NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2010-11-01
Modeling of laser-induced ionization and heating of conduction-band electrons by laser radiation frequently serves as a basis for simulations supporting experimental studies of laser-induced ablation and damage of solid dielectrics. Together with band gap and electron-particle collision rate, effective electron mass is one of material parameters employed for the ionization modeling. Exact value of the effective mass is not known for many materials frequently utilized in experiments, e.g., fused silica and glasses. Because of that reason, value of the effective mass is arbitrary varied around "reasonable values" for the ionization modeling. In fact, it is utilized as a fitting parameter to fit experimental data on dependence of ablation or damage threshold on laser parameters. In this connection, we study how strong is the influence of variations of the effective mass on the value of conduction-band electron density. We consider influence of the effective mass on the photo-ionization rate and rate of impact ionization. In particular, it is shown that the photo-ionization rate can vary by 2-4 orders of magnitude with variation of effective mass by 50%. Impact ionization shows a much weaker dependence on effective mass, but it significantly enhances the variations of seed-electron density produced by the photo-ionization. Utilizing those results, we demonstrate that variation of effective mass by 50% produces variations of conduction-band electron density by 6 orders of magnitude. In this connection, we discuss the general issues of the current models of laser-induced ionization.
Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke
Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge density is increased by a higher dose rate and/or lower beam size.« less
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry; Chu, Shih-I.
2012-06-01
We present a self-interaction-free (SIC) time-dependent density-functional theory (TDDFT) for the treatment of double ionization processes of many-electron systems. The method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed 3D calculations of double ionization of He and Be atoms by strong near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. We found that proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the spin particle numbers (SPN) only. The results for the intensity-dependent probabilities of single and double ionization are presented and reproduce the famous ``knee'' structure.
Peas in a Pod: Environment and Ionization in Green Pea Galaxies
NASA Astrophysics Data System (ADS)
Kurtz, Heather; Jaskot, Anne; Drew, Patrick; Pare, Dylan; Griffin, Jon; Petersen, Michael
2016-01-01
The Green Peas are extreme, highly ionized, starburst galaxies with strong [OIII] 5007 emission. Using the Sloan Digital Sky Survey, we present statistics on the environment of Green Peas and investigate its effects on their ionized gas properties. Although most dwarf starburst galaxies are in low-density environments, we identify a sample of Green Peas in dense environments. Emission line observations with the WIYN 0.9-meter telescope at Kitt Peak reveal that one cluster Green Pea is more highly ionized in the direction of the cluster center. Ram pressure stripping likely generates this ionization gradient. We explore the role of the environment in enhancing star formation rates and ionization, and we compare the nebular properties of Green Peas in high-density environments to those in low-density environments.
Air ions and mood outcomes: a review and meta-analysis
2013-01-01
Background Psychological effects of air ions have been reported for more than 80 years in the media and scientific literature. This study summarizes a qualitative literature review and quantitative meta-analysis, where applicable, that examines the potential effects of exposure to negative and positive air ions on psychological measures of mood and emotional state. Methods A structured literature review was conducted to identify human experimental studies published through August, 2012. Thirty-three studies (1957–2012) evaluating the effects of air ionization on depression, anxiety, mood states, and subjective feelings of mental well-being in humans were included. Five studies on negative ionization and depression (measured using a structured interview guide) were evaluated by level of exposure intensity (high vs. low) using meta-analysis. Results Consistent ionization effects were not observed for anxiety, mood, relaxation/sleep, and personal comfort. In contrast, meta-analysis results showed that negative ionization, overall, was significantly associated with lower depression ratings, with a stronger association observed at high levels of negative ion exposure (mean summary effect and 95% confidence interval (CI) following high- and low-density exposure: 14.28 (95% CI: 12.93-15.62) and 7.23 (95% CI: 2.62-11.83), respectively). The response to high-density ionization was observed in patients with seasonal or chronic depression, but an effect of low-density ionization was observed only in patients with seasonal depression. However, no relationship between the duration or frequency of ionization treatment on depression ratings was evident. Conclusions No consistent influence of positive or negative air ionization on anxiety, mood, relaxation, sleep, and personal comfort measures was observed. Negative air ionization was associated with lower depression scores particularly at the highest exposure level. Future research is needed to evaluate the biological plausibility of this association. PMID:23320516
Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization
NASA Astrophysics Data System (ADS)
Girazian, Z.; Mahaffy, P.; Lillis, R. J.; Benna, M.; Elrod, M.; Fowler, C. M.; Mitchell, D. L.
2017-11-01
We use observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to show how superthermal electron fluxes and crustal magnetic fields affect ion densities in the nightside ionosphere of Mars. We find that due to electron impact ionization, high electron fluxes significantly increase the CO2+, O+, and O2+ densities below 200 km but only modestly increase the NO+ density. High electron fluxes also produce distinct peaks in the CO2+, O+, and O2+ altitude profiles. We also find that superthermal electron fluxes are smaller near strong crustal magnetic fields. Consequently, nightside ion densities are also smaller near strong crustal fields because they decay without being replenished by electron impact ionization. Furthermore, the NO+/O2+ ratio is enhanced near strong crustal fields because, in the absence of electron impact ionization, O2+ is converted into NO+ and not replenished. Our results show that electron impact ionization is a significant source of CO2+, O+, and O2+ in the nightside ionosphere of Mars.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2013-05-01
We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.
2014-04-01
Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Astrophysics Data System (ADS)
Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June
2018-03-01
A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.
Large-scale fluctuations in the cosmic ionizing background: the impact of beamed source emission
NASA Astrophysics Data System (ADS)
Suarez, Teresita; Pontzen, Andrew
2017-12-01
When modelling the ionization of gas in the intergalactic medium after reionization, it is standard practice to assume a uniform radiation background. This assumption is not always appropriate; models with radiative transfer show that large-scale ionization rate fluctuations can have an observable impact on statistics of the Lyman α forest. We extend such calculations to include beaming of sources, which has previously been neglected but which is expected to be important if quasars dominate the ionizing photon budget. Beaming has two effects: first, the physical number density of ionizing sources is enhanced relative to that directly observed; and secondly, the radiative transfer itself is altered. We calculate both effects in a hard-edged beaming model where each source has a random orientation, using an equilibrium Boltzmann hierarchy in terms of spherical harmonics. By studying the statistical properties of the resulting ionization rate and H I density fields at redshift z ∼ 2.3, we find that the two effects partially cancel each other; combined, they constitute a maximum 5 per cent correction to the power spectrum P_{H I}(k) at k = 0.04 h Mpc-1. On very large scales (k < 0.01 h Mpc-1) the source density renormalization dominates; it can reduce, by an order of magnitude, the contribution of ionizing shot noise to the intergalactic H I power spectrum. The effects of beaming should be considered when interpreting future observational data sets.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2014-12-01
Laser-induced ionization is a major process that initiates and drives the initial stages of laser-induced damage (LID) of high-quality transparent solids. The ionization and its contribution to LID are characterized in terms of the time-dependent ionization rate and conduction-band electron density. Considering femtosecond pulses of various durations (from 35 to 706 fs) and variable peak irradiances (from 0.01 to 60 TW/cm2), we use a single-rate equation to simulate time variations of conduction-band electron density and rates of the photoionization and impact ionization. The photoionization rate is evaluated with the Keldysh equation. At low irradiance, the electron density and total ionization rate demonstrate power scaling characteristic of multiphoton ionization. With the increase of irradiance, there is observed a saturation of the photoionization rate due to photoionization suppression by the Keldysh-type singularity during the increase in the number of simultaneously absorbed photons by 1. A striking result is that the saturation is followed by a stepwise transition from the ionization regime which is completely dominated by the photoionization to a regime totally dominated by the impact ionization. The transition results in the increase of the electron density by a few orders of magnitude induced by a variation of peak laser irradiance by about 15% to 20%. The physical effects that are involved are discussed.
Gotanda, T; Katsuda, T; Gotanda, R; Tabuchi, A; Yamamoto, K; Kuwano, T; Yatake, H; Takeda, Y
2009-03-01
The effective energy of diagnostic X-rays is important for quality assurance (QA) and quality control (QC). However, the half-value layer (HVL), which is necessary to evaluate the effective energy, is not ubiquitously monitored because ionization-chamber dosimetry is time-consuming and complicated. To verify the applicability of GAFCHROMIC XR type R (GAF-R) film for HVL measurement as an alternative to monitoring with an ionization chamber, a single-strip method for measuring the HVL has been evaluated. Calibration curves of absorbed dose versus film density were generated using this single-strip method with GAF-R film, and the coefficient of determination (r2) of the straight-line approximation was evaluated. The HVLs (effective energies) estimated using the GAF-R film and an ionization chamber were compared. The coefficient of determination (r2) of the straight-line approximation obtained with the GAF-R film was more than 0.99. The effective energies (HVLs) evaluated using the GAF-R film and the ionization chamber were 43.25 keV (5.10 mm) and 39.86 keV (4.45 mm), respectively. The difference in the effective energies determined by the two methods was thus 8.5%. These results suggest that GAF-R might be used to evaluate the effective energy from the film-density growth without the need for ionization-chamber measurements.
Ionization competition effects on population distribution and radiative opacity of mixture plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongjun; Gao, Cheng; Tian, Qinyun
2015-11-15
Ionization competition arising from the electronic shell structures of various atomic species in the mixture plasmas was investigated, taking SiO{sub 2} as an example. Using a detailed-level-accounting approximation, we studied the competition effects on the charge state population distribution and spectrally resolved and Planck and Rosseland mean radiative opacities of mixture plasmas. A set of coupled equations for ionization equilibria that include all components of the mixture plasmas are solved to determine the population distributions. For a given plasma density, competition effects are found at three distinct temperature ranges, corresponding to the ionization of M-, L-, and K-shell electrons ofmore » Si. Taking the effects into account, the spectrally resolved and Planck and Rosseland mean opacities are systematically investigated over a wide range of plasma densities and temperatures. For a given mass density, the Rosseland mean decreases monotonically with plasma temperature, whereas Planck mean does not. Although the overall trend is a decrease, the Planck mean increases over a finite intermediate temperature regime. A comparison with the available experimental and theoretical results is made.« less
INVESTIGATION OF DENSITY EFFECT IN SOLIDS AND GASES.
electron-positron pair production by 150 MeV electrons. (5) Investiga tion of the density effect in C, Al, Fe, Cu, Ni, Ag, Ta, and Au. (Author)...This report describes the results obtained for the following experiments: (1) The pressure dependence of ionization by relativistic elec trons. (2...Ionization by relativistic particles in helium-hydrogen gas mixtures. (3) Investiga tion of the operation of secondary emission monitors. (4) Direct
NASA Astrophysics Data System (ADS)
Wurster, James; Bate, Matthew R.; Price, Daniel J.
