mecerreyes, David

    2017-02-15

    Biomass-derived polymers, such as lignin, contain quinone/ hydroquinone redox moieties that can be used to store charge. Composites based on the biopolymer lignin and several conjugated polymers have shown good charge-storage properties. However, their performance has been only studied in acidic aqueous media limiting their applications mainly to supercapacitors. Here, we show that PEDOT/lignin (PEDOT: poly(3,4-ethylenedioxythiophene)) biopolymers are electroactive in aprotic ionic liquids (ILs) and we move a step further by assembling sodium full cell batteries using PEDOT/lignin as electrode material and IL electrolytes. Thus, the electrochemical activity and cycling of PEDOT/lignin electrodes was investigated in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyrTFSI), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (BMPyrFSI), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) and 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) IL electrolytes. The effects of water and sodium salt addition to the ILs were investigated to obtain optimum electrolyte systems for sodium batteries. Finally, sodium batteries based on PEDOT/lignin cathode with imidazolium-based IL electrolyte showed higher capacity values than pyrrolidinium ones, reaching 70 mAhg(-1) . Our results demonstrate that PEDOT/lignin composites can serve as low cost and sustainable cathode materials for sodium batteries.

  13. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K.

    Physical and electrochemical characteristics of Li-ion battery systems based on LiFePO 4 cathodes and graphite anodes with mixture electrolytes were investigated. The mixed electrolytes are based on an ionic liquid (IL), and organic solvents used in commercial batteries. We investigated a range of compositions to determine an optimum conductivity and non-flammability of the mixed electrolyte. This led us to examine mixtures of ILs with the organic electrolyte usually employed in commercial Li-ion batteries, i.e., ethylene carbonate (EC) and diethylene carbonate (DEC). The IL electrolyte consisted of (trifluoromethyl sulfonylimide) (TFSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) as the cation. The physical and electrochemical properties of some of these mixtures showed an improvement characteristics compared to the constituents alone. The safety was improved with electrolyte mixtures; when IL content in the mixture is ≥40%, no flammability is observed. A stable SEI layer was obtained on the MCMB graphite anode in these mixed electrolytes, which is not obtained with IL containing the TFSI-anion. The high-rate capability of LiFePO 4 is similar in the organic electrolyte and the mixture with a composition of 1:1. The interface resistance of the LiFePO 4 cathode is stabilized when the IL is added to the electrolyte. A reversible capacity of 155 mAh g -1 at C/12 is obtained with cells having at least some organic electrolyte compared to only 124 mAh g -1 with pure IL. With increasing discharge rate, the capacity is maintained close to that in the organic solvent up to 2 C rate. At higher rates, the results with mixture electrolytes start to deviate from the pure organic electrolyte cell. The evaluation of the Li-ion cells; LiFePO 4//Li 4Ti 5O 12 with organic and, 40% mixture electrolytes showed good 1st CE at 98.7 and 93.0%, respectively. The power performance of both cell configurations is comparable up to 2 C rate. This study indicates that safety and

  14. Electrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries.

    PubMed

    Choi, Sangwon; Go, Hyungho; Lee, Gibaek; Tak, Yongsug

    2017-02-01

    An aluminum metal, both native and with a very thin oxide film, was investigated as an anode for aluminum-ion batteries. Investigations were carried out in an acidic ionic liquid electrolyte, composed of AlCl3 in 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl), with β-MnO2/C as a cathode. The battery based on Al metal with a very thin oxide film showed high capacity and stable surface corrosion.

  15. Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Zhang, Zhengxi; Yin, Kun; Yang, Li; Tachibana, Kazuhiro; Hirano, Shin-ichi

    2015-03-01

    In this work, the ordered mesoporous silica, SBA-15, is chosen as the matrix for the first time to prepare quasi-solid-state electrolytes (QSSEs) with an ionic liquid, LiTFSI salt and PVdF-HFP. The as-obtained QSSEs are evaluated by electrochemical methods. Lithium metal batteries containing these QSSEs exhibit high discharge capacity and good cycle performance at room temperature, indicating successful battery operation.

  16. Ionic Liquid-Enhanced Solid State Electrolyte Interface (SEI) for Lithium Sulfur Batteries

    SciTech Connect

    Zheng, Jianming; Gu, Meng; Chen, Honghao; Meduri, Praveen; Engelhard, Mark H.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

    2013-05-16

    Li-S battery is a complicated system with many challenges existing before its final market penetration. While most of the reported work for Li-S batteries is focused on the cathode design, we demonstrate in this work that the anode consumption accelerated by corrosive polysulfide solution also critically determines the Li-S cell performance. To validate this hypothesis, ionic liquid (IL) N-methyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Py14TFSI) has been employed to modify the properties of SEI layer formed on Li metal surface in Li-S batteries. It is found that the IL-enhanced passivation film on the lithium anode surface exhibits much different morphology and chemical compositions, effectively protecting lithium metal from continuous attack by soluble polysulfides. Therefore, both cell impedance and the irreversible consumption of polysulfides on lithium metal are reduced. As a result, the Coulombic efficiency and the cycling stability of Li-S batteries have been greatly improved. After 120 cycles, Li-S battery cycled in the electrolyte containing IL demonstrates a high capacity retention of 94.3% at 0.1 C rate. These results unveil another important failure mechanism for Li-S batteries and shin the light on the new approaches to improve Li-S battery performances.

  17. Lithium-sulfur batteries based on nitrogen-doped carbon and ionic liquid electrolyte

    SciTech Connect

    Sun, Xiao-Guang; Wang, Xiqing; Mayes, Richard T; Dai, Sheng

    2012-01-01

    Nitrogen-doped mesoporous carbon (NC) and sulfur were used to prepare an NC/S composite cathode, which was evaluated in an ionic liquid electrolyte of 0.5 M lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in methylpropylpyrrolidinium bis(trifluoromethane sulfonyl)imide (MPPY.TFSI) by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and cycle testing. To facilitate the comparison, a C/S composite based on activated carbon (AC) without nitrogen doping was also fabricated under the same conditions as those for the NC/S composite. Compared with the AC/S composite, the NC/S composite showed enhanced activity toward sulfur reduction, as evidenced by the early onset sulfur reduction potential, higher redox current density in the CV test, and faster charge transfer kinetics as indicated by EIS measurement. At room temperature under a current density of 84 mA g-1 (C/20), the battery based on the NC/S composite exhibited higher discharge potential and an initial capacity of 1420 mAh g-1 whereas that based on the AC/S composite showed lower discharge potential and an initial capacity of 1120 mAh g-1. Both batteries showed similar capacity fading with cycling due to the intrinsic polysulfide solubility and the polysulfide shuttle mechanism; the capacity fading can be improved by further modification of the cathode.

  18. "Ionic liquids-in-salt"--a promising electrolyte concept for high-temperature lithium batteries?

    PubMed

    Marczewski, Maciej J; Stanje, Bernhard; Hanzu, Ilie; Wilkening, Martin; Johansson, Patrik

    2014-06-28

    A novel electrolyte concept for lithium-ion batteries, termed "ionic liquid-in-salt", is introduced. Our feasibility study on (1 - x)EMIMTFSI:(x)LiTFSI, 0.66 ≤ x ≤ 0.97, showed that at elevated temperatures the various dual liquid and solid phase regions are characterized by a wide thermal stability window, high ionic conductivities and appreciable mechanical integrity. The highest conductivity values are obtained for the compositions x = 0.70 and x = 0.75 (σ ≈ 6 × 10(-3) S cm(-1)) and are related to the final melting of the materials. Overall, high conductivities are observed for 0.70 < x < 0.90 while low ones are found for x > 0.90. Raman and NMR spectroscopies reveal the presence of highly mobile Li-containing species, partly identified as [Li(TFSI)2](-), albeit rather unexpected for these high x values, which might explain the high ionic conductivities observed. To prove the general value of our concept in more detail, some first results on BMIMTFSI and PY13TFSI based systems are also presented.

  19. An Electrochemical NO₂ Sensor Based on Ionic Liquid: Influence of the Morphology of the Polymer Electrolyte on Sensor Sensitivity.

    PubMed

    Kuberský, Petr; Altšmíd, Jakub; Hamáček, Aleš; Nešpůrek, Stanislav; Zmeškal, Oldřich

    2015-11-11

    A systematic study was carried out to investigate the effect of ionic liquid in solid polymer electrolyte (SPE) and its layer morphology on the characteristics of an electrochemical amperometric nitrogen dioxide sensor. Five different ionic liquids were immobilized into a solid polymer electrolyte and key sensor parameters (sensitivity, response/recovery times, hysteresis and limit of detection) were characterized. The study revealed that the sensor based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)2]) showed the best sensitivity, fast response/recovery times, and low sensor response hysteresis. The working electrode, deposited from water-based carbon nanotube ink, was prepared by aerosol-jet printing technology. It was observed that the thermal treatment and crystallinity of poly(vinylidene fluoride) (PVDF) in the solid polymer electrolyte influenced the sensitivity. Picture analysis of the morphology of the SPE layer based on [EMIM][N(Tf)2] ionic liquid treated under different conditions suggests that the sensor sensitivity strongly depends on the fractal dimension of PVDF spherical objects in SPE. Their deformation, e.g., due to crowding, leads to a decrease in sensor sensitivity.

  20. Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage.

    PubMed

    Chancelier, L; Diallo, A O; Santini, C C; Marlair, G; Gutel, T; Mailley, S; Len, C

    2014-02-07

    The energy storage market relating to lithium based systems regularly grows in size and expands in terms of a portfolio of energy and power demanding applications. Thus safety focused research must more than ever accompany related technological breakthroughs regarding performance of cells, resulting in intensive research on the chemistry and materials science to design more reliable batteries. Formulating electrolyte solutions with nonvolatile and hardly flammable ionic liquids instead of actual carbonate mixtures could be safer. However, few definitions of thermal stability of electrolytes based on ionic liquids have been reported in the case of abuse conditions (fire, shortcut, overcharge or overdischarge). This work investigates thermal stability up to combustion of 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C1C4Im][NTf2]) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([PYR14][NTf2]) ionic liquids, and their corresponding electrolytes containing lithium bis(trifluoromethanesulfonyl)imide LiNTf2. Their possible routes of degradation during thermal abuse testings were investigated by thermodynamic studies under several experimental conditions. Their behaviours under fire were also tested, including the analysis of emitted compounds.

  1. Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode.

    PubMed

    Kawano, Ryuji; Katakabe, Toru; Shimosawa, Hironobu; Nazeeruddin, Md Khaja; Grätzel, Michael; Matsui, Hiroshi; Kitamura, Takayuki; Tanabe, Nobuo; Watanabe, Masayoshi

    2010-02-28

    A polymerized ionic liquid electrolyte and platinum-free counter electrode are employed for solid-state DSSCs. We are able to prepare a thin polymer electrolyte layer on nanocrystalline TiO(2) in order to reduce the cell resistance. In addition, an electron conductive polymer (PEDOT/PSS) or a single-wall carbon nanotube gel is used with the cell as an inexpensive counter electrode instead of platinum. The overall photon-to-current conversion efficiency was 3.7% in this study.

  2. All-solid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ayalneh Tiruye, Girum; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2015-04-01

    All-solid state supercapacitors (SCs) using Ionic Liquid based Polymer Electrolyte (IL-b-PE) and activated carbon were assembled and characterized electrochemically. IL-b-PE consisted of a binary blend of a polymeric ionic liquid (PIL), poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (pDADMATFSI), and their corresponding ionic liquid (IL), N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14TFSI) in a ratio of 40:60,w/w respectively. Assembling of supercapacitors simply consists of facing two impregnated electrodes without the need of additional separator. Several all-solid state SCs with impregnation ratios (IL-b-PE mass/active material mass) ranging from 5 to 18 were characterized. An all-solid state SC with impregnation ratio of 7 showed the best performance with specific capacitance (Cam) and real energy (Ereal) of 100 F g-1 and 32 Wh kg-1, respectively. After increasing temperatures to 60 °C, the performance of SCs further improved exhibiting Ereal values of 42 Wh kg-1 at 1 mA cm-2. These figures of merit are only slightly lower than those obtained for convectional SCs using pure PYR14TFS and much higher as compared with other solid SCs based on conventional polymer electrolytes. This is mainly due to the high electrochemical stability of this IL-b-PE that allows these solid SCs to operate at maximum voltages as high as 3.5 V for the first time.

  3. Nanocomposite semi-solid redox ionic liquid electrolytes with enhanced charge-transport capabilities for dye-sensitized solar cells.

    PubMed

    Rutkowska, Iwona A; Marszalek, Magdalena; Orlowska, Justyna; Ozimek, Weronika; Zakeeruddin, Shaik M; Kulesza, Pawel J; Grätzel, Michael

    2015-08-10

    The ability of Pt nanostructures to induce the splitting of the II bond in iodine (triiodide) molecules is explored here to enhance electron transfer in the iodine/iodide redox couple. Following the dispersal of Pt nanoparticles at 2 % (weight) level, charge transport was accelerated in triiodide/iodide-containing 1,3-dialkylimidazolium room-temperature ionic liquid. If both Pt nanoparticles and multi-walled carbon nanotubes were introduced into the ionic-liquid-based system, a solid-type (nonfluid) electrolyte was obtained. By using solid-state voltammetric (both sandwich-type and microelectrode-based) methodology, the apparent diffusion coefficients for charge transport increased to approximately 1×10(-6)  cm(2)  s(-1) upon the incorporation of the carbon-nanotube-supported iodine-modified Pt nanostructures. A dye-sensitized solar cell comprising TiO2 covered with a heteroleptic Ru(II) -type sensitizer (dye) and the semisolid triiodide/iodide ionic liquid electrolyte admixed with carbon-nanotube-supported Pt nanostructures yielded somewhat higher power conversion efficiencies (up to 7.9 % under standard reporting conditions) than those of the analogous Pt-free system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Iodine-Pseudohalogen Ionic Liquid-Based Electrolytes for Quasi-Solid-State Dye-Sensitized Solar Cells.

    PubMed

    Lennert, Annkatrin; Sternberg, Michelle; Meyer, Karsten; Costa, Rubén D; Guldi, Dirk M

    2017-10-04

    In the current work, novel symmetrically alkyl-substituted imidazolium-based ionic liquids have been synthesized featuring either iodide (I(-)) or selenocyanate (SeCN(-)) as counteranions. Physicochemical assays based on spectroscopy and electrochemistry techniques have been performed to identify the best ionic liquid for application as electrolytes in quasi-solid-state dye-sensitized solar cells (qssDSSC). The latter were mixed with additives such as 4-tert-butylpyridine (4tbpy) and guanidinium thiocyanate (GuSCN) to optimize electrode surface coverage, ionic diffusion, and dye regeneration. In addition, we demonstrate that electrolytes containing a mixture of I2 and (SeCN)2 enhance the open-circuit voltage of the final quasi-solid-state device by up to 70 mV. As such, iodine-pseudohalogen electrolytes reveal in qssDSSCs a good balance between dye regeneration and hole transport and, in turn, enhance the overall solar energy conversion efficiency by 70% with respect to reference qssDSSCs with iodine-based electrolytes. Finally, devices with the iodine-pseudohalogen electrolyte show a 1000 h stable efficiency of 7-8% under outdoor temperature operation conditions and 1 sun illumination.

  5. ZnO-based dye solar cell with pure ionic-liquid electrolyte and organic sensitizer: the relevance of the dye–oxide interaction in an ionic-liquid medium.

    PubMed

    Guillén, E; Idígoras, J; Berger, T; Anta, J A; Fernández-Lorenzo, C; Alcántara, R; Navas, J; Martín-Calleja, J

    2011-01-07

    The use of non-volatile electrolytes and fully organic dyes are key issues in the development of stable dye-sensitized solar cells (DSCs). In this work we explore the performance of ZnO-based DSCs sensitized with an indoline derivative coded D149 in the presence of a pure ionic-liquid electrolyte. Commercial nanostructured zinc oxide and an electrolyte composed of iodine plus (1) pure 1-propyl-3-methyl imidazolium iodide (PMII) and (2) a blend of PMII with low-viscosity ionic liquids were employed to construct the devices. Without further additives, the fabricated devices exhibit remarkable short-circuit photocurrents and efficiencies under AM1.5 simulated sunlight (up to 10.6 mA cm−2, 2.9% efficiency, 1 sun, active area = 0.64 cm2) due to the high surface area of the ZnO film and the high absorptivity of the D149 dye. Impedance spectroscopy is used to characterize the devices. It is found that the addition of the low-viscosity ionic-liquid improves the transport features (leading to a better photocurrent) but it does not alter the recombination rate. The robustness of the dye–oxide interaction is tested by applying continuous illumination with a Xenon-lamp. It is observed that the photocurrent is reduced at a slow rate due to desorption of the D149 sensitizer in the presence of the ionic liquid. Exploration of alternative ionic-liquid compositions or modification of the ZnO surface is therefore required to make stable devices based on ZnO and fully organic dyes.

  6. Synthesis and Thermophysical Properties of Ether-Functionalized Sulfonium Ionic Liquids as Potential Electrolytes for Electrochemical Applications.

    PubMed

    Coadou, Erwan; Goodrich, Peter; Neale, Alex R; Timperman, Laure; Hardacre, Christopher; Jacquemin, Johan; Anouti, Mérièm

    2016-12-05

    During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis{(trifluoromethyl)sulfonyl}imide, [NTf2 ](-) anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window, along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity, and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices.

  7. Synthesis and Thermophysical Properties of Ether‐Functionalized Sulfonium Ionic Liquids as Potential Electrolytes for Electrochemical Applications

    PubMed Central

    Goodrich, Peter; Neale, Alex R.; Timperman, Laure; Hardacre, Christopher; Anouti, Mérièm

    2016-01-01

    Abstract During this work, a novel series of hydrophobic room temperature ionic liquids (ILs) based on five ether functionalized sulfonium cations bearing the bis{(trifluoromethyl)sulfonyl}imide, [NTf2]− anion were synthesized and characterized. Their physicochemical properties, such as density, viscosity and ionic conductivity, electrochemical window, along with thermal properties including phase transition behavior and decomposition temperature, have been measured. All of these ILs showed large liquid range temperature, low viscosity, and good conductivity. Additionally, by combining DFT calculations along with electrochemical characterization it appears that these novel ILs show good electrochemical stability windows, suitable for the potential application as electrolyte materials in electrochemical energy storage devices. PMID:27717151

  8. Enhanced energy capacity of lithium-oxygen batteries with ionic liquid electrolytes by addition of ammonium ions

    NASA Astrophysics Data System (ADS)

    Matsuda, Shoichi; Uosaki, Kohei; Nakanishi, Shuji

    2017-07-01

    Lithium-oxygen (Li-O2) batteries with ionic liquid-based electrolytes have attracted much attention because of their superior battery performance and high safety. However, the practical energy capacities achieved to date are markedly lower than those of Li-ion batteries. A dominant factor that limits the energy capacities of Li-O2 batteries is the insulating characteristics and insolubility of lithium peroxide (Li2O2), which gradually accumulates on the positive electrode as a discharge product. Herein, we report that ammonium ions function as a promoter for the solution-route formation of Li2O2, which results in a significant improvement of the energy capacity of Li-O2 cells. Scanning electron microscopy analyses revealed that the structure of Li2O2 changed from spherical particles to toroidal particles with an increase in the ammonium ions concentration. Ionic additives that have been reported to function as promoters the solution-route formation of Li2O2 in ether-based electrolyte systems do not exhibit a promoting effect in ionic liquid-based electrolytes.

  9. Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential

    SciTech Connect

    Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.; Zhang, Pengfei; Turner, C. Heath; Cummings, Peter T.; Dai, Sheng

    2016-10-04

    Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Here, using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall is fully reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode.

  10. Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential

    SciTech Connect

    Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.; Zhang, Pengfei; Turner, C. Heath; Cummings, Peter T.; Dai, Sheng

    2016-10-04

    Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Here, using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall is fully reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode.

  11. Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential

    NASA Astrophysics Data System (ADS)

    Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.; Zhang, Pengfei; Turner, C. Heath; Cummings, Peter T.; Dai, Sheng

    2016-10-01

    Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall is fully reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode.

  12. Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential

    DOE PAGES

    Mahurin, Shannon M.; Mamontov, Eugene; Thompson, Matthew W.; ...

    2016-10-04

    Transport of electrolytes in nanoporous carbon-based electrodes largely defines the function and performance of energy storage devices. Here, using molecular dynamics simulation and quasielastic neutron scattering, we investigate the microscopic dynamics of a prototypical ionic liquid electrolyte, [emim][Tf2N], under applied electric potential in carbon materials with 6.7 nm and 1.5 nm pores. The simulations demonstrate the formation of dense layers of counter-ions near the charged surfaces, which is reversible when the polarity is reversed. In the experiment, the ions immobilized near the surface manifest themselves in the elastic scattering signal. The experimentally observed ion immobilization near the wall is fullymore » reversible as a function of the applied electric potential in the 6.7 nm, but not in the 1.5 nm nanopores. In the latter case, remarkably, the first application of the electric potential leads to apparently irreversible immobilization of cations or anions, depending on the polarity, near the carbon pore walls. This unexpectedly demonstrates that in carbon electrode materials with the small pores, which are optimal for energy storage applications, the polarity of the electrical potential applied for the first time after the introduction of an ionic liquid electrolyte may define the decoration of the small pore walls with ions for prolonged periods of time and possibly for the lifetime of the electrode.« less

  13. Ionic liquid and plastic crystalline phases of pyrazolium imide salts as electrolytes for rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Abu-Lebdeh, Yaser; Abouimrane, Ali; Alarco, Pierre-Jean; Armand, Michel

    A new member of the plastic crystal, pyrazolium imide family, N, N‧-diethyl-3-methylpyrazolium bis-(trifluoromethanesulfonyl)imide (DEMPyr123) was prepared. It showed a single, plastic crystalline phase that extends from 4.2 °C to its melting at 11.3 °C. When 10 mol% LiTFSI salt was added, the mixture showed ionic conductivities reaching 1.7 × 10 -3 S cm -1 at 20 °C, in the liquid state and 6.9 × 10 -4 S cm -1 at 5 °C, in the solid, plastic phase. A wide electrochemical stability window's of 5.5 V was observed by cyclic voltammetry of the molten salt mixture. Batteries were assembled with LiFePO 4/Li 4Ti 5O 12 electrodes and the salt mixture as an electrolyte. They showed a charge/discharge efficiency of 93% and 87% in the liquid and the plastic phase, respectively. The capacity retention was very good in both states with 90% of the initial capacity still available after 40 cycles. In general, the batteries showed good rate capability and cycle life performance in the ionic liquid phase that were sustained when the electrolyte transformed to the plastic phase. Comparison of the battery results with those of a classic (non-plastic crystal) ionic liquid has proven the advantage of the dual state of matter character in this electrolyte.

  14. Improved quasi-solid dye-sensitized solar cells by composite ionic liquid electrolyte including layered α-zirconium phosphate

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Lin, Hong; Li, Jianbao; Li, Xin

    2006-11-01

    The authors reported a composite quasi-solid electrolyte by adding layered α-zirconium phosphate (α-ZrP) to the iodide/tri-iodide ionic liquid, 1-methyl-3-propylimidazolium dihydrophosphate, electrolyte including 4-tert-butylpyridine, which markedly improved photovoltaic properties of quasisolid dye-sensitized solar cells (DSSCs). When adding 6wt% α-ZrP, photoenergy conversion efficiency of the DSSC increases by a factor of more than 2 to 2.61%, compared to a DSSC without α-ZrP. This enhancement is primarily explained by studying dark reaction, diffusion coefficient of tri-iodide ions, exchange current density in the interface of electrolyte/Pt counterelectrode, and lifetime of electrons in mesoscopic TiO2 film.

  15. Cycling performance and thermal stability of lithium polymer cells assembled with ionic liquid-containing gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Yun, Ye Sun; Kim, Jin Hee; Lee, Sang-Young; Shim, Eun-Gi; Kim, Dong-Won

    Gel polymer electrolytes containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and a small amount of additive (vinylene carbonate, fluoroethylene carbonate, and ethylene carbonate) are prepared, and their electrochemical properties are investigated. The cathodic limit of the gel polymer electrolytes can be extended to 0 V vs. Li by the formation of a protective solid electrolyte interphase on the electrode surface. Using these gel polymer electrolytes, lithium metal polymer cells composed of a lithium anode and a LiNi 1/3Co 1/3Mn 1/3O 2 cathode are assembled, and their cycling performances are evaluated at room temperature. The cells show good cycling performance, comparable to that of a cell assembled with gel polymer electrolyte containing standard liquid electrolyte (1.0 M LiPF 6 in ethylene carbonate/diethylene carbonate). Flammability tests and differential scanning calorimetry studies show that the presence of the ionic liquid in the gel polymer electrolyte considerably improves the safety and thermal stability of the cells.

  16. Ionic Liquid-Based Polymer Electrolytes via Surfactant-Assisted Polymerization at the Plasma-Liquid Interface.

    PubMed

    Tran, Quoc Chinh; Bui, Van-Tien; Dao, Van-Duong; Lee, Joong-Kee; Choi, Ho-Suk

    2016-06-29

    We first report an innovative method, which we refer to as interfacial liquid plasma polymerization, to chemically cross-link ionic liquids (ILs). By this method, a series of all-solid state, free-standing polymer electrolytes is successfully fabricated where ILs are used as building blocks and ethylene oxide-based surfactants are employed as an assisted-cross-linking agent. The thickness of the films is controlled by the plasma exposure time or the ratio of surfactant to ILs. The chemical structure and properties of the polymer electrolyte are characterized by scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS). Importantly, the underlying polymerization mechanism of the cross-linked IL-based polymer electrolyte is studied to show that fluoroborate or halide anions of ILs together with the aid of a small amount of surfactants having ethylene oxide groups are necessary to form cross-linked network structures of the polymer electrolyte. The ionic conductivity of the obtained polymer electrolyte is 2.28 × 10(-3) S·cm(-1), which is a relatively high value for solid polymer electrolytes synthesized at room temperature. This study can serve as a cornerstone for developing all-solid state polymer electrolytes with promising properties for next-generation electrochemical devices.

  17. Electrochemical performance of Na2Ti3O7/C negative electrode in ionic liquid electrolyte for sodium secondary batteries

    NASA Astrophysics Data System (ADS)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2017-06-01

    In this study, carbon-coated Na2Ti3O7 (Na2Ti3O7/C) is synthesized by a solid-state reaction method, and its charge-discharge characteristics as a negative electrode material in an ionic liquid electrolyte, Na[FSA]-[C3C1pyrr][FSA] (FSA = bis(fluorosulfonyl)amide; C3C1pyrr = N-methyl-N-propylpyrrolidinium), are investigated at 363 K. The Na2Ti3O7/C negative electrode shows an initial discharge capacity of 215 mAh (g-Na2Ti3O7/C)-1 at a current rate of 20 mA (g-Na2Ti3O7/C)-1 in the voltage range 0.01-2.5 V. The high discharge capacity of the Na2Ti3O7/C negative electrode is attributed to the high operation temperature in the Na[FSA]-[C3C1pyrr][FSA] ionic liquid electrolyte. Although high discharge capacity is achieved, the Na2Ti3O7/C negative electrode shows relatively poor cycle performance because of the irreversible insertion of some Na ions and the formation of cracks.

  18. Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries.

    PubMed

    Zhang, Shiguo; Ikoma, Ai; Li, Zhe; Ueno, Kazuhide; Ma, Xiaofeng; Dokko, Kaoru; Watanabe, Masayoshi

    2016-10-04

    Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.

  19. A graphene-based flexible supercapacitor using trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)imide ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Shabeeba, P.; Thasneema, K. K.; Shahin Thayyil, Mohamed; Pillai, M. P.; Niveditha, C. V.

    2017-08-01

    Physical flexibility of supercapacitors is a crucial advantage for solid state devices. This investigation demonstrates 4 V flexible supercapacitor with graphene as the active material and trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)imide [PC6C6C6C14] [Tf2N] as the electrolyte. The methods of electrode fabrication are discussed in detail. Furthermore, the morphology is examined using scanning electron microscopy, atomic force microscopy, x-ray diffraction, Fourier transform infrared spectroscopy and a zeta particle size analyser. To assess the electrochemical performance, cyclic voltammetry, impedance spectroscopy and charge-discharge investigations are conducted. A very high specific capacitance of 495 F g-1 with high rate scalability (up to 3500 cycles), high energy density and an increased operation voltage of 4 V are achieved, supporting the use of this electrode electrolyte combination as a potential candidate for future ionic liquid-based flexible supercapacitors, for applications in wearable and/or portable electronics.

  20. Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte.

    PubMed

    Li, Mingtao; Zhu, Wenshuai; Zhang, Pengfei; Chao, Yanhong; He, Qian; Yang, Bolun; Li, Huaming; Borisevich, Albinab; Dai, Sheng

    2016-07-01

    Solid electrolytes are one of the most promising electrolyte systems for safe lithium batteries, but the low ionic conductivity of these electrolytes seriously hinders the development of efficient lithium batteries. Here, a novel class of graphene-analogues boron nitride (g-BN) nanosheets confining an ultrahigh concentration of ionic liquids (ILs) in an interlayer and out-of-layer chamber to give rise to a quasi-liquid solid electrolyte (QLSE) is reported. The electron-insulated g-BN nanosheet host with a large specific surface area can confine ILs as much as 10 times of the host's weight to afford high ionic conductivity (3.85 × 10(-3) S cm(-1) at 25 °C, even 2.32 × 10(-4) S cm(-1) at -20 °C), which is close to that of the corresponding bulk IL electrolytes. The high ionic conductivity of QLSE is attributed to the enormous absorption for ILs and the confining effect of g-BN to form the ordered lithium ion transport channels in an interlayer and out-of-layer of g-BN. Furthermore, the electrolyte displays outstanding electrochemical properties and battery performance. In principle, this work enables a wider tunability, further opening up a new field for the fabrication of the next-generation QLSE based on layered nanomaterials in energy conversion devices.

  1. Enzymatic synthesis of esculin ester in ionic liquids buffered with organic solvents.

    PubMed

    Hu, Yifan; Guo, Zheng; Lue, Bena-Marie; Xu, Xuebing

    2009-05-13

    The enzymatic esterification of esculin catalyzed by Candida antarctica lipase B (Novozym 435) was carried out in ionic liquid (IL)-organic solvent mixed systems in comparison with individual systems. The reaction behaviors in IL-organic solvents were systemically evaluated using acetone as a model solvent. With organic solvents as media, the esterification rates of esculin depended mainly on its solubility in solvents; for the reactions in ILs, the reaction rates were generally low, and the anion part of the IL played a critical role in enzyme activity. Therefore, the esterification of esculin in IL-acetone mixtures made it possible to improve the solubility of esculin while the effects of ILs on lipase activity were minimized. Following the benignity of ILs to lipase activity, the anions of ILs were ranked in the order as [Tf(2)N](-) > [PF(6)](-) > [BF(4)](-) > [CF(3)SO(3)](-) > [C(4)F(9)SO(3)](-) > [TAF](-) > [MDEGSO(4)](-) > [OctSO(4)](-) > [ES](-) = [DMP](-) = [OTs](- )= Cl(-). The reaction behaviors differed in different systems and largely depended on the properties of the ILs and organic solvents. In general, improvements were observed in terms of both solubility and reaction efficiency. The knowledge acquired in this work gives a better understanding of multiple interactions in IL-organic solvent systems, which provide guidance for system design and optimization.

  2. Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices.

    PubMed

    Zhou, Dan; Zhou, Rui; Chen, Chuanxiang; Yee, Wu-Aik; Kong, Junhua; Ding, Guoqiang; Lu, Xuehong

    2013-06-27

    A series of solvent-free ionic liquid (IL)-based polymer electrolytes composed of amorphous and biodegradable poly(propylene carbonate) (PPC) host, LiClO4, and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)) were prepared and characterized for the first time. FTIR studies reveal that the interaction between PPC chains and imidazolium cations weakens the complexation between PPC chains and Li(+) ions. Thermal analysis (DSC and TGA) results show that the incorporation of BMIM(+)BF4(-) into PPC/LiClO4 remarkably decreases the glass transition temperature and improves the thermal stability of the electrolytes. AC impedance results show that the ionic conductivities of the electrolytes are significantly increased with the increase of BMIM(+)BF4(-) amount, the ambient ionic conductivity of the electrolyte at a PPC/LiClO4/BMIM(+)BF4(-) weight ratio of 1/0.2/3 is 1.5 mS/cm, and the ionic transport behavior follows the Arrhenius equation. Both PPC/LiClO4/BMIM(+)BF4(-) and PPC/BMIM(+)BF4(-) electrolytes were applied in electrochromic devices with polyaniline as the electrochromic layer. The PPC/LiClO4/BMIM(+)BF4(-)-based device exhibits much better electrochromic performance in terms of optical contrast and switching time due to the presence of much smaller cations.

  3. Novel polymer electrolytes based on thermoplastic polyurethane and ionic liquid/lithium bis(trifluoromethanesulfonyl)imide/propylene carbonate salt system

    NASA Astrophysics Data System (ADS)

    Lavall, R. L.; Ferrari, S.; Tomasi, C.; Marzantowicz, M.; Quartarone, E.; Magistris, A.; Mustarelli, P.; Lazzaroni, S.; Fagnoni, M.

    Polymer electrolytes were prepared from thermoplastic polyurethane with addition of mixture of ionic liquid N-ethyl(methylether)-N-methylpyrrolidinium trifluoromethanesulfonimmide (PYRA 12O1TFSI), lithium bis(trifluoromethanesulfoneimide) salt and propylene carbonate. The electrolytes characterization was performed by thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy. The electrical properties were investigated in detail by impedance spectroscopy with the aid of equivalent circuit fitting of the impedance spectra. A model describing temperature evolution of ionic conductivity and the properties of electrolyte/blocking electrode interface was developed. The electrochemical stability of the electrolytes was studied by linear voltammetry. Our results indicate that the studied electrolytes have good self-standing characteristics, and also a sufficient level of thermal stability and a fairly good electrochemical window. The ionic conductivity increases with increasing amount of mixture, and the character of temperature dependence of conductivity indicates decoupling of ion transport from polymer matrix. For studied system, the highest value of ionic conductivity measured at room temperature was 10 -4 S cm -1.

  4. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  5. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.

    PubMed

    Elia, Giuseppe Antonio; Ulissi, Ulderico; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2016-05-10

    In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14 TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3 Co1/3 Mn1/3 O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14 TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g(-1) and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel choline-based ionic liquids as safe electrolytes for high-voltage lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yong, Tianqiao; Zhang, Lingzhi; Wang, Jinglun; Mai, Yongjin; Yan, Xiaodan; Zhao, Xinyue

    2016-10-01

    Three choline-based ionic liquids functionalized with trimethylsilyl, allyl, and cynoethyl groups are synthesized in an inexpensive route as safe electrolytes for high-voltage lithium-ion batteries. The thermal stabilities, viscosities, conductivities, and electrochemical windows of these ILs are reported. Hybrid electrolytes were formulated by doping with 0.6 M LiPF6/0.4 M lithium oxalydifluoroborate (LiODFB) as salts and dimethyl carbonate (DMC) as co-solvent. By using 0.6 M LiPF6/0.4 M LiODFB trimethylsilylated choline-based IL (SN1IL-TFSI)/DMC as electrolyte, LiCoO2/graphite full cell showed excellent cycling performance with a capacity of 152 mAh g-1 and 99% capacity retention over 90 cycles at a cut-off voltage of 4.4 V. The propagation rate of SN1IL-TFSI)/DMC electrolyte is only one quarter of the commercial electrolyte (1 M LiPF6 EC/DEC/DMC, v/v/v = 1/1/1), suggesting a better safety feature.

  7. Effect of organic solvents on Li+ ion solvation and transport in ionic liquid electrolytes: a molecular dynamics simulation study.

    PubMed

    Li, Zhe; Borodin, Oleg; Smith, Grant D; Bedrov, Dmitry

    2015-02-19

    Molecular dynamics simulations of N-methyl-N-propylpyrrolidinium (pyr13) bis(trifluoromethanesulfonyl)imide (Ntf2) ionic liquid [pyr13][Ntf2] doped with [Li][Ntf2] salt and mixed with acetonitrile (AN) and ethylene carbonate (EC) organic solvents were conducted using polarizable force field. Structural and transport properties of ionic liquid electrolytes (ILEs) with 20 and 40 mol % of organic solvents have been investigated and compared to properties of neat ILEs. Addition of AN and EC solvents to ILEs resulted in the partial displacement of the Ntf2 anions from the Li(+) first coordination shell by EC and AN and shifting the Li-Ntf2 coordination from bidentate to monodentate. The presence of organic solvents in ILE has increased the ion mobility, with the largest effect observed for the Li(+) cation. The Li(+) conductivity has doubled with addition of 40 mol % of AN. The Li(+)-N(Ntf2) residence times were dramatically reduced with addition of solvents, indicating an increasing contribution from structural diffusion of the Li(+) cations.

  8. Effects of variation in chain length on ternary polymer electrolyte - Ionic liquid mixture - A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Raju, S. G.; Hariharan, Krishnan S.; Park, Da-Hye; Kang, HyoRang; Kolake, Subramanya Mayya

    2015-10-01

    Molecular dynamics (MD) simulations of ternary polymer electrolyte - ionic liquid mixtures are conducted using an all-atom model. N-alkyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([CnMPy][TFSI], n = 1, 3, 6, 9) and polyethylene oxide (PEO) are used. Microscopic structure, energetics and dynamics of ionic liquid (IL) in these ternary mixtures are studied. Properties of these four pure IL are also calculated and compared to that in ternary mixtures. Interaction between pyrrolidinium cation and TFSI is stronger and there is larger propensity of ion-pair formation in ternary mixtures. Unlike the case in imidazolium IL, near neighbor structural correlation between TFSI reduces with increase in chain length on cation in both pure IL and ternary mixtures. Using spatial density maps, regions where PEO and TFSI interact with pyrrolidinium cation are identified. Oxygens of PEO are above and below the pyrrolidinium ring and away from the bulky alkyl groups whereas TFSI is present close to nitrogen atom of CnMPy. In pure IL, diffusion coefficient (D) of C3MPy is larger than of TFSI but D of C9MPy and C6MPy are larger than that of TFSI. The reasons for alkyl chain dependent phenomena are explored.

