Galaon, Toma; Vacaresteanu, Catalina; Anghel, Dan-Florin; David, Victor
2014-05-01
Nine important 1,4-benzodiazepines and zolpidem were characterized by liquid chromatography-mass spectrometry using a multimode ionization source able to generate ions using both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), and a single quadrupole mass analyzer. An optimum chromatographic separation was applied for all target compounds in less than 8 minutes using a Zorbax Eclipse Plus column (100 × 4.6 mm, 3.5 µm) kept at 35°C and a 0.3% HCOOH/ACN/IPA (61:34:5) mobile phase pumped at 1 ml/min. Optimization of LC-MS method generated low limit of quantitation (LOQ) values situated in the range 0.3-20.5 ng/ml. Comparison between differences in method sensitivity, under specified chromatographic conditions, when using ESI-only, APCI-only, and simultaneous ESI-APCI ionization with such a multimode source was discussed. Mixed ESI-APCI(+) mode proved to be the most sensitive ionization generating an average 35% detector response increase compared to ESI-only ionization and 350% detector response increase with respect to APCI-only ionization. Characterization of the nine benzodiazepines and zolpidem concerning their MS fragmentation pathway following 'in-source' collision-induced dissociation is discussed in detail and some general trends regarding these fragmentations are set. Copyright © 2013 John Wiley & Sons, Ltd.
Ostman, Pekka; Jäntti, Sirkku; Grigoras, Kestas; Saarela, Ville; Ketola, Raimo A; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto
2006-07-01
A miniaturized nebulizer chip for capillary liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (capillary LC-microchip APCI-MS) is presented. The APCI chip consists of two wafers, a silicon wafer and a Pyrex glass wafer. The silicon wafer has a DRIE etched through-wafer nebulizer gas inlet, an edge capillary insertion channel, a stopper, a vaporizer channel and a nozzle. The platinum heater electrode and pads for electrical connection were patterned on to the Pyrex glass wafer. The two wafers were joined by anodic bonding, creating a microchip version of an APCI-source. The sample inlet capillary from an LC column is directly connected to the vaporizer channel of the APCI chip. The etched nozzle in the microchip forms a narrow sample plume, which is ionized by an external corona needle, and the formed ions are analyzed by a mass spectrometer. The nebulizer chip enables for the first time the use of low flow rate separation techniques with APCI-MS. The performance of capillary LC-microchip APCI-MS was tested with selected neurosteroids. The capillary LC-microchip APCI-MS provides quantitative repeatability and good linearity. The limits of detection (LOD) with a signal-to-noise ratio (S/N) of 3 in MS/MS mode for the selected neurosteroids were 20-1000 fmol (10-500 nmol l(-1)). LODs (S/N = 3) with commercial macro APCI with the same compounds using the same MS were about 10 times higher. Fast heat transfer allows the use of the optimized temperature for each compound during an LC run. The microchip APCI-source provides a convenient and easy method to combine capillary LC to any API-MS equipped with an APCI source. The advantages and potentials of the microchip APCI also make it a very attractive interface in microfluidic APCI-MS.
Jin, Chunfen; Viidanoja, Jyrki; Li, Mingzhe; Zhang, Yuyang; Ikonen, Elias; Root, Andrew; Romanczyk, Mark; Manheim, Jeremy; Dziekonski, Eric; Kenttämaa, Hilkka I
2016-11-01
Direct infusion atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was compared to field ionization mass spectrometry (FI-MS) for the determination of hydrocarbon class distributions in lubricant base oils. When positive ion mode APCI with oxygen as the ion source gas was employed to ionize saturated hydrocarbon model compounds (M) in hexane, only stable [M - H] + ions were produced. Ion-molecule reaction studies performed in a linear quadrupole ion trap suggested that fragment ions of ionized hexane can ionize saturated hydrocarbons via hydride abstraction with minimal fragmentation. Hence, APCI-MS shows potential as an alternative of FI-MS in lubricant base oil analysis. Indeed, the APCI-MS method gave similar average molecular weights and hydrocarbon class distributions as FI-MS for three lubricant base oils. However, the reproducibility of APCI-MS method was found to be substantially better than for FI-MS. The paraffinic content determined using the APCI-MS and FI-MS methods for the base oils was similar. The average number of carbons in paraffinic chains followed the same increasing trend from low viscosity to high viscosity base oils for the two methods.
Comparison of ESI- and APCI-LC-MS/MS methods: A case study of levonorgestrel in human plasma.
Wang, Rulin; Zhang, Lin; Zhang, Zunjian; Tian, Yuan
2016-12-01
Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) techniques for liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination of levonorgestrel were evaluated. In consideration of difference in ionization mechanism, the two ionization sources were compared in terms of LC conditions, MS parameters and performance of method. The sensitivity for detection of levonorgestrel with ESI was 0.25 ng/mL which was lower than 1 ng/mL with APCI. Matrix effects were evaluated for levonorgestrel and canrenone (internal standard, IS) in human plasma, and the results showed that APCI source appeared to be slightly less liable to matrix effect than ESI source. With an overall consideration, ESI was chosen as a better ionization technique for rapid and sensitive quantification of levonorgestrel. The optimized LC-ESI-MS/MS method was validated for a linear range of 0.25-50 ng/mL with a correlation coefficient ≥0.99. The intra- and inter-batch precision and accuracy were within 11.72% and 6.58%, respectively. The application of this method was demonstrated by a bioequivalence study following a single oral administration of 1.5 mg levonorgestrel tablets in 21 Chinese healthy female volunteers.
Sabo, Martin; Matejčík, Štefan
2013-11-21
We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization.
Alternating current corona discharge/atmospheric pressure chemical ionization for mass spectrometry.
Habib, Ahsan; Usmanov, Dilshadbek; Ninomiya, Satoshi; Chen, Lee Chuin; Hiraoka, Kenzo
2013-12-30
Although alternating current (ac) corona discharge has been widely used in the fields of material science and technology, no reports have been published on its application to an atmospheric pressure chemical ionization (APCI) ion source. In this work, ac corona discharge for an APCI ion source has been examined for the first time. The ambient atmospheric pressure ac corona discharge (15 kHz, 2.6 kVptp ) was generated by using a stainless steel acupuncture needle. The generated ions were measured using an ion trap mass spectrometer. A comparative study on ac and direct current (dc) corona APCI ion sources was carried out using triacetone triperoxide and trinitrotoluene as test samples. The ac corona discharge gave ion signals as strong as dc corona discharge for both positive and negative ion modes. In addition, softer ionization was obtained with ac corona discharge than with dc corona discharge. The erosion of the needle tip induced by ac corona was less than that obtained with positive mode dc corona. A good 'yardstick' for assessing ac corona is that it can be used for both positive and negative ion modes without changing the polarity of the high-voltage power supply. Thus, ac corona can be an alternative to conventional dc corona for APCI ion sources. Copyright © 2013 John Wiley & Sons, Ltd.
Dielectric barrier discharge ionization for liquid chromatography/mass spectrometry.
Hayen, Heiko; Michels, Antje; Franzke, Joachim
2009-12-15
An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry (LC/MS). For this purpose, the plasma was realized in a commercial atmospheric pressure ionization source. Dielectric barrier discharge ionization (DBDI) was compared to conventional electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) in the positive ionization mode. Therefore, a heterogeneous compound library was investigated that covered polar compounds such as amino acids, water-soluble vitamins, and nonpolar compounds like polycyclic aromatic hydrocarbons and functionalized hydrocarbons. It turned out that DBDI can be regarded as a soft ionization technique characterized by only minor fragmentation similar to APCI. Mainly protonated molecules were detected. Additionally, molecular ions were observed for polycyclic aromatic hydrocarbons and derivatives thereof. During DBDI, adduct formation with acetonitrile occurred. For aromatic compounds, addition of one to four oxygen atoms and to a smaller extend one nitrogen and oxygen was observed which delivered insight into the complexity of the ionization processes. In general, compounds covering a wider range of polarities can be ionized by DBDI than by ESI. Furthermore, limits of detection compared to APCI are in most cases equal or even better.
Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.
Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J
2015-09-03
Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. Copyright © 2015. Published by Elsevier B.V.
Van Berkel, Gary J.; Kertesz, Vilmos
2015-08-25
RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore » a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less
NASA Astrophysics Data System (ADS)
Jiang, Cheng-Yong; Sun, Shi-Hao; Zhang, Qi-Dong; Liu, Jun-Hui; Zhang, Jian-Xun; Zong, Yong-Li; Xie, Jian-Ping
2013-03-01
A method with atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) was developed and applied to direct analysis of Environmental Tobacco Smoke (ETS), using 3-ethenylpyridine (3-EP) as a vapour-phase marker. In this study, the ion source of APCI-MS/MS was modified and direct analysis of gas sample was achieved by the modified instrument. ETS samples were directly introduced, via an atmospheric pressure inlet, into the APCI source. Ionization was carried out in positive-ion APCI mode and 3-EP was identified by both full scan mode and daughter scan mode. Quantification of 3-EP was performed by multiple reaction monitoring (MRM) mode. The calibration curve was obtained in the range of 1-250 ng L-1 with a satisfactory regression coefficient of 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.5 ng L-1 and 1.6 ng L-1, respectively. The precision of the method, calculated as relative standard deviation (RSD), was characterized by repeatability (RSD 3.92%) and reproducibility (RSD 4.81%), respectively. In real-world ETS samples analysis, compared with the conventional GC-MS method, the direct APCI-MS/MS has shown better reliability and practicability in the determination of 3-EP at trace level. The developed method is simple, fast, sensitive and repeatable; furthermore, it could provide an alternative way for the determination of other volatile pollutants in ambient air at low levels.
Multiple parallel mass spectrometry for lipid and vitamin D analysis
USDA-ARS?s Scientific Manuscript database
Liquid chromatography (LC) coupled to mass spectrometry (MS) has become the method of choice for analysis of complex lipid samples. Two types of ionization sources have emerged as the most commonly used to couple LC to MS: atmospheric pressure chemical ionization (APCI) and electrospray ionization ...
Yu, Kate; Di, Li; Kerns, Edward; Li, Susan Q; Alden, Peter; Plumb, Robert S
2007-01-01
We report in this paper an ultra-performance liquid chromatography/tandem mass spectrometric (UPLC(R)/MS/MS) method utilizing an ESI-APCI multimode ionization source to quantify structurally diverse analytes. Eight commercial drugs were used as test compounds. Each LC injection was completed in 1 min using a UPLC system coupled with MS/MS multiple reaction monitoring (MRM) detection. Results from three separate sets of experiments are reported. In the first set of experiments, the eight test compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes (ESI+, ESI-, APCI-, and APCI+) during an LC run. Approximately 8-10 data points were collected across each LC peak. This was insufficient for a quantitative analysis. In the second set of experiments, four compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes during an LC run. Approximately 15 data points were obtained for each LC peak. Quantification results were obtained with a limit of detection (LOD) as low as 0.01 ng/mL. For the third set of experiments, the eight test compounds were analyzed as a batch. During each LC injection, a single compound was analyzed. The mass spectrometer was detecting at a particular ionization mode during each LC injection. More than 20 data points were obtained for each LC peak. Quantification results were also obtained. This single-compound analytical method was applied to a microsomal stability test. Compared with a typical HPLC method currently used for the microsomal stability test, the injection-to-injection cycle time was reduced to 1.5 min (UPLC method) from 3.5 min (HPLC method). The microsome stability results were comparable with those obtained by traditional HPLC/MS/MS.
Hourani, Nadim; Kuhnert, Nikolai
2012-10-15
High molecular weight non-polar hydrocarbons are still difficult to detect by mass spectrometry. Although several studies have targeted this problem, lack of good self-ionization has limited the ability of mass spectrometry to examine these hydrocarbons. Failure to control ion generation in the atmospheric pressure chemical ionization (APCI) source hampers the detection of intact stable gas-phase ions of non-polar hydrocarbon in mass spectrometry. Seventeen non-volatile non-polar hydrocarbons, reported to be difficult to ionize, were examined by an optimized APCI methodology using nitrogen as the reagent gas. All these analytes were successfully ionized as abundant and intact stable [M-H](+) ions without the use of any derivatization or adduct chemistry and without significant fragmentation. Application of the method to real-life hydrocarbon mixtures like light shredder waste and car motor oil was demonstrated. Despite numerous reports to the contrary, it is possible to ionize high molecular weight non-polar hydrocarbons by APCI, omitting the use of additives. This finding represents a significant step towards extending the applicability of mass spectrometry to non-polar hydrocarbon analyses in crude oil, petrochemical products, waste or food. Copyright © 2012 John Wiley & Sons, Ltd.
Zuber, Jan; Kroll, Marius M.; Rathsack, Philipp; Otto, Matthias
2016-01-01
Pyrolysis oil from the slow pyrolysis of German brown coal from Schöningen, obtained at a temperature of 500°C, was separated and analyzed using hyphenation of gas chromatography with an atmospheric pressure chemical ionization source operated in negative ion mode and Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FT-ICR-MS). Development of this ultrahigh-resolving analysis method is described, that is, optimization of specific GC and APCI parameters and performed data processing. The advantages of GC-APCI-FT-ICR-MS hyphenation, for example, soft ionization, ultrahigh-resolving detection, and most important isomer separation, were demonstrated for the sample liquid. For instance, it was possible to separate and identify nine different propylphenol, ethylmethylphenol, and trimethylphenol isomers. Furthermore, homologous series of different acids, for example, alkyl and alkylene carboxylic acids, were verified, as well as homologous series of alkyl phenols, alkyl dihydroxy benzenes, and alkoxy alkyl phenols. PMID:27066076
Super-atmospheric pressure chemical ionization mass spectrometry.
Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo
2013-03-01
Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition. Copyright © 2013 John Wiley & Sons, Ltd.
Degradation of the Neonicotinoid Pesticides in the Atmospheric Pressure Ionization Source
NASA Astrophysics Data System (ADS)
Chai, Yunfeng; Chen, Hongping; Liu, Xin; Lu, Chengyin
2018-02-01
During the analysis of neonicotinoid pesticide standards (thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid) by mass spectrometry, the degradation of these pesticides (M-C=N-R is degraded into M-C=O, M is the skeleton moiety, and R is NO2 or CN) was observed in the atmospheric pressure ionization interfaces (ESI and APCI). In APCI, the degradation of all the five neonicotinoid pesticides studied took place, and the primary mechanism was in-source ion/molecule reaction, in which a molecule of water (confirmed by use of H2 18O) attacked the carbon of the imine group accompanying with loss of NH2R (R=NO2, CN). For the nitroguanidine neonicotinoid pesticides (R=NO2, including thiamethoxam, clothianidin, and imidacloprid), higher auxiliary gas heater temperature also contributed to their degradation in APCI due to in-source pyrolysis. The degradation of the five neonicotinoid pesticides studied in ESI was not significant. In ESI, only the nitroguanidine neonicotinoid pesticides could generate the degradation products through in-source fragmentation mechanism. The degradation of cyanoamidine neonicotinoid pesticides (R=CN, including acetamiprid and thiacloprid) in ESI was not observed. The degradation of neonicotinoid pesticides in the ion source of mass spectrometer renders some adverse consequences, such as difficulty interpreting the full-scan mass spectrum, reducing the sensitivity and accuracy of quantitative analysis, and misleading whether these pesticides have degraded in the real samples. Therefore, a clear understanding of these unusual degradation reactions should facilitate the analysis of neonicotinoid pesticides by atmospheric pressure ionization mass spectrometry.
NASA Astrophysics Data System (ADS)
Colizza, Kevin; Yevdokimov, Alexander; McLennan, Lindsay; Smith, James L.; Oxley, Jimmie C.
2018-01-01
Our efforts to lower the detection limits of hexamethylene triperoxide diamine (HMTD) have uncovered previously unreported gas-phase reactions of primary and secondary amines with one of the six methylene carbons. The reaction occurs primarily in the atmospheric pressure chemical ionization (APCI) source and is similar to the behavior of alcohols with HMTD [1]. However, unlike alcohols, the amine reaction conserves the hydrogen peroxide on the intact product. Furthermore, with or without amines, HMTD is oxidized to tetramethylene diperoxide diamine dialdehyde (TMDDD) in a temperature-dependent fashion in the APCI source. Synthesized TMDDD forms very strong adducts (not products) to ammonium and amine ions in the electrospray ionization (ESI) source. Attempts to improve HMTD detection by generating TMDDD in the APCI source with post-column addition of amines were not successful. Signal intensity of the solvent related HMTD product in methanol, [HMTD+MeOH2-H2O2]+ (m/z 207.0975), was understandably related to the amount of methanol in the HMTD environment as it elutes into the source. With conditions optimized for this product, the detection of 100 pg on column was accomplished with a robust analysis of 300 pg (1.44 pmol) routinely performed on the Orbitrap mass spectrometers. [Figure not available: see fulltext.
Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A
2011-05-15
Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Larson, Evan A.; Hutchinson, Carolyn P.; Lee, Young Jin
2018-06-01
Dopant-assisted atmospheric pressure chemical ionization (dAPCI) is a soft ionization method rarely used for gas chromatography-mass spectrometry (GC-MS). The current study combines GC-dAPCI with tandem mass spectrometry (MS/MS) for analysis of a complex mixture such as lignin pyrolysis analysis. To identify the structures of volatile lignin pyrolysis products, collision-induced dissociation (CID) MS/MS using a quadrupole time-of-flight mass spectrometer (QTOFMS) and pseudo MS/MS through in-source collision-induced dissociation (ISCID) using a single stage TOFMS are utilized. To overcome the lack of MS/MS database, Compound Structure Identification (CSI):FingerID is used to interpret CID spectra and predict best matched structures from PubChem library. With this approach, a total of 59 compounds were positively identified in comparison to only 22 in NIST database search of GC-EI-MS dataset. This study demonstrates the effectiveness of GC-dAPCI-MS/MS to overcome the limitations of traditional GC-EI-MS analysis when EI-MS database is not sufficient. [Figure not available: see fulltext.
Fürmeier, Sven; Metzger, Jürgen O
2004-11-10
The coupling of a simple microreactor to an atmospheric pressure ion source, such as electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI), allows the investigation of reactions in solution by mass spectrometry. The tris(p-bromophenyl)aminium hexachloroantimonate (1(*)(+)SbCl(6)(-))-initiated reactions of phenylvinylsulfide (2) and cyclopentadiene (3) and of trans-anethole (5) and isoprene (6) and the dimerization of 1,3-cyclohexadiene (8) to give the respective Diels-Alder products were studied. These preparatively interesting reactions proceed as radical cation chain reactions via the transient radical cations of the respective dienophiles and of the respective Diels-Alder addition products. These radical cations could be detected directly and characterized unambiguously in the reacting solution by ESI-MS-MS. The identity was confirmed by comparison with MS-MS spectra of the authentic radical cations obtained by APCI-MS and by CID experiments of the corresponding molecular ions generated by EI-MS. In addition, substrates and products could be monitored easily in the reacting solution by APCI-MS.
Degradation of the Neonicotinoid Pesticides in the Atmospheric Pressure Ionization Source.
Chai, Yunfeng; Chen, Hongping; Liu, Xin; Lu, Chengyin
2018-02-01
During the analysis of neonicotinoid pesticide standards (thiamethoxam, clothianidin, imidacloprid, acetamiprid, and thiacloprid) by mass spectrometry, the degradation of these pesticides (M-C=N-R is degraded into M-C=O, M is the skeleton moiety, and R is NO 2 or CN) was observed in the atmospheric pressure ionization interfaces (ESI and APCI). In APCI, the degradation of all the five neonicotinoid pesticides studied took place, and the primary mechanism was in-source ion/molecule reaction, in which a molecule of water (confirmed by use of H 2 18 O) attacked the carbon of the imine group accompanying with loss of NH 2 R (R=NO 2 , CN). For the nitroguanidine neonicotinoid pesticides (R=NO 2 , including thiamethoxam, clothianidin, and imidacloprid), higher auxiliary gas heater temperature also contributed to their degradation in APCI due to in-source pyrolysis. The degradation of the five neonicotinoid pesticides studied in ESI was not significant. In ESI, only the nitroguanidine neonicotinoid pesticides could generate the degradation products through in-source fragmentation mechanism. The degradation of cyanoamidine neonicotinoid pesticides (R=CN, including acetamiprid and thiacloprid) in ESI was not observed. The degradation of neonicotinoid pesticides in the ion source of mass spectrometer renders some adverse consequences, such as difficulty interpreting the full-scan mass spectrum, reducing the sensitivity and accuracy of quantitative analysis, and misleading whether these pesticides have degraded in the real samples. Therefore, a clear understanding of these unusual degradation reactions should facilitate the analysis of neonicotinoid pesticides by atmospheric pressure ionization mass spectrometry. Graphical Abstract.
Zhang, Xiaoping; Jiang, Kezhi; Zou, Jingfeng; Li, Zuguang
2015-02-15
Ionization in electrospray ionization mass spectrometry (ESI-MS) mainly occurs as a result of acid-base reactions or coordination with metal cations. Formation of the radical cation M(+•) in the ESI process has attracted our interest to perform further investigation. A series of indolyl benzo[b]carbazoles were investigated using a quadrupole ion trap mass spectrometer equipped with an ESI source or an atmospheric pressure chemical ionization (APCI) source in the positive-ion mode. Theoretical calculations were performed using the density functional theory (DFT) method at the B3LYP/6-31G(d) level. Both the radical ion M(+•) and the protonated molecule [M + H](+) were obtained by ESI-MS analysis of indolyl benzo[b]carbazoles, while only [M + H](+) was observed in the APCI-MS analysis. The relative intensities of M(+•) and [M + H](+) were significantly affected by several ESI operating parameters and the nature of the substituents. Formation of M(+•) and [M + H](+) was rationalized as two competing ionization processes in the ESI-MS analysis of indolyl benzo[b]carbazoles. Copyright © 2014 John Wiley & Sons, Ltd.
Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions
NASA Astrophysics Data System (ADS)
Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B.
2017-02-01
1,4-Hydroquinone and several other phenolic compounds generate (M - 2) -• radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H• and H+, it can be termed oxidative ionization. The superoxide radical-anion (O2 -•), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2 -• adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) - ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2 -• present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained.
Portolés, T; Sales, C; Abalos, M; Sauló, J; Abad, E
2016-09-21
The use of the novel atmospheric pressure chemical ionization (APCI) source for gas chromatography (GC) coupled to triple quadrupole using tandem mass spectrometry (MS/MS) and its potential for the simultaneous determination of the 12 dioxin-like polychlorobiphenyls (DL-PCBs) in complex food and feed matrices has been evaluated. In first place, ionization and fragmentation behavior of DL-PCBs on the APCI source under charge transfer conditions has been studied followed by their fragmentation in the collision cell. Linearity, repeatability and sensitivity have been studied obtaining instrumental limits of detection and quantification of 0.0025 and 0.005 pg μL(-1) (2.5 and 5 fg on column) respectively for every DL-PCB. Finally, application to real samples has been carried out and DL-PCB congeners (PCB 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189) have been detected in the different samples in the range of 0.40-10000 pg g(-1). GC-(APCI)MS/MS has been proved as a suitable alternative to the traditionally accepted confirmation method based on the use of high resolution mass spectrometry and other triple quadrupole tandem mass spectrometry techniques operating with electron ionization. The development of MS/MS methodologies for the analysis of dioxins and DL-PCBs is nowadays particularly important, since this technique was included as a confirmatory method in the present European Union regulations that establish the requirements for the determination of these compounds in food and feed matrices. Copyright © 2016 Elsevier B.V. All rights reserved.
Gilbert-López, Bienvenida; García-Reyes, Juan F; Meyer, Cordula; Michels, Antje; Franzke, Joachim; Molina-Díaz, Antonio; Hayen, Heiko
2012-11-21
A Dielectric Barrier Discharge Ionization (DBDI) LC/MS interface is based on the use of a low-temperature helium plasma, which features the possibility of simultaneous ionization of species with a wide variety of physicochemical properties. In this work, the performance of LC/DBDI-MS for trace analysis of highly relevant species in food and environment has been examined. Over 75 relevant species including multiclass priority organic contaminants and residues such as pesticides, polycyclic aromatic hydrocarbons, organochlorine species, pharmaceuticals, personal care products, and drugs of abuse were tested. LC/DBDI-MS performance for this application was assessed and compared with standard LC/MS sources (electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)). The used benchtop Orbitrap mass spectrometer features a 10 Hz polarity switching mode, so that both positive and negative ion mode acquisitions are possible with acquisition cycles matching the requirements of fast liquid chromatography. Both polar and nonpolar species (including those typically analyzed by GC/electron ionization-MS) can be tested in a single run using polarity switching mode. The methodology was found to be effective in detecting a wide array of organic compounds at concentration levels in the low ng L(-1) to μg kg(-1) range in wastewater and food matrices, respectively. The linearity was evaluated in an olive oil extract, obtaining good correlation coefficients in the studied range. Additionally, minor matrix effects (≤15% of signal suppression or enhancement) were observed for most of the studied analytes in this complex fatty matrix. The results obtained were compared with data from both ESI and APCI sources, obtaining a merged coverage between ESI and APCI in terms of analyte ionization and higher overall sensitivity for the proposed ion source based on the DBD principle. The use of this approach further extends the coverage of current LC/MS methods towards an even larger variety of chemical species including both polar and nonpolar (non-ESI amenable) species and may find several applications in fields such as food and environment testing or metabolomics where GC/MS and LC/MS are combined to cover as many different species as possible.
Thurman, E.M.; Ferrer, I.; Barcelo, D.
2001-01-01
An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple pKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.
Wang, Huiyong; Bussy, Ugo; Chung-Davidson, Yu-Wen; Li, Weiming
2016-01-15
This study aims to provide a rapid, sensitive and precise UPLC-MS/MS method for target steroid quantitation in biological matrices. We developed and validated an UPLC-MS/MS method to simultaneously determine 16 steroids in plasma and tissue samples. Ionization sources of Electrospray Ionization (ESI) and Atmospheric Pressure Chemical Ionization (APCI) were compared in this study by testing their spectrometry performances at the same chromatographic conditions, and the ESI source was found up to five times more sensitive than the APCI. Different sample preparation techniques were investigated for an optimal extraction of steroids from the biological matrices. The developed method exhibited excellent linearity for all analytes with regression coefficients higher than 0.99 in broad concentration ranges. The limit of detection (LOD) was from 0.003 to 0.1ng/mL. The method was validated according to FDA guidance and applied to determine steroids in sea lamprey plasma and tissues (fat and testes) by the developed method. Copyright © 2015. Published by Elsevier B.V.
Tokumura, Masahiro; Miyake, Yuichi; Wang, Qi; Nakayama, Hayato; Amagai, Takashi; Ogo, Sayaka; Kume, Kazunari; Kobayashi, Takeshi; Takasu, Shinji; Ogawa, Kumiko
2018-04-16
Organophosphorus flame retardants (PFRs) are extensively used as alternatives to banned polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). In this study, we analyzed 14 PFRs by means of four mass-spectrometry-based methods: gas chromatography combined with electron-impact mass spectrometry (GC-EI-MS) or negative-chemical-ionization mass spectrometry (GC-NCI-MS) and liquid chromatography combined with tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS) or atmospheric pressure chemical ionization (LC-APCI-MS/MS). The limits of quantification (LOQs) for LC-ESI-MS/MS and LC-APCI-MS/MS (0.81-970 pg) were 1-2 orders of magnitude lower than the LOQs for GC-EI-MS and GC-NCI-MS (2.3-3900 pg). LC-APCI-MS/MS showed the lowest LOQs (mean = 41 pg; median = 3.4 pg) for all but two of the PFRs targeted in this study. For LC-APCI-MS/MS, the lowest LOQ was observed for tributyl phosphate (TBP) (0.81 pg), and the highest was observed for tris(butoxyethyl) phosphate (TBOEP) (36 pg). The results of this study indicate that LC-APCI-MS/MS is the optimum analytical method for the target PFRs, at least in terms of LOQ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Zhicheng; Daiya, Shivani; Kenttämaa, Hilkka I.
2011-03-01
Laser-induced acoustic desorption (LIAD) combined with ClMn(H2O)+ chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5α-cholestane, cholesta-3,5-diene, squalene, and β-carotene, were found to solely form the desired water replacement product (adduct-H2O) upon reaction with the ClMn(H2O)+ ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H2O ions, but less abundant adduct-2H2O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusivelymore » the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H2O)+ chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids.« less
Mesihää, Samuel; Ketola, Raimo A; Pelander, Anna; Rasanen, Ilpo; Ojanperä, Ilkka
2017-03-01
Gas chromatography coupled to atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (GC-APCI-QTOFMS) was evaluated for the identification of new psychoactive substances (NPS). An in-house high mass resolution GC-APCI-QTOFMS test library was developed for 29 nitrogen-containing drugs belonging mostly to synthetic stimulants. The library was based on 12 intra-day measurements of each compound at three different collision energies, 10, 20 and 40 eV. The in-house library mass spectra were compared to mass spectra from a commercial library constructed by liquid chromatography-electrospray ionization (LC-ESI) QTOFMS. The reversed library search scores between the in-house GC-APCI library and the commercial LC-ESI library were compared once a week during a 5-week period by using data measured by GC-APCI-QTOFMS. The protonated molecule was found for all drugs in the full scan mode, and the drugs were successfully identified by both libraries in the targeted MS/MS mode. The GC-APCI library score averaged over all collision energies was as high as 94.4/100 with a high repeatability, while the LC-ESI library score was also high (89.7/100) with a repeatability only slightly worse. These results highlight the merits of GC-APCI-QTOFMS in the analysis of NPS even in situations where the reference standards are not immediately available, taking advantage of the accurate mass measurement of the protonated molecule and product ions, and comparison to existing soft-ionization mass spectral libraries. Graphical abstract Tandem mass spectra obtained from GC-APCI-QTOFMS are comparable to LC-ESI-QTOFMS library spectra.
Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto
2016-08-01
The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.
Raro, M; Portolés, T; Sancho, J V; Pitarch, E; Hernández, F; Marcos, J; Ventura, R; Gómez, C; Segura, J; Pozo, O J
2014-06-01
The detection of anabolic androgenic steroids (AAS) is one of the most important topics in doping control analysis. Gas chromatography coupled to (tandem) mass spectrometry (GC-MS(/MS)) with electron ionization and liquid chromatography coupled to tandem mass spectrometry have been traditionally applied for this purpose. However, both approaches still have important limitations, and, therefore, detection of all AAS is currently afforded by the combination of these strategies. Alternative ionization techniques can minimize these drawbacks and help in the implementation of a single method for the detection of AAS. In the present work, a new atmospheric pressure chemical ionization (APCI) source commercialized for gas chromatography coupled to a quadrupole time-of-flight analyzer has been tested to evaluate the ionization of 60 model AAS. Underivatized and trimethylsylil (TMS)-derivatized compounds have been investigated. The use of GC-APCI-MS allowed for the ionization of all AAS assayed irrespective of their structure. The presence of water in the source as modifier promoted the formation of protonated molecules ([M+H](+)), becoming the base peak of the spectrum for the majority of studied compounds. Under these conditions, [M+H](+), [M+H-H2O](+) and [M+H-2·H2O](+) for underivatized AAS and [M+H](+), [M+H-TMSOH](+) and [M+H-2·TMSOH](+) for TMS-derivatized AAS were observed as main ions in the spectra. The formed ions preserve the intact steroid skeleton, and, therefore, they might be used as specific precursors in MS/MS-based methods. Additionally, a relationship between the relative abundance of these ions and the AAS structure has been established. This relationship might be useful in the structural elucidation of unknown metabolites. Copyright © 2014 John Wiley & Sons, Ltd.
Crepier, Julien; Le Masle, Agnès; Charon, Nadège; Albrieux, Florian; Duchene, Pascal; Heinisch, Sabine
2018-06-01
Extensive characterization of complex mixtures requires the combination of powerful analytical techniques. A Supercritical Fluid Chromatography (SFC) method was previously developed, for the specific case of fast pyrolysis bio oils, as an alternative to gas chromatography (GC and GC × GC) or liquid chromatography (LC and LC × LC), both separation methods being generally used prior to mass spectrometry (MS) for the characterization of such complex matrices. In this study we investigated the potential of SFC hyphenated to high resolution mass spectrometry (SFC-HRMS) for this characterization using Negative ion Atmospheric Pressure Chemical ionization ((-)APCI) for the ionization source. The interface between SFC and (-)APCI/HRMS was optimized from a mix of model compounds with the objective of maximizing the signal to noise ratio. The main studied parameters included both make-up flow-rate and make-up composition. A methodology for the treatment of APCI/HRMS data is proposed. This latter allowed for the identification of molecular formulae. Both SFC-APCI/HRMS method and data processing method were applied to a mixture of 36 model compounds, first analyzed alone and then spiked in a bio-oil. In both cases, 19 compounds could be detected. Among them 9 could be detected in a fast pyrolysis bio-oil by targeted analysis. The whole procedure was applied to the characterization of a bio-oil using helpful representations such as mass-plots, van Krevelen diagrams and heteroatom class distributions. Finally the results were compared with those obtained with a Fourier Transform ion-cyclotron resonance mass spectrometer (FT-ICR/MS). Copyright © 2018 Elsevier B.V. All rights reserved.
Non-proximate mass spectrometry using a heated 1-m long PTFE tube and an air-tight APCI ion source.
Usmanov, Dilshadbek T; Hiraoka, Kenzo; Wada, Hiroshi; Matsumura, Masaya; Sanada-Morimura, Sachiyo; Nonami, Hiroshi; Yamabe, Shinichi
2017-06-22
Direct and rapid trace-level gas analysis is highly needed in various fields such as safety and security, quality control, food analysis, and forensic medicine. In many cases, the real samples are bulky and are not accessible to the space-limited ion source of the mass spectrometer. In order to circumvent this problem, we developed an airtight atmospheric-pressure chemical ionization (APCI) ion source equipped with a flexible 1-m-long, 2-mm-i.d. PTFE sniffing tube. The ambient air bearing sample gas was sucked into the heated PTFE tube (130 °C) and was transported to the air-tight ion source without using any extra pumping system or a Venturi device. Analytes were ionized by an ac corona discharge located at 1.5 mm from the inlet of the mass spectrometer. By using the airtight ion source, all the ionized gas in the ion source was introduced into the vacuum of the mass spectrometer via only the evacuation of the mass spectrometer (1.6 l min -1 ). Sub-pg limits of detection were obtained for carbaryl and trinitrotoluene. Owing to its flexibility and high sensitivity, the sniffing tube coupled with a mass spectrometer can be used as the stethoscope for the high-sensitive gas analysis. The experimental results obtained for drugs, hydrogen peroxide and small alkanes were discussed by DFT calculations. Copyright © 2017 Elsevier B.V. All rights reserved.
Geng, Dawei; Jogsten, Ingrid Ericson; Dunstan, Jody; Hagberg, Jessika; Wang, Thanh; Ruzzin, Jerome; Rabasa-Lhoret, Rémi; van Bavel, Bert
2016-07-01
A method using a novel atmospheric pressure chemical ionization source for coupling gas chromatography (GC/APCI) to triple quadrupole mass spectrometry (MS/MS) for the determination of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) regulated by the Stockholm Convention is presented. One microliter injection of a six-point calibration curve of native PCBs and OCPs, ranging from 0.04 to 300pg/μL, was performed. The relative standard deviation (RSD) of the relative response factors (RRFs) was less than 15% with a coefficient of determination (r(2))>0.995. Meanwhile, two calibration solutions (CS), CS 2 (0.4pg/μL) and CS 3 (4pg/μL) were analyzed to study the repeatability calculated for both area and RRFs. The RSD for RRF ranged from 3.1 to 16% and 3.6 to 5.5% for CS 2 and CS 3, respectively. The limits of detection (LOD) determined by peak-to-peak signal-to-noise ratio (S/N) of 3 were compared between the GC/APCI/MS/MS and a GC coupled to high resolution mass spectrometry (GC/HRMS) system. GC/APCI/MS/MS resulted in lower LOD for most of the compounds, except for PCB#74, cis-chlordane and trans-chlordane. GC/APCI/MS/MS and GC/HRMS were also compared by performing analysis on 75 human serum samples together with eight QA/QC serum samples. The comparison between GC/APCI/MS/MS system and GC/HRMS system for 16 of the targeted compounds was carried out. No statistically significant difference was discovered. Due to increased sensitivity and user friendly operation under atmospheric pressure, GC/APCI/MS/MS is a powerful alternative technique that can easily meet the specification of GC/HRMS. Copyright © 2016 Elsevier B.V. All rights reserved.
Nahan, Keaton S; Alvarez, Noe; Shanov, Vesselin; Vonderheide, Anne
2017-11-01
Mass spectrometry continues to tackle many complicated tasks, and ongoing research seeks to simplify its instrumentation as well as sampling. The desorption electrospray ionization (DESI) source was the first ambient ionization source to function without extensive gas requirements and chromatography. Electrospray techniques generally have low efficiency for ionization of nonpolar analytes and some researchers have resorted to methods such as direct analysis in real time (DART) or desorption atmospheric pressure chemical ionization (DAPCI) for their analysis. In this work, a carbon nanotube fiber ionization (nanoCFI) source was developed and was found to be capable of solid phase microextraction (SPME) of nonpolar analytes as well as ionization and sampling similar to that of direct probe atmospheric pressure chemical ionization (DP-APCI). Conductivity and adsorption were maintained by utilizing a corona pin functionalized with a multi-walled carbon nanotube (MWCNT) thread. Quantitative work with the nanoCFI source with a designed corona discharge pin insert demonstrated linearity up to 0.97 (R 2 ) of three target PAHs with phenanthrene internal standard. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Nahan, Keaton S.; Alvarez, Noe; Shanov, Vesselin; Vonderheide, Anne
2017-09-01
Mass spectrometry continues to tackle many complicated tasks, and ongoing research seeks to simplify its instrumentation as well as sampling. The desorption electrospray ionization (DESI) source was the first ambient ionization source to function without extensive gas requirements and chromatography. Electrospray techniques generally have low efficiency for ionization of nonpolar analytes and some researchers have resorted to methods such as direct analysis in real time (DART) or desorption atmospheric pressure chemical ionization (DAPCI) for their analysis. In this work, a carbon nanotube fiber ionization (nanoCFI) source was developed and was found to be capable of solid phase microextraction (SPME) of nonpolar analytes as well as ionization and sampling similar to that of direct probe atmospheric pressure chemical ionization (DP-APCI). Conductivity and adsorption were maintained by utilizing a corona pin functionalized with a multi-walled carbon nanotube (MWCNT) thread. Quantitative work with the nanoCFI source with a designed corona discharge pin insert demonstrated linearity up to 0.97 (R2) of three target PAHs with phenanthrene internal standard. [Figure not available: see fulltext.
Wolf, Jan-Christoph; Gyr, Luzia; Mirabelli, Mario F; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato
2016-09-01
Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H](+)) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H](+)). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH](+) and [M - H](+) were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI. Graphical Abstract ᅟ.
Perraud, Véronique; Bruns, Emily A; Ezell, Michael J; Johnson, Stanley N; Greaves, John; Finlayson-Pitts, Barbara J
2010-08-01
The gas-phase reactions of nitrate radicals (NO3) with biogenic organic compounds are a major sink for these organics during night-time. These reactions form secondary organic aerosols, including organic nitrates that can undergo long-range transport, releasing NOx downwind. We report here studies of the reaction of NO3 with alpha-pinene at 1 atm in dry synthetic air (relative humidity approximately 3%) and at 298 K using atmospheric pressure chemical ionization triple quadrupole mass spectrometry (APCI-MS) to identify gaseous and particulate products. The emphasis is on the identification of individual organic nitrates in the particle phase that were obtained by passing the product mixture through a denuder to remove gas-phase reactants and products prior to entering the source region of the mass spectrometer. Filter extracts were also analyzed by GC-MS and by APCI time-of-flight mass spectrometry (APCI-ToF-MS) with methanol as the proton source. In addition to pinonaldehyde and pinonic acid, five organic nitrates were identified in the particles as well as in the gas phase: 3-oxopinane-2-nitrate, 2-hydroxypinane-3-nitrate, pinonaldehyde-PAN, norpinonaldehyde-PAN, and (3-acetyl-2,2-dimethyl-3-nitrooxycyclobutyl)acetaldehyde. Furthermore, there was an additional first-generation organic nitrate product tentatively identified as a carbonyl hydroxynitrate with a molecular mass of 229. These studies suggest that a variety of organic nitrates would partition between the gas phase and particles in the atmosphere, and serve as a reservoir for NOx.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perraud, Veronique M.; Bruns, Emily A.; Ezell, Michael J.
2010-07-07
The gas-phase reactions of nitrate radicals (NO 3) with biogenic organic compounds are a major sink for these organics during night-time. These reactions form secondary organic aerosols, including organic nitrates that can undergo long-range transport, releasing NO x downwind. We report here studies of the reaction of NO 3 with R-pinene at 1 atm in dry synthetic air(relative humidity ~3%) and at 298K using atmospheric pressure chemical ionization triple quadrupole mass spectrometry (APCI-MS) to identify gaseous and particulate products. The emphasis is on the identification of individual organic nitrates in the particle phase that were obtained by passing the productmore » mixture through a denuder to remove gas-phase reactants and products prior to entering the source region of the mass spectrometer. Filter extracts were also analyzed by GCMS and by APCI time-of-flight mass spectrometry (APCI-ToFMS) with methanol as the proton source. In addition to pinonaldehyde and pinonic acid, five organic nitrates were identified in the particles as well as in the gas phase: 3-oxopinane- 2-nitrate, 2-hydroxypinane-3-nitrate, pinonaldehyde-PAN, norpinonaldehyde-PAN, and (3-acetyl-2,2-dimethyl-3-nitrooxycyclobutyl) acetaldehyde. Furthermore, there was an additional first generation organic nitrate product tentatively identified as a carbonyl hydroxynitrate with a molecular mass of 229. These studies suggest that a variety of organic nitrates would partition between the gas phase and particles in the atmosphere, and serve as a reservoir for NO x.« less
A Corona Discharge Initiated Electrochemical Electrospray Ionization Technique
Lloyd, John R.; Hess, Sonja
2009-01-01
We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity and selectivity of ESI experiments. Synopsis Using a standard ESI source a corona discharge initiated electrochemical ionization technique was established resulting from the electrochemistry occurring at the CD electrode surface. PMID:19747843
Ihlenborg, Marvin; Raupers, Björn; Gunzer, Frank; Grotemeyer, Jürgen
2015-11-21
The details of the ionization mechanism in atmospheric pressure are still not completely known. In order to obtain further insight into the occurring processes in atmospheric pressure laser ionization (APLI) a comparative study of atmospheric pressure chemical ionization (APCI) and APLI is presented in this paper. This study is carried out using similar experimental condition at atmospheric pressure employing a commercial ion mobility spectrometer (IMS). Two different peak broadening mechanisms can then be assigned, one related to a range of different species generated and detected, and furthermore for the first time a power broadening effect on the signals can be identified.
Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan
2016-04-29
An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.
Dual parallel mass spectrometry for lipid and vitamin D analysis
USDA-ARS?s Scientific Manuscript database
There are numerous options for mass spectrometric analysis of lipids, including different types of ionization, and a wide variety of experiments using different scan modes that can be conducted. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) provide complementary ...
Rezanka, Tomás; Nedbalová, Linda; Sigler, Karel; Cepák, Vladislav
2008-01-01
A method is described for the identification of astaxanthin glucoside esters from snow alga Chlamydomonas nivalis by means of liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (LC-MS/APCI). The method is based on the use of preparative HPLC and subsequent identification of astaxanthin diglucoside diesters by microbore LC-MS/APCI. The combination of these two techniques was used to identify more than 100 molecular species. The astaxanthin diglucoside diester, i.e. (all-E)-[di-(6-O-oleoyl-beta-D-glucopyranosyloxy)]-astaxanthin, was also synthesized to unambiguously confirm its structure.
Remane, Daniela; Wissenbach, Dirk K; Meyer, Markus R; Maurer, Hans H
2010-04-15
In clinical and forensic toxicology, multi-analyte procedures are very useful to quantify drugs and poisons of different classes in one run. For liquid chromatographic/tandem mass spectrometric (LC/MS/MS) multi-analyte procedures, often only a limited number of stable-isotope-labeled internal standards (SIL-ISs) are available. If an SIL-IS is used for quantification of other analytes, it must be excluded that the co-eluting native analyte influences its ionization. Therefore, the effect of ion suppression and enhancement of fourteen SIL-ISs caused by their native analogues has been studied. It could be shown that the native analyte concentration influenced the extent of ion suppression and enhancement effects leading to more suppression with increasing analyte concentration especially when electrospray ionization (ESI) was used. Using atmospheric-pressure chemical ionization (APCI), methanolic solution showed mainly enhancement effects, whereas no ion suppression and enhancement effect, with one exception, occurred when plasma extracts were used under these conditions. Such differences were not observed using ESI. With ESI, eleven SIL-ISs showed relevant suppression effects, but only one analyte showed suppression effects when APCI was used. The presented study showed that ion suppression and enhancement tests using matrix-based samples of different sources are essential for the selection of ISs, particularly if used for several analytes to avoid incorrect quantification. In conclusion, only SIL-ISs should be selected for which no suppression and enhancement effects can be observed. If not enough ISs are free of ionization interferences, a different ionization technique should be considered. 2010 John Wiley & Sons, Ltd.
Lacker, T; Strohschein, S; Albert, K
1999-08-27
In this paper the application of on-line HPLC-UV-APCI (atmospheric pressure chemical ionization) mass spectrometry (MS) coupling for the separation and determination of different carotenoids as well as cis/trans isomers of beta-carotene is reported. All HPLC separations were carried out under RP conditions on self-synthesized polymeric C30 phases. The analysis of a carotenoid mixture containing astaxanthin, canthaxanthin, zeaxanthin, echinenone and beta-carotene by HPLC-APCI-MS was achieved by scanning the mass range from m/z 200 to 700. For the characterization of a sample containing cis/trans isomers of beta-carotene as well as their oxidation products, a photodiode-array UV-visible absorbance detector was used in addition between the column and the mass spectrometer for structural elucidation of the geometrical isomers. The detection limit for beta-carotene in positive-ion APCI-MS was determined to be 1 pmol. In addition, an extract of non-polar substances in vegetable juice has been analyzed by HPLC-APCI-MS. The included carotenoids could be identified by their masses and their retention times.
Lonappan, Linson; Pulicharla, Rama; Rouissi, Tarek; Brar, Satinder K; Verma, Mausam; Surampalli, Rao Y; Valero, José R
2016-02-12
Diclofenac (DCF), a prevalent non-steroidal anti-inflammatory drug (NSAID) is often detected in wastewater and surface water. Analysis of the pharmaceuticals in complex matrices is often laden with challenges. In this study a reliable, rapid and sensitive method based on laser diode thermal desorption/atmospheric pressure chemical ionization (LDTD/APCI) coupled with tandem mass spectrometry (MS/MS) has been developed for the quantification of DCF in wastewater and wastewater sludge. An established conventional LC-ESI-MS/MS (liquid chromatography-electrospray ionization-tandem mass spectrometry) method was compared with LDTD-APCI-MS/MS approach. The newly developed LDTD-APCI-MS/MS method reduced the analysis time to 12s in lieu of 12 min for LC-ESI-MS/MS method. The method detection limits for LDTD-APCI-MS/MS method were found to be 270 ng L(-1) (LOD) and 1000 ng L(-1) (LOQ). Furthermore, two extraction procedures, ultrasonic assisted extraction (USE) and accelerated solvent extraction (ASE) for the extraction of DCF from wastewater sludge were compared and ASE with 95.6 ± 7% recovery was effective over USE with 86 ± 4% recovery. The fate and partitioning of DCF in wastewater (WW) and wastewater sludge (WWS) in wastewater treatment plant was also monitored at various stages of treatment in Quebec Urban community wastewater treatment plant. DCF exhibited affinity towards WW than WWS with a presence about 60% of DCF in WW in contrary with theoretical prediction (LogKow=4.51). Copyright © 2016 Elsevier B.V. All rights reserved.
Breithaupt, Dietmar E
2004-06-16
Negative ion liquid chromatography-atmospheric pressure chemical ionization mass spectrometry [negative ion LC-(APCI)MS] was used for the identification of astaxanthin esters in extracts of commercial shrimp (Pandalus borealis) and dried microalga (Haematococcus pluvialis) samples. A cleanup step using a normal phase solid phase extraction (SPE) cartridge was applied prior to analysis. Recovery experiments with astaxanthin oleate as model compound proved the applicability of this step (98.5 +/- 7.6%; n = 4). The assignment of astaxanthin esters in negative ion LC-(APCI)MS was based on the detection of the molecular ion (M*-) and the formation of characteristic fragment ions, resulting from the loss of one or two fatty acids. Quantification of individual astaxanthin esters was performed using an astaxanthin calibration curve, which was found to be linear over the required range (1-51 micromol/L; r2 = 0.9996). Detection limits, based on the intensity of M*-, a signal-to-noise ratio of 3:1, and an injection volume of 20 microL, were estimated to be 0.05 microg/mL (free astaxanthin), 0.28 microg/mL (astaxanthin-C16:0), and 0.78 microg/mL (astaxanthin-C16:0/C16:0), respectively. This LC-(APCI)MS method allows for the first time the characterization of native astaxanthin esters in P. borealis and H. pluvialis without using time-consuming isolation steps with subsequent gas chromatographic analyses of fatty acid methyl esters. The results suggest that the pattern of astaxanthin-bound polyunsaturated fatty acids of P. borealis does not reflect the respective fatty acid pattern found in triacylglycerides. Application of the presented LC-(APCI)MS technique in common astaxanthin ester analysis will forestall erroneous xanthophyll ester assignment in natural sources.
NASA Astrophysics Data System (ADS)
Maragou, Niki C.; Thomaidis, Nikolaos S.; Koupparis, Michael A.
2011-10-01
A systematic and detailed optimization strategy for the development of atmospheric pressure ionization (API) LC-MS/MS methods for the determination of Irgarol 1051, Diuron, and their degradation products (M1, DCPMU, DCPU, and DCA) in water, sediment, and mussel is described. Experimental design was applied for the optimization of the ion sources parameters. Comparison of ESI and APCI was performed in positive- and negative-ion mode, and the effect of the mobile phase on ionization was studied for both techniques. Special attention was drawn to the ionization of DCA, which presents particular difficulty in API techniques. Satisfactory ionization of this small molecule is achieved only with ESI positive-ion mode using acetonitrile in the mobile phase; the instrumental detection limit is 0.11 ng/mL. Signal suppression was qualitatively estimated by using purified and non-purified samples. The sample preparation for sediments and mussels is direct and simple, comprising only solvent extraction. Mean recoveries ranged from 71% to 110%, and the corresponding (%) RSDs ranged between 4.1 and 14%. The method limits of detection ranged between 0.6 and 3.5 ng/g for sediment and mussel and from 1.3 to 1.8 ng/L for sea water. The method was applied to sea water, marine sediment, and mussels, which were obtained from marinas in Attiki, Greece. Ion ratio confirmation was used for the identification of the compounds.
Liang, H R; Foltz, R L; Meng, M; Bennett, P
2003-01-01
The phenomena of ionization suppression in electrospray ionization (ESI) and enhancement in atmospheric pressure chemical ionization (APCI) were investigated in selected-ion monitoring and selected-reaction monitoring modes for nine drugs and their corresponding stable-isotope-labeled internal standards (IS). The results showed that all investigated target drugs and their co-eluting isotope-labeled IS suppress each other's ionization responses in ESI. The factors affecting the extent of suppression in ESI were investigated, including structures and concentrations of drugs, matrix effects, and flow rate. In contrast to the ESI results, APCI caused seven of the nine investigated target drugs and their co-eluting isotope-labeled IS to enhance each other's ionization responses. The mutual ionization suppression or enhancement between drugs and their isotope-labeled IS could possibly influence assay sensitivity, reproducibility, accuracy and linearity in quantitative liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). However, calibration curves were linear if an appropriate IS concentration was selected for a desired calibration range to keep the response factors constant. Copyright 2003 John Wiley & Sons, Ltd.
Sabo, Martin; Matejčík, Štefan
2012-06-19
We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques.
Flavor release measurement from gum model system.
Ovejero-López, Isabel; Haahr, Anne-Mette; van den Berg, Frans; Bredie, Wender L P
2004-12-29
Flavor release from a mint-flavored chewing gum model system was measured by atmospheric pressure chemical ionization mass spectroscopy (APCI-MS) and sensory time-intensity (TI). A data analysis method for handling the individual curves from both methods is presented. The APCI-MS data are ratio-scaled using the signal from acetone in the breath of subjects. Next, APCI-MS and sensory TI curves are smoothed by low-pass filtering. Principal component analysis of the individual curves is used to display graphically the product differentiation by APCI-MS or TI signals. It is shown that differences in gum composition can be measured by both instrumental and sensory techniques, providing comparable information. The peppermint oil level (0.5-2% w/w) in the gum influenced both the retronasal concentration and the perceived peppermint flavor. The sweeteners' (sorbitol or xylitol) effect is less apparent. Sensory adaptation and sensitivity differences of human perception versus APCI-MS detection might explain the divergence between the two dynamic measurement methods.
Duval, Johanna; Colas, Cyril; Pecher, Virginie; Poujol, Marion; Tranchant, Jean-François; Lesellier, Eric
2017-08-04
An analytical method based on Ultra-High-Performance Supercritical Fluid Chromatography (UHPSFC) coupled with Atmospheric Pressure Chemical Ionization - High-resolution mass spectrometry (APCI-Q-TOF-HRMS) was developed for compounds screening from oily samples. The hyphenation was made using a commercial UHPLC device coupled to a CO 2 pump in order to perform the chromatographic analysis. An adaptation of the injection system for compressible fluids was accomplished for this coupling: this modification of the injection sequence was achieved to prevent unusual variations of the injected volume related to the use of a compressible fluid. UHPSFC-HRMS hyphenation was optimized to enhance the response of the varied compounds from a seed extract (anthraquinones, free fatty acids, diacylglycerols, hydroxylated triacylglycerols and triacylglycerols). No split was used prior to the APCI ionization source, allowing introducing all the compounds in the spectrometer, ensuring a better sensitivity for minor compounds. The effects of a mechanical make-up (T-piece) added before this ionization source was discussed in terms of standard deviation of response, response intensity and fragmentation percentage. The location of the T-piece with regards to the backpressure regulator (BPR), the flow rate and the nature of the make-up solvent were studied. Results show that the effects of the studied parameters depend on the nature of the compounds, whereas the make-up addition favours the robustness of the mass response (quantitative aspect). Copyright © 2017 Elsevier B.V. All rights reserved.
Takino, Masahiko; Daishima, Shigeki; Nakahara, Taketoshi
2003-01-01
This paper describes a comparison between atmospheric pressure chemical ionization (APCI) and the recently introduced atmospheric pressure photoionization (APPI) technique for the liquid chromatography/mass spectrometric (LC/MS) determination of patulin in clear apple juice. A column switching technique for on-line extraction of clear apple juice was developed. The parameters investigated for the optimization of APPI were the ion source parameters fragmentor voltage, capillary voltage, and vaporizer temperature, and also mobile phase composition and flow rate. Furthermore, chemical noise and signal suppression of analyte signals due to sample matrix interference were investigated for both APCI and APPI. The results indicated that APPI provides lower chemical noise and signal suppression in comparison with APCI. The linear range for patulin in apple juice (correlation coefficient >0.999) was 0.2-100 ng mL(-1). Mean recoveries of patulin in three apple juices ranged from 94.5 to 103.2%, and the limit of detection (S/N = 3), repeatability and reproducibility were 1.03-1.50 ng mL(-1), 3.9-5.1% and 7.3-8.2%, respectively. The total analysis time was 10.0 min. Copyright 2003 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zang, Xiaoling; Pérez, José J.; Jones, Christina M.; Monge, María Eugenia; McCarty, Nael A.; Stecenko, Arlene A.; Fernández, Facundo M.
2017-08-01
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy.
Cassada, D A; Monson, S J; Snow, D D; Spalding, R F
1999-06-04
Recent improvements in the LC-MS interface have increased the sensitivity and selectivity of this instrument in the analysis of polar and thermally-labile aqueous constituents. Determination of RDX, nitroso-RDX metabolites, and other munitions was enhanced using LC-MS with solid-phase extraction, 15N3-RDX internal standard, and electrospray ionization (ESI) in negative ion mode. ESI produced a five-fold increase in detector response over atmospheric pressure chemical ionization (APCI) for the nitramine compounds, while the more energetic APCI produced more than twenty times the ESI response for nitroaromatics. Method detection limits in ESI for nitramines varied from 0.03 microgram l-1 for MNX to 0.05 microgram l-1 for RDX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amundson, Lucas M.; Owen, Ben C.; Gallardo, Vanessa A.
2011-01-01
Positive-mode atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS n ) was tested for the differentiation of regioisomeric aromatic ketocarboxylic acids. Each analyte forms exclusively an abundant protonated molecule upon ionization via positive-mode APCI in a commercial linear quadrupole ion trap (LQIT) mass spectrometer. Energy-resolved collision-activated dissociation (CAD) experiments carried out on the protonated analytes revealed fragmentation patterns that varied based on the location of the functional groups. Unambiguous differentiation between the regioisomers was achieved in each case by observing different fragmentation patterns, different relative abundances of ion-molecule reaction products, or different relative abundances of fragment ions formed at differentmore » collision energies. The mechanisms of some of the reactions were examined by H/D exchange reactions and molecular orbital calculations.« less
USDA-ARS?s Scientific Manuscript database
The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...
Headspace analysis of volatile organic compounds from ethanolic systems by direct APCI-MS
NASA Astrophysics Data System (ADS)
Aznar, Margarita; Tsachaki, Maroussa; Linforth, Robert S. T.; Ferreira, Vicente; Taylor, Andrew J.