2018-04-01
We present results from radiation non-ideal magnetohydrodynamics (MHD) calculations that follow the collapse of rotating, magnetized, molecular cloud cores to stellar densities. These are the first such calculations to include all three non-ideal effects: ambipolar diffusion, Ohmic resistivity, and the Hall effect. We employ an ionization model in which cosmic ray ionization dominates at low temperatures and thermal ionization takes over at high temperatures. We explore the effects of varying the cosmic ray ionization rate from ζcr = 10-10 to 10-16 s-1. Models with ionization rates ≳10-12 s-1 produce results that are indistinguishable from ideal MHD. Decreasing the cosmic ray ionization rate extends the lifetime of the first hydrostatic core up to a factor of 2, but the lifetimes are still substantially shorter than those obtained without magnetic fields. Outflows from the first hydrostatic core phase are launched in all models, but the outflows become broader and slower as the ionization rate is reduced. The outflow morphology following stellar core formation is complex and strongly dependent on the cosmic ray ionization rate. Calculations with high ionization rates quickly produce a fast (≈14 km s-1) bipolar outflow that is distinct from the first core outflow, but with the lowest ionization rate, a slower (≈3-4 km s-1) conical outflow develops gradually and seamlessly merges into the first core outflow.
Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald
2016-02-01
A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.
Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations
NASA Astrophysics Data System (ADS)
Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom
2016-06-01
We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.
Density effects on electronic configurations in dense plasmas
NASA Astrophysics Data System (ADS)
Faussurier, Gérald; Blancard, Christophe
2018-02-01
We present a quantum mechanical model to describe the density effects on electronic configurations inside a plasma environment. Two different approaches are given by starting from a quantum average-atom model. Illustrations are shown for an aluminum plasma in local thermodynamic equilibrium at solid density and at a temperature of 100 eV and in the thermodynamic conditions of a recent experiment designed to characterize the effects of the ionization potential depression treatment. Our approach compares well with experiment and is consistent in that case with the approach of Stewart and Pyatt to describe the ionization potential depression rather than with the method of Ecker and Kröll.
NASA Astrophysics Data System (ADS)
McLeod, A. F.; Gritschneder, M.; Dale, J. E.; Ginsburg, A.; Klaassen, P. D.; Mottram, J. C.; Preibisch, T.; Ramsay, S.; Reiter, M.; Testi, L.
2016-11-01
We present an analysis of the effect of feedback from O- and B-type stars with data from the integral field spectrograph Multi Unit Spectroscopic Explorer (MUSE) mounted on the Very Large Telescope of pillar-like structures in the Carina Nebular Complex, one of the most massive star-forming regions in the Galaxy. For the observed pillars, we compute gas electron densities and temperatures maps, produce integrated line and velocity maps of the ionized gas, study the ionization fronts at the pillar tips, analyse the properties of the single regions, and detect two ionized jets originating from two distinct pillar tips. For each pillar tip, we determine the incident ionizing photon flux Q0, pil originating from the nearby massive O- and B-type stars and compute the mass-loss rate dot{M} of the pillar tips due to photoevaporation caused by the incident ionizing radiation. We combine the results of the Carina data set with archival MUSE data of a pillar in NGC 3603 and with previously published MUSE data of the Pillars of Creation in M16, and with a total of 10 analysed pillars, find tight correlations between the ionizing photon flux and the electron density, the electron density and the distance from the ionizing sources, and the ionizing photon flux and the mass-loss rate. The combined MUSE data sets of pillars in regions with different physical conditions and stellar content therefore yield an empirical quantification of the feedback effects of ionizing radiation. In agreement with models, we find that dot{M}∝ Q_0,pil^{1/2}.
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Nie, Q. Y.; Zhang, X. N.; Wang, Z. B.; Kong, F. R.; Jiang, B. H.; Lim, J. W. M.
2018-04-01
The dielectric barrier discharge (DBD) is a promising technology to generate high density and uniform cold plasmas in atmospheric pressure gases. The effective independent tuning of key plasma parameters is quite important for both application-focused and fundamental studies. In this paper, based on a one-dimensional fluid model with semi-kinetics treatment, numerical studies of ionization asymmetry effects on the properties modulation of atmospheric DBD sustained by tailored voltage waveforms are reported. The driving voltage waveform is characterized by an asymmetric-slope fundamental sinusoidal radio frequency signal superimposing one or more harmonics, and the effects of the number of harmonics, phase shift, as well as the fluctuation of harmonics on the sheath dynamics, impact ionization of electrons and key plasma parameters are investigated. The results have shown that the electron density can exhibit a substantial increase due to the effective electron heating by a spatially asymmetric sheath structure. The strategic modulation of harmonics number and phase shift is capable of raising the electron density significantly (e.g., nearly three times in this case), but without a significant increase in the gas temperature. Moreover, by tailoring the fluctuation of harmonics with a steeper slope, a more profound efficiency in electron impact ionization can be achieved, and thus enhancing the electron density effectively. This method then enables a novel alternative approach to realize the independent control of the key plasma parameters under atmospheric pressure.
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Sosa Vazquez, Xochitl A.; Isborn, Christine M.
2015-12-22
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
Size-dependent error of the density functional theory ionization potential in vacuum and solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro
2016-02-01
This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(2{sup 3}S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.
NASA Astrophysics Data System (ADS)
Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.
2018-02-01
The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.
Tornero-López, Ana M; Guirado, Damián; Perez-Calatayud, Jose; Ruiz-Arrebola, Samuel; Simancas, Fernando; Gazdic-Santic, Maja; Lallena, Antonio M
2013-12-01
Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of (125)I seeds. Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for (125)I selectSeed(TM) brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level. Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber. Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel
2013-12-15
Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring themore » air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.« less
Effects of neutral gas releases on electron beam injection from electrically tethered spacecraft
NASA Technical Reports Server (NTRS)
Winglee, R. M.
1990-01-01
The presence of high neutral densities at low altitudes and/or during thruster firings is known to modify the spacecraft potential during active electron beam injection. Two-dimensional (three velocity) particle simulations are used to investigate the ionization processes including the neutral density required, the modification of the spacecraft potential, beam profile and spatial distribution of the return current into the spacecraft. Three processes are identified: (1) beam-induced ionization, (2) vehicle-induced ionization, and (3) beam plasma discharge. Only in the first two cases does the beam propagate away with little distortion.
Kang, Wei; Zhao, Shijun; Zhang, Shen; Zhang, Ping; Chen, Q. F.; He, Xian-Tu
2016-01-01
Mott effect, featured by a sharp increase of ionization, is one of the unique properties of partially ionized plasmas, and thus of great interest to astrophysics and inertial confinement fusion. Recent experiments of single bubble sonoluminescence (SBSL) revealed that strong ionization took place at a density two orders lower than usual theoretical expectation. We show from the perspective of electronic structures that the strong ionization is unlikely the result of Mott effect in a pure argon plasma. Instead, first-principles calculations suggest that other ion species from aqueous environments can energetically fit in the gap between the continuum and the top of occupied states of argon, making the Mott effect possible. These results would help to clarify the relationship between SBSL and Mott effect, and further to gain an better understanding of partially ionized plasmas. PMID:26853107
SOAP and the Interstellar Froth
NASA Astrophysics Data System (ADS)
Tüllmann, R.; Rosa, M. R.; Dettmar, R.-J.
2005-06-01
We investigate whether the alleged failure of standard photoionization codes to match the Diffuse Ionized Gas (DIG) is simply caused by geometrical effects and the insufficient treatment of the radiative transfer. Standard photoionization models are applicable only to homogeneous and spherically symmetric nebulae with central ionizing stars, whereas the geometry of disk galaxies requires a 3D distribution of ionizing sources in the disk which illuminate the halo. This change in geometry together with a proper radiative transfer model is expected to substantially influence ionization conditions. Therefore, we developed a new and sophisticated 3D Monte Carlo photoionization code, called SOAP (Simulations Of Astrophysical Plasmas), by adapting an existing 1D code for HII-regions tep*{och} such, that it self-consistently models a 3D disk galaxy with a gaseous DIG halo. First results from a simple (dust-free) model with exponentially decreasing gas densities are presented and the predicted ionization structure of disk and halo are discussed. Theoretical line ratios agree well with observed ones, e.g,. for the halo of NGC 891. Moreover, the fraction of ionizing photons leaving the halo of the galaxy is plotted as a function of varying gas densities. This quantity will be of particular importance for forthcoming studies, because rough estimates indicate that about 7% of ionizing photons escape from the halo and contribute to the ionization of the IGM. Given the relatively large number density of normal spiral galaxies, OB-stars could have a much stronger impact on the ionization of the IGM than AGN or QSOs.
Ionization in the local interstellar and intergalactic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, K.
1990-01-01
Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less
Complexation of ferric oxide particles with pectins of different charge density.
Milkova, Viktoria; Kamburova, Kamelia; Petkanchin, Ivana; Radeva, Tsetska
2008-09-02
The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.
NASA Astrophysics Data System (ADS)
Mao, Junjie; Kaastra, J. S.; Mehdipour, M.; Raassen, A. J. J.; Gu, Liyi; Miller, J. M.
2017-11-01
Context. Ionized outflows in active galactic nuclei (AGNs) are thought to influence their nuclear and local galactic environment. However, the distance of the outflows with respect to the central engine is poorly constrained, which limits our understanding of their kinetic power as a cosmic feedback channel. Therefore, the impact of AGN outflows on their host galaxies is uncertain. However, when the density of the outflows is known, their distance can be immediately obtained from their modeled ionization parameters. Aims: We perform a theoretical study of density diagnostics of ionized outflows using absorption lines from metastable levels in Be-like to C-like cosmic abundant ions. Methods: With the new self-consistent PhotoIONization (PION) model in the SPEX code, we are able to calculate detailed level populations, including the ground and metastable levels. This enables us to determine under what physical conditions the metastable levels are significantly populated. We then identify characteristic lines from these metastable levels in the 1-2000 Å wavelength range. Results: In the broad density range of nH ∈ (106, 1020) m-3, the metastable levels 2s2p (3P0-2) in Be-like ions can be significantly populated. For B-like ions, merely the first excited level 2s22p (2P3/2) can be used as a density probe. For C-like ions, the first two excited levels 2s22p2 (3P1 and 3P2) are better density probes than the next two excited levels 2s22p2 (1S0 and 1D2). Different ions in the same isoelectronic sequence cover not only a wide range of ionization parameters, but also a wide range of density values. On the other hand, within the same isonuclear sequence, those less ionized ions probe lower density and smaller ionization parameters. Finally, we reanalyzed the high-resolution grating spectra of NGC 5548 observed with Chandra in January 2002 using a set of PION components to account for the ionized outflow. We derive lower (or upper) limits of plasma density in five out of six PION components based on the presence (or absence) of the metastable absorption lines. Once atomic data from N-like to F-like ions are available, combined with the next generation of spectrometers that cover both X-ray and UV wavelength ranges with higher spectral resolution and larger effective areas, tight constraints on the density and thus the location and kinetic power of AGN outflows can be obtained.