  9. Effect of ion structure on conductivity in lithium-doped ionic liquid electrolytes: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Hongjun; Maginn, Edward

    2013-09-01

    Molecular dynamics simulations were performed to examine the role cation and anion structure have on the performance of ionic liquid (IL) electrolytes for lithium conduction over the temperature range of 320-450 K. Two model ionic liquids were studied: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([bmim][Tf2N]) and 1-butyl-4-methylpyridinium pyrrolide ([bmpyr][pyl]) doped with Li[Tf2N] and Li[pyl], respectively. The results have demonstrated that the Li+ doped IL containing the planar [bmpyr] cation paired with the planar [pyl] anion significantly outperformed the [bmim][Tf2N] IL. The different coordination of Li+ with the [Tf2N]- or [pyl]- anions produces a remarkable change in IL structure with a concomitant effect on the transport of all ions. For the doped [bmim][Tf2N], each Li+ is coordinated by four oxygen atoms from [Tf2N]- anions. Formation of a rigid structure between Li+ and [Tf2N]- induces a decrease in the mobility of all ions. In contrast, for the doped [bmpyr][pyl], each Li+ is coordinated by two nitrogen atoms from [pyl]- anions. The original alternating structure cation|anion|cation in the neat [bmpyr][pyl] is replaced by another alternating structure cation|anion|Li+|anion|cation in the doped [bmpyr][pyl]. Increases of Li+ mole fraction in doped [bmpyr][pyl] affects the dynamics to a much lesser extent compared with [bmim][Tf2N] and leads to reduced diffusivities of cations and anions, but little change in the dynamics of Li+. More importantly, the calculations predict that the Li+ ion conductivity of doped [bmpyr][pyl] is comparable to that observed in organic liquid electrolytes and is about an order of magnitude higher than that of doped [bmim][Tf2N]. Such Li+ conductivity improvement suggests that this and related ILs may be promising candidates for use as electrolytes in lithium ion batteries and capacitors.

  10. Towards Li(Ni0.33Mn0.33Co0.33)O2/graphite batteries with ionic liquid-based electrolytes. I. Electrodes' behavior in lithium half-cells

    NASA Astrophysics Data System (ADS)

    Simonetti, E.; Maresca, G.; Appetecchi, G. B.; Kim, G.-T.; Loeffler, N.; Passerini, S.

    2016-11-01

    Lithium cells based on NMC cathodes or graphite anodes and ionic liquid-based electrolyte mixtures are investigated. The electrode tapes, using water-soluble natural binders, as well as the ionic liquid materials, are prepared through eco-friendly routes involving H2O as the only processing solvent. The Li/NMC and Li/graphite half-cells are studied by cyclic voltammetry, impedance spectroscopy and galvanostatic cycling tests at different temperatures. The results herein reported, demonstrate the performance improvement in terms of cycling behavior and ageing resistance, granted by the ionic liquid mixtures with respect to the electrolytes reported in literature based on a single ionic liquid.

  11. Structure and properties of Li-ion conducting polymer gel electrolytes based on ionic liquids of the pyrrolidinium cation and the bis(trifluoromethanesulfonyl)imide anion

    NASA Astrophysics Data System (ADS)

    Pitawala, Jagath; Navarra, Maria Assunta; Scrosati, Bruno; Jacobsson, Per; Matic, Aleksandar

    2014-01-01

    We have investigated the structure and physical properties of Li-ion conducting polymer gel electrolytes functionalized with ionic liquid/lithium salt mixtures. The membranes are based on poly(vinylidene fluoride-co-hexafluoropropylene) copolymer, PVdF-HFP, and two ionic liquids: pyrrolidinium cations, N-butyl-N-methylpyrrolidinium (PyR14+), N-butyl-N-ethylpyrrolidinium (PyR24+), and bis(trifluoromethanesulfonyl)imide anion (TFSI). The ionic liquids where doped with 0.2 mol kg-1 LiTFSI. The resulting membranes are freestanding, flexible, and nonvolatile. The structure of the polymer and the interactions between the polymer and the ionic liquid electrolyte have been studied using Raman spectroscopy. The ionic conductivity of the membranes has been studied using dielectric spectroscopy whereas the thermal properties were investigated using differential scanning caloriometry (DSC). These results show that there is a weak, but noticeable, influence on the physical properties of the ionic liquid by the confinement in the membrane. We observe a change in the Li-ion coordination, conformation of the anion, the fragility and a slight increase of the glass transition temperatures for IL/LiTFSI mixtures in the membranes compared to the neat mixtures. The effect can be related to the confinement of the liquid in the membrane and/or to interactions with the PVdF-HFP polymer matrix where the crystallinity is decreased compared to the starting polymer powder.

  12. Recrystallized quinolinium ionic liquids for electrochemical analysis

    NASA Astrophysics Data System (ADS)

    Selvaraj, Gowri; Wilfred, Cecilia Devi; Eang, Neo Kian

    2016-11-01

    Ionic liquids have received a lot of attention due to their unique properties. In this work the prospect of quinolinium based ionic liquids as electrolyte for dye sensitised solar cell were tested using cyclic voltammetry. The results have shown electron transfer in the ionic liquid without undergoing any permanent chemical changes. Prior to testing, the ionic liquids were purified through recrystallization as electrochemical properties of ionic liquids are highly dependent on the purity of the ionic liquids. This results have shone new light for this work.

  13. Holey graphene nanosheets with surface functional groups as high-performance supercapacitors in ionic-liquid electrolyte.

    PubMed

    Yang, Cheng-Hsien; Huang, Po-Ling; Luo, Xu-Feng; Wang, Chueh-Han; Li, Chi; Wu, Yi-Hsuan; Chang, Jeng-Kuei

    2015-05-22

    Pores and surface functional groups are created on graphene nanosheets (GNSs) to improve supercapacitor properties in a butylmethylpyrrolidinium-dicyanamide (BMP-DCA) ionic liquid (IL) electrolyte. The GNS electrode exhibits an optimal capacitance of 330 F g(-1) and a satisfactory rate capability within a wide potential range of 3.3 V at 25 °C. Pseudocapacitive effects are confirmed using X-ray photoelectron spectroscopy. Under the same conditions, carbon nanotube and activated carbon electrodes show capacitances of 80 and 81 F g(-1) , respectively. Increasing the operation temperature increases the conductivity and decreases the viscosity of the IL electrolyte, further improving cell performance. At 60 °C, a symmetric-electrode GNS supercapacitor with the IL electrolyte is able to deliver maximum energy and power densities of 140 Wh kg(-1) and 52.5 kW kg(-1) (based on the active material on both electrodes), respectively, which are much higher than the 20 Wh kg(-1) and 17.8 kW kg(-1) obtained for a control cell with a conventional organic electrolyte.

  14. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-based polymer electrolytes embedded with ionic liquid

    NASA Astrophysics Data System (ADS)

    Pal, P.; Ghosh, A.

    2015-12-01

    In the present paper, we have studied dynamics and relaxation of the charge carriers in polymethylmethacrylate-lithium bis(trifluoromethane sulfonyl)imide polymer electrolytes embedded with 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid. We have analyzed the frequency dependent conductivity spectra using the random free-energy barrier model coupled with the contribution of electrode polarization in the low frequency region. The temperature dependence of ionic conductivity, and relaxation time obtained from the analysis of the spectra exhibits Vogel-Tammann-Fulcher type behavior. The Barton-Nakajima-Namikawa relation is consistent with the results obtained from the random free-energy barrier model. The scaling of ac conductivity spectra has been performed to understand the effect of temperature as well as the composition on the relaxation mechanism. The analysis of the ac conductivity also clearly indicates the existence of a nearly constant loss phenomenon at low temperatures or at high frequencies.

  15. Electrochemistry and spectroscopy of electrolytes and cathode materials in room-temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Ryan, David Martin

    The demonstration of a stable, reversible, alkali metal anode is an important step in the development of practical secondary batteries using room temperature chloroaluminate molten salts as electrolytes. Such melts are made by mixing 1-ethyl-3-methylimidazolium chloride (EMIC) with aluminum chloride, and can be Lewis buffered by adding LiCl or NaCl. It has been shown previously that protons added to a sodium chloride buffered melt as 1-ethyl-3-methyfimidazolium hydrogen dichloride (EMIHCl2) provide a more negative voltage window and nearly reversible deposition-stripping behavior for sodium. It is reported here that triethanolamine hydrogen chloride is effective in widening the voltage window, allows the plating and stripping of both lithium and sodium, and is stable in buffered EMIC/AlCl3 melts for months. It is suggested that deprotonation of one ethanolic group of triethanolamine HCl is responsible for the effect. The electrochemistry and UV-visible spectroscopy of several vanadium oxides have been examined in room temperature melts. By varying the mole ratio of the two components, Lewis basic, neutral and acidic melts were made. Most oxides have very low solubility: V2O4 and V2O3 are insoluble and V2O5 has a solubility limit less than 5 mM, but the solubilities of the salts NaVO 3, Na3VO4, and NH4VO3, VOCl 3 and VOF3 are significantly higher. The electrochemistry of V2O5, NaVO3, Na3VO4, NH4VO3, VOCl3 and VOF3 is similar in neutral and acidic melts. In the neutral melt each compound shows an irreversible reduction at about 0.45V vs. an Al wire reference electrode. In an acidic melt (mole fraction AlCl3 = 0.55) each of these compounds exhibit additional reduction peaks at more positive potentials. Coulometric and spectroscopic data for the 0.45V reduction suggest that mixed oxidation state polyvanadates may be formed. Controlled potential coulometry demonstrated that the reduction at 0.45V was the reduction of V(V) to V(IV) and the more positive reduction peaks

  16. Application of bis(fluorosulfonyl)imide-based ionic liquid electrolyte to silicon-nickel-carbon composite anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sugimoto, Toshinori; Atsumi, Yosuke; Kono, Michiyuki; Kikuta, Manabu; Ishiko, Eriko; Yamagata, Masaki; Ishikawa, Masashi

    An ionic liquid electrolyte containing bis(fluorosulfonyl)imide (FSI) anion without any solvent is applied to a silicon-nickel-carbon (Si-Ni-carbon) composite anode for rechargeable lithium (Li)-ion batteries. The FSI-based ionic liquid electrolyte successfully provides a stable, reversible capacity for the Si-Ni-carbon anode, which is comparable to the performance observed in a typical commercialized solvent-based electrolyte, while a common ionic liquid electrolyte containing bis(trifluoromethanesulfonyl)imide (TFSI) anion without FSI presents no reversible capacity to the anode at all. Ac impedance analysis reveals that the FSI-based electrolyte provides very low interfacial and charge-transfer resistances at the Si-based composite anode, even when compared to the corresponding resistances observed in a typical solvent-based electrolyte. Galvanostatic cycling of the Si-based composite anode in the FSI-based electrolyte with a charge limitation of 800 mAh g -1 is stable and provides a discharge capacity of 790 mAh g -1 at the 50th cycle, corresponding to a cycle efficiency of 98.8%.

  17. Corrosion of stainless steel battery components by bis(fluorosulfonyl)imide based ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Evans, Tyler; Olson, Jarred; Bhat, Vinay; Lee, Se-Hee

    2014-12-01

    While the anodic behavior of aluminum foil current collectors in imide-based room temperature ionic liquids (RTILs) is relatively well understood, interactions between such RTILs and other passive battery components have not been studied extensively. This study presents the solvent and potential dependent oxidation of SS316 coin-cell components in the N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl)imide (PYR13FSI) RTIL. While this phenomenon prohibits high-voltage cycling of Li(Ni1/3Mn1/3Co1/3)O2 cathodes in SS316 coin-type cells, Al-clad cell components or alternative cell configurations can be utilized to avoid SS316 oxidation-induced cell failure.

  18. A novel electrolysis cell for CO2 reduction to CO in ionic liquid/organic solvent electrolyte

    NASA Astrophysics Data System (ADS)

    Shi, Jin; Shi, Feng; Song, Ning; Liu, Jian-Xiong; Yang, Xi-Kun; Jia, You-Jian; Xiao, Zheng-Wei; Du, Ping

    2014-08-01

    A novel electrolysis cell has been developed for CO2 reduction to CO in an ionic liquid/organic solvent electrolyte. The electrolysis cell is separated into two compartments by an ion-exchange membrane (Nafion117). The cathode compartment is filled with a CO2 saturated 1-butyl-3-methyl-imidazolium trifluoromethanesulfonates ([Bmim][CF3SO3])/propylene carbonate (PC) solution. The anode compartment is filled with a 0.1 M H2SO4 aqueous solution. A Ag foil and a graphite rod are used as the cathode and the anode respectively. In this electrolysis cell, CO2 reduction can be carried out in the nonaqueous electrolyte, and H2O oxidation can be carried out in the aqueous solution. Thus CO can be produced from CO2 and H2O. Owing to the high solubility of CO2 in the nonaqueous electrolyte, the Faradaic efficiency of CO formation is high, reached 90.1% at -1.72 V (vs Pt wire). After 3 h electrolysis, no poisonous species are observed on the cathode. The Ag electrode exhibits a high electrocatalytic activity for CO2 reduction to CO.

  19. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    PubMed Central

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-01-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10−3 S cm−1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm−2, 610 mV and 69.1%, respectively. PMID:26659087

  20. Hydroxypropyl Cellulose Based Non-Volatile Gel Polymer Electrolytes for Dye-Sensitized Solar Cell Applications using 1-methyl-3-propylimidazolium iodide ionic liquid

    NASA Astrophysics Data System (ADS)

    Khanmirzaei, Mohammad Hassan; Ramesh, S.; Ramesh, K.

    2015-12-01

    Gel polymer electrolytes using imidazolium based ionic liquids have attracted much attention in dye-sensitized solar cell applications. Hydroxypropyl cellulose (HPC), sodium iodide (NaI), 1-methyl-3-propylimidazolium iodide (MPII) as ionic liquid (IL), ethylene carbonate (EC) and propylene carbonate (PC) are used for preparation of non-volatile gel polymer electrolyte (GPE) system (HPC:EC:PC:NaI:MPII) for dye-sensitized solar cell (DSSC) applications. The highest ionic conductivity of 7.37 × 10-3 S cm-1 is achieved after introducing 100% of MPII with respect to the weight of HPC. Temperature-dependent ionic conductivity of gel polymer electrolytes is studied in this work. XRD patterns of gel polymer electrolytes are studied to confirm complexation between HPC polymer, NaI and MPII. Thermal behavior of the GPEs is studied using simultaneous thermal analyzer (STA) and differential scanning calorimetry (DSC). DSSCs are fabricated using gel polymer electrolytes and J-V centeracteristics of fabricated dye sensitized solar cells were analyzed. The gel polymer electrolyte with 100 wt.% of MPII ionic liquid shows the best performance and energy conversion efficiency of 5.79%, with short-circuit current density, open-circuit voltage and fill factor of 13.73 mA cm-2, 610 mV and 69.1%, respectively.

  1. Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions?

    PubMed

    Kerner, M; Plylahan, N; Scheers, J; Johansson, P

    2015-07-15

    Several IL based electrolytes with an imidazolium cation (EMI) have been investigated trying to elucidate a possible beneficial effect of mixing FSI and TFSI anions in terms of physico-chemical properties and especially Li(+) solvation. All electrolytes were evaluated in terms of phase transitions, densities and viscosities, thermal stabilities, ionic conductivities and local structure, i.e. charge carriers. The electrolytes with up to 20% of Li-salts showed to be promising for high temperature lithium ion battery application (ca. 100 °C) and a synergetic effect of having mixed anions is discernible with the LiTFSI0.2EMIFSI0.8 electrolyte giving the best overall performance. The determination of the charge carriers revealed the SN to be ca. 2 for all analysed electrolytes, and proved the analysis of the mixed anion electrolytes to be challenging and inherently leads to an ambiguous picture of the Li(+) solvation.

  2. Study on Ion-Conducting Properties of Ionic Liquid Containing Carbonate Electrolytes Against Carbon Electrode.

    PubMed

    Choi, Bo-Ra; Park, Soo-Jin; Kim, Seok

    2016-03-01

    The ionic performances for the mixture of ethylene carbonate (EC) and dimethylcarbonate (DMC) were investigated for supercapacitor electrolyte. The usage of ethylene carbonate (EC) and dimethylcarbonate (DMC) as organic solvent could solve some problems of acetonitrile (AN). The general aim of present paper is compare to properties of electrochemical properties based on two mixed organic electrolytes. The ionic conductivity, viscosity, and electrochemical performances of EC/DMC+0.1 M TEABF4 mixtures were determined. The ionic conductivity of the electrolytes was measured by AC impedance, and the capacitative performances of the electrolytes were evaluated by using cyclic voltammetry.

  3. Influence of the structure of the anion in an ionic liquid electrolyte on the electrochemical performance of a silicon negative electrode for a lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kazuki; Domi, Yasuhiro; Usui, Hiroyuki; Shimizu, Masahiro; Matsumoto, Kuninobu; Nokami, Toshiki; Itoh, Toshiyuki; Sakaguchi, Hiroki

    2017-01-01

    We investigated the influence of the anions in ionic liquid electrolytes on the electrochemical performance of a silicon (Si) negative electrode for a lithium-ion battery. While the electrode exhibited poor cycle stability in tetrafluoroborate-based and propylene carbonate-based electrolytes, better cycle performance was achieved in bis(fluorosulfonyl)amide (FSA-)- and bis(trifluoromethanesulfonyl)amide (TFSA-)-based electrolytes, in which the discharge capacity of a Si electrode was more than 1000 mA h g-1 at the 100th cycle. It is considered that a surface film derived from FSA-- and TFSA--based electrolytes effectively suppressed continuous decomposition of the electrolyte. In a capacity limitation test, a discharge capacity of 1000 mA h g-1 was maintained even after about the 1600th cycle in the FSA--based electrolyte, which corresponds to a cycle life almost twice as long as that in TFSA--based electrolyte. This result should be explained by the high structural stability of FSA--derived surface film. In addition, better rate capability with a discharge capacity of 700 mA h g-1 was obtained at a high current rate of 6 C (21 A g-1) in FSA--based electrolyte, which was 7-fold higher than that in TFSA--based electrolyte. These results clarified that FSA--based ionic liquid electrolyte is the most promising candidate for Si-based negative electrodes.

  4. 3-V Solid-State Flexible Supercapacitors with Ionic-Liquid-Based Polymer Gel Electrolyte for AC Line Filtering.

    PubMed

    Kang, Yu Jin; Yoo, Yongju; Kim, Woong

    2016-06-08

    State-of-the-art solid-state flexible supercapacitors with sufficiently fast response speed for AC line filtering application suffer from limited energy density. One of the main causes of the low energy density is the low cell voltage (1 V), which is limited by aqueous-solution-based gel electrolytes. In this work, we demonstrate for the first time a 3-V flexible supercapacitor for AC line filtering based on an ionic-liquid-based polymer gel electrolyte and carbon nanotube electrode material. The flexible supercapacitor exhibits an areal energy density that is more than 20 times higher than that of the previously demonstrated 1-V flexible supercapacitor (0.66 vs 0.03 μWh/cm(2)) while maintaining excellent capacitive behavior at 120 Hz. The supercapacitor shows a maximum areal power density of 1.5 W/cm(2) and a time constant of 1 ms. The improvement of the cell voltage while maintaining the fast-response capability greatly improves the potential of supercapacitors for high-frequency applications in wearable and/or portable electronics.

  5. Solvent-free, PYR 1ATFSI ionic liquid-based ternary polymer electrolyte systems . I. Electrochemical characterization

    NASA Astrophysics Data System (ADS)

    Kim, Guk-Tae; Appetecchi, Giovanni B.; Alessandrini, Fabrizio; Passerini, Stefano

    The electrical properties of solvent-free, PEO-LiTFSI solid polymer electrolytes (SPEs), incorporating different N-alkyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, PYR 1ATFSI, ionic liquids (ILs), are reported. For this purpose, PYR 1ATFSI materials containing side alkyl groups with different chain-length and branching, i.e., n-propyl, sec-propyl, n-butyl, iso-butyl, sec-butyl and n-pentyl, were properly synthesized and homogeneously incorporated into the SPE samples without phase separation. The addition of ILs to PEO-LiTFSI electrolytes results in a large increase of the conductivity and in a decrease of the interfacial resistance with the lithium metal anode. Most of the PEO-LiTFSI-PYR 1ATFSI samples showed similar ionic conductivities (>10 -4 S cm -1 at 20 °C) and stable interfacial resistance values (400 Ω cm 2 at 40 °C and 3000 Ω cm 2 at 20 °C) upon several months of storage. Preliminary battery tests have shown that Li/P(EO) 10LiTFSI + 0.96 PYR 1ATFSI/LiFePO 4 solid-state cells are capable to deliver a capacity of 125 mAh g -1 and 100 mAh g -1 at 30 °C and 25 °C, respectively.

  6. An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Neale, Alex R.; Murphy, Sinead; Goodrich, Peter; Schütter, Christoph; Hardacre, Christopher; Passerini, Stefano; Balducci, Andrea; Jacquemin, Johan

    2016-09-01

    A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent-free, IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.

  7. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  8. Engineering the electrochemical capacitive properties of graphene sheets in ionic-liquid electrolytes by correct selection of anions.

    PubMed

    Shi, Minjie; Kou, Shengzhong; Yan, Xingbin

    2014-11-01

    Graphene sheet (GS)-ionic liquid (IL) supercapacitors are receiving intense interest because their specific energy density far exceeds that of GS-aqueous electrolytes supercapacitors. The electrochemical properties of ILs mainly depend on their diverse ions, especially anions. Therefore, identifying suitable IL electrolytes for GSs is currently one of the most important tasks. The electrochemical behavior of GSs in a series of ILs composed of 1-ethyl-3-methylimidazolium cation (EMIM(+)) with different anions is systematically studied. Combined with the formula derivation and building models, it is shown that the viscosity, ion size, and molecular weight of ILs affect the electrical conductivity of ILs, and thus, determine the electrochemical performances of GSs. Because the EMIM-dicyanamide IL has the lowest viscosity, ion size, and molecular weight, GSs in it exhibit the highest specific capacitance, smallest resistance, and best rate capability. In addition, because the tetrafluoroborate anion (BF4(-)) has the best electrochemical stability, the GS-[EMIM][BF4] supercapacitor has the widest potential window, and thus, displays the largest energy density. These results may provide valuable information for selecting appropriate ILs and designing high-performance GS-IL supercapacitors to meet different needs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Enhanced low-temperature ionic conductivity via different Li(+) solvated clusters in organic solvent/ionic liquid mixed electrolytes.

    PubMed

    Aguilera, Luis; Scheers, Johan; Matic, Aleksandar

    2016-09-14

    We investigate Li(+) coordination in mixed electrolytes based on ionic liquids (ILs) and organic solvents and its relation with the macroscopic properties such as phase behaviour and ionic conductivity. Using Raman spectroscopy we determine the solvation shell around Li(+) in mixtures formed by the IL N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, the organic solvents ethylene carbonate and dimethyl carbonate (EC : DMC 1 : 1), and the salt LiTFSI. We find that the organic solvent molecules preferentially solvate Li(+) as long as there are enough of them. Our results are consistent with a model where Li(EC)3(DMC)1 and Li(EC)2(DMC)2 are the main complexes formed by the organic solvent molecules and where TFSI(-) mainly participates in Li(TFSI)2(-) clusters. As the amount of organic solvent is increased, the number of TFSI(-) around Li(+) rapidly decreases showing a higher affinity of the organic solvents to solvate Li(+). The changes in the local configurations are also reflected in the ionic conductivity and the phase behaviour. The formation of larger clusters leads to a decrease in the conductivity, whereas the presence of several different clusters at intermediate compositions effectively hinders crystallization at low temperatures. The result is an enhanced low-temperature ionic conductivity in comparison with the pure IL or organic solvent electrolytes.

  10. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  11. Capacitance of Ti3C2Tx MXene in Ionic Liquid Electrolyte

    SciTech Connect

    Lin, Zifeng; Barbara, Daffos; Taberna, Pierre-Louis; Van Aken, Katherine; Anasori, Babak; Gogotsi, Yury G.; Simon, Patrice

    2016-04-14

    Ti3C2Tx MXene, a two-dimensional (2D) early transition metal carbide, has shown an extremely high volumetric capacitance in aqueous electrolytes, but in a narrow voltage window (less than 1.23 V). The utilization of MXene materials in ionic liquid electrolytes with a large voltage window has never been addressed. Here, we report the preparation of the Ti3C2Tx MXene ionogel film by vacuum filtration for use as supercapacitor electrodes operating in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) neat ionic liquid electrolyte. Due to the disordered structure of the Ti3C2Tx hydrogel film and a stable spacing after vacuum drying, achieved through ionic liquid electrolyte immersion of the Ti3C2Tx hydrogel film, the Ti3C2Tx surface became accessible to EMI+ and TFSI- ions. A capacitance of 70 F g-1 together with a large voltage window of 3 V was obtained at a scan rate of 20 mV s-1 in neat EMI-TFSI electrolyte. The electrochemical signature indicates a capacitive behavior even at a high scan rate (500 mV s-1) and a high power performance. This work opens up the possibilities of using MXene materials with various ionic liquid electrolytes.

  12. Capacitance of Ti3C2Tx MXene in Ionic Liquid Electrolyte

    SciTech Connect

    Lin, Zifeng; Barbara, Daffos; Taberna, Pierre-Louis; Van Aken, Katherine; Anasori, Babak; Gogotsi, Yury G.; Simon, Patrice

    2016-04-14

    Ti3C2Tx MXene, a two-dimensional (2D) early transition metal carbide, has shown an extremely high volumetric capacitance in aqueous electrolytes, but in a narrow voltage window (less than 1.23 V). The utilization of MXene materials in ionic liquid electrolytes with a large voltage window has never been addressed. Here, we report the preparation of the Ti3C2Tx MXene ionogel film by vacuum filtration for use as supercapacitor electrodes operating in 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI) neat ionic liquid electrolyte. Due to the disordered structure of the Ti3C2Tx hydrogel film and a stable spacing after vacuum drying, achieved through ionic liquid electrolyte immersion of the Ti3C2Tx hydrogel film, the Ti3C2Tx surface became accessible to EMI+ and TFSI- ions. A capacitance of 70 F g-1 together with a large voltage window of 3 V was obtained at a scan rate of 20 mV s-1 in neat EMI-TFSI electrolyte. The electrochemical signature indicates a capacitive behavior even at a high scan rate (500 mV s-1) and a high power performance. This work opens up the possibilities of using MXene materials with various ionic liquid electrolytes.

  13. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.

    PubMed

    Huie, Matthew M; DiLeo, Roberta A; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-10

    Batteries are multicomponent systems where the theoretical voltage and stoichiometric electron transfer are defined by the electrochemically active anode and cathode materials. While the electrolyte may not be considered in stoichiometric electron-transfer calculations, it can be a critical factor determining the deliverable energy content of a battery, depending also on the use conditions. The development of ionic liquid (IL)-based electrolytes has been a research area of recent reports by other researchers, due, in part, to opportunities for an expanded high-voltage operating window and improved safety through the reduction of flammable solvent content. The study reported here encompasses a systematic investigation of the physical properties of IL-based hybrid electrolytes including quantitative characterization of the electrolyte-separator interface via contact-angle measurements. An inverse trend in the conductivity and wetting properties was observed for a series of IL-based electrolyte candidates. Test-cell measurements were undertaken to evaluate the electrolyte performance in the presence of functioning anode and cathode materials, where several promising IL-based hybrid electrolytes with performance comparable to that of conventional carbonate electrolytes were identified. The study revealed that the contact angle influenced the performance more significantly than the conductivity because the cells containing IL-tetrafluoroborate-based electrolytes with higher conductivity but poorer wetting showed significantly decreased performance relative to the cells containing IL-bis(trifluoromethanesulfonyl)imide electrolytes with lower conductivity but improved wetting properties. This work contributes to the development of new IL battery-based electrolyte systems with the potential to improve the deliverable energy content as well as safety of lithium-ion battery systems.

  14. A pyrrolidinium nitrate protic ionic liquid-based electrolyte for very low-temperature electrical double-layer capacitors.

    PubMed

    Anouti, Mérièm; Timperman, Laure

    2013-05-07

    This study describes the use of the pyrrolidinium nitrate ([Pyrr][NO3]) protic ionic liquid (PIL) in a mixture with gamma butyrolactone (γ-BL) as an electrolyte for carbon-based supercapacitors with an operating voltage of 2.0 V and at very low temperature. Thermal and transport properties of this electrolyte were firstly evaluated from -40 °C to 80 °C. The evolution of conductivity with the addition of γ-BL rendered it possible to determine the optimal composition for electrochemical application, with a molar fraction of γ-BL of 0.6. This mixture shows a Newtonian behavior with a low viscosity value of 5 mPa s at 25 °C, and exhibits high conductivity values of up to 65 mS cm(-1) at 80 °C. At the same time, exceptional residual conductivity was measured for this composition at -40 °C (9 mS cm(-1)), thanks to the superionic character of pyrrolidinium nitrate PIL. Electrochemical characterization of this electrolyte demonstrated, at first, a passivation on the aluminum collector, secondly good cycling performances with an activated carbon electrode from 50 °C to -40 °C with capacitance up to 132 F g(-1) at room temperature and a wide voltage window (2.0 V). Finally at very low temperature (-40 °C), this system demonstrates an unprecedented combination of high specific capacitance (up to 117 F g(-1)), and rapid charging-discharging even at high current density, which is very promising for the progress of energy storage systems with environmentally friendly electrolytes at such very low temperatures.

  15. The effects of dication symmetry on ionic liquid electrolytes in supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Song; Zhu, Mengyang; Feng, Guang

    2016-11-01

    The effects of dication symmetry on the structure and capacitance of the electrical double layers (EDLs) of dicationic ionic liquids (DILs) near graphene electrodes were investigated by molecular dynamics (MD) simulation in this work. Symmetrical 1-hexyl-3-dimethylimidazolium di[bis(trifluoromethyl)imide]([C6(mim)2](Tf2N)2) and asymmetrical 1-(1-trimethylammonium-yl-hexyl)-3-methylimidazolium di[bis(trifluoro-methanesulfonyl)-imide] ([C6(tma)(mim)](Tf2N)2) were both employed. Radial distribution function (RDF) analysis of the two DILs revealed a shorter distance between the cation-anion pairs in symmetrical [C6(mim)2](Tf2N)2), which was attributed to the closely packed imidazolium ring-anion pairs. In contrast, the trimethylammonium head groups and anions exhibit a relatively longer distance, but a stronger correlation in asymmetrical [C6(tma)(mim)](Tf2N)2. In addition, it was illustrated that more symmetrical DIL ions in EDLs are distributed near graphite electrodes and exhibit closer distances to the electrode, which is most probably due to the parallel orientation of imidazolium rings, reducing the distance between the cation and the graphene. In contrast, asymmetrical DILs, with one trimethylammonium head group and one imidazolium ring in the dications, are loosely packed due to their tilting orientation near graphene surfaces. However, the capacitance-potential (C-V) curves of the two DILs are almost the same, regardless of the opposite sign of potential of zero charge (PZC), indicating the insignificant influence of dication symmetry on the capacitance of DIL-based supercapacitors.

  16. Ionic liquid-based electrolyte with binary lithium salts for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Zhu, Qizhen; Chen, Renjie; Chen, Nan; Chen, Yan; Ye, Yusheng; Qian, Ji; Li, Li

    2015-11-01

    Rechargeable Li-S batteries have suffered several technical obstacles, such as rapid capacity fading and low coulombic efficiency. To overcome these problems, we design new electrolytes containing N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide (Pyr1,2O1TFSI) and tri(ethylene glycol)dimethyl ether (TEGDME) in mass ratio of 7:3. Moreover, Lithium difluoro(oxalate)borate (LiODFB) is introduced for the modification. Although the addition of LiODFB as additive lead to extremely high viscosity of electrolyte and inferior performance of the cells, the electrolyte containing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, 0.84 nm) and LiODFB (0.60 nm) mixture with a total molar concentration of 0.4 mol kg-1 as binary lithium salt shows excellent electrochemical performance. The Pyr1,2O1TFSI/TEGDME electrolyte with LiTFSI/LiODFB binary lithium salts in mole ratio of 6:4 is obtained after optimizing ratio. The Li-S cells containing this electrolyte system show excellent capacity and cycle performance, whose initial discharge capacity is 1264.4 mAh g-1, and retains 911.4 mAh g-1 after 50 cycles with the coulombic efficiency more than 95%. It can be attributed the solid-electrolyte interphase (SEI)-forming ability of LiODFB which protect Li anode from suffering lithium dendrites and prevent the shuttle phenomenon. The novel electrolytes provide good cycling stability and high coulombic efficiency for the Li-S batteries, which is suggested as a promising electrolyte for Li-S batteries.

  17. Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6

    NASA Astrophysics Data System (ADS)

    Chaurasia, S. K.; Saroj, A. L.; Shalu, Singh, V. K.; Tripathi, A. K.; Gupta, A. K.; Verma, Y. L.; Singh, R. K.

    2015-07-01

    Preparation and characterization of polymer electrolyte films of PEO+10wt.% LiPF6 + xwt.% BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate) containing dopant salt lithium hexafluorophosphate (LiPF6) and ionic liquid (BMIMPF6) having common anion PF6 - are reported. The ionic conductivity of the polymer electrolyte films has been found to increase with increasing concentration of BMIMPF6 in PEO+10 wt.% LiPF6 due to the plasticization effect of ionic liquid. DSC and XRD results show that the crystallinity of polymer electrolyte decreases with BMIMPF6 concentration which, in turn, is responsible for the increase in ionic conductivity. FTIR spectroscopic study shows the complexation of salt and/or ionic liquid cations with the polymer backbone. Ion dynamics behavior of PEO+LiPF6 as well as PEO+LiPF6 + BMIMPF6 polymer electrolytes was studied by frequency dependent conductivity, σ(f) measurements. The values σ(f) at various temperatures have been analyzed in terms of Jonscher power law (JPL) and scaled with respect to frequency which shows universal power law characteristics at all temperatures.

  18. A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes.

    PubMed

    Smith, Grant D; Borodin, Oleg; Russo, Salvy P; Rees, Robert J; Hollenkamp, Anthony F

    2009-11-14

    We have performed atomistic molecular dynamics (MD) simulations of the (010) surface of LiFePO(4) in contact with an organic liquid electrolyte (OLE), ethylene carbonate : dimethyl carbonate (3 : 7) with approximately 1 mol kg(-1) LiPF(6), and an ionic liquid-based electrolyte (ILE), 1-ethyl 3-methyl-imidazolium: bis(fluorosulfonyl)imide (EMIM(+) : FSI(-)) with approximately 1 mol kg(-1) LiFSI. Surface-induced structure that extends about 1 nm from the LiFePO(4) surface was observed in both electrolytes. The electrostatic potential at the LiFePO(4) surface was found to be negative relative to the bulk electrolyte reflecting an excess of negative charge from the electrolyte coordinating surface Li(+). In the ILE system negative surface charge is partially offset by a high density of EMIM(+) cations coordinating surface oxygen. The electrostatic potential exhibits a (positive) maximum about 3 A from the LiFePO(4) surface which, when combined with the reduced ability of the highly structured electrolytes to solvate Li(+) cations, results in a free energy barrier of almost 4 kcal mol(-1) for penetration of the interfacial electrolyte layer by Li(+). The resistance for bringing Li(+) from the bulk electrolyte to the LiFePO(4) surface through this interfacial barrier was found to be small for both the OLE and ILE. However, we find that the ability of EMIM(+) cations to donate positive charge to LiFePO(4)/electrolyte interface may result in a significant decrease in the concentration of Li(+) at the surface and a corresponding increase in impedance to Li(+) intercalation into LiFePO(4), particularly at lower temperatures.

  19. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid.

    PubMed

    Forgie, John C; El Khakani, Soumia; MacNeil, Dean D; Rochefort, Dominic

    2013-05-28

    Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.

  20. Fuel Cells Using the Protic Ionic Liquid and Rotator Phase Solid Electrolyte Principles

    DTIC Science & Technology

    2008-02-13

    Talk “High temperature Polymer Electrolyte Membrane Fuel Cells (HT- PEMFCs ) for Portable Power in Large-Scale Energy Storage Devices”, Paper Number 195...Membrane Fuel Cells (HT- PEMFCs ) for Portable Power in Large-Scale Energy Storage Devices”, Paper Number 195, 212th Meeting of the Electrochemical

  1. The influence of cations on lithium ion coordination and transport in ionic liquid electrolytes: a MD simulation study.

    PubMed

    Lesch, Volker; Li, Zhe; Bedrov, Dmitry; Borodin, Oleg; Heuer, Andreas

    2016-01-07

    The dynamical and structural properties in two ionic liquid electrolytes (ILEs) based on 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl)-imide ([emim][TFSI]) and N-methyl-N-propylpyrrolidinium bis-(trifluoromethanesulfonyl)imide([pyr13][TFSI]) were compared as a function of lithium bis-(trifluoromethanesulfonyl)-imide (LiTFSI) salt concentrations using atomistic molecular dynamics (MD) simulations. The many-body polarizable APPLE&P force field has been utilized. The influence of anion polarization on the structure of the first coordination shell of Li(+) was examined. In particular, the reduction of the oxygen of the TFSI anion (OTFSI) polarizability from 1.36 Å(3) to 1.00 Å(3) resulted in an increased fraction of the TFSI anion bidentate coordination to the Li(+). While the overall dynamics in [pyr13][TFSI]-based ILEs was slower than in [emim][TFSI]-based ILEs, the exchange of TFSI anions in and out of the first coordination shell of Li(+) was found to be faster in pyr13-based systems. The Li(+) ion transference number is higher for these systems as well. These trends can be related to the difference in interaction of TFSI with the IL cation which is stronger for pyr13 than for emim.