2004-12-01
Measuring the dynamic release of aroma compounds from ethanolic solutions by direct gas phase mass spectrometry (MS) techniques is an important technique for flavor chemists but presents technical difficulties as the changing ethanol concentration in the source makes quantitative measurements impossible. The effect of adding ethanol into the source via the sweep gas (0-565 [mu]L ethanol/L N2), to act as the proton transfer reagent ion and thereby control ionization was studied. With increasing concentrations of ethanol in the source, the water ions were replaced by ethanol ions above 3.2 [mu]L/L. The effect of source ethanol on the ionization of eleven aroma compounds was then measured. Some compounds showed reduced signal (10-40%), others increased signal (150-400%) when ionized via ethanol reagent ions compared to water reagent ions. Noise also increased in most cases so there was no overall increase in sensitivity. Providing the ethanol concentration in the source was >6.5 [mu]L/L N2 and maintained at a fixed value, ionization was consistent and quantitative. The technique was successfully applied to measure the partition of the test volatile compounds from aqueous and 12% ethanol solutions at equilibrium. Ethanolic solutions decreased the partition coefficient of most of the aroma compounds, as a function of hydrophobicity.
2007-08-01
of fluorinated amino acid derivatives under Electron Capture Atmospheric Pressure Chemical Ionization (EC APCI) conditions results in far better...Figure 6). Mass spectrometric analyses indicated that at least for the synthetic reference compound, the fluorinated derivative could be determined... fluorinated amino acid derivatives under EC APCI conditions (vide supra) results in far better detection limits, when compared to normal electrospray MS
Dual parallel mass apectrometry (LC1/MS2 and LC2/MS2) for lipid and vitamin D analysis
USDA-ARS?s Scientific Manuscript database
Atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and electrospray ionization (ESI) MS are complementary techniques that provide different types of information for lipids such as triacylglycerols, phospholipids, and fat-soluble vitamins. Since no one technique is by itself idea...
Dual Parallel Mass Spectrometry (LC1/MS2 and LC2/MS2) for Lipid and Vitamin D Analysis
USDA-ARS?s Scientific Manuscript database
Atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and electrospray ionization (ESI) MS are complementary techniques that provide different types of information for lipids such as triacylglycerols (TAGs), phospholipids, and fat-soluble vitamins. Since no one technique is by itsel...
Xu, Xiaoma; van de Craats, Anick M; de Bruyn, Peter C A M
2004-11-01
A highly sensitive screening method based on high performance liquid chromatography atmospheric pressure ionization mass spectrometry (HPLC-API-MS) has been developed for the analysis of 21 nitroaromatic, nitramine and nitrate ester explosives, which include the explosives most commonly encountered in forensic science. Two atmospheric pressure ionization (API) methods, atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI), and various experimental conditions have been applied to allow for the detection of all 21 explosive compounds. The limit of detection (LOD) in the full-scan mode has been found to be 0.012-1.2 ng on column for the screening of most explosives investigated. For nitrobenzene, an LOD of 10 ng was found with the APCI method in the negative mode. Although the detection of nitrobenzene, 2-, 3-, and 4-nitrotoluene is hindered by the difficult ionization of these compounds, we have found that by forming an adduct with glycine, LOD values in the range of 3-16 ng on column can be achieved. Compared with previous screening methods with thermospray ionization, the API method has distinct advantages, including simplicity and stability of the method applied, an extended screening range and a low detection limit for the explosives studied.
The Protonation Site of para-Dimethylaminobenzoic Acid Using Atmospheric Pressure Ionization Methods
NASA Astrophysics Data System (ADS)
Chai, Yunfeng; Weng, Guofeng; Shen, Shanshan; Sun, Cuirong; Pan, Yuanjiang
2015-04-01
The protonation site of para-dimethylaminobenzoic acid ( p-DMABA) was investigated using atmospheric pressure ionization methods (ESI and APCI) coupled with collision-induced dissociation (CID), nuclear magnetic resonance (NMR), and computational chemistry. Theoretical calculations and NMR experiments indicate that the dimethyl amino group is the preferred site of protonation both in the gas phase and aqueous solution. Protonation of p-DMABA occurs at the nitrogen atom by ESI independent of the solvents and other operation conditions under typical thermodynamic control. However, APCI produces a mixture of the nitrogen- and carbonyl oxygen-protonated p-DMABA when aprotic organic solvents (acetonitrile, acetone, and tetrahydrofuran) are used, exhibiting evident kinetic characteristics of protonation. But using protic organic solvents (methanol, ethanol, and isopropanol) in APCI still leads to the formation of thermodynamically stable N-protonated p-DMABA. These structural assignments were based on the different CID behavior of the N- and O-protonated p-DMABA. The losses of methyl radical and water are the diagnostic fragmentations of the N- and O-protonated p-DMABA, respectively. In addition, the N-protonated p-DMABA is more stable than the O-protonated p-DMABA in CID revealed by energy resolved experiments and theoretical calculations.
Zeeb, D J; Nelson, B C; Albert, K; Dalluge, J J
2000-10-15
A method has been developed for the direct microscale determination of 12 catechins in green and black tea infusions. The method is based on liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS). Standard catechin mixtures and tea infusions were analyzed by LC/APCI-MS with detection of protonated molecular ions and characteristic fragment ions for each compound. The identities of eight major catechins and caffeine in tea were established based on LC retention times and simultaneously recorded mass spectra. In addition, monitoring of the catechin-specific retro Diels-Alder fragment ion at m/z 139 throughout the chromatogram provided a unique fingerprint for catechin content in the samples that led to the identification of four minor chemically modified catechin derivatives in the infusions. This report is the first to describe the comprehensive determination of all 12 reported catechins in a single analysis. The utility of LC/APCI-MS for providing routine separation and identification of catechins at femtomole to low-picomole levels without extraction or sample pretreatment, and its potential as a standard analytical tool for the determination of polyphenols in natural products and biological fluids, are discussed.
Lipidomic analysis of glycerolipid and cholesteryl ester autooxidation products.
Kuksis, Arnis; Suomela, Jukka-Pekka; Tarvainen, Marko; Kallio, Heikki
2009-06-01
Thin-layer chromatography (TLC), gas chromatography (GC), and liquid chromatography (LC) in combination with mass spectrometry (MS) have been adopted for the isolation and identification of oxolipids and for determining their functionality. TLC provides a rapid separation and access to most oxolipids as intact molecules and has recently been effectively interfaced with time-of-flight (TOF) MS (TOF-MS). GC with flame ionization (FI) (GC/FI) and electron impact (EI) MS (GC/EI-MS) has been extensively utilized in the analysis of isoprostanes and other low-molecular-weight oxolipids, although these methods require derivatization of the analytes. In contrast, LC with ultraviolet (UV) absorption (LC/UV) or evaporate light scattering detection (ELSD) (LC/ELSD) as well as electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) MS (LC/ESI-MS) or LC/APCI-MS has proven to be well suited for the analysis of intact oxolipids and their conjugates without or with minimal derivatization. Nevertheless, kit-based colorimetric and fluorescent procedures continue to serve as sensitive indicators of the presence of hydroperoxides and aldehydes.
Tang, Weijuan; Sheng, Huaming; Jin, Chunfen; Riedeman, James S; Kenttämaa, Hilkka I
2016-04-15
The chemistry of desulfurization involved in processing crude oil is greatly dependent on the forms of sulfur in the oil. Sulfur exists in different chemical bonding environments in fossil fuels, including those in thiophenes and benzothiophenes, thiols, sulfides, and disulfides. In this study, the fragmentation behavior of the molecular ions of 17 aromatic organosulfur compounds with various functionalities was systematically investigated by using high-resolution tandem mass spectrometry. Multiple-stage tandem mass spectrometric experiments were carried out using a linear quadrupole ion trap (LQIT) equipped with an atmospheric pressure chemical ionization (APCI) source. (+)APCI/CS2 was used to generate stable dominant molecular ions for all the compounds studied except for three sulfides that also showed abundant fragment ions. The LQIT coupled with an orbitrap mass spectrometer was used for elemental composition analysis, which facilitated the identification of the neutral molecules lost during fragmentation. The characteristic fragment ions generated in MS(2) and MS(3) experiments provide clues for the chemical bonding environment of sulfur atoms in the examined compounds. Upon collision-induced dissociation (CID), the molecular ions can lose the sulfur atom in a variety of ways, including as S (32 Da), HS(•) (33 Da), H2 S (34 Da), CS (44 Da), (•) CHS (45 Da) and CH2 S (46 Da). These neutral fragments are not only indicative of the presence of sulfur, but also of the type of sulfur present in the compound. Generally, losses of HS(•) and H2 S were found to be associated with compounds containing saturated sulfur functionalities, while losses of S, CS and (•) CHS were more common for heteroaromatic sulfur compounds. High-resolution tandem mass spectrometry with APCI/CS2 ionization is a viable approach to determining the types of organosulfur compounds. It can potentially be applied to analysis of complex mixtures, which is beneficial to improving the desulfurization process of fossil fuels. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
ION COMPOSITION ELUCIDATION (ICE): A HIGH ...
Identifying compounds found in the environment without knowledge of their origin is a very difficult analytical problem. Comparison of the low resolution mass spectrum of a compound with those in the NIST or Wiley mass spectral libraries can provide a tentative identification when the mass spectrum is free of interferences, at least several prominent ions are observed in the mass spectrum, the mass spectrum is in the library, and only one plausible match is found. Because these libraries contain only 226,334 distinct compounds (1) compared to the 16 million compounds that have been synthesized or isolated from natural sources (2), most compounds are not found in the libraries. In addition, most compounds are ionic, too polar, too thermolabile, or too high in mass to traverse a GC column or to volatilize from a probe. For these compounds, liquid sample introduction with electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) provides few fragment ions for pattern matching, and adduct ions complicate the mass spectra. Commercial ESI and APCI mass spectral libraries are not available. Consequently, low resolution mass spectrometry cannot identify most compounds-. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support
Anderson, Shanoy C; Subbiah, Seenivasan; Gentles, Angella; Austin, Galen; Stonum, Paul; Brooks, Tiffanie A; Brooks, Chance; Smith, Ernest E
2016-10-15
A method for confirmation and detection of Florfenicol amine residues in white-tailed deer tissues was developed and validated in our laboratory. Tissue samples were extracted with ethyl acetate and cleaned up on sorbent (Chem-elut) cartridges. Liguid chromatography (LC) separation was achieved on a Zorbax Eclipse plus C18 column with gradient elution using a mobile phase composed of ammonium acetate in water and methanol at a flow rate of 300μL/min. Qualitative and quantitative analyses were carried out using liquid chromatography - heated electrospray ionization(HESI) and atmospheric pressure chemical ionization (APCI)-tandem mass spectrometry in the multiple reaction monitoring (MRM) interface. The limits of detection (LODs) for HESI and APCI probe were 1.8ng/g and 1.4ng/g respectively. Limits of quantitation (LOQs) for HESI and APCI probe were 5.8ng/g and 3.4ng/g respectively. Mean recovery values ranged from 79% to 111% for APCI and 30% to 60% for HESI. The validated method was used to determine white-tailed deer florfenicol tissue residue concentration 10-days after exposure. Florfenicol tissue residues concentration ranged from 0.4 to 0.6μg/g for liver and 0.02-0.05μg/g for muscle and a trace in blood samples. The concentration found in the tested edible tissues were lower than the maximum residual limit (MRL) values established by the federal drug administration (FDA) for bovine tissues. In summary, the resulting optimization procedures using the sensitivity of HESI and APCI probes in the determination of florfenicol in white-tailed deer tissue are the most compelling conclusions in this study, to the extent that we have applied this method in the evaluation of supermarket samples drug residue levels as a proof of principle. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Khare, P.; Marcotte, A.; Sheu, R.; Ditto, J.; Gentner, D. R.
2017-12-01
Intermediate- and semi-volatile organic compounds (IVOCs and SVOCs) have high secondary organic aerosol (SOA) yields, as well as significant ozone formation potentials. Yet, their emission sources and oxidation pathways remain largely understudied due to limitations in current analytical capabilities. Online mass spectrometers are able to collect real time data but their limited mass resolving power renders molecular level characterization of IVOCs and SVOCs from the unresolved complex mixture unfeasible. With proper sampling techniques and powerful analytical instrumentation, our offline tandem mass spectrometry (i.e. MS×MS) techniques provide molecular-level and structural identification over wide polarity and volatility ranges. We have designed a novel analytical system for offline analysis of gas-phase SOA precursors collected on custom-made multi-bed adsorbent tubes. Samples are desorbed into helium via a gradual temperature ramp and sample flow is split equally for direct-MS×MS analysis and separation via gas chromatography (GC). The effluent from GC separation is split again for analysis via atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-Q×TOF) and traditional electron ionization mass spectrometry (EI-MS). The compounds for direct-MS×MS analysis are delivered via a transfer line maintained at 70ºC directly to APCI-Q×TOF, thus preserving the molecular integrity of thermally-labile, or other highly-reactive, organic compounds. Both our GC-MS×MS and direct-MS×MS analyses report high accuracy parent ion masses as well as information on molecular structure via MS×MS, which together increase the resolution of unidentified complex mixtures. We demonstrate instrument performance and present preliminary results from urban atmospheric samples collected from New York City with a wide range of compounds including highly-functionalized organic compounds previously understudied in outdoor air. Our work offers new insights into emerging emission sources in urban environments that can have a major impact on public health and also improves understanding of anthropogenic SOA precursor emissions.
Zhou, Da-Yong; Chen, De-Liang; Xu, Qing; Xue, Xing-Ya; Zhang, Fei-Fang; Liang, Xin-Miao
2007-04-11
Atmospheric pressure chemical ionization mass spectrometry (APCI-MS) was operated in positive mode (PI) to characterize polymethoxylated flavonoids (PMFs) through its specific radical cations by collision-induced dissociation (CID). The fragments of [M + H - n x 15]+ produced by loss of one or more methyl group from the protonated molecule, as well as [M + H - 29]+, [M + H - 31]+, [M + H - 33]+, [M + H - 43]+, [M + H - 46]+, and [M + H - 61]+ fragment ions were detected, which were diagnostic for the polymethoxylated species, and could be adopted to form the multiple MS (MS(n)) "fingerprint" of PMFs. Based on this "fingerprint", 29 PMFs were screened out from extracts of Fructus aurantii, among which two of them were identified as sinensetin and tangeretin. It was proved that the PI was suitable for structural characterization of PMFs by APCI-MS(n).
van Leeuwen, Suze M; Hendriksen, Laurens; Karst, Uwe
2004-11-26
Atmospheric pressure photoionization-mass spectrometry (APPI-MS) is used for the analysis of aldehydes and ketones after derivatization with 2,4-dinitrophenylhydrazine (DNPH) and liquid chromatographic separation. In the negative ion mode, the [M - H]- pseudomolecular ions are most abundant for the carbonyls. Compared with the established atmospheric pressure chemical ionization (APCI)-MS, limits of detection are typically lower using similar conditions. Automobile exhaust and cigarette exhaust samples were analyzed with APPI-MS and APCI-MS in combination with an ion trap mass analyzer. Due to improved limits of detection, more of the less abundant long-chain carbonyls are detected with APPI-MS in real samples. While 2,4-dinitrophenylazide, a known reaction product of DNPH with nitrogen dioxide, is detected in APCI-MS due to dissociative electron capture, it is not observed at all in APPI-MS.
Mass spectrometry and tandem mass spectrometry of citrus limonoids.
Tian, Qingguo; Schwartz, Steven J
2003-10-15
Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring structure. CAD of the adduct ion [M + H + NH3]+ of limonoid glucosides produced the aglycone moiety corresponding to each glucoside. The combination of mass spectrometry and tandem mass spectrometry provides a powerful technique for identification and characterization of citrus limonoids.
Zhao, Ying-Yong; Zhao, Ye; Zhang, Yong-Min; Lin, Rui-Chao; Sun, Wen-Ji
2009-06-01
Polyporus umbellatus is a widely used anti-aldosteronic diuretic in Traditional Chinese medicine (TCM). A new, sensitive and selective high-performance liquid chromatography-fluorescence detector (HPLC-FLD) and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS/MS) method for quantitative and qualitative determination of ergosta-4,6,8(14),22-tetraen-3-one(ergone), which is the main diuretic component, was provided for quality control of P. umbellatus crude drug. The ergone in the ethanolic extract of P. umbellatus was unambiguously characterized by HPLC-APCI, and further confirmed by comparing with a standard compound. The trace ergone was detected by the sensitive and selective HPLC-FLD. Linearity (r2 > 0.9998) and recoveries of low, medium and high concentration (100.5%, 100.2% and 100.4%) were consistent with the experimental criteria. The limit of detection (LOD) of ergone was around 0.2 microg/mL. Our results indicated that the content of ergone in P. umbellatus varied significantly from habitat to habitat with contents ranging from 2.13 +/- 0.02 to 59.17 +/- 0.05 microg/g. Comparison among HPLC-FLD and HPLC-UV or HPLC-APCI-MS/MS demonstrated that the HPLC-FLD and HPLC-APCI-MS/MS methods gave similar quantitative results for the selected herb samples, the HPLC-UV methods gave lower quantitative results than HPLC-FLD and HPLC-APCI-MS/MS methods. The established new HPLC-FLD method has the advantages of being rapid, simple, selective and sensitive, and could be used for the routine analysis of P. umbellatus crude drug.
NASA Astrophysics Data System (ADS)
Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo
2013-03-01
This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution `Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10-9 M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.
Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Templeton, Michael R
2012-04-27
The haloacetamides (HAcAms) are disinfection by-products (DBPs) in drinking water which are currently receiving increased scientific attention due to their elevated toxicity relative to regulated disinfection by-products. A simultaneous determination method of 13 HAcAms, combining solid-phase extraction (SPE) enrichment, liquid chromatographic (LC) separation, and triple quadrupole mass spectrometry (tqMS) detection with atmospheric pressure chemical ionization (APCI) using selective reaction monitoring in positive mode, was developed to measure HAcAms, including chlorinated, brominated, and iodinated analogs. Ammonium chloride and Oasis HLB were selected as the dechlorinating reagent and polymeric SPE sorbent of HAcAm samples. The used tqMS apparatus showed higher sensitivity for the studied HAcAms in the APCI mode than electrospray ionization. 13 HAcAms were separated by LC in 9.0 min, and the detection limits ranged from 7.6 to 19.7 ng/L. The SPE-LC/tqMS method was successfully applied to quantify 13 HAcAms in drinking water samples for the first time, and first indentified tribromoacetamide and chloroiodoacetamide as DBPs in drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.
Measurement of deuterium-labeled phylloquinone in plasma by LC-APCI-MS
USDA-ARS?s Scientific Manuscript database
Deuterium-labeled vegetables were fed to humans for the measurement of both unlabeled and deuterium-labeled phylloquinone in plasma. We developed a technique to determine the quantities of these compounds using liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization (LC...
NASA Astrophysics Data System (ADS)
Buchalla, Rainer; Begley, Timothy H.
2006-01-01
Low-molecular-weight (low-MW) constituents of polyethylene terephthalate (PET), irradiated with 60Co gamma rays at 25 and 50 kGy, were analyzed by HPLC-MS with atmospheric-pressure chemical ionization (APCI). Consistent with earlier results, the concentrations of the major compounds that are present in the non-irradiated PET do not change perceptibly. However, we find a small but significant increase in terephthalic acid ethylester, from less than 1 mg/kg in the non-irradiated control to ca. 2 mg/kg after 50 kGy, which has not been described before. The finding is important because it gives an impression of the sensitivity of the analytical method. Additionally, it shows that even very radiation-resistant polymers can form measurable amounts of low-MW radiolysis products. The potential and limitations of LC-MS for the analysis of radiolysis products and unidentified migrants are briefly discussed in the context of the question: How can we validate our analytical methods for unknown analytes?
NASA Astrophysics Data System (ADS)
Gardner, Michael S.; McWilliams, Lisa G.; Jones, Jeffrey I.; Kuklenyik, Zsuzsanna; Pirkle, James L.; Barr, John R.
2017-08-01
We demonstrate the application of in-source nitrogen collision-induced dissociation (CID) that eliminates the need for ester hydrolysis before simultaneous analysis of esterified cholesterol (EC) and triglycerides (TG) along with free cholesterol (FC) from human serum, using normal phase liquid chromatography (LC) coupled to atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (MS/MS). The analysis requires only 50 μL of 1:100 dilute serum with a high-throughput, precipitation/evaporation/extraction protocol in one pot. Known representative mixtures of EC and TG species were used as calibrators with stable isotope labeled analogs as internal standards. The APCI MS source was operated with nitrogen source gas. Reproducible in-source CID was achieved with the use of optimal cone voltage (declustering potential), generating FC, EC, and TG lipid class-specific precursor fragment ions for multiple reaction monitoring (MRM). Using a representative mixture of purified FC, CE, and TG species as calibrators, the method accuracy was assessed with analysis of five inter-laboratory standardization materials, showing -10% bias for Total-C and -3% for Total-TG. Repeated duplicate analysis of a quality control pool showed intra-day and inter-day variation of 5% and 5.8% for FC, 5.2% and 8.5% for Total-C, and 4.1% and 7.7% for Total-TG. The applicability of the method was demonstrated on 32 serum samples and corresponding lipoprotein sub-fractions collected from normolipidemic, hypercholesterolemic, hypertriglyceridemic, and hyperlipidemic donors. The results show that in-source CID coupled with isotope dilution UHPLC-MS/MS is a viable high precision approach for translational research studies where samples are substantially diluted or the amounts of archived samples are limited. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Ivanova, Bojidarka; Spiteller, Michael
2018-04-01
The problematic that we consider in this paper treats the quantitative correlation model equations between experimental kinetic and thermodynamic parameters of coupled electrospray ionization (ESI) mass spectrometry (MS) or atmospheric pressure chemical ionization (APCI) mass spectrometry with collision induced dissociation mass spectrometry, accounting for the fact that the physical phenomena and mechanisms of ESI- and APCI-ion formation are completely different. There are described forty two fragment reactions of three analytes under independent ESI- and APCI-measurements. The developed new quantitative models allow us to study correlatively the reaction kinetics and thermodynamics using the methods of mass spectrometry, which complementary application with the methods of the quantum chemistry provide 3D structural information of the analytes. Both static and dynamic quantum chemical computations are carried out. The object of analyses are [2,3-dimethyl-4-(4-methyl-benzoyl)-2,3-di-p-tolyl-cyclobutyl]-p-tolyl-methanone (1) and the polycyclic aromatic hydrocarbons derivatives of dibenzoperylen (2) and tetrabenzo [a,c,fg,op]naphthacene (3), respectively. As far as (1) is known to be a product of [2π+2π] cycloaddition reactions of chalcone (1,3-di-p-tolyl-propenone), however producing cyclic derivatives with different stereo selectivity, so that the study provide crucial data about the capability of mass spectrometry to provide determine the stereo selectivity of the analytes. This work also first provides quantitative treatment of the relations '3D molecular/electronic structures'-'quantum chemical diffusion coefficient'-'mass spectrometric diffusion coefficient', thus extending the capability of the mass spectrometry for determination of the exact 3D structure of the analytes using independent measurements and computations of the diffusion coefficients. The determination of the experimental diffusion parameters is carried out within the 'current monitoring method' evaluating the translation diffusion of charged analytes, while the theoretical modelling of MS ions and computations of theoretical diffusion coefficients are based on the Arrhenius type behavior of the charged species under ESI- and APCI-conditions. Although the study provide certain sound considerations for the quantitative relations between the reaction kinetic-thermodynamics and 3D structure of the analytes together with correlations between 3D molecular/electronic structures-quantum chemical diffusion coefficient-mass spectrometric diffusion coefficient, which contribute significantly to the structural analytical chemistry, the results have importance to other areas such as organic synthesis and catalysis as well.
NASA Astrophysics Data System (ADS)
Amo-Gonzalez, Mario; Fernandez de la Mora, Juan
2017-08-01
The differential mobility analyzer (DMA) is a narrow-band linear ion mobility filter operating at atmospheric pressure. It combines in series with a quadrupole mass spectrometer (Q-MS) for mobility/mass analysis, greatly reducing chemical noise in selected ion monitoring. However, the large flow rate of drift gas ( 1000 L/min) required by DMAs complicates the achievement of high gas purity. Additionally, the symmetry of the drying counterflow gas at the interface of many commercial MS instruments, is degraded by the lateral motion of the drift gas at the DMA entrance slit. As a result, DMA mobility peaks often exhibit tails due to the attachment of impurity vapors, either (1) to the reagent ion within the separation cell, or (2) to the analyte of interest in the ionization region. In order to greatly increase the noise-suppression capacity of the DMA, we describe various vapor-removal schemes and measure the resulting increase in the tailing ratio, ( TR = signal at the peak maximum over signal two half-widths away from this maximum). Here we develop a low-outgassing DMA circuit connected to a mass spectrometer, and test it with three ionization sources (APCI, Desolvating-nano ESI, and Desolvating low flow SESI). While prior TR values were in the range 100-1000, the three new sources achieve TR 105. The SESI source has been optimized for maximum sensitivity, delivering an unprecedented gain for TNT of 190 counts/fg, equivalent to an ionization efficiency of one out of 140 neutral molecules.
When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources
Chen, Lee Chuin
2015-01-01
In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that “…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more” (Int. J. Mass Spectrom. 200: 459–478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451–4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that “super-atmospheric operation would be more preferable in space-charge-limited situations.”(Int. J. Mass Spectrom. 300: 182–193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912
The simulacrum system as a construct for mass spectrometry of triacylglycerols and others
USDA-ARS?s Scientific Manuscript database
A construct called a simulacrum is defined that provides all possible solutions to a sum of two mass spectral abundances, based on values (abundances) or ratios of those values. The defined construct is applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglyce...
Acter, Thamina; Kim, Donghwi; Ahmed, Arif; Jin, Jang Mi; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan
2016-05-01
This paper presents a detailed investigation of the feasibility of optimized positive and negative atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) and atmospheric pressure photoionization (APPI) MS coupled to hydrogen-deuterium exchange (HDX) for structural assignment of diverse oxygen-containing compounds. The important parameters for optimization of HDX MS were characterized. The optimized techniques employed in the positive and negative modes showed satisfactory HDX product ions for the model compounds when dichloromethane and toluene were employed as a co-solvent in APCI- and APPI-HDX, respectively. The evaluation of the mass spectra obtained from 38 oxygen-containing compounds demonstrated that the extent of the HDX of the ions was structure-dependent. The combination of information provided by different ionization techniques could be used for better speciation of oxygen-containing compounds. For example, (+) APPI-HDX is sensitive to compounds with alcohol, ketone, or aldehyde substituents, while (-) APPI-HDX is sensitive to compounds with carboxylic functional groups. In addition, the compounds with alcohol can be distinguished from other compounds by the presence of exchanged peaks. The combined information was applied to study chemical compositions of degraded oils. The HDX pattern, double bond equivalent (DBE) distribution, and previously reported oxidation products were combined to predict structures of the compounds produced from oxidation of oil. Overall, this study shows that APCI- and APPI-HDX MS are useful experimental techniques that can be applied for the structural analysis of oxygen-containing compounds.
Barricklow, Jason; Ryder, Tim F; Furlong, Michael T
2009-08-01
During LC-MS/MS quantification of a small molecule in human urine samples from a clinical study, an unexpected peak was observed to nearly co-elute with the analyte of interest in many study samples. Improved chromatographic resolution revealed the presence of at least 3 non-analyte peaks, which were identified as cysteine metabolites and N-acetyl (mercapturic acid) derivatives thereof. These metabolites produced artifact responses in the parent compound MRM channel due to decomposition in the ionization source of the mass spectrometer. Quantitative comparison of the analyte concentrations in study samples using the original chromatographic method and the improved chromatographic separation method demonstrated that the original method substantially over-estimated the analyte concentration in many cases. The substitution of electrospray ionization (ESI) for atmospheric pressure chemical ionization (APCI) nearly eliminated the source instability of these metabolites, which would have mitigated their interference in the quantification of the analyte, even without chromatographic separation. These results 1) demonstrate the potential for thiol metabolite interferences during the quantification of small molecules in pharmacokinetic samples, and 2) underscore the need to carefully evaluate LC-MS/MS methods for molecules that can undergo metabolism to thiol adducts to ensure that they are not susceptible to such interferences during quantification.
Saha, Subhrakanti; Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo
2013-03-01
This work describes the development and application of a new thermal desorption technique that makes use of the Leidenfrost phenomenon in open ion sources at atmospheric pressure for direct mass spectrometric detection of ultratrace levels of illicit, therapeutic, and stimulant drugs, toxicants, and peptides (molecular weight above 1 kDa) in their unaltered state from complex real world samples without or with minor sample pretreatment. A low temperature dielectric barrier discharge ion source was used throughout the experiments and the analytical figures of merit of this technique were investigated. Further, this desorption technique coupled with other ionization sources such as electrospray ionization (ESI) and dc corona discharge atmospheric pressure chemical ionization (APCI) in open atmosphere was also investigated. The use of the high-resolution 'Exactive Orbitrap' mass spectrometer provided unambiguous identification of trace levels of the targeted compounds from complex mixtures and background noise; the limits of detection for various small organic molecules and peptides treated with this technique were at the level of parts per trillion and 10(-9) M, respectively. The high sensitivity of the present technique is attributed to the spontaneous enrichment of analyte molecules during the slow evaporation of the solvent, as well as to the sequential desorption of molecules from complex mixtures based on their volatilities. This newly developed desorption technique is simple and fast, while molecular ions are observed as the major ions.
Parallel mass spectrometry (APCI-MS and ESI-MS) for lipid analysis
USDA-ARS?s Scientific Manuscript database
Coupling the condensed phase of HPLC with the high vacuum necessary for ion analysis in a mass spectrometer requires quickly evaporating large amounts of liquid mobile phase to release analyte molecules into the gas phase, along with ionization of those molecules, so they can be detected by the mass...
Schweiggert, Ute; Kammerer, Dietmar R; Carle, Reinhold; Schieber, Andreas
2005-01-01
Carotenoids and carotenoid esters were extracted from red pepper pods (Capsicum annuum L.) without saponification. Among the 42 compounds detected, 4 non-esterified, 11 mono- and 17 diesters were characterized based on their retention times, UV/Vis spectra and their fragmentation patterns in collision-induced dissociation experiments in atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Positive and negative ion mode measurements were used for the characterization of major and minor carotenoids and their esters. Capsanthin esterified with lauric, palmitic and myristic acids represented the predominant compounds in the red pepper extracts. Additionally, three beta-cryptoxanthin and one zeaxanthin monoester were tentatively identified in red pepper pods for the first time. Furthermore, the specific fragmentation patterns of capsanthin-laurate-myristate and capsanthin-myristate-palmitate were used for the distinction of both regioisomers. The results obtained from LC-DAD-APCI-MSn experiments demonstrated that the carotenoid profile of red pepper pods is considerably more complex than considered hitherto. Copyright (c) 2005 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Jublot, Lionel; Linforth, Robert S. T.; Taylor, Andrew J.
2005-06-01
Atmospheric pressure chemical ionisation (APCI) sources were developed for real time analysis of volatile release from foods using an ion trap (IT) mass spectrometer (MS). Key objectives were spectral simplicity (minimal fragmentation), response time and signal to noise ratio. The benefits of APCI-IT-MS were assessed by comparing the performance for in vivo and headspace analyses with that obtained using APCI coupled to a quadrupole mass analyser. Using MS-MS, direct APCI-IT-MS was able to differentiate mixtures of some C6 and terpene isobaric aroma compounds. Resolution could be achieved for some compounds by monitoring specific secondary ions. Direct resolution was also achieved with two of the three isobaric compounds released from chocolate with time as the sample was eaten.
Determining Vitamin D Status: A Comparison between Commercially Available Assays
Snellman, Greta; Melhus, Håkan; Gedeborg, Rolf; Byberg, Liisa; Berglund, Lars; Wernroth, Lisa; Michaëlsson, Karl
2010-01-01
Background Vitamin D is not only important for bone health but can also affect the development of several non-bone diseases. The definition of vitamin D insufficiency by serum levels of 25-hydroxyvitamin D depends on the clinical outcome but might also be a consequence of analytical methods used for the definition. Although numerous 25-hydroxyvitamin D assays are available, their comparability is uncertain. We therefore aim to investigate the precision, accuracy and clinical consequences of differences in performance between three common commercially available assays. Methodology/Principal Findings Serum 25-hydroxyvitamin D levels from 204 twins from the Swedish Twin Registry were determined with high-pressure liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS), a radioimmunoassay (RIA) and a chemiluminescent immunoassay (CLIA). High inter-assay disagreement was found. Mean 25-hydroxyvitamin D levels were highest for the HPLC-APCI-MS technique (85 nmol/L, 95% CI 81–89), intermediate for RIA (70 nmol/L, 95% CI 66–74) and lowest with CLIA (60 nmol/L, 95% CI 56–64). Using a 50-nmol/L cut-off, 8% of the subjects were insufficient using HPLC-APCI-MS, 22% with RIA and 43% by CLIA. Because of the heritable component of 25-hydroxyvitamin D status, the accuracy of each method could indirectly be assessed by comparison of within-twin pair correlations. The strongest correlation was found for HPLC-APCI-MS (r = 0.7), intermediate for RIA (r = 0.5) and lowest for CLIA (r = 0.4). Regression analyses between the methods revealed a non-uniform variance (p<0.0001) depending on level of 25-hydroxyvitamin D. Conclusions/Significance There are substantial inter-assay differences in performance. The most valid method was HPLC-APCI-MS. Calibration between 25-hydroxyvitamin D assays is intricate. PMID:20644628
High-Throughput Quantitation of Neonicotinoids in Lyophilized Surface Water by LC-APCI-MS/MS.
Morrison, Lucas M; Renaud, Justin B; Sabourin, Lyne; Sumarah, Mark W; Yeung, Ken K C; Lapen, David R
2018-05-21
Background : Neonicotinoids are among the most widely used insecticides. Recently, there has been concern associated with unintended adverse effects on honeybees and aquatic invertebrates at low parts-per-trillion levels. Objective : There is a need for LC-MS/MS methods that are capable of high-throughput measurements of the most widely used neonicotinoids at environmentally relevant concentrations in surface water. Methods : This method allows for quantitation of acetamiprid, clothianidin, imidacloprid, dinotefuran, nitenpyram, thiacloprid, and thiamethoxam in surface water. Deuterated internal standards are added to 20 mL environmental samples, which are concentrated by lyophilisation and reconstituted with methanol followed by acetonitrile. Results : A large variation of mean recovery efficiencies across five different surface water sampling sites within this study was observed, ranging from 45 to 74%. This demonstrated the need for labelled internal standards to compensate for these differences. Atmospheric pressure chemical ionization (APCI) performed better than electrospray ionization (ESI) with limited matrix suppression, achieving 71-110% of the laboratory fortified blank signal. Neonicotinoids were resolved on a C18 column using a 5 min LC method, in which MQL ranged between 0.93 and 4.88 ng/L. Conclusions : This method enables cost effective, accurate, and reproducible monitoring of these pesticides in the aquatic environment. Highlights : Lyophilization is used for high throughput concentration of neonicotinoids in surface water. Variations in matrix effects between samples was greatly reduced by using APCI compared with ESI. Clothianidin and thiamethoxam were detected in all samples with levels ranging from below method quantitation limit to 65 ng/L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asano, Keiji G; Ford, Michael J; Tomkins, Bruce A
A self-aspirating heated nebulizer probe is described and demonstrated for use in the direct analysis of analytes on surfaces and in liquid samples by atmospheric pressure chemical ionization (APCI) mass spectrometry. Functionality and performance of the probe as a self-aspirating APCI source is demonstrated using reserpine and progesterone as test compounds. The utility of the probe to sample analytes directly from surfaces was demonstrated first by scanning development lanes of a reversed-phase thin-layer chromatography plate in which a three-component dye mixture, viz., Fat Red 7B, Solvent Green 3, and Solvent Blue 35, was spotted and the components were separated. Developmentmore » lanes were scanned by the sampling probe operated under computer control (x, y plane) while full-scan mass spectra were recorded using a quadrupole ion trap mass spectrometer. In addition, the ability to sample the surface of pharmaceutical tablets (viz., Extra Strength Tylenol(reg. sign) and Evista(reg. sign) tablets) and to detect the active ingredients (acetaminophen and raloxifene, respectively) selectively was demonstrated using tandem mass spectrometry (MS/MS). Finally, the capability to sample analyte solutions from the wells of a 384-well microtiter plate and to perform quantitative analyses using MS/MS detection was illustrated with cotinine standards spiked with cotinine-d{sub 3} as an internal standard.« less
Hashimoto, Yuichiro
2017-01-01
The development of a robust ionization source using the counter-flow APCI, miniature mass spectrometer, and an automated sampling system for detecting explosives are described. These development efforts using mass spectrometry were made in order to improve the efficiencies of on-site detection in areas such as security, environmental, and industrial applications. A development team, including the author, has struggled for nearly 20 years to enhance the robustness and reduce the size of mass spectrometers to meet the requirements needed for on-site applications. This article focuses on the recent results related to the detection of explosive materials where automated particle sampling using a cyclone concentrator permitted the inspection time to be successfully reduced to 3 s. PMID:28337396
Marotta, Ester; Paradisi, Cristina; Scorrano, Gianfranco
2004-07-01
A report is given on the ionization/dissociation behavior of the title compounds within air plasmas produced by electrical corona discharges at atmospheric pressure: both positive and negative ions were investigated at different temperatures using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). CHF(2)CH(3) (HFC-152a) undergoes efficient ionic oxidation to C(2)H(5)O(+), in which the oxygen comes from water present in the plasma. In contrast, CF(3)CH(2)F (HFC-134a) does not produce any characteristic positive ion under APCI conditions, its presence within the plasma being revealed only as a neutral ligand in ion-molecule complexes with ions of the background (H(3)O(+) and NO(+)). Analogously, the perfluorocarbon FC-72 (n-C(6)F(14)) does not produce significant positive ions at 30 degrees C: at high temperature, however, it undergoes dissociative ionization to form many product ions including C(3)F(6)(+), C(2)F(4)(+), C(n)F(2n+1)(+) and a few families of oxygen containing cations (C(n)F(2n+1)OH(2)(+), C(n)F(2n)OH(+), C(n)F(2n-1)O(+), C(n)F(2n-1)O(2)H(2)(+), C(n)F(2n-2)O(2)H(+)) which are suggested to derive from C(n)F(2n+1)(+) in a cascade of steps initiated by condensation with water followed by steps of HF elimination and H(2)O addition. Negative ions formed from the fluoroethanes CHF(2)CH(3) and CF(3)CH(2)F (M) include complexes with ions of the background, O(2)(-)(M), O(3)(-)(M) and some higher complexes involving also water, and complexes of the fluoride ion, F(-)(H(2)O), F(-)(M) and higher complexes with both M and H(2)O also together. The interesting product O(2)(-)(HF) is also formed from 1,1-difluoroethane. In contrast to the HFCs, perfluoro-n-hexane gives stable molecular anions, M(-), which at low source temperature or in humidified air are also detected as hydrates, M(-)(H(2)O). In addition, in humidified air F(-)(H(2)O)(n) complexes are also formed. The reactions leading to all major positive and negative product ions are discussed also with reference to available thermochemical data and relevant literature reports. The effects on both positive and negative APCI spectra due to ion activation via increasing V(cone) are also reported and discussed: several interesting endothermic processes are observed under these conditions. The results provide important information on the role of ionic reactions in non-thermal plasma processes.
Lenzen, Claudia; Winterfeld, Gottfried A; Schmitz, Oliver J
2016-06-01
The direct inlet probe-electrospray ionization (DIP-ESI) presented here was based on the direct inlet probe-atmospheric pressure chemical ionization (DIP-APCI) developed by our group. It was coupled to an ion trap mass spectrometer (MS) for the detection of more polar compounds such as degradation products from pharmaceuticals. First, the position of the ESI tip, the gas and solvent flow rates, as well as the gas temperature were optimized with the help of the statistic program Minitab® 17 and a caffeine standard. The ability to perform quantitative analyses was also tested by using different concentrations of caffeine and camphor. Calibration curves with a quadratic calibration regression of R (2) = 0.9997 and 0.9998 for caffeine and camphor, respectively, were obtained. The limit of detection of 2.5 and 1.7 ng per injection for caffeine and camphor were determined, respectively. Furthermore, a solution of piracetam was used to compare established analytical methods for this drug and its impurities such as HPLC-diode array detector (DAD) and HPLC-ESI-MS with the DIP-APCI and the developed DIP-ESI. With HPLC-DAD and 10 μg piracetam on column, no impurity could be detected. With HPLC-ESI-MS, two impurities (A and B) were identified with only 4.6 μg piracetam on column, while with DIP-ESI, an amount of 1.6 μg piracetam was sufficient. In the case of the DIP-ESI measurements, all detected impurities could be identified by MS/MS studies. Graphical Abstract Scheme of the DIP-ESI principle.
[Investigation on the chromatogram of diterpenoids in Pteris semipinnata by HPLC-APCI-MS].
Deng, Yifeng; Liang, Nianci
2005-04-01
To identify and compare the main peaks of HPLC-APCI-MS FP of the diterpenoids in Pteris semipinnata collected from different region and time, a quadrupole mass spectrometer coupled with atmospheric pressure chemical ionization interface was employed as a detector for HPLC to establish total ion chromatography. HPLC retention time and MS spectrum were used to identify comprehensively. 4F, 5F and 6F were identified from the chromatography comparing with their standards. The saturated state of 6F and glycoside of 4F and 5F were inferred. The content of 5F in samples collected from region of Guangzhou or in Nov. and Dec. were comparatively higher. This method is highly effective and fast,which can be applied to research and develop for diterpenoids in Pteris semipinnata L as new antitumor drug resource.
Charge Assisted Laser Desorption/Ionization Mass Spectrometry of Droplets
Jorabchi, Kaveh; Westphall, Michael S.; Smith, Lloyd M.
2008-01-01
We propose and evaluate a new mechanism to account for analyte ion signal enhancement in ultraviolet-laser desorption mass spectrometry of droplets in the presence of corona ions. Our new insights are based on timing control of corona ion production, laser desorption, and peptide ion extraction achieved by a novel pulsed corona apparatus. We demonstrate that droplet charging rather than gas-phase ion-neutral reactions is the major contributor to analyte ion generation from an electrically isolated droplet. Implications of the new mechanism, termed charge assisted laser desorption/ionization (CALDI), are discussed and contrasted to those of the laser desorption atmospheric pressure chemical ionization method (LD-APCI). It is also demonstrated that analyte ion generation in CALDI occurs with external electric fields about one order of magnitude lower than those needed for atmospheric pressure matrix assisted laser desorption/ionization or electrospray ionization of droplets. PMID:18387311
Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M
2016-03-25
Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.
Vieira, Mariana Neves; Costa, Fernanda das Neves; Leitão, Gilda Guimarães; Garrard, Ian; Hewitson, Peter; Ignatova, Svetlana; Winterhalter, Peter; Jerz, Gerold
2015-04-10
'Countercurrent chromatography' (CCC) is an ideal technique for the recovery, purification and isolation of bioactive natural products, due to the liquid nature of the stationary phase, process predictability and the possibility of scale-up from analytical to preparative scale. In this work, a method developed for the fractionation of Schinus terebinthifolius Raddi berries dichloromethane extract was thoroughly optimized to achieve maximal throughput with minimal solvent and time consumption per gram of processed crude extract, using analytical, semi-preparative and preparative 'high performance countercurrent chromatography' (HPCCC) instruments. The method using the biphasic solvent system composed of n-heptane-ethyl acetate-methanol-water (6:1:6:1, v/v/v/v) was volumetrically scaled up to increase sample throughput up to 120 times, while maintaining separation efficiency and time. As a fast and specific detection alternative, the fractions collected from the CCC-separations were injected to an 'atmospheric pressure chemical ionization mass-spectrometer' (APCI-MS/MS) and reconstituted molecular weight MS-chromatograms of the APCI-ionizable compounds from S. terebinthifolius were obtained. This procedure led to the direct isolation of tirucallane type triterpenes such as masticadienonic and 3β-masticadienolic acids. Also oleanonic and moronic acids have been identified for the first time in the species. In summary, this approach can be used for other CCC scale-up processes, enabling MS-target-guided isolation procedures. Copyright © 2015 Elsevier B.V. All rights reserved.
Sales, C; Cervera, M I; Gil, R; Portolés, T; Pitarch, E; Beltran, J
2017-02-01
The novel atmospheric pressure chemical ionization (APCI) source has been used in combination with gas chromatography (GC) coupled to hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) for determination of volatile components of olive oil, enhancing its potential for classification of olive oil samples according to their quality using a metabolomics-based approach. The full-spectrum acquisition has allowed the detection of volatile organic compounds (VOCs) in olive oil samples, including Extra Virgin, Virgin and Lampante qualities. A dynamic headspace extraction with cartridge solvent elution was applied. The metabolomics strategy consisted of three different steps: a full mass spectral alignment of GC-MS data using MzMine 2.0, a multivariate analysis using Ez-Info and the creation of the statistical model with combinations of responses for molecular fragments. The model was finally validated using blind samples, obtaining an accuracy in oil classification of 70%, taking the official established method, "PANEL TEST", as reference. Copyright © 2016 Elsevier Ltd. All rights reserved.
Malhi, Sarandeep; Stesco, Nicholas; Alrushaid, Samaa; Lakowski, Ted M; Davies, Neal M; Gu, Xiaochen
2017-03-01
A liquid chromatography-tandem mass spectroscopy (LC-MS/MS) assay was developed and validated to simultaneously quantify anticancer drugs reparixin and paclitaxel in this study. The compounds were extracted from plasma and urine samples by protein precipitation with acetone (supplemented with 0.1% formic acid). Chromatographic separation was achieved using a C18 column, and drug molecules were ionized using dual ion source electrospray and atmospheric pressure chemical ionization (DUIS: ESI-APCI). Reparixin and paclitaxel were quantified using negative and positive multiple reaction monitoring (MRM) mode, respectively. Stable isotope palcitaxel-D5 was used as the internal standard (IS). The assay was validated for specificity, recovery, carryover and sample stability under various storage conditions; it was also successfully applied to measure drug concentrations collected from a pharmacokinetic study in rats. The results confirmed that the assay was accurate and simple in quantifying both reparixin and paclitaxel in plasma and urine with minimal sample pretreatment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Solano, Eduardo A.; Mohamed, Sabria; Mayer, Paul M.
2016-10-01
The internal energy transferred when projectile molecular ions of naphthalene collide with argon gas atoms was extracted from the APCI-CID (atmospheric-pressure chemical ionization collision-induced dissociation) mass spectra acquired as a function of collision energy. Ion abundances were calculated by microcanonical integration of the differential rate equations using the Rice-Ramsperger-Kassel-Marcus rate constants derived from a UB3LYP/6-311G+(3df,2p)//UB3LYP/6-31G(d) fragmentation mechanism and thermal-like vibrational energy distributions p M (" separators=" E , T char ) . The mean vibrational energy excess of the ions was characterized by the parameter Tchar ("characteristic temperature"), determined by fitting the theoretical ion abundances to the experimental breakdown graph (a plot of relative abundances of the ions as a function of kinetic energy) of activated naphthalene ions. According to these results, the APCI ion source produces species below Tchar = 1457 K, corresponding to 3.26 eV above the vibrational ground state. Subsequent collisions heat the ions up further, giving rise to a sigmoid curve of Tchar as a function of Ecom (center-of-mass-frame kinetic energy). The differential internal energy absorption per kinetic energy unit (dEvib/dEcom) changes with Ecom according to a symmetric bell-shaped function with a maximum at 6.38 ± 0.32 eV (corresponding to 6.51 ± 0.27 eV of vibrational energy excess), and a half-height full width of 6.30 ± 1.15 eV. This function imposes restrictions on the amount of energy that can be transferred by collisions, such that a maximum is reached as kinetic energy is increased. This behavior suggests that the collisional energy transfer exhibits a pronounced increase around some specific value of energy. Finally, the model is tested against the CID mass spectra of anthracene and pyrene ions and the corresponding results are discussed.
Solano, Eduardo A; Mohamed, Sabria; Mayer, Paul M
2016-10-28
The internal energy transferred when projectile molecular ions of naphthalene collide with argon gas atoms was extracted from the APCI-CID (atmospheric-pressure chemical ionization collision-induced dissociation) mass spectra acquired as a function of collision energy. Ion abundances were calculated by microcanonical integration of the differential rate equations using the Rice-Ramsperger-Kassel-Marcus rate constants derived from a UB3LYP/6-311G+(3df,2p)//UB3LYP/6-31G(d) fragmentation mechanism and thermal-like vibrational energy distributions p M E,T char . The mean vibrational energy excess of the ions was characterized by the parameter T char ("characteristic temperature"), determined by fitting the theoretical ion abundances to the experimental breakdown graph (a plot of relative abundances of the ions as a function of kinetic energy) of activated naphthalene ions. According to these results, the APCI ion source produces species below T char = 1457 K, corresponding to 3.26 eV above the vibrational ground state. Subsequent collisions heat the ions up further, giving rise to a sigmoid curve of T char as a function of E com (center-of-mass-frame kinetic energy). The differential internal energy absorption per kinetic energy unit (dE vib /dE com ) changes with E com according to a symmetric bell-shaped function with a maximum at 6.38 ± 0.32 eV (corresponding to 6.51 ± 0.27 eV of vibrational energy excess), and a half-height full width of 6.30 ± 1.15 eV. This function imposes restrictions on the amount of energy that can be transferred by collisions, such that a maximum is reached as kinetic energy is increased. This behavior suggests that the collisional energy transfer exhibits a pronounced increase around some specific value of energy. Finally, the model is tested against the CID mass spectra of anthracene and pyrene ions and the corresponding results are discussed.
Zheng, Xueyun; Dupuis, Kevin T.; Aly, Noor A.; ...
2018-03-02
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making theirmore » studies extremely time consuming. Here in this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). In conclusion, the collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xueyun; Dupuis, Kevin T.; Aly, Noor A.
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making theirmore » studies extremely time consuming. Here in this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). In conclusion, the collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.« less
Zheng, Xueyun; Dupuis, Kevin T.; Aly, Noor A.; ...
2018-03-02
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making theirmore » studies extremely time consuming. Here in this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Finally, the collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.« less
Uncatalyzed, Regioselective Oxidation of Saturated Hydrocarbons in an Ambient Corona Discharge.
Ayrton, Stephen T; Jones, Rhys; Douce, David S; Morris, Mike R; Cooks, R Graham
2018-01-15
Atmospheric pressure chemical ionization (APCI) in air or in nitrogen with just traces of oxygen is shown to yield regioselective oxidation, dehydrogenation, and fragmentation of alkanes. Ozone is produced from ambient oxygen in situ and is responsible for the observed ion chemistry, which includes partial oxidation to ketones and C-C cleavage to give aldehydes. The mechanism of oxidation is explored and relationships between ionic species produced from individual alkanes are established. Unusually, dehydrogenation occurs by water loss. Competitive incorporation into the hydrocarbon chain of nitrogen versus oxygen as a mode of ionization is also demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lara-Ortega, Felipe J; Beneito-Cambra, Miriam; Robles-Molina, José; García-Reyes, Juan F; Gilbert-López, Bienvenida; Molina-Díaz, Antonio
2018-04-01
Analytical methods based on ambient ionization mass spectrometry (AIMS) combine the classic outstanding performance of mass spectrometry in terms of sensitivity and selectivity along with convenient features related to the lack of sample workup required. In this work, the performance of different mass spectrometry-based methods has been assessed for the direct analyses of virgin olive oil for quality purposes. Two sets of experiments have been setup: (1) direct analysis of untreated olive oil using AIMS methods such as Low-Temperature Plasma Mass Spectrometry (LTP-MS) or paper spray mass spectrometry (PS-MS); or alternatively (2) the use of atmospheric pressure ionization (API) mass spectrometry by direct infusion of a diluted sample through either atmospheric pressure chemical ionization (APCI) or electrospray (ESI) ionization sources. The second strategy involved a minimum sample work-up consisting of a simple olive oil dilution (from 1:10 to 1:1000) with appropriate solvents, which originated critical carry over effects in ESI, making unreliable its use in routine; thus, ESI required the use of a liquid-liquid extraction to shift the measurement towards a specific part of the composition of the edible oil (i.e. polyphenol rich fraction or lipid/fatty acid profile). On the other hand, LTP-MS enabled direct undiluted mass analysis of olive oil. The use of PS-MS provided additional advantages such as an extended ionization coverage/molecular weight range (compared to LTP-MS) and the possibility to increase the ionization efficiency towards nonpolar compounds such as squalene through the formation of Ag + adducts with carbon-carbon double bounds, an attractive feature to discriminate between oils with different degree of unsaturation. Copyright © 2017 Elsevier B.V. All rights reserved.
Hommerson, Paul; Khan, Amjad M; de Jong, Gerhardus J; Somsen, Govert W
2011-01-01
A major step forward in the development and application of capillary electrophoresis (CE) was its coupling to ESI-MS, first reported in 1987. More than two decades later, ESI has remained the principal ionization technique in CE-MS, but a number of other ionization techniques have also been implemented. In this review the state-of-the-art in the employment of soft ionization techniques for CE-MS is presented. First the fundamentals and general challenges of hyphenating conventional CE and microchip electrophoresis with MS are outlined. After elaborating on the characteristics and role of ESI, emphasis is put on alternative ionization techniques including sonic spray ionization (SSI), thermospray ionization (TSI), atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), matrix-assisted laser desorption ionization (MALDI) and continuous-flow fast atom bombardment (CF-FAB). The principle of each ionization technique is outlined and the experimental set-ups of the CE-MS couplings are described. The strengths and limitations of each ionization technique with respect to CE-MS are discussed and the applicability of the various systems is illustrated by a number of typical examples. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Vogel, Alexander L.; Äijälä, Mikko; Ehn, Mikael; Junninen, Heikki; Petäjä, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Williams, Jonathan; Schneider, Johannes; Hoffmann, Thorsten
2013-04-01
Emission of biogenic volatile organic compounds (BVOCs) by the vegetation and subsequent atmospheric oxidation leads to the formation of secondary organic aerosol (SOA). Therefore, forests are a main source of aerosols which have significant impact on the earth's climate.[1] The oxidation of BVOCs results in a variety of mostly unidentified organic species in trace level concentrations, which partition between gas- and particle-phase. Organic acids are of particular importance for the particle-phase fraction, since the higher oxidation state and molecular mass, compared to the corresponding precursors, is accompanied by a much lower volatility. Until now, only limited instrumentation exists for the simultaneous online analysis of organic acids in gas- and particle-phase. Here we show the first field application of an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI-IT-MS) in combination with a miniature Versatile Aerosol Concentration Enrichment System (mVACES) for measuring organic acids in gas- and particle-phase[2]. The benefits of the online APCI-IT-MS are soft ionization with low fragmentation, high time resolution and less sampling artifacts than in the common procedure of taking filter samples, extraction and subsequent detection with LC-MS. Furthermore, the capability to perform online MSn of isolated m/z ratios from ambient and laboratory generated aerosol leads to an improved understanding of the composition of secondary organic aerosol. The here described measurements were conducted during the HUMPPA-COPEC 2010 campaign at Hyytiälä, Finland and during the INUIT campaign 2012 on Mt. Kleiner Feldberg, Germany. By merging APCI-IT-MS data with data from the Aerodyné C-ToF-AMS, it can be observed that the gas- to particle-partitioning of organic acids strongly depends on the fraction of aerosol which is organic matter, as it is predicted by a partitioning model[3]. High observed gas-phase concentrations of organic acids at Hyytiälä are a strong hint for unidentified species. This can be supported by MSn observations, where the fragmentation pattern from Hyytiälä show different signals compared to the fragmentation pattern from the same m/z ratio at the Taunus Observatory and from chamber terpene ozonolysis. Literature: [1] Tunved, P. et al. (2006) Science 312, 261-263. [2] Vogel, A. L. et al. (2012) Atmos. Meas. Tech. Discuss. 5, 6147-6182. [3] Pankow, J. F. (1994) Atmos. Env. 28, 189-193.
First LC/MS determination of cyanazine amide, cyanazine acid, and cyanazine in groundwater samples
Ferrer, Imma; Thurman, E.M.; Barceló, Damià
2000-01-01
Cyanazine and two of its major metabolites, cyanazine amide and cyanazine acid, were measured at trace levels in groundwater using liquid chromatography/atmospheric pressure chemical ionization/mass spectrometry (LC/APCI/MS). Solid-phase extraction was carried out by passing 20 mL of groundwater sample through a cartridge containing a polymeric phase (PLRP-s), with recoveries ranging from 99 to 108% (n = 5). Using LC/MS detection in positive ion mode, useful structural information was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of these compounds in groundwater samples with low sample volumes. The fragmentation of the amide, carboxylic acid, and cyano group was observed for both metabolites and cyanazine, respectively, leading to a diagnostic ion at m/z 214. Method detection limits were in the range of 0.002−0.005 μg/L for the three compounds. Finally, the newly developed method was evaluated for the analysis of groundwater samples from New York containing the compounds under study and presents evidence that the metabolites, cyanazine acid, and cyanazine amide may leach to groundwater and serve as sources for deisopropylatrazine. The combination of on-line SPE and LC/APCI/MS represents an important advance in environmental analysis of herbicide metabolites in groundwater since it demonstrates that trace amounts of polar metabolites may be determined rapidly. Furthermore, the presence of both cyanazine amide and cyanazine acid indicate that another degradation product, deisopropylatrazine, may be occurring at depth because of the subsequent degradation of cyanazine.