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Esarey, E.; Leemans, W.
2003-10-01
Recent particle-in-cell simulations have shown [1] that the self-fields of an electron beam driver in a plasma wakefield accelerator can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly [2] from that of an electron driver. We will present particle- in-cell simulations, using the OOPIC [3] code, showing the effects of tunneling ionization on the plasma wake generated by high-density electron and positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the E-164 and E-164x experiments at SLAC will be considered. [1] D.L. Bruhwiler et al., Phys. Plasmas 10 (2003), p. 2022. [2] S. Lee et al., Phys. Rev. E 64, 045501(R) (2001). [3] D.L. Bruhwiler et al., Phys. Rev. ST-AB 4, 101302 (2001).
Kinetics of plasma formation in sodium vapor excited by nanosecond resonant laser pulses
NASA Astrophysics Data System (ADS)
Mahmoud, M. A.; Gamal, Y. E. E.
2012-07-01
We have studied theoretically formation of molecular ion Na2 + and the atomic ion Na+ which are created in laser excited sodium vapor at the first resonance transition, 3S1/2-3P1/2. A set of rate equations, which describe the temporal variation of the electron energy distribution function (EEDF), the electron density, the population density of the excited states as well as the atomic Na+ and molecular ion Na2 +, are solved numerically. The calculations are carried out at different laser energy and different sodium atomic vapor densities. The numerical calculations of the EEDF show that a deviation from the Maxwellian distribution due to the superelastic collisions effect. In addition to the competition between associative ionization (3P-3P), associative ionization (3P-3D) and Molnar-Hornbeck ionization processes for producing Na2 +, the calculations have also shown that the atomic ions Na+ are formed through the Penning ionization and photoionization processes. These results are found to be consistent with the experimental observations.
NASA Astrophysics Data System (ADS)
Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong
2014-10-01
The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.
A 200 W Hall thruster with hollow indented anode
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Sun, Hezhi; Wei, Liqiu; Li, Peng; Su, Hongbo; Peng, Wuji; Yu, Daren
2017-10-01
A hollow indented anode is proposed for increasing the neutral gas density in a discharge channel, in order to improve the performance of the thruster. The experimental results show that a hollow indented anode structure can effectively improve the performance, compared to a hollow straight anode under similar operating conditions, in terms of thrust, propellant utilization, ionization rate, and anode efficiency. Furthermore, simulations show that the indented anode can effectively increase the neutral gas density in a discharge channel and on the centerline of the channel, compared to a hollow straight anode. In addition, it can increase the ionization rate in the channel and the pre-ionization in the anode. Therefore, the hollow indented anode could be considered as an important design idea for improving thruster performance.
Optimization of laser-plasma injector via beam loading effects using ionization-induced injection
NASA Astrophysics Data System (ADS)
Lee, P.; Maynard, G.; Audet, T. L.; Cros, B.; Lehe, R.; Vay, J.-L.
2018-05-01
Simulations of ionization-induced injection in a laser driven plasma wakefield show that high-quality electron injectors in the 50-200 MeV range can be achieved in a gas cell with a tailored density profile. Using the PIC code Warp with parameters close to existing experimental conditions, we show that the concentration of N2 in a hydrogen plasma with a tailored density profile is an efficient parameter to tune electron beam properties through the control of the interplay between beam loading effects and varying accelerating field in the density profile. For a given laser plasma configuration, with moderate normalized laser amplitude, a0=1.6 and maximum electron plasma density, ne 0=4 ×1018 cm-3 , the optimum concentration results in a robust configuration to generate electrons at 150 MeV with a rms energy spread of 4% and a spectral charge density of 1.8 pC /MeV .
Effects of Ionization in a Laser Wakefield Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuffey, C.; Schumaker, W.; Matsuoka, T.
2010-11-04
Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure.
Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions
NASA Astrophysics Data System (ADS)
Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.
2013-12-01
Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.
[The study on the characteristics and particle densities of lightning discharge plasma].
Wang, Jie; Yuan, Ping; Zhang, Hua-ming; Shen, Xiao-zhi
2008-09-01
According to the wavelengths, relative intensities and transition parameters of lines in cloud-to-ground lightning spectra obtained by a slit-less spectrograph in Qinghai province and Xizang municipality, and by theoretical calculations of plasma, the average temperature and electron density for individual lightning discharge channel were calculated, and then, using Saha equations, electric charge conservation equations and particle conservation equations, the particle densities of every ionized-state, the mass density, pressure and the average ionization degree were obtained. Moreover, the average ionization degree and characteristics of particle distributions in each lightning discharge channel were analyzed. Local thermodynamic equilibrium and an optically thin emitting gas were assumed in the calculations. The result shows that the characteristics of lightning discharge plasma have strong relationships with lightning intensities. For a certain return stroke channel, both temperatures and electron densities of different positions show tiny trend of falling away with increasing height along the discharge channel. Lightning channels are almost completely ionized, and the first ionized particles occupy the main station while N II has the highest particle density. On the other hand, the relative concentrations of N II and O II are near a constant in lightning channels with different intensities. Generally speaking, the more intense the lightning discharge, the higher are the values of channel temperature, electron density and relative concentrations of highly ionized particles, but the lower the concentration of the neutral atoms. After considering the Coulomb interactions between positive and negative particles in the calculations, the results of ionization energies decrease, and the particle densities of atoms and first ionized ions become low while high-ionized ions become high. At a temperature of 28000 K, the pressure of the discharge channel due to electrons, atoms and ions is about 10 atmospheric pressure, and it changes for different lightning stroke with different intensity. The mass density of channel is lower and changes from 0.01 to 0.1 compared to the mass density of air at standard temperature and pressure (STP).
Particle in cell simulation on plasma grating contrast enhancement induced by infrared laser pulse
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Wang, J. X.; Luo, S. N.
2018-05-01
The dynamics of plasma grating contrast enhancement (PGCE) irradiated by an infrared laser pulse is investigated with one dimensional particle-in-cell simulation where field ionization and impact ionization are simultaneously considered for the first time. The numeric results show that the impact ionization dominates the PGCE process. Upon the interaction with the laser pulse, abundant free electrons are efficiently accelerated and subsequently triggered massive impact ionizations in the density ridges of the plasma grating for the higher local plasma energy density, which efficiently enhances the grating contrast. Besides the dynamic analysis of PGCE, we explore the parameter space of the incident infrared laser pulse to optimize the PGCE effect, which can provide useful guidance to experiments related to laser-plasma-grating interactions and may find applications in prolonging the duration of the plasma grating.
Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Moore, David; Cohen, Ross D.
1996-01-01
We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in agreement with the greatest number of observational considerations has electron density decreasing outward from n(sub e) approx. equals 10(exp 6)/cu cm to n(sub e) approx. equals 10(exp 2)/cu cm and, due to collisional de-excitation effects in the lowest velocity clouds, it generates broad flat-topped profile peaks in the lines of lowest critical density (e.g., [O II] lambda3727 and [S II] lambda(lambda)6716, 6731). Because the observed profile peaks of both low and high critical density lines are often very similar, our favored model requires a contribution to NLR emission-line spectra from low-velocity, low-density, and low-ionization gas not included in the model NLR.
Local thermodynamic equilibrium in rapidly heated high energy density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aslanyan, V.; Tallents, G. J.
Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates.more » The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance.« less
The role of non-ionizing radiation pressure in star formation: the stability of cores and filaments
NASA Astrophysics Data System (ADS)
Seo, Young Min; Youdin, Andrew N.
2016-09-01
Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (I.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic centre or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.
Efficient pre-ionization by direct X-B mode conversion in VEST
NASA Astrophysics Data System (ADS)
Jo, JongGab; Lee, H. Y.; Kim, S. C.; Kim, S. H.; An, Y. H.; Hwang, Y. S.
2017-01-01
Pre-ionization experiments with pure toroidal field have been carried out in VEST (Versatile Experiment Spherical Torus) to investigate the feasibility of direct XB mode conversion from perpendicular LFS (Low Field Side) injection for efficient pre-ionization. Pre-ionization plasmas are studied by measuring the electron density and temperature profiles with respect to microwave power and toroidal field strength, and 2D full wave cold plasma simulation using the COMSOL Multiphysics is performed for the comparison. It is experimentally figured out that exceeding the threshold microwave power (>3 kW), the parametric decay and localized collisional heating is observed near the UHR (Upper Hybrid Resonance), and the efficient XB mode conversion can be achieved in both short density scale length (Ln) and magnetic scale length (LB) region positioned at outboard and inboard sides, respectively. From the 2D full wave simulations, the reflection and tunneling of X-wave near the R-cutoff layer according to the measured electron density profiles are analyzed with electric field polarization and power flow. Threshold electric field and wave power density for parametric decay are evaluated at least more than 4.8 × 104 V/m and 100 W/cm2, respectively. This study shows that efficient pre-ionization schemes using direct XB mode conversion can be realized by considering the key factors such as Ln, LB, and transmitted wave power at the UHR. Application to Ohmic start-up experiment is carried out to confirm the effect of the pre-ionization schemes on tokamak plasma start-up in VEST.
Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
2015-12-01
The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.
Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization.
Sen, Swati; Kundagrami, Arindam
2015-12-14
The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sissay, Adonay; Abanador, Paul; Mauger, François
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less
Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air
NASA Astrophysics Data System (ADS)
Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri
2018-04-01
C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.
Impact of impurities on zonal flow driven by trapped electron mode turbulence
NASA Astrophysics Data System (ADS)
Guo, Weixin; Wang, Lu; Zhuang, Ge
2017-12-01
The impact of impurities on the generation of zonal flow (ZF) driven by collisonless trapped electron mode turbulence in deuterium (D)-tritium (T) plasmas is investigated. An expression for ZF growth rate with impurities is derived by balancing the ZF potential shielded by polarization effects and the ZF modulated radial turbulent current. Then, it is shown that the maximum normalized ZF growth rate is reduced by the presence of fully ionized non-trace light impurities with relatively flat density profile, and slightly reduced by highly ionized trace tungsten, while the maximum normalized ZF growth rate can be enhanced by fully ionized non-trace light impurities with relatively steep density profile. In particular, the effects of high temperature helium from D-T reaction on ZF depend on the temperature ratio between electrons and high temperature helium. The possible relevance of our findings to recent experimental results and future burning plasmas is also discussed.