  2. Ionic liquid electrolytes with high sodium ion fraction for high-rate and long-life sodium secondary batteries

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Yao; Kiko, Tomohiro; Hosokawa, Takafumi; Matsumoto, Kazuhiko; Nohira, Toshiyuki; Hagiwara, Rika

    2016-11-01

    Sodium secondary batteries are attracting considerably renewed interest as new battery systems owing to the high and uniform abundance and cost advantages of Na. However, their performance is still far from optimal as compared to the well-developed Li-ion technology. Herein, Na secondary batteries with unprecedented rate capability and a long life has been achieved by using a highly concentrated bis(fluorosulfonyl)amide anion (FSA-)-based ionic liquid electrolyte (3.3 mol dm-3 Na[FSA]) and a Na2FeP2O7 positive electrode, in a targeted operating temperature range from room to intermediate. Nearly full discharge capacity is obtained at 4000 mA g-1, and 79% of the capacity is retained at a discharge rate as high as 20000 mA g-1 at 363 K. Stable cycling (>300 cycles) with satisfactory coulombic efficiency (>99.5%) is found at an intermediate rate (100 mA g-1) over 298-363 K. A high-rate cycling test (1000 mA g-1) at 363 K reveals that the cell could retain 93% of its initial capacity after 1500 cycles.

  3. Lithium bis(fluorosulfonyl)imide-PYR 14TFSI ionic liquid electrolyte compatible with graphite

    NASA Astrophysics Data System (ADS)

    Nádherná, Martina; Reiter, Jakub; Moškon, Jože; Dominko, Robert

    Lithium bis(fluorosulfonyl)imide (LiFSI) in 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR 14TFSI) was successfully tested as an electrolyte for graphite composite anodes at elevated temperature of 55 °C. The graphite anode showed a good cyclability during the galvanostatic testing at C/10 rate and 55 °C with the capacity close to theoretical. The formation of SEI in different electrolytes was the subject of study using impedance spectroscopy on symmetrical cells containing two lithium electrodes. The 0.7 m LiFSI in PYR 14TFSI exhibits a good ionic conductivity (5.9 mS cm -1 at 55 °C) along with high electrochemical stability and high thermal stability. These properties allow their potential application in large-scale lithium ion batteries with improved safety.

  4. Nano-Sponge Ionic Liquid-Polymer Composite Electrolytes for Solid-State Lithium Power Sources

    DTIC Science & Technology

    2010-01-01

    images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these... thin film batteries, 150 charge–discharge cycles are run for LixCoO2 where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects...9702;C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate

  5. Surface coating from phosphonate ionic liquid electrolyte for the enhancement of the tribological performance of magnesium alloy.

    PubMed

    Jiménez, Ana Eva; Rossi, Antonella; Fantauzzi, Marzia; Espinosa, Tulia; Arias-Pardilla, Joaquin; Martínez-Nicolás, Ginés; Bermúdez, María-Dolores

    2015-05-20

    A chronoamperometric method has been applied for the growth of a surface coating on AZ31B magnesium alloy, using the imidazolium alkylphosphonate room-temperature ionic liquid 1-ethyl-3-methylimidazolium ethylphosphonate ([EMIM][EtPO3H]) as electrolyte. A surface coating layer is obtained after 4 h under a constant voltage bias of -0.8 V with respect to the standard electrode. The coating nucleation and growth process correlates well with a 3D progressive mechanism. X-ray photoelectron spectrometry (XPS) analysis of [EMIM][EtPO3H] shows new P 2p and O 1s peaks after its use as electrolyte, as a consequence of reaction between the phosphonate anion and the magnesium substrate. Angle-resolved XPS (ARXPS) analysis of [EMIM][EtPO3H] did not show any change in the composition of the surface before and after chronoamperometry, since the sampling depth (1.5 nm at the highest emission angle) is larger than the cation and anion sizes (ca. 7 and 5 Å, respectively). Characterization of the coating was made by scanning electron microscopy (SEM), focussed ion beam SEM, energy dispersive X-ray spectroscopy, XPS, and ARXPS. FIB-SEM shows that the coating presents a mean thickness of 374 (±36) nm and contains magnesium and aluminum phosphates. Linear reciprocating tribological tests under variable load show that the presence of the coating can reduce friction coefficients of the coated AZ31B against steel up to 32% and wear rates up to 90%, with respect to the uncoated alloy.

  6. Low-cost microarray thin-film electrodes with ionic liquid gel-polymer electrolytes for miniaturised oxygen sensing.

    PubMed

    Lee, Junqiao; Silvester, Debbie S

    2016-06-21

    A robust, miniaturised electrochemical gas sensor for oxygen (O2) has been constructed using a commercially available Pt microarray thin-film electrode (MATFE) with a gellified electrolyte containing the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][NTf2]) and poly(methyl methacrylate) (PMMA) in a 50 : 50 mass ratio. Diffusion coefficients and solubilities for oxygen in mixtures of PMMA/RTIL at different PMMA doping concentrations (0-50% mass) were derived from potential step chronoamperometry (PSCA) on a Pt microdisk electrode. The MATFE was then used with both the neat RTIL and 50% (by mass) PMMA/RTIL gel, to study the analytical behavior over a wide concentration range (0.1 to 100 vol% O2). Cyclic voltammetry (CV) and long-term chronoamperometry (LTCA) techniques were employed and it was determined that the gentler CV technique is better at higher O2 concentrations (above 60 vol%), but LTCA is more reliable and accurate at lower concentrations (especially below 0.5% O2). In particular, there was much less potential shifting (from the unstable Pt quasi-reference electrode) evident in the 50% PMMA/RTIL gel than in the neat RTIL, making this a much more suitable electrolyte for long-term continuous oxygen monitoring. The mass production and low-cost of the electrode array, along with the minimal amounts of RTIL/PMMA required, make this a viable sensing device for oxygen detection on a bulk scale in a wide range of environmental conditions.

  7. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.

    PubMed

    Angell, Michael; Pan, Chun-Jern; Rong, Youmin; Yuan, Chunze; Lin, Meng-Chang; Hwang, Bing-Joe; Dai, Hongjie

    2017-01-31

    In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g(-1) at a current density of 100 mA g(-1) (∼1.4 C). High Coulombic efficiency over a range of charge-discharge rates and stability over ∼150-200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge-discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. Raman spectroscopy and NMR suggested the existence of AlCl4(-), Al2Cl7(-) anions and [AlCl2·(urea)n](+) cations in the AlCl3/urea electrolyte when an excess of AlCl3 was present. Aluminum deposition therefore proceeded through two pathways, one involving Al2Cl7(-) anions and the other involving [AlCl2·(urea)n](+) cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device.

  8. Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

    PubMed Central

    Kirchhöfer, Marija; von Zamory, Jan; Paillard, Elie; Passerini, Stefano

    2014-01-01

    The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+) or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+), paired with bis(trifluoromethanesulfonyl)imide (TFSI−) or bis(fluorosulfonyl)imide (FSI−) anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator + Electrolyte) interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI−-based electrolytes (contrary to TFSI−-based electrolytes), while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI) resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI > PYR14FSI > PYR14TFSI > PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies. PMID:25153637

  9. Electrochemical and structural characterization of polymer gel electrolytes based on a PEO copolymer and an imidazolium-based ionic liquid for dye-sensitized solar cells.

    PubMed

    Freitas, Flavio S; de Freitas, Jilian N; Ito, Bruno I; De Paoli, Marco-A; Nogueira, Ana F

    2009-12-01

    Polymer electrolytes based on mixtures of poly(ethylene oxide-co-propylene oxide) and 1-methyl-3-propyl-imidazolium iodide (MPII) were investigated, aiming at their application in dye-sensitized solar cells (DSSC). The interactions between the copolymer and the ionic liquid were analyzed by infrared spectroscopy and (1)H NMR. The results show interactions between the ether oxygen in the polymer and the hydrogen in the imidazolium cations. The ionic conductivities, electrochemical behaviors, and thermal properties of the electrolytes containing different concentrations of MPII were investigated. The electrolyte containing 70 wt % MPII presented the highest ionic conductivity (2.4 x 10(-3) S cm(-1)) and a diffusion coefficient of 1.9 x 10(-7) cm(2) s(-1). The influence of LiI addition to the electrolytes containing different concentrations of MPII was also investigated. The DSSC assembled with the electrolyte containing 70 wt % MPII showed an efficiency of 3.84% at 100 mW cm(-2). The stability of the devices for a period of 30 days was also evaluated using sealed cells. The devices assembled with the electrolyte containing less ionic liquid showed to be more stable.

  10. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.

    PubMed

    Li, Zhe; Zhang, Shiguo; Terada, Shoshi; Ma, Xiaofeng; Ikeda, Kohei; Kamei, Yutaro; Zhang, Ce; Dokko, Kaoru; Watanabe, Masayoshi

    2016-06-29

    Lithium-ion sulfur batteries with a [graphite|solvate ionic liquid electrolyte|lithium sulfide (Li2S)] structure are developed to realize high performance batteries without the issue of lithium anode. Li2S has recently emerged as a promising cathode material, due to its high theoretical specific capacity of 1166 mAh/g and its great potential in the development of lithium-ion sulfur batteries with a lithium-free anode such as graphite. Unfortunately, the electrochemical Li(+) intercalation/deintercalation in graphite is highly electrolyte-selective: whereas the process works well in the carbonate electrolytes inherited from Li-ion batteries, it cannot take place in the ether electrolytes commonly used for Li-S batteries, because the cointercalation of the solvent destroys the crystalline structure of graphite. Thus, only very few studies have focused on graphite-based Li-S full cells. In this work, simple graphite-based Li-S full cells were fabricated employing electrolytes beyond the conventional carbonates, in combination with highly loaded Li2S/graphene composite cathodes (Li2S loading: 2.2 mg/cm(2)). In particular, solvate ionic liquids can act as a single-phase electrolyte simultaneously compatible with both the Li2S cathode and the graphite anode and can further improve the battery performance by suppressing the shuttle effect. Consequently, these lithium-ion sulfur batteries show a stable and reversible charge-discharge behavior, along with a very high Coulombic efficiency.

  11. Design of an electrolyte composition for stable and rapid charging-discharging of a graphite negative electrode in a bis(fluorosulfonyl)imide-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Matsui, Yukiko; Yamagata, Masaki; Murakami, Satoshi; Saito, Yasuteru; Higashizaki, Tetsuya; Ishiko, Eriko; Kono, Michiyuki; Ishikawa, Masashi

    2015-04-01

    We evaluate the effects of lithium salt on the charge-discharge performance of a graphite negative electrode in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMImFSI) ionic liquid-based electrolytes. Although the graphite negative electrode exhibits good cyclability and rate capability in both 0.43 mol dm-3 LiFSI/EMImFSI and LiTFSI/EMImFSI (TFSI- = bis(trifluoromethylsulfonyl)imide) at room temperature, only the LiFSI/EMImFSI system enables the graphite electrode to be operated with sufficient discharge capacity at the low temperature of 0 °C, even though there is no noticeable difference in ionic conductivity, compared with LiTFSI/EMImFSI. Furthermore, a clear difference in the low-temperature behaviors of the two cells composed of EMImFSI with a high-concentration of lithium salts is observed. Additionally, charge-discharge operation of the graphite electrode at C-rate of over 5.0 can be achieved using of the high-concentration LiFSI/EMImFSI electrolyte. Considering the low-temperature characteristics in both high-concentration electrolytes, the stable and rapid charge-discharge operation in the high-concentration LiFSI/EMImFSI is presumably attributed to a suitable electrode/electrolyte interface with low resistivity. These results suggest that optimization of the electrolyte composition can realize safe and high-performance lithium-ion batteries that utilize ionic liquid-based electrolytes.

  12. Room-temperature ionic liquids as electrolytes in electroanalytical determination of traces of 2-furaldehyde from oil and related wastewaters from refining processes.

    PubMed

    Shamsipur, Mojtaba; Beigi, Ali Akbar Miran; Teymouri, Mohammad; Ghorbani, Yousefali; Irandoust, Mohsen; Mehdizadeh, Ali

    2010-04-15

    Three different ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate, [EMIM][BF(4)]; 1-butyl-3-methylimidazolium trifluoromethanesulfonate, [BMIM][OTf]; and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide [bmpyrr][NTf(2)] were studied as electrolytes in the electroanalytical quantification of 2-furaldehyde using square wave and differential pulse voltammetries. On applying a cathodic scan, a well-defined 2-electron wave was observed corresponding to the reduction of 2-furaldehyde to furfuryl alcohol. The electrochemical stability of the ionic liquids as electrolytes for analytical aspects and electrokinetic studies was investigated using a glassy carbon electrode (GCE). The measurements were carried out in a designed double-wall three-electrode cell, using two platinum wires as the quasi-reference and counter electrodes. Differential pulse voltammetry was found to be the most sensitive method at GCE. The detection limits of 1.4, 19.0 and 2.5 microg g(-1) were obtained for the determination of 2-furaldehyde in [EMIM][BF(4)], [BMIM][OTf] and [BMPyrr][NTf(2)], respectively. At a concentration of 50 microg g(-1), the maximum relative standard deviation (n=3) was 4.9%. The effect of water content of the ionic liquids on their potential windows and waveforms was also investigated. The proposed method was successfully applied to the determination of 2-furaldehyde in real samples, especially in oil matrices. (c) 2009 Elsevier B.V. All rights reserved.

  13. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-08-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses.

  14. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    PubMed Central

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  15. A mixture of triethylphosphate and ethylene carbonate as a safe additive for ionic liquid-based electrolytes of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lalia, Boor Singh; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    A binary mixture of triethylphosphate (TEP) and ethylene carbonate (EC) has been examined as a new non-flammable additive for ionic liquid-based electrolytes for lithium-ion batteries. The optimized electrolyte composition consists of 0.6 mol dm -3 (=M) LiTFSI in PP13TFSI mixed with TEP and EC in volume ratio of 80:10:10, where TFSI and PP13 denote bis(trifluoromethanesulfonyl)imide and N-methyl- N-propylpiperidinium, respectively. The ionic conductivity of PP13TFSI dissolving 0.4 M LiTFSI was improved from 8.2 × 10 -4 S cm -1 to 3.5 × 10 -3 S cm -1 (at 20 °C) with the addition of TEP and EC. The electrochemical behavior of 0.4 M LiTFSI/PP13TFSI with and without TEP and EC was studied by cyclic voltammetry, which showed no deteriorating effect by the addition of TEP and EC on the electrochemical window of PP13TFSI. The flammability of the electrolyte was tested by a direct flame test. The proposed ionic liquid-based electrolyte revealed significant improvements in the electrochemical charge-discharge characteristics for both graphite negative and LiMn 2O 4 positive electrodes.

  16. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Fagnoni, M.; Protti, S.; Gerbaldi, C.; Spinella, A.

    Blends of PVdF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepared and characterized PVdF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide ionic liquid (PYRA 12O1TFSI). The membranes were filled in with two different types of silica: (i) mesoporous SiO 2 (SBA-15) and (ii) a commercial nano-size one (HiSil™ T700). The ionic conductivity and the electrochemical properties of the gel electrolytes were studied in terms of the nature of the filler. The thermal and the transport properties of the composite membranes are similar. In particular, room temperature ionic conductivities higher than 0.25 mS cm -1 are easily obtained at defined filler contents. However, the mesoporous filler guarantees higher lithium transference numbers, a more stable electrochemical interface and better cycling performances. Contrary to the HiSil™-based membrane, the Li/LiFePO 4 cells with PVdF-HFP/PYRA 12O1TFSI-LiTFSI films containing 10 wt% of SBA-15 show good charge/discharge capacity, columbic efficiency close to unity, and low capacity losses at medium C-rates during 180 cycles.

  17. Influence of Polar Organic Solvents in an Ionic Liquid Containing Lithium Bis(fluorosulfonyl)amide: Effect on the Cation-Anion Interaction, Lithium Ion Battery Performance, and Solid Electrolyte Interphase.

    PubMed

    Lahiri, Abhishek; Li, Guozhu; Olschewski, Mark; Endres, Frank

    2016-12-14

    Ionic liquid-organic solvent mixtures have recently been investigated as potential battery electrolytes. However, contradictory results with these mixtures have been shown for battery performance. In this manuscript, we studied the influence of the addition of polar organic solvents into the ionic liquid electrolyte 1 M lithium bis(fluorosulfonyl)amide (LiFSI)-1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide ([Py1,4]FSI) and tested it for lithium ion battery applications. From infrared and Raman spectroscopy, clear changes in the lithium solvation and cation-anion interactions in the ionic liquid were observed on addition of organic solvents. From the lithiation/delithiation studies on electrodeposited Ge, the storage capacity for the ionic liquid-highly polar organic solvent (acetonitrile) mixture was found to be the highest at low C-rates (0.425 C) compared to using an ionic liquid alone and ionic liquid-less polar solvent (dimethyl carbonate) mixtures. Furthermore, XPS and AFM were used to evaluate the solid electrolyte interphase (SEI) and to correlate its stability with Li storage capacity.

  18. Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/ Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film.

    PubMed

    Deepa, Melepurath; Awadhia, Arvind; Bhandari, Shweta

    2009-07-21

    Electrochromic devices based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the cathodic coloring electrode and polyaniline (PANI) or Prussian blue (PB) as the counter electrode containing a highly conductive, self-supporting, distensible and transparent polymer-gel electrolyte film encapsulating an ionic liquid, 1-butyl-1-methylpyrrolidiniumbis-(trifluoromethylsulfonyl)imide, have been fabricated. Polarization, charge transfer and diffusion processes control the electrochemistry of the functional electrodes during coloration and bleaching and these phenomena differ when PEDOT and PANI/PB were employed alternately as working electrodes. While the electrochemical impedance response shows good similitude for PEDOT and PANI electrodes, the responses of PEDOT and PB were significantly different in the PEDOT-PB device, especially during reduction of PB, wherein the overall amplitude of the impedance response is enormous. Large values of the coloration efficiency maxima of 281 cm2 C(-1) (lambda = 583 nm) and 274 cm2 C(-1) (lambda = 602 nm), achieved at -1.0 and -1.5 V for the PEDOT PANI and PEDOT-PB devices have been correlated to the particularly low magnitude of charge transfer resistance and high polarization capacitance operative at the PEDOT ionic liquid based electrolyte interface at these dc potentials, thus allowing facile ion-transport and consequently resulting in enhanced absorption modulation. Moderately fast switching kinetics and the ability of these devices to sustain about 2500 cycles of clear-to-dark and dark-to-clear without incurring major losses in the optical contrast, along with the ease of construction of these cells in terms of high scalability and reproducibility of the synthetic procedure for fabrication of the electrochromic films and the ionic liquid based gel electrolyte film, are indicators of the promise these devices hold for practical applications like electrochromic windows and displays.

  19. Ionic liquids in bioanalysis.

    PubMed

    Kailasa, Suresh Kumar; Rawat, Karuna A; Wu, Hui-Fen

    2015-01-01

    Ionic liquids (ILs) are entirely composed of ions and they possess fascinating properties, including low volatility, tunable viscosity, miscibility and electrolytic conductivity, which make them promising alternatives to traditional organic solvents used in sample preparation. The recent surge in the number of publications clearly indicates an increasing interest of the analytical and bioanalytical community toward these exciting and unique solvents. This article highlights the recent advances in the use of ILs as extraction solvents, as materials for separation and preconcentration in chromatographic techniques, and as matrices in mass spectrometric techniques for bioassays in biocomplex samples. We also briefly discuss the potential applications of ILs in biocatalysis.

  20. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  1. A higher performance dye-sensitized solar cell based on the modified PMII/EMIMBF4 binary room temperature ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Wang, Wu-yang; Cao, Da-peng; Wang, Chao; Zhang, Xiang-yu; Mi, Bao-xiu; Gao, Zhi-qiang; Liang, Zhong-cheng

    2016-07-01

    Additives and iodine (I2) are used to modify the binary room temperature ionic liquid (RTIL) electrolyte to enhance the photovoltaic performance of dye-sensitized solar cells (DSSCs). The short-circuit current density ( J SC) of 17.89 mA/cm2, open circuit voltage ( V OC) of 0.71 V and fill factor ( FF) of 0.50 are achieved in the optimal device. An average photoelectric conversion efficiency ( PCE) of 6.35% is achieved by optimization, which is over two times larger than that of the parent device before optimization (2.06%), while the maximum PCE can reach up to 6.63%.

  2. Comprehensive study of efficient dye-sensitized solar cells based on the binary ionic liquid electrolyte by modifying with additives and iodine

    NASA Astrophysics Data System (ADS)

    Mo, Ao-qiang; Cao, Da-peng; Wang, Wu-yang; Li, Xue-yan; Mi, Bao-xiu; Gao, Zhi-qiang; Liang, Zhong-cheng

    2017-07-01

    The photovoltaic performance of dye-sensitized solar cells (DSSCs) is enhanced by modifying the binary room temperature ionic liquid (RTIL) electrolyte with additives and iodine. The average photoelectric conversion efficiency ( PCE) of 6.39% is achieved. Through electrochemical impedance spectroscopy (EIS), cyclic voltammetry scans and incident photon-to-current conversion efficiency ( IPCE) data, the working principles are analyzed. The enhancement is mainly attributed to the improvement of short circuit current which is caused by the reduction of overall internal resistance of the devices. Durability tests are measured at room temperature, and the long-term stability performance can be maintained.

  3. A counter-charge layer in generalized solvents framework for electrical double layers in neat and hybrid ionic liquid electrolytes

    SciTech Connect

    Huang, Jingsong; Feng, Guang; Sumpter, Bobby G; Qiao, Rui; Meunier, Vincent

    2011-01-01

    Room-temperature ionic liquids (RTILs) have received significant attention as electrolytes due to a number of attractive properties such as their wide electrochemical windows. Since electrical double layers (EDLs) are the cornerstone for the applications of RTILs in electrochemical systems such as supercapacitors, it is important to develop an understanding of the structure capacitance relationships for these systems. Here we present a theoretical framework termed counter-charge layer in generalized solvents (CGS) for describing the structure and capacitance of the EDLs in neat RTILs and in RTILs mixed with different mass fractions of organic solvents. Within this framework, an EDL is made up of a counter-charge layer exactly balancing the electrode charge, and of polarized generalized solvents (in the form of layers of ion pairs, each of which has a zero net charge but has a dipole moment the ion pairs thus can be considered as a generalized solvent) consisting of all RTILs inside the system except the counter-ions in the counter-charge layer, together with solvent molecules if present. Several key features of the EDLs that originate from the strong ion ion correlation in RTILs, e.g., overscreening of electrode charge and alternating layering of counter-ions and co-ions, are explicitly incorporated into this framework. We show that the dielectric screening in EDLs is governed predominately by the polarization of generalized solvents (or ion pairs) in the EDL, and the capacitance of an EDL can be related to its microstructure with few a priori assumptions or simplifications. We use this framework to understand two interesting phenomena observed in molecular dynamics simulations of EDLs in a neat IL of 1-butyl-3- methylimidazolium tetrafluoroborate ([BMIM][BF4]) and in a mixture of [BMIM][BF4] and acetonitrile (ACN): (1) the capacitance of the EDLs in the [BMIM][BF4]/ACN mixture increases only slightly when the mass fraction of ACN in the mixture increases from zero

  4. Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid

    NASA Astrophysics Data System (ADS)

    Cecchetto, Laura; Salomon, Mark; Scrosati, Bruno; Croce, Fausto

    2012-09-01

    Recent studies have clearly demonstrated that cyclic and linear carbonates are unstable when used in rechargeable Li-air batteries employing aprotic solvents mostly due to the cathodic formation of superoxide during the oxygen reduction reaction. In particular, it has been ascertained that nucleophilic attack by superoxide anion radical, O2-rad , at O-alkyl carbon is a common mechanism of decomposition of organic carbonates. Moreover, theoretical calculations showed that ether chemical functionalities are stable against nucleophilic substitution induced by superoxide. Aim of this study is to report on a new electrolyte solution for Li-air battery formed by a mixture of an ether-based aprotic solvent with an ionic liquid (IL). The IL-based electrolyte was obtained by mixing the pure ionic liquid N-methyl-(n-butyl) pyrrolidinium bis(trifluoromethane sulfonyl) imide (here denoted as PYR14TFSI) to a 0.91 M solution of lithium triflate (LiCF3SO3) in tetra ethylene glycol dimethyl etcher (TEGDME). We observed that the presence of IL beneficially affects the kinetics and the reversibility of the oxygen reactions involved at the cathode. The most significant result being a lower overvoltage for the charge reaction, compared to a Li/air cell containing the same electrolyte solution without IL.

  5. Ionic Liquid-Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 °C.

    PubMed

    Ababtain, Khalid; Babu, Ganguli; Lin, Xinrong; Rodrigues, Marco-Tulio F; Gullapalli, Hemtej; Ajayan, Pulickel M; Grinstaff, Mark W; Arava, Leela Mohana Reddy

    2016-06-22

    Fabrication of lithium-ion batteries that operate from room temperature to elevated temperatures entails development and subsequent identification of electrolytes and electrodes. Room temperature ionic liquids (RTILs) can address the thermal stability issues, but their poor ionic conductivity at room temperature and compatibility with traditional graphite anodes limit their practical application. To address these challenges, we evaluated novel high energy density three-dimensional nano-silicon electrodes paired with 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide (Pip) ionic liquid/propylene carbonate (PC)/LiTFSI electrolytes. We observed that addition of PC had no detrimental effects on the thermal stability and flammability of the reported electrolytes, while largely improving the transport properties at lower temperatures. Detailed investigation of the electrochemical properties of silicon half-cells as a function of PC content, temperature, and current rates reveal that capacity increases with PC content and temperature and decreases with increased current rates. For example, addition of 20% PC led to a drastic improvement in capacity as observed for the Si electrodes at 25 °C, with stability over 100 charge/discharge cycles. At 100 °C, the capacity further increases by 3-4 times to 0.52 mA h cm(-2) (2230 mA h g(-1)) with minimal loss during cycling.

  6. Engineering the Electrochemical Capacitive Properties of Microsupercapacitors Based on Graphene Quantum Dots/MnO2 Using Ionic Liquid Gel Electrolytes.

    PubMed

    Shen, Baoshou; Lang, Junwei; Guo, Ruisheng; Zhang, Xu; Yan, Xingbin

    2015-11-18

    All-solid-state microsupercapacitors (MSCs) have been receiving intense interest due to their potential as micro/nanoscale energy storage devices, but their low energy density has limited practical applications. It has been reported that gel electrolytes based on ionic liquids (ionogels) with large potential windows can be used as solid electrolytes to enhance the energy density of MSCs, but a systematic study on how to select and evaluate such ionogels for MSCs is rare. In this study, we construct a series of all-solid-state asymmetric MSCs on the interdigital finger electrodes, using graphene quantum dots (GQDs) as the negative electrode, MnO2 nanosheets as the positive electrode, and different ionogels as the solid electrolytes. Among them, the MSC using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTF2]) with 4 wt % fumed SiO2 ionogel exhibited the best electrochemical performance, having excellent rate capability with the scan rate up to 2000 V s(-1), ultrafast frequency response (τ0 = 206.9 μs) and high energy density. The outstanding performance of this device mainly results from fast ion diffusion, high ion conductivity of the ionogel, and ionic liquid-matrix interactions. The results presented here provide guidance for picking out appropriate ionogels for use in high-performance all-solid-state MSCs to meet the growing requirement of micronanoscale energy storage devices. Additionally, the ultrafast frequency response of our MSCs suggests potential applications in ac line-filters.

  7. Long range electrostatic forces in ionic liquids.

    PubMed

    Gebbie, Matthew A; Smith, Alexander M; Dobbs, Howard A; Lee, Alpha A; Warr, Gregory G; Banquy, Xavier; Valtiner, Markus; Rutland, Mark W; Israelachvili, Jacob N; Perkin, Susan; Atkin, Rob

    2017-01-19

    Ionic liquids are pure salts that are liquid under ambient conditions. As liquids composed solely of ions, the scientific consensus has been that ionic liquids have exceedingly high ionic strengths and thus very short Debye screening lengths. However, several recent experiments from laboratories around the world have reported data for the approach of two surfaces separated by ionic liquids which revealed remarkable long range forces that appear to be electrostatic in origin. Evidence has accumulated demonstrating long range surface forces for several different combinations of ionic liquids and electrically charged surfaces, as well as for concentrated mixtures of inorganic salts in solvent. The original interpretation of these forces, that ionic liquids could be envisioned as "dilute electrolytes," was controversial, and the origin of long range forces in ionic liquids remains the subject of discussion. Here we seek to collate and examine the evidence for long range surface forces in ionic liquids, identify key outstanding questions, and explore possible mechanisms underlying the origin of these long range forces. Long range surface forces in ionic liquids and other highly concentrated electrolytes hold diverse implications from designing ionic liquids for energy storage applications to rationalizing electrostatic correlations in biological self-assembly.

  8. The correlation of the properties of pyrrolidinium-based ionic liquid electrolytes with the discharge-charge performances of rechargeable Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Li, Yu; Zhang, Zhonglin; Duan, Donghong; Sun, Yanbo; Wei, Guoqiang; Hao, Xiaogang; Liu, Shibin; Han, Yunxia; Meng, Weijuan

    2016-10-01

    Pyrrolidinium-based ionic liquids (ILs), such as PYR13TFSI, PYR14TFSI, and PYR1(2O1)TFSI, exhibit high thermal and electrochemical stability with wide electrochemical windows as electrolytes for application to rechargeable Li-O2 batteries. In this work, several fundamental properties of three ILs are measured: the ionic conductivity, oxygen solubility, and oxygen diffusion coefficient. The oxygen electro-reduction kinetics is characterized using cyclic voltammetry. The performances of Li-O2 batteries with these IL electrolytes are also investigated using electrochemical impedance spectroscopy and galvanostatic discharge-charge tests. The results demonstrate that the PYR1(2O1)TFSI electrolyte battery has a higher first-discharge voltage than the PYR13TFSI electrolyte and PYR14TFSI electrolyte batteries. Both PYR13TFSI- and PYR1(2O1)TFSI-based batteries exhibit higher first-discharge capacities and better cycling stabilities than the PYR14TFSI-based battery for 30 cycles. A theoretical analysis of the experimental results shows that the diffusion coefficient and solubility of oxygen in the electrolyte remarkably affect the discharge capacity and cycling stability of the batteries. Particularly, the oxygen diffusion coefficient of the IL electrolyte can effectively facilitate the electrochemical oxygen electro-reduction reaction and oxygen concentration distribution in the catalyst layers of air electrodes. The oxygen diffusion coefficient and oxygen solubility improvements of IL electrolytes can enhance the discharge-charge performances of Li-O2 batteries.

  9. Effect of a pyrrolidinium zwitterion on charge/discharge cycle properties of Li/LiCoO2 and graphite/Li cells containing an ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Seitaro; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2016-11-01

    Ionic liquids (ILs) containing zwitterions have been studied as electrolytes for lithium-ion batteries (LIBs). The effects of addition of a pyrrolidinium zwitterion in an IL electrolyte on the thermal and electrochemical stability and charge/discharge properties of Li/LiCoO2 and graphite/Li cells were investigated. The thermal decomposition temperature of the IL electrolyte composed of N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide ([P13][FSA])/lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) with 3-(1-butylpyrrolidinium)propane-1-sulfonate (Bpyps) as the zwitterionic additive, the thermal decomposition temperature was about 300 °C. The electrochemical window of [P13][FSA]/LiTFSA/Bpyps was 0-+5.4 V vs. Li/Li+, which was almost identical to that of [P13][FSA]/LiTFSA. Li|electrolyte|LiCoO2 cells containing the IL/Bpyps electrolyte system exhibited high capacities in the cut-off voltage range of 3.0-4.6 V, even after 50 cycles. The increase in the interfacial resistance between the electrolyte and cathode with cycling was suppressed. In the cyclic voltammograms of cells employing a graphite electrode, the intercalation/deintercalation of lithium ions were observed in the range of 0 and + 0.4 V vs. Li/Li+. Further, graphite|electrolyte|Li cells containing [P13][FSA]/LiTFSA/Bpyps exhibited stable charge/discharge cycle behaviour over 50 cycles.

  10. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, Chenxi; Liu, Xiaoteng; Cheng, Jigui; Scott, Keith

    2015-01-01

    Graphite oxide is successfully functionalised by 3-aminopropyltriethoxysilane ionic liquid and used as a filler material in a polybenzimidazole (PBI) membrane for high temperature proton exchange membrane fuel cells. The ionic-liquid-graphite-oxide/polybenzimidazole (ILGO/PBI) composite membrane exhibits an appropriate level of proton conductivity when imbibed with phosphoric acid at low phosphoric acid loading, which promotes its use in fuel cells by avoiding acid leakage and materials corrosion. The ionic conductivities of the ILGO/PBI membranes at 175 °C are 0.035 S cm-1 and 0.025 S cm-1 at per repeat units of 3.5 and 2.0, respectively. The fuel cell performance of ILGO/PBI membranes exhibits a maximum power density of 320 mW cm-2 at 175 °C, which is higher than that of a pristine PBI membrane.

  11. Electrodeposition in Ionic Liquids.

    PubMed

    Zhang, Qinqin; Wang, Qian; Zhang, Suojiang; Lu, Xingmei; Zhang, Xiangping

    2016-02-03

    Due to their attractive physico-chemical properties, ionic liquids (ILs) are increasingly used as deposition electrolytes. This review summarizes recent advances in electrodeposition in ILs and focuses on its similarities and differences with that in aqueous solutions. The electrodeposition in ILs is divided into direct and template-assisted deposition. We detail the direct deposition of metals, alloys and semiconductors in five types of ILs, including halometallate ILs, air- and water-stable ILs, deep eutectic solvents (DESs), ILs with metal-containing cations, and protic ILs. Template-assisted deposition of nanostructures and macroporous structures in ILs is also presented. The effects of modulating factors such as deposition conditions (current density, current density mode, deposition time, temperature) and electrolyte components (cation, anion, metal salts, additives, water content) on the morphology, compositions, microstructures and properties of the prepared materials are highlighted.

  12. Thermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius† †Electronic supplementary information (ESI) available: Detailed ionic liquids synthesis, characterization, conductivity, cyclic voltammetry, battery cycling and those of other compositions; SEM images; energy density calculation. See DOI: 10.1039/c5sc01518a Click here for additional data file.

    PubMed Central

    Lin, X.; Kavian, R.; Lu, Y.; Hu, Q.; Shao-Horn, Y.

    2015-01-01

    Rechargeable batteries such as Li ion/Li metal batteries are widely used in the electronics market but the chemical instability of the electrolyte limits their use in more demanding environmental conditions such as in automotive, oil exploration, or mining applications. In this study, a series of alkyl phosphonium ionic liquid electrolyte are described with high thermal stability and solubility for LiTFSI. A lithium metal battery (LMB) containing a tailored phosphonium ionic liquid/LiTFSI electrolyte operates at 100 °C with good specific capacities and cycling stability. Substantial capacity is maintained during 70 cycles or 30 days. Instant on-off battery operation is realized via the significant temperature dependence of the electrolyte material, demonstrating the robustness and potential for use at high temperature. PMID:28757963

  13. Application of Ionic Liquids in Amperometric Gas Sensors.

    PubMed

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  14. Capillary electrophoresis with contactless conductivity detection for the quantification of fluoride in lithium ion battery electrolytes and in ionic liquids-A comparison to the results gained with a fluoride ion-selective electrode.

    PubMed

    Pyschik, Marcelina; Klein-Hitpaß, Marcel; Girod, Sabrina; Winter, Martin; Nowak, Sascha

    2017-02-01

    In this study, an optimized method using capillary electrophoresis (CE) with a direct contactless conductivity detector (C(4) D) for a new application field is presented for the quantification of fluoride in common used lithium ion battery (LIB) electrolyte using LiPF6 in organic carbonate solvents and in ionic liquids (ILs) after contacted to Li metal. The method development for finding the right buffer and the suitable CE conditions for the quantification of fluoride was investigated. The results of the concentration of fluoride in different LIB electrolyte samples were compared to the results from the ion-selective electrode (ISE). The relative standard deviations (RSDs) and recovery rates for fluoride were obtained with a very high accuracy in both methods. The results of the fluoride concentration in the LIB electrolytes were in very good agreement for both methods. In addition, the limit of detection (LOD) and limit of quantification (LOQ) values were determined for the CE method. The CE method has been applied also for the quantification of fluoride in ILs. In the fresh IL sample, the concentration of fluoride was under the LOD. Another sample of the IL mixed with Li metal has been investigated as well. It was possible to quantify the fluoride concentration in this sample. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ionic liquid hybrids: Progress toward non-corrosive electrolytes with high-voltage oxidation stability for magnesium-ion based batteries

    DOE PAGES

    Huie, Matthew M.; Cama, Christina A.; Smith, Paul F.; ...