Dijkman, E; Mooibroek, D; Hoogerbrugge, R; Hogendoorn, E; Sancho, J V; Pozo, O; Hernández, F
2001-08-10
This study investigated the effects of matrix interferences on the analytical performance of a triple quadrupole mass spectrometric (MS-MS) detector coupled to various reversed-phase liquid chromatographic (LC) modes for the on-line determination of various types of acidic herbicides in water using external calibration for quantification of the analytes tested at a level of 0.4 microg/l. The LC modes included (i) a single-column configuration (LC), (ii) precolumn switching (PC-LC) and (iii) coupled-column LC (LC-LC). As regards detection, electrospray (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (PI) and negative (NI) ionization modes were examined. Salinity and dissolved organic carbon (DOC) were selected as interferences to study matrix effects in this type of analysis. Therefore, Milli-Q and tap water samples both fortified with 12 mg/l DOC and spiked with sulfometuron-methyl, bentazone, bromoxynil, 2-methyl-4-chlorophenoxyacetic acid, and 2-methyl-4-chlorophenoxypropionic acid at a level of about 0.4 microg/l were analyzed with the various LC-MS approaches. Direct sample injection was performed with volumes of 0.25 ml or 2.0 ml on a column of 2.1 mm I.D. or 4.6 mm I.D. for the ESI and APCI modes, respectively. The recovery data were used to compare and evaluate the analytical performance of the various LC approaches. As regards matrix effects, the salinity provided a dramatic decrease in response for early eluting analytes (k value of about 1) when using the LC mode. Both PC-LC and LC-LC efficiently eliminated this problem. The high DOC content hardly effected the responses of analytes in the ESI mode, while in most cases the responses increased when using APCI-MS-MS detection. Of all the tested configurations, LC-LC-ESI-MS-MS with the column combination Discovery C18/ABZ+ was the most favorable as regards elimination of matrix effects and provided reliable quantification of all compounds using external calibration at the tested low level. The major observed effects were verified with statistical evaluation of the data employing backwards ordinary least-square regression. All tested column-switching modes hyphenated to ESI- or APCI-MS-MS allowed the on-line multi-residue analysis of acidic pesticides in the reference water down to a level of 0.1 microg/l in less than 10 min, emphasizing the feasibility of such an approach in this field of analysis.
Qu, Jialin; Gong, Tianxing; Ma, Bin; Zhang, Lin; Kano, Yoshihiro; Yuan, Dan
2012-01-01
The purpose of the study is to compare alkaloid profile of Uncaria rhynchophylla hooks and leaves. Ten oxindole alkaloids and four glycosidic indole alkaloids were identified using HPLC-diode array detection (DAD) or LC-atmospheric pressure chemical ionization (APCI)-MS method, and a HPLC-UV method for simultaneous quantification of major alkaloids was validated. The hooks are characterized by high levels of four oxindole alkaloids rhynchophylline (R), isorhynchophylline (IR), corynoxeine (C) and isocorynoxeine (IC), while the leaves contained high level of two glycosidic indole alkaloids vincoside lactam (VL) and strictosidine (S). The presented methods have proven its usefulness in chemical characterization of U. rhynchophylla hooks and leaves.
Bedner, Mary; Schantz, Michele M; Sander, Lane C; Sharpless, Katherine E
2008-05-23
Liquid chromatographic (LC) methods using atmospheric pressure chemical ionization/mass spectrometric (APCI-MS) detection were developed for the separation and analysis of the phytosterols campesterol, cycloartenol, lupenone, lupeol, beta-sitosterol, and stigmasterol. Brassicasterol and cholesterol were also included for investigation as internal standards. The methods were used to identify and quantify the phytosterols in each of two Serenoa repens (saw palmetto) Standard Reference Materials (SRMs) developed by the National Institute of Standards and Technology (NIST). Values obtained by LC-MS were compared to those obtained using the more traditional approach of gas chromatography with flame ionization detection. This is the first reported use of LC-MS to determine phytosterols in saw palmetto dietary supplement materials.
Ojanperä, Ilkka; Mesihää, Samuel; Rasanen, Ilpo; Pelander, Anna; Ketola, Raimo A
2016-05-01
A novel platform is introduced for simultaneous identification and quantification of new psychoactive substances (NPS) in blood matrix, without the necessity of using authentic reference standards. The instrumentation consisted of gas chromatography (GC) coupled to nitrogen chemiluminescence detection (NCD) and atmospheric pressure chemical ionization quadrupole time-of-flight mass spectrometry (APCI-QTOFMS). In this concept, the GC flow is divided in appropriate proportions between NCD for single-calibrant quantification, utilizing the detector's equimolar response to nitrogen, and QTOFMS for accurate mass-based identification. The principle was proven by analyzing five NPS, bupropion, desoxypipradrol (2-DPMP), mephedrone, methylone, and naphyrone, in sheep blood. The samples were spiked with the analytes post-extraction to avoid recovery considerations at this point. All the NPS studies produced a protonated molecule in APCI resulting in predictable fragmentation with high mass accuracy. The N-equimolarity of quantification by NCD was investigated by using external calibration with the secondary standard caffeine at five concentration levels between 0.17 and 1.7 mg/L in blood matrix as five replicates. The equimolarity was on average 98.7%, and the range of individual equimolarity determinations was 76.7-130.1%. The current analysis platform affords a promising approach to instant simultaneous qualitative and quantitative analysis of drugs in the absence of authentic reference standards, not only in forensic and clinical toxicology but also in other bioanalytical applications.
Tascon, Marcos; Alam, Md Nazmul; Gómez-Ríos, Germán Augusto; Pawliszyn, Janusz
2018-02-20
Technologies that efficiently integrate the sampling and sample preparation steps with direct introduction to mass spectrometry (MS), providing simple and sensitive analytical workflows as well as capabilities for automation, can generate a great impact in a vast variety of fields, such as in clinical, environmental, and food-science applications. In this study, a novel approach that facilitates direct coupling of Bio-SPME devices to MS using a microfluidic design is presented. This technology, named microfluidic open interface (MOI), which operates under the concept of flow-isolated desorption volume, consists of an open-to-ambient desorption chamber (V ≤ 7 μL) connected to an ionization source. Subsequently, compounds of interest are transported to the ionization source by means of the self-aspiration process intrinsic of these interfaces. Thus, any ionization technology that provides a reliable and constant suction, such as electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), or inductively coupled plasma ionization (ICP), can be hyphenated to MOI. Using this setup, the desorption chamber is used to release target compounds from the coating, while the isolation of the flow enables the ionization source to be continuously fed with solvent, all without the necessity of employment of additional valves. As a proof of concept, the design was applied to an ESI-MS/MS system for experimental validation. Furthermore, numerical simulations were undertaken to provide a detailed understanding of the fluid flow pattern inside the interface, then used to optimize the system for better efficiency. The analytical workflow of the developed Bio-SPME-MOI-MS setup consists of the direct immersion of SPME fibers into the matrix to extract/enrich analytes of interest within a short period of time, followed by a rinsing step with water to remove potentially adhering proteins, salts, and/or other interfering compounds. Next, the fiber is inserted into the MOI for desorption of compounds of interest. Finally, the volume contained in the chamber is drained and moved toward the electrospray needle for ionization and direct introduction to MS. Aiming to validate the technology, the fast determination of selected immunosuppressive drugs (e.g., tacrolimus, cyclosporine, sirolimus, and everolimus) from 100 μL of whole blood was assessed. Limits of quantitation in the subppb range were obtained for all studied compounds. Good linearity (r 2 ≥ 0.99) and excellent precision, with (8%) and without (14%) internal standard correction, were attained.
Zhang, Yanhao; Li, Ruijin; Fang, Jing; Wang, Chen; Cai, Zongwei
2018-05-01
A new atmospheric pressure gas chromatography-tandem mass spectrometry (APGC-MS/MS) was developed to simultaneously separate, identify and quantify 18 nitro-polyaromatic hydrocarbons (NPAHs) in air fine particulate matter (PM 2.5 ). Compared with traditional negative chemical ionization (NCI) or electron impact ionization (EI)-MS/MS methods, APGC-MS/MS equipped with an atmospheric pressure chemical ionization (APCI) source provided better sensitivity and selectivity for NPAHs analysis in PM 2.5 .18 NPAHs were completely separated, and satisfactory linear response (R 2 > 0.99), low instrumental detection limits (0.20-2.18 pg mL -1 ) and method detection limits (0.001-0.015 pg m -3 ) were achieved. Due to the reliable performance of the instrument, only minimal sample pretreatment is needed. It ensured the satisfactory method recovery (70%-120%) and qualified repeatability (RSD: 1.1%-17.2%), which met the requirement of trace analysis of NAPHs in the real environmental PM 2.5 . Using the developed method, the actual PM 2.5 samples collected from Taiyuan, China in both summer and winter were analyzed, and 17 NPAHs but 2-nitrofluorene were detected and quantified. According to the obtained NAPH concentration results, the generation mechanism of NPAHs in PM 2.5 and the effects on NPAHs formation caused by some ambient air pollutants were preliminarily discussed: secondary photochemical reaction might be the dominant source of NPAHs in PM 2.5 collected from Taiyuan in both summer and winter; ambient air pollutants (NO 2 , SO 2 , CO) had more contribution on the NPAHs secondary formation of PM 2.5 in winter. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Shouming; Rivera-Rios, Jean C.; Keutsch, Frank N.; Abbatt, Jonathan P. D.
2018-05-01
Molecules with hydroperoxide functional groups are of extreme importance to both the atmospheric and biological chemistry fields. In this work, an analytical method is presented for the identification of organic hydroperoxides and peroxy acids (ROOH) by direct infusion of liquid samples into a positive-ion atmospheric pressure chemical ionization-tandem mass spectrometer ((+)-APCI-MS/MS). Under collisional dissociation conditions, a characteristic neutral loss of 51 Da (arising from loss of H2O2+NH3) from ammonium adducts of the molecular ions ([M + NH4]+) is observed for ROOH standards (i.e. cumene hydroperoxide, isoprene-4-hydroxy-3-hydroperoxide (ISOPOOH), tert-butyl hydroperoxide, 2-butanone peroxide and peracetic acid), as well as the ROOH formed from the reactions of H2O2 with aldehydes (i.e. acetaldehyde, hexanal, glyoxal and methylglyoxal). This new ROOH detection method was applied to methanol extracts of secondary organic aerosol (SOA) material generated from ozonolysis of α-pinene, indicating a number of ROOH molecules in the SOA material. While the full-scan mass spectrum of SOA demonstrates the presence of monomers (m/z = 80-250), dimers (m/z = 250-450) and trimers (m/z = 450-600), the neutral loss scan shows that the ROOH products all have masses less than 300 Da, indicating that ROOH molecules may not contribute significantly to the SOA oligomeric content. We anticipate this method could also be applied to biological systems with considerable value.
Hydrogen/deuterium exchange in mass spectrometry.
Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene
2018-03-30
The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.
Wang, Zhijun; Yeung, Steven; Chen, Shang; Moatazedi, Yasmin; Chow, Moses S S
2018-07-15
Wilforlide A (WA), an active compound in Tripterygium wilfordii Hook F (TW) which is a traditional Chinese medicine for treatment of autoimmune diseases, is a quality control marker for TW product. At present, the bioavailability/pharmacokinetics of WA is not known. Such information is not only essential to evaluate the relevance of WA as a quality control maker, but also important for future clinical efficacy studies. Therefore, a high-performance liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometric method (HPLC-APCI-MS/MS) was developed and applied to a bioavailability/pharmacokinetic study of WA. WA and celastrol (the internal standard, IS) were extracted by a liquid-liquid extraction method using methyl tert-butyl ether. Multiple reaction monitoring (MRM) scanning in positive ionization mode was used to monitor the transition of m/z 455.1 to 191.3 for WA and 451.3 to 201.2 for IS. This method was validated and applied to a pharmacokinetic study of WA in mice following intravenous administration (IV, 1.2 mg/kg), intraperitoneal injection (IP, 6 mg/kg) and oral administration (PO, 30 mg/kg). The lower limit of quantification (LLOQ) for WA was 10 ng/ml. The intra- and inter-day precision was found to be within 15.4% while the accuracy within 94.1-115.7% for all the quality control and LLOQ samples. The samples were stable under all the usual storage and experimental conditions. The terminal elimination half-lives were 14.7, 9.1 and 22.7 min following IV, IP and PO dosing, while the absolute bioavailability for IP and PO WA were 9.39% and 0.58% respectively. These results indicated that the HPLC-APCI-MS/MS assay was suitable for the pharmacokinetic study of WA. WA was found poorly absorbed when given orally and therefore it may not be a relevant marker for the oral TW products in the market. Copyright © 2018 Elsevier B.V. All rights reserved.
Sánchez-González, Marta; Lozano-Mena, Glòria; Parra, Andrés; Juan, M Emília; Planas, Joana M
2015-02-04
Maslinic acid is a natural pentacyclic triterpenoid widely distributed in edible and medicinal plants with health-promoting activities. The identification and quantification of its metabolites is a requirement for a better understanding of the biological effects of this triterpene. Therefore, maslinic acid was orally administered to Sprague-Dawley rats at a dose of 50 mg/kg of body weight. Blood and urine were withdrawn at 45 min. Samples were extracted with ethyl acetate prior to liquid chromatography-atmospheric pressure chemical ionization-linear trap quadrupole-Orbitrap (LC-APCI-LTQ-Orbitrap) analysis. Screening of plasma yielded four monohydroxylated derivatives (M1-M4), one monohydroxylated and dehydrogenated metabolite (M5), and two dihydroxylated and dehydrogenated compounds (M6 and M7). In urine, M1, M4, M5, and M6 were detected. Quantification by LC-APCI-mass spectrometry (MS) revealed maslinic acid as the prevalent compound in both plasma (81.8%) and urine (73.9%), which indicates that metabolism is low and mainly attributable to phase I reactions.
Paz, Tiago Antunes; dos Santos, Vânia A F F M; Inácio, Marielle Cascaes; Pina, Edieidia Souza; Pereira, Ana Maria Soares; Furlan, Maysa
2013-01-01
Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L⁻¹ IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin--972.11 μ g·g⁻¹ dry weight--was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse.
Paz, Tiago Antunes; dos Santos, Vânia A. F. F. M.; Inácio, Marielle Cascaes; Pina, Edieidia Souza; Pereira, Ana Maria Soares; Furlan, Maysa
2013-01-01
Establishment of adventitious root cultures of Peritassa campestris (Celastraceae) was achieved from seed cotyledons cultured in semisolid Woody Plant Medium (WPM) supplemented with 2% sucrose, 0.01% PVP, and 4.0 mg L−1 IBA. Culture period on accumulation of biomass and quinone-methide triterpene maytenin in adventitious root were investigated. The accumulation of maytenin in these roots was compared with its accumulation in the roots of seedlings grown in a greenhouse (one year old). A rapid detection and identification of maytenin by direct injection into an atmospheric-pressure chemical ionization ion trap tandem mass spectrometer (APCI-IT-MS/MS) were performed without prior chromatographic separation. In vitro, the greatest accumulation of biomass occurred within 60 days of culture. The highest level of maytenin—972.11 μg·g−1 dry weight—was detected at seven days of cultivation; this value was 5.55-fold higher than that found in the roots of seedlings grown in a greenhouse. PMID:24205504
Schober, Amanda L; Peterson, Devin G
2004-05-05
The release kinetics of l-menthol dissolved in propylene glycol (PG), Miglyol, or 1,8-cineole (two common odorless flavor solvents differing in polarity and a hydrophobic flavor compound) were monitored from a model aqueous system via atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Breath analysis was also conducted via APCI-MS to monitor release of l-menthol from hard candy that used PG and Miglyol for l-menthol incorporation. The quantities of l-menthol released when dissolved in PG or Miglyol from the model aqueous system were found to be similar and overall significantly greater in comparison to when dissolved in 1,8-cineole. Analogous results were reported by the breath analysis of hard candy. The release kinetics of l-menthol from PG or Miglyol versus from 1,8-cineole were notably more rapid and higher in quantity. Results from the sensory time-intensity study also indicated that there was no perceived difference in the overall cooling intensity between the two flavor solvent delivery systems (PG and Miglyol).
Ostrinskaya, Alla; Kunz, Roderick R; Clark, Michelle; Kingsborough, Richard P; Ong, Ta-Hsuan; Deneault, Sandra
2018-05-24
A flow-injection analysis tandem mass spectrometry (FIA MSMS) method was developed for rapid quantitative analysis of 10 different inorganic and organic explosives. Performance is optimized by tailoring the ionization method (APCI/ESI), de-clustering potentials, and collision energies for each specific analyte. In doing so, a single instrument can be used to detect urea nitrate, potassium chlorate, 2,4,6-trinitrotoluene, 2,4,6-trinitrophenylmethylnitramine, triacetone triperoxide, hexamethylene triperoxide diamine, pentaerythritol tetranitrate, 1,3,5-trinitroperhydro-1,3,5-triazine, nitroglycerin, and octohy-dro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine with sensitivities all in the picogram per milliliter range. In conclusion, FIA APCI/ESI MSMS is a fast (<1 min/sample), sensitive (~pg/mL LOQ), and precise (intraday RSD < 10%) method for trace explosive detection that can play an important role in criminal and attributional forensics, counterterrorism, and environmental protection areas, and has the potential to augment or replace several of the existing explosive detection methods. © 2018 American Academy of Forensic Sciences.
Pardo, O; Yusà, V; Coscollà, C; León, N; Pastor, A
2007-07-01
A selective and sensitive procedure has been developed and validated for the determination of acrylamide in difficult matrices, such as coffee and chocolate. The proposed method includes pressurised fluid extraction (PFE) with acetonitrile, florisil clean-up purification inside the PFE extraction cell and detection by liquid chromatography (LC) coupled to atmospheric pressure ionisation in positive mode tandem mass spectrometry (APCI-MS-MS). Comparison of ionisation sources (atmospheric pressure chemical ionisation (APCI), atmospheric pressure photoionization (APPI) and the combined APCI/APPI) and clean-up procedures were carried out to improve the analytical signal. The main parameters affecting the performance of the different ionisation sources were previously optimised using statistical design of experiments (DOE). PFE parameters were also optimised by DOE. For quantitation, an isotope dilution approach was used. The limit of quantification (LOQ) of the method was 1 microg kg(-1) for coffee and 0.6 microg kg(-1) for chocolate. Recoveries ranged between 81-105% in coffee and 87-102% in chocolate. The accuracy was evaluated using a coffee reference test material FAPAS T3008. Using the optimised method, 20 coffee and 15 chocolate samples collected from Valencian (Spain) supermarkets, were investigated for acrylamide, yielding median levels of 146 microg kg(-1) in coffee and 102 microg kg(-1) in chocolate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewing, Robert G.; Atkinson, David A.; Benson, Michael T.
2015-05-16
This study investigates the APCI mechanisms associated with chlorinated ethanes in an attempt to define conditions under which unique pseudo-molecular adducts, in addition to chloride ion, can be produced for analytical measurements using IMS and MS. The ionization chemistry of chlorinated compounds typically leads to the detection of only the halide ions. Using molecular modeling, which provides insights into the ion formation and relative binding energies, predictions for the formation of pseudo-molecular adducts are postulated. Predicted structures of the chloride ion with multiple hydrogens on the ethane backbone was supported by the observation of specific pseudo-molecular adducts in IMS andmore » MS spectra. With the proper instrumental conditions, such as short reaction times and low temp.« less
Núñez, Félix; Westphal, Carmen D; Bermúdez, Elena; Asensio, Miguel A
2007-12-01
Most terverticillate penicillia isolated from dry-cured meat products are toxigenic, but their ability to produce hazardous metabolites on meat-based substrates is not well known. The production of extrolites by selected terverticillate penicillia isolated from dry-cured ham has been studied on carbohydrate-rich media (malt extract agar, Czapek yeast autolysate agar, rice extract agar, and rice), meat extract triolein salt agar, and ham slices. Chloroform extracts from the selected strains grown on malt extract agar were toxic for the brine shrimp (Artemia salina) larvae and VERO cells at a concentration of 2 mg/ml, but 0.02 mg/ml produced no toxic effect. Analysis by high-pressure liquid chromatography (HPLC) coupled with photodiode array detection (DAD) or with mass spectrometry (MS) and an atmospheric pressure chemical ionization (APCI) source revealed different biologically active metabolites: cyclopiazonic acid and rugulovasine A from Penicillium commune; verrucosidin, anacine, puberuline, verrucofortine, and viridicatols from Penicillium polonicum; arisugacin and viridicatols from Penicillium echinulatum; and compactin and viridicatols from Penicillium solitum. Most of these metabolites, including the amino acid-derived compounds, were produced in the media containing high levels of carbohydrates. High concentrations of nitrogen compounds in the medium does not imply a greater production of the metabolites studied, not even those derived from the amino acids. However, molds growing on dry-cured ham are able to synthesize limited amounts of some secondary metabolites, a fact not previously reported. The combination of HPLC coupled with DAD and MS-APCI was useful for identification of closely related terverticillate Penicillium species from dry-cured ham. These techniques could be used to characterize the risk associated with the potential production of secondary metabolites in cured meats.
NASA Astrophysics Data System (ADS)
Grecu, Iulia; Ionicǎ, Mihai; Vlǎdescu, Marian; Truţǎ, Elena; Sultan, Carmen; Viscol, Oana; Horhotǎ, Luminiţa; Radu, Simona
2016-12-01
Antidepressants were found in 1950. In the 1990s there was a new generation of antidepressants. They act on the level of certain neurotransmitters extrasinpatic by its growth. After their mode of action antidepressants may be: SSRIs (Selective Serotonin Reuptake Inhibitors); (Serotonin-Norepinephrine Reuptake Inhibitors); SARIs (Serotonin Antagonist Reuptake Inhibitors); NRIs (Norepinephrine Reuptake Inhibitors); NDRIs (Norepinephrine-Dopamine Reuptake Inhibitors) NDRAs (Norepinephrine-Dopamine Releasing Agents); TCAs (Tricyclic Antidepressants); TeCAs (Tetracyclic Antidepressants); MAOIs (Monoamine Oxidase Inhibitors); agonist receptor 5-HT1A (5- hydroxytryptamine); antagonist receptor 5-HT2; SSREs (Selective Serotonin Reuptake Enhancers) and Sigma agonist receptor. To determine the presence of antidepressants in biological products, it has been used a system HPLC-MS (High Performance Liquid Chromatography - Mass Spectrometry) Varian 12001. The system is equipped with APCI (Atmospheric Pressure Chemical Ionization) or ESI (ElectroSpray Ionization) interface. To find antidepressants in unknown samples is necessary to recognize them after mass spectrum. Because the mass spectrum it is dependent on obtaining private parameters work of HPLC-MS system, and control interfaces, the mass spectra library was filled with the mass spectra of all approved antidepressants in Romania. The paper shows the mass spectra obtained in the HPLCMS system.
Beltrán, Eduardo; Ibáñez, María; Sancho, Juan Vicente; Hernández, Félix
2014-01-01
Sensitive and reliable analytical methodology has been developed for the measurement of patulin in regulated foodstuffs by using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) with triple quadrupole analyser. Solid samples were extracted with ethyl acetate, while liquid samples were directly injected into the chromatographic system after dilution and filtration without any clean-up step. Chromatographic separation was achieved in less than 4min. Electrospray (ESI) and atmospheric pressure chemical ionisation (APCI) sources were evaluated, in order to assess matrix effects. The use of ESI source caused strong signal suppression in samples; however, matrix effect was negligible using APCI, allowing quantification with calibration standards prepared in solvent. The method was validated in four different apple matrices (juice, fruit, puree and compote) at two concentrations at the low μgkg(-1) level. Average recoveries (n=5) ranged from 71% to 108%, with RSDs lower than 14%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ewing, R G; Atkinson, D A; Eiceman, G A; Ewing, G J
2001-05-10
Ion mobility spectrometry has become the most successful and widely used technology for the detection of trace levels of nitro-organic explosives on handbags and carry on-luggage in airports throughout the US. The low detection limits are provided by the efficient ionization process, namely, atmospheric pressure chemical ionization (APCI) reactions in negative polarity. An additional level of confidence in a measurement is imparted by characterization of ions for mobilities in weak electric fields of a drift tube at ambient pressure. Findings from over 30 years of investigations into IMS response to these explosives have been collected and assessed to allow a comprehensive view of the APCI reactions characteristic of nitro-organic explosives. Also, the drift tube conditions needed to obtain particular mobility spectra have been summarized. During the past decade, improvements have occurred in IMS on the understanding of reagent gas chemistries, the influence of temperature on ion stability, and sampling methods. In addition, commercial instruments have been refined to provide fast and reliable measurements for on-site detection of explosives. The gas phase ion chemistry of most explosives is mediated by the fragile CONO(2) bonds or the acidity of protons. Thus, M(-) or M.Cl(-) species are found with only a few explosives and loss of NO(2), NO(3) and proton abstraction reactions are common and complicating pathways. However, once ions are formed, they appear to have stabilities on time scales equal to or longer than ion drift times from 5-20 ms. As such, peak shapes in IMS are suitable for high selectivity and sensitivity.
Nicolaus, Christoph; Sievers-Engler, Adrian; Murillo, Renato; D'Ambrosio, Michele; Lämmerhofer, Michael; Merfort, Irmgard
2016-01-25
Pentacyclic triterpene mono- and diesters have been isolated from Calendula officinalis flowers. GC-MS, APCI-Exactive Orbitrap HR-MS and NMR allowed to identify the triterpene skeleton in various samples (different triterpene mixtures from Calendula n-hexane extract). NMR provided evidence that triterpene diesters are present in the samples as well. However, the corresponding quasi-molecular ions could not be detected by APCI-Exactive Orbitrap HR-MS. Instability of triterpene diesters and loss of a fatty acid residue, respectively, in the ion-source made their MS detection challenging. Thus, a set of new APCI-QTOF-MS methods (using the TripleTOF 5600+ mass spectrometer) were developed which made it eventually possible to solve this problem and confirm the diester structures by MS via quasi-molecular ion [M+H](+) detection. Direct infusion APCI-QTOF MS experiments in MS/MS high sensitivity scan mode with low collision energy and multi-channel averaging acquisition (MCA) allowed the detection of quasi-molecular ions of triterpene diesters for the first time and unequivocally confirmed the presence of faradiol 3,16-dimyristate and -dipalmitate, as well as the corresponding mixed diesters faradiol 3-myristate,16-palmitate and faradiol 3-palmitate,16-myristate. Preferential loss of the fatty acid in 16-position made it possible to distinguish the mixed diesters by MS/MS spectra. Their chromatographic separations turned out to be challenging due to their bulkiness and extended molecular dimensions. However, separation could be achieved by an uncommon non-aqueous RPLC mode with an in-house synthesized C30 phase. Finally, two (U)HPLC-APCI-QTOF-MS methods with C18- and C30-based non-aqueous RPLC provided suitable, sensitive assays to monitor the presence of monoesters and diesters of various triterpenes (faradiol, maniladiol, arnidiol, arnitriol A and lupane-3β,16β,20-triol esters) in the n-hexane extract of C. officinalis with high mass resolution and good mass accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.
Du, Zhenxia; Sun, Tangqiang; Zhao, Jianan; Wang, Di; Zhang, Zhongxia; Yu, Wenlian
2018-07-01
Ion mobility spectrometry (IMS) which acts as a rapid analysis technique is widely used in the field detection of illicit drugs and explosives. Due to limited separation abilities of the pint-sized IMS challenges and problems still exist regarding high false positive and false negative responses due to the interference of the matrix. In addition, the gas-phase ion chemistry and special phenomena in the IMS spectra, such one substance showing two peaks, were not identified unambiguously. In order to explain or resolve these questions, in this paper, an ion mobility spectrometry was coupled to a mass spectrometry (IMS-MS). A commercial IMS is embedded in a custom-built ion chamber shell was attached to the mass spectrometer. The faraday plate of IMS was fabricated with a hole for the ions to passing through to the mass spectrometer. The ion transmission efficiency of IMS-MS was optimized by optimizing the various parameters, especially the distance between the faraday plate and the cone of mass spectrum. This design keeps the integrity of the two original instruments and the mass spectrometry still works with multimode ionization source (i.e., IMS-MS, ESI-MS, APCI-MS modes). The illicit drugs and explosive samples were analyzed by the IMS-MS with 63 Ni source. The results showed that the IMS-MS is of high sensitivity. The ionization mechanism of the illicit drug and explosive samples with 63 Ni source were systematically studied. In addition, the interferent which interfered the detection of cocaine was identified as dibutyl phthalate (DBP) by this platform. The reason why the acetone solution of amphetamine showed two peaks was explained. Copyright © 2018 Elsevier B.V. All rights reserved.
Ziganshin, Ayrat M.; Gerlach, Robin; Borch, Thomas; Naumov, Anatoly V.; Naumova, Rimma P.
2007-01-01
2,4,6-Trinitrotoluene (TNT) transformation by the yeast strain Yarrowia lipolytica AN-L15 was shown to occur via two different pathways. Direct aromatic ring reduction was the predominant mechanism of TNT transformation, while nitro group reduction was observed to be a minor pathway. Although growth of Y. lipolytica AN-L15 was inhibited initially in the presence of TNT, TNT transformation was observed, indicating that the enzymes necessary for TNT reduction were present initially. Aromatic ring reduction resulted in the transient accumulation of eight different TNT-hydride complexes, which were characterized using high-performance liquid chromatography, UV-visible diode array detection, and negative-mode atmospheric pressure chemical ionization mass spectrometry (APCI-MS). APCI-MS analysis revealed three different groups of TNT-hydride complexes with molecular ions at m/z 227, 228, and 230, which correspond to TNT-mono- and dihydride complexes and protonated dihydride isomers, respectively. One of the three protonated dihydride complex isomers detected appears to release nitrite in the presence of strain AN-L15. This release of nitrite is of particular interest since it can provide a pathway towards complete degradation and detoxification of TNT. PMID:17933928
Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge.
Brandsma, Sicco H; van Mourik, Louise; O'Brien, Jake W; Eaglesham, Geoff; Leonards, Pim E G; de Boer, Jacob; Gallen, Christie; Mueller, Jochen; Gaus, Caroline; Bogdal, Christian
2017-03-21
To simultaneously quantify and profile the complex mixture of short-, median-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) in Australian sewage sludge, we applied and further validated a recently developed novel instrumental technique, using quadrupole time-of-flight high resolution mass spectrometry running in the negative atmospheric pressure chemical ionization mode (APCI-qTOF-HRMS). Without using an analytical column the cleaned extracts were directly injected into the qTOF-HRMS followed by quantification of the CPs by a mathematical algorithm. The recoveries of the four SCCP, MCCP and LCCP-spiked sewage sludge samples ranged from 86 to 123%. This APCI-qTOF-HRMS method is a fast and promising technique for routinely measuring SCCPs, MCCPs, and LCCPs in sewage sludge. Australian sewage sludge was dominated by MCCPs with concentrations ranging from 542 to 3645 ng/g dry weight (dw). Lower SCCPs concentrations (<57-1421 ng/g dw) were detected in the Australian sewage sludge, which were comparable with the LCCPs concentrations (116-960 ng/g dw). This is the first time that CPs were reported in Australian sewage sludge. The results of this study gives a first impression on the distribution of the SCCPs, MCCPs, and LCCPs in Australia wastewater treatment plants (WWTPs).
Grynbaum, Marc David; Hentschel, Petra; Putzbach, Karsten; Rehbein, Jens; Krucker, Manfred; Nicholson, Graeme; Albert, Klaus
2005-09-01
HPLC atmospheric pressure chemical ionization (APCI)/MS, GC MS, HPLC diode array detection (DAD), and NMR were used for the identification of astaxanthin and astaxanthin fatty acid esters in krill (Euphausia superba Dana). Matrix solid phase dispersion was applied for the extraction of the carotenoids. This gentle and expeditious extraction technique for solid and viscous samples leads to distinct higher enrichment rates than the conventional liquid-liquid extraction. The chromatographic separation was achieved employing a C30 RP column that allows the separation of shape-constrained geometrical isomers. A methanol/tert-butylmethyl ether/water gradient was applied. (all-E) Astaxanthin and the geometrical isomers were identified by HPLC APCI/MS, by coelution with isomerized authentical standard, by UV spectroscopy (DAD), and three isomers were unambiguously assigned by microcoil NMR spectroscopy. In this method, microcoils are transversally aligned to the magnetic field and have an increased sensitivity compared to the conventional double-saddle Helmholtz coils, thus enabling the measurement on small samples. The carotenol fatty acid esters were saponified enzymatically with Lipase type VII from Candida rugosa. The fatty acids were detected by GC MS after transesterification, but also without previous derivatization by HPLC APCI/MS. C14:0, C16:0, C16:1, C18:1, C20:0, C20:5, and C22:6 were found in astaxanthin monoesters and in astaxanthin diesters. (all-E) Astaxanthin was identified as the main isomer in six fatty acid ester fractions by NMR. Quantitation was carried out by the method of internal standard. (13-cis) Astaxanthin (70 microg/g), 542 microg/g (all-E) astaxanthin, 36 microg/g unidentified astaxanthin isomer, 62 microg/g (9-cis) astaxanthin, and 7842 microg/g astaxanthin fatty acid esters were found.
Barrek, Sami; Paisse, Olivier; Grenier-Loustalot, Marie-Florence
2004-02-01
Since it was first isolated, the oil extracted from seeds of neem (Azadirachtin indica A juss) has been extensively studied in terms of its efficacy as an insecticide. Several industrial formulations are produced as emulsifiable solutions containing a stated titer of the active ingredient azadirachtin-A (AZ-A). The work reported here is the characterization of a formulation of this insecticide marketed under the name of Neem-azal T/S and kinetic studies of the major active ingredient of this formulation. We initially performed liquid-liquid extraction to isolate the neem oil from other ingredients in the commercial mixture. This was followed by a purification using flash chromatography and semi-preparative chromatography, leading to (13)C NMR identification of structures such as azadirachtin-A, azadirachtin-B, and azadirachtin-H. The neem extract was also characterized by HPLC-MS using two ionization sources, APCI (atmospheric pressure chemical ionization) and ESI (electrospray ionization) in positive and negative ion modes of detection. This led to the identification of other compounds present in the extract-azadirachtin-D, azadirachtin-I, deacetylnimbin, deacetylsalannin, nimbin, and salannin. The comparative study of data gathered by use of the two ionization sources is discussed and shows that the ESI source enables the largest number of structures to be identified. In a second part, kinetic changes in the main product (AZ-A) were studied under precise conditions of pH (2, 4, 6, and 8), temperature (40 to 70 degrees C), and light (UV, dark room and in daylight). This enabled us to determine the degradation kinetics of the product (AZ-A) over time. The activation energy of the molecule (75+/-9 kJ mol(-1)) was determined by examining thermal stability in the range 40 to 70 degrees C. The degradation products of this compound were identified by use of HPLC-MS and HPLC-MS-MS. The results enabled proposal of a chemical degradation reaction route for AZ-A under different conditions of pH and temperature. The data show that at room temperature and pH between 4 and 5 the product degrades into two preferential forms that are hydrolyzed to a single product over time and as a function of pH change.
Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A
2015-01-01
Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds.
Ito, Shihomi; Chikasou, Masato; Inohana, Shuichi; Fujita, Kazuhiro
2016-01-01
Discriminating vegetable oils and animal and milk fats by infrared absorption spectroscopy is difficult due to similarities in their spectral patterns. Therefore, a rapid and simple method for analyzing vegetable oils, animal fats, and milk fats using TOF/MS with an APCI direct probe ion source was developed. This method enabled discrimination of these oils and fats based on mass spectra and detailed analyses of the ions derived from sterols, even in samples consisting of only a few milligrams. Analyses of the mass spectra of processed foods containing oils and milk fats, such as butter, cheese, and chocolate, enabled confirmation of the raw material origin based on specific ions derived from the oils and fats used to produce the final product.
Forbes, Thomas P.; Staymates, Matthew
2017-01-01
Venturi-assisted ENTrainment and Ionization (VENTI) was developed, demonstrating efficient entrainment, collection, and transport of remotely sampled vapors, aerosols, and dust particulate for real-time mass spectrometry (MS) detection. Integrating the Venturi and Coandă effects at multiple locations generated flow and analyte transport from non-proximate locations and more importantly enhanced the aerodynamic reach at the point of collection. Transport through remote sampling probes up to 2.5 m in length was achieved with residence times on the order of 10-2 s to 10-1 s and Reynolds numbers on the order of 103 to 104. The Venturi-assisted entrainment successfully enhanced vapor collection and detection by greater than an order of magnitude at 20 cm stand-off (limit of simple suction). This enhancement is imperative, as simple suction restricts sampling to the immediate vicinity, requiring close proximity to the vapor source. In addition, the overall aerodynamic reach distance was increased by approximately 3-fold over simple suction under the investigated conditions. Enhanced aerodynamic reach was corroborated and observed with laser-light sheet flow visualization and schlieren imaging. Coupled with atmospheric pressure chemical ionization (APCI), the detection of a range of volatile chemical vapors; explosive vapors; explosive, narcotic, and mustard gas surrogate (methyl salicylate) aerosols; and explosive dust particulate was demonstrated. Continuous real-time Venturi-assisted monitoring of a large room (approximately 90 m2 area, 570 m3 volume) was demonstrated for a 60-minute period without the remote sampling probe, exhibiting detection of chemical vapors and methyl salicylate at approximately 3 m stand-off distances within 2 minutes of exposure. PMID:28107830
Forbes, Thomas P; Staymates, Matthew
2017-03-08
Venturi-assisted ENTrainment and Ionization (VENTI) was developed, demonstrating efficient entrainment, collection, and transport of remotely sampled vapors, aerosols, and dust particulate for real-time mass spectrometry (MS) detection. Integrating the Venturi and Coandă effects at multiple locations generated flow and analyte transport from non-proximate locations and more importantly enhanced the aerodynamic reach at the point of collection. Transport through remote sampling probes up to 2.5 m in length was achieved with residence times on the order of 10 -2 s to 10 -1 s and Reynolds numbers on the order of 10 3 to 10 4 . The Venturi-assisted entrainment successfully enhanced vapor collection and detection by greater than an order of magnitude at 20 cm stand-off (limit of simple suction). This enhancement is imperative, as simple suction restricts sampling to the immediate vicinity, requiring close proximity to the vapor source. In addition, the overall aerodynamic reach distance was increased by approximately 3-fold over simple suction under the investigated conditions. Enhanced aerodynamic reach was corroborated and observed with laser-light sheet flow visualization and schlieren imaging. Coupled with atmospheric pressure chemical ionization (APCI), the detection of a range of volatile chemical vapors; explosive vapors; explosive, narcotic, and mustard gas surrogate (methyl salicylate) aerosols; and explosive dust particulate was demonstrated. Continuous real-time Venturi-assisted monitoring of a large room (approximately 90 m 2 area, 570 m 3 volume) was demonstrated for a 60-min period without the remote sampling probe, exhibiting detection of chemical vapors and methyl salicylate at approximately 3 m stand-off distances within 2 min of exposure. Published by Elsevier B.V.
Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry.
Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri
2007-12-12
The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF3/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L(-1). Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.
Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge
2017-01-01
To simultaneously quantify and profile the complex mixture of short-, median-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) in Australian sewage sludge, we applied and further validated a recently developed novel instrumental technique, using quadrupole time-of-flight high resolution mass spectrometry running in the negative atmospheric pressure chemical ionization mode (APCI-qTOF-HRMS). Without using an analytical column the cleaned extracts were directly injected into the qTOF-HRMS followed by quantification of the CPs by a mathematical algorithm. The recoveries of the four SCCP, MCCP and LCCP-spiked sewage sludge samples ranged from 86 to 123%. This APCI-qTOF-HRMS method is a fast and promising technique for routinely measuring SCCPs, MCCPs, and LCCPs in sewage sludge. Australian sewage sludge was dominated by MCCPs with concentrations ranging from 542 to 3645 ng/g dry weight (dw). Lower SCCPs concentrations (<57–1421 ng/g dw) were detected in the Australian sewage sludge, which were comparable with the LCCPs concentrations (116–960 ng/g dw). This is the first time that CPs were reported in Australian sewage sludge. The results of this study gives a first impression on the distribution of the SCCPs, MCCPs, and LCCPs in Australia wastewater treatment plants (WWTPs). PMID:28218842
Exact mass libraries of ESI and APCI mass spectra are not commercially available In-house libraries are dependent on CID parameters and are instrument specific. The ability to identify compounds without reliance on mass spectral libraries is therefore more crucial for liquid sam...
Ayala-Cabrera, Juan F; Javier Santos, F; Moyano, Encarnación
2018-05-24
In this work, the feasibility of negative-ion atmospheric pressure chemical ionisation (APCI) and atmospheric pressure photoionisation (APPI) for ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) determination of fluorotelomer alcohols (FTOHs), fluorinated octanesulfonamides (FOSAs) and fluorinated octanesulfonamido-ethanols (FOSEs) was evaluated. The study of the effect of mobile phase composition on the atmospheric pressure ionisation of these compounds indicated that methanol/water mixtures provided the best responses in APCI, while acetonitrile/water with a post-column addition of toluene as dopant was the most appropriated mixture in APPI. Under the optimal working conditions, most of the target compounds produced the ion [M-H] - as base peak, although in-source collision-induced dissociation fragment ions in APCI and APPI and superoxide adduct ions [M+O 2 ] -• in APPI were also present. These ions proved to be more useful as precursor ions for MS/MS determination than the adduct ions generated in electrospray. Although the UHPLC-APCI-MS/MS method allowed the determination of these semi-volatile compounds at low concentration levels, the analysis by UHPLC-APPI-MS/MS provided the lowest limits of detection and it was applied to the analysis of water samples in combination with solid-phase extraction. Quality parameters demonstrated the good performance of the proposed method, providing low method limits of detection (0.3-6 ng L -1 ), good precision (RSD % < 5%) and an accurate quantification (relative error % < 14%). Among the river water samples analysed by the developed method, 4:2 FTOH and N-EtFOSA were determined at 30 and 780 ng L -1 , respectively.
Giuffrida, Daniele; Pintea, Adela; Dugo, Paola; Torre, Germana; Pop, Raluca Maria; Mondello, Luigi
2012-01-01
The berries of Hippophae rhamnoides Linnaeus have high nutritional and medicinal values and have been used for centuries as food both in Europe and Asia. The oleoresins represent a potential source of carotenoid esters and can be used as food additives, cosmetic ingredients or nutraceuticals. The objective of this study was to develop a HPLC-DAD-APCI-MS method, with both positive and negative ionisation modes, for the direct identification of the native carotenoid composition in fruits of Hippophae rhamnoides. Fruits of Hippophae rhamnoides, cv. Serbanesti and Victoria, were collected from an experimental field at the Fruit Research Station of Bacau, Romania. Samples were extracted using methanol:ethyl acetate:petroleum ether (1:1:1, v/v/v). The HPLC-DAD-APCI-MS analyses were carried out on a Shimadzu system using a YMC C₃₀-column and a gradient elution. In total 22 compounds were detected, eight were free carotenoids, nine were xanthophylls monoesters and five were xanthophylls diesters. Differences were observed in the relative percentage composition of the identified components among the two cultivars investigated. Zeaxanthin-C16:0,C16:0 was the most abundant diester. The unsaturated palmitoleic acid was directly detected in its esterified form, in zeaxanthin-C16:0,C16:1, which is reported here for the first time. Although present in small amounts the unsaturated oleic, linoleic, linolenic, hexadecadienoic and hexadecatrienoic acids were detected in their esterified forms as lutein monoesters, the last two having been detected in Hippophae rhamnoides for the first time. A novel (HPLC-DAD-APCI-MS) method was developed for the direct identification of the native carotenoid composition in fruits of Hippophae rhamnoides. Copyright © 2011 John Wiley & Sons, Ltd.
Real-time explosive particle detection using a cyclone particle concentrator.
Hashimoto, Yuichiro; Nagano, Hisashi; Takada, Yasuaki; Kashima, Hideo; Sugaya, Masakazu; Terada, Koichi; Sakairi, Minoru
2014-06-30
There is a need for more rapid methods for the detection of explosive particles. We have developed a novel real-time analysis technique for explosive particles that uses a cyclone particle concentrator. This technique can analyze sample surfaces for the presence of particles from explosives such as TNT and RDX within 3 s, which is much faster than is possible by conventional methods. Particles are detached from the sample surface with air jet pulses, and then introduced into a cyclone particle concentrator with a high pumping speed of about 80 L/min. A vaporizer placed at the bottom of the cyclone particle concentrator immediately converts the particles into a vapor. The vapor is then ionized in the atmospheric pressure chemical ionization (APCI) source of a linear ion trap mass spectrometer. An online connection between the vaporizer and a mass spectrometer enables high-speed detection within a few seconds, compared with the conventional off-line heating method that takes more than 10 s to raise the temperature of a sample filter unit. Since the configuration enriched the number density of explosive particles by about 80 times compared with that without the concentrator, a sub-ng amount of TNT particles on a surface was detectable. The detection limit of our technique is comparable with that of an explosives trace detector using ion mobility spectrometry. The technique will be beneficial for trace detection in security applications, because it detects explosive particles on the surface more speedily than conventional methods. Copyright © 2014 John Wiley & Sons, Ltd.
Analysis of the extracts of Isatis tinctoria by new analytical approaches of HPLC, MS and NMR.
Zhou, Jue; Qu, Fan
2011-01-01
The methods of extraction, separation and analysis of alkaloids and indole glucosinolates (GLs) ofIsatis tinctoria were reviewed. Different analytical approaches such as High-pressure Liquid Chromatography (HPLC), Liquid Chromatography with Electrospray Ionization Mass Spectrometry (LC/ESI/MS), Electrospray Ionization Time-Of-Flight Mass Spectrometry (ESI-TOF-MS), and Nuclear Magnetic Resonance (NMR) were used to validate and identity of these constituents. These methods provide rapid separation, identification and quantitative measurements of alkaloids and GLs of Isatis tinctoria. By connection with different detectors to HPLC such as PDA, ELSD, ESI- and APCI-MS in positive and negative ion modes, complicated compounds could be detected with at least two independent detection modes. The molecular formula can be derived in a second step of ESI-TOF-MS data. But for some constituents, UV and MS cannot provide sufficient structure identification. After peak purification, NMR by semi-preparative HPLC can be used as a complementary method.
Pous, X; Ruíz, M J; Picó, Y; Font, G
2001-09-01
Imidacloprid, metalaxyl, myclobutanil, propham, and thiabendazole have been simultaneously determined in strawberries, oranges, potatoes, pears, and melons by matrix solid-phase dispersion (MSPD) followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) in positive-ion mode. The samples were homogenized with C8 bonded silica as MSPD sorbent, placed in a glass column, and eluted with dichloromethane. Chromatographic separation of the compounds was achieved on a reversed-phase LC column using a methanol-ammonium formate (50 mmol L(-1)) gradient as a mobile phase. Samples were screened by monitoring the protonated molecular ion at m/z 256 for imidacloprid, 280 for metalaxyl, 289 for myclobutanil, and 202 for thiabendazole, and the main fragment at m/z 138 for propham. Positive samples were confirmed by multiple-ion monitoring. The repeatability (<20%) and recovery (>57%) of the method were good, and limits of detection (<0.05 mg kg(-1)) were adequate.
Gundersen, Thomas E; Bastani, Nasser E; Blomhoff, Rune
2007-01-01
A high-throughput ultrasensitive analytical method based on liquid chromatography with positive ion atmospheric pressure chemical ionization (APCI) coupled to tandem mass spectrometric detection (LC/MS/MS) was developed for the determination of all-trans-4-oxo-retinoic acid (at4oxoRA), 13-cis-4-oxo-retinoic acid (13c4oxoRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (atRA) and all-trans-retinol (atROH) in human plasma. A stable isotope of atRA was used as internal standard (IS). The analytes and IS were isolated from 100 microL plasma by acetonitrile mono-phase extraction (MPE) performed in black 96-well microtiterplates. A 100 microL injection was focused on-column and chromatographed on an Agilent ZORBAX SB-C18 rapid-resolution high-throughput (RRHT) column with 1.8-microm particles (4.6 mmx50 mm) maintained at 60 degrees C. The initial mobile phase composition was acetonitrile/water/formic acid (10:90:0.1, v/v/v) delivered at 1.8 mL/min. Elution was accomplished by a fast gradient to acetonitrile/methanol/formic acid (90:10:0.1, v/v/v). The method had a chromatographic total run time of 7 min. An Applied Biosystems 4000 Q TRAP linear tandem mass spectrometer equipped with a heated nebulizer (APCI) ionization source was operated in multiple reaction monitoring (MRM) mode with the precursor-to-product ion transitions m/z 315.4-->297 (4-oxo-retinoic acids), 301.2-->205 (retinoic acids), 305.0-->209 (IS) and 269.2-->93 (retinol) used for quantification. The assay was fully validated and found to have acceptable accuracy, precision, linearity, sensitivity and selectivity. The mean extraction recoveries from spiked plasma samples were 80-105% for the various retinoids at three different levels. The intra-day accuracy of the assay was within 8% of nominal and intra-day precision was better than 8% coefficient of variance (CV) for retinoic acids. Inter-day precision results for quality control samples run over a 12-day period alongside clinical samples showed mean precision better than 12.5% CV. The limit of quantification was in the range of 0.1-0.2 ng/mL and the mass limit of detection (mLOD) was in the range 1-4 pg on column for the retinoic acids. The assay has been successfully applied to the analysis of 1700 plasma samples. Copyright (c) 2007 John Wiley & Sons, Ltd.
Identification of a new degradation product of the antifouling agent Irgarol 1051 in natural samples
Ferrer, I.; Barcelo, D.
2001-01-01
A main degradation product of Irgarol [2-(methylthio)-4-(tert-butylamino)-6-(cyclopropylamino)-s-triazine], one of the most widely used compounds in antifouling paints, was detected at trace levels in seawater and sediment samples collected from several marinas on the Mediterranean coast. This degradation product was identified as 2-methylthio-4-tert-butylamino-s-triazine. The unequivocal identification of this compound in seawater samples was carried out by solid-phase extraction (SPE) coupled on-line with liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS). SPE was carried out by passing 150 ml of seawater sample through a cartridge containing a polymeric phase (PLRP-s), with recoveries ranging from 92 to 108% (n=5). Using LC-MS detection in positive ion mode, useful structural information was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of this compound in natural samples. Method detection limits were in the range of 0.002 to 0.005 ??g/l. Overall, the combination of on-line SPE and LC-APCI-MS represents an important advance in environmental analysis of herbicide degradation products in seawater, since it demonstrates that trace amounts of new polar metabolites may be determined rapidly. This paper reports the LC-MS identification of the main degradation product of Irgarol in seawater and sediment samples. ?? 2001 Elsevier Science B.V. All rights reserved.
Kotnala, A; Senthilkumari, S; Halder, N; Kumar, A; Velpandian, T
2018-01-15
To develop a microwave assisted method for the rapid synthesis of A2E and also to develop a method to quantify N-retinylidene-N-retinylethanolamine(A2E), all-trans retinal dimer (ATRD), A2-glycerophospho ethanolamine (A2GPE), dihydropyridine phosphatidyl ethanolamine (A2DHPE) and monofuran A2E (MFA2E) in age matched retina. The development of microwave assisted synthesis of A2E, its purification and characterization for its utility in quantification in human retina. The semi-quantitative method development using LC-ESI-MS, LC-ESI-MS/MS and LC-APCI-MS/MS from pooled macula and peripheral retina for the bisretinoid analysis has been done. Maximum A2E conversion using microwave assisted process took place at 80°C for 45min with a yield of 55.01%. Highly sensitive and specific mass spectrometric method was developed using reverse phase C-18 separation with positive electrospray ionization and positive atmospheric phase chemical ionization of tandom mass spectrometry. A gradient mobile phase separation was achieved using water and methanol with 0.1% TFA. Multiple reaction monitoring acquisition for ESI and APCI was performed at ATRD m/z 551.2/522.2, A2GPE m/z 746.4/729.5, A2DHPEm/z 594.4/576.5, MFA2E m/z 608.2/591.2, A2E m/z 592.4/418.2. Method was validated using LC-ESI-SIM mode to determine selectivity, linearity, sensitivity, precision and accuracy. An attempt towards optimization of the synthetic procedure of A2E was made so as to reduce the lengthy reaction time without compromising the yield. Developed method was capable enough for the detection of low level of bisretinids in retina. Copyright © 2017 Elsevier B.V. All rights reserved.
Nazario, Carlos E D; Silva, Meire R; Franco, Maraíssa S; Lanças, Fernando M
2015-11-20
The purpose of this article is to underline the miniaturized LC instrumental system and describe the evolution of commercially available systems by discussing their advantages and drawbacks. Nowadays, there are already many miniaturized LC systems available with a great variety of pump design, interface and detectors as well as efficient columns technologies and reduced connections devices. The solvent delivery systems are able to drive the mobile phase without flow splitters and promote gradient elution using either dual piston reciprocating or syringe-type pumps. The mass spectrometry as detection system is the most widely used detection system; among many alternative ionization sources direct-EI LC-MS is a promising alternative to APCI. In addition, capillary columns are now available showing many possibilities of stationary phases, inner diameters and hardware materials. This review provides a discussion about miniaturized LC demonstrating fundamentals and instrumentals' aspects of the commercially available miniaturized LC instrumental system mainly nano and micro LC formats. This review also covers the recent developments and trends in instrumentation, capillary and nano columns, and several applications of this very important and promising field. Copyright © 2015 Elsevier B.V. All rights reserved.
Farhan, Nashid; Fitzpatrick, Sean; Shim, Yun M; Paige, Mikell; Chow, Diana Shu-Lian
2016-09-05
4-Methoxydiphenylmethane (4-MDM), a selective augmenter of Leukotriene A4 Hydrolase (LTA4H), is a new anti-inflammatory compound for potential treatment of chronic obstructive pulmonary disease (COPD). Currently, there is no liquid chromatography tandem mass spectrometric (LC-MS/MS) method for the quantification of 4-MDM. A major barrier for developing the LC-MS/MS method is the inability of electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) to ionize 4-MDM due to its hydrophobicity and lack of any functional group for ionization. With the advent of atmospheric pressure photoionization (APPI) technique, many hydrophobic compounds have been demonstrated to ionize by charge transfer reactions. In this study, a highly sensitive ultrapressure liquid chromatography tandem mass spectrometry assay using atmospheric pressure photoionization (UPLC-APPI-MS/MS) for the quantifications of 4-MDM in rat plasma has been developed and validated. 4-MDM was extracted from the plasma by solid phase extraction (SPE) and separated chromatographically using a reverse phase C8 column. The photoionization (PI) was achieved by introducing anisole as a dopant to promote the reaction of charge transfer. The assay with a linear range of 5 (LLOQ)-400ngmL(-1) met the regulatory requirements for accuracy, precision and stability. The validated assay was employed to quantify the plasma concentrations of 4-MDM after an oral dosing in Sprague Dawley (SD) rats. Copyright © 2016 Elsevier B.V. All rights reserved.
Tose, Lilian V; Murgu, Michael; Vaz, Boniek G; Romão, Wanderson
2017-11-01
Atmospheric solids analysis probe mass spectrometry (ASAP-MS) is a powerful tool for analysis of solid and liquid samples. It is an excellent alternative for crude oil analysis without any sample preparation step. Here, ASAP-MS in positive ion mode, ASAP(+)-MS, has been optimized for analysis of condensed aromatics (CA) standards, crude oil, and paraffinic fraction samples using a Synapt G2-S HDMS. Initially, two methodologies were used to access the chemical composition of samples: (1) using a temperature gradient varying from 150 to 600 °C at a heating rate of 150 °C min -1 , and (2) with constant temperature of 300 and 400 °C. ASAP(+)-MS ionized many compounds with a typical petroleum profile, showing a greater signals range of m/z 250-1300 and 200-1400 for crude oil and paraffin samples, respectively. Such performance, mainly related to the detection of high molecular weight compounds (>1000 Da), is superior to that of other traditional ionization sources, such as ESI, APCI, DART, and DESI. Additionally, the CA standards were identified in both forms: radicals, [M] +• , and protonated cations, [M + H] + , with minimum fragmentation. Therefore, ASAP was more efficient in accessing the chemical composition of nonpolar and polar compounds. It is promising in its application with ultrahigh resolution MS instruments, such as FT-ICR MS and Orbitrap, since molecular formulas with greater resolution and mass accuracy (<1 ppm) would be assigned. Graphical Abstract ᅟ.