Ionospheric Impacts on UHF Space Surveillance
NASA Astrophysics Data System (ADS)
Jones, J. C.
2017-12-01
Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.
Hot interstellar gas and ionization of embedded clouds
NASA Technical Reports Server (NTRS)
Cheng, K.-P.; Bruhweiler, F.
1990-01-01
Researchers present detailed photoionization calculations for the instellar cloud in which the Sun is embedded. They consider the EUV radiation field with contribution from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10 to the 6th power k coronal substrate. They establish lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.29 respectively. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10 to the 6th k plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N (CIII)/N (CII) and N (NII)/N (NI) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. Spacecraft such as Lyman which is designed to obtain high resolution spectral data down to the Lyman limit at 912 A could sample interstellar lines of these ions.
Feedbacks of Composition and Neutral Density Changes on the Structure of the Cusp Density Anomaly
NASA Astrophysics Data System (ADS)
Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.
2015-12-01
The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced density in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral density changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the density and winds produced in the cusp. Also changes in neutral density change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the wind and neutral density structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics, and the changes in particle heating rates and ionization which result from changes in neutral density. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This research was supported by The Aerospace Corporation's Technical Investment program
Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.
2007-01-01
We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.
The Effects of High Density on the X-ray Spectrum Reflected from Accretion Discs Around Black Holes
NASA Technical Reports Server (NTRS)
Garcia, Javier A.; Fabian, Andrew C.; Kallman, Timothy R.; Dauser, Thomas; Parker, Micahel L.; McClintock, Jeffrey E.; Steiner, James F.; Wilms, Jorn
2016-01-01
Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter (xi), which is the ratio of the incident flux to the gas density. The density is typically fixed at n(sub e) = 10(exp 15) per cu cm. Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for n(sub e) approximately greater than 10(exp 17) per cu cm that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies 2 approximately less than keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available.
NASA Astrophysics Data System (ADS)
P, M.; Narukull, V. R.; Rao, S. V. B.
2017-12-01
The ionograms of the Mars Advance Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument aboard Mars Express spacecraft show vertical and oblique echoes from the Martian ionosphere. The vertical echoes are from the normal ionosphere while the oblique echoes are believed to be from ionization bulges that occur in regions of strong vertical magnetic fields. These oblique echoes appear as downward facing hyperbolas when plotted as radargram (at 1.9 MHz), which is a color coded plot of apparent altitude as a function of time at a single frequency. In order to extract further information from these ionization bulges, we considered the peak density of the oblique echoes and plotted them in a format similar to a radargram and called it as a 'maximum density radargram' (MDR). Thus, an MDR shows the peak densities in entire ionization bulge. This analysis revealed several new aspects of the ionization bulges. We found that there is an asymmetry in the ionization bulge so that the density on one side of the hyperbola is different than the other side. In some cases, the density on the same side of the hyperbola, between the edge and apex, changes. Occasionally, the radargrams show only one side of the hyperbola, while the MDRs show a full hyperbola. When the density structures are repeatedly observed over the same location with a few days interval, the MDR analysis shows that the density inside the bulge varies from one pass to another. Finally, the ionization bulges in the MDR displays are clearly observed on several nights. Several of these nighttime bulges were not apparent in radargram analysis. These observations are discussed in the light of current understanding on the ionization bulges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akatsuka, Hiroshi
2009-04-15
Population densities of excited states of argon atoms are theoretically examined for ionizing argon plasma in a state of nonequilibrium under atmospheric pressure from the viewpoint of elementary processes with collisional radiative model. The dependence of excited state populations on the electron and gas temperatures is discussed. Two electron density regimes are found, which are distinguished by the population and depopulation mechanisms for the excited states in problem. When the electron impact excitation frequency for the population or depopulation is lower than the atomic impact one, the electron density of the plasma is considered as low to estimate the populationmore » and depopulation processes. Some remarkable characteristics of population and depopulation mechanisms are found for the low electron density atmospheric plasma, where thermal relaxation by atomic collisions becomes the predominant process within the group of close-energy states in the ionizing plasma of atmospheric pressure, and the excitation temperature is almost the same as the gas temperature. In addition to the collisional relaxation by argon atoms, electron impact excitation from the ground state is also an essential population mechanism. The ratios of population density of the levels pairs, between which exists a large energy gap, include information on the electron collisional kinetics. For high electron density, the effect of atomic collisional relaxation becomes weak. For this case, the excitation mechanism is explained as electron impact ladderlike excitation similar to low-pressure ionizing plasma, since the electron collision becomes the dominant process for the population and depopulation kinetics.« less
Study of transport of laser-driven relativistic electrons in solid materials
NASA Astrophysics Data System (ADS)
Leblanc, Philippe
With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.
Blakely, Eleanor A.
2012-01-01
The scientific basis for the physical and biological effectiveness of particle radiations has emerged from many decades of meticulous basic research. A diverse array of biologically relevant consequences at the molecular, cellular, tissue, and organism level have been reported, but what are the key processes and mechanisms that make particle radiation so effective, and what competing processes define dose dependences? Recent studies have shown that individual genotypes control radiation-regulated genes and pathways in response to radiations of varying ionization density. The fact that densely ionizing radiations can affect different gene families than sparsely ionizing radiations, and that the effects are dose- and time-dependent has opened up new areas of future research. The complex microenvironment of the stroma, and the significant contributions of the immune response have added to our understanding of tissue-specific differences across the linear energy transfer (LET) spectrum. The importance of targeted vs. nontargeted effects remain a thorny, but elusive and important contributor to chronic low dose radiation effects of variable LET that still needs further research. The induction of cancer is also LET-dependent, suggesting different mechanisms of action across the gradient of ionization density. The focus of this 35th Lauriston S. Taylor Lecture is to chronicle the step-by-step acquisition of experimental clues that have refined our understanding of what makes particle radiation so effective, with emphasis on the example of radiation effects on the crystalline lens of the human eye. PMID:23032880
Empirical mass-loss rates for 25 O and early B stars, derived from Copernicus observations
NASA Technical Reports Server (NTRS)
Gathier, R.; Lamers, H. J. G. L. M.; Snow, T. P.
1981-01-01
Ultraviolet line profiles are fitted with theoretical line profiles in the cases of 25 stars covering a spectral type range from O4 to B1, including all luminosity classes. Ion column densities are compared for the determination of wind ionization, and it is found that the O VI/N V ratio is dependent on the mean density of the wind and not on effective temperature value, while the Si IV/N V ratio is temperature-dependent. The column densities are used to derive a mass-loss rate parameter that is empirically correlated against the mass-loss rate by means of standard stars with well-determined rates from IR or radio data. The empirical mass-loss rates obtained are compared with those derived by others and found to vary by as much as a factor of 10, which is shown to be due to uncertainties or errors in the ionization fractions of models used for wind ionization balance prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhongyu; Shao, Lin, E-mail: lshao@tamu.edu; Chen, Di
Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion ismore » linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.« less
Smoothed particle hydrodynamic simulations of expanding HII regions
NASA Astrophysics Data System (ADS)
Bisbas, Thomas G.
2009-09-01
This thesis deals with numerical simulations of expanding ionized regions, known as HII regions. We implement a new three dimensional algorithm in Smoothed Particle Hydrodynamics for including the dynamical effects of the interaction between ionizing radiation and the interstellar medium. This interaction plays a crucial role in star formation at all epochs. We study the influence of ionizing radiation in spherically symmetric clouds. In particular, we study the spherically symmetric expansion of an HII region inside a uniform-density, non-self-gravitating cloud. We examine the ability of our algorithm to reproduce the known theoretical solution and we find that the agreement is very good. We also study the spherically symmetric expansion inside a uniform-density, self-gravitating cloud. We propose a new differential equation of motion for the expanding shell that includes the effects of gravity. Comparing its numerical solution with the simulations, we find that the equation predicts the position of the shell accurately. We also study the expansion of an off-centre HII region inside a uniform-density, non- self-gravitating cloud. This results in an evolution known as the rocket effect, where the ionizing radiation pushes and accelerates the cloud away from the exciting star leading to its dispersal. During this evolution, cometary knots appear as a result of Rayleigh-Taylor and Vishniac instabilities. The knots are composed of a dense head with a conic tail behind them, a structure that points towards the ionizing source. Our simulations show that these knots are very reminiscent of the observed structures in planetary nebula, such as in the Helix nebula. The last part of this thesis is dedicated to the study of cores ionized by an exciting source which is placed outside and far away from them. The evolution of these cores is known as radiation driven compression (or implosion). We perform simulations and compare our findings with results of other workers and we find that they agree very well. Using stable Bonnor-Ebert spheres, we extend our study to modelling triggered star formation within these cores as they are overrun and compressed by the incident ionizing flux. We construct a parameter space diagram and we map regions where star formation is expected to be observed. All the above results indicate that the algorithm presented in this thesis works well for treating the propagation of ionizing radiation. This new algorithm provides the means to explore and evaluate the role of ionizing radiation in regulating the efficiency and statistics of star formation.
Effect of the target power density on high-power impulse magnetron sputtering of copper
NASA Astrophysics Data System (ADS)
Kozák, Tomáš
2012-04-01
We present a model analysis of high-power impulse magnetron sputtering of copper. We use a non-stationary global model based on the particle and energy conservation equations in two zones (the high density plasma ring above the target racetrack and the bulk plasma region), which makes it possible to calculate time evolutions of the averaged process gas and target material neutral and ion densities, as well as the fluxes of these particles to the target and substrate during a pulse period. We study the effect of the increasing target power density under conditions corresponding to a real experimental system. The calculated target current waveforms show a long steady state and are in good agreement with the experimental results. For an increasing target power density, an analysis of the particle densities shows a gradual transition to a metal dominated discharge plasma with an increasing degree of ionization of the depositing flux. The average fraction of target material ions in the total ion flux onto the substrate is more than 90% for average target power densities higher than 500 W cm-2 in a pulse. The average ionized fraction of target material atoms in the flux onto the substrate reaches 80% for a maximum average target power density of 3 kW cm-2 in a pulse.
Propagation characteristics of electromagnetic waves in dusty plasma with full ionization
NASA Astrophysics Data System (ADS)
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting
2018-01-01
This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.