    2016-10-01

    Magnesium – ion batteries have the potential for high energy density but require new types of electrolytes for practical application. Ionic liquid (IL) electrolytes offer the opportunity for increased safety and broader voltage windows relative to traditional electrolytes. We present here a systematic study of both the conductivity and oxidative stability of hybrid electrolytes consisting of eleven ILs mixed with dipropylene glycol dimethylether (DPGDME) or acetonitrile (ACN) cosolvents and magnesium bis(trifluoromethylsulfonyl)imide (Mg(TFSI)2). Our study finds a correlation of higher conductivity of ILs with unsaturated rings and short carbon chain lengths, but by contrast, these ILs also exhibited lower oxidation voltagemore » limits. For the cosolvent additive, although glymes have a demonstrated capability of coordination with Mg2+ ions, a decrease in conductivity compared to acetonitrile hybrid electrolytes was observed. Lastly, when cycled within the appropriate voltage range, the IL-hybrid electrolytes that show the highest conductivity provide the best cathode magnesiation current densities and lowest polarization as demonstrated with a Mg0.15MnO2 and Mg0.07V2O5 cathodes.« less

  16. Ionic liquid hybrids: Progress toward non-corrosive electrolytes with high-voltage oxidation stability for magnesium-ion based batteries

    SciTech Connect

    Huie, Matthew M.; Cama, Christina A.; Smith, Paul F.; Yin, Jiefu; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2016-10-01

    Magnesium – ion batteries have the potential for high energy density but require new types of electrolytes for practical application. Ionic liquid (IL) electrolytes offer the opportunity for increased safety and broader voltage windows relative to traditional electrolytes. We present here a systematic study of both the conductivity and oxidative stability of hybrid electrolytes consisting of eleven ILs mixed with dipropylene glycol dimethylether (DPGDME) or acetonitrile (ACN) cosolvents and magnesium bis(trifluoromethylsulfonyl)imide (Mg(TFSI)2). Our study finds a correlation of higher conductivity of ILs with unsaturated rings and short carbon chain lengths, but by contrast, these ILs also exhibited lower oxidation voltage limits. For the cosolvent additive, although glymes have a demonstrated capability of coordination with Mg2+ ions, a decrease in conductivity compared to acetonitrile hybrid electrolytes was observed. Lastly, when cycled within the appropriate voltage range, the IL-hybrid electrolytes that show the highest conductivity provide the best cathode magnesiation current densities and lowest polarization as demonstrated with a Mg0.15MnO2 and Mg0.07V2O5 cathodes.

  17. Charge-storage performance of Li/LiFePO4 cells with additive-incorporated ionic liquid electrolytes at various temperatures

    NASA Astrophysics Data System (ADS)

    Wongittharom, Nithinai; Wang, Chueh-Han; Wang, Yi-Chen; Fey, George Ting-Kuo; Li, Hui-Ying; Wu, Tzi-Yi; Lee, Tai-Chou; Chang, Jeng-Kuei

    2014-08-01

    Butylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (BMP-TFSI) ionic liquid (IL) with LiTFSI solute is used as a base electrolyte for Li/LiFePO4 cells. Three kinds of electrolyte additive, namely vinylene carbonate (VC), gamma-butyrolactone (γ-BL), and propylene carbonate (PC), with various concentrations are introduced. The thermal stability, flammability, and electrochemical properties of the electrolytes are investigated. At 25 °C, the additives (γ-BL is found to be the most effective) can significantly improve the capacity, high-rate performance, and cyclability of the cells. With an increase in temperature to 50 °C, the benefits of the additives gradually become insignificant. At 75 °C, the additives even have adverse effects. At such an elevated temperature, in the plain IL electrolyte (without additives), a LiFePO4 capacity of 152 mAh g-1 is found at 0.1 C. 77% of this capacity can be retained when the rate is increased to 3 C. These values are superior to those found for the additive-incorporated IL and conventional organic electrolytes. Moreover, negligible capacity loss is measured after 100 charge-discharge cycles at 75 °C in the plain IL electrolyte.

  18. Ionic liquid hybrids: Progress toward non-corrosive electrolytes with high-voltage oxidation stability for magnesium-ion based batteries

    SciTech Connect

    Huie, Matthew M.; Cama, Christina A.; Smith, Paul F.; Yin, Jiefu; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    2016-10-01

    Magnesium – ion batteries have the potential for high energy density but require new types of electrolytes for practical application. Ionic liquid (IL) electrolytes offer the opportunity for increased safety and broader voltage windows relative to traditional electrolytes. We present here a systematic study of both the conductivity and oxidative stability of hybrid electrolytes consisting of eleven ILs mixed with dipropylene glycol dimethylether (DPGDME) or acetonitrile (ACN) cosolvents and magnesium bis(trifluoromethylsulfonyl)imide (Mg(TFSI)2). Our study finds a correlation of higher conductivity of ILs with unsaturated rings and short carbon chain lengths, but by contrast, these ILs also exhibited lower oxidation voltage limits. For the cosolvent additive, although glymes have a demonstrated capability of coordination with Mg2+ ions, a decrease in conductivity compared to acetonitrile hybrid electrolytes was observed. Lastly, when cycled within the appropriate voltage range, the IL-hybrid electrolytes that show the highest conductivity provide the best cathode magnesiation current densities and lowest polarization as demonstrated with a Mg0.15MnO2 and Mg0.07V2O5 cathodes.

  19. Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium-sulfur battery

    NASA Astrophysics Data System (ADS)

    Barghamadi, Marzieh; Best, Adam S.; Bhatt, Anand I.; Hollenkamp, Anthony F.; Mahon, Peter J.; Musameh, Mustafa; Rüther, Thomas

    2015-11-01

    The lithium-sulfur (Li-S) battery in which the ionic liquid (IL) C4mpyr-TFSI is a major component of the electrolyte has attracted much attention by researchers due to the ability of the IL to suppress the polysulfide shuttle effect, combined with advantageous properties of thermal, chemical and electrochemical stability. In a largely parallel stream of research, LiNO3 has come to be known as an additive for improving Li-S battery performance through its influence on protecting the lithium anode and beneficial interaction with the polysulfide shuttle. In this work a deeper understanding is sought of the combined effects of LiNO3 and C4mpyr-TFSI on the factors that impact Li-S cell performance. Specifically, we investigate the formation of the protective surface film on lithium anode and results are compared with those for a typical organic electrolyte for the Li-S battery, DOL:DME. Electrochemical impedance spectroscopy (EIS) confirms that the LiNO3 additive is vital to achieving acceptable levels of performance with the organic electrolyte. Although LiNO3 improves the performance of a battery assembled with IL containing electrolyte, it shows a higher impact in the organic electrolyte based battery. Furthermore X-ray photoelectron spectroscopy (XPS) spectra confirm the participation of C4mpyr-TFSI on the formation of the interphase layer on the anode.

  20. Oxygen reduction and evolution in an ionic liquid ([BMP][TFSA]) based electrolyte: A model study of the cathode reactions in Mg-air batteries

    NASA Astrophysics Data System (ADS)

    Law, Y. T.; Schnaidt, J.; Brimaud, S.; Behm, R. J.

    2016-11-01

    Aiming at a molecular scale understanding of the cathode processes in an Mg-air battery, we have investigated the oxygen reduction (ORR) and oxygen evolution (OER) reactions under well-defined conditions, using an ionic liquid (butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide, [BMP][TFSA]) based electrolyte and polycrystalline Au and glassy carbon, respectively, as model electrodes. Electrochemical measurements performed under enforced electrolyte flow provide information on the electrochemical and electrocatalytic properties of these electrodes, in particular on the reversibility of the ORR/OER both in the absence and in the presence of Mg2+ in the electrolyte, and on the build-up of a reaction inhibiting passivation layer (solid-electrolyte interphase). Further information on the nature of the deposits and their dependence both on the electrode material and on the potential cycling conditions is derived from scanning electron microscopy/energy dispersive X-ray spectroscopy and from X-ray photoelectron spectroscopy measurements performed ex situ after the electrochemical measurements. Consequences of these results on the understanding of the ORR/OER under these conditions and in particular of the nature and role of the solid-electrolyte interphase layer formed during potential cycling and their relevance for the operation of Mg-air batteries are discussed.

  1. β-cyclodextrin-ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis.

    PubMed

    Zhou, Chunyan; Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu

    2016-12-16

    Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono-6-deoxy-6-(3-methylimidazolium)-β-cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β-cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β-cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β-cyclodextrin ionic liquid. The satisfied result demonstrated that the β-cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation.

  2. The potential of incorporation of binary salts and ionic liquid in P(VP-co-VAc) gel polymer electrolyte in electrochemical and photovoltaic performances

    NASA Astrophysics Data System (ADS)

    Ming, Ng Hon; Ramesh, S.; Ramesh, K.

    2016-06-01

    In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10-3 S cm-1 and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10-3 S cm-1 and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples.

  3. The potential of incorporation of binary salts and ionic liquid in P(VP-co-VAc) gel polymer electrolyte in electrochemical and photovoltaic performances.

    PubMed

    Ming, Ng Hon; Ramesh, S; Ramesh, K

    2016-06-08

    In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10(-3) S cm(-1) and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10(-3) S cm(-1) and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples.

  4. The potential of incorporation of binary salts and ionic liquid in P(VP-co-VAc) gel polymer electrolyte in electrochemical and photovoltaic performances

    PubMed Central

    Ming, Ng Hon; Ramesh, S.; Ramesh, K.

    2016-01-01

    In this study, dye-sensitized solar cells (DSSCs) has been assembled with poly(1-vinylpyrrolidone-co-vinyl acetate) (P(VP-co-VAc)) gel polymer electrolytes (GPEs) which have been incorporated with binary salt and an ionic liquid. The potential of this combination was studied and reported. The binary salt system GPEs was having ionic conductivity and power conversion efficiency (PCE) that could reach up to 1.90 × 10−3 S cm−1 and 5.53%, respectively. Interestingly, upon the addition of the ionic liquid, MPII into the binary salt system the ionic conductivity and PCE had risen steadily up to 4.09 × 10−3 S cm−1 and 5.94%, respectively. In order to know more about this phenomenon, the electrochemical impedance studies (EIS) of the GPE samples have been done and reported. Fourier transform infrared studies (FTIR) and thermogravimetric analysis (TGA) have also been studied to understand more on the structural and thermal properties of the GPEs. The Nyquist plot and Bodes plot studies have been done in order to understand the electrochemical properties of the GPE based DSSCs and Tafel polarization studies were done to determine the electrocatalytic activity of the GPE samples. PMID:27273020

  5. The buffer effect in neutral electrolyte supercapacitors

    NASA Astrophysics Data System (ADS)

    Vindt, Steffen T.; Skou, Eivind M.

    2016-02-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading to a change in the redox potential of water in opposite directions on the two electrodes, resulting in the wider stability window. The magnitude of this effect is suggested to be dependent on the buffer capacity, rather than the intrinsic pH value of the electrolyte. This is confirmed by studying the impact of addition of a buffer to such systems. It is shown that a 56 % higher dynamic storage capacity may be achieved, simply by controlling the buffer capacity of the electrolyte. The model system used, is based on a well-known commercial activated carbon (NORIT™ A SUPRA) as the electrode material, aqueous potassium nitrate as the electrolyte and potassium phosphates as the buffer system.

  6. Structure, ion transport, and relaxation dynamics of polyethylene oxide/poly (vinylidene fluoride co-hexafluoropropylene)—lithium bis(trifluoromethane sulfonyl) imide blend polymer electrolyte embedded with ionic liquid

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-03-01

    We have studied structure, ion transport, and relaxation dynamics in polyethylene oxide/poly (vinylidene fluoride-hexafluoropropylene)-lithium bis(trifluoromethane)sulfonimide blend polymer electrolytes embedded with 1-propyl-3-methyleimidazoliuum bis(trifluromethyle-sulfonyl)imide ionic liquid. Structural property and ion-polymer interaction of polymer electrolytes have been studied using X-ray diffraction and Raman spectroscopy. The addition of ionic liquid decreases glass transition temperature and reduces crystalline phase in the polymer matrix. It is also observed that surface becomes smooth with increase of ionic liquid content. The temperature dependence of the Li ion conductivity follows Vogel-Tammann-Fulcher type behaviour when a sufficient amount of ionic liquid is added to polymer matrix. The electric modulus has been studied using Havriliak-Negami function for the understanding of ion dynamics. The modulus data have been analyzed using non-exponential Kohlrausch-Williams-Watts function. It is observed that the non-exponential parameter β is quite lower than unity, suggesting existence of a non-exponential relaxation. The temperature dependence of the relaxation time also follows Vogel-Tammann-Fulcher relation for compositions with higher ionic liquid content.

  7. Binary room-temperature ionic liquids based electrolytes solidified with SiO 2 nanoparticles for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Kun-Mu; Chen, Po-Yen; Lee, Chuan-Pei; Ho, Kuo-Chuan

    In this study, binary ionic liquids (bi-IL) of imidazolium salts containing cations with different carbon side chain lengths (C = 2, 4, 6, 8) and anions such as iodide (I -), tetrafluoroborate (BF 4 -), hexafluorophosphate (PF 6 -) and trifluoromethansulfonate (SO 3CF 3 -) were used as electrolytes in dye-sensitized solar cells (DSSCs). On increasing the side chain length of imidazolinium salts, the diffusion coefficients of I 3 - and the cell conversion efficiencies decreased; however, the electron lifetimes in TiO 2 electrode increased. As for different anions, the cell which contains 1-butyl-3-methyl imidazolium trifluoromethansulfonate (BMISO 3CF 3) electrolyte has better performance than those containing BMIBF 4 and BMIPF 6. From the impedance measurement, the cell containing BMISO 3CF 3 electrolyte has a small charge transfer resistance (R ct2) at the TiO 2/dye/electrolyte interface. Moreover, the characteristic frequency peak for TiO 2 in the cell based on BMISO 3CF 3 is less than that of BMIBF 4 and BMIPF 6, indicating the cell with bi-IL electrolyte based on BMISO 3CF 3 has higher electron lifetime in TiO 2 electrode. Finally, the solid-state composite was introduced to form solid-state electrolytes for highly efficient DSSCs with a conversion efficiency of 4.83% under illumination of 100 mW cm -2. The long-term stability of DSSCs with a solidified bi-IL electrolyte containing SiO 2 nanoparticles, which is superior to that of a bi-IL electrolyte alone, was also presented.

  8. Dielectric study on mixtures of ionic liquids.

    PubMed

    Thoms, E; Sippel, P; Reuter, D; Weiß, M; Loidl, A; Krohns, S

    2017-08-07

    Ionic liquids are promising candidates for electrolytes in energy-storage systems. We demonstrate that mixing two ionic liquids allows to precisely tune their physical properties, like the dc conductivity. Moreover, these mixtures enable the gradual modification of the fragility parameter, which is believed to be a measure of the complexity of the energy landscape in supercooled liquids. The physical origin of this index is still under debate; therefore, mixing ionic liquids can provide further insights. From the chemical point of view, tuning ionic liquids via mixing is an easy and thus an economic way. For this study, we performed detailed investigations by broadband dielectric spectroscopy and differential scanning calorimetry on two mixing series of ionic liquids. One series combines an imidazole based with a pyridine based ionic liquid and the other two different anions in an imidazole based ionic liquid. The analysis of the glass-transition temperatures and the thorough evaluations of the measured dielectric permittivity and conductivity spectra reveal that the dynamics in mixtures of ionic liquids are well defined by the fractions of their parent compounds.

  9. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  10. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes.

    PubMed

    Hu, Chengguo; Bai, Xiaoyun; Wang, Yingkai; Jin, Wei; Zhang, Xuan; Hu, Shengshui

    2012-04-17

    A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.

  11. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature

    NASA Astrophysics Data System (ADS)

    Lux, Simon F.; Schmuck, Martin; Appetecchi, Giovanni B.; Passerini, Stefano; Winter, Martin; Balducci, Andrea

    In this paper we report the results about the use of ternary room temperature ionic liquid-lithium salt mixtures as electrolytes for lithium-ion battery systems. Mixtures of N-methyl- N-propyl pyrrolidinium bis(fluorosulfonyl) imide, PYR 13FSI, and N-butyl- N-methylpyrrolidinium bis(trifluoromethansulfonyl) imide, PYR 14TFSI, with lithium hexafluorophosphate, LiPF 6 and lithium bis(trifluoromethansulfonyl) imide, LiTFSI, containing 5 wt.% of vinylene carbonate (VC) as additive, have been used in combination with a commercial graphite, KS6 TIMCAL. The performance of the graphite electrodes has been considered in term of specific capacity, cycling efficiency and cycling stability. The results clearly show the advantage of the use of ternary mixtures on the performance of the graphite electrode.

  12. Thermal, vibrational, and dielectric studies on PVP/LiBF4+ionic liquid [EMIM][BF4]-based polymer electrolyte films

    NASA Astrophysics Data System (ADS)

    Saroj, A. L.; Singh, R. K.; Chandra, S.

    2014-07-01

    Free-standing polymer electrolyte membranes based on poly(vinyl) pyrrolidone (PVP)/salt(LiBF4) having different amounts of ionic liquid (IL) [EMIM][BF4] were prepared and characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, and alternating current (AC) impedance spectroscopic techniques. The DSC results show a shift in Tm of PVP with salt/or IL content. TGA and DTGA (first derivative of TGA) results give evidence of the presence of uncomplexed PVP, PVP/salt, and PVP/IL complexes. Signatures of these entities are also present in the dielectric spectra. Complexation of PVP with salt and IL has been confirmed by FT-IR analysis. Electrical conductivity as a function of temperature has been studied for PVP/LiBF4/IL [EMIM][BF4]. Role of IL in changing phase transition, conductivity, and dielectric relaxation frequency has been discussed.

  13. IMIDAZOLE-BASED IONIC LIQUIDS FOR USE IN POLYMER ELECTROLYTE MEMBRANE FUEL CELLS: EFFECT OF ELECTRON-WITHDRAWING AND ELECTRON-DONATING SUBSTITUENTS

    SciTech Connect

    Chang, E.; Fu, Y.; Kerr, J.

    2009-01-01

    Current polymer electrolyte membrane fuel cells (PEMFCs) require humidifi cation for acceptable proton conductivity. Development of a novel polymer that is conductive without a water-based proton carrier is desirable for use in automobiles. Imidazole (Im) is a possible replacement for water as a proton solvent; Im can be tethered to the polymer structure by means of covalent bonds, thereby providing a solid state proton conducting membrane where the solvating groups do not leach out of the fuel cell. These covalent bonds can alter the electron availability of the Im molecule. This study investigates the effects of electron-withdrawing and electron-donating substituents on the conductivity of Im complexed with methanesulfonic acid (MSA) in the form of ionic liquids. Due to the changes in the electronegativity of nitrogen, it is expected that 2-phenylimidazole (2-PhIm, electron-withdrawing) will exhibit increased conductivity compared to Im, while 2-methylimidazole (2-MeIm, electron-donating) will exhibit decreased conductivity. Three sets of ionic liquids were prepared at defi ned molar ratios: Im-MSA, 2-PhIm-MSA, and 2-MeIm- MSA. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and 1H-NMR were used to characterize each complex. Impedance analysis was used to determine the conductivity of each complex. Both the 2-PhIm-MSA and 2-MeIm-MSA ionic liquids were found to be less conductive than the Im-MSA complex at base-rich compositions, but more conductive at acid-rich compositions. 1H-NMR data shows a downfi eld shift of the proton on nitrogen in 2-PhIm compared to Im, suggesting that other factors may diminish the electronic effects of the electron withdrawing group at base-rich compositions. Further studies examining these effects may well result in increased conductivity for Im-based complexes. Understanding the conductive properties of Im-derivatives due to electronic effects will help facilitate the development of a new electrolyte

  14. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability

    NASA Astrophysics Data System (ADS)

    Zhao, Ningning; Liu, Yulin; Zhao, Xiaomeng; Song, Hongzan

    2016-01-01

    We report a novel class of liquid crystalline (LC) nanohybrid ionogels fabricated via self-assembly of natural halloysite nanotubes (HNTs) in ionic liquids (ILs). The obtained ionogels are very stable and nonvolatile and show LC phases over a wide temperature range. Remarkably, the nanocomposite ionogels exhibit high anisotropic ionic conductivity after shear, and their room temperature ionic conductivity can reach 3.8 × 10-3 S cm-1 for aligned nanotubes perpendicular to the electrode even when the HNTs content increases to 40 wt%, which is 380 times higher than that obtained for aligned nanotubes parallel to the electrode, which is 1.0 × 10-5 S cm-1. Crucially, the obtained LC nanocomposite ionogels have very high thermal stability, which can sustain 400 °C thermal treatment. The findings will promote the development of novel nanocomposite ionogel electrolytes with faster ion transport and larger anisotropic conductivity.We report a novel class of liquid crystalline (LC) nanohybrid ionogels fabricated via self-assembly of natural halloysite nanotubes (HNTs) in ionic liquids (ILs). The obtained ionogels are very stable and nonvolatile and show LC phases over a wide temperature range. Remarkably, the nanocomposite ionogels exhibit high anisotropic ionic conductivity after shear, and their room temperature ionic conductivity can reach 3.8 × 10-3 S cm-1 for aligned nanotubes perpendicular to the electrode even when the HNTs content increases to 40 wt%, which is 380 times higher than that obtained for aligned nanotubes parallel to the electrode, which is 1.0 × 10-5 S cm-1. Crucially, the obtained LC nanocomposite ionogels have very high thermal stability, which can sustain 400 °C thermal treatment. The findings will promote the development of novel nanocomposite ionogel electrolytes with faster ion transport and larger anisotropic conductivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06888f

  15. Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid as electrolyte

    NASA Astrophysics Data System (ADS)

    Fiegenbaum, Fernanda; de Souza, Michèle O.; Becker, Márcia R.; Martini, Emilse M. A.; de Souza, Roberto F.

    2015-04-01

    The hydrogen evolution reaction (HER) performed with platinum (Pt), nickel (Ni), stainless steel 304 (SS) or glassy carbon (GC) cathodes in 0.1 M 3-triethylammonium-propanesulfonic acid tetrafluoroborate (TEA-PS.BF4) solution is studied using quasi-potentiostatic and impedance spectroscopy techniques. The objective is to compare the catalytic effect on the cathode using different materials to obtain hydrogen by water electrolysis. Furthermore, the catalytic effect of the ionic liquid (IL) on the cathode compared with that of a hydrochloric acid (HCl) solution with same pH value (0.8) is reported. A low activation energy (Ea) of 8.7 kJ mol-1 is found for the glassy carbon cathode. Tafel plots obtained with TEA-PS.BF4 IL suggest the formation of an electroactive layer of IL on the cathode, which may be responsible for the catalytically enhanced performance observed.

  16. Extent of the influence of phosphate buffer and ionic liquids on the reduction of the silanol effect in a C18 stationary phase.

    PubMed

    Carda-Broch, S; García-Alvarez-Coque, M C; Ruiz-Angel, M J

    2017-06-01

    The presence of anionic free silanols in the silica-based stationary phases gives rise to broad and asymmetrical peaks when cationic basic compounds are chromatographed using hydro-organic mobile phases. The addition to the mobile phase of a reagent with ionic character prevents the access of analytes to the free silanols, improving the peak shape. The silanol activity can be affected by the buffer concentration and mobile phase pH, factors that are not always considered sufficiently in the literature. In this work, the chromatographic behaviour of three basic β-adrenoceptor antagonists (acebutolol, nadolol and timolol), using mobile phases containing acetonitrile, was examined at different phosphate buffer concentrations (5-50mM) and mobile phase pH (2-8), in the absence and presence of three imidazolium-based ionic liquids (1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium chloride). All factors were evaluated through both the retention and peak shape. The imidazolium cations can block the access of cationic analytes through electrostatic interaction with the anionic silanols, or association with the alkyl chains bound to the stationary phase. In previous reports, the protection mechanism was demonstrated to be directly related to the cation size. The studies in this work reveal that the effectiveness of the mobile phase additive as silanol blocker also depends on the concentration of the buffer anion and the protonation degree of the silanols on the stationary phase. Increasing amounts of phosphate at low pH give rise to increasing retention times. Also, the peak shape is improved, which indicates the influence of phosphate on blocking the activity of free silanols. However, the benefits obtained by the combined effect of buffering the mobile phase at low pH and the use of a bulky additive are lost at pH>6. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influence of the ionic liquid/gas surface on ionic liquid chemistry.

    PubMed

    Lovelock, Kevin R J

    2012-04-21

    Applications such as gas storage, gas separation, NP synthesis and supported ionic liquid phase catalysis depend upon the interaction of different species with the ionic liquid/gas surface. Consequently, these applications cannot proceed to the full extent of their potential without a profound understanding of the surface structure and properties. As a whole, this perspective contains more questions than answers, which demonstrates the current state of the field. Throughout this perspective, crucial questions are posed and a roadmap is proposed to answer these questions. A critical analysis is made of the field of ionic liquid/gas surface structure and properties, and a number of design rules are mined. The effects of ionic additives on the ionic liquid/gas surface structure are presented. A possible driving force for surface formation is discussed that has, to the best of my knowledge, not been postulated in the literature to date. This driving force suggests that for systems composed solely of ions, the rules for surface formation of dilute electrolytes do not apply. The interaction of neutral additives with the ionic liquid/gas surface is discussed. Particular attention is focussed upon H(2)O and CO(2), vital additives for many applications of ionic liquids. Correlations between ionic liquid/gas surface structure and properties, ionic liquid surfaces plus additives, and ionic liquid applications are given.

  18. Final Technical Report: SISGR: The Influence of Electrolyte Structure and Electrode Morphology on the Performance of Ionic-Liquid Based Supercapacitors: A Combined Experimental and Simulation Study

    SciTech Connect

    Bedrov, Dmitry

    2013-08-15

    Obtaining fundamental understanding and developing predictive modeling capabilities of electrochemical interfaces can significantly shorten the development cycles of electrical double layer capacitors (EDLCs). A notable improvement in EDLC performance has been achieved due to recent advances in understanding charge storage mechanisms, development of advanced nanostructured electrodes and electrochemically stable electrolytes. The development of new generation of EDLCs is intimately linked to that of nanostructured carbon materials which have large surface area, good adsorption/desorption properties, good electrical conductivity and are relatively inexpensive. To address these scientific challenges the efforts of an interdisciplinary team of modelers and experimentalists were combined to enhance our understanding of molecular level mechanisms controlling the performance of EDLCs comprised of room temperature ionic liquid (RTIL) electrolytes and nanostructured carbon-based electrodes and to utilize these knowledge in the design of a new generation of materials and devices for this energy storage application. Specifically our team efforts included: atomistic molecular dynamics simulations, materials science and electrode/device assembly, and synthesis and characterization of RTIL electrolytes.

  19. New Ether-functionalized Morpholinium- and Piperidinium-based Ionic Liquids as Electrolyte Components in Lithium and Lithium-Ion Batteries.

    PubMed

    Navarra, Maria Assunta; Fujimura, Kanae; Sgambetterra, Mirko; Tsurumaki, Akiko; Panero, Stefania; Nakamura, Nobuhumi; Ohno, Hiroyuki; Scrosati, Bruno

    2017-06-09

    Here, two ionic liquids, N-ethoxyethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide (M1,2O2 TFSI) and N-ethoxyethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (P1,2O2 TFSI) were synthesized and compared. Fundamental relevant properties, such as thermal and electrochemical stability, density, and ionic conductivity were analyzed to evaluate the effects caused by the presence of the ether bond in the side chain and/or in the organic cation ring. Upon lithium salt addition, two electrolytes suitable for lithium batteries applications were found. Higher conducting properties of the piperidinium-based electrolyte resulted in enhanced cycling performances when tested with LiFePO4 (LFP) cathode in lithium cells. When mixing the P1,2O2 TFSI/LiTFSI electrolyte with a tailored alkyl carbonate mixture, the cycling performance of both Li and Li-ion cells greatly improved, with prolonged cyclability delivering very stable capacity values, as high as the theoretical one in the case of Li/LFP cell configurations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrodeposition of aluminium and aluminium-copper alloys from a room temperature ionic liquid electrolyte containing aluminium chloride and triethylamine hydrochloride

    NASA Astrophysics Data System (ADS)

    Suneesh, P. V.; Satheesh Babu, T. G.; Ramachandran, T.

    2013-09-01

    The electrodeposition of Al and Al-Cu binary alloys on to gold substrates from a room temperature ionic liquid electrolyte containing AlCl3-Et3NHCl was studied. The electrochemical behavior of the electrolyte and the mechanism of deposition were investigated through cyclic voltammetry (CV), and the properties of deposits obtained were assessed by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray diffraction (XRD). Al of 70 μm in thickness and an Al-Cu alloy of 30 μm in thickness with 8at% copper were deposited from the electrolyte. SEM images of the deposits indicate that the Al deposit was smooth and uniform, whereas the Al-Cu deposit was nodular. The average crystalline size, as determined by XRD patterns, was found to be (30 ± 5) and (29 ± 5) nm, respectively, for Al and Al-Cu alloys. Potentiodynamic polarization (Tafel plots) and electrochemical impedance spectroscopic (EIS) measurements showed that Al-Cu alloys are more corrosion resistant than Al.

  1. Infrared studies of PVC-based electrolytes incorporated with lithium triflate and 1-butyl-3-methyl imidazolium trifluoromethanesulfonate as ionic liquid

    NASA Astrophysics Data System (ADS)

    Zulkepeli, Nik A. S. Nik; Winie, Tan; Subban, R. H. Y.

    2017-09-01

    In this work, 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMCF3SO3) is employed as ionic liquid in PVC-based polymer electrolyte system with lithium triflate (LiCF3SO3) as doping salt. The samples in film form were prepared by quantitatively varying the concentration of BMIMCF3SO3 to a fixed ratio of PVC-LiCF3SO3 using solution cast technique. The highest room temperature ionic conductivity of 1.120 × 10-7 Scm-1 was exhibited by PVC-LiCF3SO3-BMIMCF3SO3 containing 3 wt. % BMIMCF3SO3. FTIR spectra of the polymer electrolytes were examined to study the complexation of the PVC-based polymer electrolytes. Intensity of free ions, ion pairs, and ion aggregates were obtained from FTIR deconvolution in an attempt to correlate with ionic conductivity results. The intensity of free ions was found to be high for sample with 3 wt. % BMIMCF3SO3.

  2. Optimization of covalent immobilization of Trichoderma reesei cellulase onto modified ReliZyme HA403 and Sepabeads EC-EP supports for cellulose hydrolysis, in buffer and ionic liquids/buffer media.

    PubMed

    Bilgin, Ramazan; Yalcin, M Serkan; Yildirim, Deniz

    2016-08-01

    The covalent immobilization of Trichoderma reesei cellulase onto modified ReliZyme HA403 and Sepabeads EC-EP supports were carried out. The optimal immobilization conditions were determined using response surface methodology. The hydrolysis of cellulose using the free and immobilized cellulase preparations in ionic liquids (IL) using cosolvents was investigated. The hydrolytic activities in buffer medium containing 25% (v/v) of 1-butyl-3-methylimidazolium hexafluorophosphate were around 2.6-, 1.6-, and 5.5-fold higher than the activities in buffer medium. The retained initial activities were 32% and 57%, respectively for cellulase preparations immobilized onto Sepabeads EC-EP support and onto modified ReliZyme HA403 support after 5 reuses.

  3. Ionic Liquids in Lithium-Ion Batteries.

    PubMed

    Balducci, Andrea

    2017-04-01

    Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.

  4. The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells

    NASA Astrophysics Data System (ADS)

    Tucker, Telpriore G.

    This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl 4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4 -] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br 7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4 +][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases

  5. Transport properties and phase behaviour in binary and ternary ionic liquid electrolyte systems of interest in lithium batteries.

    PubMed

    Bayley, Paul M; Best, Adam S; MacFarlane, Douglas R; Forsyth, Maria

    2011-03-14

    A binary ionic liquid (IL) system based on a common cation, N-methyl-N-propylpyrrolidinium (C(3) mpyr(+)), and either bis(trifluoromethanesulfonyl)imide (NTf(2) (-)) or bis(fluorosulfonyl) imide (FSI(-) as the anion is explored over its entire composition range. Phase behavior, determined by DSC, shows the presence of a eutectic temperature at 247 K and composition around an anion ratio of 2:1 (FSI(-) :NTf(2)(-)) with the phase diagram for this system proposed (under the thermal conditions used). Importantly for electrochemical devices, the single phase melting transition at the eutectic is well below ambient temperatures (247 K). To investigate the effect of such anion mixing on the lithium ion speciation, conductivity and PFG-NMR diffusion measurements were performed in both the binary IL system as well as the Li-NTf(2) -containing ternary system. The addition of the lithium salt to the mixed IL system resulted in a decrease in conductivity, as is commonly observed in the single-component IL systems. For a fixed lithium salt composition, both conductivity and ion diffusion have linear behaviour as a function of the anion ratio, however, the rate of change of the diffusion coefficient seems greater in the presence of lithium. From the application point of view, the addition of the FSI(-) to the NTf(2)(-) IL results in a considerable increase in lithium ion diffusivity at room temperature and no evidence of additional complex ion behaviour.

  6. Ionic liquids for rechargeable lithium batteries

    SciTech Connect

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  7. Compatibility of poly(bisAEA4)-LiTFSI-MPPipTFSI ionic liquid gel polymer electrolyte with Li4Ti5O12 lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Stepniak, Izabela

    2014-02-01

    This paper presents the use of Li4Ti5O12 (LTO) as anode with ionic liquid gel polymer electrolyte (IL-GPE) for application in lithium ion batteries. IL-GPE was obtained by in situ photopolymerization method of a mixture of ethoxylated bisphenol A diacrylate (bis(AEA4) and 0.4 M solution of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (MPPipTFSI). The surface morphology of the IL-GPE was studied using scanning electron microscopy (SEM). Stable, porous and flexible gel polymer electrolyte characterized high ionic conductivity (0.64 mS cm-1 at 25 °C) and a wide electrochemical stability window (ESW) (4.8 V). The performances of LTO/IL-GPE/Li cell were tested by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge. Good charge/discharge capacities and low capacity loss at medium C rates preliminary cycling was obtained.

  8. Two-ply yarn supercapacitor based on carbon nanotube/stainless steel core-sheath yarn electrodes and ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Lyu, Xiaoming; Su, Fenghua; Miao, Menghe

    2016-03-01

    Linear supercapacitors have great potential as power source in electronic textiles. However, the energy density of most yarn supercapacitors reported so far is still quite low and decreases significantly as the supercapacitor length increases. Here, we report a two-ply yarn supercapacitor based on carbon nanotube/stainless steel core-sheath yarn electrode and ionic liquid electrolyte. The use of IL gel electrolyte widens the potential window of supercapacitor from 1.0 V to 2.7 V. The carbon nanotube/stainless steel core-sheath yarn structure greatly improves the charge transport efficiency and allows the length of the linear supercapacitor to be significantly scaled up. The resulting supercapacitor has shown outstanding electrochemical performances with a high volumetric capacitance of 263.31 F cm-3 and energy density of 6.67×10-2 Wh cm-3. The two-ply yarn supercapacitors are also very flexible and strong for use as sewing thread and for making knots without significant loss of their energy storage capacity.

  9. Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 °C-80 °C

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tsay, Ken; Bock, Christina; Zhang, Jiujun

    2016-08-01

    To increase the operating temperature of the supercapacitors (SCs) without compromising their high cycle-life, several typical fluoro- and non-fluoro containing ionic liquids (EMI-mesylate, EMI-hydrogen sulfate, PP13-triflate, PP13-TFSI, and EMI-TFSI, as shown in Fig. 1) are studied as the electrolytes to prepare organic solutions for SC performance measurements using a two-electrode cell. Both cyclic voltammograms and charge/discharge curves at various temperatures such as 20, 40, 60 and 80 °C are collected. At 60 °C, the increased performance order in both rating and cyclability measurements are found to be as follows: 1) EMI-hydrogen sulfate < PP13-TFSI < EMI-mesylate < PP13-triflate < EMI-TFSI for rating; and 2) EMI-hydrogen sulfate < EMI-mesylate < PP13-Triflate < PP13-TFSI < EMI-TFSI for life-time. The fluoro-containing group of ILs, i.e., PP13-Triflate, PP13-TFSI and EMI-TFSI can give a specific capacitance between 100 and 170 F/g for various scan rates for a conventional carbon electrode, and an extended lifetime test of 10, 000 cycles with a capacitance degradation of less than 10%, indicating that these two ion liquids can be used for SC electrolytes operated at high temperature.

  10. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte

    DOE PAGES

    Lin, Zifeng; Rozier, Patrick; Duployer, Benjamin; ...

    2016-08-26

    2D titanium carbide (Ti3C2Tx MXene) showed good capacitance in both organic and neat ionic liquid electrolytes, but its charge storage mechanism is still not fully understood. Here, electrochemical characteristics of Ti3C2Tx electrode were studied in neat EMI-TFSI electrolyte. A capacitive behavior was observed within a large electrochemical potential range (from – 1.5 to 1.5 V vs. Ag). Intercalation and de-intercalation of EMI+ cations and/or TFSI– anions were investigated by in-situ X-ray diffraction. Interlayer spacing of Ti3C2Tx flakes decreases during positive polarization, which can be ascribed to either electrostatic attraction effect between intercalated TFSI– anions and positively charged Ti3C2Tx nanosheets ormore » steric effect caused by de-intercalation of EMI+ cations. In conclusion, the expansion of interlayer spacing when polarized to negative potentials is explained by steric effect of cation intercalation.« less

  11. Dendrite-Free Aluminum Electrodeposition from AlCl3-1-Ethyl-3-Methyl-Imidazolium Chloride Ionic Liquid Electrolytes

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Reddy, Ramana G.

    2012-06-01

    A novel, dendrite-free electrorefining of aluminum scrap alloys (A360) was investigated by using a low-temperature AlCl3-1-ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte on copper/aluminum cathodes. The bulk electrodeposition of aluminum was carried out at a fixed voltage of 1.5 V, temperatures 323 K to 383 K (50 °C to 110 °C), stirring rate (0 to 120 rpm), concentration (molar ratio AlCl3:EMIC = 1.25 to 2.0), and electrode surface modification (modified/unmodified). The study investigated the effect of electrode surface modification, cathode materials, temperature, stirring rate, electrolyte concentration, and deposition time on the deposit morphology of aluminum, cathode current density, and their role in production of dendrite-free aluminum deposit, which is essential for decreasing the production cost. The deposits were characterized using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was shown that electrode surface modification, cathode overpotential, and stirring rate play an important role in dendrite-free deposit. Modified electrodes and stirring (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential ( η_{{crt}} ≈ - 0.53V ) for dendrite formation. Pure aluminum (>99 pct) was deposited for all experiments with a current efficiency of 84 to 99 pct and energy consumption of 4.51 to 5.32 kWh/kg Al.