Boenzi, Sara; Deodato, Federica; Taurisano, Roberta; Martinelli, Diego; Verrigni, Daniela; Carrozzo, Rosalba; Bertini, Enrico; Pastore, Anna; Dionisi-Vici, Carlo; Johnson, David W
2014-11-01
Two oxysterols, cholestan-3β,5α,6β-triol (C-triol) and 7-ketocholesterol (7-KC), have been recently proposed as diagnostic markers of Niemann-Pick type C (NP-C) disease, representing a potential alternative diagnostic tool to the more invasive and time consuming filipin test in cultured fibroblasts. Usually, the oxysterols are detected and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using atmospheric pressure chemical ionization (APCI) or electro-spray-ionization (ESI) sources, after a variety of derivatization procedures to enhance sensitivity. We developed a sensitive LC-MS/MS method to quantify the oxysterols in plasma as dimethylaminobutyrate ester, suitable for ESI analysis. This method, with an easy liquid-phase extraction and a short derivatization procedure, has been validated to demonstrate specificity, linearity, recovery, lowest limit of quantification, accuracy and precision. The assay was linear over a concentration range of 0.5-200ng/mL for C-triol and 1.0-200ng/mL for 7-KC. Intra-day and inter-day coefficients of variation (CV%) were <15% for both metabolites. Receiver operating characteristic analysis estimates that the area under curve was 0.998 for C-triol, and 0.972 for 7-KC, implying a significant discriminatory power for the method in this patient population of both oxysterols. In summary, our method provides a simple, rapid and non-invasive diagnostic tool for the biochemical diagnosis of NP-C disease. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tose, Lilian V.; Murgu, Michael; Vaz, Boniek G.; Romão, Wanderson
2017-08-01
Atmospheric solids analysis probe mass spectrometry (ASAP-MS) is a powerful tool for analysis of solid and liquid samples. It is an excellent alternative for crude oil analysis without any sample preparation step. Here, ASAP-MS in positive ion mode, ASAP(+)-MS, has been optimized for analysis of condensed aromatics (CA) standards, crude oil, and paraffinic fraction samples using a Synapt G2-S HDMS. Initially, two methodologies were used to access the chemical composition of samples: (1) using a temperature gradient varying from 150 to 600 °C at a heating rate of 150 °C min-1, and (2) with constant temperature of 300 and 400 °C. ASAP(+)-MS ionized many compounds with a typical petroleum profile, showing a greater signals range of m/z 250-1300 and 200-1400 for crude oil and paraffin samples, respectively. Such performance, mainly related to the detection of high molecular weight compounds (>1000 Da), is superior to that of other traditional ionization sources, such as ESI, APCI, DART, and DESI. Additionally, the CA standards were identified in both forms: radicals, [M]+•, and protonated cations, [M + H]+, with minimum fragmentation. Therefore, ASAP was more efficient in accessing the chemical composition of nonpolar and polar compounds. It is promising in its application with ultrahigh resolution MS instruments, such as FT-ICR MS and Orbitrap, since molecular formulas with greater resolution and mass accuracy (<1 ppm) would be assigned. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, Meera Jay
The purpose of this research was to develop sensitive LC-MS methods for enantiomeric separation and detection, and then apply these methods for determination of enantiomeric composition and for the study of pharmacokinetic and pharmacodynamic properties of a chiral nutraceutical. Our first study, evaluated the use of reverse phase and polar organic mode for chiral LC-API/MS method development. Reverse phase methods containing high water were found to decrease ionization efficiency in electrospray, while polar organic methods offered good compatibility and low limits of detection with ESI. The use of lower flow rates dramatically increased the sensitivity by an order of magnitude.more » Additionally, for rapid chiral screening, the coupled Chirobiotic column afforded great applicability for LC-MS method development. Our second study, continued with chiral LC-MS method development in this case for the normal phase mode. Ethoxynonafluorobutane, a fluorocarbon with low flammability and no flashpoint, was used as a substitute solvent for hexane/heptane mobile phases for LC-APCI/MS. Comparable chromatographic resolutions and selectivities were found using ENFB substituted mobile phase systems, although, peak efficiencies were significantly diminished. Limits of detection were either comparable or better for ENFB-MS over heptane-PDA detection. The miscibility of ENFB with a variety of commonly used organic modifiers provided for flexibility in method development. For APCI, lower flow rates did not increase sensitivity as significantly as was previously found for ESI-MS detection. The chiral analysis of native amino acids was evaluated using both APCI and ESI sources. For free amino acids and small peptides, APCI was found to have better sensitivities over ESI at high flow rates. For larger peptides, however, sensitivity was greatly improved with the use of electrospray. Additionally, sensitivity was enhanced with the use of non-volatile additives, This optimized method was then used to simultaneously separate all 19 native amino acids enantiomerically in less than 20 minutes, making it suitable for complex biological analysis. The previously developed amino acid method was then used to enantiomerically separate theanine, a free amino acid found in tea leaves. Native theanine was found to have lower limits of detection and better sensitivity over derivatized theanine samples. The native theanine method was then used to determine the enantiomeric composition of six commercially available L-theanine products. Five out of the six samples were found to be a racemic mixture of both D- and L-theanine. Concern over the efficacy of these theanine products led to our final study evaluating the pharmacokinetics and pharmacodynamics of theanine in rats using LC-ESI/MS. Rats were administered D-, L, and QL-theanine both orally and intra-peritoneally. Oral administration data demonstrated that intestinal absorption of L-theanine was greater than that of D-theanine, while i.p. data showed equal plasma uptake of both isomers. This suggested a possible competitive binding effect with respect to gut absorption. Additionally, it was found that regardless of administration method, the presence of the other enantiomer always decreased overall theanine plasma concentration. This indicated that D- and L- theanine exhibit competitive binding with respect to urinary reabsorption as well. The large quantities of D-theanine detected in the urine suggested that D-themine was eliminated with minimal metabolism, while L-theanine was preferentially reabsorbed and metabolized to ethylamine. Clearly, the metabolic fate of racemic theanine and its individual enantiomers was quite different, placing into doubt the utility of the commercial theanine products.« less
Direct analysis of quaternary alkaloids by in situ reactive desorption corona beam ionization MS.
Hou, Yulan; Wu, Tingting; Liu, Yaru; Wang, Hua; Chen, Yingzhuang; Chen, Bo; Sun, Wenjian
2014-10-21
The direct detection of quaternary alkaloids by atmospheric pressure chemical ionization (APCI)-base ambient MS is difficult because of their poor volatility. In this study, a reactive protocol was developed for the in situ determination of quaternary alkaloids using desorption corona beam ionization (DCBI) mass spectrometry (MS). The model compounds of 8 quaternary alkaloids including sanguinarine, chelerythrine, cyclanoline, nitidine, coptisine, jatrorrhizine, berberine, palmatine and 2 tertiary alkaloids including protopine and allocryptopine were investigated in different states such as on a polytetrafluoroethylene (PTFE) plate, in raw herbal materials, and in silica gel. After various reactive reagents were studied, the mixture of saturated aqueous NaOH solution and CH3OH solvent (3 : 7, v/v) was selected as the optimized reactive reagent for the reactive DCBI-MS detection. All the target molecules can be detected with high sensitivity. On a PTFE plate the limits of detection were 0.0795, 0.1060, 0.4860, 0.9665, 0.8879, 0.3987, 0.5557, 0.4591, 0.0889, and 0.1929 mg L(-1) for sanguinarine, chelerythrine, cyclanoline, nitidine, coptisine, jatrorrhizine, berberine, palmatine, protopine, and allocryptopine, respectively. The reactive protocol was also applied to the direct detection of raw herbal materials and thin layer chromatography successfully.
APPI-MS: Effects of mobile phases and VUV lamps on the detection of PAH compounds
Short, Luke Chandler; Cai, Sheng-Suan; Syage, Jack A.
2009-01-01
The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of non-polar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e., ≤100 μL/min), while at a higher flow, photon absorption and ion-molecule reactions become significant. Under certain circumstances, APPI signal and S/N have been observed to excel at higher flow, which may be due to a non-photoionzation mechanism. To better understand APPI at higher flow rates, we have selected three lamps (Xe, Kr and Ar) and four mobile phases typical for reverse-phase, high-pressure liquid chromatography: acetonitrile, methanol, (1:1) acetonitrile:water and (1:1) methanol:water. As test compounds, three polyaromatic hydrocarbons are studied: benzo[a]pyrene, indeno[1,2,3-c,d]pyrene and benz[a]anthracene. We find that solvent photoabsorption cross-section is not the only parameter in explaining relative signal intensity, but that solvent photo-ion chemistry can also play a significant role. Three conclusions from this investigation are: (i) Methanol photoionization leads to protonated methanol clusters that can result in chemical ionization of analyte molecule; (ii) Use of the Ar lamp often results in greater signal and S/N; (iii) Acetonitrile photoionization is less efficient and resulting clusters are too strongly bound to efficiently chemically ionize the analyte, so that analyte ion formation is dominated by direct photoionization. PMID:17188507
APPI-MS: effects of mobile phases and VUV lamps on the detection of PAH compounds.
Short, Luke Chandler; Cai, Sheng-Suan; Syage, Jack A
2007-04-01
The technique of atmospheric pressure photoionization (APPI) has several advantages over electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), including efficient ionization of nonpolar or low charge affinity compounds, reduced susceptibility to ion suppression, high sensitivity, and large linear dynamic range. These benefits are greatest at low flow rates (i.e.,
Gonçalves, Luís Moreira; Magalhães, Paulo Jorge; Valente, Inês Maria; Pacheco, João Grosso; Dostálek, Pavel; Sýkora, David; Rodrigues, José António; Barros, Aquiles Araújo
2010-06-11
In this work, a recently developed extraction technique for sample preparation aiming the analysis of volatile and semi-volatile compounds named gas-diffusion microextraction (GDME) is applied in the chromatographic analysis of aldehydes in beer. Aldehydes-namely acetaldehyde (AA), methylpropanal (MA) and furfural (FA)-were simultaneously extracted and derivatized with 2,4-dinitrophenylhydrazine (DNPH), then the derivatives were separated and analyzed by high-performance liquid chromatography with spectrophotometric detection (HPLC-UV). The identity of the eluted compounds was confirmed by high-performance liquid chromatography-atmospheric pressure chemical ionization-mass-spectrometry detection in the negative ion mode (HPLC-APCI-MS). The developed methodology showed good repeatability (ca. 5%) and linearity as well as good limits of detection (AA-12.3, FA-1.5 and MA 5.4microgL(-1)) and quantification (AA-41, FA-4.9 and MA 18microgL(-1)); it also appears to be competitive in terms of speed and cost of analysis. Copyright 2010 Elsevier B.V. All rights reserved.
Predictors of Interventional Success of Antegrade PCI for CTO.
Luo, Chun; Huang, Meiping; Li, Jinglei; Liang, Changhong; Zhang, Qun; Liu, Hui; Liu, Zaiyi; Qu, Yanji; Jiang, Jun; Zhuang, Jian
2015-07-01
This study aimed to identify significant lesion features of chronic total occlusions (CTOs) that predict failure of antegrade (A) percutaneous coronary intervention (PCI) using pre-procedure coronary computed tomography angiography (CTA) combined with conventional coronary angiography (CCA). The current predictors of successful A-PCI in the setting of CTOs are uncertain. Such knowledge might prompt early performance of a retrograde (R)-PCI approach if predictors of A-PCI failure are present. Consecutive patients confirmed to have at least 1 CTO of native coronary arteries underwent coronary CTA- and CCA-guided PCI in which computed tomography and fluoroscopic images were placed side by side before or during PCI. The study included 103 patients with 108 CTOs; 80 lesions were successfully treated with A-PCI and 28 lesions failed this approach, for an A-PCI success rate of 74%. A total of 15 of 28 failed cases underwent attempted R-PCI. Only 1 case also failed R-PCI; thus, the total PCI success rate was 87%. By multivariable analysis, the factors significantly predictive of failed A-PCI included negative remodeling (odds ratio [OR]: 137.82) and lesion length >31.89 mm on coronary CTA (OR: 7.04), and ostial or bifurcation lesions on CCA (OR: 8.02). R-PCI was successful in 14 of 15 patients (93.3%), in whom good appearance of the occluded distal segment and well-developed collateral vessels were present. Morphologic predictors of failed A-PCI on the basis of pre-procedure coronary CTA and CCA imaging may be identified, which may assist in determining which patients with CTO lesions would benefit from an early R-PCI strategy. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Adelhelm, Christoph; Niessner, Reinhard; Pöschl, Ulrich
2008-01-01
The analysis of organic compounds in combustion exhaust particles and the chemical transformation of soot by nitrogen oxides are key aspects of assessment and mitigation of the climate and health effects of aerosol emissions from fossil fuel combustion and biomass burning. In this study we present experimental and analytical techniques for efficient investigation of oxygenated and nitrated derivatives of large polycyclic aromatic hydrocarbons (PAHs), which can be regarded as well-defined soot model substances. For coronene and hexabenzocoronene exposed to nitrogen dioxide under simulated diesel exhaust conditions, several reaction products with high molecular mass could be characterized by liquid chromatography-atmospheric pressure chemical (and photo) ionization-mass spectrometry (LC-APCI-MS and LC-APPI-MS). The main products of coronene contained odd numbers of nitrogen atoms (m/z 282, 256, 338), whereas one of the main products of hexabenzocoronene exhibited an even number of nitrogen atoms (m/z 391). Various reaction products containing carbonyl and nitro groups could be tentatively identified by combining chromatographic and mass spectrometric information, and changes of their relative abundance were observed to depend on the reaction conditions. This analytical strategy should highlight a relatively young technique for the characterization of various soot-contained, semi-volatile, and semi-polar reaction products of large PAHs. Figure LC-APCI-MS analysis of nitrated coronene (and HBC): Total-Ion-Chromatogram (TIC), Extracted Ion Chromatograms (EICs) and corresponding mass spectrum (top). PMID:18560812
NASA Astrophysics Data System (ADS)
Papanastasiou, M.; McMahon, A. W.; Allen, N. S.; Johnson, B. W.; Keck-Antoine, K.; Santos, L.; Neumann, M. G.
2008-08-01
The hydrolysis reaction mechanism of phosphite antioxidants is investigated by liquid chromatography-mass spectrometry (LC/MS). The phosphites were chosen because they differed in chemical structure and phosphorus content. Dopant assisted-atmospheric pressure photoionization (DA-APPI) is chosen as the ion source for the ionization of the compounds. In our previous work, DA-APPI was shown to offer an attractive alternative to atmospheric pressure chemical ionization (APCI) since it provided background-ion free mass spectra and higher sensitivity [M. Papanastasiou, et al., Polymer Degradation and Stability 91 (11) (2006) 2675-2682]. In positive ion mode, the molecules are generally detected in their protonated form. In negative ion mode, the phosphites are unstable and only fragment ions are observed; these however, are characteristic of each phosphite and may be used for the identification of the analytes in complex mixtures. The analytes under investigation are exposed to accelerated humid ageing conditions and their hydrolytic pathway and stability is investigated. Different substituents around the phosphorus atom are shown to have a significant effect on the stability of the phosphites, with phenol substituents producing very hydrolytically stable structures. Alkanox P24 and PEP-36 follow a similar hydrolytic pathway via the scission of the first and then the second POphenol bonds, eventually leading to the formation of phenol, phosphorous acid and pentaerythritol as end products. HP-10 exhibits a rather different structure and the products detected suggest scission of either the POhydrocarbon or one of the POphenol bonds. A phenomenon similar to that of autocatalysis is observed for all phosphites and is attributed to the formation of dialkyl phosphites as intermediate products.
Viñas, Pilar; Bravo-Bravo, María; López-García, Ignacio; Hernández-Córdoba, Manuel
2013-10-15
A simple and rapid method was developed using reversed-phase liquid chromatography (LC) with both diode array (DAD) and atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection, for the simultaneous analysis of the vitamins ergocalciferol (D2), cholecalciferol (D3), phylloquinone (K1), menaquinone-4 (K2) and a synthetic form of vitamin K, menadione (K3). The Taguchi experimental method, an orthogonal array design (OAD), was used to optimize an efficient and clean preconcentration step based on dispersive liquid-liquid microextraction (DLLME). A factorial design was applied with six factors and three levels for each factor, namely, carbon tetrachloride volume, methanol volume, aqueous sample volume, pH of sample, sodium chloride concentration and time of the centrifugation step. The DLLME optimized procedure consisted of rapidly injecting 3 mL of acetonitrile (disperser solvent) containing 150 µL carbon tetrachloride (extraction solvent) into the aqueous sample, thereby forming a cloudy solution. Phase separation was performed by centrifugation, and the sedimented phase was evaporated with nitrogen, reconstituted with 50 µL of acetonitrile, and injected. The LC analyses were carried out using a mobile phase composed of acetonitrile, 2-propanol and water, under gradient elution. Quantification was carried out by the standard additions method. The APCI-MS spectra, in combination with UV spectra, permitted the correct identification of compounds in the food samples. The method was validated according to international guidelines and using a certified reference material. The validated method was applied for the analysis of vitamins D and K in infant foods and several green vegetables. There was little variability in the forms of vitamin K present in vegetables, with the most abundant vitamer in all the samples being phylloquinone, while menadione could not be detected. Conversely, cholecalciferol, which is present in food of animal origin, was the main form in infant foods, while ergocalciferol was not detected. Copyright © 2013 Elsevier B.V. All rights reserved.
1984-01-20
Air Products and Chemicals , Inc . CONTRACT NO.: N00014-83-C-0394...performed by Air Products and Chemicals , Inc . 2.0 TASK 2. MECHANICAL SIMULATOR: SUBTASK 2.1, ONE CELL SIMULATOR 2.1 Purpose The overall goal of this...refrigerant 12 (Freon 12) • 4.5 Test final system, ten cell compressor, and cryostat APCI ., ’ APCI - Air Products and Chemicals , Inc . CPI -
Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y
2013-03-01
A comparative study of ultrasonication (US), Fenton's oxidation (FO) and ferro-sonication (FS) (combination of ultrasonication and Fenton's oxidation) advanced oxidation processes (AOPs) for degradation of carbamazepine (CBZ) from wastewater (WW) is reported for the first time. CBZ is a worldwide used antiepileptic drug, found as a persistent emerging contaminant in many wastewater treatment plants (WWTPs) effluents and other aquatic environments. The oxidation treatments of WW caused an effective removal of the drug. Among the various US, FO and FS pre-treatments carried out, higher soluble chemical oxygen demand (SCOD) and soluble organic carbon (SOC) increment (63 to 86% and 21 to 34%, respectively) was observed during FO pre-treatment process, resulting in higher removal of CBZ (84 to 100%) from WW. Furthermore, analysis of by-products formed during US, FO and FS pre-treatment in WW was carried out by using laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to tandem mass spectrometry (MS/MS). LDTD-APCI-MS/MS analysis indicated formation of two by-products, such as epoxycarbamazepine and hydroxycarbamazepine due to the reaction of hydroxyl radicals (OH) with CBZ during the three types of pre-treatment processes. In addition, the estrogenic activity of US, FO and FS pre-treated sample with CBZ and its by-products was carried out by Yeast Estrogen Screen (YES) assay method. Based upon the YES test results, none of the pre-treated samples showed estrogenic activity. Copyright © 2012 Elsevier B.V. All rights reserved.
Jia, Min; Chew, Wade M; Feinstein, Yelena; Skeath, Perry; Sternberg, Esther M
2016-03-21
Cortisol has long been recognized as the "stress biomarker" in evaluating stress related disorders. Plasma, urine or saliva are the current source for cortisol analysis. The sampling of these biofluids is either invasive or has reliability problems that could lead to inaccurate results. Sweat has drawn increasing attention as a promising source for non-invasive stress analysis. A sensitive HPLC-MS/MS method was developed for the quantitation of cortisol ((11β)-11,17,21-trihydroxypregn-4-ene-3,20-dione) in human eccrine sweat. At least one unknown isomer that has previously not been reported and could potentially interfere with quantification was separated from cortisol with mixed mode RP HPLC. Detection of cortisol was carried out using atmospheric pressure chemical ionization (APCI) and selected reaction monitoring (SRM) in positive ion mode, using cortisol-9,11,12,12-D4 as internal standard. LOD and LOQ were estimated to be 0.04 ng ml(-1) and 0.1 ng ml(-1), respectively. Linear range of 0.10-25.00 ng ml(-1) was obtained. Intraday precision (2.5%-9.7%) and accuracy (0.5%-2.1%), interday precision (12.3%-18.7%) and accuracy (7.1%-15.1%) were achieved. This method has been successfully applied to the cortisol analysis of human eccrine sweat samples. This is the first demonstration that HPLC-MS/MS can be used for the sensitive and highly specific determination of cortisol in human eccrine sweat in the presence of at least one isomer that has similar hydrophobicity as cortisol. This study demonstrated that human eccrine sweat could be used as a promising source for non-invasive assessment of stress biomarkers such as cortisol and other steroid hormones.
Wang, L Z; Goh, B C; Fan, L; Lee, H S
2004-01-01
The main toxicological concern of stevioside, a highly potent sweetener from S. rebaudiana, is its main metabolite, steviol. To determine very low levels of steviol in in vivo experiments, a sensitive liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (LC/APCI-MS) method was developed for quantifying steviol in rat plasma after oral administration of a single dose of stevioside (0.5 g/kg). The sample preparation uses liquid-liquid extraction with tert-butyl methyl ether in an acidic environment. The retention time of steviol was 10.5 min. The assay was linear over the range 2-1000 ng/mL with a lower limit of detection of 1 ng/mL. The intra- and inter-day precision were <5 and <7%, respectively, and the accuracy was in the range 95-108%. The steviol concentration profile in rat plasma was determined. Copyright 2003 John Wiley & Sons, Ltd.
Wagner, Rebecca; Wetzel, Stephanie J; Kern, John; Kingston, H M Skip
2012-02-01
The employment of chemical weapons by rogue states and/or terrorist organizations is an ongoing concern in the United States. The quantitative analysis of nerve agents must be rapid and reliable for use in the private and public sectors. Current methods describe a tedious and time-consuming derivatization for gas chromatography-mass spectrometry and liquid chromatography in tandem with mass spectrometry. Two solid-phase extraction (SPE) techniques for the analysis of glyphosate and methylphosphonic acid are described with the utilization of isotopically enriched analytes for quantitation via atmospheric pressure chemical ionization-quadrupole time-of-flight mass spectrometry (APCI-Q-TOF-MS) that does not require derivatization. Solid-phase extraction-isotope dilution mass spectrometry (SPE-IDMS) involves pre-equilibration of a naturally occurring sample with an isotopically enriched standard. The second extraction method, i-Spike, involves loading an isotopically enriched standard onto the SPE column before the naturally occurring sample. The sample and the spike are then co-eluted from the column enabling precise and accurate quantitation via IDMS. The SPE methods in conjunction with IDMS eliminate concerns of incomplete elution, matrix and sorbent effects, and MS drift. For accurate quantitation with IDMS, the isotopic contribution of all atoms in the target molecule must be statistically taken into account. This paper describes two newly developed sample preparation techniques for the analysis of nerve agent surrogates in drinking water as well as statistical probability analysis for proper molecular IDMS. The methods described in this paper demonstrate accurate molecular IDMS using APCI-Q-TOF-MS with limits of quantitation as low as 0.400 mg/kg for glyphosate and 0.031 mg/kg for methylphosphonic acid. Copyright © 2012 John Wiley & Sons, Ltd.
El-Hela, Atef A; Al-Amier, Hussein A; Ibrahim, Taghreed A
2010-10-08
Verbena rigida L., Verbena tenera Spreng. and Verbena venosa L. were investigated for their flavonoid content. Analysis was carried out by high-performance liquid chromatography coupled to diode array UV detection (LC-UV), using different techniques, also using post-column addition of shift reagents, afforded precise structural information about the position of the free hydroxyl groups in the flavonoid nucleus. LC-MS using atmospheric pressure chemical ionization (APCI) in the positive mode provided the molecular weight, the number of hydroxyl groups, the number of sugars and an idea about the substitution pattern of the flavonoid. On-line UV and MS data demonstrated the presence of orientin, vitexin, isovitexin, luteolin, luteolin 7-O-glucoside, apigenin 7-O-glucoside in addition to luteolin, chryseriol and apigenin aglycones in the three Verbena species with different concentrations. Quantitative determination of flavonoid content revealed the presence of 69.84 mg/g dry sample, 88.26 mg/g dry sample and 85.82 mg/g dry sample total flavonoid compounds in V. rigida L., V. tenera Spreng. and V. venosa L., respectively. The method developed for identification is useful for further chromatographic fingerprinting of plant flavonoids. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.
1999-01-01
Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.
Andreoli, Roberta; Manini, Paola; Corradi, Massimo; Mutti, Antonio; Niessen, Wilfried M. A.
2006-01-01
A method for the simultaneous determination of several classes of aldehydes in exhaled breath condensate (EBC) was developed using liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry (LC/APCI-MS/MS). EBC is a biological matrix obtained by a relatively new, simple and noninvasive technique and provides an indirect assessment of pulmonary status. The measurement of aldehydes in EBC represents a biomarker of the effect of oxidative stress caused by smoke, disease, or strong oxidants like ozone. Malondialdehyde (MDA), acrolein, α,β-unsaturated hydroxylated aldehydes [namely 4-hydroxyhexenal (4-HHE) and 4-hydroxynonenal (4-HNE)], and saturated aldehydes (n-hexanal, n-heptanal and n-nonanal) were measured in EBC after derivatization with 2,4-dinitrophenylhydrazine (DNPH). Atmospheric pressure chemical ionization of the analytes was obtained in positiveion mode for MDA, and in negativeion mode for acrolein, 4-HHE, 4-HNE, and saturated aldehydes. DNPH derivatives were separated on a C18 column using variable proportions of 20 mM aqueous acetic acid and methanol. Linearity was established over 4–5 orders of magnitude and limits of detection were in the 0.3–1.0 nM range. Intra-day and inter-day precision were in the 1.3–9.9% range for all the compounds. MDA, acrolein and n-alkanals were detectable in all EBC samples, whereas the highly reactive 4-HHE and 4-HNE were found in only a few samples. Statistically significant higher concentrations of MDA, acrolein and n-hexanal were found in EBC from smokers. PMID:12661015
Tine, Yoro; Renucci, Franck; Costa, Jean; Wélé, Alassane; Paolini, Julien
2017-01-22
The metabolites from the coumarin class, present in tissues of plants belonging mainly to the Rutaceae and Apiaceae families, included compounds with high chemical diversity such as simple coumarins and furocoumarins. These health-promoting components are recognized for their valuable biological activities in herbal preparations but also for their phototoxic effects. In this work, a targeted liquid chromatography (LC) coupled with tandem mass spectrometry (MS²) was developed for the screening of 39 reference standards of coumarins and furocoumarins in essential oils and plant extracts. Chromatographic separation was accomplished on reversed phase column using water/acetonitrile as the mobile phase and detection was performed on a hybrid QqQ/linear ion trap spectrometer fitted with an atmospheric pressure chemical ionization (APCI) source operating in positive ion mode. This analytical approach was applied to investigate the coumarin compositions of fruit essential oils and methanolic extracts obtained from separated parts (fruit, leaf, stem, trunk, and root) of Zanthoxylum zanthoxyloides . Ten coumarins and six furanocoumarins were reported in this species and data analyses were used to assess the suitability of these compounds to the metabolomics-based differentiation of plant organs. The quantification criteria of the metabolites in extract samples included linearity, limit of quantification, limit of detection, and matrix effect were validated. As reported for other species of the Rutaceae family, the concentration of coumarins was drastically higher in Z. zanthoxyloides fruits than in other plant organs.
Direct injection analysis of fatty and resin acids in papermaking process waters by HPLC/MS.
Valto, Piia; Knuutinen, Juha; Alén, Raimo
2011-04-01
A novel HPLC-atmospheric pressure chemical ionization/MS (HPLC-APCI/MS) method was developed for the rapid analysis of selected fatty and resin acids typically present in papermaking process waters. A mixture of palmitic, stearic, oleic, linolenic, and dehydroabietic acids was separated by a commercial HPLC column (a modified stationary C(18) phase) using gradient elution with methanol/0.15% formic acid (pH 2.5) as a mobile phase. The internal standard (myristic acid) method was used to calculate the correlation coefficients and in the quantitation of the results. In the thorough quality parameters measurement, a mixture of these model acids in aqueous media as well as in six different paper machine process waters was quantitatively determined. The measured quality parameters, such as selectivity, linearity, precision, and accuracy, clearly indicated that, compared with traditional gas chromatographic techniques, the simple method developed provided a faster chromatographic analysis with almost real-time monitoring of these acids. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurements of aerosol chemical composition in boreal forest summer conditions
NASA Astrophysics Data System (ADS)
ńijälä, M.; Junninen, H.; Ehn, M.; Petäjä, T.; Vogel, A.; Hoffmann, T.; Corrigan, A.; Russell, L.; Makkonen, U.; Virkkula, A.; Mäntykenttä, J.; Kulmala, M.; Worsnop, D.
2012-04-01
Boreal forests are an important biome, covering vast areas of the northern hemisphere and affecting the global climate change via various feedbacks [1]. Despite having relatively few anthropogenic primary aerosol sources, they always contain a non-negligible aerosol population [2]. This study describes aerosol chemical composition measurements using Aerodyne Aerosol Mass Spectrometer (C-ToF AMS, [3]), carried out at a boreal forest area in Hyytiälä, Southern Finland. The site, Helsinki University SMEAR II measurement station [4], is situated at a homogeneous Scots pine (Pinus sylvestris) forest stand. In addition to the station's permanent aerosol, gas phase and meteorological instruments, during the HUMPPA (Hyytiälä United Measurements of Photochemistry and Particles in Air) campaign in July 2010, a very comprehensive set of atmospheric chemistry measurement instrumentation was provided by the Max Planck Institute for chemistry, Johannes Gutenberg-University, University of California and the Finnish Meteorological institute. In this study aerosol chemical composition measurements from the campaign are presented. The dominant aerosol chemical species during the campaign were the organics, although periods with elevated amounts of particulate sulfates were also seen. The overall AMS measured particle mass concentrations varied from near zero to 27 μg/m observed during a forest fire smoke episode. The AMS measured aerosol mass loadings were found to agree well with DMPS derived mass concentrations (r2=0.998). The AMS data was also compared with three other aerosol instruments. The Marga instrument [5] was used to provide a quantitative semi-online measurement of inorganic chemical compounds in particle phase. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed on daily filter samples, enabling the identification and quantification of organic aerosol subspecies. Finally an Atmospheric Pressure Chemical Ionization Ion Trap Mass Spectrometer (APCI-IT-MS, [6]) was measuring gas and particle phase aerosol composition, offering additional information on molecular compositions. Overall, the availability of a variety of aerosol chemical characterization instruments provided a good opportunity for a comparison of the results obtained by these four very different measurement approaches. Overall the results were found to agree. The inorganic particulate masses measured with the AMS and Marga were found to correlate especially well for sulphates (r2=0.92) and ammonia compounds (r2=0.82). The organic mass seen by the AMS was correlated with the FTIR filter analysis (r2=0.87) and the APCI-IT-MS (r2=0.88).
NASA Astrophysics Data System (ADS)
Ivanova, Bojidarka; Spiteller, Michael
2013-02-01
The paper presented a comprehensive theoretical and experimental study on the molecular drugs-design, synthesis, isolation, physical spectroscopic and mass spectrometric elucidation of novel functionalization derivatives of Cytisine (Cyt), using nucleosidic residues. Since these alkaloids have established biochemical profile, related the binding affinity of the nicotinic acetylcholine receptors (nAChRs), particularly α7 sub-type, the presented correlation between the molecular structure and properties allowed to evaluated the highlights of the biochemical hypothesises related the Schizophrenia. The anticancer activity of α7 subtype agonists and the crucial role of the nucleoside-based medications in the cancer therapy provided opportunity for further study on the biochemical relationship between Schizophrenia and few kinds of cancers, which has been hypothesized recently. The physical electronic absorptions (EAs), circular dichroic (CD) and Raman spectroscopic (RS) properties as well as mass spectrometric (MS) data, obtained using electrospray ionization (ESI) and atmospheric-pressure chemical ionization (APCI) methods under the positive single (MS) and tandem (MS/MS) modes of operation are discussed. Taking into account reports on a fatal intoxication of Cyt, the presented data would be of interest in the field of forensic chemistry, through development of highly selective and sensitive analytical protocols. Quantum chemical method is used to predict the physical properties of the isolated alkaloids, their affinity to the receptor loop and gas-phase stabilized species, observed mass spectrometrically.
Significant decreases in blood propofol concentrations during adrenalectomy for phaeochromocytoma.
Watanabe, Tatsunori; Hiraoka, Haruhiko; Araki, Takuya; Nagano, Daisuke; Aomori, Tohru; Nakamura, Tomonori; Yamamoto, Koujirou; Baba, Hiroshi
2017-10-01
The kinetics of propofol are influenced by cardiac output. The aim of this study was to examine changes in blood propofol concentrations during phaeochromocytoma surgery using target-controlled infusion (TCI) anaesthesia with propofol. This is a prospective observational study. Ten patients with phaeochromocytoma who underwent unilateral adrenalectomy were included. Cardiac output was measured using an arterial pressure-based cardiac output analysis method. The target blood propofol concentrations were adjusted to maintain an approximate bispectral index (BIS) value of 40 before initiating surgery. The settings remained constant during surgery. Blood samples for propofol concentrations were collected from the radial artery at seven time points: two before tumour manipulation (T1, 2), two during tumour manipulation (T3, 4), and three after tumour vein ligation (T4-7). BIS values, the arterial pressure cardiac index (APCI) and haemodynamic parameters were measured at the same time points as the blood samples. The prop-ratio was calculated by dividing blood propofol concentrations by target concentrations of TCI. APCI increased during tumour manipulation and after tumour vein ligation. The prop-ratio was reduced significantly by approximately 40% and showed a significant negative correlation with APCI. BIS values increased significantly and showed a significant negative correlation with the prop-ratio. The increased APCI during tumour manipulation and after tumour vein ligation was associated with markedly reduced blood propofol concentrations. These results reveal that significant decreases in the anaesthetic effect may be observed in patients undergoing phaeochromocytoma surgery even if TCI anaesthesia is used with propofol. © 2017 The British Pharmacological Society.
Gan, Heng-Hui; Soukoulis, Christos; Fisk, Ian
2014-03-01
In the present work, we have evaluated for first time the feasibility of APCI-MS volatile compound fingerprinting in conjunction with chemometrics (PLS-DA) as a new strategy for rapid and non-destructive food classification. For this purpose 202 clarified monovarietal juices extracted from apples differing in their botanical and geographical origin were used for evaluation of the performance of APCI-MS as a classification tool. For an independent test set PLS-DA analyses of pre-treated spectral data gave 100% and 94.2% correct classification rate for the classification by cultivar and geographical origin, respectively. Moreover, PLS-DA analysis of APCI-MS in conjunction with GC-MS data revealed that masses within the spectral ACPI-MS data set were related with parent ions or fragments of alkyesters, carbonyl compounds (hexanal, trans-2-hexenal) and alcohols (1-hexanol, 1-butanol, cis-3-hexenol) and had significant discriminating power both in terms of cultivar and geographical origin. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Nirogi, Ramakrishna; Kandikere, Vishwottam; Mudigonda, Koteshwara; Ajjala, Devender; Suraneni, Ramakrishna; Thoddi, Parthasarathi
2011-01-01
A simple analytical method using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in atmospheric chemical ionization mode (APCI) for the simultaneous estimation of acetylsalicylic acid (ASA, CAS 50-78-2) and its active metabolite salicylic acid (SA, CAS 69-72-7) in human plasma has been developed and validated. ASA and SA were analyzed simultaneously despite differences in plasma concentration ranges of ASA and SA after oral administration of ASA. In spite of having different chemical, ionization and chromatographic properties, ASA and SA were extracted simultaneously from the plasma sample using acetonitrile protein precipitation followed by liquid-liquid extraction. The analytes were separated on a reversed phase column with rapid gradient program using mobile phase consisting of ammonium acetate buffer and methanol. The structural analogue diclofenac was used as an internal standard. The multiple reaction monitoring (MRM) transitions m/z 179 --> 137 for ASA, m/z 137 --> 65 for SA and m/z 294 --> 250 for IS were used. The assay exhibited a linear dynamic range of 0.02-10 microg/mL for ASA and 0.1-50 microg/mL for SA. The between-batch precision (%CV) ranged from 2.1 to 7.9% for ASA and from 0.2 to 5.2% for SA. The between-batch accuracy ranged from 95.4 to 96.7% for ASA and from 94.6 to 111.3% for SA. The validated method was successfully applied for the evaluation of pharmacokinetics of ASA after single oral administration of 650 mg test formulation versus two 325 mg reference formulations of ASA in human subjects.
Lagojda, Andreas; Kuehne, Dirk; Krug, Oliver; Thomas, Andreas; Wigger, Tina; Karst, Uwe; Schänzer, Wilhelm; Thevis, Mario
2016-01-01
Research into developing anabolic agents for various therapeutic purposes has been pursued for decades. As the clinical utility of anabolic-androgenic steroids has been found to be limited because of their lack of tissue selectivity and associated off-target effects, alternative drug entities have been designed and are commonly referred to as selective androgen receptor modulators (SARMs). While most of these SARMs are of nonsteroidal structure, the drug candidate MK-0773 comprises a 4-aza-steroidal nucleus. Besides the intended therapeutic use, SARMs have been found to be illicitly distributed and misused as doping agents in sport, necessitating frequently updated doping control analytical assays. As steroidal compounds reportedly undergo considerable metabolic transformations, the phase-I metabolism of MK-0773 was simulated using human liver microsomal (HLM) preparations and electrochemical conversion. Subsequently, major metabolic products were identified and characterized employing liquid chromatography-high-resolution/high- accuracy tandem mass spectrometry with electrospray (ESI) and atmospheric pressure chemical ionization (APCI) as well as nuclear magnetic resonance (NMR) spectroscopy. MK-0773 produced numerous phase-I metabolites under the chosen in vitro incubation reactions, mostly resulting from mono- and bisoxygenation of the steroid. HLM yielded at least 10 monooxygenated species, while electrochemistry-based experiments resulted predominantly in three monohydroxylated metabolites. Elemental composition data and product ion mass spectra were generated for these analytes, ESI/APCI measurements corroborated the formation of at least two N-oxygenated metabolites, and NMR data obtained from electrochemistry-derived products supported structures suggested for three monohydroxylated compounds. Hereby, the hydroxylation of the A-ring located N- bound methyl group was found to be of particular intensity. In the absence of controlled elimination studies, the produced information enables the implementation of new target analytes into routine doping controls and expands the focus of anti-doping efforts concerning this new anabolic agent.
Koren, Lee; Ng, Ella S M; Soma, Kiran K; Wynne-Edwards, Katherine E
2012-01-01
Blood samples from wild mammals and birds are often limited in volume, allowing researchers to quantify only one or two steroids from a single sample by immunoassays. In addition, wildlife serum or plasma samples are often lipemic, necessitating stringent sample preparation. Here, we validated sample preparation for simultaneous liquid chromatography--tandem mass spectrometry (LC-MS/MS) quantitation of cortisol, corticosterone, 11-deoxycortisol, dehydroepiandrosterone (DHEA), 17β-estradiol, progesterone, 17α-hydroxyprogesterone and testosterone from diverse mammalian (7 species) and avian (5 species) samples. Using 100 µL of serum or plasma, we quantified (signal-to-noise (S/N) ratio ≥ 10) 4-7 steroids depending on the species and sample, without derivatization. Steroids were extracted from serum or plasma using automated solid-phase extraction where samples were loaded onto C18 columns, washed with water and hexane, and then eluted with ethyl acetate. Quantitation by LC-MS/MS was done in positive ion, multiple reaction-monitoring (MRM) mode with an atmospheric pressure chemical ionization (APCI) source and heated nebulizer (500°C). Deuterated steroids served as internal standards and run time was 15 minutes. Extraction recoveries were 87-101% for the 8 analytes, and all intra- and inter-run CVs were ≤ 8.25%. This quantitation method yields good recoveries with variable lipid-content samples, avoids antibody cross-reactivity issues, and delivers results for multiple steroids. Thus, this method can enrich datasets by providing simultaneous quantitation of multiple steroids, and allow researchers to reimagine the hypotheses that could be tested with their volume-limited, lipemic, wildlife samples.
Naumoska, Katerina; Vovk, Irena
2015-02-13
Three TLC methods were used for an initial screening of some common plant triterpenoids and phytosterols in cuticular wax extracts of different vegetables (zucchini, eggplant, tomato, red pepper, mangold, spinach, lettuce, white-colored radicchio di Castelfranco, raddichio Leonardo, white cabbage, red cabbage and savoy cabbage). The preliminary experiments showed that the studied vegetables are potential sources of triterpenoids and phytosterols. To identify the compounds present in the extracts with high certainty, the first TLC-MS(2) method was developed for the analysis of eight triterpenoids (lupeol, α-amyrin, β-amyrin, cycloartenol, cycloartenol acetate, lupeol acetate, lupenone and friedelin) and two phytosterols (β-sitosterol and stigmasterol). This method takes the advantages of: (1) a satisfactory separation of the target compounds; (2) their differentiation according to the band colors; and (3) the potential of their discrimination by the acquired first-order mass (MS) and product ion (MS(2)) spectra. Since the closely eluting compounds have complex and similar MS(2) spectra, distinguishing between them was possible by the proposed characteristic ions. Using a custom-built mass spectral library, the head to tail MS(2) spectra comparison of sample test solution zones and standard aided the compound identification. In addition to the molecular mass information, the developed atmospheric pressure chemical ionization method (APCI) in positive ion mode provided structural information, regarding the presence of functional group in the molecule. This approach resulted in many positively assigned compounds in the investigated vegetable waxes, from which more than a half are reported for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.
Molins-Delgado, Daniel; García-Sillero, Daniel; Díaz-Cruz, M Silvia; Barceló, Damià
2018-04-06
Insect repellents (IRs) are a group of organic chemicals whose function is to prevent the ability of insects of landing in a surface. These compounds have been found in the environment and may pose a risk to non-target organisms. In this study, an on-line solid phase extraction - high performance liquid chromatography-tandem mass spectrometry multiresidue method was developed using an atmospheric photoionization source (SPE-HPLC-(APPI)-MS/MS). The use of the APPI as an alternative ionization technique to electrospray (ESI) and atmospheric pressure chemical ionization (APCI) allowed expanding the range of analytical techniques suitable for the analysis of IRs, so far relied in gas chromatography. High sensitivity and precision was reached with method limits of quantification between 0.2 and 4.6 ng l -1 and interday and intraday precision equal or below 15%. The validated method was applied to the study of surface water samples from three European river basins with different flow regime (Adige River in Italy, Sava River in the Balkans, and Evrotas River in Greece). The results showed that two IRs (DEET and Bayrepel) were ubiquitous in the Sava and Evrotas basins, reaching concentrations as high as 105 μg l -1 of Bayrepel in the Sava River, and 5 μg l -1 of DEET in the Evrotas River. Densely populated areas and effluent waste waters are pointed out as the responsible for this pollution. In the alpine river Adige, only three samples showed low levels of IRs (6.01-37.8 ng l -1 ). The concentrations measured were used to perform an environmental risk assessment based on the hazard quotients (HQs) estimation approach by using the chronic and acute eco-toxicity data available. The results revealed that despite the high frequency and eventually high concentrations of these IRs determined in the three basins, only few sites were at risk, with 1 < HQs < 3.3. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.
Jin, Mi-cong; Chen, Xiao-hong; OuYang, Xiao-kun
2009-03-01
An accurate and selective method for the simultaneous determination of triptolide, tripdiolide and tripterine in human urine using hydrocortisone as an internal standard (IS) by high-performance liquid chromatography coupled with atmospheric-pressure chemical ionization mass spectrometry in negative ion mode has been developed. After triptolide, tripdiolide and tripterine in human urine were extracted with ethyl acetate and cleaned by solid-phase extraction with C(18) cartridges, a satisfactory separation was achieved on an XDB C(18) short column (30 x 2.1 mm i.d., 3 microm) using the mobile phase of acetic acid-ammonium acetate (5 mmol/L, pH = 4.5)-acetonitrile-methanol in gradient elution. Detection was operated by APCI in selected ion monitoring mode. The target ions m/z 359, m/z 375, m/z 449 and m/z 419 were selected for the quantification of triptolide, tripdiolide, tripterine and IS, respectively. The linear range was 1.0-100.0 ng mL(-1), and the limits of quantification in human urine were found to be 0.1-0.5 ng mL(-1) for the three compounds. The precisions (CV%) and accuracies were 6.6-12.9 and 85.1-97.0%, respectively. The developed method could be applied to the determination of triptolide, tripdiolide and tripterine in human urine for diagnosis of the intoxication and for forensic purposes. 2008 John Wiley & Sons, Ltd.
Manini, P; Andreoli, R; Mutti, A; Bergamaschi, E; Niessen, W M
1998-01-01
A liquid chromatography atmospheric pressure electrospray mass spectrometry (ESI-LC/MS) system was evaluated for the identification and characterization of n-hexane conjugated metabolites (glucuronides) in untreated urine samples. Chromatography of glucuronides was obtained under ion-suppressed reversed-phase conditions, by using high-speed (3 cm, 3 microns) columns and formic acid (2 mM) as modifier in the mobile phase. The mass spectrometer was operated in negative ion (NI) mode. For the first time, four glucuronides were identified by ESI-LC/MS in untreated urine samples of rats exposed to n-hexane: 2-hexanol-glucuronide, 5-hydroxy-2-hexanone-glucuronide, 2,5-hexanediol-glucuronide and 4,5-dihydroxy-2-hexanone-glucuronide. Confirmation of the conjugated metabolites was obtained by LC/MS/MS experiments. Gas chromatography/mass spectrometry (GC/MS) and atmospheric pressure chemical ionization (APCI) LC/MS analyses were performed on the same samples. An integrated approach GC/MS-LC/MS for the semi-quantitative analysis of n-hexane glucuronides, whose standards are not commercially available, is discussed and proposed here. In order to understand the fate of the metabolites during sample pre-treatment, a study about the effects of enzymatic and acid hydrolysis on urine samples was conducted on glucuronides isolated by solid-phase extraction. Combined analyses by GC/MS and LC/MS enabled us to distinguish 'true' n-hexane metabolites from compounds resulting from sample treatment and handling (i.e. enzymatic and acid hydrolysis, extraction and GC injection).
Kula, Marta; Głód, Daniel; Krauze-Baranowska, Mirosława
2016-03-20
In this study the application of two-dimensional LC (2D LC) for qualitative analysis of polyphenols and simple phenols in the shoots of Rubus idaeus 'Glen Ample' variety is presented. In the preliminary analysis, the methanol extract of the shoots was analyzed by one-dimensional LC. One-dimensional LC separation profiles of phenolics from R. idaeus 'Glen Ample' shoots were dependent on column type, mobile phase composition and gradient program used. Two-dimensional LC system was built from connecting an octadecyl C-18 silica column in the first dimension and pentafluorophenyl column in the second dimension, coupled with DAD and MS (ESI, APCI, DUIS ionization) detectors. A total of 34 phenolic compounds belonging to the groups of phenolic acids, ellagitannins, flavan-3-ols, flavonols and ellagic acid conjugates were identified in the shoots of R. idaeus 'Glen Ample'. The established 2D LC method offers an effective tool for analysis of phenolics present in Rubus species. Copyright © 2015 Elsevier B.V. All rights reserved.
Caldas, Sergiane S; Bolzan, Cátia M; Cerqueira, Maristela B; Tomasini, Débora; Furlong, Eliana B; Fagundes, Carlos; Primel, Ednei G
2011-11-23
A new method for the determination of clomazone, fipronil, tebuconazole, propiconazole, and azoxystrobin in samples of rice paddy soil is presented. The extraction of the pesticides from soil samples was performed by using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method. Some extraction conditions such as salt addition, sample acidification, use of buffer, and cleanup step were evaluated. The optimized method dealt with a single extraction of the compounds under study with acidified acetonitrile, followed by the addition of MgSO(4) and NaCl prior to the final determination by liquid chromatography-atmospheric chemical pressure ionization-tandem mass spectrometry. Validation studies were carried out in soil samples. Recoveries of the spiked samples ranged between 70.3 and 120% with relative standard deviation lower than 18.2%. The limits of quantification were between 10 and 50 μg kg(-1). The method was applied to the analysis of real samples of soils where rice is cultivated.
Chen, Xiaoyan; Huang, Jia; Kong, Zhang; Zhong, Dafang
2005-03-25
A rapid and sensitive method for the simultaneous determination of paracetamol and guaifenesin in human plasma was developed and validated, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. After extracted from plasma samples by diethyl ether-dichloromethane (3:2, v/v), the analytes and internal standard osalmide were chromatographed on a C18 column. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method was linear in the concentration range of 0.05-20.0 microg/ml for paracetamol and 5.0-2000.0 ng/ml for guaifenesin. The intra- and inter-day precision was within 14% for both paracetamol and guaifenesin. The assay accuracy was within +/-2.4% for the analytes. This is the first assay method described for the simultaneous determination of paracetamol and guaifenesin in plasma using one chromatographic run. The method was successfully employed in a pharmacokinetic study after an oral administration of a multicomponent formulation, containing 650 mg paracetamol, 200 mg guaifenesin, 60 mg pseudoephedrine and 20 mg dextrorphan.
Tahboub, Yahya R
2014-12-01
Chromatographic behavior of co-eluted compounds from un-extracted drug-free plasma samples was studied by LC-MS and LC-MS/MS with positive APCI. Under soft gradient, total ion chromatogram (TIC) consisted of two major peaks separated by a constant lower intensity region. Early peak (0.15-0.4 min) belongs to polar plasma compounds and consisted of smaller mass ions ( m / z <250); late peak (3.6-4.6 min) belongs to thermally unstable phospholipids and consisted of fragments with m / z <300. Late peak is more sensitive to variations in chromatographic and MS parameters. Screening of most targeted cardiovascular drugs at levels lower than 50 ng/mL has been possible by LC-MS for drugs with retention factors larger than three. Matrix effects and recovery, at 20 and 200 ng/mL, were evaluated for spiked plasma samples with 15 cardiovascular drugs, by MRM-LC-MS/MS. Average recoveries were above 90% and matrix effects expressed as percent matrix factor (% MF) were above 100%, indicating enhancement character for APCI. Large uncertainties were significant for drugs with smaller masses ( m / z <250) and retention factors lower than two.
Collison nebulizer as a new soft ionization source for mass spectrometry
NASA Astrophysics Data System (ADS)
Pervukhin, V. V.; Sheven', D. G.; Kolomiets, Yu. N.
2016-08-01
We have proposed that a Collison-type nebulizer be used as an ionization source for mass spectrometry with ionization under atmospheric pressure. This source does not require the use of electric voltage, radioactive sources, heaters, or liquid pumps. It has been shown that the number of ions produced by the 63Ni radioactive source is three to four times larger than the number of ions produced by acoustic ionization sources. We have considered the possibility of using a Collison-type nebulizer in combination with a vortex focusing system as an ion source for extractive ionization of compounds under atmospheric pressure. The ionization of volatile substances in crossflows of a charged aerosol and an analyte (for model compounds of the amine class, viz., diethylaniline, triamylamine, and cocaine) has been investigated. It has been shown that the limit of detecting cocaine vapor by this method is on the level of 4.6 × 10-14 g/cm3.
Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization.
Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-02-01
A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed. Graphical Abstract ᅟ.
Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization
NASA Astrophysics Data System (ADS)
Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-02-01
A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed.
Sowani, Harshada; Mohite, Pallavi; Damale, Shailesh; Kulkarni, Mohan; Zinjarde, Smita
2016-12-01
The Actinomycete Gordonia amicalis HS-11 produced orange pigments when cultivated on n-hexadecane as the sole carbon source. When cells of this pigmented bacterium were incubated with 1mM chloroauric acid (HAuCl 4 ) or silver nitrate (AgNO 3 ), pH 9.0, at 25°C, gold and silver nanoparticles, respectively, were obtained in a cell associated manner. It was hypothesized that the pigments present in the cells may be mediating metal reduction reactions. After solvent extraction and High Performance Liquid Chromatography, two major pigments displaying UV-vis spectra characteristic of carotenoids were isolated. These were identified on the basis of Atmospheric Pressure Chemical Ionization Mass Spectrometry (APCI-MS) in the positive mode as 1'-OH-4-keto-γ-carotene (Carotenoid K) and 1'-OH-γ-carotene (Carotenoid B). The hydroxyl groups present in the carotenoids were eliminated under alkaline conditions and provided the reducing equivalents necessary for synthesizing nanoparticles. Cell associated and carotenoid stabilized nanoparticles were characterized by different analytical techniques. In vitro free radical scavenging activities of cells (control, gold and silver nanoparticle loaded), purified carotenoids and carotenoid stabilized gold and silver nanoparticles were evaluated. Silver nanoparticle loaded cells and carotenoid stabilized silver nanoparticles exhibited improved nitric oxide (NO) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activities compared to their control and gold counterparts. This paper thus reports cell associated nanoparticle synthesis by G. amicalis, describes for the first time the role of carotenoid pigments in metal reduction processes and demonstrates enhanced free radical scavenging activities of the carotenoid stabilized nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.
Costa, Rosaria; Ragusa, Salvatore; Russo, Marina; Certo, Giovanna; Franchina, Flavio A; Zanotto, Antonio; Grasso, Elisa; Mondello, Luigi; Germanò, Maria Paola
2016-01-05
Artemisia arborescens, also known as tree wormwood, is a typical species of the Mediterranean flora. It has been used in folk medicine for its antispasmodic, anti-pyretic, anti-inflammatory, and abortifacient properties. In the current study, the application of multidimensional comprehensive gas chromatography (GC×GC), allowed to obtain a detailed fingerprint of the essential oil from A. arborescens aerial parts, highlighting an abundant presence of chamazulene followed by camphor, β-thujone, myrcene, and α-pinene. Moreover, flavonoids in the dichloromethane extract were analyzed by means of liquid chromatography with photodiode array and atmospheric pressure chemical ionization-mass spectrometry detections (HPLC-PDA and HPLC-APCI-MS). Six polymethoxyflavones were identified and three of them, including chrysosplenetin, eupatin, and cirsilineol, were described in this species for the first time. The anti-angiogenic activity was investigated in the dichloromethane extract by two in vivo models, chick chorioallantoic membrane (CAM) and zebrafish embryos. Results showed that this extract produced a strong reduction on vessel formation, both on zebrafish (57% of inhibition, 0.1 mg/mL) and chick chorioallantoic membrane (58% of inhibition, 0.8 mg/mL). The high separation power and sensitivity of the analytical methodology applied confirmed the safety of A. arborescens essential oil for human consumption, due to the very low level of the psychotrope α-thujone determined. Moreover, the knowledge of the flavonoidic profile holds a great significance for the use of A. arborescens as a valuable source of anti-angiogenic compounds that might contribute to the valorization of the phytotherapeutic potential of this plant. Copyright © 2015 Elsevier B.V. All rights reserved.
Atmospheric sampling glow discharge ionization source
McLuckey, Scott A.; Glish, Gary L.
1989-01-01
An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.
Zhao, Ying-Yong; Qin, Xiang-Yang; Cheng, Xian-Long; Liu, Xue-Ying; Lin, Rui-Chao; Zhang, Yongmin; Li, Xiao-Ye; Sun, Xiao-Li; Sun, Wen-Ji
2010-08-24
Ergosta-4,6,8(14),22-tetraen-3-one (ergone) from many medicinal plants has been demonstrated to possess a variety of pharmacological activities in vivo and in vitro, including cytotoxic, diuretic and immunosuppressive activity. Metabolism and pharmacokinetic studies on rat were conducted for ergone. Rapid resolution liquid chromatography with atmospheric pressure chemical ionization tandem multi-stage mass spectrometry (RRLC-APCI-MS(n)) and high-performance liquid chromatography with fluorescence detection (HPLC-FLD) methods were applied for the identification and quantification of ergone and its metabolite from rat plasma, faeces and urine. A metabolite was identified by RRLC-DAD-APCI-MS(n): 22,23-epoxy-ergosta-4,6,8(14)-triaen-3-one (epoxyergone). The concentrations of the analyte with its metabolites were determined by HPLC-FLD at excitation wavelength of 370 nm and emission wavelength of 485 nm. The samples were deproteinized with methanol after addition of camptothecin as internal standard (IS). The analysis was performed on a Diamonsil C18 column (150 mm x 4.6 mm x 5 microm) with a mobile phase gradient consisting of methanol and water at a flow rate of 1 mL min(-1). The assay was linear over the concentration range of 42-1500, 36-7500 and 42-1500 ng mL(-1) for plasma, faecal homogenate and urine respectively. The absolute recoveries were found to be 97.0+/-1.2%, 98.1+/-0.7% and 96.6+/-1.8% for plasma, faecal homogenate and urine respectively. The intra-day and inter-day relative standard deviations (RSD) were less than 10%. The previous HPLC-MS/MS method is not affordable for most laboratories because of the specialty requirement and high equipment cost. However, the HPLC-FLD method is economic and operating simply for quantitative determination of ergone and its metabolite in rat plasma, faeces and urine. In addition, liquid chromatography coupled with ion trap multi-stage mass spectrometry is becoming a useful technique for ergone metabolite identification. 2010 Elsevier B.V. All rights reserved.
Ouerdane, Laurent; Aureli, Federica; Flis, Paulina; Bierla, Katarzyna; Preud'homme, Hugues; Cubadda, Francesco; Szpunar, Joanna
2013-09-01
An analytical methodology based on high-resolution high mass accuracy electrospray ionization (ESI) tandem MS assisted by Se-specific detection using inductively coupled plasma mass spectrometry (ICP MS) was developed for speciation of selenium (Se) in seeds of black mustard (Brassica nigra) grown on Se-rich soil. Size-exclusion LC-ICP MS allowed the determination of the Se distribution according to the molecular mass and the control of the species stability during extraction. The optimization of hydrophilic interaction of LC and cation-exchange HPLC resulted in analytical conditions making it possible to detect and characterize over 30 Se species using ESI MS, including a number of minor (<0.5%) metabolites. Selenoglucosinolates were found to be the most important class of species accounting for at least 15% of the total Se present and over 50% of all the metabolites. They were found particularly unstable during aqueous extraction leading to the loss of Se by volatilization as methylselenonitriles and methylselenoisothiocyanates identified using gas chromatography (GC) with the parallel ICP MS and atmospheric pressure chemical ionization (APCI) MS/MS detection. However, selenoglucosinolates could be efficiently recovered by extraction with 70% methanol. Other classes of identified species included selenoamino acids, selenosugars, selenosinapine and selenourea derivatives. The three types of reactions leading to the formation of selenometabolites were: the Se-S substitution in the metabolic pathway, oxidative reactions of -SeH groups with endogenous biomolecules, and chemical reactions, e.g., esterification, of Se-containing molecules and other biomolecules through functional groups not involving Se.
Sewram, V; Nair, J J; Nieuwoudt, T W; Leggott, N L; Shephard, G S
2000-11-03
An HPLC-MS-MS method with selected reaction monitoring (SRM) for the determination of patulin in apple juice samples is described. Mass spectrometric detection was accomplished following atmospheric pressure chemical ionization (APCI) in both positive and negative ion modes. Collision induced dissociation (CID) of the protonated molecular ion led initially to the loss of H2O (fragment m/z 137). At higher energies CO is lost from both the protonated parent molecule (fragment m/z 127) and the dehydrated molecular ion (fragment m/z 109). In contrast, CID of the deprotonated molecular ion led initially to the fragment at m/z 109 corresponding to the loss of either CO2 or acetaldehyde, followed at higher CID energy by the loss of H2O (fragment m/z 135) and CO (fragment m/z 125) from the deprotonated molecular ion. Detection in the negative ion mode proved superior and a linear response was observed over the injected range from 6 to 200 ng patulin. Apple juice samples spiked with patulin between 10 and 135 microg/l were analyzed following liquid-liquid extraction with ethyl acetate and clean up with sodium carbonate. Utilizing reversed-phase HPLC with acetonitrile-water (10:90) at 0.5 ml/min, levels down to 10 microg/l were readily quantified and a detection limit of 4 microg/l was attainable at a signal-to-noise (SIN) ratio of 4. The MS data for the spiked samples compared well to the UV data and when plotted against each other displayed a correlation coefficient (R) of 0.99.
NASA Astrophysics Data System (ADS)
Gentner, D. R.; Ditto, J.; Barnes, E.; Khare, P.