Density functional theory calculations of continuum lowering in strongly coupled plasmas.
Vinko, S M; Ciricosta, O; Wark, J S
2014-03-24
An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.
Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohayai, Tanaz Angelina; Snopok, Pavel; Neuffer, David
The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.
Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Y. Y.; Ning, L. N.; Wang, J. G.
2013-12-15
Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ε/I{sub 2p} (I{sub 2p} is the ionizationmore » energy of 2p state and ε is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δ{sub nl}{sup c}, corresponding to the special plasma condition when the bound state |nl just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δ{sub nl}{sup c}, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.« less
The X-ray and ultraviolet absorbing outflow in 3C 351
NASA Astrophysics Data System (ADS)
Mathur, Smita; Wilkes, Belinda; Elvis, Martin; Fiore, Fabrizio
1994-10-01
3C 351 (z = 0.371), and X-ray-'quiet' quasar, is one of the few quasars showing signs of a 'warm absorber' in its X-ray spectrum; i.e., partially ionized absorbing material in the line of sight whose opacity depends on its ionization structure. The main feature in the X-ray spectrum is a K-edge due to O VII or O VIII. 3C 351 also shows unusually strong, blueshifted, associated, absorption lines in the ultraviolet (Bahcall et al. 1993) including O VI (lambda lambda 1031, 1037). This high ionization state strongly suggests an identification with the X-ray absorber and a site within the active nucleus. In this paper we demonstrate that the X-ray and UV absorption is due to the same material. This is the first confirmed UV/X-ray absorber. Physical conditions of the absorber are determined through the combination of constraints derived from both the X-ray and UV analysis. This highly ionized, outflowing, low-density, high-column density absorber situated outside the broad emission line region (BELR) is a previously unknown component of nuclear material. We rule out the identification of the absorber with a BELR cloud as the physical conditions in the two regions are inconsistent with one another. The effect of the X-ray quietness and IR upturn in the 3C 351 continuum on the BELR is also investigated. The strengths of the high-ionization lines of C IV lambda-1549 and O VI lambda-1034 with respect to Lyman-alpha are systematically lower (up to a factor of 10) in the material ionized by the 3C 351 continuum as compared to those produced by the 'standard' quasar continuum, the strongest effect being on the strength of O VI lambda-1034. We find that for a 3C 351-like continuum, C III) lambda-1909 ceases to be a density indicator.
Space-Charge Effect on Residual Energy Under Intense Ultrashort Pulse Laser
NASA Astrophysics Data System (ADS)
Chen, Shi-gang; Wang, You-qin; Nie, Xiaebo
1996-12-01
Can the space-charge effect reduce the above-threshold-ionization (ATI) energy? This problem is analyzed by using the technique of multiple-time-scale perturbation. As the optical frequency is much larger than the plasma frequency, the space-charge effect is then reduced to the ponderomotive effect. It is found that the ponderomotive effect on residual energy is great as half plasma period is larger than pulse length, however, it cannot reduce the ATI energy over the whole density range. The relevant experiments are analyzed. Their results support our conclusions. Finally, it is pointed out that for a given pulse laser there may be a density range available for optical field ionization x-ray laser over which only the ATI heating plays role. The project supported by the National Natural Science Foundation of China and the Science Foundation of the Chinese Academy of Engineering Physics
NASA Astrophysics Data System (ADS)
Hesslow, L.; Embréus, O.; Wilkie, G. J.; Papp, G.; Fülöp, T.
2018-07-01
We derive a formula for the effective critical electric field for runaway generation and decay that accounts for the presence of partially ionized impurities in combination with synchrotron and bremsstrahlung radiation losses. We show that the effective critical field is drastically larger than the classical Connor–Hastie field, and even exceeds the value obtained by replacing the free electron density by the total electron density (including both free and bound electrons). Using a kinetic equation solver with an inductive electric field, we show that the runaway current decay after an impurity injection is expected to be linear in time and proportional to the effective critical electric field in highly inductive tokamak devices. This is relevant for the efficacy of mitigation strategies for runaway electrons since it reduces the required amount of injected impurities to achieve a certain current decay rate.
Herschel Galactic plane survey of ionized gas traced by [NII
NASA Astrophysics Data System (ADS)
Yildiz, Umut; Goldsmith, Paul; Pineda, Jorge; Langer, William
2015-01-01
Far infrared and sub-/millimeter atomic & ionic fine structure and molecular rotational lines are powerful tracers of star formation on both Galactic and extragalactic scales. Although CO lines trace cool to moderately warm molecular gas, ionized carbon [CII] produces the strongest lines, which arise from almost all reasonably warm (T>50 K) parts of the ISM. However, [CII] alone cannot distinguish highly ionized gas from weakly ionized gas. [NII] plays a significant role in star formation as it is produced only in ionized regions; in [HII] regions as well as diffuse ionized gas. The ionization potential of nitrogen (14.5 eV) is greater than that of hydrogen (13.6 eV), therefore the ionized nitrogen [NII] lines reflect the effects of massive stars, with possible enhancement from X-ray and shock heating from the surroundings. Two far-infrared 122 um and 205 um [NII] fine structure spectral lines are targeted via Photodetector Array Camera and Spectrometer (PACS) onboard Herschel Space Observatory. The sample consists of 149 line-of-sight (LOS) positions in the Galactic plane. These positions overlap with the [CII] 158 um observations obtained with the GOT C+ survey. With a reasonable assumption that the emission from both 122 um and 205 um lines originate in the same gas; [NII] 122/205 um line ratio indicates the a good measure of the electron density of each of the LOS positions. [NII] detections are mainly toward the Galactic center direction and the [NII] electron densities are found between 7-50 cm^-3, which is enhanced WIM (Warm Ionized Medium). WIM densities are expected to be much lower (~1 cm-3), therefore non-detections toward the opposite side of the Galactic Center shows abundant of this gas. The pixel to pixel variation of the emission within a single Herschel pointing is relatively small, which is interpreted as the [NII] emission comes from an extended gas. It is important to quantify what fraction of [CII] emission arises in the ionized gas. Thus, with the present work of [NII] observations, it will be possible to resolve the different parts of the ISM leading to determine the total mass of the ISM.
The Effect of AGN Heating on the Low-redshift Lyα Forest
NASA Astrophysics Data System (ADS)
Gurvich, Alex; Burkhart, Blakesley; Bird, Simeon
2017-02-01
We investigate the effects of AGN heating and the ultraviolet background on the low-redshift Lyα forest column density distribution (CDD) using the Illustris simulation. We show that Illustris reproduces observations at z = 0.1 in the column density range {10}12.5{--}{10}13.5 cm-2, relevant for the “photon underproduction crisis.” We attribute this to the inclusion of AGN feedback, which changes the gas distribution so as to mimic the effect of extra photons, as well as the use of the Faucher-Giguère ultraviolet background, which is more ionizing at z = 0.1 than the Haardt & Madau background previously considered. We show that the difference between simulations run with smoothed particle hydrodynamics and simulations using a moving mesh is small in this column density range but can be more significant at larger column densities. We further consider the effect of supernova feedback, Voigt profile fitting, and finite resolution, all of which we show to have little influence on the CDD. Finally, we identify a discrepancy between our simulations and observations at column densities {10}14{--}{10}16 cm-2, where Illustris produces too few absorbers, which suggests the AGN feedback model should be further refined. Since the “photon underproduction crisis” primarily affects lower column density systems, we conclude that AGN feedback and standard ionizing background models can resolve the crisis.
Feedbacks of Composition and Neutral Density Changes on the Structure of the Cusp Density Anomaly
NASA Astrophysics Data System (ADS)
Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.
2016-12-01
The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced density in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral density changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the density and winds produced in the cusp. Also changes in neutral density change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the wind and neutral density structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics via advection, and the changes in particle heating rates and ionization which result from changes in neutral density. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grant: NNX16AH46G issues through the Heliophysics Supporting Research Program. This research was also supported by The Aerospace Corporation's Technical Investment program
Self-organization and self-limitation in high power impulse magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, Andre
The plasma over the racetrack in high power impulse magnetron sputtering develops in traveling ionization zones. Power densities can locally reach 10{sup 9} W/m{sup 2}, which is much higher than usually reported. Ionization zones move because ions are 'evacuated' by the electric field, exposing neutrals to magnetically confined, drifting electrons. Drifting secondary electrons amplify ionization of the same ionization zone where the primary ions came from, while sputtered and outgassing atoms are supplied to the following zone(s). Strong density gradients parallel to the target disrupt electron confinement: a negative feedback mechanism that stabilizes ionization runaway.
Calculation of H2-He Flow with Nonequilibrium Ionization and Radiation: an Interim Report
NASA Technical Reports Server (NTRS)
Furudate, Michiko; Chang, Keun-Shik
2005-01-01
The nonequilibrium ionization process in hydrogen-helium mixture behind a strong shock wave is studied numerically using the detailed ionization rate model developed recently by Park which accounts for emission and absorption of Lyman lines. The study finds that, once the avalanche ionization is started, the Lyman line is self-absorbed. The intensity variation of the radiation at 5145 Angstroms found by Leibowitz in a shock tube experiment can be numerically reproduced by assuming that ionization behind the shock wave prior to the onset of avalanche ionization is 1.3%. Because 1.3% initial ionization is highly unlikely, Leibowitz s experimental data is deemed questionable. By varying the initial electron density value in the calculation, the calculated ionization equilibration time is shown to increase approximately as inverse square-root of the initial electron density value. The true ionization equilibration time is most likely much longer than the value found by Leibowitz.
Efecto de la difusión y la velocidad en la ionización del átomo de Carbono
NASA Astrophysics Data System (ADS)
Rovira, M. G.; Fontenla, J. M.
The equations of statistical equilibrium for all ionization states of the atom are solved. The effects of diffusion and center of mass velocity are included. In order to estimate the modifications of the ionization curves, they were applied to the Carbon atom. To solve these equations, solar prominences' models obtained in a previous paper were adopted. They were extended to reach a temperature of 1.5 × 106 K and the complete model of the prominence was calculated. Ionization curves for different values of velocity, diffusion and medium models were obtained. The different models represent structures with different densities. Considerable modifications due to these effects are found.
Electron beam plasma ionizing target for the production of neutron-rich nuclides
NASA Astrophysics Data System (ADS)
Panteleev, V. N.; Barzakh, A. E.; Essabaa, S.; Fedorov, D. V.; Ionan, A. M.; Ivanov, V. S.; Lau, C.; Leroy, R.; Lhersonneau, G.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Stroe, L.; Tecchio, L. B.; Villari, A. C. C.; Volkov, Yu. M.