  12. All-solid-state supercapacitors with poly(3,4-ethylenedioxythiophene)-coated carbon fiber paper electrodes and ionic liquid gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Pandey, G. P.; Rastogi, A. C.; Westgate, Charles R.

    2014-01-01

    All-solid-state thin supercapacitors have been fabricated using current pulse polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) over carbon fiber paper and ionic liquid based gel polymer electrolyte. The PEDOT-coated carbon paper electrodes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) which confirm the porous morphology of PEDOT at the nanoscale and a high degree of ClO4- dopant ion conjugation. The performance characteristics of the supercapacitor cells have been evaluated by ac impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge techniques. The PEDOT electrode shows specific capacitance of ∼154.5 F g-1, which correspond to the cell area-normalized capacitance of 85 mF cm-2. The maximum specific energy and specific power of the solid-state supercapacitor cell, calculated from charge-discharge characteristics, are 6.5 Wh kg-1 and 11.3 kW kg-1, respectively. The solid-state supercapacitor shows good cycle durability and time stability. The thin, lightweight, gel electrolyte based supercapacitor shows considerable potential for low-cost, high-performance energy storage applications.

  13. Filler effect of ionic liquid attached titanium oxide on conducting property of poly(ethylene oxide)/poly(methyl methacrylate) composite electrolytes.

    PubMed

    Lee, Lyungyu; Kim, Ick-Jun; Yang, Sunhye; Kim, Seok

    2014-10-01

    Composite polymer electrolytes (CPEs) were prepared by containing blend of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) as a host polymer, propylene carbonate as a plasticizer, and LiClO4 as a salt. By an addition of a various content of ionic liquid attached TiO2 (IL-TiO2) to above electrolytes, the effects were studied. As a result, by increasing the IL-TiO2 content, the crystallinity of PEO was decreased and the ionic conductivity was increased. The ionic conductivity of CPEs was dependent on the content of IL-TiO2 and showed the highest value of 1.05 x 10(-4) S/cm at 9 wt.%. However, when IL-TiO2 content exceeds 9 wt.%, the ionic conductivity was decreased due to the slow ionic transport due to immiscibility or aggregation of the IL-TiO2 filler within the polymer film matrix.

  14. Charge carrier dynamics and relaxation in (polyethylene oxide-lithium-salt)-based polymer electrolyte containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide as ionic liquid.

    PubMed

    Karmakar, A; Ghosh, A

    2011-11-01

    In this paper we report the dynamics of charge carriers and relaxation in polymer electrolytes based on polyethylene oxide (PEO), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPTFSI) ionic liquid prepared by solution cast technique. It has been observed that the incorporation of BMPTFSI into PEO-LiTFSI electrolyte is an effective way for increasing the amorphous phase to a large extent. It has also been observed that both the glass transition and melting temperatures decrease with the increase of BMPTFSI concentration. The ionic conductivity of these polymer electrolytes increases with the increase of BMPTFSI concentration. The highest ionic conductivity obtained at 25 °C is ~3×10(-4) S cm(-1) for the electrolyte containing 60 wt % BMPTFSI and ethylene oxide (EO)/Li ratio of 20. The temperature dependence of the dc conductivity and the hopping frequency show Vogel-Tamman-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The frequency dependence of the ac conductivity exhibits a power law with an exponent n which decreases with the increase of temperature. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and BMPTFSI concentrations. We have also presented the electric modulus data which have been analyzed in the framework of a Havriliak-Negami equation and the shape parameters obtained by the analysis show slight temperature dependence, but change sharply with BMPTFSI concentration. The stretched exponent β obtained from Kohlrausch-Williams-Watts fit to the modulus data is much lower than unity signifying that the relaxation is highly nonexponential. The decay function obtained from analysis of experimental modulus data is highly asymmetric with time.

  15. Charge carrier dynamics and relaxation in (polyethylene oxide-lithium-salt)-based polymer electrolyte containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide as ionic liquid

    NASA Astrophysics Data System (ADS)

    Karmakar, A.; Ghosh, A.

    2011-11-01

    In this paper we report the dynamics of charge carriers and relaxation in polymer electrolytes based on polyethylene oxide (PEO), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPTFSI) ionic liquid prepared by solution cast technique. It has been observed that the incorporation of BMPTFSI into PEO-LiTFSI electrolyte is an effective way for increasing the amorphous phase to a large extent. It has also been observed that both the glass transition and melting temperatures decrease with the increase of BMPTFSI concentration. The ionic conductivity of these polymer electrolytes increases with the increase of BMPTFSI concentration. The highest ionic conductivity obtained at 25 °C is ˜3×10-4 S cm-1 for the electrolyte containing 60 wt % BMPTFSI and ethylene oxide (EO)/Li ratio of 20. The temperature dependence of the dc conductivity and the hopping frequency show Vogel-Tamman-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The frequency dependence of the ac conductivity exhibits a power law with an exponent n which decreases with the increase of temperature. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and BMPTFSI concentrations. We have also presented the electric modulus data which have been analyzed in the framework of a Havriliak-Negami equation and the shape parameters obtained by the analysis show slight temperature dependence, but change sharply with BMPTFSI concentration. The stretched exponent β obtained from Kohlrausch-Williams-Watts fit to the modulus data is much lower than unity signifying that the relaxation is highly nonexponential. The decay function obtained from analysis of experimental modulus data is highly asymmetric with time.

  16. Modeling of ionic liquids

    NASA Astrophysics Data System (ADS)

    Tatlipinar, Hasan

    2017-02-01

    Ionic liquids are very important entry to industry and technology. Because of their unique properties they may classified as a new class of materials. IL usually classified as a high temperature ionic liquids (HTIL) and room temperature ionic liquids (RTIL). HTIL are molten salts. There are many research studies on molten salts such as recycling, new energy sources, rare elements mining. RTIL recently become very important in daily life industry because of their "green chemistry" properties. As a simple view ionic liquids consist of one positively charged and one negatively charged components. Because of their Coulombic or dispersive interactions the local structure of ionic liquids emerges. In this presentation the local structural properties of the HTIL are discussed via correlation functions and integral equation theories. RTIL are much more difficult to do modeling, but still general consideration for the modeling of the HTIL is valid also for the RTIL.

  17. Hybrid electrolytes prepared from ionic liquid-grafted alumina for high-efficiency quasi-solid-state dye-sensitized solar cells.

    PubMed

    Chi, Won Seok; Roh, Dong Kyu; Kim, Sang Jin; Heo, Sung Yeon; Kim, Jong Hak

    2013-06-21

    Alumina (Al2O3) nanoparticles were covalently surface-modified with an ionic liquid (IL) to improve their miscibility with ILs such as 1-methyl-3-propylimidazolium iodide (MPII). Hybrids consisting of MPII and the surface-modified IL-Al2O3 nanoparticles were utilized as an I2-free electrolyte for quasi-solid-state dye-sensitized solar cells (DSSCs). The synthesis and properties of the IL-Al2O3 nanoparticles and hybrid electrolytes were characterized by Fourier transform infrared (FT-IR) spectroscopy, UV-visible spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The viscosity of the electrolyte continuously increased with the content of IL-Al2O3, and the fluidity almost disappeared completely when the MPII:IL-Al2O3 weight ratio was 95 : 5 or 90 : 10. The energy conversion efficiencies of DSSCs fabricated with IL-Al2O3 were always greater than those with pristine Al2O3. Such a finding is due to the favorable interactions and good miscibility between MPII and IL-Al2O3, which in turn results in the formation of an interconnected channel pathway for ion transport. Incident photon-to-electron conversion efficiency (IPCE), intensity modulated photocurrent spectroscopy (IMPS)/intensity-modulated photovoltage spectroscopy (IMVS), and electrochemical impedance spectroscopy (EIS) measurements were used to investigate the interfacial properties and electron transport characteristics. Upon utilizing double-layer structures with mesoporous TiO2 beads, the efficiency increased to 7.6% at 100 mW cm(-2), one of the highest values reported for quasi-solid-state DSSCs.

  18. Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI], [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bennett, William R.; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W., Jr.; Lawson, John W.

    2014-01-01

    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li (-) salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing xLi, the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of xLi 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).

  19. Investigation of Structure and Transport in Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI] and [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bennett, William R.; Hernandez-Lugo, Dione M.; Wu, James; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2014-01-01

    Ionic liquid electrolytes have been proposed as a means of improving the safety and cycling behavior of advanced lithium batteries; however, the properties of these electrolytes under high lithium doping are poorly understood. Here, we employ both polarizable molecular dynamics simulation and experiment to investigate the structure, thermodynamics and transport of three potential electrolytes, N-methyl-Nbutylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N- methyl-Npropylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-- methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt concentration and temperature. Structurally, Li(+) is shown to be solvated by three anion neighbors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of x(sub Li) we find the presence of lithium aggregates. Furthermore, the computed density, diffusion, viscosity, and ionic conductivity show excellent agreement with experimental data. While the diffusion and viscosity exhibit a systematic decrease and increase, respectively, with increasing x(sub Li), the contribution of Li(+) to ionic conductivity increases until reaching a saturation doping level of x(sub Li) is approximately 0.10. Comparatively, the Li(+) conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1 - 0.3 mS/cm. The differences in Li(+) transport are reflected in the residence times of Li(+) with the anions, which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, we comment on the relative kinetics of Li(+) transport in each liquid and we present strong evidence for transport through anion exchange (hopping) as opposed to the net motion of Li(+) with its solvation shell (vehicular).

  20. First Principles Modeling of Structure and Transport in Solid Polymer Electrolytes, Ionic Liquids, and Methanol/Water Mixtures

    DTIC Science & Technology

    2016-02-10

    Received Paper 2.00 3.00 Jun He, Stephen J. Paddison. Structural relaxation and cation (H+, Li+, Na+) diffusion in crystallinepolymer electrolytes...I: Structural Relaxation and Cation (Li+, H+, Na+) Diffusion in Crystalline Polymer Electrolytes Note: See attached manuscript (to be submitted to...function of cation-oxygen (1), and cation-P (2) in relaxed crystalline PEO6:HPF6, PEO6:LiPF6 (b), and PEO6:NaPF6 at 300 K. The integrated total

  1. Nanoconfined Ionic Liquids.

    PubMed

    Zhang, Shiguo; Zhang, Jiaheng; Zhang, Yan; Deng, Youquan

    2016-12-29

    Ionic liquids (ILs) have been widely investigated as novel solvents, electrolytes, and soft functional materials. Nevertheless, the widespread applications of ILs in most cases have been hampered by their liquid state. The confinement of ILs into nanoporous hosts is a simple but versatile strategy to overcome this problem. Nanoconfined ILs constitute a new class of composites with the intrinsic chemistries of ILs and the original functions of solid matrices. The interplay between these two components, particularly the confinement effect and the interactions between ILs and pore walls, further endows ILs with significantly distinct physicochemical properties in the restricted space compared to the corresponding bulk systems. The aim of this article is to provide a comprehensive review of nanoconfined ILs. After a brief introduction of bulk ILs, the synthetic strategies and investigation methods for nanoconfined ILs are documented. The local structure and physicochemical properties of ILs in diverse porous hosts are summarized in the next sections. The final section highlights the potential applications of nanoconfined ILs in diverse fields, including catalysis, gas capture and separation, ionogels, supercapacitors, carbonization, and lubrication. Further research directions and perspectives on this topic are also provided in the conclusion.

  2. Dynamics of Ion Transport in Ionic Liquids.

    PubMed

    Lee, Alpha A; Kondrat, Svyatoslav; Vella, Dominic; Goriely, Alain

    2015-09-04

    A gap in understanding the link between continuum theories of ion transport in ionic liquids and the underlying microscopic dynamics has hindered the development of frameworks for transport phenomena in these concentrated electrolytes. Here, we construct a continuum theory for ion transport in ionic liquids by coarse graining a simple exclusion process of interacting particles on a lattice. The resulting dynamical equations can be written as a gradient flow with a mobility matrix that vanishes at high densities. This form of the mobility matrix gives rise to a charging behavior that is different to the one known for electrolytic solutions, but which agrees qualitatively with the phenomenology observed in experiments and simulations.

  3. Radicals in ionic liquids.

    PubMed

    Strehmel, Veronika

    2012-05-14

    Stable radicals and recombination of photogenerated lophyl radicals are investigated in ionic liquids. The 2,2,6,6-tetramethylpiperidine-1-yloxyl derivatives contain various substituents at the 4-position to the nitroxyl group, including hydrogen-bond-forming or ionic substituents that undergo additional interactions with the individual ions of the ionic liquids. Some of these spin probes contain similar ions to ionic liquids to avoid counter-ion exchange with the ionic liquid. Depending on the ionic liquid anion, the Stokes-Einstein theory or the Spernol-Gierer-Wirtz theory can be applied to describe the temperature dependence of the average rotational correlation time of the spin probe in the ionic liquids. Furthermore, the spin probes give information about the micropolarity of the ionic liquids. In this context the substituent at the 4-position to the nitroxyl group plays a significant role. Covalent bonding of a spin probe to the imidazolium ion results in bulky spin probes that are strongly immobilized in the ionic liquid. Furthermore, lophyl radical recombination in the dark, which is chosen to understand the dynamics of bimolecular reactions in ionic liquids, shows a slow process at longer timescale and a rise time at a shorter timescale. Although various reactions may contribute to the slower process during lophyl radical recombination, it follows a second-order kinetics that does not clearly show solvent viscosity dependence. However, the rise time, which may be attributed to radical pair formation, increases with increasing solvent viscosity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ionic liquids in tribology.

    PubMed

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  5. Different roles of ionic liquids in lithium batteries

    NASA Astrophysics Data System (ADS)

    Eftekhari, Ali; Liu, Yang; Chen, Pu

    2016-12-01

    Ionic liquids are often named solvents of the future because of flexibility in design. This statement has given credence that ionic liquids should simply replace the problematic electrolytes of lithium batteries. As a result, the promising potentials of ionic liquids in electrochemical systems are somehow obscured by inappropriate expectations. We summarize recent advancements in this field, especially, ionic liquids as standalone electrolytes, additives, plasticizers in gel polymer electrolytes, and binders; and attempt to shed light on the future pathway of this area of research. Ionic liquids are not dilute media to serve as pure solvents in electrochemical systems where mobility of ions is the priority; instead, they can contribute to the ionic conductivity of various components in a battery system. Owing to the enormous possibilities of ionic liquids, it is not merely a matter of choice. Ionic liquids can be used to design novel types of electrolytes for a new generation of lithium batteries. A promising possibility, which is still at a very early stage, is supercooled ionic liquid crystals for fast ion diffusion through the guided channels of a liquid-like medium. This, of course, will be a breakthrough in the realm of electrochemistry, far beyond lithium battery field, when materialized.

  6. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas.

  7. Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries.

    PubMed

    Porcarelli, Luca; Shaplov, Alexander S; Salsamendi, Maitane; Nair, Jijeesh R; Vygodskii, Yakov S; Mecerreyes, David; Gerbaldi, Claudio

    2016-04-27

    Polymer electrolytes have been proposed as replacement for conventional liquid electrolytes in lithium-ion batteries (LIBs) due to their intrinsic enhanced safety. Nevertheless, the power delivery of these materials is limited by the concentration gradient of the lithium salt. Single-ion conducting polyelectrolytes represent the ideal solution since their nature prevents polarization phenomena. Herein, the preparation of a new family of single-ion conducting block copolymer polyelectrolytes via reversible addition-fragmentation chain transfer polymerization technique is reported. These copolymers comprise poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) and poly(ethylene glycol) methyl ether methacrylate blocks. The obtained polyelectrolytes show low Tg values in the range of -61 to 0.6 °C, comparatively high ionic conductivity (up to 2.3 × 10(-6) and 1.2 × 10(-5) S cm(-1) at 25 and 55 °C, respectively), wide electrochemical stability (up to 4.5 V versus Li(+)/Li), and a lithium-ion transference number close to unity (0.83). Owing to the combination of all mentioned properties, the prepared polymer materials were used as solid polyelectrolytes and as binders in the elaboration of lithium-metal battery prototypes with high charge/discharge efficiency and excellent specific capacity (up to 130 mAh g(-1)) at C/15 rate.

  8. Are Ionic Liquids Chemically Stable?

    PubMed

    Wang, Binshen; Qin, Li; Mu, Tiancheng; Xue, Zhimin; Gao, Guohua

    2017-02-27

    Ionic liquids have attracted a great deal of interest in recent years, illustrated by their applications in a variety of areas involved with chemistry, physics, biology, and engineering. Usually, the stabilities of ionic liquids are highlighted as one of their outstanding advantages. However, are ionic liquids really stable in all cases? This review covers the chemical stabilities of ionic liquids. It focuses on the reactivity of the most popular imidazolium ionic liquids at structural positions, including C2 position, N1 and N3 positions, and C4 and C5 positions, and decomposition on the imidazolium ring. Additionally, we discuss decomposition of quaternary ammonium and phosphonium ionic liquids and hydrolysis and nucleophilic reactions of anions of ionic liquids. The review aims to arouse caution on potential decomposition of ionic liquids and provides a guide for better utilization of ionic liquids.

  9. Lithium-Air and ionic Liquids

    SciTech Connect

    Kellar, Michael

    2015-09-01

    The final portion of this project was accomplished at Sandia National Labs, Livermore, with the overall goal being to optimize lithium-air cells with an ionic liquid electrolyte. Both of these are potential future routes for lithium-ion technology. Lithiumair presents the advantage of higher gravimetric energy density, and ionic liquids present the advantage of greater hydrophobicity and much lower volatility, along with a larger window of electrochemical stability. Ionic liquids however have several drawbacks for the battery industry. Currently they are not as cost effective as many organic solvents. Additionally, because of the added viscosity of ionic interactions compared to the typical dipole interactions of a solvent, the ionic conductivity is lower than for common organic solvents.

  10. Lewis Acidic Ionic Liquids.

    PubMed

    Brown, Lucy C; Hogg, James M; Swadźba-Kwaśny, Małgorzata

    2017-08-21

    Until very recently, the term Lewis acidic ionic liquids (ILs) was nearly synonymous with halometallate ILs, with a strong focus on chloroaluminate(III) systems. The first part of this review covers the historical context in which these were developed, speciation of a range of halometallate ionic liquids, attempts to quantify their Lewis acidity, and selected recent applications: in industrial alkylation processes, in supported systems (SILPs/SCILLs) and in inorganic synthesis. In the last decade, interesting alternatives to halometallate ILs have emerged, which can be divided into two sub-sections: (1) liquid coordination complexes (LCCs), still based on halometallate species, but less expensive and more diverse than halometallate ionic liquids, and (2) ILs with main-group Lewis acidic cations. The two following sections cover these new liquid Lewis acids, also highlighting speciation studies, Lewis acidity measurements, and applications.

  11. Synthesis and properties of polymerized ionic liquids

    DOE PAGES

    Eftekhari, Ali; Saito, Tomonori

    2017-03-14

    Polymerization of ionic liquids results in the formation of ionic polymers, which are called poly (ionic liquid)s or polymerized ionic liquids (PIL). This is a brand new form of ionicity in polymer chains with a broad range of applications, though ionic polymers have a long history with the sub-families of polyelectrolytes and ionomers. Although mobility of ions in ionic liquids has named them as the promising candidates for various applications, their applicability is limited in many practical systems because of not having the advantages of neither liquids nor solids, suffering from both leakage issue and high viscosity. PILs perfectly fitmore » with the practical requirements while having almost all features of ionic liquids. This review summarizes some potential applications of PILs. The architecture of PILs can be easily re-designed by both the polymer backbone and outer ion. Not only by post-polymerization but also by in situ ion exchange, the chemical and mechanical properties of PILs can be tuned. Lastly, owing to the high chemical activity and flexible architecture, PILs are the promising candidates for sensors and actuators, electroactive binders, solid and gel electrolytes, non-blocking matrix of nanocomposites, etc.« less

  12. Polymerizable ionic liquid crystals.

    PubMed

    Jazkewitsch, Olga; Ritter, Helmut

    2009-09-17

    Polymerizable vinylimidazolium ionic liquids (ILs) that contain mesogenic coumarin and biphenyl units, respectively, have been synthesized. The N-alkylation of N-vinylimidazole with bromoalkylated mesogenic units 7-(6-bromohexyloxy)coumarin (1) and 4,4'-bis(6-bromohexyloxy)biphenyl (2) was then carried out. The thermal behavior of the obtained ILs 3 and 4 was investigated by differential scanning calorimetry and polarizing optical microscopy. These measurements showed that the attached mesogenic units induce the self-assembly of ILs and, therefore, the occurrence of liquid crystalline phases. Subsequently, the ionic liquid crystals (ILCs) 3 and 4 were polymerized by a free-radical mechanism.

  13. The Na[FSA]-[C2C1im][FSA] (C2C1im+:1-ethyl-3-methylimidazolium and FSA-:bis(fluorosulfonyl)amide) ionic liquid electrolytes for sodium secondary batteries

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazuhiko; Hosokawa, Takafumi; Nohira, Toshiyuki; Hagiwara, Rika; Fukunaga, Atsushi; Numata, Koma; Itani, Eiko; Sakai, Shoichiro; Nitta, Koji; Inazawa, Shinji

    2014-11-01

    Physical and electrochemical properties of the Na[FSA]-[C2C1im][FSA] (C2C1im+:1-ethyl-3-methylimidazolium and FSA-:bis(fluorosulfonyl)amide) ionic liquids have been investigated in view of their application as electrolytes for sodium secondary batteries operating in a wide temperature range. The Na[FSA]-[C2C1im][FSA] ionic liquids in the range of 0.0 ≤ x(Na[FSA]) ≤ 0.5 are in the liquid state at room temperature, where x(Na[FSA]) is the mole fraction of Na[FSA]. In the case of x(Na[FSA]) = 0.3, the ionic conductivity, viscosity, and electrochemical window at 298 K are 5.4 mS cm-1, 78 mPa s, and 5.1 V, respectively. Sodium metal deposition/dissolution test in the ionic liquid at x(Na[FSA]) = 0.3 resulted in average cycle efficiencies of 69% and 96% at 298 K and 363 K, respectively, at a current density of 1.0 mA cm-2.

  14. Ionic liquids in chemical engineering.

    PubMed

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  15. Stability of a Ag/AgCl reference electrode equipped with an ionic liquid salt bridge composed of 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)-amide in potentiometry of pH standard buffers.

    PubMed

    Shibata, Manabu; Yamanuki, Mikito; Iwamoto, Yasukazu; Nomura, Satoshi; Kakiuchi, Takashi

    2010-01-01

    The stability of a Ag/AgCl reference electrode equipped with a gelled ionic liquid, 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide (C(8)mimC(1)C(1)N), as a salt bridge, was examined in the potentiometry of pH standard solutions. The variation in the liquid junction potential (LJP) of the ionic liquid (IL)-type reference electrode, measured with respect to a double junction-type KCl reference electrode, was within 1 mV when one standard solution was replaced by another, except for the phthalate standard. The time course of the potential of the IL-type reference electrode showed a standard deviation of ±0.3 mV in all buffer solutions. The reproducible deviation of the potential of the IL-type reference electrode in the phthalate pH standard amounted to 5 mV. The deviation is due to the partition of the hydrogen phthalate in the C(8)mimC(1)C(1)N, influencing the phase boundary potential (PBP) across the interface between C(8)mimC(1)C(1)N and the phthalate standard. If a citrate standard is used instead of the phthalate buffer, the IL salt bridge works satisfactorily as a salt bridge for a reference electrode suitable for potentiometoric pH measurements.

  16. Ionic liquid tunes microemulsion curvature.

    PubMed

    Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng

    2009-02-17

    Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems.

  17. Thermotropic Ionic Liquid Crystals

    PubMed Central

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  18. High Voltage LiNi0.5Mn1.5O4/Li4Ti5O12 Lithium Ion Cells at Elevated Temperatures: Carbonate- versus Ionic Liquid-Based Electrolytes.

    PubMed

    Cao, Xia; He, Xin; Wang, Jun; Liu, Haidong; Röser, Stephan; Rad, Babak Rezaei; Evertz, Marco; Streipert, Benjamin; Li, Jie; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora

    2016-10-05

    Thanks to its high operating voltage, the LiNi0.5Mn1.5O4 (LNMO) spinel represents a promising next-generation cathode material candidate for Lithium ion batteries. However, LNMO-based full-cells with organic carbonate solvent electrolytes suffer from severe capacity fading issues, associated with electrolyte decomposition and concurrent degradative reactions at the electrode/electrolyte interface, especially at elevated temperatures. As promising alternatives, two selected LiTFSI/pyrrolidinium bis(trifluoromethane-sulfonyl)imide room temperature ionic liquid (RTIL) based electrolytes with inherent thermal stability were investigated in this work. Linear sweep voltammetry (LSV) profiles of the investigated LiTFSI/RTIL electrolytes display much higher oxidative stability compared to the state-of-the-art LiPF6/organic carbonate based electrolyte at elevated temperatures. Cycling performance of the LNMO/Li4Ti5O12 (LTO) full-cells with LiTFSI/RTIL electrolytes reveals remarkable improvements with respect to capacity retention and Coulombic efficiency. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns indicate maintained pristine morphology and structure of LNMO particles after 50 cycles at 0.5C. The investigated LiTFSI/RTIL based electrolytes outperform the LiPF6/organic carbonate-based electrolyte in terms of cycling performance in LNMO/LTO full-cells at elevated temperatures.

  19. Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory†

    PubMed Central

    Mohammad, Sultan; Schleinitz, Miko; Coutinhoa, João A. P.; Freire, Mara G.

    2016-01-01

    Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg−1). At salt molalities higher than 0.2 mol kg−1, all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.20 mol kg−1. To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K+ and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K+/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid–liquid phase behaviour. PMID:26575280

  20. Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory.

    PubMed

    Neves, Catarina M S S; Held, Christoph; Mohammad, Sultan; Schleinitz, Miko; Coutinho, João A P; Freire, Mara G

    2015-12-21

    Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg(-1)). At salt molalities higher than 0.2 mol kg(-1), all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.2 mol kg(-1). To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K(+) and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K(+)/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid-liquid phase behaviour.

  1. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    NASA Astrophysics Data System (ADS)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also

  2. Long-range electrostatic screening in ionic liquids.

    PubMed

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.

  3. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  4. A binary ionic liquid system composed of N-methoxyethyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Protti, S.; Lazzaroni, S.; Fagnoni, M.; Albini, A.

    Room temperature ionic liquids are nowadays the most appealing research target in the field of liquid electrolytes for lithium batteries, due to their high thermal stability, ionic conductivity and wide electrochemical windows. The cation structure of such solvents strictly influences their physical and chemical properties, in particular the viscosity and conductivity. In this paper we report on the preparation and characterization of a complete series of solutions between lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and the promising N-methoxyethyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide (PY 1,2O1) ionic liquid. A wide molality range has been explored in order to identify the optimal compositions in terms of conductivity and electrochemical stability. Our thermal results show that the solutions are amorphous independently on the LiTFSI content. Up to salt concentration of 0.4 mol kg -1 the solutions have a very low viscosity (η ∼ 36 cP), a high ionic conductivity, even at temperatures below 0 °C, and a good electrochemical stability. Cations transport numbers ranging between 0.05 and 0.39 have been determined as a function of LiTFSI content. The combination of these properties makes the PY 1,2O1-based solutions potentially attractive liquid electrolytes for lithium batteries.

  5. Small quaternary alkyl phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes for sodium-ion batteries with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode material

    NASA Astrophysics Data System (ADS)

    Hilder, Matthias; Howlett, Patrick C.; Saurel, Damien; Gonzalo, Elena; Armand, Michel; Rojo, Teófilo; Macfarlane, Douglas R.; Forsyth, Maria

    2017-05-01

    A saturated solution of 2.3 M sodium bis(fluorosulfonyl)imide in trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide ionic liquid shows a high conductivity (0.94 mScm-1 at 50 °C), low ion association, and a wide operational temperature window (-71 °C-305 °C) making it a promising electrolyte for sodium battery applications. Cycling with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode display excellent performance at 50 °C outperforming conventional organic solvent based electrolytes in terms of capacities (at C/10) and long term cycle stability (at C/2). Post analysis of the electrolyte shows no measurable changes while the sodium metal anode and the cathode surface shows the presence of electrolyte specific elements after cycling, suggesting the formation of a stabilizing solid electrolyte interface. Additionally, cycling changes the topography and particle morphology of the cathode. Thus, the electrolyte properties and cell performance match or outperform previously reported results with the additional benefit of replacing the hazardous and flammable organic solvent solutions commonly employed.

  6. Graphene-ionic liquid composites

    DOEpatents

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  7. Design of Energetic Ionic Liquids

    DTIC Science & Technology

    2009-05-12

    effectiveness of the FMO method in both providing accurate results and reducing computational requirements, timings were performed for the ionic liquid ...Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Design of Energetic Ionic Liquids 5b. GRANT NUMBER 5c...Design of Energetic Ionic Liquids challenge project is to address several key technical issues and challenges associated with the characterization

  8. Vibrational Spectroscopy of Ionic Liquids.

    PubMed

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-01-04

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  9. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2005-11-01

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF3SO3-), bis(trifluoromethylsulfonyl)imide ((CF3SO2)2N-), bis(perfluoroethylsulfonyl)imide ((CF3CF2SO2)2N-) and tris(trifluoromethylsulfonyl)methide ((CF3SO2)3C-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  10. Pyrrolidinium ionic liquid crystals.

    PubMed

    Goossens, Karel; Lava, Kathleen; Nockemann, Peter; Van Hecke, Kristof; Van Meervelt, Luc; Driesen, Kris; Görller-Walrand, Christiane; Binnemans, Koen; Cardinaels, Thomas

    2009-01-01

    N-alkyl-N-methylpyrrolidinium cations have been used for the design of ionic liquid crystals, including a new type of uranium-containing metallomesogen. Pyrrolidinium salts with bromide, bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, thiocyanate, tetrakis(2- thenoyltrifluoroacetonato)europate(III) and tetrabromouranyl counteranions were prepared. For the bromide salts and tetrabromouranyl compounds, the chain length of the alkyl group C(n)H(2n+1) was varied from eight to twenty carbon atoms (n = 8, 10-20). The compounds show rich mesomorphic behaviour: highly ordered smectic phases (the crystal smectic E phase and the uncommon crystal smectic T phase), smectic A phases, and hexagonal columnar phases were observed, depending on chain length and anion. This work gives better insight into the nature and formation of the crystal smectic T phase, and the molecular requirements for the appearance of this highly ordered phase. This uncommon tetragonal mesophase is thoroughly discussed on the basis of detailed powder X-ray diffraction experiments and in relation to the existing literature. Structural models are proposed for self-assembly of the molecules within the smectic layers. In addition, the photophysical properties of the compounds containing a metal complex anion were investigated. For the uranium-containing mesogens, luminescence can be induced by dissolving them in an ionic liquid matrix. The europium-containing compound shows intense red photoluminescence with high colour purity.

  11. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  12. Room-Temperature Ionic Liquids for Electrochemical Capacitors

    NASA Technical Reports Server (NTRS)

    Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.; Kim, K.

    2009-01-01

    A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.

  13. Adsorption Kinetics at Silica Gel/Ionic Liquid Solution Interface.

    PubMed

    Flieger, Jolanta; Tatarczak-Michalewska, Małgorzata; Groszek, Anna; Blicharska, Eliza; Kocjan, Ryszard

    2015-12-10

    A series of imidazolium and pyridinium ionic liquids with different anions (Cl(-), Br(-), BF₄(-), PF₆(-)) has been evaluated for their adsorption activity on silica gel. Quantification of the ionic liquids has been performed by the use of RP-HPLC with organic-aqueous eluents containing an acidic buffer and a chaotropic salt. Pseudo-second order kinetic models were applied to the experimental data in order to investigate the kinetics of the adsorption process. The experimental data showed good fitting with this model, confirmed by considerably high correlation coefficients. The adsorption kinetic parameters were determined and analyzed. The relative error between the calculated and experimental amount of ionic liquid adsorbed at equilibrium was within 7%. The effect of various factors such as initial ionic liquid concentration, temperature, kind of solvent, kind of ionic liquid anion and cation on adsorption efficiency were all examined in a lab-scale study. Consequently, silica gel showed better adsorptive characteristics for imidazolium-based ionic liquids with chaotropic anions from aqueous solutions in comparison to pyridinium ionic liquids. The adsorption was found to decrease with the addition of organic solvents (methanol, acetonitrile) but it was not sensitive to the change of temperature in the range of 5-40 °C.

  14. A synchrotron x-ray diffraction and hard x-ray photoelectron spectroscopy study of Zn negative electrodes at different charge and discharge states of Zn/MnO2 batteries using an ionic liquid-based gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Abad, José; Santos, Florencio; Tafur, Juan P.; Urbina, Antonio; Román, Elisa; González-Martínez, J. F.; Rubio-Zuazo, J.; Castro, G. R.; Fernández Romero, Antonio J.

    2017-09-01

    Zn/MnO2 batteries including an ionic liquid-based gel polymer electrolyte (IL-GPE) have been discharged or discharged and then recharged reaching different states of charge. The Zn electrodes used in these Zn/MnO2 batteries are studied by HAXPES and synchrotron XRD techniques. Besides, HAXPES measurements are compared with the results obtained by a conventional XPS. Formation of Zn(OH)2 and ZnO is found in intermediate states of charge during charging and discharging. However, only ZnO is observed in the anode when a full discharging was carried out. Conversely, an entire charging process produces a complete reduction of all Zn2+ species to metallic Zn. In addition, various techniques have confirmed the entrance of Triflate anions and NMP solvent molecules in the electrode, accompanying the Zn2+ cations movement during the charging.

  15. Computational and Experimental Investigation of Li-doped Ionic Liquid Electrolytes: [pyr14][tfsi], [pyr13][fsi], and [EMIM][BF4

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Bennett, William R.; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2014-01-01

    We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N -methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 xLi+ 0.33) and temperature (298 K T 393 K). Structurally, Li+ is shown to be solvated by three anion neigh- bors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi+ we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi+, the contribution of Li+ to ionic conductivity increases until reach- ing a saturation doping level of xLi+ 0.10. Comparatively, the Li+ conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. Our transport results also demonstrate the necessity of long MD simulation runs ( 200 ns) required to converge transport properties at room T. The differences in Li+ transport are reflected in the residence times of Li+ with the anions (Li), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li+ transport in each liquid, we find that while the net motion of Li+ with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of

  16. Ionic liquids as surfactants

    NASA Astrophysics Data System (ADS)

    Smirnova, N. A.; Safonova, E. A.

    2010-10-01

    Problems of self-assembling in systems containing ionic liquids (ILs) are discussed. Main attention is paid to micellization in aqueous solutions of dialkylimidazolium ILs and their mixtures with classical surfactants. Literature data are reviewed, the results obtained by the authors and co-workers are presented. Thermodynamic aspects of the studies and problems of molecular-thermodynamic modeling receive special emphasis. It is shown that the aggregation behavior of dialkylimidazolium ILs is close to that of alkyltrimethylammonium salts (cationic surfactants) though ILs have a higher ability to self-organize, especially as it concerns long-range ordering. Some aspects of ILs applications are outlined where their common features with classical surfactants and definite specificity are of value.

  17. Biophysical properties of DNA in hydrated ionic liquids

    NASA Astrophysics Data System (ADS)

    Jumbri, Khairulazhar; Ahmad, Haslina; Abdulmalek, Emilia; Rahman, Mohd Basyaruddin Abdul

    2016-11-01

    The biophysical properties and behavior of natural calf thymus DNA in hydrated 1-ethyl-3-butylimidazolium bromide ionic liquid ([C2bim]Br) have been studied using spectroscopy technique. The effect of ionic liquid concentration and temperature towards the duplex B-DNA conformation were determined. The presence of ionic liquid causes higher duplex DNA stability with the DNA melting temperature of ˜56°C without any addition of buffer solutions. The electrostatic attraction between ionic liquid's cation and DNA phosphates groups was found play a main role in stabilizing native DNA structure. Understanding of the biophysical properties of DNA in this ionic media could be used as a platform for future development of specific solvent for nucleic acid nanotechnology.

  18. Electrochemical performance of 0.5Li2MnO3-0.5Li(Mn0.375Ni0.375Co0.25)O2 composite cathode in pyrrolidinium-based ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Patra, Jagabandhu; Dahiya, Prem Prakash; Tseng, Chung-Jen; Fang, Jason; Lin, Yu-Wei; Basu, S.; Majumder, S. B.; Chang, Jeng-Kuei

    2015-10-01

    High-energy-density 0.5Li2MnO3-0.5Li(Mn0.375Ni0.375Co0.25)O2 composite cathodes for lithium rechargeable batteries are synthesized using an auto-combustion method. The electrode charge-discharge properties are studied at 25 and 50 °C in Li+-containing N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (BMP-TFSI) and N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMP-TFSI) ionic liquid (IL) electrolytes. The IL electrolytes have a high decomposition temperature (∼400 °C) and thus are ideal for high-safety applications. Compared to Li+/BMP-TFSI IL, Li+/PMP-TFSI IL exhibits higher ionic conductivity and lower viscosity. As a result, the composite cathode shows superior electrochemical performance in Li+/PMP-TFSI IL electrolyte. With the increase in cell temperature from 25 to 50 °C, the maximum capacities and rate capabilities of both IL cells improve significantly. Thus at 50 °C, discharge capacities of 304 mAh g-1 (@10 mA g-1) and 223 mAh g-1 (@100 mA g-1) are obtained for the Li+/PMP-TFSI cell. These capacities are superior to those for a control cell made with the same composite cathode and a conventional organic electrolyte. At elevated temperature, the cyclability of the composite cathode in the IL electrolytes is markedly higher than that obtained in a conventional organic electrolyte.