2017-12-01
Highly-functionalized organic compounds are known to be a major component of the complex mixture of the particle-phase compounds that comprise organic aerosol, yet little is known about the identity of many of these compounds, and their formation pathways and roles in atmospheric processes are poorly understood. We present results from the comprehensive chemical speciation of PM10 organic aerosols collected in July 2016 at the remote mid-latitude forest field site during PROPHET. Samples were analyzed via liquid and gas chromatography coupled with a quadrupole time-of-flight tandem mass spectrometry (MS×MS) following electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). 8 hr samples were collected during day- and night-time sampling periods rather than more typical 24-hour samples. This analysis of the organic aerosol yielded over 12,000 unique compounds for which we have high accuracy molecular masses, formulas, and additional information on structural features using MS×MS. O:C ratios were 0.3 on average, yet the top 10% of compounds ranged 0.7-2.3. 70% and 69% of day- and night-time samples were nitrogen-containing, whereas 26% and 24% contained sulfur, respectively. Within these broader molecular categories, we observed a wide variety of molecular features that reveal a diversity of functional groups and moieties. In this presentation, we present the results of our speciation, temporal variability, connections to air parcel back trajectories and other bulk properties, and potential formation pathways.
Panda, Manas K; Shaikh, Mobin M; Ghosh, Prasenjit
2010-03-07
Controlled oxidation of organic sulfides to sulfoxides under ambient conditions has been achieved by a series of titanium isopropoxide complexes that use environmentally benign H(2)O(2) as a primary oxidant. Specifically, the [N,N'-bis(2-oxo-3-R(1)-5-R(2)-phenylmethyl)-N,N'-bis(methylene-R(3))-ethylenediamine]Ti(O(i)Pr)(2) [R(1) = t-Bu, R(2) = Me, R(3) = C(7)H(5)O(2) (1b); R(1) = R(2) = t-Bu, R(3) = C(7)H(5)O(2) (2b); R(1) = R(2) = Cl, R(3) = C(7)H(5)O(2) (3b) and R(1) = R(2) = Cl, R(3) = C(6)H(5) (4b)] complexes efficiently catalyzed the sulfoxidation reactions of organic sulfides to sulfoxides at room temperature within 30 min of the reaction time using aqueous H(2)O(2) as an oxidant. A mechanistic pathway, modeled using density functional theory for a representative thioanisole substrate catalyzed by 4b, suggested that the reaction proceeds via a titanium peroxo intermediate 4c', which displays an activation barrier of 22.5 kcal mol(-1) (DeltaG(++)) for the overall catalytic cycle in undergoing an attack by the S atom of the thioanisole substrate at its sigma*-orbital of the peroxo moiety. The formation of the titanium peroxo intermediate was experimentally corroborated by a mild ionization atmospheric pressure chemical ionization (APCI) mass spectrometric technique.
Solliec, Morgan; Massé, Daniel; Sauvé, Sébastien
2014-10-01
A new extraction method coupled to a high throughput sample analysis technique was developed for the determination of four veterinary antibiotics. The analytes belong to different groups of antibiotics such as chemotherapeutics, sulfonamides, lincosamides and macrolides. Trimethoprim (TMP), sulfadoxin (SFX), lincomycin (LCM) and tylosin (TYL) were extracted from lyophilized manure using a sonication extraction. McIlvaine buffer and methanol (MeOH) were used as extraction buffers, followed by cation-exchange solid phase extraction (SPE) for clean-up. Analysis was performed by laser diode thermal desorption-atmospheric pressure chemical-ionization (LDTD-APCI) tandem mass spectrometry (MS/MS) with selected reaction monitoring (SRM) detection. The LDTD is a high throughput sample introduction method that reduces total analysis time to less than 15s per sample, compared to minutes when using traditional liquid chromatography (LC). Various SPE parameters were optimized after sample extraction: the stationary phase, the extraction solvent composition, the quantity of sample extracted and sample pH. LDTD parameters were also optimized: solvent deposition, carrier gas, laser power and corona discharge. The method limit of detection (MLD) ranged from 2.5 to 8.3 µg kg(-1) while the method limit of quantification (MLQ) ranged from 8.3 to 28µgkg(-1). Calibration curves in the manure matrix showed good linearity (R(2)≥ 0.996) for all analytes and the interday and intraday coefficients of variation were below 14%. Recoveries of analytes from manure ranged from 53% to 69%. The method was successfully applied to real manure samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Van Berkel, Gary J.; Kertesz, Vilmos
2016-11-15
An “Open Access”-like mass spectrometric platform to fully utilize the simplicity of the manual open port sampling interface for rapid characterization of unprocessed samples by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The in-house developed integrated software with a simple, small and relatively low-cost mass spectrometry system introduced here fills this void. Software was developed to operate the mass spectrometer, to collect and process mass spectrometric data files, to build a database and to classify samples using such a database. These tasks were accomplished via the vendorprovided software libraries. Sample classification based on spectral comparison utilized themore » spectral contrast angle method. As a result, using the developed software platform near real-time sample classification is exemplified using a series of commercially available blue ink rollerball pens and vegetable oils. In the case of the inks, full scan positive and negative ion ESI mass spectra were both used for database generation and sample classification. For the vegetable oils, full scan positive ion mode APCI mass spectra were recorded. The overall accuracy of the employed spectral contrast angle statistical model was 95.3% and 98% in case of the inks and oils, respectively, using leave-one-out cross-validation. In conclusion, this work illustrates that an open port sampling interface/mass spectrometer combination, with appropriate instrument control and data processing software, is a viable direct liquid extraction sampling and analysis system suitable for the non-expert user and near real-time sample classification via database matching.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Berkel, Gary J.; Kertesz, Vilmos
An “Open Access”-like mass spectrometric platform to fully utilize the simplicity of the manual open port sampling interface for rapid characterization of unprocessed samples by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The in-house developed integrated software with a simple, small and relatively low-cost mass spectrometry system introduced here fills this void. Software was developed to operate the mass spectrometer, to collect and process mass spectrometric data files, to build a database and to classify samples using such a database. These tasks were accomplished via the vendorprovided software libraries. Sample classification based on spectral comparison utilized themore » spectral contrast angle method. As a result, using the developed software platform near real-time sample classification is exemplified using a series of commercially available blue ink rollerball pens and vegetable oils. In the case of the inks, full scan positive and negative ion ESI mass spectra were both used for database generation and sample classification. For the vegetable oils, full scan positive ion mode APCI mass spectra were recorded. The overall accuracy of the employed spectral contrast angle statistical model was 95.3% and 98% in case of the inks and oils, respectively, using leave-one-out cross-validation. In conclusion, this work illustrates that an open port sampling interface/mass spectrometer combination, with appropriate instrument control and data processing software, is a viable direct liquid extraction sampling and analysis system suitable for the non-expert user and near real-time sample classification via database matching.« less
Ionization nebulae surrounding supersoft X-ray sources
NASA Technical Reports Server (NTRS)
Rappaport, S.; Chiang, E.; Kallman, T.; Malina, R.
1994-01-01
In this work we carry out a theoretical investigation of a new type of astrophysical gaseous nebula, viz., ionized regions surrounding supersoft X-ray sources. Supersoft X-ray sources, many of which have characteristic luminosities of approximately 10(exp 37)-(10(exp 38) ergs/s and effective temperatures of approximately 4 x 10(exp 5) K, were first discovered with the Einstein Observatory. These sources have now been shown to constitute a distinct class of X-ray source and are being found in substantial numbers with ROSAT. We predict that these sources should be surrounded by regions of ionized hydrogen and helium with properties that are distinct from other astrophysical gaseous nebulae. We present caluations of the ionization and temperature structure of these ionization nebulae, as well as the expected optical line fluxes. The ionization profiles for both hydrogen and helium exhibit substantially more gradual transitions from the ionized to the unionized state than is the case for conventional H II regions. The calculated optical line intensitites are presented as absolute fluxes from sources in the Large Magellanic Cloud and as fractions of the central source luminosity. We find, in particular, that (O III) lambda 5008 and He II lambda 4686 are especially prominent in these ionization nebulae as compared to other astrophysical nebulae. We propose that searches for supersoft X-rays via their characteristic optical lines may reveal sources in regions where the soft X-rays are nearly completely absorbed by the interstellar medium.
Atmospheric sampling glow discharge ionization source
McLuckey, S.A.; Glish, G.L.
1989-07-18
An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.
Badal, Sunil P; Michalak, Shawn D; Chan, George C-Y; You, Yi; Shelley, Jacob T
2016-04-05
Plasma-based ambient desorption/ionization sources are versatile in that they enable direct ionization of gaseous samples as well as desorption/ionization of analytes from liquid and solid samples. However, ionization matrix effects, caused by competitive ionization processes, can worsen sensitivity or even inhibit detection all together. The present study is focused on expanding the analytical capabilities of the flowing atmospheric-pressure afterglow (FAPA) source by exploring additional types of ionization chemistry. Specifically, it was found that the abundance and type of reagent ions produced by the FAPA source and, thus, the corresponding ionization pathways of analytes, can be altered by changing the source working conditions. High abundance of proton-transfer reagent ions was observed with relatively high gas flow rates and low discharge currents. Conversely, charge-transfer reagent species were most abundant at low gas flows and high discharge currents. A rather nonpolar model analyte, biphenyl, was found to significantly change ionization pathway based on source operating parameters. Different analyte ions (e.g., MH(+) via proton-transfer and M(+.) via charge-transfer) were formed under unique operating parameters demonstrating two different operating regimes. These tunable ionization modes of the FAPA were used to enable or enhance detection of analytes which traditionally exhibit low-sensitivity in plasma-based ADI-MS analyses. In one example, 2,2'-dichloroquaterphenyl was detected under charge-transfer FAPA conditions, which were difficult or impossible to detect with proton-transfer FAPA or direct analysis in real-time (DART). Overall, this unique mode of operation increases the number and range of detectable analytes and has the potential to lessen ionization matrix effects in ADI-MS analyses.
Orejas, Jaime; Pfeuffer, Kevin P; Ray, Steven J; Pisonero, Jorge; Sanz-Medel, Alfredo; Hieftje, Gary M
2014-11-01
Ambient desorption/ionization (ADI) sources coupled to mass spectrometry (MS) offer outstanding analytical features: direct analysis of real samples without sample pretreatment, combined with the selectivity and sensitivity of MS. Since ADI sources typically work in the open atmosphere, ambient conditions can affect the desorption and ionization processes. Here, the effects of internal source parameters and ambient humidity on the ionization processes of the flowing atmospheric pressure afterglow (FAPA) source are investigated. The interaction of reagent ions with a range of analytes is studied in terms of sensitivity and based upon the processes that occur in the ionization reactions. The results show that internal parameters which lead to higher gas temperatures afforded higher sensitivities, although fragmentation is also affected. In the case of humidity, only extremely dry conditions led to higher sensitivities, while fragmentation remained unaffected.
van Smeden, Jeroen; Boiten, Walter A; Hankemeier, Thomas; Rissmann, Robert; Bouwstra, Joke A; Vreeken, Rob J
2014-01-01
Ceramides (CERs), cholesterol, and free fatty acids (FFAs) are the main lipid classes in human stratum corneum (SC, outermost skin layer), but no studies report on the detailed analysis of these classes in a single platform. The primary aims of this study were to 1) develop an LC/MS method for (semi-)quantitative analysis of all main lipid classes present in human SC; and 2) use this method to study in detail the lipid profiles of human skin substitutes and compare them to human SC lipids. By applying two injections of 10μl, the developed method detects all major SC lipids using RPLC and negative ion mode APCI-MS for detection of FFAs, and NPLC using positive ion mode APCI-MS to analyze CERs and cholesterol. Validation showed this lipid platform to be robust, reproducible, sensitive, and fast. The method was successfully applied on ex vivo human SC, human SC obtained from tape strips and human skin substitutes (porcine SC and human skin equivalents). In conjunction with FFA profiles, clear differences in CER profiles were observed between these different SC sources. Human skin equivalents more closely mimic the lipid composition of human stratum corneum than porcine skin does, although noticeable differences are still present. These differences gave biologically relevant information on some of the enzymes that are probably involved in SC lipid processing. For future research, this provides an excellent method for (semi-)quantitative, 'high-throughput' profiling of SC lipids and can be used to advance the understanding of skin lipids and the biological processes involved. © 2013.
Ishida, Naoyuki
2011-08-26
An improved separation method for chlorophyll metabolites in Oriental tobacco leaf was developed. While Oriental leaf still gives the green color even after the curing process, little attention has been paid to the detailed composition of the remaining green pigments. This study aimed to identify the green pigments using non aqueous reversed phase chromatography (NARPC). To this end, liquid chromatograph (LC) equipped with a photo diode array detector (DAD) and an atmospheric pressure chemical ionization/mass spectrometer (APCI/MSD) was selected, because it is useful for detecting low polar non-volatile compounds giving green color such as pheophytin a. Identification was based on the wavelength spectrum, mass spectrum and retention time, comparing the analytes in Oriental leaf with the commercially available and synthesized components. Consequently, several chlorophyll metabolites such as hydroxypheophytin a, solanesyl pheophorbide a and solanesyl hydroxypheophorbide a were newly identified, in addition to typical green pigments such as chlorophyll a and pheophytin a. Chlorophyll metabolites bound to solanesol were considered the tobacco specific components. NARPC expanded the number of detectable low polar chlorophyll metabolites in Oriental tobacco leaf. Copyright © 2011 Elsevier B.V. All rights reserved.
Régnier, Philippe; Bastias, Jorge; Rodriguez-Ruiz, Violeta; Caballero-Casero, Noelia; Caballo, Carmen; Sicilia, Dolores; Fuentes, Axelle; Maire, Murielle; Crepin, Michel; Letourneur, Didier; Gueguen, Virginie; Rubio, Soledad; Pavon-Djavid, Graciela
2015-05-07
Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI)+)/ion trap-MS) characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC) assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM). No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases.
Mass spectrometer characterization of halogen gases in air at atmospheric pressure.
Ivey, Michelle M; Foster, Krishna L
2005-03-01
We have developed a new interface for a commercial ion trap mass spectrometer equipped with APCI capable of real-time measurements of gaseous compounds with limits of detection on the order of pptv. The new interface has been tested using the detection of Br2 and Cl2 over synthetic seawater ice at atmospheric pressure as a model system. A mechanical pump is used to draw gaseous mixtures through a glass manifold into the corona discharge area, where the molecules are ionized. Analysis of bromine and chlorine in dry air show that ion intensity is affected by the pumping rate and the position of the glass manifold. The mass spectrometer signals for Br2 are linear in the 0.1-10.6 ppbv range, and the estimated 3sigma detection limit is 20 pptv. The MS signals for Cl2 are linear in the 0.2-25 ppbv range, and the estimated 3sigma detection limit is 1 ppbv. This new interface advances the field of analytical chemistry by introducing a practical modification to a commercially available ion trap mass spectrometer that expands the available methods for performing highly specific and sensitive measurements of gases in air at atmospheric pressure.
Zhao, Xueheng; Hwang, Huey-Min
2009-05-01
The degradation of selected organophosphorus pesticides (OPs), i.e., malathion and parathion, in river water, has been studied with solar simulator irradiation. The degradation of OPs and formation of degradation products were determined by chromatography coupled with mass spectrometry analysis. The effect of a photosensitizer, i.e., riboflavin, on the photolysis of OPs in a river-water environment was examined. There was no significant increase in the degradation rate in the presence of the photosensitizer. Degradation products of the OPs were identified with gas chromatography coupled with mass spectrometry (GC-MS) after derivatization by pentafluorobenzyl bromide (PFBB) and with high-performance liquid chromatography-mass spectrometry (HPLC-MS) with electrospray (ESI) or atomospheric pressure chemical ionization (APCI). Malaoxon, paraoxon, 4-nitrophenol, aminoparathion, O,O-dimethylthiophosphoric acid, and O,O-dimethyldithiophosphoric acid, have been separated and identified as the degradation products of malathion and parathion after photolysis in river water. Based on the identified transformation products, a rational degradation pathway in river water for both OPs is proposed. The identities of these products can be used to evaluate the toxic effects of the OPs and their transformation products on natural environments.
Mendiola, Jose A; Marín, Francisco R; Hernández, S Francisco; Arredondo, Bertha O; Señoráns, F Javier; Ibañez, Elena; Reglero, Guillermo
2005-06-01
Spirulina platensis microalga has been extracted on a pilot scale plant using supercritical fluid extraction (SFE) under various extraction conditions. The extraction yield and the antioxidant activity of the extracts were evaluated in order to select those extracts with both the highest antioxidant capacity and a good extraction yield. These extracts were characterized using LC coupled to diode array detection (DAD) and LC coupled to mass spectrometry (MS) with two different interfaces, atmospheric pressure chemical ionization (APCI) and electrospray (ESI) which allowed us to perform tandem MS by using an ion trap analyzer. The best extraction conditions were as follows: CO2 with 10% of modifier (ethanol) as extraction solvent, 55 degrees C (extraction temperature) and 220 bar (extraction pressure). Fractionation was achieved by cascade depressurization providing two extracts with different activity and chemical composition. Several compounds have been identified in the extracts, corresponding to different carotenoids previously identified in Spirulina platensis microalga along with chlorophyll a and some degradation products. Also, the structure of some phenolic compounds could be tentatively identified. The antioxidant activity of the extracts could be attributed to some of the above mentioned compounds.
Optical Imaging of Ionizing Radiation from Clinical Sources
Shaffer, Travis M.; Drain, Charles Michael
2016-01-01
Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. PMID:27688469
A Versatile Integrated Ambient Ionization Source Platform.
Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei
2018-04-30
The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. Graphical abstract ᅟ.
A Versatile Integrated Ambient Ionization Source Platform
NASA Astrophysics Data System (ADS)
Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei
2018-04-01
The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. [Figure not available: see fulltext.
Comparison of Three Plasma Sources for Ambient Desorption/Ionization Mass Spectrometry
NASA Astrophysics Data System (ADS)
McKay, Kirsty; Salter, Tara L.; Bowfield, Andrew; Walsh, James L.; Gilmore, Ian S.; Bradley, James W.
2014-09-01
Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.
Comparison of three plasma sources for ambient desorption/ionization mass spectrometry.
McKay, Kirsty; Salter, Tara L; Bowfield, Andrew; Walsh, James L; Gilmore, Ian S; Bradley, James W
2014-09-01
Plasma-based desorption/ionization sources are an important ionization technique for ambient surface analysis mass spectrometry. In this paper, we compare and contrast three competing plasma based desorption/ionization sources: a radio-frequency (rf) plasma needle, a dielectric barrier plasma jet, and a low-temperature plasma probe. The ambient composition of the three sources and their effectiveness at analyzing a range of pharmaceuticals and polymers were assessed. Results show that the background mass spectrum of each source was dominated by air species, with the rf needle producing a richer ion spectrum consisting mainly of ionized water clusters. It was also seen that each source produced different ion fragments of the analytes under investigation: this is thought to be due to different substrate heating, different ion transport mechanisms, and different electric field orientations. The rf needle was found to fragment the analytes least and as a result it was able to detect larger polymer ions than the other sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roshi, D. Anish; Plunkett, Adele; Rosero, Viviana
2012-04-10
Murray and Raham used the Wilkinson Microwave Anisotropy Probe (WMAP) free-free foreground emission map to identify diffuse ionized regions (DIRs) in the Galaxy. It has been found that the 18 most luminous WMAP sources produce more than half of the total ionizing luminosity of the Galaxy. We observed radio recombination lines (RRLs) toward the luminous WMAP source G49.75-0.45 with the Green Bank Telescope near 1.4 GHz. Hydrogen RRL is detected toward the source but no helium line is detected, implying that n{sub He{sup +}}/n{sub H{sup +}}< 0.024. This limit puts severe constraint on the ionizing spectrum. The total ionizing luminositymore » of G49 (3.05 Multiplication-Sign 10{sup 51} s{sup -1}) is {approx}2.8 times the luminosity of all radio H II regions within this DIR and this is generally the case for other WMAP sources. Murray and Rahman propose that the additional ionization is due to massive clusters ({approx}7.5 Multiplication-Sign 10{sup 3} M{sub Sun} for G49) embedded in the WMAP sources. Such clusters should produce enough photons with energy {>=}24.6 eV to fully ionize helium in the DIR. Our observations rule out a simple model with G49 ionized by a massive cluster. We also considered 'leaky' H II region models for the ionization of the DIR, suggested by Lockman and Anantharamaiah, but these models also cannot explain our observations. We estimate that the helium ionizing photons need to be attenuated by {approx}>10 times to explain the observations. If selective absorption of He ionizing photons by dust is causing this additional attenuation, then the ratio of dust absorption cross sections for He and H ionizing photons should be {approx}>6.« less
Simple electronic apparatus for the analysis of radioactively labeled gel electrophoretograms
Goulianos, Konstantin; Smith, Karen K.; White, Sebastian N.
1982-01-01
A high resolution position sensitive radiation detector for analyzing radiation emanating from a source, constructed of a thin plate having an elongated slot with conductive edges acting as a cathode, a charged anode wire positioned within 0.5 mm adjacent the source and running parallel to the slot and centered therein, an ionizable gas ionized by radiation emanating from the source provided surrounding the anode wire in the slot, a helical wire induction coil serving as a delay line and positioned beneath the anode wire for detecting gas ionization and for producing resulting ionization signals, and processing circuits coupled to the induction coil for receiving ionization signals induced therein after determining therefrom the location along the anode wire of any radiation emanating from the source. An ionization gas of 70% Ar, 29% Isobutane, 0.6% Freon 13BI, and 0.4% Methylal is used.
Optical Imaging of Ionizing Radiation from Clinical Sources.
Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan
2016-11-01
Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Shahraki, Hassan; Tabrizchi, Mahmoud; Farrokhpor, Hossein
2018-05-26
The ionization source is an essential component of most explosive detectors based on negative ion mobility spectrometry. Conventional ion sources suffer from such inherent limitations as special safety regulations on radioactive sources or generating interfering ions (for non-radioactive sources) such as corona discharge operating in the air. In this study, a new negative ion source is introduced for ion mobility spectrometry that is based on thermal ionization and operates in the air, applicable to explosives detection. Our system consists of a heating filament powered by an isolated power supply connected to negative high voltage. The ionization is assisted by doping chlorinated compounds in the gas phase using chlorinated hydrocarbons in contact with the heating element to yield Cl - reactant ions. Several chlorinated hydrocarbons are evaluated as the reagent chemicals for providing Cl- reactant ions, of which CCl 4 is identified as the best ionizing reagent. The ion source is evaluated by recording the ion mobility spectra of common explosives, including TNT, RDX, and PETN in the air. A detection limit of 150 pg is obtained for TNT. Compared to other ionization sources, the new source is found to be low-cost, simple, and long-lived, making it suited to portable explosives detection devices. Copyright © 2018 Elsevier B.V. All rights reserved.
Onset of space charge effects in liquid argon ionization chambers
NASA Astrophysics Data System (ADS)
Toggerson, B.; Newcomer, A.; Rutherfoord, J.; Walker, R. B.
2009-09-01
Using a thin-gap liquid argon ionization chamber and Strontium-90 beta sources we have measured ionization currents over a wide range of gap potentials. These precision "HV plateau curves" advance the understanding of liquid argon sampling calorimeter signals, particularly at high ionization rates. The order of magnitude differences in the activities of the beta sources allow us to estimate where the ionization chamber is driven into the space-charge dominated regime.
A Collison nebulizer as an ion source for mass spectrometry analysis
NASA Astrophysics Data System (ADS)
Pervukhin, V. V.; Sheven', D. G.; Kolomiets, Yu. N.
2014-12-01
It is proposed to use a Collison nebulizer as a source of ionization for mass-spectrometry with ionization at atmospheric pressure. This source does not require an electric voltage, radioactive sources, heaters, or liquid pumps. It is shown that the number of ions produced by the Collison nebulizer is ten times greater than the quantity of ions produced by the 63Ni radioactive source and three to four times greater than the number of ions produced with sonic ionization devices.
Van Berkel, Gary J; Kertesz, Vilmos
2017-02-15
An "Open Access"-like mass spectrometric platform to fully utilize the simplicity of the manual open port sampling interface for rapid characterization of unprocessed samples by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The in-house developed integrated software with a simple, small and relatively low-cost mass spectrometry system introduced here fills this void. Software was developed to operate the mass spectrometer, to collect and process mass spectrometric data files, to build a database and to classify samples using such a database. These tasks were accomplished via the vendor-provided software libraries. Sample classification based on spectral comparison utilized the spectral contrast angle method. Using the developed software platform near real-time sample classification is exemplified using a series of commercially available blue ink rollerball pens and vegetable oils. In the case of the inks, full scan positive and negative ion ESI mass spectra were both used for database generation and sample classification. For the vegetable oils, full scan positive ion mode APCI mass spectra were recorded. The overall accuracy of the employed spectral contrast angle statistical model was 95.3% and 98% in case of the inks and oils, respectively, using leave-one-out cross-validation. This work illustrates that an open port sampling interface/mass spectrometer combination, with appropriate instrument control and data processing software, is a viable direct liquid extraction sampling and analysis system suitable for the non-expert user and near real-time sample classification via database matching. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.
Ripollés, Cristina; Pitarch, Elena; Sancho, Juan V; López, Francisco J; Hernández, Félix
2011-09-19
In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d(6) and NDPA-d(14)) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L(-1)) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSD<20%). Limits of detection were found to be in the range of 1-8 ng L(-1). The described methodology has been applied to different types of water samples: chlorinated from drinking water and wastewater treatment plants (DWTP and WWTP, respectively), wastewaters subjected to ozonation and tap waters. Copyright © 2011 Elsevier B.V. All rights reserved.
Boisvert, Michel; Fayad, Paul B; Sauvé, Sébastien
2012-11-19
A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122ng L(-1) while the limit of quantification ranged from 90 to 370ng L(-1). Calibration curves in the wastewater matrix showed good linearity (R(2)≥0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Yongli; Liu, Youping; Qiu, Feng; Di, Xin
2011-03-25
The present paper describes a novel, sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous analysis of ganoderic acids C(2), B, A, H, D in Ganoderma lucidum and its related species. Ganoderma samples were prepared using simple ultrasonic extraction. Chromatographic separation was carried out on an Agilent Zorbax XDB C(18) column (250 mm × 4.6 mm i.d., 5μm) with an isocratic mobile phase consisting of acetonitrile, water and formic acid (42:58:0.5, v/v/v). Mass spectrometric detection was achieved by a triple-quadrupole mass spectrometer equipped with an atmospheric pressure chemical ionization (APCI) interface operating in negative and positive ionization mode via a single within-run polarity switching. Quantitation of five ganoderic acids was performed using selective reaction monitoring (SRM) mode. The intra- and inter-day precision was less than 6.2% and the accuracy ranged from 90.0% to 105.7%. The limit of quantification (LOQ) was 20.0-40.0 ng/mL and the limit of detection (LOD) was 3.0-25.0 ng/mL. With this method, low levels of ganoderic acids in the fruiting bodies of Ganoderma sinense and Ganoderma applanatum were accurately quantified for the first time. Importantly, the method allows unequivocal quantification of the five ganoderic acids in the spores and fruiting bodies of Ganoderma lucidum, whereas the previously published methods have lacked the capability. The method presented will be a powerful tool for quality control of Ganoderma lucidum and its related species. Copyright © 2010 Elsevier B.V. All rights reserved.
Petrovic, Mira; Fernández-Alba, Amadeo Rodrigez; Borrull, Francisco; Marce, Rosa Maria; González, Mazo Eduardo; Barceló, Damià
2002-01-01
Spain is one of the European countries that still discharges untreated wastewaters and sewage sludge to the sea. A total of 35 samples of coastal waters and 39 samples of harbor sediments was analyzed. Samples were collected from several hot spots on the Spanish coast, such as the harbors of Tarragona, Almería, and Barcelona, the mouths of the Besos and Llobregat rivers, the Bay of Cadiz, and various yacht harbors at the Mediterranean coast. A generic analytical procedure based on solid-phase extraction-liquid chromatography-atmospheric pressure chemical ionization/electrospray ionization mass spectrometry (SPE-LC-APCI/ESI-MS) was employed for determining the concentrations of alcohol ethoxylates (AEO), nonylphenol ethoxylates (NPEO), coconut diethanol amides (CDEA), nonylphenoxy-monocarboxylates (NPEC), nonylphenol (NP), octylphenol (OP), and linear alkylbenzene sulfonates (LAS) in sediment and water samples. The analysis revealed the presence of considerably high concentrations of NPEOs and NP near the points of discharge of industrial and urban wastewaters. Nonylphenol was found in 47% of water samples and in 77% of all sediment samples analyzed. Values for NP ranged from <0.15 to 4.1 microg/L in seawater and from <8 to 1,050 microg/kg in sediments. Levels of AEOs and CDEAs in seawater and marine sediments are reported for the first time. Concentrations of CDEAs in sediment, which were predominated by C11 through C15 homologues, ranged from 30 to 2,700 microg/kg, while in seawater, concentrations found were up to 24 microg/L. The AEOs were found to accumulate in a bottom sediment and they were detected in all analyzed sediment samples in concentrations from 37 to 1,300 microg/kg.
NASA Astrophysics Data System (ADS)
Lassen, J.; Li, R.; Raeder, S.; Zhao, X.; Dekker, T.; Heggen, H.; Kunz, P.; P. Levy, C. D.; Mostanmand, M.; Teigelhöfer, A.; Ames, F.
2017-11-01
Developments at TRIUMF's isotope separator and accelerator (ISAC) resonance ionization laser ion source (RILIS) in the past years have concentrated on increased reliability for on-line beam delivery of radioactive isotopes to experiments, as well as increasing the number of elements available through resonance ionization and searching for ionization schemes with improved efficiency. The current status of these developments is given with a list of two step laser ionization schemes implemented recently.
Chao, Yu-Ying; Chen, Yen-Ling; Lin, Hong-Yi; Huang, Yeou-Lih
2018-06-20
Thermal desorption electrospray ionization/mass spectrometry (TD-ESI-MS) employing a quickly interchangeable ionization source is a relatively new ambient ionization mass spectrometric technique that has had, to date, only a limited number of applications related to food safety control. With reallocation of resources, this direct-analysis technique has had wider use in food analysis when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to an ambient ionization source from a traditional atmospheric pressure ionization source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants in processed vegetables (PVs), as a proof-of-concept for the detection of basic colorants. While TD-ESI can offer direct qualitative screening analyses for PVs with detection capabilities lower than those provided with liquid chromatography/UV detection within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous food matrices. Copyright © 2018 Elsevier B.V. All rights reserved.
Laser resonance ionization spectroscopy of antimony
NASA Astrophysics Data System (ADS)
Li, R.; Lassen, J.; Ruczkowski, J.; Teigelhöfer, A.; Bricault, P.
2017-02-01
The resonant ionization laser ion source is an element selective, efficient and versatile ion source to generate radioactive ion beams at on-line mass separator facilities. For some elements with complex atomic structures and incomplete spectroscopic data, laser spectroscopic investigations are required for ionization scheme development. Laser resonance ionization spectroscopy using Ti:Sa lasers has been performed on antimony (Sb) at TRIUMF's off-line laser ion source test stand. Laser light of 230.217 nm (vacuum wavelength) as the first excitation step and light from a frequency-doubled Nd:YVO4 laser (532 nm) as the nonresonant ionization step allowed to search for suitable second excitation steps by continuous wavelength scans from 720 nm to 920 nm across the wavelength tuning range of a grating-tuned Ti:Sa laser. Upon the identification of efficient SES, the third excitation steps for resonance ionization were investigated by laser scans across Rydberg states, the ionization potential and autoionizing states. One Rydberg state and six AI states were found to be well suitable for efficient resonance ionization.
Hurtado-Fernández, E; Pacchiarotta, T; Mayboroda, O A; Fernández-Gutiérrez, A; Carrasco-Pancorbo, A
2015-01-01
In order to investigate avocado fruit ripening, nontargeted GC-APCI-TOF MS metabolic profiling analyses were carried out. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to explore the metabolic profiles from fruit samples of 13 varieties at two different ripening degrees. Mannoheptulose; pentadecylfuran; aspartic, malic, stearic, citric and pantothenic acids; mannitol; and β-sitosterol were some of the metabolites found as more influential for the PLS-DA model. The similarities among genetically related samples (putative mutants of "Hass") and their metabolic differences from the rest of the varieties under study have also been evaluated. The achieved results reveal new insights into avocado fruit composition and metabolite changes, demonstrating therefore the value of metabolomics as a functional genomics tool in characterizing the mechanism of fruit ripening development, a key developmental stage in most economically important fruit crops.
Gan, Heng Hui; Yan, Bingnan; Linforth, Robert S.T.; Fisk, Ian D.
2016-01-01
Headspace techniques have been extensively employed in food analysis to measure volatile compounds, which play a central role in the perceived quality of food. In this study atmospheric pressure chemical ionisation-mass spectrometry (APCI-MS), coupled with gas chromatography–mass spectrometry (GC–MS), was used to investigate the complex mix of volatile compounds present in Cheddar cheeses of different maturity, processing and recipes to enable characterisation of the cheeses based on their ripening stages. Partial least squares-linear discriminant analysis (PLS-DA) provided a 70% success rate in correct prediction of the age of the cheeses based on their key headspace volatile profiles. In addition to predicting maturity, the analytical results coupled with chemometrics offered a rapid and detailed profiling of the volatile component of Cheddar cheeses, which could offer a new tool for quality assessment and accelerate product development. PMID:26212994
Valls-Cantenys, Carme; Scheurer, Marco; Iglesias, Mònica; Sacher, Frank; Brauch, Heinz-Jürgen; Salvadó, Victoria
2016-09-01
A sensitive, multi-residue method using solid-phase extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed to determine a representative group of 35 analytes, including corrosion inhibitors, pesticides and pharmaceuticals such as analgesic and anti-inflammatory drugs, five iodinated contrast media, β-blockers and some of their metabolites and transformation products in water samples. Few other methods are capable of determining such a broad range of contrast media together with other analytes. We studied the parameters affecting the extraction of the target analytes, including sorbent selection and extraction conditions, their chromatographic separation (mobile phase composition and column) and detection conditions using two ionisation sources: electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI). In order to correct matrix effects, a total of 20 surrogate/internal standards were used. ESI was found to have better sensitivity than APCI. Recoveries ranging from 79 to 134 % for tap water and 66 to 144 % for surface water were obtained. Intra-day precision, calculated as relative standard deviation, was below 34 % for tap water and below 21 % for surface water, groundwater and effluent wastewater. Method quantification limits (MQL) were in the low ng L(-1) range, except for the contrast agents iomeprol, amidotrizoic acid and iohexol (22, 25.5 and 17.9 ng L(-1), respectively). Finally, the method was applied to the analysis of 56 real water samples as part of the validation procedure. All of the compounds were detected in at least some of the water samples analysed. Graphical Abstract Multi-residue method for the determination of micropollutants including pharmaceuticals, iodinated contrast media and pesticides in waters by LC-MS/MS.
Radar detection of radiation-induced ionization in air
Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.
2015-07-21
A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.
A combined thermal dissociation and electron impact ionization source for RIB generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1995-12-31
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for RIB applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome thismore » handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article.« less
High resolution far-infrared observations of the evolved H II region M16
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBreen, B.; Fazio, G.G.; Jaffe, D.T.
1982-03-01
M16 is an evolved, extremely density bounded H II region, which now consists only of a series of ionization fronts at molecular cloud boundaries. The source of ionization is the OB star cluster (NGC 6611) which is about 5 x 10/sup 6/ years old. We used the CFA/UA 102 cm balloon-borne telescope to map this region and detected three far-infrared (far-IR) sources embedded in an extended ridge of emission. Source I is an unresolved far-IR source embedded in a molecular cloud near a sharp ionization front. An H/sub 2/O maser is associated with this source, but no radio continuum emissionmore » has been observed. The other two far-IR sources (II and III) are associated with ionized gas-molecular cloud interfaces, with the far-IR radiation arising from dust at the boundary heated by the OB cluster. Source II is located at the southern prominent neutral intrusion with its associated bright rims and dark ''elephant trunk'' globules that delineate the current progress of the ionization front into the neutral material, and Source III arises at the interface of the northern molecular cloud fragment.« less
Wang, Guoying; Shi, Gaofeng; Chen, Xuefu; Chen, Fuwen; Yao, Ruixing; Wang, Zhenju
2013-11-13
A novel free radical reaction combined with liquid chromatography electrospray ionization tandem mass spectrometry (FRR-LC-PDA-ESI/APCI-MS/MS) screening method was developed for the detection and identification of radical-scavenging natural antioxidants. Functionalized graphene was prepared by chemical method for loading free radicals (superoxide radical, peroxyl radical and PAHs free radical). Separation was performed with and without a preliminary exposure of the sample to specific free radicals on the functionalized graphene, which can facilitate reaction kinetics (charge transfers) between free radicals and potential antioxidants. The difference in chromatographic peak areas is used to identify potential antioxidants. The structure of the antioxidants in one sample (Swertia chirayita) is identified using MS/MS and comparison with standards. Thirteen compounds were found to possess potential antioxidant activity, and their free radical-scavenging capacities were investigated. The thirteen compounds were identified as 1,3,5-trihydroxyxanthone-8-O-β-D-glucopyranoside (PD1), norswertianin (PD2), 1,3,5,8-tetrahydroxyxanthone (PD3), 3, 3', 4', 5, 8-penta hydroxyflavone-6-β-D-glucopyranosiduronic acid-6'-pentopyranose-7-O-glucopyranoside (PD4), 1,5,8-trihydroxy-3-methoxyxanthone (PD5), swertiamarin (PS1), 2-C-β-D-glucopyranosyl-1,3,7-trihydroxylxanthone (PS2), 1,3,7-trihydroxylxanthone-8-O-β-D-glucopyranoside (PL1), 1,3,8-trihydroxyl xanthone-5-O-β-D-glucopyranoside (PL2), 1,3,7-trihydroxy-8-methoxyxanthone (PL3), 1,2,3-trihydroxy-7,8-dimethoxyxanthone (PL4), 1,8-dihydroxy-2,6-dimethoxy xanthone (PL5) and 1,3,5,8-tetramethoxydecussatin (PL6). The reactivity and SC50 values of those compounds were investigated, respectively. PD4 showed the strongest capability for scavenging PAHs free radical; PL4 showed prominent scavenging capacities in the lipid peroxidation processes; it was found that all components in S. chirayita exhibited weak reactivity in the superoxide radical scavenging capacity. The use of the free radical reaction screening method based on LC-PDA-ESI/APCI-MS/MS would provide a new approach for rapid detection and identification of radical-scavenging natural antioxidants from complex matrices. Copyright © 2013 Elsevier B.V. All rights reserved.
Mass Spectrometry Vapor Analysis for Improving Explosives Detection Canine Proficiency
2017-02-10
ionization (SESI), 8,19-21 dielectric barrier discharge ionization (DBDI), 21,22 selected-ion-flow-tube (SIFT), 23,24 and proton transfer reaction...handled only with wood- en or Teflon® spatulas to prevent static discharge . Using these precautions, we never experienced an accidental detonation...ionization (SESI) and dielectric barrier discharge ionization (DBDI) sources were used for vapor ioni- zation. Source temperature was held at 100 o C
Reionization of the Universe and the Photoevaporation of Cosmological Minihalos
NASA Technical Reports Server (NTRS)
Shapiro, Paul R.; Raga, Alejandro C.
2000-01-01
The first sources of ionizing radiation to condense out of the dark and neutral Intergalactic Medium (IGM) sent ionization fronts sweeping outward through their surroundings, overtaking other condensed objects and photoevaporating them. This feedback effect of universal reionization on cosmic structure formation is demonstrated here for the case of a cosmological minihalo of dark matter and baryons exposed to an external source of ionizing radiation with a quasar-like spectrum, just after the passage of the global ionization front created by the source. We model the pre-ionization minihalo as a truncated, nonsingular isothermal sphere in hydrostatic equilibrium following its collapse out of the expanding background universe and virialization. Results are presented of the first, gas dynamical simulations of this process, including radiative transfer. A sample of observational diagnostics is also presented, including the spatially-varying ionization levels of C, N, and O in the flow if a trace of heavy elements is present and the integrated column densities of H I, He I and He II, and C IV through the photoevaporating gas at different velocities, which would be measured in absorption against a background source like that responsible for the ionization.
Greenly, John B.
1997-01-01
An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.
Ionization detection system for aerosols
Jacobs, Martin E.
1977-01-01
This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.
Lubin, Arnaud; De Vries, Ronald; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip
2017-08-05
The type and design of an ionization source can have a significant influence on the performances of a bioanalytical method. It is, therefore, of high interest to evaluate the performances of newly introduced sources to highlight their benefits and limitations in comparison to other well established sources. In this paper, liquid chromatography - mass spectrometry (LC/MS) performances of a new atmospheric pressure ionization (API) source, commercialized as UniSpray, is evaluated. The dynamic range of 24 pharmaceutical and biological compounds is compared between the new API source and electrospray ionization (ESI) for 3 different mobile phase conditions. Matrix effects are also compared with ESI on a refined selection of 19 pharmaceutical and biological compounds in 4 matrices commonly encountered in bioanalysis. A slightly better dynamic range towards lower concentrations was often observed with the new API source. Matrix effects were quite similar between the two sources with a small, but statistically significant, lower percentage of matrix effects observed for the new API source in plasma and bile in the positive ion mode, and bile in negative ion mode for ESI. Finally, the sensitivity of late eluting compounds could be improved on the new API source by post-column addition of water. Copyright © 2017 Elsevier B.V. All rights reserved.
Polymer architectures via mass spectrometry and hyphenated techniques: A review.
Crotty, Sarah; Gerişlioğlu, Selim; Endres, Kevin J; Wesdemiotis, Chrys; Schubert, Ulrich S
2016-08-17
This review covers the application of mass spectrometry (MS) and its hyphenated techniques to synthetic polymers of varying architectural complexities. The synthetic polymers are discussed as according to their architectural complexity from linear homopolymers and copolymers to stars, dendrimers, cyclic copolymers and other polymers. MS and tandem MS (MS/MS) has been extensively used for the analysis of synthetic polymers. However, the increase in structural or architectural complexity can result in analytical challenges that MS or MS/MS cannot overcome alone. Hyphenation to MS with different chromatographic techniques (2D × LC, SEC, HPLC etc.), utilization of other ionization methods (APCI, DESI etc.) and various mass analyzers (FT-ICR, quadrupole, time-of-flight, ion trap etc.) are applied to overcome these challenges and achieve more detailed structural characterizations of complex polymeric systems. In addition, computational methods (software: MassChrom2D, COCONUT, 2D maps etc.) have also reached polymer science to facilitate and accelerate data interpretation. Developments in technology and the comprehension of different polymer classes with diverse architectures have significantly improved, which allow for smart polymer designs to be examined and advanced. We present specific examples covering diverse analytical aspects as well as forthcoming prospects in polymer science. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Ying-yong; Cheng, Xian-long; Zhang, Yongmin; Zhao, Ye; Lin, Rui-chao; Sun, Wen-ji
2010-02-01
Polyporus umbellatus is a widely used diuretic herbal medicine. In this study, a high-performance liquid chromatography coupled with atmospheric pressure chemical ionization-mass spectrometric detection (HPLC-APCI-MS) method was developed for qualitative and quantitative analysis of steroids, as well as for the quality control of Polyporus umbellatus. The selectivity, reproducibility and sensitivity were compared with HPLC with photodiode array detection and evaporative light scattering detection (ELSD). Selective ion monitoring in positive mode was used for qualitative and quantitative analysis of eight major components and beta-ecdysterone was used as the internal standard. Limits of detection and quantification fell in the ranges 7-21 and 18-63 ng/mL for the eight analytes with an injection of 10 microL samples, and all calibration curves showed good linear regression (r(2) > 0.9919) within the test range. The quantitative results demonstrated that samples from different localities showed different qualities. Advantages, in comparison with conventional HPLC-diode array detection and HPLC-ELSD, are that reliable identification of target compounds could be achieved by accurate mass measurements along with characteristic retention time, and the great enhancement in selectivity and sensitivity allows identification and quantification of low levels of constituents in complex Polyporus umbellatus matrixes. (c) 2009 John Wiley & Sons, Ltd.
Régnier, Philippe; Bastias, Jorge; Rodriguez-Ruiz, Violeta; Caballero-Casero, Noelia; Caballo, Carmen; Sicilia, Dolores; Fuentes, Axelle; Maire, Murielle; Crepin, Michel; Letourneur, Didier; Gueguen, Virginie; Rubio, Soledad; Pavon-Djavid, Graciela
2015-01-01
Astaxanthin, a powerful antioxidant, is a good candidate for the prevention of intracellular oxidative stress. The aim of the study was to compare the antioxidant activity of astaxanthin present in two natural extracts from Haematococcus pluvialis, a microalgae strain, with that of synthetic astaxanthin. Natural extracts were obtained either by solvent or supercritical extraction methods. UV, HPLC-DAD and (HPLC-(atmospheric pressure chemical ionization (APCI)+)/ion trap-MS) characterizations of both natural extracts showed similar compositions of carotenoids, but different percentages in free astaxanthin and its ester derivatives. The Trolox equivalent antioxidant capacity (TEAC) assay showed that natural extracts containing esters displayed stronger antioxidant activities than free astaxanthin. Their antioxidant capacities to inhibit intracellular oxidative stress were then evaluated on HUVEC cells. The intracellular antioxidant activity in natural extracts was approximately 90-times higher than synthetic astaxanthin (5 µM). No modification, neither in the morphology nor in the viability, of vascular human cells was observed by in vitro biocompatibility study up to 10 µM astaxanthin concentrations. Therefore, these results revealed the therapeutic potential of the natural extracts in vascular human cell protection against oxidative stress without toxicity, which could be exploited in prevention and/or treatment of cardiovascular diseases. PMID:25962124
Chen, Guoqiang; Hoptroff, Michael; Fei, Xiaoqing; Su, Ya; Janssen, Hans-Gerd
2013-11-22
A sensitive and specific ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the measurement of climbazole deposition from hair care products onto artificial skin and human scalp. Deuterated climbazole was used as the internal standard. Atmospheric pressure chemical ionization (APCI) in positive mode was applied for the detection of climbazole. For quantification, multiple reaction monitoring (MRM) transition 293.0>69.0 was monitored for climbazole, and MRM transition 296.0>225.1 for the deuterated climbazole. The linear range ran from 4 to 2000 ng mL(-1). The limit of detection (LOD) and the limit of quantification (LOQ) were 1 ng mL(-1) and 4 ng mL(-1), respectively, which enabled quantification of climbazole on artificial skin and human scalp at ppb level (corresponding to 16 ng cm(-2)). For the sampling of climbazole from human scalp the buffer scrub method using a surfactant-modified phosphate buffered saline (PBS) solution was selected based on a performance comparison of tape stripping, the buffer scrub method and solvent extraction in in vitro studies. Using this method, climbazole deposition in in vitro and in vivo studies was successfully quantified. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Omuombo, C.; Huguet, A.; Olago, D.; Williamson, D.
2013-12-01
Glycerol diakyl glycerol tetraethers (GDGTs), a palaeoclimate proxy based on the relative abundance of lipids produced by archaea and bacteria, is gaining wide acceptance for the determination of past temperature and pH conditions. This study looks at the spatial distribution and abundance of GDGTs in soil and sediment samples along an altitudinal transect from 3 crater lakes of Mt. Kenya (Lake Nkunga, Sacred Lake and Lake Rutundu) ranging in elevation from 1700m - 3080m above sea level. GDGTs were extracted with solvents and then analysed using high performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (HPLC/APCI-MS). Mean annual air temperature and pH were estimated based on the relative abundance of the different branched GDGTs, i.e. on the MBT (Methylation index of Branched Tetraethers) and CBT (Cyclization ratio of Branched Tetraethers) indices. Substantial amount of GDGTs were detected in both soil and sediment samples. In addition, branched GDGT distribution was observed to vary with altitude. These results highlight the importance of quantifying the branched GDGTs to understand the environmental parameters controlling the distribution of these lipids. The MBT/CBT proxy is a promising tool to infer palaeotemperatures and characterize the climate events of the past millennia in equatorial east Africa.
Characterization of Atmospheric Organic Nitrates in Particles
NASA Astrophysics Data System (ADS)
Bruns, E. A.; Alexander, M. L.; Perraud, V.; Yu, Y.; Ezell, M.; Johnson, S. N.; Zellenyuk, A.; Imre, D.; Finlayson-Pitts, B. J.
2008-12-01
Aerosols in the atmosphere significantly affect climate, human health and visibility. Knowledge of aerosol composition is necessary to understand and then predict the specific impacts of aerosols in the atmosphere. It is known that organic nitrates are present in particles, but there is limited knowledge of the individual compounds and quantity. This is in part due to the lack of a wide variety of proven analytical techniques for particulate organic nitrates. In this study, several known organic nitrates, as well as those present in complex mixtures formed from oxidation of "Ñ-pinene, were studied using a variety of techniques. These include Fourier Transform infrared spectroscopy (FTIR) of samples collected by impaction on ZnSe discs. Samples were also collected on quartz fiber filters and the extracts analyzed by electrospray mass spectrometry (ESI- MS), atmospheric pressure chemical ionization mass spectrometry (APCI-MS), HPLC-UV, LC-MS and GC-MS. In addition, real-time analysis was provided by SPLAT-II and aerosol mass spectrometry (AMS). FTIR analysis of particles collected on ZnSe discs provides information on the ratio of organic nitrate to total organic content, while the analysis of filter extracts allows identification of specific organic nitrates. These are compared to the particle mass spectrometry data and the implications for detecting and measuring particulate organic nitrate in air is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-04-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-03-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
Bell, W.A. Jr.; Love, L.O.; Prater, W.K.
1958-01-28
An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.
Resonance ionization laser ion sources for on-line isotope separators (invited).
Marsh, B A
2014-02-01
A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.
The requirements for low-temperature plasma ionization support miniaturization of the ion source.
Kiontke, Andreas; Holzer, Frank; Belder, Detlev; Birkemeyer, Claudia
2018-06-01
Ambient ionization mass spectrometry (AI-MS), the ionization of samples under ambient conditions, enables fast and simple analysis of samples without or with little sample preparation. Due to their simple construction and low resource consumption, plasma-based ionization methods in particular are considered ideal for use in mobile analytical devices. However, systematic investigations that have attempted to identify the optimal configuration of a plasma source to achieve the sensitive detection of target molecules are still rare. We therefore used a low-temperature plasma ionization (LTPI) source based on dielectric barrier discharge with helium employed as the process gas to identify the factors that most strongly influence the signal intensity in the mass spectrometry of species formed by plasma ionization. In this study, we investigated several construction-related parameters of the plasma source and found that a low wall thickness of the dielectric, a small outlet spacing, and a short distance between the plasma source and the MS inlet are needed to achieve optimal signal intensity with a process-gas flow rate of as little as 10 mL/min. In conclusion, this type of ion source is especially well suited for downscaling, which is usually required in mobile devices. Our results provide valuable insights into the LTPI mechanism; they reveal the potential to further improve its implementation and standardization for mobile mass spectrometry as well as our understanding of the requirements and selectivity of this technique. Graphical abstract Optimized parameters of a dielectric barrier discharge plasma for ionization in mass spectrometry. The electrode size, shape, and arrangement, the thickness of the dielectric, and distances between the plasma source, sample, and MS inlet are marked in red. The process gas (helium) flow is shown in black.
NASA Astrophysics Data System (ADS)
Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu
2017-06-01
A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H]+ was observed in the case of individual alkanes (C5-C19) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. [Figure not available: see fulltext.
Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu
2017-06-01
A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H] + was observed in the case of individual alkanes (C 5 -C 19 ) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. Graphical Abstract ᅟ.
Giménez, Estela; Juan, M Emília; Calvo-Melià, Sara; Barbosa, José; Sanz-Nebot, Victoria; Planas, Joana M
2015-09-04
Pentacyclic triterpenes are gaining interest due to their beneficial health effects, as anti-inflammatory, anti-diabetic and anti-tumoral, among others. In this study, an analytical LC-MS method was developed for the simultaneous determination of maslinic, oleanolic and ursolic acids along with erythrodiol and uvaol, which are the main triterpenic compounds present in the fruits and leaves of Olea europaea L. A Zorbax Eclipse PAH column at 30°C with mobile phase of water (17%) and methanol (83%) at 0.8mL/min conformed the optimal chromatographic conditions that allowed the separation of the compounds of interest, two pairs of which are isomers differing only in the position of one methyl group (oleanolic-ursolic and erythrodiol-uvaol). The ionization was performed in an APCI source at 450°C programmed in negative mode for the triterpenic acids, and in positive for the alcohols. An ion trap (LC-IT-MS) and a triple quadrupole (LC-QqQ-MS) were assessed for maximal sensitivity that was achieved with LC-QqQ-MS. The LODs of triterpenic acids were lower than 1nM, whereas for erythrodiol and uvaol were 4.5 and 7.5nM, respectively. The method was linear for the five analytes in the range of concentrations from 0.005 to 15μM with correlation coefficients exceeding 0.99. The precision and accuracy were ≤9.90% and ≤9.57%, respectively. The applicability of the validated method was assessed in the analysis of the pentacyclic triterpenes in Marfil table olives, after the optimization of the extraction procedure. The developed method constitutes the first step for future studies of triterpenic compounds present in foods that would allow establishing their effects on human health. Copyright © 2015 Elsevier B.V. All rights reserved.
The Raputindoles: Novel Cyclopentyl Bisindole Alkaloids from Raputia simulans
USDA-ARS?s Scientific Manuscript database
A novel class of bisindole alkaloids is established by the isolation and structural determination of Raputindoles A-D (1-4) from the Amazonian plant Raputia simulans Kallunki (Rutaceae). Complete spectroscopic characterization was accomplished by means of NMR spectroscopy and APCI (+) HRMS. Raputind...
A singly charged ion source for radioactive {sup 11}C ion acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katagiri, K.; Noda, A.; Nagatsu, K.
2016-02-15
A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source wasmore » found to have favorable performance as a singly charged ion source.« less
[Use of ionizing radiation sources in metallurgy: risk assessment].
Giugni, U
2012-01-01
Use of ionizing radiation sources in the metallurgical industry: risk assessment. Radioactive sources and fixed or mobile X-ray equipment are used for both process and quality control. The use of ionizing radiation sources requires careful risk assessment. The text lists the characteristics of the sources and the legal requirements, and contains a description of the documentation required and the methods used for risk assessment. It describes how to estimate the doses to operators and the relevant classification criteria used for the purpose of radiation protection. Training programs must be organized in close collaboration between the radiation protection expert and the occupational physician.
The SPES surface ionization source
NASA Astrophysics Data System (ADS)
Manzolaro, M.; D'Agostini, F.; Monetti, A.; Andrighetto, A.
2017-09-01
Ion sources and target systems play a crucial role in isotope separation on line facilities, determining the main characteristics of the radioactive ion beams available for experiments. In the context of the selective production of exotic species (SPES) facility, a 40 MeV, 200 μA proton beam directly impinges a uranium carbide target, generating approximately 1013 fissions per second. The radioactive isotopes produced by the 238U fissions are delivered to the 1+ ion source by means of a tubular transfer line. Here they can be ionized and subsequently accelerated toward the experimental areas. In this work, the characterization of the surface ionization source currently adopted for the SPES facility is presented, taking as a reference ionization efficiency and transversal emittance measurements. The effects of long term operation at high temperature are also illustrated and discussed.
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha P.; Macalpine, Gordon M.
1992-01-01
Well-constrained photoionization models for the Seyfert I galaxy NGC 3783 are developed. Both cross-correlation analyses and line variability trends with varying ionizing radiation flux require a multicomponent picture. All the data for He II 1640 A, C IV 1549 A, and semiforbidden C III 1909 A can be reasonably well reproduced by two cloud components. One has a source-cloud distance of 24 lt-days, gas density around 3 x 10 exp 10/cu cm, ionization parameter range of 0.04-0.2, and cloud thickness such that about half of the carbon is doubly ionized and about half is triply ionized. The other component is located approximately 96 lt-days from the source, is shielded from the source by the inner cloud, has a density about 3 x 10 to the 9th/cu cm, and is characterized by an ionization parameter range of 0.001-0.03, The cloud thickness is such that about 45 percent carbon is doubly ionized and about 55 percent is singly ionized.
Large-scale fluctuations in the cosmic ionizing background: the impact of beamed source emission
NASA Astrophysics Data System (ADS)
Suarez, Teresita; Pontzen, Andrew
2017-12-01
When modelling the ionization of gas in the intergalactic medium after reionization, it is standard practice to assume a uniform radiation background. This assumption is not always appropriate; models with radiative transfer show that large-scale ionization rate fluctuations can have an observable impact on statistics of the Lyman α forest. We extend such calculations to include beaming of sources, which has previously been neglected but which is expected to be important if quasars dominate the ionizing photon budget. Beaming has two effects: first, the physical number density of ionizing sources is enhanced relative to that directly observed; and secondly, the radiative transfer itself is altered. We calculate both effects in a hard-edged beaming model where each source has a random orientation, using an equilibrium Boltzmann hierarchy in terms of spherical harmonics. By studying the statistical properties of the resulting ionization rate and H I density fields at redshift z ∼ 2.3, we find that the two effects partially cancel each other; combined, they constitute a maximum 5 per cent correction to the power spectrum P_{H I}(k) at k = 0.04 h Mpc-1. On very large scales (k < 0.01 h Mpc-1) the source density renormalization dominates; it can reduce, by an order of magnitude, the contribution of ionizing shot noise to the intergalactic H I power spectrum. The effects of beaming should be considered when interpreting future observational data sets.
Greenly, J.B.
1997-08-12
An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.
Jiang, Ping; Lucy, Charles A
2015-10-15
Electrospray ionization mass spectrometry (ESI-MS) has significantly impacted the analysis of complex biological and petroleum samples. However ESI-MS has limited ionization efficiency for samples in low dielectric and low polarity solvents. Addition of a make-up solvent through a T union or electrospray solvent through continuous flow extractive desorption electrospray ionization (CF-EDESI) enable ionization of analytes in non-ESI friendly solvents. A conventional make-up solvent addition setup was used and a CF-EDESI source was built for ionization of nitrogen-containing standards in hexane or hexane/isopropanol. Factors affecting the performance of both sources have been investigated and optimized. Both the make-up solvent addition and CF-EDESI improve the ionization efficiency for heteroatom compounds in non-ESI friendly solvents. Make-up solvent addition provides higher ionization efficiency than CF-EDESI. Neither the make-up solvent addition nor the CF-EDESI eliminates ionization suppression of nitrogen-containing compounds caused by compounds of the same chemical class. Copyright © 2015 Elsevier B.V. All rights reserved.