2008-10-01
The production of neutron-rich Ag, In and Sn isotopes from a uranium carbide target of a high density has been investigated at the IRIS facility in the PLOG (PNPI-Legnaro-GANIL-Orsay) collaboration. The UC target material with a density of 12 g/cm3 was prepared by the method of powder metallurgy in a form of pellets of 2 mm thickness, 11 mm in diameter and grain dimensions of about 20 μm. The uranium target mass of 31 g was exposed at a 1 GeV proton beam of intensity 0.05-0.07 μA. For the ionization of the produced species the electron beam-plasma ionization inside the target container (ionizing target) has been used. It was the first experiment when the new high density UC target material was exploited with the electron-plasma ionization. Yields of Sn isotopes have been measured in the target temperature range of (1900-2100) °C. The yields of some Pd, In and Cd isotopes were measured as well to compare to previously measured ones from a high density uranium carbide target having a ceramic-like structure. For the first time a nickel isotope was obtained from a high density UC target.
Gatti, Carlo; Macetti, Giovanni; Boyd, Russell J; Matta, Chérif F
2018-07-05
The source function (SF) decomposes the electron density at any point into contributions from all other points in the molecule, complex, or crystal. The SF "illuminates" those regions in a molecule that most contribute to the electron density at a point of reference. When this point of reference is the bond critical point (BCP), a commonly used surrogate of chemical bonding, then the SF analysis at an atomic resolution within the framework of Bader's Quantum Theory of Atoms in Molecules returns the contribution of each atom in the system to the electron density at that BCP. The SF is used to locate the important regions that control the hydrogen bonds in both Watson-Crick (WC) DNA dimers (adenine:thymine (AT) and guanine:cytosine (GC)) which are studied in their neutral and their singly ionized (radical cationic and anionic) ground states. The atomic contributions to the electron density at the BCPs of the hydrogen bonds in the two dimers are found to be delocalized to various extents. Surprisingly, gaining or loosing an electron has similar net effects on some hydrogen bonds concealing subtle compensations traced to atomic sources contributions. Coarser levels of resolutions (groups, rings, and/or monomers-in-dimers) reveal that distant groups and rings often have non-negligible effects especially on the weaker hydrogen bonds such as the third weak CH⋅⋅⋅O hydrogen bond in AT. Interestingly, neither the purine nor the pyrimidine in the neutral or ionized forms dominate any given hydrogen bond despite that the former has more atoms that can act as source or sink for the density at its BCP. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Air density correction in ionization dosimetry.
Christ, G; Dohm, O S; Schüle, E; Gaupp, S; Martin, M
2004-05-21
Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described.
Torres Del Río, J; Tornero-López, A M; Guirado, D; Pérez-Calatayud, J; Lallena, A M
2017-06-01
To analyze the air density dependence of the response of the new SourceCheck 4pi ionization chamber, manufactured by PTW. The air density dependence of three different SourceCheck 4pi chambers was studied by measuring 125 I sources. Measurements were taken by varying the pressure from 746.6 to 986.6hPa in a pressure chamber. Three different HDR 1000 Plus ionization chambers were also analyzed under similar conditions. A linear and a potential-like function of the air density were fitted to experimental data and their achievement in describing them was analyzed. SourceCheck 4pi chamber response showed a residual dependence on the air density once the standard pressure and temperature factor was applied. The chamber response was overestimated when the air density was below that under normal atmospheric conditions. A similar dependence was found for the HDR 1000 Plus chambers analyzed. A linear function of the air density permitted a very good description of this residual dependence, better than with a potential function. No significant variability between the different specimens of the same chamber model studied was found. The effect of overestimation observed in the chamber responses once they are corrected for the standard pressure and temperature may represent a non-negligible ∼4% overestimation in high altitude cities as ours (700m AMSL). This overestimation behaves linearly with the air density in all cases analyzed. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
An Analysis of Hole Trapping at Grain Boundary or Poly-Si Floating-Body MOSFET.
Jang, Taejin; Baek, Myung-Hyun; Kim, Hyungjin; Park, Byung-Gook
2018-09-01
In this paper, we demonstrate the characteristics of the floating body effect of poly-silicon with grain boundary by SENTAURUS™ TCAD simulation. As drain voltage increases, impact ionization occurs at the drain-channel junction. And these holes created by impact ionization are deposited on the bottom of the body to change the threshold voltage. This feature, the kink effect, is also observed in fully depleted silicon on insulator because grain boundary of the poly-silicon serve as a storage to trap the holes. We simulate the transfer curve depending on the density and position of the grain boundary. The trap density of the grain boundary affects the device characteristics significantly. However similar properties appear except where the grain boundary is located on the drain side.
Density Bounded H II Regions: Ionization of the Diffuse Interstellar and Intergalactic Media
NASA Astrophysics Data System (ADS)
Zurita, A.; Rozas, M.; Beckman, J. E.
2000-05-01
We present a study of the diffuse ionized gas (DIG) for a sample of nearby spiral galaxies using Hα images, after constructing their H II region catalogues. The integrated Hα emission of the DIG accounts for between 25% to 60% of the total Hα of the galaxy and a high ionizing photon flux is necessary to keep this gas ionized. We suggest that Lyman photons leaking from the most luminous H II regions are the prime source of the ionization of the DIG; they are more than enough to ionize the measured DIG in the model in which H II regions with luminosity in Hα greater than LStr=1038.6 erg sme are density bounded. We go on to show that this model can quantify the ionization observed in the skins of the high velocity clouds well above the plane of our Galaxy and predicts the ionization of the intergalactic medium.
NASA Astrophysics Data System (ADS)
Telnov, Dmitry A.; Heslar, John T.; Chu, Shih-I.
2011-11-01
In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.
NASA Astrophysics Data System (ADS)
Suzuki, Yohichi; Seki, Kazuhiko
2018-03-01
We studied ion concentration profiles and the charge density gradient caused by electrode reactions in weak electrolytes by using the Poisson-Nernst-Planck equations without assuming charge neutrality. In weak electrolytes, only a small fraction of molecules is ionized in bulk. Ion concentration profiles depend on not only ion transport but also the ionization of molecules. We considered the ionization of molecules and ion association in weak electrolytes and obtained analytical expressions for ion densities, electrostatic potential profiles, and ion currents. We found the case that the total ion density gradient was given by the Kuramoto length which characterized the distance over which an ion diffuses before association. The charge density gradient is characterized by the Debye length for 1:1 weak electrolytes. We discuss the role of these length scales for efficient water splitting reactions using photo-electrocatalytic electrodes.
Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin
2016-04-15
The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause themore » attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.« less
Excitation of higher lying energy states in a rubidium DPAL
NASA Astrophysics Data System (ADS)
Wallerstein, A. J.; Perram, Glen; Rice, Christopher A.
2018-02-01
The spontaneous emission in a cw rubidium diode dumped alkali laser (DPAL) system was analyzed. The fluorescence from higher lying states decreases with additional buffer gas. The intermediate states (7S, 6P, 5D) decay more slowly with buffer gas and scale super-linearly with alkali density. A detailed kinetic model has been constructed, where the dominant mechanisms are energy pooling and single photon ionization. It also includes pumping into the non-Lorentzian wings of absorption profiles, fine structure mixing, collisional de-excitation, and Penning ionization. Effects of ionization in a high powered CW rubidium DPAL were assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois
As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less
The Effect of Clustering on Estimations of the UV Ionizing Background from the Proximity Effect
NASA Astrophysics Data System (ADS)
Pascarelle, S. M.; Lanzetta, K. M.; Chen, H. W.
1999-09-01
There have been several determinations of the ionizing background using the proximity effect observed in the distibution of Lyman-alpha absorption lines in the spectra of QSOs at high redshift. It is usually assumed that the distribution of lines should be the same at very small impact parameters to the QSO as it is at large impact parameters, and any decrease in line density at small impact parameters is due to ionizing radiation from the QSO. However, if these Lyman-alpha absorption lines arise in galaxies (Lanzetta et al. 1995, Chen et al. 1998), then the strength of the proximity effect may have been underestimated in previous work, since galaxies are known to cluster around QSOs. Therefore, the UV background estimations have likely been overestimated by the same factor.
NASA Astrophysics Data System (ADS)
Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl
2007-07-01
This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.
Resonant- and avalanche-ionization amplification of laser-induced plasma in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yue; Zhang, Zhili, E-mail: zzhang24@utk.edu; Jiang, Naibo
2014-10-14
Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to showmore » relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.« less
Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.
2016-09-28
We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.
Multi-wavelength campaign on NGC 7469. II. Column densities and variability in the X-ray spectrum
NASA Astrophysics Data System (ADS)
Peretz, U.; Behar, E.; Kriss, G. A.; Kaastra, J.; Arav, N.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Ebrero, J.; Kaspi, S.; Mehdipour, M.; Middei, R.; Paltani, S.; Petrucci, P. O.; Ponti, G.; Ursini, F.
2018-01-01
We have investigated the ionic column density variability of the ionized outflows associated with NGC 7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of seven XMM-Newton grating observations from 2015 is reported. We used an individual-ion spectral fitting approach, and compared different epochs to accurately determine variability on timescales of years, months, and days. We find no significant column density variability in a ten-year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, ten years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column density is reconstructed from measured column densities, nicely matching results of two 2004 observations, with one large high ionization parameter (ξ) component at 2 < log ξ< 3.5, and one at 0.5 < log ξ< 1 in cgs units. The strong dependence of the expression for kinetic power, ∝ 1 /ξ, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60% of the Eddington luminosity, depending on the ion used to estimate ξ.
NASA Astrophysics Data System (ADS)
Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.
2017-10-01
We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.
Analysis of plasma-mediated ablation in aqueous tissue
NASA Astrophysics Data System (ADS)
Jiao, Jian; Guo, Zhixiong
2012-06-01
Plasma-mediated ablation using ultrafast lasers in transparent media such as aqueous tissues is studied. It is postulated that a critical seed free electron density exists due to the multiphoton ionization in order to trigger the avalanche ionization which causes ablation and during the avalanche ionization process the contribution of laser-induced photon ionization is negligible. Based on this assumption, the ablation process can be treated as two separate processes - the multiphoton and avalanche ionizations - at different time stages; so that an analytical solution to the evolution of plasma formation is obtained for the first time. The analysis is applied to plasma-mediated ablation in corneal epithelium and validated via comparison with experimental data available in the literature. The critical seed free-electron density and the time to initiate the avalanche ionization for sub-picosecond laser pulses are analyzed. It is found that the critical seed free-electron density decreases as the pulse width increases, obeying a tp-5.65 rule. This model is further extended to the estimation of crater size in the ablation of tissue-mimic polydimethylsiloxane (PDMS). The results match well with the available experimental measurements.