  19. Catalytic Ignition of Ionic Liquid Fuels by Ionic Liquids

    DTIC Science & Technology

    2014-07-01

    Francisco, CA, 10-14 Aug 2014. PA#14360 14. ABSTRACT The majority of current hypergolic ionic liquids (ILs) are hypergolic (spontaneous ignition upon...Ignites ( Hypergolic )  Ignites Fast (᝺ms)  Ignites Fast & Green(er) Objectives for Ionic Liquids as Bipropellant Fuels Image: NASA Distribution...oxidizers Established storable fuel/catalyst IL mixtures First demonstration of ignition of non - hypergolic ILs utilizing IL catalysts in H2O2

  20. Electrochemical and thermal properties of graphite electrodes with imidazolium- and piperidinium-based ionic liquids

    NASA Astrophysics Data System (ADS)

    Profatilova, Irina A.; Choi, Nam-Soon; Roh, Sae Weon; Kim, Sung Soo

    The electrochemical and thermal properties of graphite electrodes with electrolytes containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITFSI) and N-methyl, N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (MPPpTFSI) ionic liquids are investigated. The ionic liquids undergo extensive reductive decomposition on a graphite electrode during the first charge. The effect of a fluoroethylene carbonate (FEC) additive on the reductive decomposition of the ionic liquids is examined by electrochemical, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. Thermal reactions between a lithiated graphite electrode and an ionic liquid-containing electrolyte are investigated with differential scanning calorimetry (DSC). The introduction of an ionic liquid can effectively reduce the exothermic heat evolution from the thermal reactions between a lithiated graphite electrode and an electrolyte.

  1. Hydrophobic ionic liquids

    DOEpatents

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  2. Hydrophobic ionic liquids

    DOEpatents

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  3. Hydrophobic ionic liquids

    SciTech Connect

    Koch, V.R.; Nanjundiah, C.; Carlin, R.T.

    1998-10-27

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.

  4. Modeling electrokinetics in ionic liquids.

    PubMed

    Wang, Chao; Bao, Jie; Pan, Wenxiao; Sun, Xin

    2017-03-17

    Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electro-osmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on a curved ion-selective surface. We also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems. This article is protected by copyright. All rights reserved.

  5. Additive polarizabilities in ionic liquids.

    PubMed

    Bernardes, Carlos E S; Shimizu, Karina; Lopes, José Nuno Canongia; Marquetand, Philipp; Heid, Esther; Steinhauser, Othmar; Schröder, Christian

    2016-01-21

    An extended designed regression analysis of experimental data on density and refractive indices of several classes of ionic liquids yielded statistically averaged atomic volumes and polarizabilities of the constituting atoms. These values can be used to predict the molecular volume and polarizability of an unknown ionic liquid as well as its mass density and refractive index. Our approach does not need information on the molecular structure of the ionic liquid, but it turned out that the discrimination of the hybridization state of the carbons improved the overall result. Our results are not only compared to experimental data but also to quantum-chemical calculations. Furthermore, fractional charges of ionic liquid ions and their relation to polarizability are discussed.

  6. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  7. Biopolymer Processing Using Ionic Liquids

    DTIC Science & Technology

    2014-08-07

    AFRL-OSR-VA-TR-2014-0181 (YIP-11) BIOPOLYMER PROCESSING USING IONIC LIQUIDS William Reichert UNIVERSITY OF SOUTH ALABAMA 08/07/2014 Final Report...3. DATES COVERED (From - To) May 2011-May 2014 4. TITLE AND SUBTITLE iopolymer Processing using Ionic Liquids for Feedstock Chemicals 5a...reaction and degradation products of the conversion of chitin and chitosan, and 3) investigate the effects of various reaction conditions, such as

  8. Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, A.

    2017-10-01

    Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz–5 MHz and in the temperature range of 300 K–380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.

  9. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin; John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  10. Durable Electrooptic Devices Comprising Ionic Liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  11. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte

    SciTech Connect

    Lin, Zifeng; Rozier, Patrick; Duployer, Benjamin; Taberna, Pierre -Louis; Anasori, Babak; Gogotsi, Yury G.; Simon, Patrice

    2016-08-26

    2D titanium carbide (Ti3C2Tx MXene) showed good capacitance in both organic and neat ionic liquid electrolytes, but its charge storage mechanism is still not fully understood. Here, electrochemical characteristics of Ti3C2Tx electrode were studied in neat EMI-TFSI electrolyte. A capacitive behavior was observed within a large electrochemical potential range (from – 1.5 to 1.5 V vs. Ag). Intercalation and de-intercalation of EMI+ cations and/or TFSI– anions were investigated by in-situ X-ray diffraction. Interlayer spacing of Ti3C2Tx flakes decreases during positive polarization, which can be ascribed to either electrostatic attraction effect between intercalated TFSI– anions and positively charged Ti3C2Tx nanosheets or steric effect caused by de-intercalation of EMI+ cations. In conclusion, the expansion of interlayer spacing when polarized to negative potentials is explained by steric effect of cation intercalation.

  12. Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte

    SciTech Connect

    Lin, Zifeng; Rozier, Patrick; Duployer, Benjamin; Taberna, Pierre -Louis; Anasori, Babak; Gogotsi, Yury G.; Simon, Patrice

    2016-08-26

    2D titanium carbide (Ti3C2Tx MXene) showed good capacitance in both organic and neat ionic liquid electrolytes, but its charge storage mechanism is still not fully understood. Here, electrochemical characteristics of Ti3C2Tx electrode were studied in neat EMI-TFSI electrolyte. A capacitive behavior was observed within a large electrochemical potential range (from – 1.5 to 1.5 V vs. Ag). Intercalation and de-intercalation of EMI+ cations and/or TFSI– anions were investigated by in-situ X-ray diffraction. Interlayer spacing of Ti3C2Tx flakes decreases during positive polarization, which can be ascribed to either electrostatic attraction effect between intercalated TFSI– anions and positively charged Ti3C2Tx nanosheets or steric effect caused by de-intercalation of EMI+ cations. In conclusion, the expansion of interlayer spacing when polarized to negative potentials is explained by steric effect of cation intercalation.

  13. Method for synthesis of titanium dioxide nanotubes using ionic liquids

    SciTech Connect

    Qu, Jun; Luo, Huimin; Dai, Sheng

    2013-11-19

    The invention is directed to a method for producing titanium dioxide nanotubes, the method comprising anodizing titanium metal in contact with an electrolytic medium containing an ionic liquid. The invention is also directed to the resulting titanium dioxide nanotubes, as well as devices incorporating the nanotubes, such as photovoltaic devices, hydrogen generation devices, and hydrogen detection devices.

  14. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  15. High performance batteries with carbon nanomaterials and ionic liquids

    DOEpatents

    Lu, Wen [Littleton, CO

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  16. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Marone, Matthew; Paley, Mark Steven; Donovan, David N.; Karr, Laurel J.

    2009-01-01

    Initial results indicate that ionic liquids are promising media for the extraction of oxygen from lunar regolith. IL acid systems can solubilize regolith and produce water with high efficiency. IL electrolytes are effective for water electrolysis, and the spent IL acid media are capable of regeneration.

  17. Electrochemical characterisations and ageing of ionic liquid/γ-butyrolactone mixtures as electrolytes for supercapacitor applications over a wide temperature range

    NASA Astrophysics Data System (ADS)

    Dagousset, Laure; Pognon, Grégory; Nguyen, Giao T. M.; Vidal, Frédéric; Jus, Sébastien; Aubert, Pierre-Henri

    2017-08-01

    Electrochemical properties in mesoporous media of three different ionic liquids (1-propyl-1-methylpyrrolidinium-bis(fluorosulfonyl)imide - Pyr13FSI, 1-butyl-1-methylpyrrolidinium-bis(trifluoromethanesulfonyl)imide - Pyr14TFSI and 1-ethyl-3-methylimidazolium-bis(trifluoromethanesulfonyl)imide - EMITFSI) are investigated from -50 °C to 100 °C and compared with binary mixtures with γ-butyrolactone (GBL). Buckypaper composed of Single-Wall Carbon Nanotubes (SWCNTs) are used to prepare and study coin-cell supercapacitors. Supercapacitor using Pyr13FSI/GBL present a rapid loss of capacitance after only a thousand cycles at 100 °C. On the contrary, EMITFSI/GBL and Pyr14TFSI/GBL prove to be very promising at high temperature (the capacitance loss after 10,000 cycles is 9% and 10%). More drastic ageing tests such as floating are also carried out for these two mixtures at 100 °C and -50 °C. 23% and 15% capacitance losses have been recorded after 500 h of floating at 100 °C for EMITFSI/GBL and Pyr14TFSI/GBL. The capacitance of supercapacitors based on Pyr14TFSI/GBL dropped by 20% after 200 h of floating at -50 °C rather than EMITFSI/GBL show a remarkable stability during floating at -50 °C, with 6.6% capacitance loss after 500 h (3 V at -50 °C). These results show that the mixture EMITFSI/GBL works properly all along the broad range of temperature [-50 °C to +100 °C] and thus proved that our approach is very promising for the development of high performances supercapacitors specifically adapted for extreme environment.

  18. Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids.

    PubMed

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Licence, Peter; Dolan, Andrew; Welton, Tom; Perkin, Susan

    2013-02-07

    Ionic liquids can be intricately nanostructured in the bulk and at interfaces resulting from a delicate interplay between interionic and surface forces. Here we report the structuring of a series of dialkylpyrrolidinium-based ionic liquids induced by confinement. The ionic liquids containing cations with shorter alkyl chain substituents form alternating cation-anion monolayer structures on confinement to a thin film, whereas a cation with a longer alkyl chain substituent leads to bilayer formation. The crossover from monolayer to bilayer structure occurs between chain lengths of n = 8 and 10 for these pyrrolidinium-based ionic liquids. The bilayer structure for n = 10 involves full interdigitation of the alkyl chains; this is in contrast with previous observations for imidazolium-based ionic liquids. The results are pertinent to these liquids' application as electrolytes, where the electrolyte is confined inside the pores of a nanoporous electrode, for example, in devices such as supercapacitors or batteries.

  19. Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids.

    PubMed

    Lassègues, Jean-Claude; Grondin, Joseph; Talaga, David

    2006-12-28

    The lithium solvation in (1 -x)(EMI-TFSI), xLiTFSI ionic liquids where EMI(+) is the 1-ethyl-3-methylimidazolium cation and TFSI(-) the bis(trifluoromethanesulfonyl)imide anion, is shown by Raman spectroscopy to involve essentially [Li(TFSI)(2)](-) anionic clusters for 0 < x < 0.4, but addition of stoichiometric amounts of solvents S such as oligoethers changes the lithium solvation into [Li(S)(m)](+) cationic clusters; the lithium transference number in TFSI-based ionic liquid electrolytes for lithium batteries should thus be strongly improved.

  20. Impact of gate geometry on ionic liquid gated ionotronic systems

    NASA Astrophysics Data System (ADS)

    Wong, A. T.; Noh, J. H.; Pudasaini, P. R.; Wolf, B.; Balke, N.; Herklotz, A.; Sharma, Y.; Haglund, A. V.; Dai, S.; Mandrus, D.; Rack, P. D.; Ward, T. Z.

    2017-04-01

    Ionic liquid electrolytes are gaining widespread application as a gate dielectric used to control ion transport in functional materials. This letter systematically examines the important influence that device geometry in standard "side gate" 3-terminal geometries plays in device performance of a well-known oxygen ion conductor. We show that the most influential component of device design is the ratio between the area of the gate electrode and the active channel, while the spacing between these components and their individual shapes has a negligible contribution. These findings provide much needed guidance in device design intended for ionotronic gating with ionic liquids.

  1. Impact of gate geometry on ionic liquid gated ionotronic systems

    DOE PAGES

    Wong, Anthony T.; Noh, Joo Hyon; Pudasaini, Pushpa Raj; ...

    2017-01-23

    Ionic liquid electrolytes are gaining widespread application as a gate dielectric used to control ion transport in functional materials. This letter systematically examines the important influence that device geometry in standard “side gate” 3-terminal geometries plays in device performance of a well-known oxygen ion conductor. We show that the most influential component of device design is the ratio between the area of the gate electrode and the active channel, while the spacing between these components and their individual shapes has a negligible contribution. Finally, these findings provide much needed guidance in device design intended for ionotronic gating with ionic liquids.

  2. LiTFSI in 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide: a possible electrolyte for ionic liquid based lithium ion batteries.

    PubMed

    Lahiri, Abhishek; Schubert, Thomas J S; Iliev, Boyan; Endres, Frank

    2015-05-07

    In this communication, we show that the combination of 1 M lithium bis(trifluoromethylsulfonyl)amide and 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide (LiTFSI/[Py1,4]FSI) can be regarded as a possible stable electrolyte for IL based lithium ion batteries. We compare the charge-discharge results with the electrolyte 1 M LiTFSI in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ([Py1,4]TFSI) on an electrodeposited Ge electrode and show using a charge-discharge analysis and Raman spectroscopy that 1 M LiTFSI/[Py1,4]FSI is advantageous in maintaining the charge capacity as well as electrolyte stability at high current densities.

  3. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2006-10-10

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes.

  4. Functionalized ionic liquids based on quaternary ammonium cations with two ether groups as new electrolytes for Li/LiFePO4 secondary battery

    NASA Astrophysics Data System (ADS)

    Jin, Yide; Zhang, Jianhao; Song, Jianzhi; Zhang, Zhengxi; Fang, Shaohua; Yang, Li; Hirano, Shin-ichi

    2014-05-01

    New functionalized ILs based on quaternary ammonium cations with two ether groups and bis(trifluoromethanesulfonyl)imide (TFSA-) anion are synthesized and characterized. Physical and electrochemical properties, including melting point, thermal stability, viscosity, conductivity and electrochemical stability are investigated for these ILs. All these ILs are liquids at room temperature except N,N-diethyl-N,N-bis(2-ethoxyethyl)ammonium TFSA (N22(2o2)(2o2)-TFSA, Tm = 29.7 °C), and the viscosities of N-methyl-N-ethyl-N-(2-methoxyethyl)-N-(2-ethoxyethyl)ammonium TFSA (N12(2o1)(2o2)-TFSA) and N-methyl-N-ethyl-N,N-bis(2-ethoxyethyl)ammonium TFSA (N12(2o2)(2o2)-TFSA) are 68.0 cP and 63.0 cP at 25 °C, respectively. N-Methyl-N,N-diethyl-N-(2-methoxyethyl)ammonium TFSA (DEME-TFSA) and five ILs with lower viscosity are chosen to dissolve 0.6 mol kg-1 of LiTFSA as IL electrolytes without additive for lithium battery. Lithium plating and striping on Ni electrode can be observed in these IL electrolytes, and cycle performances of lithium symmetrical cells are also investigated for these IL electrolytes. Li/LiFePO4 cells using these IL electrolytes without additives have good cycle property at the current rate of 0.1 C, and the N-methyl-N-ethyl-N,N-bis(2-methoxyethyl)ammonium TFSA (N12(2o1)(2o1)-TFSA) and N12(2o2)(2o2)-TFSA electrolytes own better rate property than DEME-TFSA electrolyte.

  5. Equation-of-state modeling of mixtures with ionic liquids.

    PubMed

    Tsioptsias, Costas; Tsivintzelis, Ioannis; Panayiotou, Costas

    2010-05-14

    A non-electrolyte equation-of-state model was used to describe the phase behavior of binary systems containing alkyl-methyimidazolium bis(trifluoromethyl-sulfonyl)imide ionic liquids. A methodology is suggested for modeling this phase behavior by using the Non-Random Hydrogen-Bonding (NRHB) model. According to this methodology, the scaling constants of the ionic liquid are calculated using limited available experimental data on liquid densities and Hansen's solubility parameters, while all electrostatic interactions (polar, hydrogen bonding and ionic) are treated as strong specific interactions. Using the aforementioned methodology, the model is applied to describe the vapor-liquid and the liquid-liquid equilibria in mixtures of ionic liquids with various polar or quadrupolar solvents at low and high pressures. In all cases, one temperature-independent binary interaction parameter was used. Accurate correlations were obtained for the majority of the systems, both, for vapor-liquid and liquid-liquid equilibria.

  6. Ionic Liquid Crystals: Versatile Materials.

    PubMed

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  7. Surface tension of ionic liquids and ionic liquid solutions.

    PubMed

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  8. Nanoscale Ionic Liquids

    DTIC Science & Technology

    2006-11-01

    management applications, electrolytes for high-temperature fuel cells/batteries, ferrofluids for actuators, compliant electrodes, zero VOC inks for...high- temperature fuel cells/batteries, zero VOC inks for microfabrication, compliant electrodes, ferrofluids for actuators or high refractive index...40,) [1] carbon nanotubes [9] and metals [10]. Since y-Fe 20 3 is magnetic, solvent- less ferrofluids are now possible. The ZnO fluids combine fluidity

  9. Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes.

    PubMed

    Yoon, Hyungook; Best, Adam S; Forsyth, Maria; MacFarlane, Douglas R; Howlett, Patrick C

    2015-02-14

    Electrolytes based on bis(fluorosulfonyl)imide (FSI) with a range of LiFSI salt concentrations were characterized using physical property measurements, as well as NMR, FT-IR and Raman spectroscopy. Different from the behavior at lower concentrations, the FSI electrolyte containing 1 : 1 salt to IL mole ratio showed less deviation from the KCl line in the Walden plot, suggesting greater ionic dissociation. Diffusion measurements show higher mobility of lithium ions compared to the other ions, which suggests that the partial conductivity of Li(+) is higher at this higher composition. Changes in the FT-IR and Raman peaks indicate that the cis-FSI conformation is preferred with increasing Li salt concentration.

  10. Performance evaluation of titanium dioxide based dye-sensitized solar cells under the influence of anodization steps, nanotube length and ionic liquid-free redox electrolyte solvents

    NASA Astrophysics Data System (ADS)

    Cheong, Y. L.; Beh, K. P.; Yam, F. K.; Hassan, Z.

    2016-06-01

    In this work, highly ordered titanium dioxide (TiO2) nanotube (NT) arrays were synthesized on titanium foil using electrochemical anodization method. The morphological aspects of the nanotubes based on different anodization duration and number of anodization steps (maximum two) have been investigated. The nanotube arrays subsequently used as photoanode in a dye-sensitized solar cell (DSSC) assembly. The studies on the effects of different solvents for triiodide/iodide redox electrolyte and NT length towards the performance of DSSC were conducted. It is known that electrolyte solvent can significantly affect the photovoltaic conversion efficiency. It is noteworthy that longer NT length tends to yield higher efficiency due to better dye adsorption. However, when the NTs exceeded certain length the efficiency decreases instead. Meanwhile, a comparison of DSSC performance based on number of anodization steps on titanium was performed. Highly ordered NT arrays could be obtained using two-steps anodization, which proved to have positive effects on the DSSC performance. The highest photovoltaic conversion efficiency in this work is 2.04%, achieved by two-step anodization. The corresponding average nanotubes length was ˜18 μm, with acetonitrile (ACN) as the redox electrolyte solvent.

  11. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend

    SciTech Connect

    Costa, Luciano T.

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li{sup +} coordination and transportation were studied in the ternary electrolyte system, i.e., PEO{sub 16}LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  12. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend.

    PubMed

    Costa, Luciano T; Sun, Bing; Jeschull, Fabian; Brandell, Daniel

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li(+) coordination and transportation were studied in the ternary electrolyte system, i.e., PEO16LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  13. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend

    NASA Astrophysics Data System (ADS)

    Costa, Luciano T.; Sun, Bing; Jeschull, Fabian; Brandell, Daniel

    2015-07-01

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li+ coordination and transportation were studied in the ternary electrolyte system, i.e., PEO16LiTFSIṡ1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  14. Low-polarization lithium oxygen battery using N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulphonyl) imide (DEMETFSI) ionic liquid electrolyte.

    PubMed

    Ulissi, Ulderico; Elia, Giuseppe Antonio; Jeong, Sangsik; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2017-09-29

    The room temperature molten salt mixture of N,N-diethyl-N-(2-methoxyethyl)-N-methylammonium bis(trifluoromethanesulfonyl) imide (DEMETFSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt is herein reported as electrolyte for application in lithium oxygen batteries. The DEMETFSI-LITFSI solution is studied in terms of ionic conductivity, viscosity, electrochemical stability and compatibility with lithium metal at 30°C, 40°C and 60°C. The electrolyte shows suitable properties for application in lithium oxygen battery, allowing a reversible, low-polarization discharge-charge performance with a capacity of about 13 Ah per gram of carbon in the positive electrode and coulombic efficiency approaching 100%. The reversibility of the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) is demonstrated by ex situ XRD and SEM studies. Furthermore, the study of the cycling behavior of the lithium oxygen cell using the DEMETFSI-LITFSI electrolyte at increasing temperatures (from 30°C to 60°C) evidences enhanced energy efficiency together with morphology changes of the deposit. In addition, the use of carbon-coated Zn0.9Fe0.1O (TMO-C) lithium-conversion anode in an IL-based Li-ion oxygen configuration is preliminarily demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electrotunable Lubricity with Ionic Liquid Nanoscale Films

    PubMed Central

    Fajardo, O. Y.; Bresme, F.; Kornyshev, A. A.; Urbakh, M.

    2015-01-01

    One of the main challenges in tribology is finding the way for an in situ control of friction without changing the lubricant. One of the ways for such control is via the application of electric fields. In this respect a promising new class of lubricants is ionic liquids, which are solvent-free electrolytes, and their properties should be most strongly affected by applied voltage. Based on a minimal physical model, our study elucidates the connection between the voltage effect on the structure of the ionic liquid layers and their lubricating properties. It reveals two mechanisms of variation of the friction force with the surface charge density, consistent with recent AFM measurements, namely via the (i) charge effect on normal and in-plane ordering in the film and (ii) swapping between anion and cation layers at the surfaces. We formulate conditions that would warrant low friction coefficients and prevent wear by resisting “squeezing-out” of the liquid under compression. These results give a background for controllable variation of friction. PMID:25572127

  16. Electrode screening by ionic liquids.

    PubMed

    Lynden-Bell, R M; Frolov, A I; Fedorov, M V

    2012-02-28

    In this work we are concerned with the short-range screening provided by the ionic liquid dimethylimidazolium chloride near a charged wall. We study the free energy profiles (or potentials of mean force) for charged and neutral solutes as a function of distance from a charged wall. Four different wall charge densities are used in addition to a wall with zero charge. The highest magnitude of the charge densities is ±1 e nm(-2) which is close to the maximum limit of charge densities accessible in experiments, while the intermediate charges ±0.5 e nm(-2) are in the range of densities typically used in most of the experimental studies. Positively and negatively charged solutes of approximately the size of a BF ion and a Cl(-) ion are used as probes. We find that the ionic liquid provides excellent electrostatic screening at a distance of 1-2 nm. The free energy profiles show minima which are due to layering in the ionic liquid near the electrodes. This indicates that the solute ions tend to displace ionic liquid ions in the layers when approaching the electrode. The important role of non-electrostatic forces is demonstrated by the oscillations in the free energy profiles of uncharged solutes as a function of distance from the wall.

  17. Design of Energetic Ionic Liquids

    DTIC Science & Technology

    2010-04-15

    dynamics and structure in imidazolium -based ionic liquids/water mixtures. [15] The results of density and molar volume profile from MD simulations are...depending upon their respective attachment to boron or oxygen). The large blue sphere represents imidazolium ring. (b) The average sizes of cation

  18. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOEpatents

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  19. "Practical" Electrospinning of Biopolymers in Ionic Liquids.

    PubMed

    Shamshina, Julia L; Zavgorodnya, Oleksandra; Bonner, Jonathan R; Gurau, Gabriela; Di Nardo, Thomas; Rogers, Robin D

    2017-01-10

    To address the need to scale up technologies for electrospinning of biopolymers from ionic liquids to practical volumes, a setup for the multi-needle electrospinning of chitin using the ionic liquid 1-ethyl-3-methylimidazolium acetate, [C2 mim]-[OAc], was designed, built, and demonstrated. Materials with controllable and high surface area were prepared at the nanoscale using ionic-liquid solutions of high-molecular-weight chitin extracted with the same ionic liquid directly from shrimp shells.

  20. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    DOE PAGES

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; ...

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  1. New ionic liquids based on the complexation of dipropyl sulfide and AlCl3 for electrodeposition of aluminum.

    PubMed

    Fang, Youxing; Jiang, Xueguang; Sun, Xiao-Guang; Dai, Sheng

    2015-09-04

    A new kind of ionic liquid based on the complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 × 10(-4) S cm(-1). This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  2. Development of non-flammable lithium secondary battery with room-temperature ionic liquid electrolyte: Performance of electroplated Al film negative electrode

    NASA Astrophysics Data System (ADS)

    Ui, Koichi; Yamamoto, Keigo; Ishikawa, Kohei; Minami, Takuto; Takeuchi, Ken; Itagaki, Masayuki; Watanabe, Kunihiro; Koura, Nobuyuki

    The negative electrode performance of the electroplated Al film electrode in the LiCl saturated AlCl 3-1-ethyl-3-methylimizadolium chloride (EMIC) + SOCl 2 melt as the electrolyte for use in non-flammable lithium secondary batteries was evaluated. In the cyclic voltammogram of the electroplated Al film electrode in the melt, the oxidation and reduction waves corresponding to the electrochemical insertion/extraction reactions of the Li + ion were observed at 0-0.80 V vs. Li +/Li, which suggested that the electroplated Al film electrode operated well in the electrolyte. The almost flat potential profiles at about 0.40 V vs. Li +/Li on discharging were shown. The discharge capacity and charge-discharge efficiency was 236 mAh g -1 and 79.2% for the 1st cycle and it maintained 232 mAh g -1 and 77.9% after the 10th cycle. In addition, the initial charge-discharge efficiencies of the electroplated Al film electrode were higher than that of carbon electrodes. The main cathodic polarization reaction was the insertion of Li + ions, and side reactions hardly occurred due to the decomposition reaction of the melt because the Li content corresponding to the electricity was almost totally inserted into the film after charging.

  3. A classical density functional theory for interfacial layering of ionic liquids

    SciTech Connect

    Wu, Jianzhong; Jiang, Tao; Jiang, Deen; Jin, Zhehui; Henderson, Douglous

    2011-01-01

    Ionic liquids have attracted much recent theoretical interest for broad applications as environmentally-friendly solvents in separation and electrochemical processes. Because of the intrinsic complexity of organic ions and strong electrostatic correlations, the electrochemical properties of ionic liquids often defy the descriptions of conventional mean-field methods including the venerable, and over-used, Gouy-Chapman-Stern (GCS) theory. Classical density functional theory (DFT) has proven to be useful in previous studies of the electrostatic properties of aqueous electrolytes but until recently it has not been applied to ionic liquids. Here we report predictions from the DFT on the interfacial properties of ionic liquids near neutral or charged surfaces. By considering the molecular size, topology, and electrostatic correlations, we have examined major factors responsible for the unique features of electric-double layers of ionic-liquid including formation of long-range and alternating structures of cations and anions at charged surfaces.

  4. Electrochemically stable electrolytes

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1999-01-05

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.

  5. Electrochemically stable electrolytes

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1999-01-01

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes.

  6. Influence of electrical double-layer dispersion forces and size dependency on pull-in instability of clamped microplate immersed in ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Karimipour, I.; Beni, Yaghoub Tadi; Taheri, N.

    2017-10-01

    Plate-type clamped microplate is of the most common constructive elements for developing in-liquid-operating devices. While the electromechanical behavior of clamped microplate in non-liquid environments has exclusively been addressed in the literature, no theoretical studies have yet been conducted on precise modeling of the clamped microplate in electrolyte liquid. Herein, the electromechanical response and instability of the clamped microplate immersed in ionic electrolyte media are investigated. The electrochemical force field is determined using double layer theory and linearized Poisson-Boltzmann equation. The presence of dispersion forces, i.e., Casimir and van der Waals attractions, are included in the theoretical model considering the correction due to the presence of liquid media between the interacting surfaces (three-layer model). To this end, a kind of microplate has been designed, i.e., a square microplate with all edges clamped supported. The strain gradient elasticity is employed to model the size-dependent structural behavior of the clamped microplate. To solve the nonlinear constitutive equation of the system, Extended Kantorovich Method, is employed and the pull-in parameter of the microplate are extracted. Impacts of the dispersion forces and size effect on the instability characteristics are discussed as well as the effect of ion concentration and potential ratio. It is found that the significant difference between the pull-in instability parameters in the modified strain gradient theory and the classical theory for thin microplates is merely due to the consideration of size effect parameter in the modified strain gradient theory. To confirm the validity of formulations, the numerical values of the results are compared. The results predicted via the aforementioned approach are in excellent agreement with those in the literature. Some new examples are solved to demonstrate the applicability of the procedure.

  7. Experimental Insight into the Thermodynamics of the Dissolution of Electrolytes in Room-Temperature Ionic Liquids: From the Mass Action Law to the Absolute Standard Chemical Potential of a Proton

    DOE PAGES

    Matsubara, Yasuo; Grills, David C.; Koide, Yoshihiro

    2016-12-28

    Room-temperature ionic liquids (ILs) are a class of nonaqueous solvents that have expanded the realm of modern chemistry, drawing increasing interest over the last few decades, not only in terms of their own unique physical chemistry but also in many applications including organic synthesis, electrochemistry, and biological systems, wherein charged solutes (i.e., electrolytes) often play vital roles. But, our fundamental understanding of the dissolution of an electrolyte in an IL is still rather limited. For example, the activity of a charged species has frequently been assumed to be unity without a clear experimental basis. In this study, we have discussedmore » a standard component-based scheme for the dissolution of an electrolyte in an IL, supported by our observation of ideal Nernstian responses for the reduction of silver and ferrocenium salts in a representative IL, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([emim+][NTf2-] or [emim+][TFSI-]). Using this scheme, which was also supported by temperature-dependent measurements with ILs having longer alkyl chains in the imidazolium ring, and the solubility of the IL in water, we established the concept of Gibbs transfer energies of “pseudo-single ions” from the IL to conventional neutral molecular solvents (water, acetonitrile, and methanol). This concept, which bridges component- and constituent-based energetics, utilizes an extrathermodynamic assumption, which itself was justified by experimental observations. Furthermore, these energies enable us to eliminate inner potential differences between the IL and molecular solvents (solvent-solvent interactions), that is, on a practical level, conditional liquid junction potential differences, so that we can discuss ion-solvent interactions independently. Specifically, we have examined the standard electrode potential of the ferrocenium/ferrocene redox couple, Fc+/Fc, and the absolute intrinsic standard chemical potential of a proton in

  8. Applications of ionic liquids in electrochemical sensors.

    PubMed

    Wei, Di; Ivaska, Ari

    2008-01-28

    Ionic liquids (ILs) are molten salts with the melting point close to or below room temperature. They are composed of two asymmetrical ions of opposite charges that only loosely fit together (usually bulky organic cations and smaller anions). The good solvating properties, high conductivity, non-volatility, low toxicity, large electrochemical window (i.e. the electrochemical potential range over which the electrolyte is neither reduced nor oxidized on electrodes) and good electrochemical stability, make ILs suitable for many applications. Recently, novel ion selective sensors, gas sensors and biosensors based on ILs have been developed. IL gels were found to have good biocompatibility with enzymes, proteins and even living cells. Besides a brief discussion of the properties of ILs and their general applications based on these properties, this review focuses on the application of ILs in electroanalytical sensors.

  9. Energy storage materials synthesized from ionic liquids.

    PubMed

    Gebresilassie Eshetu, Gebrekidan; Armand, Michel; Scrosati, Bruno; Passerini, Stefano

    2014-12-01

    The advent of ionic liquids (ILs) as eco-friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in-depth review on the newly emerging IL-based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL-based syntheses of energy materials.

  10. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes.

    PubMed

    Fattah, N F A; Ng, H M; Mahipal, Y K; Numan, Arshid; Ramesh, S; Ramesh, K

    2016-06-06

    Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge-discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g(-1), which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.

  11. An Approach to Solid-State Electrical Double Layer Capacitors Fabricated with Graphene Oxide-Doped, Ionic Liquid-Based Solid Copolymer Electrolytes

    PubMed Central

    Fattah, N. F. A.; Ng, H. M.; Mahipal, Y. K.; Numan, Arshid; Ramesh, S.; Ramesh, K.

    2016-01-01

    Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge–discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g−1, which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application. PMID:28773573

  12. Mesoscopic organization in ionic liquids.

    PubMed

    Russina, Olga; Lo Celso, Fabrizio; Plechkova, Natalia; Jafta, Charl J; Appetecchi, Giovanni Battista; Triolo, Alessandro

    2017-06-01

    We discuss some published results and provide new observations concerning the high level of structural complexity that lies behind the nanoscale correlations in ionic liquids (ILs) and their mixtures with molecular liquids. It turns out that this organization is a consequence of the hierarchical construction on both spatial (from ångström to several nanometer) and temporal (from fraction of picosecond to hundreds of nanosecond) scales, which requires joint use of experimental and computational tools.

  13. Fluctuating hydrodynamics for ionic liquids

    NASA Astrophysics Data System (ADS)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos

    2017-04-01

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  14. A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes

    NASA Astrophysics Data System (ADS)

    Vatamanu, Jenel; Vatamanu, Mihaela; Borodin, Oleg; Bedrov, Dmitry

    2016-11-01

    The structural properties of electrolytes consisting of solutions of ionic liquids in a polar solvent at charged electrode surfaces are investigated using classical atomistic simulations. The studied electrolytes consisted of tetraethylammonium tetrafluoroborate (NEt4-BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate (c2mim-BF4) and 1-octyl-3-methylimidazolium tetrafluoroborate (c8mim-BF4) salts dissolved in acetonitrile solvent. We discuss the influence of electrolyte concentration, chemical structure of the ionic salt, temperature, conducting versus semiconducting nature of the electrode, electrode geometry and surface roughness on the electric double layer structure and capacitance and compare these properties with those obtained for pure room temperature ionic liquids. We show that electrolytes consisting of solutions of ions can behave quite differently from pure ionic liquid electrolytes.

  15. Electrochemical synthesis of indium(0) nanoparticles in haloindate(III) ionic liquids.

    PubMed

    Estager, Julien; Nockemann, Peter; Seddon, Kenneth R; Srinivasan, Geetha; Swadźba-Kwaśny, Małgorzata

    2012-01-09

    A synthetic route to indium(0) nanoparticles via an electrochemical reduction of haloindate(III) ionic liquids to indium(I), and its subsequent disproportionation to indium(0) and indium(III) in the bulk electrolyte, is described. In this sustainable method, the ionic liquid acts simultaneously as metal source, templating agent, and stabilising agent, with the electron as the only reducing agent. The nature of the ionic liquid cation is demonstrated to strongly affect the morphology and size distribution of the indium(0) nanoparticles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High rate performance of flexible pseudocapacitors fabricated using ionic-liquid-based proton conducting polymer electrolyte with poly(3, 4-ethylenedioxythiophene):poly(styrene sulfonate) and its hydrous ruthenium oxide composite electrodes.

    PubMed

    Sellam; Hashmi, S A

    2013-05-01

    We report the studies on all-solid-state flexible pseudocapacitors based on poly (3,4-ethylenedioxythiophene)-poly (styrene sulfonate) (PEDOT-PSS) and PEDOT-PSS/hydrous ruthenium oxide composite electrodes separated by nonaqueous proton conducting polymer electrolyte. Structural, thermal and electrochemical properties including high ionic conductivity (6.2 × 10(-2) S cm(-1) at 20 °C) of the polymer electrolyte, comprising ionic liquid 1-ethyl 3-methyl imidazolium hydrogen sulfate (EMIHSO4) immobilized in the blend of poly (vinyl alcohol) (PVA) and poly (vinyl pyrrolidone) (PVP), demonstrate its excellent suitability in supercapacitor fabrication. A substantial improvement in the specific capacitance (hence the specific energy) has been obtained when the PEDOT-PSS electrodes in the symmetrical pseudocapacitor are replaced by the composite electrodes PEDOT-PSS/RuO2·xH2O. High rate capability of the capacitor cell (with PEDOT-PSS electrodes) has been observed, as evidenced from the high knee frequency (∼966 Hz), low response time (∼70 ms) and high pulse power (∼10.2 kW kg(-1)), observed by impedance analysis. Almost rectangular (capacitive) cyclic voltammetric patterns for high scan rates (up to 15 V s(-1)) confirm the high rate performance of the pseudocapacitor. The PEDOT-PSS/RuO2·xH2O composite electrodes show the lower rate capability (knee frequency ∼312 Hz, response time ∼1 s, pulse power ∼3.2 kW kg(-1) and capacitive CV response up to 500 mV s(-1)) because of slow exchange of charges at the interfaces via RuO2·xH2O. However, the pseudocapacitor with composite electrodes shows higher rate performance relative to many reported RuO2·xH2O systems. About 15% improvement is noticed in the capacitance value when the capacitor with composite electrodes is initially charged and discharged up to ∼200 cycles. Thereafter, the cell shows almost constant value of specific capacitance (∼70 F g(-1)) for 1000 cycles.

  17. Ionic liquids and their solid-state analogues as materials for energy generation and storage

    NASA Astrophysics Data System (ADS)

    Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie

    2016-02-01

    Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.

  18. Nanoparticles in ionic liquids: interactions and organization.

    PubMed

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  19. Radiation Chemistry and Photochemistry of Ionic Liquids

    SciTech Connect

    Wishart, J.F.; Takahaski, K.

    2010-12-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  20. Ternary mixtures of ionic liquids for better salt solubility, conductivity and cation transference number improvement

    PubMed Central

    Karpierz, E.; Niedzicki, L.; Trzeciak, T.; Zawadzki, M.; Dranka, M.; Zachara, J.; Żukowska, G. Z.; Bitner-Michalska, A.; Wieczorek, W.