Determination of Biogenic Amines with HPLC-APCI-MS
USDA-ARS?s Scientific Manuscript database
Determination of biogenic amines in fish samples can be used as a quality attribute and are commonly performed using a derivatization step followed by high pressure liquid chromatography (HPLC) and UV detection. Over estimation and misidentification of biogenic amines can occur when interfering comp...
Critical ratios for structural analysis of triacylglycerols using mass spectrometry
USDA-ARS?s Scientific Manuscript database
Recent developments have finally allowed fragment behaviors using APCI-MS to be elucidated after twenty years of literature reports. Critical Ratios have been defined that correspond to various aspects of triacylglycerol (TAG) analysis, from overall degree of unsaturation to localization of fatty ac...
A rapid HPLC-APCI-MS method to detect fluoroacetate in plants
USDA-ARS?s Scientific Manuscript database
Many plant species worldwide can cause sudden death of grazing livestock. One diagnostic differential is the presence of monofluoroacetate (MFA) that is metabolised to fluorocitrate that subsequently inhibits the Kreb’s Cycle (the tricarboxylic acid cycle) leading to cellular respiration dysfunction...
Vrkoslav, Vladimír; Urbanová, Klára; Háková, Matina; Cvačka, Josef
2013-08-09
Wax esters (WEs), esters of long-chain fatty acids and long-chain alcohols, were analysed by Ag-HPLC/APCI-MS/MS. Two ChromSpher Lipids columns connected in series (a total length of 50cm) and hexane-2-propanol-acetonitrile mobile phases were used to achieve good separation of the molecular species. The chromatographic behaviour of WEs was studied under optimised conditions: retention increased with the number of double bonds and with the temperature (15-35°C); retention times were affected by the double-bond position, trans isomers eluted earlier than cis isomers, and the WEs were partially separated depending on the aliphatic-chain length. The WEs provided simple APCI spectra with [M+H](+) ions, the MS/MS spectra showed fragments, which allowed their identification. The method was applied for an analysis of the WE mixtures from jojoba oil and human hair and the results were compared with analogous data from an optimised RP-HPLC system. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhong, Lijie; Gustavsson, Karl-Erik; Oredsson, Stina; Głąb, Bartosz; Yilmaz, Jenny Lindberg; Olsson, Marie E
2016-11-01
Rose hip fruit, which contains high concentration of carotenoids is commonly used for different food products in Europe and it is considered to have medical properties. In this study, a simple, rapid and efficient HPLC-DAD-APCI(+)-MS method was developed and applied to identify and quantify the carotenoids in rose hip fruit of four rose species, including both unsaponified and saponified extract. In the unsaponified extract 23 carotenoid esters were detected, in which either rubixanthin ester or violaxanthin ester was the dominant component of the ester composition. In the saponified extract 21 carotenoids, including 11 xanthophylls and 10 carotenes were detected. This is the first time the total carotenoid composition, including the carotenoid esters in rose hip fruit were identified and quantified. This work reveals the potential of rose hip fruit to be utilized as a healthy dietary material and give chemical information for the possible future development in the pharmacology field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Angelis, Apostolis; Urbain, Aurélie; Halabalaki, Maria; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros
2011-09-01
The value-added γ-oryzanol was purified in one step from crude rice bran oil (RBO) using a preparative hydrostatic countercurrent chromatography (hydrostatic CCC) method, operating in the dual mode. The fractionation was performed using a non-aqueous biphasic solvent system consisting of heptane-acetonitrile-butanol (1.8:1.4:0.7, v/v/v), leading rapidly to the target compounds. Transfer of the analytical CCC method to large-scale isolation was also carried out yielding a high quantity-high purity fraction of γ-oryzanol. In addition, a fraction of hydroxylated triterpene alcohol ferulates (polar γ-oryzanol) was clearly separated and obtained. Furthermore, a fast HPLC-APCI(±)-HRMS method was developed and applied for the identification of γ-oryzanol as well as the polar γ-oryzanol in RBO and the resulting fractions. The purity of γ-oryzanol fraction was estimated as 97% based on HPLC-APCI-HRMS analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of triacylglycerols on porous graphitic carbon by high temperature liquid chromatography.
Merelli, Bérangère; De Person, Marine; Favetta, Patrick; Lafosse, Michel
2007-07-20
The retention behaviour of several triacylglycerols (TAGs) and fats on Hypercarb, a porous graphitic carbon column (PGC), was investigated in liquid chromatography (LC) under isocratic elution mode with an evaporative light scattering detector (ELSD). Mixtures of chloroform/isopropanol were selected as mobile phase for a suitable retention time to study the influence of temperature. The retention was different between PGC and non-aqueous reversed phase liquid chromatography (NARP-LC) on octadecyl phase. The retention of TAGs was investigated in the interval 30-70 degrees C. Retention was greatly affected by temperature: it decreases as the column temperature increases. Selectivity of TAGs was also slightly influenced by the temperature. Moreover, this chromatographic method is compatible with a mass spectrometer (MS) detector by using atmospheric pressure chemical ionisation (APCI): same fingerprints of cocoa butter and shea butter were obtained with LC-ELSD and LC-APCI-MS. These preliminary results showed that the PGC column could be suitable to separate quickly triacylglycerols in high temperature conditions coupled with ELSD or MS detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahoney, Christine M.; Kelly, Ryan T.; Alexander, M. L.
Key elements regarding the use of non-radioactive ionization sources will be presented as related to explosives detection by mass spectrometry and ion mobility spectrometry. Various non-radioactive ionization sources will be discussed along with associated ionization mechanisms pertaining to specific sample types.
32 CFR 655.10 - Use of radiation sources by non-Army entities on Army land (AR 385-11).
Code of Federal Regulations, 2010 CFR
2010-07-01
... radioisotope; or (5) A machine-produced ionizing-radiation source capable of producing an area, accessible to... NARM and machine-produced ionizing radiation sources, the applicant has an appropriate State... 32 National Defense 4 2010-07-01 2010-07-01 true Use of radiation sources by non-Army entities on...
HPLC-MS analysis of pheromone glucoconjugates in oral secretions of male Anastrepha Fruit Flies
USDA-ARS?s Scientific Manuscript database
Using high performance liquid chromatography combined with ESi, APCI, and PBEI mass spectroscopy, novel terpenoid glycoconjugates were identified in oral secretions of several Anastrepha fly species; these findings suggest that non-volatile pheromone signals are used in their lek mating strategies. ...
Immobilized aptamer paper spray ionization source for ion mobility spectrometry.
Zargar, Tahereh; Khayamian, Taghi; Jafari, Mohammad T
2017-01-05
A selective thin-film microextraction based on aptamer immobilized on cellulose paper was used as a paper spray ionization source for ion mobility spectrometry (PSI-IMS), for the first time. In this method, the paper is not only used as an ionization source but also it is utilized for the selective extraction of analyte, based on immobilized aptamer. This combination integrates both sample preparation and analyte ionization in a Whatman paper. To that end, an appropriate sample introduction system with a novel design was constructed for the paper spray ionization source. Using this system, a continuous solvent flow works as an elution and spray solvent simultaneously. In this method, analyte is adsorbed on a triangular paper with immobilized aptamer and then it is desorbed and ionized by elution solvent and applied high voltage on paper, respectively. The effects of different experimental parameters such as applied voltage, angle of paper tip, distance between paper tip and counter electrode, elution solvent type, and solvent flow rate were optimized. The proposed method was exhaustively validated in terms of sensitivity and reproducibility by analyzing the standard solutions of codeine and acetamiprid. The analytical results obtained are promising enough to ensure the use of immobilized aptamer paper-spray as both the extraction and ionization techniques in IMS for direct analysis of biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.
Wen, Xin; Hempel, Judith; Schweiggert, Ralf M; Ni, Yuanying; Carle, Reinhold
2017-08-02
Carotenoid profiles of fruits and calyces of red (Physalis alkekengi L.) and yellow (P. pubescens L.) Physalis were characterized by HPLC-DAD-APCI-MS n . Altogether 69 carotenoids were detected in red Physalis, thereof, 45 were identified. In yellow Physalis, 40 carotenoids were detected and 33 were identified. Zeaxanthin esters with various fatty acids were found to be the most abundant carotenoids in red Physalis, accounting for 51-63% of total carotenoids, followed by β-cryptoxanthin esters (16-24%). In yellow Physalis, mainly free carotenoids such as lutein and β-carotene were found. Total carotenoid contents ranged between 19.8 and 21.6 mg/100 g fresh red Physalis fruits and 1.28-1.38 mg/100 g fresh yellow Physalis fruits, demonstrating that Physalis fruits are rich sources of dietary carotenoids. Yellow Physalis calyces contained only 153-306 μg carotenoids/g dry weight, while those of red Physalis contained substantially higher amounts (14.6-17.6 mg/g dry weight), thus possibly exhibiting great potential as a natural source for commercial zeaxanthin extraction.
ION PRODUCING MECHANISM (ARC EXTERNAL TO BLOCK)
Brobeck, W.H.
1958-09-01
This patent pentains to an ion producing mechanism employed in a calutron which has the decided advantage of an increased amount of ionization effectuated by the arc, and a substantially uniform arc in poiat of time, i arc location and along the arc length. The unique features of the disclosed ion source lie in the specific structural arrangement of the source block, gas ionizing passage, filament shield and filament whereby the arc is established both within the ionizing passage and immediately outside the exit of the ionizing passage at the block face.
Analytical instruments, ionization sources, and ionization methods
Atkinson, David A.; Mottishaw, Paul
2006-04-11
Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.
Crawford, C L; Hill, H H
2013-03-30
(63)Nickel radioactive ionization ((63)Ni) is the most common and widely used ion source for ion mobility spectrometry (IMS). Regulatory, financial, and operational concerns with this source have promoted recent development of non-radioactive sources, such as corona discharge ionization (CD), for stand-alone IMS systems. However, there has been no comparison of the negative ion species produced by all three sources in the literature. This study compares the negative reactant and analyte ions produced by three sources on an ion mobility-mass spectrometer: conventional (63)Ni, CD, and secondary electrospray ionization (SESI). Results showed that (63)Ni and SESI produced the same reactant ion species while CD produced only the nitrate monomer and dimer ions. The analyte ions produced by each ion source were the same except for the CD source which produced a different ion species for the explosive RDX than either the (63)Ni or SESI source. Accurate and reproducible reduced mobility (K0) values, including several values reported here for the first time, were found for each explosive with each ion source. Overall, the SESI source most closely reproduced the reactant ion species and analyte ion species profiles for (63)Ni. This source may serve as a non-radioactive, robust, and flexible alternative for (63)Ni. Copyright © 2013 Elsevier B.V. All rights reserved.
29 CFR 1926.53 - Ionizing radiation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 8 2011-07-01 2011-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...
29 CFR 1926.53 - Ionizing radiation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 8 2012-07-01 2012-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...
29 CFR 1926.53 - Ionizing radiation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 8 2014-07-01 2014-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...
Cox, Jonathan T.; Kronewitter, Scott R.; Shukla, Anil K.; ...
2014-09-15
Subambient pressure ionization with nanoelectrospray (SPIN) has proven to be effective in producing ions with high efficiency and transmitting them to low pressures for high sensitivity mass spectrometry (MS) analysis. Here we present evidence that not only does the SPIN source improve MS sensitivity but also allows for gentler ionization conditions. The gentleness of a conventional heated capillary electrospray ionization (ESI) source and the SPIN source was compared by the liquid chromatography mass spectrometry (LC-MS) analysis of colominic acid. Colominic acid is a mixture of sialic acid polymers of different lengths containing labile glycosidic linkages between monomer units necessitating amore » gentle ion source. By coupling the SPIN source with high resolution mass spectrometry and using advanced data processing tools, we demonstrate much extended coverage of sialic acid polymer chains as compared to using the conventional ESI source. Additionally we show that SPIN-LC-MS is effective in elucidating polymer features with high efficiency and high sensitivity previously unattainable by the conventional ESI-LC-MS methods.« less
Shelley, Jacob T; Chan, George C-Y; Hieftje, Gary M
2012-02-01
The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H(2)O vapor, N(2), and O(2) diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (T(rot)) and electron number density (n(e)), were also measured in the APGD. Maximum values for T(rot) and n(e) were found to be ~1100 K and ~4×10(19) m(-3), respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N(2)(+) yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N(2)(+) temperature is believed to be caused by charge-transfer ionization of N(2) by He(2)(+). These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source. © American Society for Mass Spectrometry, 2011
Shelley, Jacob T; Hieftje, Gary M
2010-04-01
The recent development of ambient desorption/ionization mass spectrometry (ADI-MS) has enabled fast, simple analysis of many different sample types. The ADI-MS sources have numerous advantages, including little or no required sample pre-treatment, simple mass spectra, and direct analysis of solids and liquids. However, problems of competitive ionization and limited fragmentation require sample-constituent separation, high mass accuracy, and/or tandem mass spectrometry (MS/MS) to detect, identify, and quantify unknown analytes. To maintain the inherent high throughput of ADI-MS, it is essential for the ion source/mass analyzer combination to measure fast transient signals and provide structural information. In the current study, the flowing atmospheric-pressure afterglow (FAPA) ionization source is coupled with a time-of-flight mass spectrometer (TOF-MS) to analyze fast transient signals (<500 ms FWHM). It was found that gas chromatography (GC) coupled with the FAPA source resulted in a reproducible (<5% RSD) and sensitive (detection limits of <6 fmol for a mixture of herbicides) system with analysis times of ca. 5 min. Introducing analytes to the FAPA in a transient was also shown to significantly reduce matrix effects caused by competitive ionization by minimizing the number and amount of constituents introduced into the ionization source. Additionally, MS/MS with FAPA-TOF-MS, enabling analyte identification, was performed via first-stage collision-induced dissociation (CID). Lastly, molecular and structural information was obtained across a fast transient peak by modulating the conditions that caused the first-stage CID.
NASA Astrophysics Data System (ADS)
Shelley, Jacob T.; Chan, George C.-Y.; Hieftje, Gary M.
2012-02-01
The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H2O vapor, N2, and O2 diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (Trot) and electron number density (ne), were also measured in the APGD. Maximum values for Trot and ne were found to be ~1100 K and ~4 × 1019 m-3, respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N{2/+} yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N{2/+} temperature is believed to be caused by charge-transfer ionization of N2 by He{2/+}. These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source.
Low latitude middle atmosphere ionization studies
NASA Technical Reports Server (NTRS)
Bassi, J. P.
1976-01-01
Low latitude middle atmosphere ionization was studied with data obtained from three blunt conductivity probes and one Gerdien condenser. An investigation was conducted into the effects of various ionization sources in the 40 to 65 Km altitude range. An observed enhancement of positive ion conductivity taking place during the night can be explained by an atmsopheric effect, with cosmic rays being the only source of ionization only if the ion-ion recombination coefficient (alpha sub i) is small(10 to the -7 power cu cm/s) and varies greatly with altitude. More generally accepted values of alpha sub i ( approximately equal to 3x10 to the -7 power cu cm/s) require an additional source of ionization peaking at about 65 Km, and corresponding approximately to the integrated effect of an X-ray flux measured on a rocket flown in conjunction with the ionization measurements. The reasonable assumption of an alpha sub i which does not vary with altitude in the 50-70 Km range implies an even greater value alpha sub i and a more intense and harder X-ray spectrum.
Portable Tandem Mass Spectrometer Analyzer
1991-07-01
The planned instrument was to be small enough to be portable in small vehicles and was to be able to use either an atmospheric pressure ion source or a...conventional electron impact/chemical ionization ion source. In order to accomplish these developments an atmospheric pressure ionization source was...developed for a compact, commercially available tandem quadrupole mass spectrometer. This ion source could be readily exchanged with the conventional
Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric
2017-05-29
The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.
Jumaah, Firas; Plaza, Merichel; Abrahamsson, Victor; Turner, Charlotta; Sandahl, Margareta
2016-08-01
In this study, a rapid and sensitive ultra-high performance supercritical fluid chromatography-mass spectrometry (UHPSFC-MS) method has been developed and partially validated for the separation of carotenoids within less than 6 min. Six columns of orthogonal selectivity were examined, and the best separation was obtained by using a 1-aminoanthracene (1-AA) column. The length of polyene chain as well as the number of hydroxyl groups in the structure of the studied carotenoids determines their differences in the physiochemical properties and thus the separation that is achieved on this column. All of the investigated carotenoids were baseline separated with resolution values greater than 1.5. The effects of gradient program, back pressure, and column temperature were studied with respect to chromatographic properties such as retention and selectivity. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were compared in both positive and negative mode, using both direct infusion and hyphenated with UHPSFC. The ESI in positive mode provided the highest response. The coefficient of determination (R (2)) for all calibration curves were greater than 0.998. Limit of detection (LOD) was in the range of 2.6 and 25.2 ng/mL for α-carotene and astaxanthin, respectively, whereas limit of quantification (LOQ) was in the range of 7.8 and 58.0 ng/mL for α-carotene and astaxanthin, respectively. Repeatability and intermediate precision of the developed UHPSFC-MS method were determined and found to be RSD < 3 % and RSD < 6 %, respectively. The method was applied in order to determine carotenoids in supercritical fluid extracts of microalgae and rosehip. Graphical Abstract Ultra-high performance supercritical fluid chromatography-a rapid separation method for the analysis of carotenoids in rosehip and microalgae samples.
NASA Technical Reports Server (NTRS)
Stach, J.; Adler, J.; Brodacki, M.; Doring, H.-R.
1995-01-01
Over the past decade, advances in instrumental design and refinements in the understanding of ion molecule reactions at atmospheric pressure enabled the application of Ion Mobility Spectrometry (IMS) as a simple inexpensive and sensitive analytical method for the detection of organic trace compounds. Positive and negative gas-phase ions for ion mobility spectrometry have been produced by a variety of methods, including photo-ionization, laser multi photon ionization, surface ionization, corona discharge ionization. The most common ion source used in ion mobility spectrometry is a radioactive Ni-63 foil which is favored due to simplicity, stability, convenience, and high selectivity. If reactant ions like (H2O(n)H)(+) or (H2O(n)O2)(-) dominate in the reaction region, nearly all kinds of compounds with a given proton or electron affinity; are ionized. However, the radioactivity of the Ni-63 foil is one disadvantage of this ion source that stimulates the development and application of other ionization techniques. In this paper, we report analyses of old chemical warfare agents and toxic wastes using Bruker RAID ion mobility spectrometers. Due to the modular construction of the measuring cell, the spectrometers can be equipped with different ion sources. The combined use of Ni-63, photo- and corona discharge ionization allows the identification of different classes of chemical compounds and yields in most cases comparable results.
Ionization of the diffuse gas in galaxies: Hot low-mass evolved stars at work
NASA Astrophysics Data System (ADS)
Flores-Fajardo, N.; Morisset, C.; Stasinska, G.; Binette, L.
2011-10-01
The Diffuse Ionized Medium (DIG) is visible through its faint optical line emission outside classical HII regions (Reynolds 1971) and turns out to be a major component of the interstellar medium in galaxies. OB stars in galaxies likely represent the main source of ionizing photons for the DIG. However, an additional source is needed to explain the increase of [NII]/Hα, [SII]/Hα with galactic height.
Li, Chen; Xu, Feng; Xie, De-Mei; Jing, Yu; Shang, Ming-Ying; Liu, Guang-Xue; Wang, Xuan; Cai, Shao-Qing
2014-04-17
Traditional Chinese Medicine (TCM) nasal therapy has been utilized to treat numerous diseases for over two millennia. It has many advantages compared with other routes. In this article, headspace-solid phase microextraction-gas chromatography-mass spectrometry and high performance liquid chromatography-atmospheric pressure chemical ionization-ion trap-time of flight-multistage mass spectrometry were applied for the first time to analyze the absorbed constituents in rabbit plasma and cerebrospinal fluid (CSF) after intranasal administration of Asari Radix et Rhizoma (AR). In total, 47 absorbed AR constituents including 14 monoterpenes, 10 phenylpropanoids, four benzene derivatives, two alkanes, nine N-alkylamides and eight lignans were tentatively identified in the rabbit plasma and CSF. Thirty-three absorbed constituents are found to have different bioactivities related to the pharmacological actions of AR through bibliography data retrieval. These indicated that many types of constituents of TCM can be absorbed at the nasal cavity into both rabbit blood and CSF. This is the first study to explore the absorption of AR, and comprehensively analyze the absorbed constituents after intranasal administration of TCM. These findings extend our understanding of the effective substances of AR, and inspire us to make a hypothesis on the mechanism of additive effect of multiple constituents of TCMs, which is very worthy of further investigation.
Lee, Gyeong-Hweon; Bang, Dae-Young; Lim, Jung-Hoon; Yoon, Seok-Min; Yea, Myeong-Jai; Chi, Young-Min
2017-10-15
In this study, a rapid method for simultaneous detection of ethyl carbamate (EC) and urea in Korean rice wine was developed. To achieve quantitative analysis of EC and urea, the conditions for Ultra-performance liquid chromatography (UPLC) separation and atmospheric-pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) detection were first optimized. Under the established conditions, the detection limit, relative standard deviation and linear range were 2.83μg/L, 3.75-5.96%, and 0.01-10.0mg/L, respectively, for urea; the corresponding values were 0.17μg/L, 1.06-4.01%, and 1.0-50.0μg/L, respectively, for EC. The correlation between the contents of EC and its precursor urea was determined under specific pH (3.5 and 4.5) and temperature (4, 25, and 50°C) conditions using the developed method. As a result, EC content was increased with greater temperature and lower pH. In Korean rice wine, urea was detected 0.19-1.37mg/L and EC was detected 2.0-7.7μg/L. The method developed in this study, which has the advantages of simplified sample preparation, low detection limits, and good selectivity, was successfully applied for the rapid analysis of EC and urea. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantifying Short-Chain Chlorinated Paraffin Congener Groups.
Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A; Alsberg, Tomas; de Wit, Cynthia A
2017-09-19
Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are referred to as a "congener group" C n Cl m . Recently, we resolved individual C n Cl m by mathematically deconvolving soft ionization high-resolution mass spectra of SCCP mixtures. Here we extend the method to quantifying C n Cl m by introducing C n Cl m specific response factors (RFs) that are calculated from 17 SCCP chain-length standards with a single carbon chain length and variable chlorination level. The signal pattern of each standard is measured on APCI-QTOF-MS. RFs of each C n Cl m are obtained by pairwise optimization of the normal distribution's fit to the signal patterns of the 17 chain-length standards. The method was verified by quantifying SCCP technical mixtures and spiked environmental samples with accuracies of 82-123% and 76-109%, respectively. The absolute differences between calculated and manufacturer-reported chlorination degrees were -0.9 to 1.0%Cl for SCCP mixtures of 49-71%Cl. The quantification method has been replicated with ECNI magnetic sector MS and ECNI-Q-Orbitrap-MS. C n Cl m concentrations determined with the three instruments were highly correlated (R 2 > 0.90) with each other.
Nelson, Bryant C; Sharpless, Katherine E
2003-01-29
Catechins are polyphenolic plant compounds (flavonoids) that may offer significant health benefits to humans. These benefits stem largely from their anticarcinogenic, antioxidant, and antimutagenic properties. Recent epidemiological studies suggest that the consumption of flavonoid-containing foods is associated with reduced risk of cardiovascular disease. Chocolate is a natural cocoa bean-based product that reportedly contains high levels of monomeric, oligomeric, and polymeric catechins. We have applied solid-liquid extraction and liquid chromatography coupled with atmospheric pressure chemical ionization-mass spectrometry to the identification and determination of the predominant monomeric catechins, (+)-catechin and (-)-epicatechin, in a baking chocolate Standard Reference Material (NIST Standard Reference Material 2384). (+)-Catechin and (-)-epicatechin are detected and quantified in chocolate extracts on the basis of selected-ion monitoring of their protonated [M + H](+) molecular ions. Tryptophan methyl ester is used as an internal standard. The developed method has the capacity to accurately quantify as little as 0.1 microg/mL (0.01 mg of catechin/g of chocolate) of either catechin in chocolate extracts, and the method has additionally been used to certify (+)-catechin and (-)-epicatechin levels in the baking chocolate Standard Reference Material. This is the first reported use of liquid chromatography/mass spectrometry for the quantitative determination of monomeric catechins in chocolate and the only report certifying monomeric catechin levels in a food-based Standard Reference Material.
Tornero-López, Ana M; Guirado, Damián; Perez-Calatayud, Jose; Ruiz-Arrebola, Samuel; Simancas, Fernando; Gazdic-Santic, Maja; Lallena, Antonio M
2013-12-01
Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of (125)I seeds. Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for (125)I selectSeed(TM) brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level. Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber. Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel
2013-12-15
Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring themore » air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.« less
SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Flannagain, Aidan M.; Gallagher, Peter T.; Brown, John C.
2015-02-01
Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as amore » solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.« less
Leung, K.N.
1996-05-14
A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.
Leung, Ka-Ngo
1996-01-01
A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.
Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE.
Penescu, L; Catherall, R; Lettry, J; Stora, T
2010-02-01
We report here recent developments of Forced Electron Beam Induced Arc Discharge (FEBIAD) ion sources at the ISOLDE radioactive ion beam facility, hosted at the European Organization for Nuclear Research (CERN). As a result of the propositions to improve the ionization efficiency, two FEBIAD prototypes have been produced and successfully tested in 2008. Off-line studies showed that the 1+ ionization efficiencies for noble gases are 5-20 times larger than with the standard ISOLDE FEBIAD ion sources and reach 60% for radon, which allowed the identification at ISOLDE of (229)Rn, an isotope that had never previously been observed in the laboratory. A factor of 3 increase is also expected for the ionization efficiency of the other elements. The experimental and theoretical methodology is presented. The theoretical model, which gives precise insights on the processes affecting the ionization, is used to design optimal sources (grouped under the name of VADIS--Versatile Arc Discharge Ion Source) for the different chemical classes of the produced isotopes, as already demonstrated for the noble gases.
Enhanced energy harvesting in commercial ferroelectric materials
NASA Astrophysics Data System (ADS)
Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul
2014-04-01
Ferroelectric materials are used in a number of applications ranging from simple sensors and actuators to ferroelectric random access memories (FRAMs), transducers, health monitoring system and microelectronics. The multiphysical coupling ability possessed by these materials has been established to be useful for energy harvesting applications. However, conventional energy harvesting techniques employing ferroelectric materials possess low energy density. This has prevented the successful commercialization of ferroelectric based energy harvesting systems. In this context, the present study aims at proposing a novel approach for enhanced energy harvesting using commercially available ferroelectric materials. This technique was simulated to be used for two commercially available piezoelectric materials namely PKI-552 and APCI-840, soft and hard lead-zirconate-titanate (PZT) pervoskite ceramics, respectively. It was observed that a maximum energy density of 348 kJm-3cycle-1 can be obtained for cycle parameters of (0-1 ton compressive stress and 1-25 kV.cm-1 electric field) using APCI-840. The reported energy density is several hundred times larger than the maximum energy density reported in the literature for vibration harvesting systems.
Etzbach, Lara; Pfeiffer, Anne; Weber, Fabian; Schieber, Andreas
2018-04-15
Carotenoid profiles of goldenberry (Physalis peruviana L.) fruits differing in ripening states and in different fruit fractions (peel, pulp, and calyx of ripe fruits) were investigated by HPLC-DAD-APCI-MS n . Out of the 53 carotenoids detected, 42 were tentatively identified. The carotenoid profile of unripe fruits is dominated by (all-E)-lutein (51%), whereas in ripe fruits, (all-E)-β-carotene (55%) and several carotenoid fatty acid esters, especially lutein esters esterified with myristic and palmitic acid as monoesters or diesters, were found. In overripe fruits, carotenoid conversion products and a higher proportion of carotenoid monoesters to diesters compared to ripe fruits were observed. Overripe fruits showed a significant decrease in total carotenoids of about 31% due to degradation. The observed conversion and degradation processes included epoxidation, isomerization, and deesterification. The peel of ripe goldenberries showed a 2.8 times higher total carotenoid content of 332.00 µg/g dw compared to the pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zeiri, Offer M; Storey, Andrew P; Ray, Steven J; Hieftje, Gary M
2017-02-01
A new direct-current microplasma-based flowing atmospheric pressure afterglow (FAPA) source was developed for use in ambient desorption-ionization mass spectrometry. The annular-shaped microplasma is formed in helium between two concentric stainless-steel capillaries that are separated by an alumina tube. Current-voltage characterization of the source shows that this version of the FAPA operates in the normal glow-discharge regime. A glass surface placed in the path of the helium afterglow reaches temperatures of up to approximately 400 °C; the temperature varies with distance from the source and helium flow rate through the source. Solid, liquid, and vapor samples were examined by means of a time-of-flight mass spectrometer. Results suggest that ionization occurs mainly through protonation, with only a small amount of fragmentation and adduct formation. The mass range of the source was shown to extend up to at least m/z 2722 for singly charged species. Limits of detection for several small organic molecules were in the sub-picomole range. Examination of competitive ionization revealed that signal suppression occurs only at high (mM) concentrations of competing substances. Copyright © 2016 Elsevier B.V. All rights reserved.
Ion sources for electric propulsion
NASA Technical Reports Server (NTRS)
Stuhlinger, E.
1971-01-01
Ion systems, which accelerate ions of Cs, Hg, or colloid particles by electrostatic fields, are furthest advanced and ready for application. Four kinds of ion sources have been developed: The contact ionization source for Cs as propellants, the electron bombardment source for Cs or Hg, the RF ionization source for Hg, and the hollow needle spray nozzle for colloidal glycerol particles. In each case, the ion beam must be neutralized by injection of electrons shortly behind the exit orifice to avoid adverse space charge effects.
Combined corona discharge and UV photoionization source for ion mobility spectrometry.
Bahrami, Hamed; Tabrizchi, Mahmoud
2012-08-15
An ion mobility spectrometer is described which is equipped with two non-radioactive ion sources, namely an atmospheric pressure photoionization and a corona discharge ionization source. The two sources cannot only run individually but are additionally capable of operating simultaneously. For photoionization, a UV lamp was mounted parallel to the axis of the ion mobility cell. The corona discharge electrode was mounted perpendicular to the UV radiation. The total ion current from the photoionization source was verified as a function of lamp current, sample flow rate, and drift field. Simultaneous operation of the two ionization sources was investigated by recording ion mobility spectra of selected samples. The design allows one to observe peaks from either the corona discharge or photoionization individually or simultaneously. This makes it possible to accurately compare peaks in the ion mobility spectra from each individual source. Finally, the instrument's capability for discriminating two peaks appearing in approximately identical drift times using each individual ionization source is demonstrated. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kraiem, M.; Mayer, K.; Gouder, T.; Seibert, A.; Wiss, T.; Thiele, H.; Hiernaut, J.-P.
2010-01-01
Thermal ionization mass spectrometry (TIMS) is a well established instrumental technique for providing accurate and precise isotope ratio measurements of elements with reasonably low first ionization potential. In nuclear safeguards and in environmental research, it is often required to measure the isotope ratios in small samples of uranium. Empirical studies had shown that the ionization yield of uranium and plutonium in a TIMS ion source can be significantly increased in the presence of a carbon source. But, even though carbon appeared crucial in providing high ionization yields, processes taking place on the ionization surface were still not well understood. This paper describes the experimental results obtained from an extended study on the evaporation and ionization mechanisms of uranium occurring on a rhenium mass spectrometry filament in the presence of carbon. Solid state reactions were investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, vaporization measurements were performed with a modified-Knudsen cell mass spectrometer for providing information on the neutral uranium species in the vapor phase. Upon heating, under vacuum, the uranyl nitrate sample was found to turn into a uranium carbide compound, independent of the type of carbon used as ionization enhancer. With further heating, uranium carbide leads to formation of single charged uranium metal ions and a small amount of uranium carbide ions. The results are relevant for a thorough understanding of the ion source chemistry of a uranyl nitrate sample under reducing conditions. The significant increase in ionization yield described by many authors on the basis of empirical results can be now fully explained and understood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Gottwald, T.; Mattolat, C.
We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d 54s5s f 6S 5/2 level at 49 415.35 cm -1, while Rydberg transitions were reached from the 3d 54s4d e 6D 9/2,7/2,5/2) levels at around 47 210 cm -1. Analyses of the strong Rydberg transitions associated with the 3d 54s4d e 6D 7/2 lower level indicate that they belong to the dipole-allowed 4dmore » → nf 6F° 9/2,7/2,5/2 series converging to the 3d 54s 7S 3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm -1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8 F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less
Liu, Y.; Gottwald, T.; Mattolat, C.; ...
2015-05-08
We have demonstrated three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti: sapphire lasers. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d 54s5s f 6S 5/2 level at 49 415.35 cm -1, while Rydberg transitions were reached from the 3d 54s4d e 6D 9/2,7/2,5/2) levels at around 47 210 cm -1. Analyses of the strong Rydberg transitions associated with the 3d 54s4d e 6D 7/2 lower level indicate that they belong to the dipole-allowed 4dmore » → nf 6F° 9/2,7/2,5/2 series converging to the 3d 54s 7S 3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm -1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8 F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.« less
A Miniaturized Linear Wire Ion Trap with Electron Ionization and Single Photon Ionization Sources
NASA Astrophysics Data System (ADS)
Wu, Qinghao; Tian, Yuan; Li, Ailin; Andrews, Derek; Hawkins, Aaron R.; Austin, Daniel E.
2017-05-01
A linear wire ion trap (LWIT) with both electron ionization (EI) and single photon ionization (SPI) sources was built. The SPI was provided by a vacuum ultraviolet (VUV) lamp with the ability to softly ionize organic compounds. The VUV lamp was driven by a pulse amplifier, which was controlled by a pulse generator, to avoid the detection of photons during ion detection. Sample gas was introduced through a leak valve, and the pressure in the system is shown to affect the signal-to-noise ratio and resolving power. Under optimized conditions, the limit of detection (LOD) for benzene was 80 ppbv using SPI, better than the LOD using EI (137 ppbv). System performance was demonstrated by distinguishing compounds in different classes from gasoline.
Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo
2016-06-01
Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Compact ion source neutron generator
Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe
2015-10-13
A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.
NASA Astrophysics Data System (ADS)
Uchimura, Tomohiro; Onoda, Takayuki; Lin, Cheng-Huang; Imasaka, Totaro
1999-08-01
An optical parametric oscillator and a Ti:sapphire laser are used as a pump source for the generation of high-order vibrational stimulated Raman emission in the vacuum ultraviolet region. This tunable laser is employed as an excitation/ionization source in a supersonic jet/multiphoton ionization/time-of-flight mass spectrometric study of benzene. The merits and potential advantages of this approach are discussed in this study.
Desorption corona beam ionization source for mass spectrometry.
Wang, Hua; Sun, Wenjian; Zhang, Junsheng; Yang, Xiaohui; Lin, Tao; Ding, Li
2010-04-01
A novel Desorption Corona Beam Ionization (DCBI) source for direct analysis of samples from surface in mass spectrometry is reported. The DCBI source can work under ambient conditions without time-consuming sample pretreatments. The source shares some common features with another ionization source - Direct Analysis in Real Time (DART), developed earlier. For example, helium was used as the discharge gas (although only corona discharge is involved in the present source), and heating of the discharge gas is required for sample desorption. However, the difference between the two sources is substantial. In the present source, a visible thin corona beam extending out around 1 cm can be formed by using a hollow needle/ring electrode structure. This feature would greatly facilitate localizing sampling areas and performing imaging/profiling experiments. The DCBI source is also capable of performing progressive temperature scans between room temperature and 450 degrees C in order to sequentially desorb samples from the surface and, therefore, to achieve a rough separation of the individual components in a complex mixture, resulting in less congestion in the mass spectrum acquired. Mass spectra for a broad range of compounds (pesticides, veterinary additives, OTC drugs, explosive materials) have been acquired using the DCBI source. For most of the compounds tested, the heater temperature required for efficient desorption is at least 150 degrees C. The molecular weight of the sample that can be desorbed/ionized is normally below 600 dalton even at the highest heater temperature, which is mainly limited by the volatility of the sample.
SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties
NASA Astrophysics Data System (ADS)
Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting
2018-02-01
The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.
Ambient aerodynamic ionization source for remote analyte sampling and mass spectrometric analysis.
Dixon, R Brent; Sampson, Jason S; Hawkridge, Adam M; Muddiman, David C
2008-07-01
The use of aerodynamic devices in ambient ionization source development has become increasingly prevalent in the field of mass spectrometry. In this study, an air ejector has been constructed from inexpensive, commercially available components to incorporate an electrospray ionization emitter within the exhaust jet of the device. This novel aerodynamic device, herein termed remote analyte sampling, transport, and ionization relay (RASTIR) was used to remotely sample neutral species in the ambient and entrain them into an electrospray plume where they were subsequently ionized and detected using a linear ion trap Fourier transform mass spectrometer. Two sets of experiments were performed in the ambient environment to demonstrate the device's utility. The first involved the remote (approximately 1 ft) vacuum collection of pure sample particulates (i.e., dry powder) from a glass slide, entrainment and ionization at the ESI emitter, and mass spectrometric detection. The second experiment involved the capture (vacuum collection) of matrix-assisted laser desorbed proteins followed by entrainment in the ESI emitter plume, multiple charging, and mass spectrometric detection. This approach is in principle a RASTIR-assisted matrix-assisted laser desorption electrospray ionization source (Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2006, 17, 1712-1716; Rapid Commun. Mass Spectrom. 2007, 21, 1150-1154.). A detailed description of the device construction, operational parameters, and preliminary small molecule and protein data are presented.
Hua, Lei; Wu, Qinghao; Hou, Keyong; Cui, Huapeng; Chen, Ping; Wang, Weiguo; Li, Jinghua; Li, Haiyang
2011-07-01
A novel combined ion source based on a vacuum ultraviolet (VUV) lamp with both single photon ionization (SPI) and chemical ionization (CI) capabilities has been developed for an orthogonal acceleration time-of-flight mass spectrometer (oaTOFMS). The SPI was accomplished using a commercial 10.6 eV krypton discharge lamp with a photon flux of about 10(11) photons s(-1), while the CI was achieved through ion-molecule reactions with O(2)(+) reactant ions generated by photoelectron ionization at medium vacuum pressure (MVP). To achieve high ionization efficiency, the ion source pressure was elevated to 0.3 mbar and the photoionization length was extended to 36 mm. As a result, limits of detection (LODs) down to 3, 4, and 6 ppbv were obtained for benzene, toluene, and p-xylene in MVP-SPI mode, and values of 8 and 10 ppbv were obtained for toluene and chloroform, respectively, in SPI-CI mode. As it is feasible to switch between MVP-SPI mode and SPI-CI mode rapidly, this system is capable of monitoring complex organic mixtures with a wide range of ionization energies (IEs). The analytical capacity of this system was demonstrated by measuring dehydrogenation products of long-chain paraffins to olefins through direct capillary sampling and drinking water disinfection byproducts from chlorine through a membrane interface.
A rocket-borne airglow photometer
NASA Technical Reports Server (NTRS)
Paarmann, L. D.; Smith, L. G.
1977-01-01
The design of a rocket-borne photometer to measure the airglow emission of ionized molecular nitrogen in the 391.4 nm band is presented. This airglow is a well known and often observed phenomenon of auroras, where the principal source of ionization is energetic electrons. It is believed that at some midlatitude locations energetic electrons are also a source of nighttime ionization in the E region of the ionosphere. If this is so, then significant levels of 391.4 nm airglow should be present. The intensity of this airglow will be measured in a rocket payload which also contains instrumentation to measured in a rocket payload which also contains instrumentation to measure energetic electron differential flux and the ambient electron density. An intercomparison of the 3 experiments in a nightime launch will allow a test of the importance of energetic electrons as a nighttime source of ionization in the upper E region.
Kamen, M.D.
1958-02-25
This patent describes an improved ion source for a calutron which is designed to eliminate the necessity of opening the evacuated calutron tank to permit entrance into the tank to place a further charge in thc ion source. The improved ion source comprises a charge reservoir positioned exerior to the calutron tank and connected to an ionizing device located within the tank by a channeled member. A section cf the tank wall supports the ion source structure and Is removable to allow withdrawal of the composite assembly. Heat is applied to the charge reservoir to vaporize the charge and force the charge to the ionizing device, and heat is also furnished along the connecting channel to prevent condensation of the vapor, a valve structure at the exit from the charge reservoir controls the amount of charge received by the ionizing device.
In-air calibration of an HDR 192Ir brachytherapy source using therapy ion chambers.
Patel, Narayan Prasad; Majumdar, Bishnu; Vijiyan, V; Hota, Pradeep K
2005-01-01
The Gammamed Plus 192Ir high dose rate brachytherapy sources were calibrated using the therapy level ionization chambers (0.1 and 0.6 cc) and the well-type chamber. The aim of the present study was to assess the accuracy and suitability of use of the therapy level chambers for in-air calibration of brachytherapy sources in routine clinical practice. In a calibration procedure using therapy ion chambers, the air kerma was measured at several distances from the source in a specially designed jig. The room scatter correction factor was determined by superimposition method based on the inverse square law. Various other correction factors were applied on measured air kerma values at multiple distances and mean value was taken to determine the air kerma strength of the source. The results from four sources, the overall mean deviation between measured and quoted source strength by manufacturers was found -2.04% (N = 18) for well-type chamber. The mean deviation for the 0.6 cc chamber with buildup cap was found -1.48 % (N = 19) and without buildup cap was 0.11% (N = 22). The mean deviation for the 0.1 cc chamber was found -0.24% (N = 27). Result shows that probably the excess ionization in case of 0.6 cc therapy ion chamber without buildup cap was estimated about 2.74% and 1.99% at 10 and 20 cm from the source respectively. Scattered radiation measured by the 0.1 cc and 0.6 cc chamber at 10 cm measurement distance was about 1.1% and 0.33% of the primary radiation respectively. The study concludes that the results obtained with therapy level ionization chambers were extremely reproducible and in good agreement with the results of the well-type ionization chamber and source supplier quoted value. The calibration procedure with therapy ionization chambers is equally competent and suitable for routine calibration of the brachytherapy sources.
The epoch of cosmic heating by early sources of X-rays
NASA Astrophysics Data System (ADS)
Eide, Marius B.; Graziani, Luca; Ciardi, Benedetta; Feng, Yu; Kakiichi, Koki; Di Matteo, Tiziana
2018-05-01
Observations of the 21 cm line from neutral hydrogen indicate that an epoch of heating (EoH) might have preceded the later epoch of reionization. Here we study the effects on the ionization state and the thermal history of the intergalactic medium (IGM) during the EoH induced by different assumptions on ionizing sources in the high-redshift Universe: (i) stars; (ii) X-ray binaries (XRBs); (iii) thermal bremsstrahlung of the hot interstellar medium (ISM); and (iv) accreting nuclear black holes (BHs). To this aim, we post-process outputs from the (100 h-1 comoving Mpc)3 hydrodynamical simulation MassiveBlack-II with the cosmological 3D radiative transfer code CRASH, which follows the propagation of ultraviolet and X-ray photons, computing the thermal and ionization state of hydrogen and helium through the EoH. We find that stars determine the fully ionized morphology of the IGM, while the spectrally hard XRBs pave way for efficient subsequent heating and ionization by the spectrally softer ISM. With the seeding prescription in MassiveBlack-II, BHs do not contribute significantly to either ionization or heating. With only stars, most of the IGM remains in a cold state (with a median T = 11 K at z = 10), however, the presence of more energetic sources raises the temperature of regions around the brightest and more clustered sources above that of the cosmic microwave background, opening the possibility to observing the 21 cm signal in emission.
NASA Astrophysics Data System (ADS)
Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.
2011-01-01
A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.
New developments of the in-source spectroscopy method at RILIS/ISOLDE
NASA Astrophysics Data System (ADS)
Marsh, B. A.; Andel, B.; Andreyev, A. N.; Antalic, S.; Atanasov, D.; Barzakh, A. E.; Bastin, B.; Borgmann, Ch.; Capponi, L.; Cocolios, T. E.; Day Goodacre, T.; Dehairs, M.; Derkx, X.; De Witte, H.; Fedorov, D. V.; Fedosseev, V. N.; Focker, G. J.; Fink, D. A.; Flanagan, K. T.; Franchoo, S.; Ghys, L.; Huyse, M.; Imai, N.; Kalaninova, Z.; Köster, U.; Kreim, S.; Kesteloot, N.; Kudryavtsev, Yu.; Lane, J.; Lecesne, N.; Liberati, V.; Lunney, D.; Lynch, K. M.; Manea, V.; Molkanov, P. L.; Nicol, T.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Schweikhard, L.; Seliverstov, M. D.; Sels, S.; Sjödin, A. M.; Truesdale, V.; Van Beveren, C.; Van Duppen, P.; Wendt, K.; Wienholtz, F.; Wolf, R. N.; Zemlyanoy, S. G.
2013-12-01
At the CERN ISOLDE facility, long isotope chains of many elements are produced by proton-induced reactions in target materials such as uranium carbide. The Resonance Ionization Laser Ion Source (RILIS) is an efficient and selective means of ionizing the reaction products to produce an ion beam of a chosen isotope. Coupling the RILIS with modern ion detection techniques enables highly sensitive studies of nuclear properties (spins, electromagnetic moments and charge radii) along an isotope chain, provided that the isotope shifts and hyperfine structure splitting of the atomic transitions can be resolved. At ISOLDE the campaign to measure the systematics of isotopes in the lead region (Pb, Bi, Tl and Po) has been extended to include the gold and astatine isotope chains. Several developments were specifically required for the feasibility of the most recent measurements: new ionization schemes (Po, At); a remote controlled narrow line-width mode of operation for the RILIS Ti:sapphire laser (At, Au, Po); isobar free ionization using the Laser Ion Source Trap, LIST (Po); isobar selective particle identification using the multi-reflection time-of-flight mass separator (MR-ToF MS) of ISOLTRAP (Au, At). These are summarized as part of an overview of the current status of the in-source resonance ionization spectroscopy setup at ISOLDE.
Shelley, Jacob T.; Wiley, Joshua S.; Hieftje, Gary M.
2011-01-01
The advent of ambient desorption/ionization mass spectrometry has resulted in a strong interest in ionization sources that are capable of direct analyte sampling and ionization. One source that has enjoyed increasing interest is the Flowing Atmospheric-Pressure Afterglow (FAPA). FAPA has been proven capable of directly desorbing/ionizing samples in any phase (solid, liquid, or gas) and with impressive limits of detection (<100 fmol). The FAPA was also shown to be less affected by competitive-ionization matrix effects than other plasma-based sources. However, the original FAPA design exhibited substantial background levels, cluttered background spectra in the negative-ion mode, and significant oxidation of aromatic analytes, which ultimately compromised analyte identification and quantification. In the present study, a change in the FAPA configuration from a pin-to-plate to a pin-to-capillary geometry was found to vastly improve performance. Background signals in positive- and negative-ionization modes were reduced by 89% and 99%, respectively. Additionally, the capillary anode strongly reduced the amount of atomic oxygen that could cause oxidation of analytes. Temperatures of the gas stream that interacts with the sample, which heavily influences desorption capabilities, were compared between the two sources by means of IR thermography. The performance of the new FAPA configuration is evaluated through the determination of a variety of compounds in positive- and negative-ion mode, including agrochemicals and explosives. A detection limit of 4 amol was found for the direct determination of the agrochemical ametryn, and appears to be spectrometer-limited. The ability to quickly screen for analytes in bulk liquid samples with the pin-to-capillary FAPA is also shown. PMID:21627097
Shelley, Jacob T; Wiley, Joshua S; Hieftje, Gary M
2011-07-15
The advent of ambient desorption/ionization mass spectrometry has resulted in a strong interest in ionization sources that are capable of direct analyte sampling and ionization. One source that has enjoyed increasing interest is the flowing atmospheric-pressure afterglow (FAPA). The FAPA has been proven capable of directly desorbing/ionizing samples in any phase (solid, liquid, or gas) and with impressive limits of detection (<100 fmol). The FAPA was also shown to be less affected by competitive-ionization matrix effects than other plasma-based sources. However, the original FAPA design exhibited substantial background levels, cluttered background spectra in the negative-ion mode, and significant oxidation of aromatic analytes, which ultimately compromised analyte identification and quantification. In the present study, a change in the FAPA configuration from a pin-to-plate to a pin-to-capillary geometry was found to vastly improve performance. Background signals in positive- and negative-ionization modes were reduced by 89% and 99%, respectively. Additionally, the capillary anode strongly reduced the amount of atomic oxygen that could cause oxidation of analytes. Temperatures of the gas stream that interacts with the sample, which heavily influences desorption capabilities, were compared between the two sources by means of IR thermography. The performance of the new FAPA configuration is evaluated through the determination of a variety of compounds in positive- and negative-ion mode, including agrochemicals and explosives. A detection limit of 4 amol was found for the direct determination of the agrochemical ametryn and appears to be spectrometer-limited. The ability to quickly screen for analytes in bulk liquid samples with the pin-to-capillary FAPA is also shown.
Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.
NASA Astrophysics Data System (ADS)
Zhao, Jian-Guo
1994-01-01
Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not limited by space-charge effect as in the corona source.
Multiband counterparts of two eclipsing ultraluminous X-ray sources in M 51
NASA Astrophysics Data System (ADS)
Urquhart, R.; Soria, R.; Johnston, H. M.; Pakull, M. W.; Motch, C.; Schwope, A.; Miller-Jones, J. C. A.; Anderson, G. E.
2018-04-01
We present the discovery and interpretation of ionized nebulae around two ultraluminous X-ray sources in M 51; both sources share the rare property of showing X-ray eclipses by their companion stars and are therefore prime targets for follow-up studies. Using archival Hubble Space Telescope images, we found an elongated, 100-pc-long emission-line structure associated with one X-ray source (CXOM51 J132940.0+471237; ULX-1 for simplicity), and a more circular, ionized nebula at the location of the second source (CXOM51 J132939.5+471244; ULX-2 for simplicity). We observed both nebulae with the Large Binocular Telescope's Multi-Object Double Spectrograph. From our analysis of the optical spectra, we argue that the gas in the ULX-1 bubble is shock-ionized, consistent with the effect of a jet with a kinetic power of ≈2 × 1039 erg s-1. Additional X-ray photoionization may also be present, to explain the strength of high-ionization lines such as He II λ4686 and [Ne V] λ3426. On the other hand, the emission lines from the ULX-2 bubble are typical for photoionization by normal O stars suggesting that the nebula is actually an H II region not physically related to the ULX but is simply a chance alignment. From archival Very Large Array data, we also detect spatially extended, steep-spectrum radio emission at the location of the ULX-1 bubble (consistent with its jet origin), but no radio counterpart for ULX-2 (consistent with the lack of shock-ionized gas around that source).
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2010-01-01
Electrochemistry and ion transport in a planar array of mechanically-driven, droplet-based ion sources are investigated using an approximate time scale analysis and in-depth computational simulations. The ion source is modeled as a controlled-current electrolytic cell, in which the piezoelectric transducer electrode, which mechanically drives the charged droplet generation using ultrasonic atomization, also acts as the oxidizing/corroding anode (positive mode). The interplay between advective and diffusive ion transport of electrochemically generated ions is analyzed as a function of the transducer duty cycle and electrode location. A time scale analysis of the relative importance of advective vs. diffusive ion transport provides valuable insight into optimality, from the ionization prospective, of alternative design and operation modes of the ion source operation. A computational model based on the solution of time-averaged, quasi-steady advection-diffusion equations for electroactive species transport is used to substantiate the conclusions of the time scale analysis. The results show that electrochemical ion generation at the piezoelectric transducer electrodes located at the back-side of the ion source reservoir results in poor ionization efficiency due to insufficient time for the charged analyte to diffuse away from the electrode surface to the ejection location, especially at near 100% duty cycle operation. Reducing the duty cycle of droplet/analyte ejection increases the analyte residence time and, in turn, improves ionization efficiency, but at an expense of the reduced device throughput. For applications where this is undesirable, i.e., multiplexed and disposable device configurations, an alternative electrode location is incorporated. By moving the charging electrode to the nozzle surface, the diffusion length scale is greatly reduced, drastically improving ionization efficiency. The ionization efficiency of all operating conditions considered is expressed as a function of the dimensionless Peclet number, which defines the relative effect of advection as compared to diffusion. This analysis is general enough to elucidate an important role of electrochemistry in ionization efficiency of any arrayed ion sources, be they mechanically-driven or electrosprays, and is vital for determining optimal design and operation conditions. PMID:20607111
Tiernan, T. O.; Chang, C.; Cheng, C. C.
1980-01-01
A systematic study of the negative-ion chemical ionization mass spectra produced by the reaction of F− with a wide variety of organic compounds has been accomplished. A time-of-flight mass spectrometer fitted with a modified high pressure ion source was employed for these experiments. The F− reagent ion was generated from CF3H or NF3, typically at an ion source pressure of 100 μm. In pure NF3, F− is the major ion formed and constitutes more than 90% of the total ion intensity. While F− is also the major primary ion formed in pure CF3H, it undergoes rapid ion-molecule reactions at elevated source pressures, yielding (HF)nF− (n = 1−3) ions, which makes CF3H less suitable as a chemical ionization reagent gas. Among the organic compounds investigated were carboxylic acids, ketones, aldehydes, esters, alcohols, phenols, halides, nitriles, nitrobenzene, ethers, amines and hydrocarbons. An intense (M − 1)− ion was observed in the F− chemical ionization mass spectra of carboxylic acids, ketones, aldehydes and phenols. Alcohols yield only (M + F)− ions upon reaction with F−. A weaker (M + F)− ion was also detected in the F− chemical ionization spectra of carboxylic acids, aldehydes, ketones and nitriles. The F− chemical ionization mass spectra of esters, halides, nitriles, nitrobenzene and ethers are characterized primarily by the ions, RCOO−, X−, CN−, NO2−, and OR−, respectively. In addition, esters show a very weak (M − 1)− ion (except formates). In the F− chemical ionization spectra of some aliphatic alkanes and o-xylene, a very weak (M + F)− ion was observed. Amines and aliphatic alkenes exhibit only insignificant fragment ions under similar conditions, while aromatic hydrocarbons, such as benzene and toluene are not reactive at all with the F− ion. The mechanisms of the various reactions mentioned are discussed, and several experimental complications are noted. In still other studies, the effects of varying several experimental parameters, including source pressure, relative proportions of the reagent and analyte, and other ion source parameters, on the observed chemical ionization mass spectra were also investigated. In a mixture of NF3 and n-butanol, for example, the ratio of the intensities of the ions characteristic of the alcohol to that of the (HF)nF− ion was found to decrease with increasing sample pressure, with increasing NF3 pressure, and with increasing electron energy. No significant effects on the spectra were observed to result from variation of the source repeller field or the source temperature. The addition of argon to the source as a potential moderator did not alter the F− chemical ionization spectrum significantly, but the use of oxygen appears to inhibit formation of the (HF)nF− cluster ion. The advantages of using F− as a chemical ionization reagent are discussed, and comparisons are made with other reagent ions. PMID:7428746
Electrospray Modifications for Advancing Mass Spectrometric Analysis
Meher, Anil Kumar; Chen, Yu-Chie
2017-01-01
Generation of analyte ions in gas phase is a primary requirement for mass spectrometric analysis. One of the ionization techniques that can be used to generate gas phase ions is electrospray ionization (ESI). ESI is a soft ionization method that can be used to analyze analytes ranging from small organics to large biomolecules. Numerous ionization techniques derived from ESI have been reported in the past two decades. These ion sources are aimed to achieve simplicity and ease of operation. Many of these ionization methods allow the flexibility for elimination or minimization of sample preparation steps prior to mass spectrometric analysis. Such ion sources have opened up new possibilities for taking scientific challenges, which might be limited by the conventional ESI technique. Thus, the number of ESI variants continues to increase. This review provides an overview of ionization techniques based on the use of electrospray reported in recent years. Also, a brief discussion on the instrumentation, underlying processes, and selected applications is also presented. PMID:28573082
A high pressure hollow cathode ionization source for in-situ detection of organic molecules on Mars
NASA Technical Reports Server (NTRS)
Beegle, Luther W.; Kanik, Isik
2001-01-01
We have designed, constructed and characterized a new high-pressure (1-5 Torr) hollow cathode discharge source (HCDSj that can be utilized as an ionizer in a wide variety of mass analyzers. It is able to function under ambient Martian atmospheric conditions without modification.
NASA Astrophysics Data System (ADS)
Kim, Do Yoon; Ham, Cheolmin; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio
2016-05-01
We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting a particles emitted from an 241Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of a particles from the 241Am source can be varied by changing the flight path of the a particle from the 241Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the a particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for a particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that a particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGAS detector for a particles under the present conditions is found to be ~97.3%.
Symonds, Joshua M; Gann, Reuben N; Fernández, Facundo M; Orlando, Thomas M
2014-09-01
In this paper, we demonstrate the first use of an atmospheric pressure microplasma-based vacuum ultraviolet (VUV) photoionization source in atmospheric pressure mass spectrometry applications. The device is a robust, easy-to-operate microhollow cathode discharge (MHCD) that enables generation of VUV photons from Ne and Ne/H(2) gas mixtures. Photons were detected by excitation of a microchannel plate detector and by analysis of diagnostic sample ions using a mass spectrometer. Reactive ions, charged particles, and metastables produced in the discharge were blocked from entering the ionization region by means of a lithium fluoride window, and photoionization was performed in a nitrogen-purged environment. By reducing the output pressure of the MHCD, we observed heightened production of higher-energy photons, making the photoionization source more effective. The initial performance of the MHCD VUV source has been evaluated by ionizing model analytes such as acetone, azulene, benzene, dimethylaniline, and glycine, which were introduced in solid or liquid phase. These molecules represent species with both high and low proton affinities, and ionization energies ranging from 7.12 to 9.7 eV.