MOSFET and MOS capacitor responses to ionizing radiation
NASA Technical Reports Server (NTRS)
Benedetto, J. M.; Boesch, H. E., Jr.
1984-01-01
The ionizing radiation responses of metal oxide semiconductor (MOS) field-effect transistors (FETs) and MOS capacitors are compared. It is shown that the radiation-induced threshold voltage shift correlates closely with the shift in the MOS capacitor inversion voltage. The radiation-induced interface-state density of the MOSFETs and MOS capacitors was determined by several techniques. It is shown that the presence of 'slow' states can interfere with the interface-state measurements.
Observation of ionization fronts in low density foam targets
NASA Astrophysics Data System (ADS)
Hoarty, D.; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.
1999-05-01
Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.
Neutral depletion and the helicon density limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magee, R. M.; Galante, M. E.; Carr, J. Jr.
2013-12-15
It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup −3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 μs. The ionization rate inferred from these data implies that the electronmore » temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.« less
SOLAR HARD X-RAY SOURCE SIZES IN A BEAM-HEATED AND IONIZED CHROMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Flannagain, Aidan M.; Gallagher, Peter T.; Brown, John C.
2015-02-01
Solar flare hard X-rays (HXRs) are produced as bremsstrahlung when an accelerated population of electrons interacts with the dense chromospheric plasma. HXR observations presented by Kontar et al. using the Ramaty High-Energy Solar Spectroscopic Imager have shown that HXR source sizes are three to six times more extended in height than those predicted by the standard collisional thick target model (CTTM). Several possible explanations have been put forward including the multi-threaded nature of flare loops, pitch-angle scattering, and magnetic mirroring. However, the nonuniform ionization (NUI) structure along the path of the electron beam has not been fully explored as amore » solution to this problem. Ionized plasma is known to be less effective at producing nonthermal bremsstrahlung HXRs when compared to neutral plasma. If the peak HXR emission was produced in a locally ionized region within the chromosphere, the intensity of emission will be preferentially reduced around this peak, resulting in a more extended source. Due to this effect, along with the associated density enhancement in the upper chromosphere, injection of a beam of electrons into a partially ionized plasma should result in an HXR source that is substantially more vertically extended relative to that for a neutral target. Here we present the results of a modification to the CTTM, which takes into account both a localized form of chromospheric NUI and an increased target density. We find 50 keV HXR source widths, with and without the inclusion of a locally ionized region, of ∼3 Mm and ∼0.7 Mm, respectively. This helps to provide a theoretical solution to the currently open question of overly extended HXR sources.« less
How the laser-induced ionization of transparent solids can be suppressed
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2013-12-01
A capability to suppress laser-induced ionization of dielectric crystals in controlled and predictable way can potentially result in substantial improvement of laser damage threshold of optical materials. The traditional models that employ the Keldysh formula do not predict any suppression of the ionization because of the oversimplified description of electronic energy bands underlying the Keldysh formula. To fix this gap, we performed numerical simulations of time evolution of conduction-band electron density for a realistic cosine model of electronic bands characteristic of wide-band-gap cubic crystals. The simulations include contributions from the photo-ionization (evaluated by the Keldysh formula and by the formula for the cosine band of volume-centered cubic crystals) and from the avalanche ionization (evaluated by the Drude model). Maximum conduction-band electron density is evaluated from a single rate equation as a function of peak intensity of femtosecond laser pulses for alkali halide crystals. Results obtained for high-intensity femtosecond laser pulses demonstrate that the ionization can be suppressed by proper choice of laser parameters. In case of the Keldysh formula, the peak electron density exhibits saturation followed by gradual increase. For the cosine band, the electron density increases with irradiance within the low-intensity multiphoton regime and switches to decrease with intensity approaching threshold of the strong singularity of the ionization rate characteristic of the cosine band. Those trends are explained with specific modifications of band structure by electric field of laser pulses.
Results of rocket measurements of D-region ionization over Thumba in MAP
NASA Technical Reports Server (NTRS)
Chakrabarty, D. K.; Beig, G.; Garg, S. C.; Subrahmanyam, P.; Zalpuri, K. S.; Somayajulu, Y. V.; Rao, M. N. M.; Tandel, C. B.; Murlikrishna, T. R.
1989-01-01
Under MAP, two rockets were launched from Thumba (8.5 N, 76.8 E) around 1030 hrs Lt with identical payloads on 7 and 10 March 1986 for D region studies. Positive ion densities were measured by spherical probe and Gerdien condenser and electron densities were measured by Langmuir probe and propagation experiments. In both flights a valley in ionization height profile was noticed around 83 km. The density of ionization at this altitude was about 4 x 10(2) cu cm. A detailed positive ion-chemical scheme was used to reproduce the measured ionization height profiles. The density of NO needed to reproduce the valley in ionization at 83 km came around 5 x 10(5) cu cm. A photochemical treatment without diffusion process was found inadequate to explain this value of NO. Calculations showed that the value of vertical eddy diffusion needed to reproduce the value of NO was around 10(6)sq cm/s. Interestingly, the same value of eddy diffusion coefficient was obtained when derived in the manner described by Thrane and his coworkers using only the positive ion current data of spherical probes.
Photoionization Modeling and the K Lines of Iron
NASA Technical Reports Server (NTRS)
Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.
2004-01-01
We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.
Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.
2016-09-22
We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-more » $$\\alpha$$ emission. Density profiles were measured from K-$$\\alpha$$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$$\\alpha$$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.« less
Ionizing gas breakdown waves in strong electric fields.
NASA Technical Reports Server (NTRS)
Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.
1972-01-01
A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.
Hydraulic effects in a radiative atmosphere with ionization
NASA Astrophysics Data System (ADS)
Bhat, P.; Brandenburg, A.
2016-03-01
Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.
NASA Astrophysics Data System (ADS)
Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.
2015-12-01
In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.
The ionization parameter of star-forming galaxies evolves with the specific star formation rate
NASA Astrophysics Data System (ADS)
Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan
2018-07-01
We investigate the evolution of the ionization parameter of star-forming galaxies using a high-redshift (z˜ 1.5) sample from the FMOS-COSMOS (Fibre Multi-Object Spectrograph-COSMic evOlution Survey) and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR), and specific star formation rate (sSFR) are matched to the high-redshift sample, we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionization parameter of each sample. We find an evolution in the ionization parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z< 0.3, star-forming galaxies we show that high ionization parameters are directly linked to high sSFRs and are not simply the by-product of an evolution in metallicity. Our results are physically consistent with the definition of the ionization parameter, a measure of the hydrogen ionizing photon flux relative to the number density of hydrogen atoms.
Equation of state and shock compression of warm dense sodium—A first-principles study
Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...
2017-02-21
As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less
NASA Technical Reports Server (NTRS)
Wang, J.; Biasca, R.; Liewer, P. C.
1996-01-01
Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.
NASA Astrophysics Data System (ADS)
Miao, Mao-Sheng; Yarbro, Sam; Barton, Phillip T.; Seshadri, Ram
2014-01-01
Using density functional theory with a hybrid functional, we calculate the ionization energies and electron affinities of a series of delafossite compounds (AMO2: A =Cu, Ag; M =B, Al, Ga, In, Sc). The alignments of the valence band maximum and the conduction band minimum, which directly relate to the ionization energies and electron affinities, were obtained by calculations of supercell slab models constructed in a nonpolar orientation. Our calculations reveal that the ionization energy decreases with an increasing atomic number of group-III elements, and thus suggest an improved p-type doping propensity for heavier compounds. For keeping both a low ionization energy and a band gap of sufficient size, CuScO2 is superior to the Cu-based group-III delafossites. By analyzing the electronic structures, we demonstrate that the compositional trend of the ionization energies and electron affinities is the result of a combined effect of d-band broadening due to Cu(Ag)-Cu(Ag) coupling and a repositioning of the d-band center.
Response of the Earth’s lower ionosphere to the Ground Level Enhancement event of December 13, 2006
NASA Astrophysics Data System (ADS)
Žigman, Vida; Kudela, Karel; Grubor, Davorka
2014-03-01
In this study we analyze the Ground Level Enhancement Event No 70 observed on December 13, 2006, by correlating the observations from two research topics: Cosmic rays and Very Low Frequency (VLF < 30 kHz) wave propagation, as two ground based techniques for the detection of solar proton events, and their impact on the lower ionosphere. The observations have been endorsed from recordings of worldwide network ground based Neutron Monitors as well as by satellite data from the satellites GOES 12 (www.swpc.noaa.gov) and Pamela (www.pamela.roma2infn.it). We have evaluated the ionization rate for protons in the altitude range relevant to VLF propagation, and for galactic cosmic ray (GCR) background, finding that at energies up to ˜2 GeV the ionization rate of solar protons exceeded the GCR ionization by 1.5 orders of magnitude. We have applied the Long Wave Propagation Capability (LWPC) code to evaluate the enhancement of the electron density from VLF signal perturbation and have inferred corresponding electron densities from the evaluated ionization rates and effective recombination coefficients from literature, to find the two independent sets in good agreement.
Dynamical models for the formation of elephant trunks in HII regions
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Lim, Andrew J.
2010-04-01
The formation of pillars of dense gas at the boundaries of HII regions is investigated with hydrodynamical numerical simulations including ionizing radiation from a point source. We show that shadowing of ionizing radiation by an inhomogeneous density field is capable of forming so-called elephant trunks (pillars of dense gas as in e.g. M16) without the assistance of self-gravity or of ionization front and cooling instabilities. A large simulation of a density field containing randomly generated clumps of gas is shown to naturally generate elephant trunks with certain clump configurations. These configurations are simulated in isolation and analysed in detail to show the formation mechanism and determine possible observational signatures. Pillars formed by the shadowing mechanism are shown to have rather different velocity profiles depending on the initial gas configuration, but asymmetries mean that the profiles also vary significantly with perspective, limiting their ability to discriminate between formation scenarios. Neutral and molecular gas cooling are shown to have a strong effect on these results.