    2016-01-01

    We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation−glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new approach in composing electrolytes also enables even three-fold increase of salt concentration in ionic liquids. PMID:27767069

  1. Effect of ionic liquids on the structure, stability and activity of two related α-amylases.

    PubMed

    Dabirmanesh, Bahareh; Daneshjou, Sara; Sepahi, Abbas Akhavan; Ranjbar, Bijan; Khavari-Nejad, Ramazan Ali; Gill, Pooria; Heydari, Akbar; Khajeh, Khosro

    2011-01-01

    Ionic liquids are recognized as green solvents for carbohydrates dissolution. However, only a limited number of studies have been carried out to investigate their effect on carbohydrate hydrolyzing enzymes. We have investigated the influence of two water miscible ionic liquids on the activity, stability and structure of two related α-amylases from Bacillus amyloliquefaciens and Bacillus lichiniformis. Upon changes in ionic liquids concentrations, both enzymes activity and stability were reduced. Associated thermodynamic and conformational changes were observed using differential scanning calorimetry and fluorescence techniques. Thermal denaturation was accompanied by aggregation in both aqueous buffer and [BMIm][Cl] but [HMIm][Cl] significantly suppressed aggregation.

  2. High energy supercapattery with an ionic liquid solution of LiClO4.

    PubMed

    Yu, Linpo; Chen, George Z

    2016-08-15

    A supercapattery combining an ideally polarized capacitor-like electrode and a battery-like electrode is demonstrated theoretically and practically using an ionic liquid electrolyte containing 1-butyl-1-methylpyrrolidinium tri(pentafluoroethyl)trifluorophosphate (BMPyrrFAP), gamma-butyrolactone (γ-GBL) and LiClO4. The electrochemical deposition and dissolution of lithium metal on a platinum and glass carbon electrode were investigated in this ionic liquid solution. The CVs showed that the fresh electrochemically deposited lithium metal was stable in the electrolyte, which encouraged the investigation of this ionic liquid solution in a supercapattery with a lithium battery negative electrode. The active material counted specific energy of the supercapattery based on a lithium negative electrode and an activated carbon (Act-C) positive electrode could reach 230 W h kg(-1) under a galvanostatic charge-discharge current density of 1 mA cm(-2). The positive electrode material (Act-C) was also investigated by CV, AC impedance, SEM and BET. The non-uniform particle size and micropores dominated porous structure of the Act-C enabled its electric double layer capacitor (EDLC) behavior in the ionic liquid solution. The measured specific capacitance of the Act-C in this ionic liquid solution is higher than the same Act-C in aqueous solution, which indicates the Act-C can also perform well in the ionic liquid electrolyte.

  3. Early Events in Ionic Liquid Radiation Chemistry

    SciTech Connect

    Wishart, J.F.; Cook, A.; Rimmer, R.D.; Gohdo, M.

    2010-09-14

    Ionic liquids are interesting and useful materials whose solvation time scales are up to thousands of times longer than in conventional solvents. The extended lifetimes of pre-solvated electrons and other energetic species in ionic liquids has profound consequences for the radiolytic product distributions and reactivity patterns. We use a newly developed, multiplexed variation of pulse-probe spectroscopy to measure the kinetics of the early dynamical and reactive events in ionic liquids.

  4. On catalysis by ionic liquids.

    PubMed

    Chakraborti, Asit K; Roy, Sudipta Raha

    2009-05-27

    A molecular level mechanism of catalysis by an ionic liquid (IL) is proposed as an "electrophile nucleophile dual activation" through a "relay of cooperative hydrogen bonds and charge-charge interactions". Spectroscopic ((1)H NMR and IR) studies were used to probe the involvement of the C-2 hydrogen and the AcO(-) anion of [bmim][OAc] in the catalysis for O-t-Boc formation. Ion fishing by MALDI-TOF-TOF MS and MS-MS established the hydrogen bonded clusters.

  5. Actinide chemistry in ionic liquids.

    PubMed

    Takao, Koichiro; Bell, Thomas James; Ikeda, Yasuhisa

    2013-04-01

    This Forum Article provides an overview of the reported studies on the actinide chemistry in ionic liquids (ILs) with a particular focus on several fundamental chemical aspects: (i) complex formation, (ii) electrochemistry, and (iii) extraction behavior. The majority of investigations have been dedicated to uranium, especially for the 6+ oxidation state (UO2(2+)), because the chemistry of uranium in ordinary solvents has been well investigated and uranium is the most abundant element in the actual nuclear fuel cycles. Other actinides such as thorium, neptunium, plutonium, americium, and curiumm, although less studied, are also of importance in fully understanding the nuclear fuel engineering process and the safe geological disposal of radioactive wastes.

  6. Membrane separation of ionic liquid solutions

    DOEpatents

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  7. Application of ionic liquids in hydrometallurgy.

    PubMed

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-08-29

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  8. Application of Ionic Liquids in Hydrometallurgy

    PubMed Central

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  9. Thermodynamics and micro heterogeneity of ionic liquids.

    PubMed

    Gomes, Margarida F Costa; Lopes, J N Canongia; Padua, A A H

    2010-01-01

    The high degree of organisation in the fluid phase of room-temperature ionic liquids has major consequences on their macroscopic properties, namely on their behaviour as solvents. This nanoscale self-organisation is the result of an interplay between two types of interaction in the liquid phase - Coulomb and van der Waals - that eventually leads to the formation of medium-range structures and the recognition of some ionic liquids as composed of a high-charge density, cohesive network permeated by low-charge density regions.In this chapter, the structure of the ionic liquids will be explored and some of their consequences to the properties of ionic liquids analyzed.

  10. Microemulsions with an ionic liquid surfactant and room temperature ionic liquids as polar pseudo-phase.

    PubMed

    Zech, Oliver; Thomaier, Stefan; Bauduin, Pierre; Rück, Thomas; Touraud, Didier; Kunz, Werner

    2009-01-15

    In this investigation we present for the first time microemulsions comprising an ionic liquid as surfactant and a room-temperature ionic liquid as polar pseudo-phase. Microemulsions containing the long- chain ionic liquid1-hexadecyl-3-methyl-imidazolium chloride ([C16mim][Cl]) as surfactant, decanol as cosurfactant, dodecaneas continuous phase and room temperature ionic liquids (ethylammonium nitrate (EAN) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim

  11. Ionic Liquids to Replace Hydrazine

    NASA Technical Reports Server (NTRS)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  12. Ionic Liquid as an Effective Additive for Rechargeable Magnesium Batteries

    DOE PAGES

    Pan, Baofei; Lau, Ka -Cheong; Vaughey, John T.; ...

    2017-03-02

    Here, the effect of the addition of an ionic liquid DEME•TFSI to an electrolyte solution of Mg(HMDS)2-MgCl2 in THF was studied electrochemically and spectroscopically. Reversible magnesium deposition/dissolution was achieved with the DEME•TFSI-modified electrolyte. This electrolyte shows higher ionic conductivity, and a linear relationship was observed between the ionic conductivity and the concentration of DEME•TFSI in THF solution of Mg(HMDS)2-MgCl2. Mg-Mo6S8 coin cells have also been successfully cycled using Mg(HMDS)2-MgCl2 electrolyte with the addition of DEME•TFSI. Raman and NMR spectroscopy suggest that DEME•TFSI facilitates magnesium deposition/dissolution by improving ionic conductivity of the electrolyte.

  13. Partitioning of acidic, basic and neutral amino acids into imidazolium-based ionic liquids.

    PubMed

    Absalan, Ghodratollah; Akhond, Morteza; Sheikhian, Leila

    2010-06-01

    In this paper, partitioning behaviors of typical neutral (Alanine), acidic (Glutamic acid) and basic (Lysine) amino acids into imidazolium-based ionic liquids [C(4)mim][PF(6)], [C(6)mim][PF(6)], [C(8)mim][PF(6)], [C(6)mim][BF(4)] and [C(8)mim][BF(4)] as extracting solvents were examined. [C(6)mim][BF(4)] showed the best efficiency for partitioning of amino acids. The partition coefficients of amino acids in ionic liquids were found to depend strongly on pH of the aqueous solution, amino acid and ionic liquid chemical structures. Different chemical forms of amino acids in aqueous solutions were pH dependent, so the pH value of the aqueous phase was a determining factor for extraction of amino acids into ionic liquid phase. Both water content of ionic liquids and charge densities of their anionic and cationic parts were important factors for partitioning of cationic and anionic forms of amino acids into ionic liquid phase. Extracted amino acids were back extracted into phosphate buffer solutions adjusted on appropriate pH values. The results showed that ionic liquids could be used as suitable modifiers on the stationary phase of an HPLC column for efficient separation of acidic, basic, and neutral amino acids.

  14. Chemical and Electrochemical Studies in Ionic Liquids

    DTIC Science & Technology

    1990-01-12

    Electrochemistry and Witchcraft ", Gordon Research Conference on Electrochemistry", Santa Barbara, CA, January, 1985. OR. A. Osteryoung, ’An Introduction to...Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft ", Chemistry Department Colloquium, University of Alabama...Tuscaloosa, Alabama, December 1, 1988. OR. A. Osteryoung, "Ambient Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft

  15. Ionic liquid-in-oil microemulsions.

    PubMed

    Eastoe, Julian; Gold, Sarah; Rogers, Sarah E; Paul, Alison; Welton, Tom; Heenan, Richard K; Grillo, Isabelle

    2005-05-25

    Phase stability and small-angle neutron scattering (SANS) data show that surfactant-stabilized nanodomains of a typical ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4]) may be dispersed by the nonionic surfactant Triton-X100 in cyclohexane. Analyses of these SANS data are consistent with the formation of ionic liquid-in-oil microemulsion droplets.

  16. Triazolium-based Energetic Ionic Liquids

    DTIC Science & Technology

    2005-03-01

    for public release; distribution unlimited. 18 References 1. Ionic Liquids, Industrial Applications to Green Chemistry ACS Symposium Series 818...Chem. Soc. 126, 11788-11789(2004). 11. Wilkes, J. S. in Ionic Liquids, Industrial Applications to Green Chemistry , ACS Symposium Series 818, R

  17. Engineered microorganisms having resistance to ionic liquids

    SciTech Connect

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  18. Depolarization of water in protic ionic liquids.

    PubMed

    Zahn, Stefan; Wendler, Katharina; Delle Site, Luigi; Kirchner, Barbara

    2011-09-07

    A mixture of the protic ionic liquid mono-methylammonium nitrate with 1.6 wt% water was investigated from Car-Parrinello molecular dynamics simulations. In contrast to imidazolium-based ionic liquids, the cation possesses strong directional hydrogen bonds to water and all hydrogen bonds in the mixture have a comparable strength. This results in a good incorporation of water into the hydrogen bond network of mono-methylammonium nitrate and a tetrahedral hydrogen bond coordination of water. Hence, one might expect a larger dipole moment of water in the investigated mixture compared to neat water due to the good hydrogen bond network incorporation and the charged vicinity of water in the protic ionic liquid. However, the opposite is observed pointing to strong electrostatic screening in protic ionic liquids. Additionally, the influence of water on the properties of the protic ionic liquid is discussed.

  19. Ionic Liquids in Analytical Chemistry

    NASA Astrophysics Data System (ADS)

    Soukup-Hein, Renee J.; Warnke, Molly M.; Armstrong, Daniel W.

    2009-07-01

    The role of ionic liquids (ILs) in analytical chemistry is increasing substantially every year. A decade ago there were but a handful of papers in this area of research that were considered curiosities at best. Today, those publications are recognized as seminal articles that gave rise to one of the most rapidly expanding areas of research in chemical analysis. In this review, we briefly highlight early work involving ILs and discuss the most recent advances in separations, mass spectrometry, spectroscopy, and electroanalytical chemistry. Many of the most important advances in these fields depend on the development of new, often unique ILs and multifunctional ILs. A better understanding of the chemical and physical properties of ILs is also essential.

  20. Lipid Biomembrane in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Yoo, Brian; Jing, Benxin; Shah, Jindal; Maginn, Ed; Zhu, Y. Elaine; Department of Chemical and Biomolecular Engineering Team

    2014-03-01

    Ionic liquids (ILs) have been recently explored as new ``green'' chemicals in several chemical and biomedical processes. In our pursuit of understanding their toxicities towards aquatic and terrestrial organisms, we have examined the IL interaction with lipid bilayers as model cell membranes. Experimentally by fluorescence microscopy, we have directly observed the disruption of lipid bilayer by added ILs. Depending on the concentration, alkyl chain length, and anion hydrophobicity of ILs, the interaction of ILs with lipid bilayers leads to the formation of micelles, fibrils, and multi-lamellar vesicles for IL-lipid complexes. By MD computer simulations, we have confirmed the insertion of ILs into lipid bilayers to modify the spatial organization of lipids in the membrane. The combined experimental and simulation results correlate well with the bioassay results of IL-induced suppression in bacteria growth, thereby suggesting a possible mechanism behind the IL toxicity. National Science Foundation, Center for Research Computing at Notre Dame.

  1. Acetonitrile boosts conductivity of imidazolium ionic liquids.

    PubMed

    Chaban, Vitaly V; Voroshylova, Iuliia V; Kalugin, Oleg N; Prezhdo, Oleg V

    2012-07-05

    We apply a new methodology in the force field generation (Phys. Chem. Chem. Phys.2011, 13, 7910) to study binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). Each RTIL is composed of tetrafluoroborate (BF(4)) anion and dialkylimidazolium (MMIM) cations. The first alkyl group of MIM is methyl, and the other group is ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Upon addition of ACN, the ionic conductivity of RTILs increases by more than 50 times. It significantly exceeds an impact of most known solvents. Unexpectedly, long-tailed imidazolium cations demonstrate the sharpest conductivity boost. This finding motivates us to revisit an application of RTIL/ACN binary systems as advanced electrolyte solutions. The conductivity correlates with a composition of ion aggregates simplifying its predictability. Addition of ACN exponentially increases diffusion and decreases viscosity of the RTIL/ACN mixtures. Large amounts of ACN stabilize ion pairs, although they ruin greater ion aggregates.

  2. Polymerizable ionic liquid with state of the art transport properties.

    PubMed

    Jeremias, Sebastian; Kunze, Miriam; Passerini, Stefano; Schönhoff, Monika

    2013-09-12

    The physicochemical properties of diallyldimethylammonium-bis(trifluoromethanesulfonyl)imide (DADMATFSI) and its binary mixture with LiTFSI are presented herein, also showing this novel compound as a polymerizable room temperature ionic liquid with excellent transport properties for Li(+) ions. In particular, results of pulsed field gradient (PFG)-NMR diffusion experiments and impedance measurements show that DADMATFSI exhibits state of the art properties of ionic liquids. Similar ionic diffusion coefficients and a similarly high conductivity as seen in the benchmark compound N-butyl-N-methylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (PYR14TFSI) are observed. In accordance, the Li transference number in the binary mixture matches the trend seen for PYR14TFSI-LiTFSI mixtures. In addition to these impressive properties as ionic liquid, DADMATFSI was polymerized by UV treatment. The polymerization is demonstrated and the ion conducting properties of the resulting gel polymer electrolyte are investigated, showing that DADMATFSI can be transformed into an ionogel and may have applications where polymerization is desirable.

  3. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Reddy, Ramana G

    2009-01-31

    EXECUTIVE SUMMARY The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer

  4. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Reddy, Ramana

    2009-01-31

    EXECUTIVE SUMMARY The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient

  5. Exfoliation Mechanism of Graphite Cathode in Ionic Liquids.

    PubMed

    Lei, Haiping; Tu, Jiguo; Yu, Zhijing; Jiao, Shuqiang

    2017-10-11

    Graphene has been successfully electrochemically exfoliated by electrolysis of cathode graphite in the aluminum-ion battery with ionic liquid electrolyte comprising AlCl3 and 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl). The AlCl4(-), Al2Cl7(-), etc., intercalation into graphite flakes in ionic liquid of the aluminum-ion battery by different electrolysis processes to exfoliate graphite has been researched in detail. As a result of the enhanced structural flexibility, the intercalant gallery height increases in the less than five-layer graphene film, providing more free space for AlCl4(-), Al2Cl7(-), etc. transport. Therefore, a quantity of 3-5 layers rather than 1-2 layers of graphene can be obtained. The results clearly demonstrate that graphene has been produced in the graphite cathode in AlCl3/EMImCl ionic liquids, which is significantly meaningful for accelerating the theoretical research and industrialized application of graphene. Meanwhile, it has a vitally important role for promoting the recycling Al-ion batteries.

  6. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    SciTech Connect

    Dr. R. G. Reddy

    2007-09-01

    The major objective of the project is to establish the feasibility of using specific ionic liquids capable of sustaining aluminum electrolysis near room temperature at laboratory and batch recirculation scales. It will explore new technologies for aluminum and other valuable metal extraction and process methods. The new technology will overcome many of the limitations associated with high temperatures processes such as high energy consumption and corrosion attack. Furthermore, ionic liquids are non-toxic and could be recycled after purification, thus minimizing extraction reagent losses and environmental pollutant emissions. Ionic liquids are mixture of inorganic and organic salts which are liquid at room temperature and have wide operational temperature range. During the last several years, they were emerging as novel electrolytes for extracting and refining of aluminum metals and/or alloys, which are otherwise impossible using aqueous media. The superior high temperature characteristics and high solvating capabilities of ionic liquids provide a unique solution to high temperature organic solvent problems associated with device internal pressure build-up, corrosion, and thermal stability. However their applications have not yet been fully implemented due to the insufficient understanding of the electrochemical mechanisms involved in processing of aluminum with ionic liquids. Laboratory aluminum electrodeposition in ionic liquids has been investigated in chloride and bis (trifluoromethylsulfonyl) imide based ionic liquids. The electrowinning process yielded current density in the range of 200-500 A/m2, and current efficiency of about 90%. The results indicated that high purity aluminum (>99.99%) can be obtained as cathodic deposits. Cyclic voltammetry and chronoamperometry studies have shown that initial stages of aluminum electrodeposition in ionic liquid electrolyte at 30°C was found to be quasi-reversible, with the charge transfer coefficient (0.40). Nucleation

  7. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    PubMed

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.

  8. Vaporisation of a dicationic ionic liquid revisited.

    PubMed

    Vitorino, Joana; Leal, João P; Licence, Peter; Lovelock, Kevin R J; Gooden, Peter N; Minas da Piedade, Manuel E; Shimizu, Karina; Rebelo, Luís P N; Canongia Lopes, José N

    2010-12-03

    The vaporization of a dicationic ionic liquid at moderate temperatures and under reduced pressures--recently studied by line-of-sight mass spectrometry--was further analyzed using an ion-cyclotron resonance mass spectroscopy technique that allows the monitoring of the different species present in the gas phase through the implementation of controlled ion-molecule reactions. The results support the view that the vapour phase of an aprotic dicationic ionic liquid is composed of neutral ion triplets (one dication attached to two anions). Molecular dynamics simulations were also performed in order to explain the magnitude of the vaporization enthalpies of dicationic ionic liquids vis-à-vis their monocationic counterparts.

  9. Quantized friction across ionic liquid thin films

    NASA Astrophysics Data System (ADS)

    Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    Ionic liquids, salts in the liquid state under ambient conditions, are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  10. Quantized friction across ionic liquid thin films.

    PubMed

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-07

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  11. Chelating ionic liquids for reversible zinc electrochemistry.

    PubMed

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R

    2013-05-21

    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  12. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  13. Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy

    DOE PAGES

    Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; ...

    2015-12-17

    We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra ofmore » the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.« less

  14. Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy

    SciTech Connect

    Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; Crespo, Marcos

    2015-12-17

    We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra of the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.

  15. Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids?

    PubMed

    Ueno, Kazuhide; Yoshida, Kazuki; Tsuchiya, Mizuho; Tachikawa, Naoki; Dokko, Kaoru; Watanabe, Masayoshi

    2012-09-13

    To demonstrate a new family of ionic liquids (ILs), i.e., "solvate" ionic liquids, the properties (thermal, transport, and electrochemical properties, Lewis basicity, and ionicity) of equimolar molten mixtures of glymes (triglyme (G3) and tetraglyme (G4)) and nine different lithium salts (LiX) were investigated. By exploring the anion-dependent properties and comparing them with the reported data on common aprotic ILs, two different classes of liquid regimes, i.e., ordinary concentrated solutions and "solvate" ILs, were found in the glyme-Li salt equimolar mixtures ([Li(glyme)]X) depending on the anionic structures. The class a given [Li(glyme)]X belonged to was governed by competitive interactions between the glymes and Li cations and between the counteranions (X) and Li cations. [Li(glyme)]X with weakly Lewis basic anions can form long-lived [Li(glyme)](+) complex cations. Thus, they behaved as typical ionic liquids. The lithium "solvate" ILs based on [Li(glyme)]X have many desirable properties for lithium-conducting electrolytes, including high ionicity, a high lithium transference number, high Li cation concentration, and high oxidative stability, in addition to the common properties of ionic liquids. The concept of "solvate" ionic liquids can be utilized in an unlimited number of combinations of other metal salts and ligands, and will thus open a new field of research on ionic liquids.

  16. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  17. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  18. Ionic Liquids in HPLC and CE: A Hope for Future.

    PubMed

    Ali, Imran; Suhail, Mohd; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2017-07-04

    The ionic liquids (ILs) are salts with melting points below 100°C. These are called as ionic fluids, ionic melts, liquid electrolytes, fused salts, liquid salts, ionic glasses, designer solvents, green solvents and solvents of the future. These have a wide range of applications, including medical, pharmaceutical and chemical sciences. Nowadays, their use is increasing greatly in separation science, especially in chromatography and capillary electrophoresis due to their remarkable properties. The present article describes the importance of ILs in high-performance liquid chromatography and capillary electrophoresis. Efforts were also made to highlight the future expectations of ILs.

  19. Ionic liquids in separation techniques.

    PubMed

    Berthod, A; Ruiz-Angel, M J; Carda-Broch, S

    2008-03-14

    The growing interest in ionic liquids (ILs) has resulted in an exponentially increasing production of analytical applications. The potential of ILs in chemistry is related to their unique properties as non-molecular solvents: a negligible vapor pressure associated to a high thermal stability. ILs found uses in different sub-disciplines of analytical chemistry. After drawing a rapid picture of the physicochemical properties of selected ILs, this review focuses on their use in separation techniques: gas chromatography (GC), liquid chromatography (LC) and electrophoretic methods (CE). In LC and CE, ILs are not used as pure solvents, but rather diluted in aqueous solutions. In this situation ILs are just salts. They are dual in nature. Too often the properties of the cations are taken as the properties of the IL itself. The lyotropic theory is recalled and the effects of a chaotropic anion are pointed out. Many results can be explained considering all ions present in the solution. Ion-pairing and ion-exchange mechanisms are always present, associated with hydrophobic interactions, when dealing with IL in diluted solutions. Chromatographic and electrophoretic methods are also mainly employed for the control and monitoring of ILs. These methods are also considered. ILs will soon be produced on an industrial scale and it will be necessary to develop reliable analytical procedures for their analysis and control.

  20. Ionic liquid polyoxometalates as light emitting materials

    SciTech Connect

    Ortiz-acosta, Denisse; Del Sesto, Rico E; Scott, Brian; Bennett, Bryan L; Purdy, Geraldine M; Muenchausen, Ross E; Mc Kigney, Edward; Gilbertson, Robert

    2008-01-01

    The low melting point, negligible vapor pressure, good solubility, and thermal and chemical stability make ionic liquids useful materials for a wide variety of applications. Polyoxometalates are early transition metal oxygen clusters that can be synthesized in many different sizes and with a variety of heterometals. The most attractive feature of POMs is that their physical properties, in particular electrical, magnetic, and optical properties, can be easily modified following known procedures. It has been shown that POMs can exhibit cooperative properties, as superconductivity and energy transfer. POM ionic liquids can be obtained by selecting the appropliate cation. Different alkyl ammonium and alkyl phosphonium salts are being used to produce new POM ionic liquids together with organic or inorganic luminescent centers to design light emitting materials. Ammonium and phosphonium cations with activated, polymerizable groups are being used to further polymerize the ionic liquid into transparent, solid materials with high metal density.

  1. Aqueous ionic liquid pretreatment of straw.

    PubMed

    Fu, Dongbao; Mazza, Giuseppe

    2011-07-01

    Pretreatment is the key to unlock the recalcitrance of lignocellulose for cellulosic biofuels production. Increasing attention has been drawn to ionic liquids (ILs) for pretreatment of lignocellulosic biomass, because this approach has several advantages over conventional methods. However, cost and energy-intensive recycling of the solvents are major constraints preventing ILs from commercial viability. In this work, a mixture of ionic liquid 1-ethyl-3-methylimidazolium acetate and water was demonstrated to be effective for pretreatment of lignocellulosic biomass, evidenced by the removal of lignin and a reduction in cellulose crystallinity. A higher fermentable sugar yield (81%) was obtained than for pure ionic liquid pretreatment under the same conditions (67%). Aqueous ionic liquid pretreatment has the advantages of less usage and easier recycling of ILs, and reduced viscosity. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. Modeling electrokinetics in ionic liquids: General

    DOE PAGES

    Wang, Chao; Bao, Jie; Pan, Wenxiao; ...

    2017-04-01

    Using direct numerical simulations, we provide a thorough study regarding the electrokinetics of ionic liquids. In particular, modified Poisson–Nernst–Planck equations are solved to capture the crowding and overscreening effects characteristic of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the modified Poisson-Nernst-Planck equations are coupled with Navier–Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel charged surfaces, charging dynamics in a nanopore, capacitance of electric double-layer capacitors, electroosmotic flow in a nanochannel, electroconvective instability on a plane ion-selective surface, and electroconvective flow on amore » curved ionselective surface. Lastly, we also discuss how crowding and overscreening and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.« less

  3. Ionic Liquid-Based Microemulsions in Catalysis.

    PubMed

    Hejazifar, Mahtab; Earle, Martyn; Seddon, Kenneth R; Weber, Stefan; Zirbs, Ronald; Bica, Katharina

    2016-12-16

    The design and properties of surface-active ionic liquids that are able to form stable microemulsions with heptane and water are presented, and their promise as reaction media for thermomorphic palladium-catalyzed cross-coupling reactions is demonstrated.

  4. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    EPA Science Inventory

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  5. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    EPA Science Inventory

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  6. Nonlocal optical nonlinearity of ionic liquids

    NASA Astrophysics Data System (ADS)

    Souza, R. F.; Alencar, M. A. R. C.; Meneghetti, M. R.; Dupont, J.; Hickmann, J. M.

    2008-04-01

    The nonlinear optical properties of two ionic liquids, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMI]BF4) and 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMI]PF6), have been investigated using the Z-scan technique. These compounds are liquid at room temperature and present a strong ionic nature. Nonlinear refraction and absorption, and thermo-optical measurements for both ionic liquids were performed using two different laser wavelengths, 514 nm and 810 nm, in the continuous wave and femtosecond regimes, respectively. It was observed that those specimens have large negative nonlinear refractive indexes and thermo-optical coefficients, but nonlinear absorption was not observed. Different dispersion relations were observed depending on the ionic liquid anion, which may be related to the distinct structures of these compounds. This result indicates that ionic liquids are suitable media for the investigation of nonlocal nonlinear phenomena.

  7. Phosphonium-based ionic liquids and uses

    SciTech Connect

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  8. Superbase-derived protic ionic liquids

    DOEpatents

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  9. Ionic liquids in the synthesis of nanoobjects

    NASA Astrophysics Data System (ADS)

    Tarasova, Natalia P.; Smetannikov, Yurii V.; Zanin, A. A.

    2010-08-01

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  10. The Solubility Parameters of Ionic Liquids

    PubMed Central

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  11. New ionic liquids based on complexation of dipropylsulfide and AlCl3 for electrochodeposition of aluminum

    SciTech Connect

    Fang, Youxing; Jiang, Xueguang; Dai, Sheng; Sun, Xiao-Guang

    2015-01-01

    A new kind of ionic liquid based on complexation of dipropyl sulfide (DPS) and AlCl3 has been prepared. The equivalent concentration of AlCl3 in the ionic liquid is as high as 2.3 M. More importantly, it is highly fluidic and exhibits an ambient ionic conductivity of 1.25 x 10-4 S cm-1. This new ionic liquid can be successfully used as an electrolyte for electrodeposition of aluminum.

  12. The distillation and volatility of ionic liquids.

    PubMed

    Earle, Martyn J; Esperança, José M S S; Gilea, Manuela A; Lopes, José N Canongia; Rebelo, Luís P N; Magee, Joseph W; Seddon, Kenneth R; Widegren, Jason A

    2006-02-16

    It is widely believed that a defining characteristic of ionic liquids (or low-temperature molten salts) is that they exert no measurable vapour pressure, and hence cannot be distilled. Here we demonstrate that this is unfounded, and that many ionic liquids can be distilled at low pressure without decomposition. Ionic liquids represent matter solely composed of ions, and so are perceived as non-volatile substances. During the last decade, interest in the field of ionic liquids has burgeoned, producing a wealth of intellectual and technological challenges and opportunities for the production of new chemical and extractive processes, fuel cells and batteries, and new composite materials. Much of this potential is underpinned by their presumed involatility. This characteristic, however, can severely restrict the attainability of high purity levels for ionic liquids (when they contain poorly volatile components) in recycling schemes, as well as excluding their use in gas-phase processes. We anticipate that our demonstration that some selected families of commonly used aprotic ionic liquids can be distilled at 200-300 degrees C and low pressure, with concomitant recovery of significant amounts of pure substance, will permit these currently excluded applications to be realized.

  13. Supported ionic liquid membrane in membrane reactor

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  14. The distillation and volatility of ionic liquids

    NASA Astrophysics Data System (ADS)

    Earle, Martyn J.; Esperança, José M. S. S.; Gilea, Manuela A.; Canongia Lopes, José N.; Rebelo, Luís P. N.; Magee, Joseph W.; Seddon, Kenneth R.; Widegren, Jason A.

    2006-02-01

    It is widely believed that a defining characteristic of ionic liquids (or low-temperature molten salts) is that they exert no measurable vapour pressure, and hence cannot be distilled. Here we demonstrate that this is unfounded, and that many ionic liquids can be distilled at low pressure without decomposition. Ionic liquids represent matter solely composed of ions, and so are perceived as non-volatile substances. During the last decade, interest in the field of ionic liquids has burgeoned, producing a wealth of intellectual and technological challenges and opportunities for the production of new chemical and extractive processes, fuel cells and batteries, and new composite materials. Much of this potential is underpinned by their presumed involatility. This characteristic, however, can severely restrict the attainability of high purity levels for ionic liquids (when they contain poorly volatile components) in recycling schemes, as well as excluding their use in gas-phase processes. We anticipate that our demonstration that some selected families of commonly used aprotic ionic liquids can be distilled at 200-300°C and low pressure, with concomitant recovery of significant amounts of pure substance, will permit these currently excluded applications to be realized.

  15. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    PubMed

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-03

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-), [NO3](-), [SCN](-) [BF4](-), [PF6](-), and [Tf2N](-). The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.

  16. Studies of ionic liquids in lithium-ion battery test systems

    SciTech Connect

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  17. Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly(Ionic Liquid).

    PubMed

    Bui-Thi-Tuyet, Van; Trippé-Allard, Gaëlle; Ghilane, Jalal; Randriamahazaka, Hyacinthe

    2016-05-02

    Redox-active poly(ionic liquid) poly(3-(2-methacryloyloxy ethyl)-1-(N-(ferrocenylmethyl) imidazolium bis(trifluoromethylsulfonyl)imide deposited onto electrode surfaces has been prepared using surface-initiated atom transfer radical polymerization SI-ATRP. The process starts by electrochemical immobilization of initiator layer, and then methacrylate monomer carrying ferrocene and imidazolium units is polymerized in ionic liquid media via SI-ATRP process. The surfaces analyses of the polymer exhibit a well-defined polymer brushlike structure and confirm the presence of ferrocene and ionic moieties within the film. Furthermore, the electrochemical investigations of poly(redox-active ionic liquid) in different media demonstrate that the electron transfer is not restricted by the rate of counterion migration into/out of the polymer. The attractive electrochemical performance of these materials is further demonstrated by performing electrochemical measurement, of poly(ferrocene ionic liquid), in solvent-free electrolyte. The facile synthesis of such highly ordered electroactive materials based ionic liquid could be useful for the fabrication of nanostructured electrode suitable for performing electrochemistry in solvent free electrolyte. We also demonstrate possible applications of the poly(FcIL) as electrochemically reversible surface wettability system and as electrochemical sensor for the catalytic activity toward the oxidation of tyrosine.

  18. A paradoxical method for NAD+/NADH accumulation on an electrode surface using a hydrophobic ionic liquid.

    PubMed

    Masuda, Miyuki; Motoyama, Yusuke; Kuwahara, Jun; Nakamura, Nobuhumi; Ohno, Hiroyuki

    2013-01-15

    In this communication, we describe a novel and facile method for the immobilization of NAD(+)/NADH on an electrode surface using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][Tf(2)N]). By taking advantage of the insolubility of NAD(+)/NADH in hydrophobic ionic liquids, it is expected that NAD(+)/NADH can be retained on the electrode's surface. Alcohol dehydrogenase (ADH) and NAD(+)/NADH were immobilized with a gelatin hydrogel on an electrode that was modified with an electropolymerized ruthenium complex containing 5-amino-1,10-phenanthroline (pAPRu) as a mediator for NADH oxidation. The (ADH, NAD(+))/pAPRu-immobilized electrode exhibited the electrocatalytic oxidation of ethanol in [C4mim][Tf(2)N]. The obtained catalytic current in [C4mim][Tf(2)N] was comparable to that in buffer solution containing NAD(+). It was confirmed by UV-vis spectroscopy that NAD(+) did not dissolve in the [C4mim][Tf(2)N] and was retained on the electrode's surface. Furthermore, we succeeded in constructing an ethanol/O(2) biofuel cell comprised of an (ADH, NAD(+))/pAPRu anode and a bilirubin oxidase cathode using [C4mim][Tf(2)N] as an electrolyte.

  19. Separation and determination of lignans from seeds of Schisandra species by micellar electrokinetic capillary chromatography using ionic liquid as modifier.

    PubMed

    Tian, Kan; Qi, Shengda; Cheng, Yuqiao; Chen, Xingguo; Hu, Zhide

    2005-06-17

    In this paper, a micellar electrokinetic chromatographic (MEKC) method using ionic liquid as modifier for the quantification of the active components of lignans found in the medicinal herbs Schisandra species was developed for the first time. Preliminary investigations employing sodium dodecyl sulfate (SDS) as surfactant did not lead to the necessary resolution of the studied compounds, the addition of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4) to the SDS micellar system resulted in the complete separation of all the compounds. The effects on the separation by several parameters such as BMIM-BF4 and SDS concentration, applied voltage, background electrolyte pH and concentration, were evaluated. Under the optimal conditions (5 mM borate-5 mM phosphate buffer in the presence of 20 mM SDS and 10 mM BMIM-BF4, pH 9.2, applied voltage 25 kV and detection at 254 nm), the method successfully applied to the determination of lignans in extracts of Schisandra chinensis (Turcz.) Baill. and Schisandra henryi C.B. Clarke in less than 13 min. The separation mechanism was also discussed.

  20. Fast Ignition and Sustained Combustion of Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  1. Ionic liquid processing of cellulose.

    PubMed

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  2. Ionic liquids--an overview.

    PubMed

    Jenkins, Harry Donald Brooke

    2011-01-01

    A virtually unprecedented exponential burst of activity resulted following the publication, in 1998, of an article by Michael Freeman (Freemantle, M. Chemical & Engineering News, 1998, March 30, 32), which speculated on the role and contribution that ionic liquids (ILs) might make in the future on the development of clean technology. Up until that time only a handful of researchers were routinely engaged in the study of ILs but frenzied activity followed that continues until the present day. Scientists from all disciplines related to Chemistry have now embarked on studies, including theoreticians who are immersed in the aim of improving the "designer role" so that they can tailor ILs to deliver specified properties. This article, whilst not in any sense attempting to be exhaustive, highlights the main features which characterise ILs, presenting these in a form readily assimilated by newcomers to this area of research. An extensive glossary is featured in this article as well as a chronological list which charts the major areas of development. What follows consists of a number of sections briefly describing the role of lLs as solvents, hypergolic fuels, their use in some electrochemical devices such as solar cells and lithium batteries and their use in polymerisation reactions, followed by a concise summary of some of the other roles that they are capable of playing. The role of empirical, volume-based thermodynamics procedures, as well as large scale computational studies on ILs is also highlighted. These developments which are described are remarkable in that they have been achieved in less than a decade and a half although knowledge of these materials has existed for much longer.

  3. New chiral ligand exchange capillary electrophoresis system with chiral amino amide ionic liquids as ligands.

    PubMed

    Jiang, Junfang; Mu, Xiaoyu; Qiao, Juan; Su, Yuan; Qi, Li

    2017-12-01

    Using chiral amino amide ionic liquids as the ligands, a new chiral ligand exchange capillary electrophoresis method with Cu(II) as the central ion was constructed for enantioseparation of labeled D,L-amino acids. The effects of key parameters, including pH value of the running buffer, the ratio of Cu(II) to chiral amino amide ionic liquids, the concentration of complexes based on Cu(II)-chiral amino amide ionic liquids were investigated. It has been observed that eight pairs of labeled D,L-amino acids could be baseline-separated with a running buffer of 15.0mM ammonium acetate, 10.0mM Cu(II) and 20.0mML-phenylalaninamide based ionic liquid at pH 5.0. The quantitation of D,L-amino acids was conducted and good linearity (r(2) ≥ 0.964) was obtained. Furthermore, an assay for determining the enantiomeric purity of D,L-amino acids was developed and the possible enantiorecognition mechanism was discussed briefly. The results indicated that the chiral amino amide ionic liquids could play the role of ligands in chiral ligand exchange capillary electrophoresis system and exhibit great potential in chiral analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Gas-liquid interface of room-temperature ionic liquids.