An Adaptable Multiple Power Source for Mass Spectrometry and other Scientific Instruments
Lin, Tzu-Yung; Anderson, Gordon A.; Norheim, Randolph V.; ...
2015-09-18
Power supplies are commonly used in the operation of many types of scientific equipment, including mass spectrometers and ancillary instrumentation. A generic modern mass spectrometer comprises an ionization source, such as electrospray ionization (ESI), ion transfer devices such as ion funnels and multipole ion guides, and ion signal detection apparatus. Very often such platforms include, or are interfaced with ancillary elements in order to manipulate samples before or after ionization. In order to operate such scientific instruments, numerous direct current (DC) channels and radio frequency (RF) signals are required, along with other controls such as temperature regulation. In particular, DCmore » voltages in the range of ±400 V, along with MHz range RF signals with peak-to-peak amplitudes in the hundreds of volts range are commonly used to transfer ionized samples under vacuum. Additionally, an ESI source requires a high voltage (HV) DC source capable of producing several thousand volts and heaters capable of generating temperatures up to 300°C. All of these signals must be properly synchronized and managed in order to carry out ion trapping, accumulation and detection.« less
Brüggemann, Martin; Karu, Einar; Hoffmann, Thorsten
2016-02-01
Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric-pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H](+) and [M - H](-) in the positive and the negative mode, respectively. It was found that FAPA-MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof-of-principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA-MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet-undiscovered matrix and sample surface effects of ionization pathways in the afterglow region. Copyright © 2016 John Wiley & Sons, Ltd.
Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry
2013-01-01
Background Wax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts. Results We present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS. Conclusions We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples like cuticular lipid extracts to gain an overview on the molecular species composition. We confirm previous results from APCI-MS and GC-MS analysis, which showed that fragmentation patterns are highly dependent on the double bond distribution between the fatty alcohol and the fatty acid part of the wax ester. PMID:23829499
Quantitation of mycotoxins using direct analysis in real time (DART)-mass spectrometry (MS)
USDA-ARS?s Scientific Manuscript database
Ambient ionization represents a new generation of mass spectrometry ion sources which is used for rapid ionization of small molecules under ambient conditions. The combination of ambient ionization and mass spectrometry allows analyzing multiple food samples with simple or no sample treatment, or in...
Leung, K.N.; Ehlers, K.W.
1982-05-04
A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,
Leung, Ka-Ngo; Ehlers, Kenneth W.
1984-01-01
A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.
Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain
Effect of domestic cooking methods on egg yolk xanthophylls.
Nimalaratne, Chamila; Lopes-Lutz, Daise; Schieber, Andreas; Wu, Jianping
2012-12-26
Xanthophylls are a class of bioactive compounds known to play an important role in preventing age-related macular degeneration. Egg yolk is a rich source of highly bioavailable xanthophylls including lutein and zeaxanthin. The effects of domestic cooking methods (boiling, frying, microwaving) on egg yolk xanthophyll content were investigated. A LC-(APCI)-MS/MS method was used to identify and quantify all-E- and Z-isomers of lutein, zeaxanthin, canthaxanthin, and β-apo-8'-carotenoic acid ethyl ester in fresh and cooked egg yolks. Both fresh and cooked yolks showed similar xanthophyll profiles but with higher contents of Z-isomers in cooked samples. All-E-lutein was the most affected, with 22.5%, 16.7%, and 19.3% reductions in boiled, microwaved, and fried yolk extracts, respectively. Total xanthophyll losses ranged from 6% to 18%. The results presented here could be useful in calculating the dietary intake of xanthophylls and also in assessing the xanthophyll profiles and contents of egg-containing products.
Martina, E.F.
1958-10-14
An improved pulsed ion source of the type where the gas to be ionized is released within the source by momentary heating of an electrode occluded with the gas is presented. The other details of the ion source construction include an electron emitting filament and a positive reference grid, between which an electron discharge is set up, and electrode means for withdrawing the ions from the source. Due to the location of the gas source behind the electrode discharge region, and the positioning of the vacuum exhaust system on the opposite side of the discharge, the released gas is drawn into the electron discharge and ionized in accurately controlled amounts. Consequently, the output pulses of the ion source may be accurately controlled.
Yoshioka, Toshiaki; Nagatomi, Yasushi; Harayama, Koichi; Bamba, Takeshi
2018-07-01
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic substances that are mainly generated during heating in food; therefore, the European Union (EU) has regulated the amount of benzo[a]pyrene and PAH4 in various types of food. In addition, the Scientific Committee on Food of the EU and the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives have recommended that 16 PAHs should be monitored. Since coffee beverages and dark beer are roasted during manufacture, monitoring these 16 PAHs is of great importance. On the other hand, supercritical fluid chromatography (SFC) is a separation method that has garnered attention in recent years as a complement for liquid and gas chromatography. Therefore, we developed a rapid high-sensitivity analytical method for the above-mentioned 16 PAHs in coffee beverages and dark beer involving supercritical fluid chromatography/atmospheric pressure chemical ionization-mass spectrometry (SFC/APCI-MS) and simple sample preparation. In this study, we developed a novel analytical technique that increased the sensitivity of MS detection by varying the back-pressure in SFC depending on the elution of PAHs. In addition, analysis of commercially available coffee and dark beer samples in Japan showed that the risk of containing the 16 PAHs may be low. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Yang, Shu; Zhou, Qingxin; Yang, Lu; Xue, Yong; Xu, Jie; Xue, Changhu
2015-01-01
The red color of processed shrimp, one of the most attractive attributes and an important criterion for consumers, is often limited by thermal processing (microwaving, boiling and frying), due to astaxanthin degradation. The effect of thermal processing on astaxanthin in Pacific white shrimp (Litopenaeus vannamei) were investigated. A High-performance liquid chromatographic - atmospheric pressure chemical ionization mass spectrometry (LC-(APCI)-MS/MS) method was used to identify and quantify all-trans- and cis-isomers of astaxanthin, and molecular species of astaxanthin esters in fresh and thermal processed shrimps. Total astaxanthin loss ranged from 7.99% to 52.01% in first 3 min under three thermal processing. All-trans-astaxanthin was most affected, with a reduction from 32.81 to 8.72 μg kg(-1), while 13-cis-astxanthin had a rise (from 2.38 to 4.58 μg kg(-1)). Esterified astaxanthin was shown to hydrolyze and degrade, furthermore astaxanthin diesters had a better thermostability compare to astaxanthin monoesters. Astaxanthin monoesters with eicosapntemacnioc acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6), had a lower thermal stability than those with saturated fatty acids, however, it was the opposite of astaxanthin diesters. The findings suggested that the method of thermal processing should be carefully used in the manufacturing and domestic cooking of shrimps. The results also could be useful in calculating the dietary intake of astaxanthin and in assessing astaxanthin profiles and contents of shrimp containing products.
Talluri, Murali V N Kumar; Kalariya, Pradipbhai D; Dharavath, Shireesha; Shaikh, Naeem; Garg, Prabha; Ramisetti, Nageswara Rao; Ragampeta, Srinivas
2016-09-01
A novel ultra high performance liquid chromatography method development strategy was ameliorated by applying quality by design approach. The developed systematic approach was divided into five steps (i) Analytical Target Profile, (ii) Critical Quality Attributes, (iii) Risk Assessments of Critical parameters using design of experiments (screening and optimization phases), (iv) Generation of design space, and (v) Process Capability Analysis (Cp) for robustness study using Monte Carlo simulation. The complete quality-by-design-based method development was made automated and expedited by employing sub-2 μm particles column with an ultra high performance liquid chromatography system. Successful chromatographic separation of the Coenzyme Q10 from its biotechnological process related impurities was achieved on a Waters Acquity phenyl hexyl (100 mm × 2.1 mm, 1.7 μm) column with gradient elution of 10 mM ammonium acetate buffer (pH 4.0) and a mixture of acetonitrile/2-propanol (1:1) as the mobile phase. Through this study, fast and organized method development workflow was developed and robustness of the method was also demonstrated. The method was validated for specificity, linearity, accuracy, precision, and robustness in compliance to the International Conference on Harmonization, Q2 (R1) guidelines. The impurities were identified by atmospheric pressure chemical ionization-mass spectrometry technique. Further, the in silico toxicity of impurities was analyzed using TOPKAT and DEREK software. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo, M.; Alonso, M.C.; Riu, J.
1999-04-15
This paper presents a generic protocol for the determination of polar, ionic, and highly water soluble organic pollutants on untreated industrial wastewaters involving the use of two different solid-phase extraction (SPE) methodologies followed by liquid chromatography-mass spectrometry (LC-MS). Untreated industrial wastewaters might contain natural and synthetic dissolved organic compounds with total organic carbon (TOC) values varying between 100 and 3000 mg/L. All polar, ionic and highly water soluble compounds comprising more than 95% of the organic content and with major contribution to the total toxicity of the sample cannot be analyzed by conventional gas chromatography-mass spectrometry (GC-MS), and LC-MS ismore » a good alternative. In this work two extraction procedures were used to obtain fractionated extracts of the nonionic polar compounds: a polymeric Isolute ENV + SPE cartridge for the preconcentration of anionic analytes and a sequential solid-phase extraction (SSPE) method percolating the samples first in octadecylsilica cartridge in series with the polymeric Lichrolut EN cartridge. Average recoveries ranging from 72% to 103% were obtained for a variety of 23 different analytes. Determination of nonionic pollutants was accomplished by reverse-phase liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS), while anionic compounds were analyzed by ion pair chromatography-electrospray-mass spectrometry (IP-ESI-MS) and LC-ESI-MS. This protocol was applied to a pilot survey of textile and tannery wastewaters leading to the identification and quantification of 33 organic pollutants.« less
Lubin, Arnaud; Geerinckx, Suzy; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip; Vreeken, Rob J
2016-04-01
Eicosanoids, including prostaglandins and thromboxanes are lipid mediators synthetized from polyunsaturated fatty acids. They play an important role in cell signaling and are often reported as inflammatory markers. LC-MS/MS is the technique of choice for the analysis of these compounds, often in combination with advanced sample preparation techniques. Here we report a head to head comparison between an electrospray ionization source (ESI) and a new atmospheric pressure ionization source (UniSpray). The performance of both interfaces was evaluated in various matrices such as human plasma, pig colon and mouse colon. The UniSpray source shows an increase in method sensitivity up to a factor 5. Equivalent to better linearity and repeatability on various matrices as well as an increase in signal intensity were observed in comparison to ESI. Copyright © 2016 Elsevier B.V. All rights reserved.
Field ionization characteristics of an ion source array for neutron generators
NASA Astrophysics Data System (ADS)
Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.
2013-11-01
A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.
SPRAI: coupling of radiative feedback and primordial chemistry in moving mesh hydrodynamics
NASA Astrophysics Data System (ADS)
Jaura, O.; Glover, S. C. O.; Klessen, R. S.; Paardekooper, J.-P.
2018-04-01
In this paper, we introduce a new radiative transfer code SPRAI (Simplex Photon Radiation in the Arepo Implementation) based on the SIMPLEX radiation transfer method. This method, originally used only for post-processing, is now directly integrated into the AREPO code and takes advantage of its adaptive unstructured mesh. Radiated photons are transferred from the sources through the series of Voronoi gas cells within a specific solid angle. From the photon attenuation, we derive corresponding photon fluxes and ionization rates and feed them to a primordial chemistry module. This gives us a self-consistent method for studying dynamical and chemical processes caused by ionizing sources in primordial gas. Since the computational cost of the SIMPLEX method does not scale directly with the number of sources, it is convenient for studying systems such as primordial star-forming haloes that may form multiple ionizing sources.
The ionization length in plasmas with finite temperature ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jelic, N.; Kos, L.; Duhovnik, J.
2009-12-15
The ionization length is an important quantity which up to now has been precisely determined only in plasmas which assume that the ions are born at rest, i.e., in discharges known as 'cold ion-source' plasmas. Presented here are the results of our calculations of the ionization lengths in plasmas with an arbitrary ion source temperature. Harrison and Thompson (H and T) [Proc. Phys. Soc. 74, 145 (1959)] found the values of this quantity for the cases of several ion strength potential profiles in the well-known Tonks-Langmuir [Phys. Rev. 34, 876 (1929)] discharge, which is characterized by 'cold' ion temperature. Thismore » scenario is also known as the 'singular' ion-source discharge. The H and T analytic result covers cases of ion sources proportional to exp(betaPHI) with PHI the normalized plasma potential and beta=0,1,2 values, which correspond to particular physical scenarios. Many years following H and T's work, Bissell and Johnson (B and J) [Phys. Fluids 30, 779 (1987)] developed a model with the so-called 'warm' ion-source temperature, i.e., 'regular' ion source, under B and J's particular assumption that the ionization strength is proportional to the local electron density. However, it appears that B and J were not interested in determining the ionization length at all. The importance of this quantity to theoretical modeling was recognized by Riemann, who recently answered all the questions of the most advanced up-to-date plasma-sheath boundary theory with cold ions [K.-U. Riemann, Phys. Plasmas 13, 063508 (2006)] but still without the stiff warm ion-source case solution, which is highly resistant to solution via any available analytic method. The present article is an extension of H and T's results obtained for a single point only with ion source temperature T{sub n}=0 to arbitrary finite ion source temperatures. The approach applied in this work is based on the method recently developed by Kos et al. [Phys. Plasmas 16, 093503 (2009)].« less
Sensitive ion detection device and method for analysis of compounds as vapors in gases
Denton, M. Bonner; Sperline, Roger P.
2015-09-15
An ion mobility spectrometer (IMS) for the detection of trace gaseous molecular compounds dissolved or suspended in a carrier gas, particularly in ambient air, without preconcentration or the trapping of analyte particles. The IMS of the invention comprises an ionization volume of greater than 5 cm.sup.3 and preferably greater than 100 cm.sup.3. The larger size ionizers of this invention enable analysis of trace (<1 ppb) of sample compounds in the gas phase. To facilitate efficient ion motion through the large volume ionization and reaction regions of the IMS, an electric field gradient can be provided in the ionization region or in both the ionization and reaction regions. The systems can be implemented with radioactive ionization sources, corona discharge ion sources or ions can be formed by photoionization. In specific embodiments, particularly when the sample gas is ambient air, the sample gas is heater prior to entry into the instrument, the instrument is run at temperatures above ambient, and the instrument can be heated by contact with heated sample gas exiting the instrument.
Sensitive ion detection device and method for analysis of compounds as vapors in gases
Denton, M. Bonner; Sperline, Roger P
2014-02-18
An ion mobility spectrometer (IMS) for the detection of trace gaseous molecular compounds dissolved or suspended in a carrier gas, particularly in ambient air, without preconcentration or the trapping of analyte particles. The IMS of the invention comprises an ionization volume of greater than 5 cm.sup.3 and preferably greater than 100 cm.sup.3. The larger size ionizers of this invention enable analysis of trace (<1 ppb) of sample compounds in the gas phase. To facilitate efficient ion motion through the large volume ionization and reaction regions of the IMS, an electric field gradient can be provided in the ionization region or in both the ionization and reaction regions. The systems can be implemented with radioactive ionization sources, corona discharge ion sources or ions can be formed by photoionization. In specific embodiments, particularly when the sample gas is ambient air, the sample gas is heater prior to entry into the instrument, the instrument is run at temperatures above ambient, and the instrument can be heated by contact with heated sample gas exiting the instrument.
Schilling, Gregory D; Shelley, Jacob T; Barnes, James H; Sperline, Roger P; Denton, M Bonner; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M
2010-01-01
An ambient desorption/ionization (ADI) source, known as the flowing atmospheric pressure afterglow (FAPA), has been coupled to a Mattauch-Herzog mass spectrograph (MHMS) equipped with a focal plane camera (FPC) array detector. The FAPA ionization source enables direct mass spectral analysis of solids, liquids, and gases through either positive or negative ionization modes. In either case, spectra are generally simple with dominant peaks being the molecular ions or protonated molecular ions. Use of the FAPA source with the MHMS allows the FPC detector to be characterized for the determination of molecular species, whereas previously only atomic mass spectrometry (MS) has been demonstrated. Furthermore, the FPC is shown to be sensitive to negative ions without the need to change any detector parameters. The analysis of solid, liquid, and gaseous samples through positive and negative ionization is demonstrated with detection limits (1-25 fmol/s, approximately 0.3-10 pg of analyte per mL of helium) surpassing those obtained with the FAPA source coupled to a time-of-flight mass analyzer. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
Heating the warm ionized medium
NASA Technical Reports Server (NTRS)
Reynolds, R. J.; Cox, D. P.
1992-01-01
If photoelectric heating by grains within the diffuse ionized component of the interstellar medium is 10 exp -25 ergs/s per H atom, the average value within diffuse H I regions, then grain heating equals or exceeds photoionization heating of the ionized gas. This supplemental heat source would obviate the need for energetic ionizing photons to balance the observed forbidden-line cooling and could be responsible in part for enhanced intensities of some of the forbidden lines.
Development Status of the Helicon Hall Thruster
2009-09-15
Hall thruster , the Helicon Hall Thruster , is presented. The Helicon Hall Thruster combines the efficient ionization mechanism of a helicon source with the favorable plasma acceleration properties of a Hall thruster . Conventional Hall thrusters rely on direct current electron bombardment to ionize the flow in order to generate thrust. Electron bombardment typically results in an ionization cost that can be on the order of ten times the ionization potential, leading to reduced efficiency, particularly at low
NASA Astrophysics Data System (ADS)
Antonakis, Manolis M.; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J.; Pergantis, Spiros A.
2013-08-01
In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [CuII 6LnIII] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions, without the need to independently adjust solution and source conditions in each mode. Finally, the simple and efficient operation of a dual-nebulizer configuration was demonstrated for V-EASI-MS for the first time.
Antonakis, Manolis M; Tsirigotaki, Alexandra; Kanaki, Katerina; Milios, Constantinos J; Pergantis, Spiros A
2013-08-01
In this study, we report on the development of a novel nebulizer configuration for sonic-spray ionization (SSI) mass spectrometry (MS), more specifically for a version of SSI that is referred to as Venturi easy ambient sonic-spray ionization (V-EASI) MS. The developed nebulizer configuration is based on a commercially available pneumatic glass nebulizer that has been used extensively for aerosol formation in atomic spectrometry. In the present study, the nebulizer was modified in order to achieve efficient V-EASI-MS operation. Upon evaluating this system, it has been demonstrated that V-EASI-MS offers some distinct advantages for the analysis of coordination compounds and redox active inorganic compounds over the predominantly used electrospray ionization (ESI) technique. Such advantages, for this type of compounds, are demonstrated here for the first time. More specifically, a series of labile heptanuclear heterometallic [Cu(II) 6Ln(III)] clusters held together with artificial amino acid ligands, in addition to easily oxidized inorganic oxyanions of selenium and arsenic, were analyzed. The observed advantages pertain to V-EASI appearing to be a "milder" ionization source than ESI, not requiring electrical potentials for gas phase ion formation, thus eliminating the possibility of unwanted redox transformations, allowing for the "simultaneous" detection of negative and positive ions (bipolar analysis) without the need to change source ionization conditions, and also not requiring the use of syringes and delivery pumps. Because of such features, especially because of the absence of ionization potentials, EASI can be operated with minimal requirements for source parameter optimization. We observed that source temperature and accelerating voltage do not seem to affect labile compounds to the extent they do in ESI-MS. In addition, bipolar analysis of proteins was demonstrated here by acquiring both positive and negative ion mass spectra from the same protein solutions, without the need to independently adjust solution and source conditions in each mode. Finally, the simple and efficient operation of a dual-nebulizer configuration was demonstrated for V-EASI-MS for the first time.
Linear electric field time-of-flight ion mass spectrometer
Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM
2008-06-10
A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Keqi; Page, Jason S.; Marginean, Ioan
2011-04-22
In this work the Subambient Pressure Ionization with Nanoelectrospray (SPIN) ion source and interface which operates at ~15-30 Torr is demonstrated to be compatible with gradient reversed-phase liquid chromatography-MS applications, exemplified here with the analysis of complex samples (a protein tryptic digest and a whole cell lysate). A low liquid chromatographic flow rate (100-400 nL/min) allowed stable electrospray to be established while avoiding electrical breakdown. Efforts to increase the operating pressure of the SPIN source relative to previously reported designs prevented solvent freezing and enhanced charged cluster/droplet desolvation. A 5-12-fold improvement in sensitivity relative to a conventional atmospheric pressure nanoelectrospraymore » ionization (ESI) source was obtained for detected peptides.« less
Protonation of caffeine: A theoretical and experimental study
NASA Astrophysics Data System (ADS)
Bahrami, Hamed; Tabrizchi, Mahmoud; Farrokhpour, Hossein
2013-03-01
Protonation of caffeine was examined by ion mobility spectrometry equipped with two ionization sources, corona discharge (CD) and UV photoionization. Three peaks were observed in ion mobility spectrum by simultaneously running the two ionization sources. Experimental and theoretical evidence was collected to link the observed peaks to caffeine related ionic species. One peak was attributed to the M+ ion while the other two were assigned to different protonated isomers of caffeine. In the case of CD ionization source, it was observed that different sites of caffeine compete for protonation and their relative intensities, depends on the sample concentration as well as the nature of the reactant ions. The new concept of "internal proton affinity" (IPA) was defined to express the tendency of holding the added proton for each atom in a molecule.
Brobeck, W.M.
1959-02-24
An ion source is described wherein a portion of the filament serving as a cathode for the arc is protected from the effects of non-ionized particles escaping from the ionizing mechanism. In the described ion source, the source block has a gas chamber and a gas passage extending from said gas chamber to two adjacent faces of the source block. A plate overlies the passage and abuts one of the aforementioned block faces, while extending beyond the other face. In addition, the plate is apertured in line with the block passage. The filament overlies the aperture to effectively shield the portion of the filament not directiy aligned with the passage where the arc is produced.
Space charge dosimeters for extremely low power measurements of radiation in shipping containers
Britton, Jr., Charles L.; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN
2011-05-03
Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes insitu polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
Space charge dosimeters for extremely low power measurements of radiation in shipping containers
Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN
2011-04-26
Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.
NASA Technical Reports Server (NTRS)
Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.
2011-01-01
We report the first detections of the [NIl] 122 {\\mu} m line from a high redshift galaxy. The line was strongly (> 6{\\sigma}) detected from SMMJ02399-0136, and HI413+ 117 (the Cloverleaf QSO) using the Redshift(z) and Early Universe Spectrometer (ZEUS) on the CSO. The lines from both sources are quite bright with line-to-FIR continuum luminosity ratios that are approx.7.0x10(exp -4) (Cloverleaf) and 2.1x10(exp -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8 to 17% of the molecular gas mass. The [OIII]/[NII] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an AGN. Using our previous detection of the [01II] 88 {\\mu}m line, the [OIII]/ [NIl] line ratio for SMMJ02399-0136 indicates the dominant source of the line emission is either stellar HII regions ionized by 09.5 stars, or the NLR of the AGN with ionization parameter 10g(U) = -3.3 to -4.0. A composite system, where 30 to 50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82like starbursts accounting for all of the FIR emission and 43% of the [NIl] line. The remainder may come from the NLR. This work demonstrates the utility of the [NIl] and [OIII] lines in constraining properties of the ionized medium.
Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William
2014-01-15
Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8eV up to 10.6eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy of the solvent. As commercial APPI sources typically use krypton lamps with energy fixed at 10eV and 10.6eV, the study of the ionization of polymers over a wavelength range allowed to confirm and refine the previously proposed ionization mechanisms. Moreover, the APPI source can efficiently be used as an interface between size exclusion chromatography or reverse phase liquid chromatography and MS for the study of synthetic oligomers. However, the photoionization at fixed wavelength of polymer standards with different molecular weights showed that it was difficult to obtain intact ionized oligomers with molecular weights above a few thousands. Copyright © 2013 Elsevier B.V. All rights reserved.
Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE
NASA Astrophysics Data System (ADS)
Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus
2017-08-01
At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on Exotic Beams at ISOLDE: A Laboratory Portrait special issue.
Peng, Ivory X; Shiea, Jentaie; Ogorzalek Loo, Rachel R; Loo, Joseph A
2007-01-01
We have constructed an electrospray-assisted laser desorption/ionization (ELDI) source which utilizes a nitrogen laser pulse to desorb intact molecules from matrix-containing sample solution droplets, followed by electrospray ionization (ESI) post-ionization. The ELDI source is coupled to a quadrupole ion trap mass spectrometer and allows sampling under ambient conditions. Preliminary data showed that ELDI produces ESI-like multiply charged peptides and proteins up to 29 kDa carbonic anhydrase and 66 kDa bovine albumin from single-protein solutions, as well as from complex digest mixtures. The generated multiply charged polypeptides enable efficient tandem mass spectrometric (MS/MS)-based peptide sequencing. ELDI-MS/MS of protein digests and small intact proteins was performed both by collisionally activated dissociation (CAD) and by nozzle-skimmer dissociation (NSD). ELDI-MS/MS may be a useful tool for protein sequencing analysis and top-down proteomics study, and may complement matrix-assisted laser desorption/ionization (MALDI)-based measurements. Copyright (c) 2007 John Wiley & Sons, Ltd.
Fundamentals of Radiation Physics
2008-07-01
Sources of Ionizing Radiation Electrically generated • Charged particle accelerators • Van de Graaff generator , cyclotron linear accelerator ...Presented at the Armed Forces Radiobiology Research Institute Scientific Medical Effects of Ionizing Radiation Course July 28 through August 1, 2008...conducted once a year, focuses on the latest research about the medical effects of ionizing radiation to help clinicians, health physicists, and
[Ionizing and non-ionizing radiation (comparative risk estimations)].
Grigor'ev, Iu G
2012-01-01
The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.
Quantitation of Mycotoxins Using Direct Analysis in Real Time Mass Spectrometry (DART-MS).
Busman, Mark
2018-05-01
Ambient ionization represents a new generation of MS ion sources and is used for the rapid ionization of small molecules under ambient conditions. The combination of ambient ionization and MS allows the analysis of multiple food samples with simple or no sample treatment or in conjunction with prevailing sample preparation methods. Two ambient ionization methods, desorptive electrospray ionization (DESI) and direct analysis in real time (DART) have been adapted for food safety application. Both ionization techniques provide unique advantages and capabilities. DART has been used for a variety of qualitative and quantitative applications. In particular, mycotoxin contamination of food and feed materials has been addressed by DART-MS. Applications to mycotoxin analysis by ambient ionization MS and particularly DART-MS are summarized.
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.; Yu, S.; Logan, B. G.
2002-11-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length ˜ 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures ˜ 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. At moderate pressures (> 1 mTorr) the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance. The source has recently been configured to operate with 2.45 GHz microwaves with similar results. At the present operating range the source can simulate the plasma produced by photo-ionization in the target chamber.
Luminosity limits for liquid argon calorimetry
NASA Astrophysics Data System (ADS)
J, Rutherfoord; B, Walker R.
2012-12-01
We have irradiated liquid argon ionization chambers with betas using high-activity Strontium-90 sources. The radiation environment is comparable to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider. We measure the ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. We can operate these chambers either in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. From the transition point we indirectly extract the positive argon ion mobility.
Update of NIST half-life results corrected for ionization chamber source-holder instability.
Unterweger, M P; Fitzgerald, R
2014-05-01
As reported at the ICRM 2011, it was discovered that the source holder used for calibrations in the NIST 4πγ ionization chamber (IC) was not stable. This has affected a large number of half-life measurement results previously reported and used in compilations of nuclear data. Corrections have been made on all of the half-life data based on the assumption that the changes to the ionization chamber response were gradual. The corrections are energy dependent and therefore radionuclide specific. This presentation will review our results and present the recommended changes in half-life values and/or uncertainties. © 2013 Published by Elsevier Ltd.
Schramm, Elisabeth; Kürten, Andreas; Hölzer, Jasper; Mitschke, Stefan; Mühlberger, Fabian; Sklorz, Martin; Wieser, Jochen; Ulrich, Andreas; Pütz, Michael; Schulte-Ladbeck, Rasmus; Schultze, Rainer; Curtius, Joachim; Borrmann, Stephan; Zimmermann, Ralf
2009-06-01
An in-house-built ion trap mass spectrometer combined with a soft ionization source has been set up and tested. As ionization source, an electron beam pumped vacuum UV (VUV) excimer lamp (EBEL) was used for single-photon ionization. It was shown that soft ionization allows the reduction of fragmentation of the target analytes and the suppression of most matrix components. Therefore, the combination of photon ionization with the tandem mass spectrometry (MS/MS) capability of an ion trap yields a powerful tool for molecular ion peak detection and identification of organic trace compounds in complex matrixes. This setup was successfully tested for two different applications. The first one is the detection of security-relevant substances like explosives, narcotics, and chemical warfare agents. One test substance from each of these groups was chosen and detected successfully with single photon ionization ion trap mass spectrometry (SPI-ITMS) MS/MS measurements. Additionally, first tests were performed, demonstrating that this method is not influenced by matrix compounds. The second field of application is the detection of process gases. Here, exhaust gas from coffee roasting was analyzed in real time, and some of its compounds were identified using MS/MS studies.
NASA Astrophysics Data System (ADS)
Shingledecker, Christopher N.; Bergner, Jennifer B.; Le Gal, Romane; Öberg, Karin I.; Hincelin, Ugo; Herbst, Eric
2016-10-01
The chemistry of dense interstellar regions was analyzed using a time-dependent gas-grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO+]/[DCO+] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational results for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ-ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO+]/[DCO+] to ζ, we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO+]/[DCO+] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.
Study of diffuse H II regions potentially forming part of the gas streams around Sgr A*
NASA Astrophysics Data System (ADS)
Armijos-Abendaño, J.; López, E.; Martín-Pintado, J.; Báez-Rubio, A.; Aravena, M.; Requena-Torres, M. A.; Martín, S.; Llerena, M.; Aldás, F.; Logan, C.; Rodríguez-Franco, A.
2018-05-01
We present a study of diffuse extended ionized gas towards three clouds located in the Galactic Centre (GC). One line of sight (LOS) is towards the 20 km s-1 cloud (LOS-0.11) in the Sgr A region, another LOS is towards the 50 km s-1 cloud (LOS-0.02), also in Sgr A, while the third is towards the Sgr B2 cloud (LOS+0.693). The emission from the ionized gas is detected from Hnα and Hmβ radio recombination lines (RRLs). Henα and Hemβ RRL emission is detected with the same n and m as those from the hydrogen RRLs only towards LOS+0.693. RRLs probe gas with positive and negative velocities towards the two Sgr A sources. The Hmβ to Hnα ratios reveal that the ionized gas is emitted under local thermodynamic equilibrium conditions in these regions. We find a He to H mass fraction of 0.29±0.01 consistent with the typical GC value, supporting the idea that massive stars have increased the He abundance compared to its primordial value. Physical properties are derived for the studied sources. We propose that the negative velocity component of both Sgr A sources is part of gas streams considered previously to model the GC cloud kinematics. Associated massive stars with what are presumably the closest H II regions to LOS-0.11 (positive velocity gas), LOS-0.02, and LOS+0.693 could be the main sources of ultraviolet photons ionizing the gas. The negative velocity components of both Sgr A sources might be ionized by the same massive stars, but only if they are in the same gas stream.
NASA Astrophysics Data System (ADS)
Mukherjee, Jaya; Dileep Kumar, V.; Yadav, S. P.; Barnwal, Tripti A.; Dikshit, Biswaranjan
2016-07-01
The atomic vapor generated by electron beam heating is partially ionized due to atom-atom collisions (Saha ionization) and electron impact ionization, which depend upon the source temperature and area of evaporation as compared to the area of electron beam bombardment on the target. When electron beam evaporation is carried out by inserting the target inside an insulating liner to reduce conductive heat loss, it is expected that the area of evaporation becomes significantly more than the area of electron beam bombardment on the target, resulting in reduced electron impact ionization. To assess this effect and to quantify the parameters of evaporation, such as temperature and area of evaporation, we have carried out experiments using zirconium, tin and aluminum as a target. By measuring the ion content using a Langmuir probe, in addition to measuring the atomic vapor flux at a specific height, and by combining the experimental data with theoretical expressions, we have established a method for simultaneously inferring the source temperature, evaporation area and ion fraction. This assumes significance because the temperature cannot be reliably measured by an optical pyrometer due to the wavelength dependent source emissivity and reflectivity of thin film mirrors. In addition, it also cannot be inferred from only the atomic flux data at a certain height as the area of evaporation is unknown (it can be much more than the area of electron bombardment, especially when the target is placed in a liner). Finally, the reason for the lower observed electron temperatures of the plasma for all the three cases is found to be the energy loss due to electron impact excitation of the atomic vapor during its expansion from the source.
Natural organic matter and the event horizon of mass spectrometry.
Hertkorn, N; Frommberger, M; Witt, M; Koch, B P; Schmitt-Kopplin, Ph; Perdue, E M
2008-12-01
Soils, sediments, freshwaters, and marine waters contain natural organic matter (NOM), an exceedingly complex mixture of organic compounds that collectively exhibit a nearly continuous range of properties (size-reactivity continuum). NOM is composed mainly of carbon, hydrogen, and oxygen, with minor contributions from heteroatoms such as nitrogen, sulfur, and phosphorus. Suwannee River fulvic acid (SuwFA) is a fraction of NOM that is relatively depleted in heteroatoms. Ultrahigh resolution Fourier transform ion cyclotron (FTICR) mass spectra of SuwFA reveal several thousand molecular formulas, corresponding in turn to several hundred thousand distinct chemical environments of carbon even without accountancy of isomers. The mass difference deltam among adjoining C,H,O-molecules between and within clusters of nominal mass is inversely related to molecular dissimilarity: any decrease of deltam imposes an ever growing mandatory difference in molecular composition. Molecular formulas that are expected for likely biochemical precursor molecules are notably absent from these spectra, indicating that SuwFA is the product of diagenetic reactions that have altered the major components of biomass beyond the point of recognition. The degree of complexity of SuwFA can be brought into sharp focus through comparison with the theoretical limits of chemical complexity, as constrained and quantized by the fundamentals of chemical binding. The theoretical C,H,O-compositional space denotes the isomer-filtered complement of the entire, very vast space of molecular structures composed solely of carbon, hydrogen, and oxygen. The molecular formulas within SuwFA occupy a sizable proportion of the theoretical C,H,O-compositional space. A 100 percent coverage of the theoretically feasible C,H,O-compositional space by SuwFA molecules is attained throughout a sizable range of mass and H/C and O/C elemental ratios. The substantial differences between (and complementarity of) the SuwFA molecular formulas that are observed using six different modes of ionization (APCI, APPI, and ESI in positive and negative modus) imply considerable selectivity of the ionization process and suggest that the observed mass spectra represent simplified projections of still more complex mixtures.
Sol-gel coated ion sources for liquid chromatography-direct electron ionization mass spectrometry.
Riboni, Nicolò; Magrini, Laura; Bianchi, Federica; Careri, Maria; Cappiello, Achille
2017-07-25
Advances in interfacing liquid chromatography and electron ionization mass spectrometry are presented. New ion source coatings synthesized by sol-gel technology were developed and tested as vaporization surfaces in terms of peak intensity, peak width and peak delay for the liquid chromatography-direct electron ionization mass spectrometry (Direct-EI) determination of environmental pollutants like polycyclic aromatic hydrocarbons and steroids. Silica-, titania-, and zirconia-based coatings were sprayed inside the stainless steel ion source and characterized in terms of thermal stability, film thickness and morphology. Negligible weight losses until 350-400 °C were observed for all the materials, with coating thicknesses in the 6 (±1)-11 (±2) μm range for optimal ionization process. The best performances in terms of both peak intensity and peak width were obtained by using the silica-based coating: the detection of the investigated compounds was feasible at low ng μl -1 levels with a good precision (RSD < 9% for polycyclic aromatic hydrocarbons and <11% for hormones). Copyright © 2017 Elsevier B.V. All rights reserved.
Continuous time-of-flight ion mass spectrometer
Funsten, Herbert O.; Feldman, William C.
2004-10-19
A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.
The great galactic centre mystery
NASA Technical Reports Server (NTRS)
Riegler, G. R.
1982-01-01
Gamma-ray observations of the center of the Galaxy show a varying positron-electron annihilation radiation emission, while at radio wavelengths a non-thermal compact source surrounded by ionized gas moving at high velocities can be seen. Line emission maps for atomic and ionized hydrogen and molecular gas suggest gas expulsion and a massive collapsed object. IR observations show that ionized gas in the central few parsecs of the Galactic center is concentrated in at least 14 small clouds. Charge-coupled device images show a pair of faint, very red sources within a few arc seconds of IRS 16 and the compact non-thermal radio source. The positron-electron annihilation line emission implies an annihilation rate of 10 to the 43rd per sec, compared with an observed luminosity at IR wavelengths of 10 to the 40 erg per sec. Some models are briefly discussed.
Ionization cross section, pressure shift and isotope shift measurements of osmium
NASA Astrophysics Data System (ADS)
Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan
2017-11-01
In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.
NASA Astrophysics Data System (ADS)
Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.
2015-12-01
In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.
Cheng, Zhipeng; Dong, Fengshou; Xu, Jun; Liu, Xingang; Wu, Xiaohu; Chen, Zenglong; Pan, Xinglu; Gan, Jay; Zheng, Yongquan
2017-09-15
This paper describes the application of atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for the simultaneous determination of organophosphorus pesticides in apple, pear, tomato, cucumber and cabbage. Soft ionization with atmospheric pressure ionization source was compared with traditional electron impact ionization (EI). The sensitivity of GC coupled to atmospheric pressure ionization (APGC) for all the analytes was enhanced by 1.0-8.2 times. The ionization modes with atmospheric pressure ionization source was studied by comparing the charge-transfer and proton-transfer conditions. The optimized QuEChERs method was used to pretreat the samples. The calibration curves were found linear from 10 to 1000μg/L, obtaining correlation coefficients higher than 0.9845. Satisfactory mean recovery values, in the range of 70.0-115.9%, and satisfactory precision, with all RSD r <19.7% and all RSD R values <19.5% at the three fortified concentration levels for all the fifteen OPPs. The results demonstrate the potential of APGC-QTOF-MS for routine quantitative analysis of organophosphorus pesticide in fruits and vegetables. Copyright © 2017 Elsevier Ltd. All rights reserved.
Magnetically switched power supply system for lasers
NASA Technical Reports Server (NTRS)
Pacala, Thomas J. (Inventor)
1987-01-01
A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.
Preliminary Ionization Efficiencies of {sup 11}C and {sup 14}O with the LBNL ECR Ion Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Z.Q.; Cerny, J.; Guo, F.Q.
1998-10-05
High charge states, up to fully stripped {sup 11}C and {sup 14}O ion, beams have been produced with the electron cyclotron resonance ion sources (LBNL, ECR and AECR-U) at Lawrence Berkeley National Laboratory. The radioactive atoms of {sup 11}C and {sup 14}O were collected in batch mode with an LN{sub 2} trap and then bled into the ECR ion sources. Ionization efficiency as high as 11% for {sup 11}C{sup 4+} was achieved.
Purification of sulfide-alkali effluent with the aid of ionizing radiation. [Gamma radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petryaev, E.P.; Gerasimovich, O.A.; Kovalevskaya, A.M.
1984-03-01
The treatment of sulfide-alkali effluent under the effect of ionizing radiation was investigated. The source was an LMB-..gamma..-1M ..gamma..-apparatus with /sup 137/Cs source. The dose rate was 52 rad/s. Irradiation was done in glass ampules and in vessels allowing bubbling with air and irradiation to be carried out at the same time. 7 references, 1 figure, 1 table.
Lozano-Mena, Glòria; Sánchez-González, Marta; Parra, Andrés; Juan, M Emília; Planas, Joana M
2016-09-01
Maslinic acid has been described to exert a chemopreventive activity in colon cancer. Hereby, we determined maslinic acid and its metabolites in the rat intestine previous oral administration as a first step in elucidating whether this triterpene might be used as a nutraceutical. Maslinic acid was orally administered at 1, 2, and 5 mg/kg to male Sprague-Dawley for 2 days. At 24 h after the last administration, the content of the duodenum and jejunum, ileum, cecum, and colon was collected and extracted with methanol 80% prior to LC-APCI-MS analysis. The developed method was validated providing suitable sensitivity (LOQ of 5 nM), good recovery (97.8 ± 3.6%), linear correlation, and appropriate precision (< 9%). Maslinic acid was detected in all the segments with higher concentrations in the distal part of the intestine. LC-APCI-LTQ-ORBITRAP-MS allowed the identification of 11 gut-derived metabolites that were formed by mono-, dihydroxylation, and dehydrogenation reactions. Maslinic acid undergoes phase I reactions resulting in a majority of monohydroxylated metabolites without the presence of phase II derivatives. The high concentration of maslinic acid achieved in the intestine suggests that it could exert a beneficial effect in the prevention of colon cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kilpatrick, W.D.
1959-04-21
A source is presented for producing high intensity pulses of ions with precise time control of pulse initiation. The approach taken is to have one of the electrodes in the source occluded with the gas to be ionized. A trigger electrode is disposed adjacent to the gas filled electrode and is pulsed with a voltage to release the gas. The other structure of the source includes an apertured anode disposed between two cathodes, the gas filled electrode and another electrode. At the same time the gas is released a low voltage pulse is applied between the anode and cathodes to establish an ionizing arc discharge. An electrode adjacent to the arc withdraws the ions.
Density Bounded H II Regions: Ionization of the Diffuse Interstellar and Intergalactic Media
NASA Astrophysics Data System (ADS)
Zurita, A.; Rozas, M.; Beckman, J. E.
2000-05-01
We present a study of the diffuse ionized gas (DIG) for a sample of nearby spiral galaxies using Hα images, after constructing their H II region catalogues. The integrated Hα emission of the DIG accounts for between 25% to 60% of the total Hα of the galaxy and a high ionizing photon flux is necessary to keep this gas ionized. We suggest that Lyman photons leaking from the most luminous H II regions are the prime source of the ionization of the DIG; they are more than enough to ionize the measured DIG in the model in which H II regions with luminosity in Hα greater than LStr=1038.6 erg sme are density bounded. We go on to show that this model can quantify the ionization observed in the skins of the high velocity clouds well above the plane of our Galaxy and predicts the ionization of the intergalactic medium.
Inutan, Ellen D.; Trimpin, Sarah
2013-01-01
The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or added heat. This ionization process produces ions having charge states similar to ESI, making the method applicable for high performance mass spectrometers designed for atmospheric pressure ionization. We demonstrate highly sensitive ionization using intermediate pressure MALDI and modified ESI sources. This matrix and vacuum assisted soft ionization method is suitable for the direct surface analysis of biological materials, including tissue, via mass spectrometry. PMID:23242551
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shingledecker, Christopher N.; Le Gal, Romane; Hincelin, Ugo
2016-10-20
The chemistry of dense interstellar regions was analyzed using a time-dependent gas–grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO{sup +}]/[DCO{sup +}] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational resultsmore » for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ -ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO{sup +}]/[DCO{sup +}] to ζ , we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO{sup +}]/[DCO{sup +}] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.« less
An Optics Free Spectrometer for the Extreme Ultraviolet
NASA Technical Reports Server (NTRS)
Judge, D. L.; Daybell, M. D.; Hoffman, J. R.; Gruntman, M. A.; Ogawa, H. S.; Samson, J. A. R.
1994-01-01
The optics-free spectrometer is a photon spectrometer. It provides the photon spectrum of a broadband source by converting photons of energy E into electrons of energy E', according to the Einstein relation, E' = E - Ei. E, is the ionization threshold of the gas target of interest (any of the rare gases are suitable) and E is the incoming photon energy. As is evident from the above equation, only a single order spectrum is produced throughout the energy range between the first and second ionization potentials of the rare gas used. Photons with energy above the second ionization potential produce two groups of electrons, but they are readily distinguished from each other. This feature makes this device extremely useful for determining the true spectrum of a continuum source or a many line source. The principle of operation and the laboratory results obtained with a representative configuration of the optics-free spectrometer are presented.
The Pulsed High Density Experiment (PHDX) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slough, John P.; Andreason, Samuel
The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasmamore » ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waltman, Melanie J.
2010-05-01
Explosives detection is a necessary and wide spread field of research. From large shipping containers to airline luggage, numerous items are tested for explosives every day. In the area of trace explosives detection, ion mobility spectrometry (IMS) is the technique employed most often because it is a quick, simple, and accurate way to test many items in a short amount of time. Detection by IMS is based on the difference in drift times of product ions through the drift region of an IMS instrument. The product ions are created when the explosive compounds, introduced to the instrument, are chemically ionizedmore » through interactions with the reactant ions. The identity of the reactant ions determines the outcomes of the ionization process. This research investigated the reactant ions created by various ionization sources and looked into ways to manipulate the chemistry occurring in the sources.« less
Effects of the Carrier-Envelope Phase in the Multiphoton Ionization Regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Takashi; Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581; Watanabe, Shuntaro
2006-06-02
We theoretically investigate the effects of the carrier-envelope phase of few-cycle laser pulses in the multiphoton ionization regime. For atoms with low ionization potential, total ionization yield barely exhibits phase dependence, as expected. However, population of some bound states clearly shows phase dependence. This implies that the measurement of the carrier-envelope phase would be possible through the photoemission between bound states without energy-and-angle-resolved photoelectron detection. The considered scheme could be particularly useful to measure the carrier-envelope phase for a light source without an amplifier, such as a laser oscillator, which cannot provide sufficient pulse energy to induce tunneling ionization.
NASA Astrophysics Data System (ADS)
Hoffmann, T. L.; Lieb, S.; Pauldrach, A. W. A.; Lesch, H.; Hultzsch, P. J. N.; Birk, G. T.
2012-08-01
Aims: The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods: We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results: Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.
Breakdown simulations in a focused microwave beam within the simplified model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.
2016-07-15
The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime ofmore » subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.« less
Meteoric Ions in Planetary Ionospheres
NASA Technical Reports Server (NTRS)
Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)
2001-01-01
Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.
Electromagnetic energy and food processing.
Mudgett, R
1988-01-01
The use of electromagnetic energy in food processing is reviewed with respect to food safety, nutritional quality, and organoleptic quality. The effects of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiation sources, e.g. radioactive cobalt-60 and caesium-137, on the inactivation of microbes and nutrients are compared with those of conventional heating processes both in terms of their kinetic behavior and their mechanisms of interaction with foods. The kinetics of microwave and conventional thermal inactivation are considered for a generalized nth-order model based on time and temperature conditions. However, thermal inactivation effects are often modeled by 1st-order kinetics. Microbial and nutrient inactivation by ionizing sources are considered for a 1st-order model based on radiation dose. Both thermal and radiation resistance concepts are reviewed and some typical values of radiation resistance are given for sensitive vegetative bacterial cells, yeasts, and molds and for resistant bacterial spores and viruses. Nonionizing microwave energy sources are increasingly used in home and industrial food processing and are well-accepted by the American public. But, despite recent Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and other plants products and the fact that irradiated foods are sold in more than 20 countries of the world, public fears in the U.S. about nuclear energy may limit the role of ionizing radiation in food processing and preservation and may also limit the use of nuclear fuels as an alternate source of electrical energy.
Anatomy of the AGN in NGC 5548. VI. Long-term variability of the warm absorber
NASA Astrophysics Data System (ADS)
Ebrero, J.; Kaastra, J. S.; Kriss, G. A.; Di Gesu, L.; Costantini, E.; Mehdipour, M.; Bianchi, S.; Cappi, M.; Boissay, R.; Branduardi-Raymont, G.; Petrucci, P.-O.; Ponti, G.; Pozo Núñez, F.; Seta, H.; Steenbrugge, K. C.; Whewell, M.
2016-03-01
Context. We observed the archetypal Seyfert 1 galaxy NGC 5548 in 2013-2014 in the context of an extensive multiwavelength campaign involving several satellites, which revealed the source to be in an extraordinary state of persistent heavy obscuration. Aims: We re-analyzed the archival grating spectra obtained by XMM-Newton and Chandra between 1999 and 2007 in order to characterize the classic warm absorber (WA) using consistent models and up-to-date photoionization codes and atomic physics databases and to construct a baseline model that can be used as a template for the physical state of the WA in the 2013 observations. Methods: We used the latest version of the photoionization code CLOUDY and the SPEX fitting package to model the X-ray grating spectra of the different archival observations of NGC 5548. Results: We find that the WA in NGC 5548 is composed of six distinct ionization phases outflowing in four kinematic regimes. The components seem to be in the form of a stratified wind with several layers intersected by our line of sight. Assuming that the changes in the WA are solely due to ionization or recombination processes in response to variations in the ionizing flux among the different observations, we are able to estimate lower limits on the density of the absorbing gas, finding that the farthest components are less dense and have a lower ionization. These limits are used to put stringent upper limits on the distance of the WA components from the central ionizing source, with the lowest ionization phases at several pc distances (<50, <20, and <5 pc, respectively), while the intermediately ionized components lie at pc-scale distances from the center (<3.6 and <2.2 pc, respectively). The highest ionization component is located at ~0.6 pc or closer to the AGN central engine. The mass outflow rate summed over all WA components is ~0.3 M⊙ yr-1, about six times the nominal accretion rate of the source. The total kinetic luminosity injected into the surrounding medium is a small fraction (~0.03%) of the bolometric luminosity of the source. After adding the contribution of the UV absorbers, this value augments to ~0.2% of the bolometric luminosity, well below the minimum amount of energy required by current feedback models to regulate galaxy evolution.
Fluctuations of the intergalactic ionization field at redshift z ~ 2
NASA Astrophysics Data System (ADS)
Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.
2013-04-01
Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z ≲ 2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ≲ 2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra) luminous infrared galaxies, many of which reveal both a strong AGN activity and intense star formation in the circumnuclear regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quarles, C. Derrick; Carado, Anthony J.; Barinaga, Charles J.
2012-01-01
A new, low power ionization source for the elemental analysis of aqueous solutions has recently been described. The liquid sampling-atmospheric pressure glow discharge (LS-APGD) source operates at relatively low currents (<20 mA) and solution flow rates (<50 μL min-1), yielding a relatively simple alternative for atomic mass spectrometry applications. The LS-APGD has been interfaced to what is otherwise an organic, LC-MS mass analyzer, the Thermo Scientific Exactive Orbitrap without any modifications; other than removing the electrospray ionization (ESI) source supplied with that instrument. A glow discharge is initiated between the surface of the test solution exiting a glass capillary andmore » a metallic counter electrode mounted at a 90° angle and separated by a distance of ~5 mm. As with any plasma-based ionization source, there are key discharge operation and ion sampling parameters that affect the intensity and composition of the derived mass spectra; including signal-to-background ratios. We describe here a preliminary parametric evaluation of the roles of discharge current, solution flow rate, argon sheath gas flow rate, and ion sampling distance as they apply on this mass analyzer system. A cursive evaluation of potential matrix effects due to the presence of easily ionized elements (EIEs) indicate that sodium concentrations of up to 500 μg mL-1 generally cause suppressions of less than 50%, dependant upon the analyte species. Based on the results of this series of studies, preliminary limits of detection (LOD) have been established through the generation of calibration functions. Whilst solution-based concentrations LOD levels of 0.02 – 2 μg mL-1 3 are not impressive on the surface, the fact that they are determined via discrete 5 μL injections leads to mass-based detection limits at picogram to singlenanogram levels. The overhead costs associated with source operation (10 W d.c. power, solution flow rates of <50 μL min-1, and gas flow rates <10 mL min-1) are very attractive. While further optimization in the source design is suggested here, it is believed that the LS-APGD ion source may present a practical alternative to inductively-coupled plasma (ICP) sources typically employed in elemental mass spectrometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro
2016-02-01
This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(2{sup 3}S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.
NASA Technical Reports Server (NTRS)
Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.
2011-01-01
We report the first detections of the [N II] 122 micron line from a high-redshift galaxy. The line was strongly (>6(sigma)) detected from SMMJ02399-0136, and H1413 + 117 (the Cloverleaf QSO) using the Redshift (zeta) and Early Universe Spectrometer on the Caltech Submillimeter Observatory. The lines from both sources are quite bright with line to far-infrared (FIR) continuum luminosity ratios that are approx.7.0 x 10(exp -4) (Cloverleaf) and 2.1 x 10(exo -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line to continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8%-17% of the molecUlar gas mass. The [O III]/[N II] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an active galactic nucleus (AGN). Using Our previous detection of the [O III] 88 micron line, the [O III]/[N II]line ratio for SMMJ02399-0136 indicates that the dominant source of the line emission is either stellar H II regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30%-50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82-like starbursts accounting for all of the FIR emission and 43% of the [N II]line. The remainder may come from the NLR. This war!< demonstrates the utility of the [N II] and [O III] lines in constraining properties of the ionized medium.
RF Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.
2003-10-01
Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.
Hard X-Ray Emission and the Ionizing Source in LINERs
NASA Technical Reports Server (NTRS)
Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.
2000-01-01
We report X-ray fluxes in the 2-10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4 x 10(exp 39) and 5 x 10(exp 41) ergs/s, which are significantly smaller than that of the "classical" low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2-10 keV of LINERs with broad H.alpha emission in their optical spectra (LINER 1s) are proportional to their Ha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad H.alpha emission (LINER 2s) in our sample are lower than LINER 1s at a given H.alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H.alpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.
Dron, Julien; Abidi, Ehgere; Haddad, Imad El; Marchand, Nicolas; Wortham, Henri
2008-06-23
An analytical method for the quantitative determination of the total nitro functional group (R-NO2) content in atmospheric particulate organic matter is developed. The method is based on the selectivity of NO2(-) (m/z 46) precursor ion scanning (PAR 46) by atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS). PAR 46 was experimented on 16 nitro compounds of different molecular structures and was compared with a neutral loss of NO (30 amu) technique in terms of sensitivity and efficiency to characterize the nitro functional groups. Covering a wider range of compounds, PAR 46 was preferred and applied to reference mixtures containing all the 16 compounds under study. Repeatability carried out using an original statistical approach, and calibration experiments were performed on the reference mixtures proven the suitability of the technique for quantitative measurements of nitro functional groups in samples of environmental interest with good accuracy. A linear range was obtained for concentrations ranging between 0.005 and 0.25 mM with a detection limit of 0.001 mM of nitro functional groups. Finally, the analytical error based on an original statistical approach applied to numerous reference mixtures was below 20%. Despite of potential artifacts related to nitro-alkanes and organonitrates, this new methodology offers a promising alternative to FT-IR measurements. The relevance of the method and its potentialities are demonstrated through its application to aerosols collected in the EUPHORE simulation chamber during o-xylene photooxidation experiments and in a suburban area of a French alpine valley during summer.
Gentili, Alessandra; Caretti, Fulvia; Ventura, Salvatore; Pérez-Fernández, Virginia; Venditti, Alessandro; Curini, Roberta
2015-08-26
This paper presents an analytical strategy for a large-scale screening of carotenoids in tomato fruits by exploiting the potentialities of the triple quadrupole-linear ion trap hybrid mass spectrometer (QqQLIT). The method involves separation on C30 reversed-phase column and identification by means of diode array detection (DAD) and atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). The authentic standards of six model compounds were used to optimize the separative conditions and to predict the chromatographic behavior of untargeted carotenoids. An information dependent acquisition (IDA) was performed with (i) enhanced-mass scan (EMS) as the survey scan, (ii) enhanced-resolution (ER) scan to obtain the exact mass of the precursor ions (16-35 ppm), and (iii) enhanced product ion (EPI) scan as dependent scan to obtain structural information. LC-DAD-multiple reaction monitoring (MRM) chromatograms were also acquired for the identification of targeted carotenoids occurring at low concentrations; for the first time, the relative abundance between the MRM transitions (ion ratio) was used as an extra tool for the MS distinction of structural isomers and the related families of geometrical isomers. The whole analytical strategy was high-throughput, because a great number of experimental data could be acquired with few analytical steps, and cost-effective, because only few standards were used; when applied to characterize some tomato varieties ('Tangerine', 'Pachino', 'Datterino', and 'Camone') and passata of 'San Marzano' tomatoes, our method succeeded in identifying up to 44 carotenoids in the 'Tangerine'" variety.
Progress report on the Heavy Ions in Space (HIIS) experiment
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Beahm, Lorraine P.; Boberg, Paul R.; Tylka, Allan J.
1993-01-01
One of the objectives of the Heavy Ions In Space (HIIS) experiment is to investigate heavy ions which appear at Long Duration Exposure Facility (LDEF) below the geomagnetic cutoff for fully-ionized galactic cosmic rays. Possible sources of such 'below-cutoff' particles are partially-ionized solar energetic particles, the anomalous component of cosmic rays, and magnetospherically-trapped particles. In recent years, there have also been reports of below-cutoff ions which do not appear to be from any known source. Although most of these observations are based on only a handful of ions, they have led to speculation about 'partially-ionized galactic cosmic rays' and 'near-by cosmic ray sources'. The collecting power of HIIS is order of magnitude larger than that of the instruments which reported these results, so HIIS should be able to confirm these observations and perhaps discover the source of these particles. Preliminary results on below-cutoff heavy-ions are reported. Observations to possible known sources of such ions are compared. A second objective of the HIIS experiment is to measure the elemental composition of ultraheavy galactic cosmic rays, beginning in the tin-barium region of the periodic table. A report on the status of this analysis is presented.
Hot interstellar gas and ionization of embedded clouds
NASA Technical Reports Server (NTRS)
Cheng, K.-P.; Bruhweiler, F.
1990-01-01
Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions.
Chen, Yashu; Xie, Bijun; Yang, Jifang; Chen, Jigang; Sun, Zhida
2018-02-01
Rhodococcus sp. B7740 is a newfound bacterium which was isolated from 25m deep seawater in the arctic. In this paper, Rhodococcus sp. B7740 was firstly discovered to produce abundant natural isoprenoids, including ubiquinone-4(UQ-4), 13 kinds of menaquinones, three rare aromatic carotenoids and more than one common carotenoid. These compounds were identified by UV-Visible, HPLC-APCI-MS/MS and HRMS spectra. Results demonstrated that Rhodococcus sp. B7740 might be a worthy source of natural isoprenoids especially for scarce aromatic carotenoids. Among them, isorenieratene with 528.3762Da (calculated for 528.3756Da, error: 1.1ppm), a carotenoid with aromatic ring, was purified by HSCCC. The stability of isorenieratene under the mimical gastric conditions was measured compared with common dietary carotenoids, β-carotene and lutein. Unlike β-carotene and lutein, isorenieratene exhibited rather stable in the presence of free iron or heme iron. Its high retention rate in gastrointestinal tract after ingestion indicates the benefits for health. Copyright © 2017. Published by Elsevier Ltd.
Chukwumah, Yvonne; Walker, Lloyd; Vogler, Bernhard; Verghese, Martha
2012-05-01
Peanuts are classified into four market-types (Runners, Spanish, Virginia and Valencia). Studies on their phytochemical composition have focused mainly on market-types other than Valencia. The objectives of this study are to evaluate the phytochemical composition of cultivars of Valencia and Runner market-types. Extracts of 25 peanut cultivars of Runner and Valencia market-types were analysed using HPLC-DAD-MS analysis. Results showed major differences in UV profile of the market-types. A major peak with m/z 317 identified as isorhamnetin was present only in Valencia cultivars while its glycoside (isorhamnetin-3-O-rutinoside) having m/z 625 was identified in both market-types. Genistein, daidzein, rutin, quercetin and trans-resveratrol were also identified and quantified. Genistein and daidzein concentrations (0.03mg/100g) were similar in both market-types. trans-Resveratrol and rutin were significantly (p<0.05) higher in Runner cultivars while quercetin was 10-fold higher (0.60±0.04mg/100g) in Valencia cultivars making them a better source of this phytochemical. Copyright © 2011 Elsevier Ltd. All rights reserved.
Standardization of terminology in field of ionizing radiations and their measurements
NASA Astrophysics Data System (ADS)
Yudin, M. F.; Karaveyev, F. M.
1984-03-01
A new standard terminology was introduced on 1 January 1982 by the Scientific-Technical Commission on All-Union State Standards to cover ionizing radiations and their measurements. It is based on earlier standards such as GOST 15484-74/81, 18445-70/73, 19849-74, 22490-77 as well as the latest recommendations by international committees. One hundred eighty-six terms and definitions in 14 paragraphs are contained. Fundamental concepts, sources and forms of ionizing radiations, characteristics and parameters of ionizing radiations, and methods of measuring their characteristics and parameters are covered. New terms have been added to existing ones. The equivalent English, French, and German terms are also given. The terms measurement of ionizing radiation and transfer of ionizing particles (equivalent of particle fluence of energy fluence) are still under discussion.
Low pressure spark gap triggered by an ion diode
Prono, Daniel S.
1985-01-01
Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.
Low-pressure spark gap triggered by an ion diode
Prono, D.S.
1982-08-31
Spark gap apparatus for use as an electric switch operating at high voltage, high current and high repetition rate. Mounted inside a housing are an anode, cathode and ion plate. An ionizable fluid is pumped through the chamber of the housing. A pulse of current to the ion plate causes ions to be emitted by the ion plate, which ions move into and ionize the fluid. Electric current supplied to the anode discharges through the ionized fluid and flows to the cathode. Current stops flowing when the current source has been drained. The ionized fluid recombines into its initial dielectric ionizable state. The switch is now open and ready for another cycle.
Complex mixture analysis by photoionization mass spectrometry with a VUV hydrogen laser source
NASA Astrophysics Data System (ADS)
Huth, T. C.; Denton, M. B.
1985-12-01
Trace organic analysis in complex matrix presents one of the most challenging problems in analytical mass spectrometry. When ionization is accomplished non-selectively using electron impact, extensive sample clean-up is often necessary in order to isolate the analyte from the matrix. Sample preparation can be greatly reduced when the VUV H2 laser is used to selectively photoionize only a small fraction of compounds introduced into the ion source. This device produces parent ions only for all compounds whose ionization potentials lie below a threshold value determined by the photon energy of 7.8 eV. The only observed interference arises from electron impact ionization, when scattered laser radiation interacts with metal surfaces, producing electrons which are then accelerated by potential fields inside the source. These can be suppressed to levels acceptable for practical analysis through proper instrumental design. Results are presented which indicate the ability of this ion source to discriminate against interfering matrix components, in simple extracts from a variety of complex real world matrices, such as brewed coffee, beer, and urine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yuan; Gottwald, T.; Mattolat, C.
We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less
Liu, Yuan; Gottwald, T.; Mattolat, C.; ...
2017-03-20
We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less
Osborne, Louis S.; Lanza, Richard C.
1984-01-01
A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.
Yang, Xixiang; Imasaka, Tomoko; Imasaka, Totaro
2018-04-03
A standard sample mixture containing 51 pesticides was separated by gas chromatography (GC), and the constituents were identified by mass spectrometry (MS) using femtosecond lasers emitting at 267, 400, and 800 nm as the ionization source. A two-dimensional display of the GC/MS was successfully used for the determination of these compounds. A molecular ion was observed for 38 of the compounds at 267 nm and for 30 of the compounds at 800 nm, in contrast to 27 among 50 compounds when electron ionization was used. These results suggest that the ultraviolet laser is superior to the near-infrared laser for molecular weight determinations and for a more reliable analysis of these compounds. In order to study the conditions for optimal ionization, the experimental data were examined using the spectral properties (i.e., the excitation and ionization energies and absorption spectra for the neutral and ionized species) obtained by quantum chemical calculations. A few molecules remained unexplained by the currently reported rules, requiring additional rules for developing a full understanding of the femtosecond ionization process. The pesticides in the homogenized matrix obtained from kabosu ( citrus sphaerocarpa) were measured using lasers emitting at 267 and 800 nm. The pesticides were clearly separated and measured on the two-dimensional display, especially for the data measured at 267 nm, suggesting that this technique would have potential for use in the practical trace analysis of the pesticides in the environment.
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grishman, L.; Kolchin, P.; Davidson, R. C.
2002-01-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length of approximately 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures of approximately 10-6 torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1. Electron densities in the range of 108 - 1011 per cubic centimeter have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.
Quasi-steady carbon plasma source for neutral beam injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koguchi, H., E-mail: h-koguchi@aist.go.jp; Sakakita, H.; Kiyama, S.
2014-02-15
Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.
Quasi-steady carbon plasma source for neutral beam injector.
Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y
2014-02-01
Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.
Hiraguchi, Ryuji; Hazama, Hisanao; Senoo, Kenichirou; Yahata, Yukinori; Masuda, Katsuyoshi; Awazu, Kunio
2014-01-01
A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively). The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS). PMID:24937686
NASA Astrophysics Data System (ADS)
Manicke, Nicholas E.; Belford, Michael
2015-05-01
One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.
NASA Astrophysics Data System (ADS)
Nunome, Yoko; Kodama, Kenji; Ueki, Yasuaki; Yoshiie, Ryo; Naruse, Ichiro; Wagatsuma, Kazuaki
2018-01-01
This study describes an ionization source for mass analysis, consisting of glow discharge plasma driven by a pulsed direct-current voltage for soft plasma ionization, to detect toxic volatile organic compounds (VOCs) rapidly and easily. The novelty of this work is that a molecular adduct ion, in which the parent molecule attaches with an NO+ radical, [M + NO]+, can be dominantly detected as a base peak with little or no fragmentation of them in an ambient air plasma at a pressure of several kPa. Use of ambient air as the discharge plasma gas is suitable for practical applications. The higher pressure in an ambient air discharge provided a stable glow discharge plasma, contributing to the soft ionization of organic molecules. Typical mass spectra of VOCs toluene, benzene, o-xylene, chlorobenzene and n-hexane were observed as [M + NO]+ adduct ion whose peaks were detected at m/z 122, 108, 136, 142 and 116, respectively. The NO generation was also confirmed by emission bands of NO γ-system. The ionization reactions were suggested, such that NO+ radical formed in an ambient air discharge could attach with the analyte molecule.
NASA Astrophysics Data System (ADS)
Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.
2015-07-01
This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.
Miniature quadrupole mass spectrometer having a cold cathode ionization source
Felter, Thomas E.
2002-01-01
An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.
Smith, Richard D.; Kim, Taeman; Tang, Keqi; Udseth, Harold R.
2003-06-24
A jet disturber used in combination with an ion funnel to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of the ions and other charged particles. The jet disturber is positioned within an ion funnel and may be interfaced with a multi-capillary inlet juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure. The invention finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer.
Characterization of the polyphenolic composition of purple loosestrife (Lythrum salicaria).
Rauha, J P; Wolfender, J L; Salminen, J P; Pihlaja, K; Hostettmann, K; Vuorela, H
2001-01-01
Phenolic compounds of purple loosestrife (Lythrum salicaria L.) were analysed by the use of liquid chromatography-mass spectrometry (LC/MS) equipped with atmospheric pressure chemical ionisation (APCI) and electrospray ionisation (ESI). The presence of vitexin and orientin as well as their isomers, isovitexin and isoorientin, were confirmed using ion trap multiple stage LC/MS3 analysis. Several phenolic acids and tannins were also detected. Ellagitannins, vescalagin and pedunculagin, are reported from the plant for the first time.
Zhang, Li-Feng; Lu, Tao-Tao; Zhang, Shu-Qiu; Lin, Wen-Han; Li, Qing-Shan
2013-12-01
A sensitive and specific HPLC-APCI-MS/MS method was developed and validated for the quantification of furanodiene, a natural antitumor compound in rat plasma and tissues. W/O/W multiple emulsions of furanodiene, identified through microscope-observation and eosin staining method, were prepared with a two-step-procedure. Pharmacokinetics and tissue distribution were studied in rats after oral, intraperitoneal and intravenous injection with the dose of 5, 10 and 50 mg/kg, respectively. The assay achieved a good sensitivity and specificity for the determination of furanodiene in biological samples. The results showed that the concentration-time curves of furanodiene in rats after intravenous injection were fitted to a two-compartment model and the linear pharmacokinetic characteristic. The highest concentration in rat tissue was observed in the spleen, followed by heart, liver, lung, kidney, small intestine and brain. Comparing with the low concentration in plasma, furanodiene could be detected in various tissue samples after oral or intraperitoneal injection which indicated furanodiene had good and rapid tissue uptake. The results suggested that the wide tissue distribution of furanodiene could conduce to the therapeutic effects, but the short biological half-life limited its further application as an antitumor agent. The results are helpful for the structure modification of furanodiene as an antitumor candidate.
Rostad, C.E.
2006-01-01
Polar components in fuels may enable differentiation between fuel types or commercial fuel sources. A range of commercial fuels from numerous sources were analyzed by flow injection analysis/electrospray ionization/mass spectrometry without extensive sample preparation, separation, or chromatography. This technique enabled screening for unique polar components at parts per million levels in commercial hydrocarbon products, including a range of products from a variety of commercial sources and locations. Because these polar compounds are unique in different fuels, their presence may provide source information on hydrocarbons released into the environment. This analysis was then applied to mixtures of various products, as might be found in accidental releases into the environment. Copyright ?? Taylor & Francis Group, LLC.
Space Environment Effects on Materials : An Overview
NASA Technical Reports Server (NTRS)
Garrett, Henry B.
2006-01-01
A general overview on the space environment and its effects on materials is presented. The topics include: 1) Impact of Space Effects on Spacecraft Costs; 2) Space Environment Effects on Spacecraft by Source; 3) Primary Source of Space Effects: The Sun; 4) The Earth's Environment; 5) Trapped Radiation Belts; 6) Aurora Are Everywhere; 7) Spacecraft Interactions; 8) Atmospheric Effects; 9) Contaminant Effects on Materials; 10) Meteoroid/Debris Effects on Materials; 11) Spacecraft Surface Charging; 12) Surface Discharge Effects; 13) Internal Electrostatic Discharge--Satellite Killer; 14) Plasma Interactions DS-1 Ion Engines; 15) Radiation Effects on Spacecraft Systems and Materials; 16) Total Ionizing Dose Effects Total Ionizing Dose Effects; 17) Man-Made Sources of Space Effects Man-Made Sources of Space Effects; and 18) Space Environments Versus Interactions.
Hossack, Aaron C; Firman, Taylor; Jarboe, Thomas R; Prager, James R; Victor, Brian S; Wrobel, Jonathan S; Ziemba, Timothy
2013-10-01
A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2-3) × 10(19) m(-3) to 1 × 10(19) m(-3). Deuterium spheromak formation is possible with density as low as 2 × 10(18) m(-3). The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.
Design for gas chromatography-corona discharge-ion mobility spectrometry.
Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein
2012-11-20
A corona discharge ionization-ion mobility spectrometry (CD-IMS) with a novel sample inlet system was designed and constructed as a detector for capillary gas chromatography. In this design, a hollow needle was used instead of a solid needle which is commonly used for corona discharge creation, helping us to have direct axial interfacing for GC-IMS. The capillary column was passed through the needle, resulting in a reaction of effluents with reactant ions on the upstream side of the corona discharge ionization source. Using this sample introduction design, higher ionization efficiency was achieved relative to the entrance direction through the side of the drift tube. In addition, the volume of the ionization region was reduced to minimize the resistance time of compounds in the ionization source, increasing chromatographic resolution of the instrument. The effects of various parameters such as drift gas flow, makeup gas flow, and column tip position inside the needle were investigated. The designed instrument was exhaustively validated in terms of sensitivity, resolution, and reproducibility by analyzing the standard solutions of methyl isobutyl ketone, heptanone, nonanone, and acetophenone as the test compounds. The results obtained by CD-IMS detector were compared with those of the flame ionization detector, which revealed the capability of the proposed GC-IMS for two-dimensional separation (based on the retention time and drift time information) and identification of an analyte in complex matrixes.
Regiones Extendidas de gas ionizado en radiogalaxias FR II. Estudio espectroscópico y cinemático.
NASA Astrophysics Data System (ADS)
Reynaldi, V.; Feinstein, C.
The EELR are regions of highly-excited ionized gas that extend throughout the outskirts of their host galaxies. Concerning FR II radio galaxies, alignment between optical and radio structures were found for several sources. We investigate the ionizing mechanisms of these regions through long-slit spectroscopic analysis. Photoionization models, where both the AGN and a mixed intergalactic medium may explain the ionization state of the regions are studied. But also the shock-ionization model is tested since it can provide a local budget of ionizing photons created by expanding radiative shock waves driven by the radio jet. Throughout this work we discuss spectroscopic and kinematical results obtained with GMOS/Gemini. FULL TEXT IN SPANISH
Ionization in the local interstellar and intergalactic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, K.
1990-01-01
Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less
Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei
NASA Technical Reports Server (NTRS)
Netzer, Hagai
1993-01-01
Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.
Wiley, Joshua S; Shelley, Jacob T; Cooks, R Graham
2013-07-16
We describe a handheld, wireless low-temperature plasma (LTP) ambient ionization source and its performance on a benchtop and a miniature mass spectrometer. The source, which is inexpensive to build and operate, is battery-powered and utilizes miniature helium cylinders or air as the discharge gas. Comparison of a conventional, large-scale LTP source against the handheld LTP source, which uses less helium and power than the large-scale version, revealed that the handheld source had similar or slightly better analytical performance. Another advantage of the handheld LTP source is the ability to quickly interrogate a gaseous, liquid, or solid sample without requiring any setup time. A small, 7.4-V Li-polymer battery is able to sustain plasma for 2 h continuously, while the miniature helium cylinder supplies gas flow for approximately 8 continuous hours. Long-distance ion transfer was achieved for distances up to 1 m.
The ozonation of bromide-containing source waters produces bromate as a class 2B carcinogenic disinfection by-product. The present work describes the determination of bromate by gas chromatography-negative chemical ionization mass spectrometry (GC-NCIMS) following a bromate react...
Role of plasma electrons in the generation of a gas discharge plasma
NASA Astrophysics Data System (ADS)
Gruzdev, V. A.; Zalesski, V. G.; Rusetski, I. S.
2012-12-01
The role of different ionization mechanisms in penning-type gas discharges used to generate an emitting plasma in plasma electron sources is considered. It is shown that, under certain conditions, a substantial contribution to the process of gas ionization is provided by plasma electrons.
Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources
NASA Astrophysics Data System (ADS)
Newsome, G. Asher; Ackerman, Luke K.; Johnson, Kevin J.
2016-01-01
Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.
Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.
Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J
2016-01-01
Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.
Management of Spent and Disused Sealed Radioactive Sources in the Czech Republic - 12124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podlaha, J.
2012-07-01
The Czech Republic is a country with a well-developed peaceful utilization of nuclear energy and ionizing radiation. Sealed Radioactive Sources (further also SRS) are broadly used in many areas in the Czech Republic, e.g. in research, industry, medicine, education, agriculture, etc. Legislation in the field of ionizing radiation source utilization has been fully harmonized with European Community legislation. SRS utilization demands a proper system which must ensure the safe use of SRS, including the management of disused (spent) and orphaned SRS. In the Czech Republic, a comprehensive system of SRS management has been established that is comparable with systems inmore » other developed countries. The system covers both legal and institutional aspects. The Central Register of Ionizing Radiation Sources is an important part of the system. It is a tracking system that covers all activities related to SRS, from their production or import to the end of their use (recycling or disposal). Many spent SRS are recycled and can be used for other purposes after inspection, repacking or reprocessing. When the disused SRS are not intended for further use, they are managed as radioactive waste (RAW). The system of SRS management also ensures the suitable resolution of situations connected with improper SRS handling (in the case of orphaned sources, accidents, etc.). (author)« less
A Flexible Cosmic Ultraviolet Background Model
NASA Astrophysics Data System (ADS)
McQuinn, Matthew
2016-10-01
HST studies of the IGM, of the CGM, and of reionization-era galaxies are all aided by ionizing background models, which are a critical input in modeling the ionization state of diffuse, 10^4 K gas. The ionization state in turn enables the determination of densities and sizes of absorbing clouds and, when applied to the Ly-a forest, the global ionizing emissivity of sources. Unfortunately, studies that use these background models have no way of gauging the amount of uncertainty in the adopted model other than to recompute their results using previous background models with outdated observational inputs. As of yet there has been no systematic study of uncertainties in the background model and there unfortunately is no publicly available ultraviolet background code. A public code would enable users to update the calculation with the latest observational constraints, and it would allow users to experiment with varying the background model's assumptions regarding emissions and absorptions. We propose to develop a publicly available ionizing background code and, as an initial application, quantify the level of uncertainty in the ionizing background spectrum across cosmic time. As the background model improves, so does our understanding of (1) the sources that dominate ionizing emissions across cosmic time and (2) the properties of diffuse gas in the circumgalactic medium, the WHIM, and the Ly-a forest. HST is the primary telescope for studying both the highest redshift galaxies and low-redshift diffuse gas. The proposed program would benefit HST studies of the Universe at z 0 all the way up to z = 10, including of high-z galaxies observed in the HST Frontier Fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsen, Joseph
2015-12-16
Using an X-ray free electron laser (XFEL) at 960 eV to photo-ionize the 1s electron in neutral neon followed by lasing on the 2p-1s transition in singly-ionized neon, an inner-shell X-ray laser was demonstrated at 849 eV in singly-ionized neon gas several years ago. It took decades to demonstrate this scheme, because it required a very strong X-ray source that could photo-ionize the 1s (K shell) electron in neon on a timescale comparable to the intrinsic Auger lifetime in neon of 2 fs. In this paper, we model the neon inner shell X-ray laser under similar conditions to those usedmore » in the XFEL experiments at the SLAC Linac Coherent Light Source (LCLS), and show how we can improve the efficiency of the neon laser and reduce the drive requirements by tuning the XFEL to the 1s-3p transition in neutral neon in order to create gain on the 2p-1s line in neutral neon. We also show how the XFEL could be used to photo-ionize L-shell electrons to drive gain on n = 3–2 transitions in singly-ionized Ar and Cu plasmas. Furthermore, these bright, coherent, and monochromatic X-ray lasers may prove very useful for doing high-resolution spectroscopy and for studying non-linear process in the X-ray regime.« less
Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.
Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa
2013-11-01
In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.
CIRCUITS FOR CURRENT MEASUREMENTS
Cox, R.J.
1958-11-01
Circuits are presented for measurement of a logarithmic scale of current flowing in a high impedance. In one form of the invention the disclosed circuit is in combination with an ionization chamber to measure lonization current. The particular circuit arrangement lncludes a vacuum tube having at least one grid, an ionization chamber connected in series with a high voltage source and the grid of the vacuum tube, and a d-c amplifier feedback circuit. As the ionization chamber current passes between the grid and cathode of the tube, the feedback circuit acts to stabilize the anode current, and the feedback voltage is a measure of the logaritbm of the ionization current.
2010-01-01
from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter- bounded both in the line...making them very dif- ficult to characterize. The ionization nebulae surrounding some ULXs have become critical for understanding the properties of...Abolmasov et al. 2007). It is located inside an ionized nebula (the “Foot nebula ”), and shows high- ionization optical emission lines coincident with
Chernetsova, Elena S; Morlock, Gertrud E
2011-01-01
Direct analysis in real time (DART), a relatively new ionization source for mass spectrometry, ionizes small-molecule components from different kinds of samples without any sample preparation and chromatographic separation. The current paper reviews the published data available on the determination of drugs and drug-like compounds in different matrices with DART-MS, including identification and quantitation issues. Parameters that affect ionization efficiency and mass spectra composition are also discussed. Copyright © 2011 Wiley Periodicals, Inc.
Plasma channel created by ionization of gas by a surface wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M., E-mail: minaev1945@mail.ru
2015-09-15
Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Minjin; Ho, Luis C.; Im, Myungshin
2017-08-01
The Seyfert 2 galaxy NGC 5252 contains a recently identified ultra-luminous X-ray (ULX) source that has been suggested to be a possible candidate off-nuclear low-mass active galactic nucleus. We present follow-up optical integral-field unit observations obtained using Gemini Multi-Object Spectrographs on the Gemini-North telescope. In addition to confirming that the ionized gas in the vicinity of the ULX is kinematically associated with NGC 5252, the new observations reveal ordered motions consistent with rotation around the ULX. The close coincidence of the excitation source of the line-emitting gas with the position of the ULX further suggests that ULX itself is directlymore » responsible for the ionization of the gas. The spatially resolved measurements of [N ii] λ 6584/H α surrounding the ULX indicate a low gas-phase metallicity, consistent with those of other known low-mass active galaxies but not that of its more massive host galaxy. These findings strengthen the proposition that the ULX is not a background source but rather that it is the nucleus of a small, low-mass galaxy accreted by NGC 5252.« less
The formation of molecules in interstellar clouds from singly and multiply ionized atoms
NASA Technical Reports Server (NTRS)
Langer, W. D.
1978-01-01
The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.
A comparison between DART-MS and DSA-MS in the forensic analysis of writing inks.
Drury, Nicholas; Ramotowski, Robert; Moini, Mehdi
2018-05-23
Ambient ionization mass spectrometry is gaining momentum in forensic science laboratories because of its high speed of analysis, minimal sample preparation, and information-rich results. One such application of ambient ionization methodology includes the analysis of writing inks from questioned documents where colorants of interest may not be soluble in common solvents, rendering thin layer chromatography (TLC) and separation-mass spectrometry methods such as LC/MS (-MS) impractical. Ambient ionization mass spectrometry uses a variety of ionization techniques such as penning ionization in Direct Analysis in Real Time (DART), and atmospheric pressure chemical ionization in Direct Sample Analysis (DSA), and electrospray ionization in Desorption Electrospray Ionization (DESI). In this manuscript, two of the commonly used ambient ionization techniques are compared: Perkin Elmer DSA-MS and IonSense DART in conjunction with a JEOL AccuTOF MS. Both technologies were equally successful in analyzing writing inks and produced similar spectra. DSA-MS produced less background signal likely because of its closed source configuration; however, the open source configuration of DART-MS provided more flexibility for sample positioning for optimum sensitivity and thereby allowing smaller piece of paper containing writing ink to be analyzed. Under these conditions, the minimum sample required for DART-MS was 1mm strokes of ink on paper, whereas DSA-MS required a minimum of 3mm. Moreover, both techniques showed comparable repeatability. Evaluation of the analytical figures of merit, including sensitivity, linear dynamic range, and repeatability, for DSA-MS and DART-MS analysis is provided. To the forensic context of the technique, DART-MS was applied to the analysis of United States Secret Service ink samples directly on a sampling mesh, and the results were compared with DSA-MS of the same inks on paper. Unlike analysis using separation mass spectrometry, which requires sample preparation, both DART-MS and DSA-MS successfully analyzed writing inks with minimal sample preparation. Copyright © 2018 Elsevier B.V. All rights reserved.
A simple way to model nebulae with distributed ionizing stars
NASA Astrophysics Data System (ADS)
Jamet, L.; Morisset, C.
2008-04-01
Aims: This work is a follow-up of a recent article by Ercolano et al. that shows that, in some cases, the spatial dispersion of the ionizing stars in a given nebula may significantly affect its emission spectrum. The authors found that the dispersion of the ionizing stars is accompanied by a decrease in the ionization parameter, which at least partly explains the variations in the nebular spectrum. However, they did not research how other effects associated to the dispersion of the stars may contribute to those variations. Furthermore, they made use of a unique and simplified set of stellar populations. The scope of the present article is to assess whether the variation in the ionization parameter is the dominant effect in the dependence of the nebular spectrum on the distribution of its ionizing stars. We examined this possibility for various regimes of metallicity and age. We also investigated a way to model the distribution of the ionizing sources so as to bypass expensive calculations. Methods: We wrote a code able to generate random stellar populations and to compute the emission spectra of their associated nebulae through the widespread photoionization code cloudy. This code can process two kinds of spatial distributions of the stars: one where all the stars are concentrated at one point, and one where their separation is such that their Strömgren spheres do not overlap. Results: We found that, in most regimes of stellar population ages and gas metallicities, the dependence of the ionization parameter on the distribution of the stars is the dominant factor in the variation of the main nebular diagnostics with this distribution. We derived a method to mimic those effects with a single calculation that makes use of the common assumptions of a central source and a spherical nebula, in the case of constant density objects. This represents a computation time saving by a factor of at least several dozen in the case of H ii regions ionized by massive clusters.
Wang, Liang; Zhang, En Xia; Schrimpf, Ronald D.; ...
2015-12-17
Here, the total ionizing dose response of Ge channel pFETs with raised Si 0.55Ge 0.45 source/drain is investigated under different radiation bias conditions. Threshold-voltage shifts and transconductance degradation are noticeable only for negative-bias (on state) irradiation, and are mainly due to negative bias-temperature instability (NBTI). Nonmonotonic leakage changes during irradiation are observed, which are attributed to the competition of radiation-induced field transistor leakage and S/D junction leakage.
Development of an apparatus for obtaining molecular beams in the energy range from 2 to 200 eV
NASA Technical Reports Server (NTRS)
Clapier, R.; Devienne, F. M.; Roustan, A.; Roustan, J. C.
1985-01-01
The formation and detection of molecular beams obtained by charge exchange from a low-energy ion source is discussed. Dispersion in energy of the ion source was measured and problems concerning detection of neutral beams were studied. Various methods were used, specifically secondary electron emissivity of a metallic surface and ionization of a gas target with a low ionization voltage. The intensities of neutral beams as low as 10 eV are measured by a tubular electron multiplier and a lock-in amplifier.
Development of a gas cell-based laser ion source for RIKEN PALIS
NASA Astrophysics Data System (ADS)
Sonoda, T.; Wada, M.; Tomita, H.; Sakamoto, C.; Takatsuka, T.; Noto, T.; Iimura, H.; Matsuo, Y.; Kubo, T.; Shinozuka, T.; Wakui, T.; Mita, H.; Naimi, S.; Furukawa, T.; Itou, Y.; Schury, P.; Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y.; Hirayama, Y.
2013-04-01
We developed a prototype laser ionization gas cell with a beam extraction system. This device is for use of PArasitic Laser Ion-Source (PALIS), which will be implemented into RIKEN's fragment separator, BigRIPS as a part of SLOWRI. Off-line resonant laser ionization for stable Co, Cu, Fe, Ni, Ti, Nb, Sn, In and Pd inside the gas cell, ion extraction and transport to the high-vacuum region via SPIG and QMS have been confirmed (Sonoda et al, Nucl Instrum Meth B 295:1, 2013).
Mottier, Pascal; Frank, Nancy; Dubois, Mathieu; Tarres, Adrienne; Bessaire, Thomas; Romero, Roman; Delatour, Thierry
2014-01-01
Tris(nonylphenyl)phosphite, an antioxidant used in polyethylene resins for food applications, is problematic since it is a source of the endocrine-disrupting chemicals 4-nonylphenols (4NP) upon migration into packaged foods. As a response to concerns surrounding the presence of 4NP-based compounds in packaging materials, some resin producers and additive suppliers have decided to eliminate TNPP from formulations. This paper describes an analytical procedure to verify the "TNPP-free" statement in multilayer laminates used for bag-in-box packaging. The method involves extraction of TNPP from laminates with organic solvents followed by detection/quantification by LC-MS/MS using the atmospheric pressure chemical ionisation (APCI) mode. A further acidic treatment of the latter extract allows the release of 4NP from potentially extracted TNPP. 4NP is then analysed by LC-MS/MS using electrospray ionisation (ESI) mode. This two-step analytical procedure ensures not only TNPP quantification in laminates, but also allows the flagging of other possible sources of 4NP in such packaging materials, typically as non-intentionally added substances (NIAS). The limits of quantification were 0.50 and 0.48 µg dm⁻² for TNPP and 4NP in laminates, respectively, with recoveries ranging between 87% and 114%. Usage of such analytical methodologies in quality control operations has pointed to a lack of traceability at the packaging supplier level and cross-contamination of extrusion equipment at the converter level, when TNPP-containing laminates are processed on the same machine beforehand.
NASA Technical Reports Server (NTRS)
Hovestadt, D.; Moebius, E.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.
1985-01-01
Singly ionized energetic helium has been observed in the solar wind by using the time of flight spectrometer SULEICA on the AMPTE/IRM satellite between September and December, 1984. The energy density spectrum shows a sharp cut off which is strongly correlated with the four fold solar wind bulk energy. The absolute flux of the He(+)ions of about 10000 ion/sq cm.s is present independent of the IPL magnetic field orientation. The most likely source is the neutral helium of the interstellar wind which is ionized by solar UV radiation. It is suggested that these particles represent the source of the anomalous cosmic ray component.
Method for analyzing the mass of a sample using a cold cathode ionization source mass filter
Felter, Thomas E.
2003-10-14
An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.
Ionization source utilizing a multi-capillary inlet and method of operation
Smith, Richard D.; Kim, Taeman; Udseth, Harold R.
2004-10-12
A multi-capillary inlet to focus ions and other charged particles generated at or near atmospheric pressure into a relatively low pressure region, which allows increased conductance of ions and other charged particles. The multi-capillary inlet is juxtaposed between an ion source and the interior of an instrument maintained at near atmospheric pressure, it finds particular advantages when deployed to improve the ion transmission between an electrospray ionization source and the first vacuum stage of a mass spectrometer, and finds its greatest advantages when deployed in conjunction with an electrodynamic (RF) ion funnel deployed within the interior of the mass spectrometer, particularly an ion funnel equipped with a jet disturber.
Analysis Of Ultra Compact Ionized Hydrogen Regions Within The Northern Half Of The Galactic Disk
NASA Astrophysics Data System (ADS)
Bruce, John
2011-01-01
From a catalog of 199 candidate ultra compact (UC) HII regions 123 sources included in the the intersection of the GLIMPSE (8 μm),Cornish (6 cm), and Bolocam ( 1.1 mm) galactic plane surveys (BGPS) were analyzed. The sources were sorted based on 6 cm morphology and coincidence with 8 μm bubbles. The 1.1 mm flux attributes were measured and calculations were performed to determine the ionized hydrogen contributions to the 1.1 mm flux. The category averages and frequencies were obtained as well. Significant differences in HII percentages were present among the morphology groups but ranged widely, without apparent distinction, between the bubble forming and triggered source categories.
Ionization of NO at high temperature
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1991-01-01
Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.
NASA Astrophysics Data System (ADS)
Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko
2009-06-01
We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.
D'Autry, Ward; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Van Schepdael, Ann
2011-07-01
Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification. Copyright © 2011 Elsevier B.V. All rights reserved.
Device for calibrating a radiation detector system
McFee, M.C.; Kirkham, T.J.; Johnson, T.H.
1994-12-27
A device is disclosed for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a ''shield plate'' or shell, and an opposing ''source plate'' containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects. 3 figures.
Device for calibrating a radiation detector system
Mc Fee, Matthew C.; Kirkham, Tim J.; Johnson, Tippi H.
1994-01-01
A device for testing a radiation detector system that includes at least two arrays of radiation detectors that are movable with respect to each other. The device includes a "shield plate" or shell, and an opposing "source plate" containing a source of ionizing radiation. Guides are attached to the outer surface of the shell for engaging the forward ends of the detectors, thereby reproducibly positioning the detectors with respect to the source and with respect to each other, thereby ensuring that a predetermined portion of the radiation emitted by the source passes through the shell and reaches the detectors. The shell is made of an hydrogenous material having approximately the same radiological attenuation characteristics as composite human tissue. The source represents a human organ such as the lungs, heart, kidneys, heart, liver, spleen, pancreas, thyroid, testes, prostate, or ovaries. The source includes a source of ionizing radiation having a long half-life and an activity that is within the range typically searched for in human subjects.
Method and apparatus for plasma source ion implantation
Conrad, J.R.
1988-08-16
Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner. 7 figs.
Method and apparatus for plasma source ion implantation
Conrad, John R.
1988-01-01
Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner.
Cold Multiphoton Matrix Assisted Laser Desorption/Ionization (MALDI)
NASA Astrophysics Data System (ADS)
Harris, Peter; Cooke, William; Tracy, Eugene
2008-05-01
We present evidence of a cold multiphoton MALDI process occurring at a Room Temperature Ionic Liquid (RTIL)/metal interface. Our RTIL, 1-Butyl-3-methylimidazolium hexafluorophosphate, remains a stable liquid at room temperatures, even at pressures lower than 10-9 torr. We focus the 2^nd harmonic of a pulsed (2ns pulse length) Nd:YAG laser onto a gold grid coated with RTIL to generate a cold (narrow velocity spread) ion source with temporal resolution comparable to current MALDI ion sources. Unlike conventional MALDI, we believe multiphoton MALDI does not rely on collisional ionization within the ejection plume, and thus produces large signals at laser intensities just above threshold. Removing the collisional ionization process allow us to eject material from smaller regions of a sample, enhancing the suitability of multiphoton MALDI as an ion imaging technique.
Forbes, Thomas P; Dixon, R Brent; Muddiman, David C; Degertekin, F Levent; Fedorov, Andrei G
2009-09-01
An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects, on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations, that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability.
NASA Astrophysics Data System (ADS)
Whalen, Daniel; Norman, Michael L.
2006-02-01
Radiation hydrodynamical transport of ionization fronts (I-fronts) in the next generation of cosmological reionization simulations holds the promise of predicting UV escape fractions from first principles as well as investigating the role of photoionization in feedback processes and structure formation. We present a multistep integration scheme for radiative transfer and hydrodynamics for accurate propagation of I-fronts and ionized flows from a point source in cosmological simulations. The algorithm is a photon-conserving method that correctly tracks the position of I-fronts at much lower resolutions than nonconservative techniques. The method applies direct hierarchical updates to the ionic species, bypassing the need for the costly matrix solutions required by implicit methods while retaining sufficient accuracy to capture the true evolution of the fronts. We review the physics of ionization fronts in power-law density gradients, whose analytical solutions provide excellent validation tests for radiation coupling schemes. The advantages and potential drawbacks of direct and implicit schemes are also considered, with particular focus on problem time-stepping, which if not properly implemented can lead to morphologically plausible I-front behavior that nonetheless departs from theory. We also examine the effect of radiation pressure from very luminous central sources on the evolution of I-fronts and flows.
Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves
NASA Astrophysics Data System (ADS)
Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.
2012-06-01
Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.
Ovchinnikova, Olga S; Van Berkel, Gary J
2010-06-30
An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.
Spontaneous-Desorption Ionizer for a TOF-MS
NASA Technical Reports Server (NTRS)
Schultz, J. Albert
2006-01-01
A time-of-flight mass spectrometer (TOF-MS) like the one mentioned in the immediately preceding article has been retrofitted with an ionizer based on a surface spontaneous-desorption process. This ionizer includes an electron multiplier in the form of a microchannel plate (MCP). Relative to an ionizer based on a hot-filament electron source, this ionizer offers advantages of less power consumption and greater mechanical ruggedness. The current density and stability characteristics of the electron emission of this ionizer are similar to those of a filament-based ionizer. In tests of various versions of this ionizer in the TOF-MS, electron currents up to 100 nA were registered. Currents of microamperes or more - great enough to satisfy requirements in most TOFMS applications - could be obtained by use of MCPs different from those used in the tests, albeit at the cost of greater bulk. One drawback of this ionizer is that the gain of the MCP decreases as a function of the charge extracted thus far; the total charge that can be extracted over the operational lifetime is about 1 coulomb. An MCP in the ion-detector portion of the TOF-MS is subject to the same limitation.
76 FR 6692 - Radiation Sources on Army Land
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-08
...-AA58 Radiation Sources on Army Land AGENCY: Department of the Army, DoD. ACTION: Final rule. SUMMARY: The Department of the Army is finalizing revisions to its regulation concerning radiation sources on... Radiation Permit (ARP) from the garrison commander to use, store, or possess ionizing radiation sources on...
Aerosol Vacuum-Assisted Plasma Ionization (Aero-VaPI) Coupled to Ion Mobility-Mass Spectrometry
NASA Astrophysics Data System (ADS)
Blair, Sandra L.; Ng, Nga L.; Zambrzycki, Stephen C.; Li, Anyin; Fernández, Facundo M.
2018-02-01
In this communication, we report on the real-time analysis of organic aerosol particles by Vacuum-assisted Plasma Ionization-Mass Spectrometry (Aero-VaPI-MS) using a home-built VaPI ion source coupled to a Synapt G2-S HDMS ion mobility-mass spectrometry (IM-MS) system. Standards of organic molecules of interest in prebiotic chemistry were used to generate aerosols. Monocaprin and decanoic acid aerosol particles were successfully detected in both the positive and negative ion modes, respectively. A complex aerosol mixture of different sizes of polymers of L-malic acid was also examined through ion mobility (IM) separations, resulting in the detection of polymers of up to eight monomeric units. This noncommercial plasma ion source is proposed as a low cost alternative to other plasma ionization platforms used for aerosol analysis, and a higher-performance alternative to more traditional aerosol mass spectrometers. VaPI provides robust online ionization of organics in aerosols without extensive ion activation, with the coupling to IM-MS providing higher peak capacity and excellent mass accuracy. [Figure not available: see fulltext.
Broad NE 8 lambda 774 emission from quasars in the HST-FOS snapshot survey (ABSNAP)
NASA Technical Reports Server (NTRS)
Hamann, Fred; Zuo, Lin; Tytler, David
1995-01-01
We discuss the strength and frequency of broad Ne VIII lambda 774 emission from quasars measured in the Hubble Space Telescope Faint Object Spectrograph (HST-FOS) snapshot survey (Absnap). Five sources in the survey have suitable redshifts (0.86 less than or equal to Z(sub em) less than or equal to 1.31), signal-to-noise ratios and no Lyman limit absorptions. Three of the five sources have a strong broad emission line near 774 A (rest), and the remaining two sources have a less securely measured line near this wavelength. We identify these lines with Ne VIII lambda 774 based on the measured wavelengths and theoretical estimates of various line fluxes (Hamann et al. 1995a). Secure Ne VIII detections occur in both radio-loud and radio-quiet sources. We tentatively conclude that broad Ne VIII lambda 774 emission is common in quasars, with typical strengths between approximately 25% and approximately 200% of O VI lambda 1034. These Ne VIII lambda 774 measurements imply that the broad emission line regions have a much hotter and more highly ionized component than previously recognized. They also suggest that quasar continua have substantial ionizing flux out to energies greater than 207 eV (greater than 15.2 ryd, lambda less than 60 A). Photoionization calculations using standard incident spectra indicate that the Ne VIII emission requires ionization parameters U greater than or = 5, total column densities N(sub H) greater than or = 10(sub 22)/sq cm and covering factors greater than or = 25%. The temperatures could be as high as approximately 10(exp 5) K. If the gas is instead collisionally ionized, strong Ne VIII would imply equilibrium temperatures in the range approximately 400,000 less than or approximately = T(sub e) less than or approximately = 10(exp 6) K. In either case, the highly ionized Ne VIII emission regions would appear as X-ray 'warm absorbers' if they lie along our line of sight to the X-ray continuum source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mille, M; Bergstrom, P
2015-06-15
Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or currentmore » can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose is accurately and consistently delivered to patients.« less
How does ionizing radiation escape from galaxies?
NASA Astrophysics Data System (ADS)
Orlitova, Ivana
2016-10-01
Search for sources that reionized the Universe from z 15 to z 6 is one of the main drivers of present-day astronomy. Low-mass star-forming galaxies are the most favoured sources of ionizing photons, but the searches of escaping Lyman continuum (LyC) have not been extremely successful. Our team has recently detected prominent LyC escape from five Green Pea galaxies at redshift 0.3, using the HST/COS spectrograph, which represents a significant breakthrough. We propose here to study the LyC escape of the strongest among these leakers, J1152, with spatial resolution. From the comparison of the ionizing and non-ionizing radiation maps, and surface brightness profiles, we will infer the major mode in which LyC is escaping: from the strongest starburst, from the galaxy edge, through a hole along our line-of-sight, through clumpy medium, or directly from all the production sites due to highly ionized medium in the entire galaxy. In parallel, we will test the predictive power of two highly debated indirect indicators of LyC leakage: the [OIII]5007/[OII]3727 ratio, and Lyman-alpha. We predict that their spatial distribution should closely follow that of the ionizing continuum if column densities of the neutral gas are low. This combined study, which relies on the HST unique capabilities, will bring crucial information on the structure of the leaking galaxies, provide constraints for hydrodynamic simulations, and will lead to efficient future searches for LyC leakers across a large range of redshifts.
Revealing the Ionization Properties of the Magellanic Stream Using Optical Emission
NASA Astrophysics Data System (ADS)
Barger, K. A.; Madsen, G. J.; Fox, A. J.; Wakker, B. P.; Bland-Hawthorn, J.; Nidever, D.; Haffner, L. M.; Antwi-Danso, Jacqueline; Hernandez, Michael; Lehner, N.; Hill, A. S.; Curzons, A.; Tepper-García, T.
2017-12-01
The Magellanic Stream, a gaseous tail that trails behind the Magellanic Clouds, could replenish the Milky Way (MW) with a tremendous amount of gas if it reaches the Galactic disk before it evaporates into the halo. To determine how the Magellanic Stream’s properties change along its length, we have conducted an observational study of the Hα emission, along with other optical warm ionized gas tracers, toward 39 sight lines. Using the Wisconsin Hα Mapper telescope, we detect Hα emission brighter than 30–50 mR in 26 of our 39 sight lines. This Hα emission extends over 2^\\circ away from the H I emission. By comparing {I}{{H}α } and {I}[{{O}{{I}}]}, we find that regions with {log}{N}{{H}{{I}}}/{{cm}}-2≈ 19.5{--}20.0 are 16%–67% ionized. Most of the {I}{{H}α } along the Magellanic Stream are much higher than expected if the primary ionization source is photoionization from Magellanic Clouds, the MW, and the extragalactic background. We find that the additional contribution from self ionization through a “shock cascade” that results as the Stream plows through the halo might be sufficient to reproduce the underlying level of Hα emission along the Stream. In the sparsely sampled region below the South Galactic Pole, there exists a subset of sight lines with uncharacteristically bright emission, which suggest that gas is being ionized further by an additional source that could be a linked to energetic processes associated with the Galactic center.
Massive Star Formation of the SGR a East H (sub II) Regions Near the Galactic Center
NASA Technical Reports Server (NTRS)
Yusef-Zadeh, F.; Lacy, J. H.; Wardle, M.; Whitney, B.; Bushouse, H.; Roberts, D. A.; Arendt, R. G.
2010-01-01
A group of four compact H II regions associated with the well-known 50 km/s molecular cloud is the closest site of on-going star formation to the dynamical center of the Galaxy, at a projected distance of approximately 6 pc. We present a study of ionized gas based on the [Ne II] (12.8 micron) line, as well as multi-frequency radio continuum, Hubble Space Telescope Pa alpha, and Spitzer Infrared Array Camera observations of the most compact member of the H II group, Sgr A East H II D. The radio continuum image at 6 cm shows that this source breaks up into two equally bright ionized features, D1 and D2. The spectral energy distribution of the D source is consistent with it being due to a 25 =/- 3 solar mass star with a luminosity of 8 +/- 3 x 10(exp 4) Solar luminosity . The inferred mass, effective temperature of the UV source, and the ionization rate are compatible with a young O9-B0 star. The ionized features D1 and D2 are considered to be ionized by UV radiation collimated by an accretion disk. We consider that the central massive star photoevaporates its circumstellar disk on a timescale of 3x (exp 4) years giving a mass flux approximately 3 x 10(exp -5) Solar Mass / year and producing the ionized material in D1 and D2 expanding in an inhomogeneous medium. The ionized gas kinematics, as traced by the [Ne II] emission, is difficult to interpret, but it could be explained by the interaction of a bipolar jet with surrounding gas along with what appears to be a conical wall of lower velocity gas. The other H II regions, Sgr A East A-C, have morphologies and kinematics that more closely resemble cometary flows seen in other compact H II regions, where gas moves along a paraboloidal surface formed by the interaction of a stellar wind with a molecular cloud.
Beermann, Christopher; Winterling, Nadine; Green, Angelika; Möbius, Michael; Schmitt, Joachim J; Boehm, Günther
2007-04-01
The sn position of fatty acids in seed oil lipids affects physiological function in pharmaceutical and dietary applications. In this study the composition of acyl-chain substituents in the sn positions of glycerol backbones in triacylglycerols (TAG) have been compared. TAG from native and transgenic medium-chain fatty acid-enriched rape seed oil were analyzed by reversed-phase high performance liquid chromatography coupled with online atmospheric-pressure chemical ionization ion-trap mass spectrometry. The transformation of summer rape with thioesterase and 3-ketoacyl-[ACP]-synthase genes of Cuphea lanceolata led to increased expression of 1.5% (w/w) caprylic acid (8:0), 6.7% (w/w) capric acid (10:0), 0.9% (w/w) lauric acid (12:0), and 0.2% (w/w) myristic acid (14:0). In contrast, linoleic (18:2n6) and alpha-linolenic acid (18:3n3) levels decreased compared with the original seed oil. The TAG sn position distribution of fatty acids was also modified. The original oil included eleven unique TAG species whereas the transgenic oil contained sixty. Twenty species were common to both oils. The transgenic oil included trioctadecenoyl-glycerol (18:1/18:1/18:1) and trioctadecatrienoyl-glycerol (18:3/18:3/18:3) whereas the native oil included only the latter. The transgenic TAG were dominated by combinations of caprylic, capric, lauric, myrisitic, palmitic (16:0), stearic (18:0), oleic (18:1n9), linoleic, arachidic (20:0), behenic (22:0), and lignoceric acids (24:0), which accounted for 52% of the total fat. In the original TAG palmitic, stearic, oleic, and linoleic acids accounted for 50% of the total fat. Medium-chain triacylglycerols with capric and lauric acids combined with stearic, oleic, linoleic, alpha-linolenic, arachidic, and gondoic acids (20:1n9) accounted for 25% of the transgenic oil. The medium-chain fatty acids were mainly integrated into the sn-1/3 position combined with the essential linoleic and alpha-linolenic acids at the sn-2 position. Eight species contained caprylic, capric, and lauric acids in the sn-2 position. The appearance of new TAG in the transgenic oil illustrates the extensive effect of genetic modification on fat metabolism by transformed plants and offers interesting possibilities for improved enteral applications.
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
Tullberg, Cecilia; Larsson, Karin; Carlsson, Nils-Gunnar; Comi, Irene; Scheers, Nathalie; Vegarud, Gerd; Undeland, Ingrid
2016-03-01
In this work, we investigated lipid oxidation of cod liver oil during gastrointestinal (GI) digestion using two types of in vitro digestion models. In the first type of model, we used human GI juices, while we used digestive enzymes and bile from porcine origin in the second type of model. Human and porcine models were matched with respect to factors important for lipolysis, using a standardized digestion protocol. The digests were analysed for reactive oxidation products: malondialdehyde (MDA), 4-hydroxy-trans-2-nonenal (HNE), and 4-hydroxy-trans-2-hexenal (HHE) by liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry (LC/APCI-MS), and for free fatty acids (FFA) obtained during the digestion by gas chromatography-mass spectrometry (GC-MS). The formation of the oxidation products MDA, HHE, and HNE was low during the gastric digestion, however, it increased during the duodenal digestion. The formation of the oxidation products reached higher levels when digestive juices of human origin were used (60 μM of MDA, 0.96 μM of HHE, and 1.6 μM of HNE) compared to when using enzymes and bile of porcine origin (9.8, and 0.36 μM of MDA; 0.16, and 0.026 μM of HHE; 0.23, and 0.005 μM of HNE, respectively, in porcine models I and II). In all models, FFA release was only detected during the intestinal step, and reached up to 31% of total fatty acids (FA). The findings in this work may be of importance when designing oxidation oriented lipid digestion studies.
Presence and regulation of the endocannabinoid system in human dendritic cells.
Matias, Isabel; Pochard, Pierre; Orlando, Pierangelo; Salzet, Michel; Pestel, Joel; Di Marzo, Vincenzo
2002-08-01
Cannabinoid receptors and their endogenous ligands, the endocannabinoids, have been detected in several blood immune cells, including monocytes/macrophages, basophils and lymphocytes. However, their presence in dendritic cells, which play a key role in the initiation and development of the immune response, has never been investigated. Here we have analyzed human dendritic cells for the presence of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), the cannabinoid CB1 and CB2 receptors, and one of the enzymes mostly responsible for endocannabinoid hydrolysis, the fatty acid amide hydrolase (FAAH). By using a very sensitive liquid chromatography-atmospheric pressure chemical ionization-mass spectrometric (LC-APCI-MS) method, lipids extracted from immature dendritic cells were shown to contain 2-AG, anandamide and the anti-inflammatory anandamide congener, N-palmitoylethanolamine (PalEtn) (2.1 +/- 1.0, 0.14 +/- 0.02 and 8.2 +/- 3.9 pmol x 10(-7) cells, respectively). The amounts of 2-AG, but not anandamide or PalEtn, were significantly increased following cell maturation induced by bacterial lipopolysaccharide (LPS) or the allergen Der p 1 (2.8- and 1.9-fold, respectively). By using both RT-PCR and Western immunoblotting, dendritic cells were also found to express measurable amounts of CB1 and CB2 receptors and of FAAH. Cell maturation did not consistently modify the expression of these proteins, although in some cell preparations a decrease of the levels of both CB1 and CB2 mRNA transcripts was observed after LPS stimulation. These findings demonstrate for the first time that the endogenous cannabinoid system is present in human dendritic cells and can be regulated by cell activation.
Fabresse, Nicolas; Grassin-Delyle, Stanislas; Etting, Isabelle; Alvarez, Jean-Claude
2017-07-01
We developed and validated a method to detect and quantify 12 anabolic steroids in blood (androstenedione, dihydrotestosterone, boldenone, epitestosterone, mesterolone, methandienone, nandrolone, stanozolol, norandrostenedione, tamoxifene, testosterone, trenbolone) and eight more in hair samples (nandrolone phenylpropionate, nandrolone decanoate, testosterone propionate, testosterone benzoate, testosterone cypionate, testosterone decanoate, testosterone phenylpropionate, testosterone undecanoate) using liquid chromatography coupled to high-resolution mass spectrometry. This method used a benchtop Orbitrap mass spectrometer operating with an APCI probe under positive ionization mode. Analysis was realized in full scan experiment with a nominal resolving power of 140,000. After addition of the internal standard (testosterone-D3) and incubation in phosphate buffer pH = 5 for hair, 200 μL of blood and 30 mg of hair samples were extracted with heptane. LOQ and LOD were determined at 5 and 1 ng mL -1 in whole blood and 10 to 100 pg mg -1 and 2 to 20 pg mg -1 in hair according to the compounds, respectively. The method was linear in the 5-1000 ng mL -1 range in whole blood and between 10 or 100 pg mg -1 and 1000 pg mg -1 in hair with correlation coefficients >0.99, and intra- and inter-day accuracy and precision were <14.8% for all compounds except for some esters in hairs (<19.9%) probably due to an important matrix effect for these compounds. This sensitive and specific method to detect anabolic steroids has been successfully applied to two real cases, for which various anabolic steroids in whole blood, urine, and hair were identified and quantified.
Saliu, Francesco; Modugno, Francesca; Orlandi, Marco; Colombini, Maria Perla
2011-10-01
The lipid fractions of residues from historical pharmaceutical ointments were analysed by reversed-phase liquid chromatography coupled with atmospheric pressure chemical ionization and mass spectrometer detection. The residues were contained in a series of historical apothecary jars, dating from the eighteenth century and conserved at the "Aboca Museum" in Sansepolcro (Arezzo, Italy) and at the pharmacy of the "Real Cartuja de Valldemossa" in Palma de Majorca (Spain). The analytical protocol was set up using a comparative study based on the evaluation of triacylglycerol (TAG) compositions in raw natural lipid materials and in laboratory-reproduced ointments. These ointments were prepared following pharmaceutical recipes reported in historical treatises and used as reference materials. The reference materials were also subjected to stress treatments in order to evaluate the modification occurring in the TAG profiles as an effect of ageing. TAGs were successfully detected in the reproduced formulations even in mixtures of up to ten ingredients and after harsh degradative treatments, and also in real historical samples. No particular interferences were detected from other non-lipid ingredients of the formulations. The TAG compositions detected in the historical ointments indicated a predominant use of olive oil and pig adipose material as lipid ingredients. The detection of a high level of tristearine and myristyl-palmitoyl-stearyl glycerol in two of the samples suggested the presence of a fatty material of a different origin (maybe a ruminant). On the basis of the positional isomer ratio, sn-PPO/sn-POP, it was possible to hypothesize an exclusive use of pig fat in one sample. We also evaluated the application of principal component analysis of TAG profiles as an approach for the multivariate statistical comparison of the reference and historical ointments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huerta, E. M.; Krongold, Y.; Jimenez-Bailon, E.
2014-09-20
The 1.5 Seyfert galaxy NGC 3516 presents a strong time variability in X-rays. We re-analyzed the nine observations performed in 2006 October by XMM-Newton and Chandra in the 0.3 to 10 keV energy band. An acceptable model was found for the XMM-Newton data fitting the EPIC-PN and RGS spectra simultaneously; later, this model was successfully applied to the contemporary Chandra high-resolution data. The model consists of a continuum emission component (power law + blackbody) absorbed by four ionized components (warm absorbers), and 10 narrow emission lines. Three absorbing components are warm, producing features only in the soft X-ray band. Themore » fourth ionization component produces Fe XXV and Fe XXVI in the hard-energy band. We study the time response of the absorbing components to the well-detected changes in the X-ray luminosity of this source and find that the two components with the lower ionization state show clear opacity changes consistent with gas close to photoionization equilibrium. These changes are supported by the models and by differences in the spectral features among the nine observations. On the other hand, the two components with higher ionization state do not seem to respond to continuum variations. The response time of the ionized absorbers allows us to constrain their electron density and location. We find that one component (with intermediate ionization) must be located within the obscuring torus at a distance 2.7 × 10{sup 17} cm from the central engine. This outflowing component likely originated in the accretion disk. The three remaining components are at distances larger than 10{sup 16}-10{sup 17} cm. Two of the absorbing components in the soft X-rays have similar outflow velocities and locations. These components may be in pressure equilibrium, forming a multi-phase medium, if the gas has metallicity larger than the solar one (≳ 5 Z {sub ☉}). We also search for variations in the covering factor of the ionized absorbers (although partial covering is not required in our models). We find no correlation between the change in covering factor and the flux of the source. This, in connection with the observed variability of the ionized absorbers, suggests that the changes in flux are not produced by this material. If the variations are indeed produced by obscuring clumps of gas, these must be located much closer in to the central source.« less
Meng, Xiangpeng; Chan, Wan
2017-02-15
Previous studies have established that 2-alkylcyclobutanones (2-ACBs) are unique radiolytic products in lipid-containing foods that could only be formed through exposure to ionizing radiation, but not by any other means of physical/heat treatment methods. Therefore, 2-ACBs are currently the marker molecules required by the European Committee for Standardization to be used to identify foods irradiated with ionizing irradiation. Using a spectrum of state-of-the-art analytical instruments, we present in this study for the first time that the generation of 2-ACBs was also possible when fatty acids and triglycerides are exposed to a non-ionizing, short-wavelength ultraviolet (UV-C) light source. An irradiation dosage-dependent formation of 2-ACBs was also observed in UV-C irradiated fatty acids, triglycerides, corn oil, and pork samples. With UV-C irradiation becoming an increasingly common food treatment procedure, it is anticipated that the results from this study will alert food scientists and regulatory officials to a potential new source for 2-ACBs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.; ...
2014-03-28
Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Jonathan T.; Marginean, Ioan; Kelly, Ryan T.
Arrays of chemically etched emitters with individualized sheath gas capillaries have been developed to enhance electrospray ionization (ESI) at subambient pressures. By including an emitter array in a subambient pressure ionization with nanoelectrospray (SPIN) source, ionization and transmission efficiency can be maximized allowing for increased sensitivity in mass spectrometric analyses. The SPIN source eliminates the major ion losses at conventional ESI-mass spectrometry (MS) interface by placing the emitter in the first vacuum region of the instrument. To facilitate stable electrospray currents in such conditions we have developed an improved emitter array with individualized sheath gas around each emitter. The utilitymore » of the new emitter arrays for generating stable multi-electrosprays at subambient pressures was probed by coupling the emitter array/SPIN source with a time of flight (TOF) mass spectrometer. The instrument sensitivity was compared between single emitter/SPIN-MS and multi-emitter/SPIN-MS configurations using an equimolar solution of 9 peptides. An increase in sensitivity correlative to the number of emitters in the array was observed.« less