    PubMed

    Santos, Cherry S; Baldelli, Steven

    2010-06-01

    The organization of ions at the interface of ionic liquids and the vacuum is an ideal system to test new ideas and concepts on the interfacial chemistry of electrolyte systems in the limit of no solvent medium. Whilst electrolyte systems have numerous theoretical and experimental methods used to investigate their properties, the ionic liquids are relatively new and our understanding of the interfacial properties is just beginning to be explored. In this critical review, the gas-liquid interface is reviewed, as this interface does not depend on the preparation of another medium and thus produces a natural interface. The interface has been investigated by sum frequency generation vibrational spectroscopy and ultra-high vacuum techniques. The results provide a detailed molecular-level view of the surface composition and structure. These have been complemented by theoretical studies. The combinations of treatments on this interface are starting to provide a somewhat convergent description of how the ions are organized at this neat interface (108 references).

  5. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  6. Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries.

    PubMed

    Evans, Tyler; Piper, Daniela Molina; Kim, Seul Cham; Han, Sang Sub; Bhat, Vinay; Oh, Kyu Hwan; Lee, Se-Hee

    2014-11-19

    High-energy-density FeS2 cathodes en-abled by a bis(trifluoromethanesulfonyl)imide (TFSI-) anion-based room temperature ionic liquid (RTIL) electrolyte are demonstrated. A TFSI-based ionic liquid (IL) significantly mitigates polysulfide dissolution, and therefore the parasitic redox shuttle mechanism, that plagues sulfur-based electrode chemistries. FeS2 stabilization with a TFSI(-) -based IL results in one of the highest energy density cathodes, 542 W h kg(-1) (normalized to cathode composite mass), reported to date.

  7. Water Contaminant Mitigation in Ionic Liquid Propellant

    NASA Technical Reports Server (NTRS)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  8. Water Contaminant Mitigation in Ionic Liquid Propellant

    NASA Technical Reports Server (NTRS)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  9. Remarkable sensitivity of the electrochemical reduction of benzophenone to proton availability in ionic liquids.

    PubMed

    Zhao, Shu-Feng; Lu, Jia-Xing; Bond, Alan M; Zhang, Jie

    2012-04-23

    The reduction of benzophenone was investigated in five different ionic liquids by using transient cyclic voltammetry, near steady-state voltammetry, and numerical simulation. Two reversible, well-resolved one-electron-reduction processes were observed in dry (≤20 ppm water, ca. 1 mM)) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Bmpyrd][NTf(2)]) and 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide ([Bmpipd][NTf(2)]), which did not contain any readily available proton source. Upon addition of water, the second process became chemically irreversible and shifted to a more positive potential by approximately 600 mV; moreover, the two reduction processes merged into a single two-electron proton-coupled process when about 0.6 M H(2)O was present. This large dependence of potential on water content, which was not observed in molecular solvents (electrolyte), was explained by a reaction mechanism that incorporated protonation and hydrogen-bonding interactions of the benzophenone dianion with as many as seven water molecules. In the three imidazolium-based ionic liquids used herein, the first benzophenone-reduction process was again reversible, whilst the second reduction process became chemically irreversible owing to the availability of the C2-H imidazolium protons in these ionic liquids. The reversible potentials for benzophenone reduction were remarkably independent of the identity of the ionic liquids, thereby implying either weak interactions with the ionic liquids or relatively insignificant differences in the levels of ion-pairing. Thus, the magnitude of the separation of the potentials of the reversible first and irreversible second reduction processes mainly reflected the proton availability from either the ionic liquid itself or from adventitious water. Consequently, voltammetric reduction of benzophenone provides a sensitive tool for the determination of proton availability in ionic liquids.

  10. Refolding of horseradish peroxidase is enhanced in presence of metal cofactors and ionic liquids.

    PubMed

    Bae, Sang-Woo; Eom, Doyoung; Mai, Ngoc Lan; Koo, Yoon-Mo

    2016-03-01

    The effects of various refolding additives, including metal cofactors, organic co-solvents, and ionic liquids, on the refolding of horseradish peroxidase (HRP), a well-known hemoprotein containing four disulfide bonds and two different types of metal centers, a ferrous ion-containing heme group and two calcium atoms, which provide a stabilizing effect on protein structure and function, were investigated. Both metal cofactors (Ca(2+) and hemin) and ionic liquids have positive impact on the refolding of HRP. For instance, the HRP refolding yield remarkably increased by over 3-fold upon addition of hemin and calcium chloride to the refolding buffer as compared to that in the conventional urea-containing refolding buffer. Moreover, the addition of ionic liquids [EMIM][Cl] to the hemin and calcium cofactor-containing refolding buffer further enhanced the HRP refolding yield up to 80% as compared to 12% in conventional refolding buffer at relatively high initial protein concentration (5 mg/ml). These results indicated that refolding method utilizing metal cofactors and ionic liquids could enhance the yield and efficiency for metalloprotein.

  11. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors

    PubMed Central

    2015-01-01

    Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors. PMID:25973552

  12. NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors.

    PubMed

    Forse, Alexander C; Griffin, John M; Merlet, Céline; Bayley, Paul M; Wang, Hao; Simon, Patrice; Grey, Clare P

    2015-06-10

    Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors.

  13. Key Developments in Ionic Liquid Crystals.

    PubMed

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  14. Key Developments in Ionic Liquid Crystals

    PubMed Central

    Alvarez Fernandez, Alexandra; Kouwer, Paul H. J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material? PMID:27196890

  15. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  16. Understanding the polarity of ionic liquids.

    PubMed

    Ab Rani, M A; Brant, A; Crowhurst, L; Dolan, A; Lui, M; Hassan, N H; Hallett, J P; Hunt, P A; Niedermeyer, H; Perez-Arlandis, J M; Schrems, M; Welton, T; Wilding, R

    2011-10-06

    The polarities of a wide range of ionic liquids have been determined using the Kamlet-Taft empirical polarity scales α, β and π*, with the dye set Reichardt's Dye, N,N-diethyl-4-nitroaniline and 4-nitroaniline. These have been compared to measurements of these parameters with different dye sets and to different polarity scales. The results emphasise the importance of recognising the role that the nature of the solute plays in determining these scales. It is particularly noted that polarity scales based upon charged solutes can give very different values for the polarity of ionic liquids compared to those based upon neutral probes. Finally, the effects of commonplace impurities in ionic liquids are reported.

  17. Nitrogen-Doped Graphene for Ionic Liquid Based Supercapacitors.

    PubMed

    Tamilarasan, P; Ramaprabhu, S

    2015-02-01

    Graphene is a promising electrode material for supercapacitor applications due to its unique properties. Interaction of electrolyte ions with graphene lattice sites is a crucial factor in ionic liquid electrolyte based supercapacitors. In an effort to increase the interaction of high viscous electrolyte with electrode material, here, we here report the results of a systematic study carried out on a supercapacitor with nitrogen doped graphene as electrode material and [BMIM][TFSI] as electrolyte. In this study, nitrogen doped hydrogen exfoliated graphene (N-HEG) is prepared by radio frequency (R.F) magnetron sputtering and employed as electrode material for [BMIM][TFSI] electrolyte based high performance supercapacitor. N-HEG shows a high specific capacitance of 170.1 F/g compared to that of electrolyte modified graphene (124.5 F/g), at a specific current of 2 A/g. The improved performance of N-HEG based supercapacitor is attributed to the presence of nitrogen atoms in the graphene lattice which in turn increases the lattice-ion interaction and the electrical conductivity. In addition, the presence of wrinkles on the graphene surface provides a shortest directional path to access pores and surface. The device shows high charge storage capacity (72.37 Wh/kg) along with wide operating voltage (3.5 V) and high cyclic stability.

  18. TiO2 nanotube arrays grown in ionic liquids: high-efficiency in photocatalysis and pore-widening

    SciTech Connect

    Li, Huaqing; Qu, Jun; Cui, Qingzhou; Xu, Hanbing; Luo, Huimin; Chi, Miaofang; Meisner, Roberta Ann; Wang, Wei; Dai, Sheng

    2011-01-01

    Debris-free, long, well-separated TiO2 nanotube arrays were obtained using an ionic liquid (IL) as electrolyte. The high conductivity of IL resulted in fast pore widening and few contaminants from electrolyte decomposition leading to high photocatalytic efficiency in water splitting.

  19. Non-classical diffusion in ionic liquids.

    PubMed

    Taylor, Alasdair W; Licence, Peter; Abbott, Andrew P

    2011-06-07

    In this study the diffusion coefficient of neutral and cationic ferrocenyl-derivatives have been characterised in a range of 1-alkyl-3-methylimidazolium ionic liquids of the general form [C(n)C(1)Im](+)[X](-). The electrochemistry of ferrocene, 1-ferrocenylmethylimidazole (FcC(1)Im), 1-ferrocenylmethylimidazolium bis(trifluoromethanesulfonyl)imide ([FcC(1)C(1)Im][Tf(2)N]) and N,N,N,N-trimethylferrocenyl-methylammonium bis(trifluoromethanesulfonyl)imide ([FcC(1)NMe(3)][Tf(2)N]), in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(2)C(1)Im][Tf(2)N]) was investigated. It was shown that the diffusion coefficients of each were not significantly affected by the presence and location of a positive charge on the ferrocenyl-derivative, suggesting that coulombic solvent-solute interactions did not hinder motion of these species in ionic liquids. The diffusion coefficients for [FcC(1)C(1)Im][Tf(2)N] in five [C(n)C(1)Im][X] ionic liquids were determined as a function of temperature and the data shown to disobey the Stokes-Einstein equation. This observation is consistent with the fact that ionic liquids are glass formers, systems in which non-Stokesian behaviour is well documented. Measured diffusion coefficient data was used to determine correlation length in the ionic liquid and was found to correlate with the average size of holes, or voids, within the ionic liquid. This interpretation suggests that a model by which a migrating species can jump between voids or holes within the liquid is highly appropriate and is consistent with the observed behaviour measured across a range of temperatures.

  20. Morphology and Proton Conductivity of Ionic Liquid Containing Sulfonated Block Copolymers

    NASA Astrophysics Data System (ADS)

    Kim, Sung Yeon; Park, Moon Jeong

    2011-03-01

    Proton exchange membrane fuel cells (PEMFC) offer the prospect of supplying clean electrical power for a wide variety of systems such as portable electronic devices and vehicles. Although, significant effort has been devoted to improvement of the transport properties of PEMs which is operated relatively lower temperature below 80circ; C, it suffers from a CO poisoning at Pt catalysis, complexity of water and heat management in the system. Herein, we report unique block copolymer electrolyte membrane systems containing ionic liquid. Due to the nonvolatile property of ionic liquid the systems exhibit effective proton transport above 100circ; C without humidification. In present study, sulfonated block copolymers, i.e., poly(styrenesulfonate-b-methylbuthylene) (SnMBm), are utilized for matrix materials by varying the ion contents and molecular weight. Imidazolium based ionic liquids are selectively incorporated into polystyrenesulfonate phases, which results in various morphological transitions as a function of the amount of the ionic liquid. The effect of counter ions on the observed morphologies is significant yielding concurrently different values of conductivity. Small angle x-ray scattering and transmission electron microscopy have been employed to determine various morphologies of the ionic liquid containing sulfonated block copolymer membranes and impedance spectroscopy is used for the conductivity measurements.

  1. Structural Investigations on Lithium-Doped Protic and Aprotic Ionic Liquids.

    PubMed

    Ray, Promit; Vogl, Thomas; Balducci, Andrea; Kirchner, Barbara

    2017-05-25

    Solutions of lithium bis(trifluoromethanesulfonyl)imide (LiNTf2), in four different [NTf2](-)-based ionic liquids, are extensively investigated as potential electrolytes for lithium-ion batteries. Solvation of the [Li](+) ions in the ionic liquids and its impact on their physicochemical properties are studied herein with the aid of molecular dynamics simulations. The cationic components of the investigated liquids were systematically varied so as to individually evaluate effects of specific structural changes; increase in ring size, the addition of an alkyl chain and absence of an acidic proton, on the solvation and mobility of the [Li](+) cations. The studied cations also allow for a direct comparison between solutions of [Li](+) salt in protic and aprotic ionic liquids. Emphasis is laid on elucidating the interactions between the [Li](+) and [NTf2](-) ions revealing slightly higher coordination numbers for the aprotic solvent, benchmarked against experimental measurements. The study suggests that the ionic liquids largely retain their structure upon salt addition, with interactions within the liquids only slightly perturbed. The rattling motion of the [Li](+) cations within cages formed by the surrounding [NTf2](-) anions is examined by the analysis of [Li](+) autocorrelation functions. Overall, the solvation mechanism of [Li](+) salt, within the hydrogen-bonded network of the ionic liquids, is detailed from classical and ab initio molecular dynamics simulations.

  2. Electric-double-layer field-effect transistors with ionic liquids.

    PubMed

    Fujimoto, Takuya; Awaga, Kunio

    2013-06-21

    Charge carrier control is a key issue in the development of electronic functions of semiconductive materials. Beyond the simple enhancement of conductivity, high charge carrier accumulation can realize various phenomena, such as chemical reaction, phase transition, magnetic ordering, and superconductivity. Electric double layers (EDLs), formed at solid-electrolyte interfaces, induce extremely large electric fields. This results in a high charge carrier accumulation in the solid, much more effectively than solid dielectric materials. In the present review, we describe recent developments in the field-effect transistors (FETs) with gate dielectrics of ionic liquids, which have attracted much attention due to their wide electrochemical windows, low vapor pressures, and high chemical and physical stability. We explain the capacitance effects of ionic liquids, and describe the various combinations of ionic liquids and organic and inorganic semiconductors that are used to achieve such effects as high transistor performance, insulator-metal transitions, superconductivity, and ferromagnetism, in addition to the applications of the ionic-liquid EDL-FETs in logic devices. We discuss the factors controlling the mobility and threshold voltage in these types of FETs, and show the ionic liquid dependence of the transistor performance.

  3. Utility of ionic liquids in analytical separations.

    PubMed

    Shamsi, Shahab A; Danielson, Neil D

    2007-07-01

    Ionic liquids (ILs), as separation media, have made significant contributions in the past decades in advancing research in gas chromatography (GC), liquid chromatography (LC), and capillary electrophoresis (CE). This review, covering reports published from the mid 1980s to early 2007, shows how ILs have been used so far in separation science, originally primarily as GC stationary phases and later as mobile phase additives (both millimolar and major percent levels) for LC and CE. Representative GC and LC chromatograms as well as CE electropherograms are shown. In addition, the very recent findings on the development of ionic liquids with surfactant properties and its applications for chiral and achiral analysis are discussed.

  4. Unravelling nanoconfined films of ionic liquids

    SciTech Connect

    Lee, Alpha A.; Vella, Dominic; Goriely, Alain; Perkin, Susan

    2014-09-07

    The confinement of an ionic liquid between charged solid surfaces is treated using an exactly solvable 1D Coulomb gas model. The theory highlights the importance of two dimensionless parameters: the fugacity of the ionic liquid, and the electrostatic interaction energy of ions at closest approach, in determining how the disjoining pressure exerted on the walls depends on the geometrical confinement. Our theory reveals that thermodynamic fluctuations play a vital role in the “squeezing out” of charged layers as the confinement is increased. The model shows good qualitative agreement with previous experimental data, with all parameters independently estimated without fitting.

  5. Li(+) solvation in glyme-Li salt solvate ionic liquids.

    PubMed

    Ueno, Kazuhide; Tatara, Ryoichi; Tsuzuki, Seiji; Saito, Soshi; Doi, Hiroyuki; Yoshida, Kazuki; Mandai, Toshihiko; Matsugami, Masaru; Umebayashi, Yasuhiro; Dokko, Kaoru; Watanabe, Masayoshi

    2015-03-28

    Certain molten complexes of Li salts and solvents can be regarded as ionic liquids. In this study, the local structure of Li(+) ions in equimolar mixtures ([Li(glyme)]X) of glymes (G3: triglyme and G4: tetraglyme) and Li salts (LiX: lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]), lithium bis(pentafluoroethanesulfonyl)amide (Li[BETI]), lithium trifluoromethanesulfonate (Li[OTf]), LiBF4, LiClO4, LiNO3, and lithium trifluoroacetate (Li[TFA])) was investigated to discriminate between solvate ionic liquids and concentrated solutions. Raman spectra and ab initio molecular orbital calculations have shown that the glyme molecules adopt a crown-ether like conformation to form a monomeric [Li(glyme)](+) in the molten state. Further, Raman spectroscopic analysis allowed us to estimate the fraction of the free glyme in [Li(glyme)]X. The amount of free glyme was estimated to be a few percent in [Li(glyme)]X with perfluorosulfonylamide type anions, and thereby could be regarded as solvate ionic liquids. Other equimolar mixtures of [Li(glyme)]X were found to contain a considerable amount of free glyme, and they were categorized as traditional concentrated solutions. The activity of Li(+) in the glyme-Li salt mixtures was also evaluated by measuring the electrode potential of Li/Li(+) as a function of concentration, by using concentration cells against a reference electrode. At a higher concentration of Li salt, the amount of free glyme diminishes and affects the electrode reaction, leading to a drastic increase in the electrode potential. Unlike conventional electrolytes (dilute and concentrated solutions), the significantly high electrode potential found in the solvate ILs indicates that the solvation of Li(+) by the glyme forms stable and discrete solvate ions ([Li(glyme)](+)) in the molten state. This anomalous Li(+) solvation may have a great impact on the electrode reactions in Li batteries.

  6. Rate limiting activity of charge transfer during lithiation from ionic liquids

    NASA Astrophysics Data System (ADS)

    Rodrigues, Marco-Tulio F.; Lin, Xinrong; Gullapalli, Hemtej; Grinstaff, Mark W.; Ajayan, Pulickel M.

    2016-10-01

    Given the increased use of room temperature ionic liquid electrolytes in Li-ion batteries, due to their non-flammability and negligible volatility, this study evaluates the lithiation kinetics to understand and improve the rate performance of Li-ion batteries. Lithium titanate spinel is used as a model electrode and the electrolyte is composed of LiTFSI and TFSI-coordinated alkoxy-modified phosphonium ionic liquid. Based on the analysis of activation energies for each process, we report that the charge-transfer reaction at the electrode/electrolyte interface is the rate-limiting step for cell operation. This finding is further supported by the observation that a 50-fold decrease in charge-transfer resistance at higher temperatures leads to a significant performance improvement over that of a traditional organic electrolyte at room temperature. Charge-transfer resistance and electrolyte wetting on the electrode surface are critical processes for optimal battery performance, and such processes need to be included when designing new ionic liquids in order to exceed the power density obtained with the use of current carbonate-based electrolytes.

  7. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  8. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  9. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    PubMed

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested.

  10. A comparison of ionic liquids to molecular organic solvents as additives for chiral separations in micellar electrokinetic chromatography.

    PubMed

    Mwongela, Simon M; Siminialayi, Noreen; Fletcher, Kristin A; Warner, Isiah M

    2007-06-01

    In this study, we report the effects of adding ionic liquids (ILs), as compared to adding conventional molecular organic solvents (MOSs), to aqueous buffer solutions containing molecular micelles in the separation of chiral analyte mixtures in micellar EKC (MEKC). The molecular micelle used in this study was polysodium oleyl-L-leucylvalinate (poly-L-SOLV). The ILs were 1-alkyl-3-methylimidazolium tetrafluoroborate, where the alkyl group was ethyl, butyl, hexyl, or octyl. These ILs were chosen due to their hydrophobicity, good solvating, and electrolyte properties. Thus, it was expected that these ILs would have favorable interactions with chiral analytes and not adversely affect the background current. Common CE buffers, mixed with a molecular micelle, and an IL or a MOS, were used for these chiral separations. The buffers containing an IL in the concentration range of 0.02-0.1 v/v were found to support a reasonable current when an electric field strength of 500 V/cm was applied across the capillary. However, a current break down was observed for the buffers containing more than 60% v/v MOS on application of the above-mentioned electric field. The chiral resolution and selectivity of the analytes were dependent on the concentration and type of IL or MOS used.

  11. Ratiometric sensing of CO2 in ionic liquid modified ethyl cellulose matrix.

    PubMed

    Oter, Ozlem; Ertekin, Kadriye; Derinkuyu, Sibel

    2008-07-30

    In this study emission-based ratiometric response of ion pair form of 1-hydroxy-3,6,8-pyrenetrisulfonate (HPTS) to gaseous CO(2) has been evaluated in ionic liquid (IL) containing ethyl cellulose (EC) matrix. The ionic liquid: 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF(4)); provided longer storage time and highly stable microenvironment for the HPTS molecule due to the buffering effect. The utilization of ionic liquid in ethyl cellulose matrix resulted with superior spectral characteristics. The excitation spectra of HPTS exhibited an atypical isoemmissive point in modified EC matrix at 418 nm which allows ratiometric processing of the signal intensities. EMIMBF(4)-doped sensor films exhibited enhanced linear working range between 0 and 100% pCO(2). The signal changes were fully reversible and the shelf life of the EMIMBF(4)-doped films was extended from 15 to 95 days.

  12. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    SciTech Connect

    Maroncelli, Mark

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  13. Air and water stable ionic liquids in physical chemistry.

    PubMed

    Endres, Frank; Zein El Abedin, Sherif

    2006-05-14

    Ionic liquids are defined today as liquids which solely consist of cations and anions and which by definition must have a melting point of 100 degrees C or below. Originating from electrochemistry in AlCl(3) based liquids an enormous progress was made during the recent 10 years to synthesize ionic liquids that can be handled under ambient conditions, and today about 300 ionic liquids are already commercially available. Whereas the main interest is still focussed on organic and technical chemistry, various aspects of physical chemistry in ionic liquids are discussed now in literature. In this review article we give a short overview on physicochemical aspects of ionic liquids, such as physical properties of ionic liquids, nanoparticles, nanotubes, batteries, spectroscopy, thermodynamics and catalysis of/in ionic liquids. The focus is set on air and water stable ionic liquids as they will presumably dominate various fields of chemistry in future.

  14. Biredox ionic liquids: new opportunities toward high performance supercapacitors.

    PubMed

    Bodin, C; Mourad, E; Zigah, D; Le Vot, S; Freunberger, S A; Favier, F; Fontaine, O

    2017-09-22

    Nowadays commercial supercapacitors are based on purely capacitive storage at the porous carbons that are used for the electrodes. However, the limits that capacitive storage imposes on energy density calls to investigate new materials to improve the capacitance of the device. This new type of electrodes (e.g., RuO2, MnO2…) involves pseudo-capacitive faradaic redox processes with the solid material. Ion exchange with solid materials is, however, much slower than the adsorption process in capacitive storage and inevitably leads to significant loss of power. Faradaic process in the liquid state, in contrast can be similarly fast as capacitive processes due to the fast ion transport. Designing new devices with liquid like dynamics and improved specific capacitance is challenging. We present a new approach to increase the specific capacitance using biredox ionic liquids, where redox moieties are tethered to the electrolyte ions, allowing high redox concentrations and significant pseudo-capacitive storage in the liquid state. Anions and cations are functionalized with anthraquinone (AQ) and 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO) moieties, respectively. Glassy carbon, carbon-onion, and commercial activated carbon electrodes that exhibit different double layer structures and thus different diffusion dynamics were used to simultaneously study the electrochemical response of biredox ionic liquids at the positive and negative electrode.

  15. Novel bipyridinium ionic liquids as liquid electrochromic devices.

    PubMed

    Jordão, Noémi; Cabrita, Luis; Pina, Fernando; Branco, Luís C

    2014-04-01

    Novel mono and dialkylbipyridinium (viologens) cations combined with iodide, bromide, or bis(trifluoromethanesulfonyl)imide [NTf2] as anions were developed. Selective alkylation synthetic methodologies were optimized in order to obtain the desired salts in moderate to high yields and higher purities. All prepared mono- and dialkylbipyridinium salts were completely characterized by (1)H, (13)C, and (19)F NMR spectroscopy, Fourier-transform IR spectroscopy, and elemental analysis (in the case of NTf2 salts). Melting points, glass transition temperatures by differential scanning calorimetry (DSC) studies, and decomposition temperatures were also checked for different prepared organic salts. Viscosities at specific temperatures and activation energies were determined by rheological studies (including viscosity dependence with temperature in heating and cooling processes). Electrochemical studies based on cyclic voltammetry (CV), differential pulsed voltammetry (DPV), and square-wave voltammetry (SWV) were performed in order to determine the redox potential as well as evaluate reversibility behavior of the novel bipyridinium salts. As proof of concept, we developed a reversible liquid electrochromic device in the form of a U-tube system, the most promising dialkylbipyridinium-NTf2 ionic liquid being used as the electrochromic material and the room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)-imide [EMIM][NTf2], as a stable and efficient electrolyte. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Room temperature lithium polymer batteries based on ionic liquids

    NASA Astrophysics Data System (ADS)

    Appetecchi, G. B.; Kim, G. T.; Montanino, M.; Alessandrini, F.; Passerini, S.

    In this manuscript are reported the results of an investigation performed on rechargeable, all-solid-state, solvent-free, Li/LiFePO 4 polymer batteries incorporating N-butyl- N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide, PYR 14TFSI, ionic liquid (IL). The tests show clearly the beneficial effect due to the incorporation of ionic liquids on room temperature battery performance that, conversely, results extremely poor in IL-free lithium polymer batteries. The theoretical capacity is delivered at 30 °C whereas about 115 mA h g -1 are discharged at 20 °C with excellent capacity retention and high coulombic efficiency. At 40 °C large capacities (125 mA h g -1) are discharged even at medium rates (C/3). Impedance measurements revealed that the overall battery resistance is almost fully located (e.g., above 93%) at the lithium anode/polymer electrolyte interface, which plays a key role in determining the battery performance.

  17. Importance of liquid fragility for energy applications of ionic liquids

    NASA Astrophysics Data System (ADS)

    Sippel, Pit; Lunkenheimer, Peter; Krohns, Stephan; Thoms, Erik; Loidl, Alois

    Ionic liquids (ILs) are salts that are liquid at ambient temperatures. The strong electrostatic forces between their molecular ions result, e.g., in low volatility and high stability for many members of this huge material class. For this reason they bear a high potential for new advancements in applications, e.g., as electrolytes in energy-storage devices such as supercapacitors or batteries, where the ionic conductivity is an essential figure of merit. Most ILs show dynamic properties typical for glassy matter, which dominate many of their physical properties. An important method to study these dynamical glass-properties is dielectric spectroscopy that can access relaxation times of dynamic processes and the conductivity in a broad frequency and temperature range. In the present contribution, we present results on a large variety of ionic liquids showing that the conductivity of ILs depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394 and by the BMBF via ENREKON 03EK3015.

  18. Fabrication of a Multi-Walled Nanotube (MWNT) Ionic Liquid Electrode and Its Application for Sensing Phenolics in Red Wines

    PubMed Central

    Kim, Kyo-Il; Kang, Hee-Young; Lee, Jae-Chan; Choi, Seong-Ho

    2009-01-01

    A multi-walled nanotube (MWNT) ionic liquid was prepared by the immobilization of 1-butylimidazole bromide onto an epoxy group on a poly(glycidyl methacrylate)-grafted MWNT, which was synthesized by radiation-induced graft polymerization of glycidyl methacrylate onto MWNT in an aqueous solution. Subsequently, a MWNT ionic liquid electrode was fabricated by hand-casting MWNT ionic liquid, tyrosinase, and chitosan solution as a binder on indium tin oxide (ITO) glass. The sensing ranges of the MWNT ionic liquid electrode with immobilized tyrosinase was in the range of 0.01-0.08 mM in a phosphate buffer solution. The optimal conditions such as pH, temperature, and effects of different phenolic compounds were determined. The total phenolic compounds of three commercial red wines were also determined on the tyrosinase-immobilized biosensor. PMID:22399973

  19. Reactions of Starch in Ionic Liquids

    USDA-ARS?s Scientific Manuscript database

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  20. Carbon dioxide in ionic liquid microemulsions.

    PubMed

    Zhang, Jianling; Han, Buxing; Li, Jianshen; Zhao, Yueju; Yang, Guanying

    2011-10-10

    Tailor-made emulsion: a CO(2) -in-ionic-liquid microemulsion was produced for the first time. The CO(2)-swollen micelles are "tunable" because the micellar size can be easily adjusted by changing the pressure of CO(2). The microemulsion has potential applications in materials synthesis, chemical reactions, and extraction.

  1. Ionic Liquid-Based Microemulsions in Catalysis

    PubMed Central

    2016-01-01

    The design and properties of surface-active ionic liquids that are able to form stable microemulsions with heptane and water are presented, and their promise as reaction media for thermomorphic palladium-catalyzed cross-coupling reactions is demonstrated. PMID:27978714

  2. Vaporisation of a dicationic ionic liquid.

    PubMed

    Lovelock, Kevin R J; Deyko, Alexey; Corfield, Jo-Anne; Gooden, Peter N; Licence, Peter; Jones, Robert G

    2009-02-02

    Highest heat of vaporization yet: The dicationic ionic liquid [C(3)(C(1)Im)(2)][Tf(2)N](2) evaporates as a neutral ion triplet. These neutral ion triplets can then be ionised to form singly and doubly charged ions. The mass spectrum exhibits the dication attached to one remaining anion, and the naked dication itself (see picture).

  3. Solvation and Reaction in Ionic Liquids

    SciTech Connect

    Maroncelli, Mark

    2010-10-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  4. Esterification of Starch in Ionic Liquids

    USDA-ARS?s Scientific Manuscript database

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  5. 1,2,3-triazolium ionic liquids

    SciTech Connect

    Luebke, David; Nulwala, Hunaid; Tang, Chau

    2014-12-09

    The present invention relates to compositions of matter that are ionic liquids, the compositions comprising substituted 1,2,3-triazolium cations combined with any anion. Compositions of the invention should be useful in the separation of gases and, perhaps, as catalysts for many reactions.

  6. Ionic liquids as active pharmaceutical ingredients.

    PubMed

    Ferraz, Ricardo; Branco, Luís C; Prudêncio, Cristina; Noronha, João Paulo; Petrovski, Zeljko

    2011-06-06

    Ionic liquids (ILs) are ionic compounds that possess a melting temperature below 100 °C. Their physical and chemical properties are attractive for various applications. Several organic materials that are now classified as ionic liquids were described as far back as the mid-19th century. The search for new and different ILs has led to the progressive development and application of three generations of ILs: 1) The focus of the first generation was mainly on their unique intrinsic physical and chemical properties, such as density, viscosity, conductivity, solubility, and high thermal and chemical stability. 2) The second generation of ILs offered the potential to tune some of these physical and chemical properties, allowing the formation of "task-specific ionic liquids" which can have application as lubricants, energetic materials (in the case of selective separation and extraction processes), and as more environmentally friendly (greener) reaction solvents, among others. 3) The third and most recent generation of ILs involve active pharmaceutical ingredients (API), which are being used to produce ILs with biological activity. Herein we summarize recent developments in the area of third-generation ionic liquids that are being used as APIs, with a particular focus on efforts to overcome current hurdles encountered by APIs. We also offer some innovative solutions in new medical treatment and delivery options.

  7. VOC and HAP recovery using ionic liquids

    SciTech Connect

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  8. Synthesis of electroactive ionic liquids for flow battery applications

    DOEpatents

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  9. Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals.

    PubMed

    Lee, Jin Hong; Han, Kee Sung; Lee, Je Seung; Lee, Albert S; Park, Seo Kyung; Hong, Sung Yun; Lee, Jong-Chan; Mueller, Karl T; Hong, Soon Man; Koo, Chong Min

    2016-11-01

    A novel ionic mixture of an imidazolium-based room-temperature ionic liquid containing ethylene-oxide-functionalized phosphite anions is fabricated, which, when doped with lithium salt, self-assembles into a smectic-ordered ionic liquid crystal through Coulombic interactions between the ion species. Interestingly, the smectic order in the ionic-liquid-crystal ionogel facilitates ionic transport.

  10. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  11. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography.

    PubMed

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2014-08-29

    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  12. Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials

    NASA Astrophysics Data System (ADS)

    Hernani; Mudzakir, A.; Sumarna, O.

    2017-02-01

    This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.

  13. The capacitance of ionic liquid electric double layer near nanostructured electrodes

    NASA Astrophysics Data System (ADS)

    Park, Yun Sung; Ahn, Myung Mo; Kang, In Seok

    2015-11-01

    The electric double layer capacitors (EDLC) with nanostructured electrodes have attracted much attention of researchers due to their high power density and long life time. Recently, the ionic liquids are used as an electrolyte of EDLC owing to their electrochemical stability. When ionic liquids are used as an electrolyte, the interrelations between the electric double layer of ionic liquids and the nanostructured electrode must be studied. In this study, the EDLC systems with nanostructured electrodes and ionic liquids are simulated by solving the modified Poisson-Boltzmann equation proposed by Bazant, Storey, and Kornyshev with COMSOL Multiphysics. Several electrode geometries including exohedral, endohedral and arrayed shapes with different length scales are simulated. The potential and charge distributions in the normal direction to the electrode surface are analyzed. The capacitance per unit area is obtained and compared to that of flat electrode. The structure determines the space for counter-ion packing and co-ion gathering, thus has crucial effects on electric double layer capacitance. The critical increase of capacitance with nanoscale confined space is observed with low electrode potential. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant Number: 2013R1A1A2011956).

  14. Compatiblitity of hydrophobic ionic liquids with high performance cathode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Carnes-Mason, Ezekial Robert

    Lithium batteries are widely seen as the best choice for the future of energy storage but significant improvements are still required. One important area for improvement is searching for new cathode materials that incorporate lithium at higher capacities and voltages. This increases the energy and power available from an individual electrochemical cell, which reduces the number of cells required thereby reducing the size of a battery pack. While several high voltage cathode materials have been discovered, research has been hindered due to safety concerns with current standard electrolytes at high voltages. Ionic liquids are a new class of materials that exhibit excellent electrochemical and thermal stability as well as high ionic conductivity. These qualities make them excellent candidates to replace current battery electrolytes but difficulties in purification and the sheer number of possible chemistries have inhibited their study. In this study four hydrophobic ionic liquids based on pyrrolidinium and piperidinium cations paired with bis(trifluoromethylsulfonyl)imide anions were synthesized using bench top methods. These ionic liquids were successfully incorporated into working half-cells with LiNi1/3Mn1/3Co 1/3O2, a high capacity layered cathode and LiNi0.5Mn 1.5O4, a high voltage spinel type cathode. By comparing the behavior of the ionic liquids a clear relationship between cation size and rate capability was shown. The improved performance and safety at elevated temperatures was also demonstrated showing that ionic liquids are excellent candidates for use as battery electrolytes.

  15. Video-microscopic observation of ionic liquid/alcohol interface and the corresponding molecular simulation study

    NASA Astrophysics Data System (ADS)

    Zhu, Peixi

    This research is aimed at studying the ionic liquid/n-pentanol interface via video-microscopy and molecular dynamic simulations. Understanding the interfacial phenomena and interfacial transport between ionic liquids and other liquids is of interest to the development and application of ionic liquids in a number of areas. One such area is the biphasic hydroformylation of alkenes to obtain alcohol and aldehyde, in which case ionic liquid is the reaction medium where a catalyst resides. The dissolution of an ionic liquid into an alcohol was studied by microscopically observing and measuring the shrinking of a micropipette-produced droplet in real time. Although microscopic investigation of droplet dissolution has been studied before, no attempt had been made to measure the diffusion coefficient D of the droplet species in the surrounding medium. A key finding of this work is that the Epstein-Plesset mathematical model, which describes the dissolution of a droplet/bubble in another fluid medium, can be used to measure D. Other experimental studies of the ionic liquid/alcohol system include electrical conductivity and UV-visible spectroscopy measurements of solutions of 1-hexyl-3-methylimidazolium tetrafluoroborate in n-pentanol. Those experiments were done in order to understand the molecular state of the particular ionic liquid in n-pentanol, as well as obtaining the dissociation constant K of such weak electrolyte solution. The experimental results provide an entry to the assessment of ionic liquid interaction with n-pentanol at molecular scale. Subsequently, molecular dynamics simulation was implemented for the investigation of such interaction. The computation started with simulation of the bulk phase of 1-butyl-3-methylimidazolium tetrafluoroborate, an affine ionic liquid on which molecular simulations had already been reported. A generalized probability based on Fuoss approximation for the closest ion to a distinguished countercharge ion was developed. In

  16. Fission-Product Separation Based on Room-Temperature Ionic-Liquids

    SciTech Connect

    Hussey, Charles L.

    2005-06-01

    During the previous funding cycle for this project, we investigated the electrochemistry of Cs(I) in air and moisture-stable ionic liquids both with and without the addition of BOBCalixC6. These investigations revealed that the electrochemical windows of the dialkylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquids do not permit the direct electrochemical reduction of Cs(I), even when Hg electrodes are employed, because these organic cations are reduced at less negative potentials than Cs(I). However, Cs(I) coordinated by BOBCalixC6 can be electrolytically reduced to Cs(Hg) in tetraalkylammonium-based room-temperature ionic liquids such as tri-1-butylmethylammonium bis[(trifluoromethyl)sulfonyl]imide (Bu3MeN+Tf2N-) at Hg electrodes. Because this reduction process does not harm either the ionic liquid or the macrocycle, it is a promising method for recycling the cesium extraction system. The previous studies mentioned above were carried out under an inert atmosphere, i.e., in the absence of H2O and O2. However, it may not be economically feasible or even possible to carry out the recycling process in the absence of these contaminants during large-scale processing of aqueous tank waste. Thus, as described in our proposal, we have begun an investigation of the electrochemical recovery of Cs from the Bu3MeN+Tf2N- + BOBCalixC6 extraction sy