NASA Astrophysics Data System (ADS)
Liang, Ying-Shuang; Liu, Gang-Hu; Xue, Chan; Liu, Yong-Xin; Wang, You-Nian
2017-05-01
A two-dimensional self-consistent fluid model and the experimental diagnostic are employed to investigate the dependencies of species concentrations on the gas proportion in the capacitive N2/Ar discharges operated at 60 MHz, 50 Pa, and 140 W. The results indicate that the N2/Ar proportion has a considerable impact on the species densities. As the N2 fraction increases, the electron density, as well as the Ar+ and Arm densities, decreases remarkably. On the contrary, the N2 + density is demonstrated to increase monotonically with the N2 fraction. Moreover, the N density is observed to increase significantly with the N2 fraction at the N2 fractions below 40%, beyond which it decreases slightly. The electrons are primarily generated via the electron impact ionization of the feed gases. The electron impact ionization of Ar essentially determines the Ar+ density. For the N2 + production, the charge transition process between the Ar+ ions and the feed gas N2 dominates at low N2 fraction, while the electron impact ionization of N2 plays the more important role at high N2 fraction. At any gas mixtures, more than 60% Arm atoms are generated through the radiative decay process from Ar(4p). The dissociation of the feed gas N2 by the excited Ar atoms and by the electrons is responsible for the N formation at low N2 fraction and high N2 fraction, respectively. To validate the simulation results, the floating double probe and the optical emission spectroscopy are employed to measure the total positive ion density and the emission intensity originating from Ar(4p) transitions, respectively. The results from the simulation show a qualitative agreement with that from the experiment, which indicates the reliable model.
Rapid ionization of the environment of SN 1987A
NASA Technical Reports Server (NTRS)
Raga, A. C.
1987-01-01
It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.
Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W
2015-11-01
Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.
Plasma channel created by ionization of gas by a surface wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M., E-mail: minaev1945@mail.ru
2015-09-15
Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.
Ionization and current growth in N/sub 2/ at very high electric field to gas density ratios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gylys, V.T.; Jelenkovic, B.M.; Phelps, A.V.
1989-05-01
Measurements and analyses have been made of electron impact ionization and of current growth in pulsed, low-current, prebreakdown discharges in parallel-plane geometry in N/sub 2/ at very high electric field to gas density ratios E/n and low products of the gas density n and electrode separation d. The E/n range and nd ranges were 1
Effect of inelastic electron-atom collisions on the Balmer decrement
NASA Technical Reports Server (NTRS)
Adams, W. M.; Petrosian, V.
1974-01-01
Calculation of the Balmer decrement in radiatively ionized hydrogen gas as a function of temperature and density, taking into account the effect of electron-atom collisions. It is found that once the electron density exceeds 10 to the 10th power per cu cm significant deviations from the normal radiative recombination decrement begin to occur. Implications of these results for the physical conditions in the line-emitting region of the Seyfert galaxy NGC 4151 are discussed briefly.
The ionizing effect of low-energy cosmic rays from a class II object on its protoplanetary disc
NASA Astrophysics Data System (ADS)
Rodgers-Lee, D.; Taylor, A. M.; Ray, T. P.; Downes, T. P.
2017-11-01
We investigate the ionizing effect of low-energy cosmic rays (CRs) from a young star on its protoplanetary disc (PPD). We consider specifically the effect of ∼3 GeV protons injected at the inner edge of the PPD. An increase in the ionization fraction as a result of these CRs could allow the magnetorotational instability to operate in otherwise magnetically dead regions of the disc. For the typical values assumed we find an ionization rate of ζCR ∼ 10-17 s-1 at 1 au. The transport equation is solved by treating the propagation of the CRs as diffusive. We find for increasing diffusion coefficients the CRs penetrate further in the PPD, while varying the mass density profile of the disc is found to have little effect. We investigate the effect of an energy spectrum of CRs. The influence of a disc wind is examined by including an advective term. For advective wind speeds between 1 and 100 km s-1 diffusion dominates at all radii considered here (out to 10 au) for reasonable diffusion coefficients. Overall, we find that low-energy CRs can significantly ionize the mid-plane of PPDs out to ∼1 au. By increasing the luminosity or energy of the CRs, within plausible limits, their radial influence could increase to ∼2 au at the mid-plane but it remains challenging to significantly ionize the mid-plane further out.
Statistical time-dependent model for the interstellar gas
NASA Technical Reports Server (NTRS)
Gerola, H.; Kafatos, M.; Mccray, R.
1974-01-01
We present models for temperature and ionization structure of low, uniform-density (approximately 0.3 per cu cm) interstellar gas in a galactic disk which is exposed to soft X rays from supernova outbursts occurring randomly in space and time. The structure was calculated by computing the time record of temperature and ionization at a given point by Monte Carlo simulation. The calculation yields probability distribution functions for ionized fraction, temperature, and their various observable moments. These time-dependent models predict a bimodal temperature distribution of the gas that agrees with various observations. Cold regions in the low-density gas may have the appearance of clouds in 21-cm absorption. The time-dependent model, in contrast to the steady-state model, predicts large fluctuations in ionization rate and the existence of cold (approximately 30 K), ionized (ionized fraction equal to about 0.1) regions.
High-current fast electron beam propagation in a dielectric target.
Klimo, Ondrej; Tikhonchuk, V T; Debayle, A
2007-01-01
Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.
[C ii] 158 μm line detection of the warm ionized medium in the Scutum-Crux spiral arm tangency
NASA Astrophysics Data System (ADS)
Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.
2012-05-01
Context. The Herschel HIFI GOT C+ Galactic plane [C ii] spectral survey has detected strong emission at the spiral arm tangencies. Aims: We use the unique viewing geometry of the Scutum-Crux (S-C) tangency nearl = 30° to detect the warm ionized medium (WIM) component traced by [CII] and to study the effects of spiral density waves on Interstellar Medium (ISM) gas. Methods: We compare [C ii] velocity features with ancillary H i, 12CO and 13CO data near tangent velocities at each longitude to separate the cold neutral medium and the warm neutral + ionized components in the S-C tangency, then we identify [C ii] emission at the highest velocities without any contribution from 12CO clouds, as WIM. Results: We present the GOT C+ results for the S-C tangency. We interpret the diffuse and extended excess [C ii] emission at and above the tangent velocities as arising in the electron-dominated warm ionized gas in the WIM. We derive an electron density in the range of 0.2-0.9 cm-3 at each longitude, a factor of several higher than the average value from Hα and pulsar dispersion. Conclusions: We interpret the excess [C ii] in S-C tangency as shock compression of the WIM induced by the spiral density waves. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Measuring Ionization in Highly Compressed, Near-Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Collins, G. W.; Divol, L.; Kritcher, A.; Landen, O. L.; Pak, A.; Weber, C.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; Saunders, A.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, A.
2016-10-01
A precise knowledge of ionization at given temperature and density is required to accurately model compressibility and heat capacity of materials at extreme conditions. We use x-ray Thomson scattering to characterize the plasma conditions in plastic and beryllium capsules near stagnation in implosion experiments at the National Ignition Facility. We expect the capsules to be compressed to more than 20x and electron densities approaching 1025 cm-3, corresponding to a Fermi energy of 170 eV. Zinc Heα x-rays (9 keV) scattering at 120° off the plasma yields high sensitivity to K-shell ionization, while at the same time constraining density and temperature. We will discuss recent results in the context of ionization potential depression at these extreme conditions. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere
NASA Astrophysics Data System (ADS)
Leenaarts, J.; Carlsson, M.; Hansteen, V.; Rutten, R. J.
2007-10-01
Context: The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. Since the pressure, temperature, and electron density depend sensitively on hydrogen ionization, numerical simulation of the solar atmosphere requires non-equilibrium treatment of all pertinent hydrogen transitions. The same holds for any diagnostic application employing hydrogen lines. Aims: To demonstrate the importance and to quantify the effects of non-equilibrium hydrogen ionization, both on the dynamical structure of the solar atmosphere and on hydrogen line formation, in particular Hα. Methods: We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Results: Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Hα, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements and above quiet internetwork. d) The hydrogen n = 2 population and column density are persistently high in dynamic fibrils, suggesting that these obtain their visibility from being optically thick in Hα also at low temperature. Movie and Appendix A are only available in electronic form at http://www.aanda.org
Secondary ionization in a flat universe
NASA Technical Reports Server (NTRS)
Atrio-Barandela, F.; Doroshkevich, A. G.
1994-01-01
We analyze the effect of a secondary ionization on the evolution of temperature fluctuations in cosmic background radiation. The main results presented in this paper are appropriate analytic expressions of the transfer function relating temperature fluctuations to matter density perturbations at recombination for all possible recombination histories. Furthermore, we particularize our calculation to the standard cold dark matter model, where we study the erasure of primordial temperature fluctuations and calculate the magnitude and angular scale of the damping induced by a late recombination.
NASA Astrophysics Data System (ADS)
Segers, Marijke C.; Oppenheimer, Benjamin D.; Schaye, Joop; Richings, Alexander J.
2017-10-01
We study the effect of a fluctuating active galactic nucleus (AGN) on the abundance of circumgalactic O VI in galaxies selected from the Evolution and Assembly of GaLaxies and their Environments simulations. We follow the time-variable O VI abundance in post-processing around four galaxies - two at z = 0.1 with stellar masses of M* ˜ 1010 M⊙ and M* ˜ 1011 M⊙, and two at z = 3 with similar stellar masses - out to impact parameters of twice their virial radii, implementing a fluctuating central source of ionizing radiation. Due to delayed recombination, the AGN leave significant 'AGN proximity zone fossils' around all four galaxies, where O VI and other metal ions are out of ionization equilibrium for several megayears after the AGN fade. The column density of O VI is typically enhanced by ≈0.3-1.0 dex at impact parameters within 0.3Rvir, and by ≈0.06-0.2 dex at 2Rvir, thereby also enhancing the covering fraction of O VI above a given column density threshold. The fossil effect tends to increase with increasing AGN luminosity, and towards shorter AGN lifetimes and larger AGN duty cycle fractions. In the limit of short AGN lifetimes, the effect converges to that of a continuous AGN with a luminosity of (fduty/100 per cent) times the AGN luminosity. We also find significant fossil effects for other metal ions, where low-ionization state ions are decreased (Si IV, C IV at z = 3) and high-ionization state ions are increased (C IV at z = 0.1, Ne viii, Mg x). Using observationally motivated AGN parameters, we predict AGN proximity zone fossils to be ubiquitous around M* ˜ 1010-11 M⊙ galaxies, and to affect observations of metals in the circumgalactic medium at both low and high redshifts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.
The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less
Solving the Excitation and Chemical Abundances in Shocks: The Case of HH 1
NASA Astrophysics Data System (ADS)
Giannini, T.; Antoniucci, S.; Nisini, B.; Bacciotti, F.; Podio, L.
2015-11-01
We present deep spectroscopic (3600-24700 Å ) X-shooter observations of the bright Herbig-Haro object HH 1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, H i and He i recombination lines and H2 ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non-local Thermal Equilibiurm codes to derive the electron temperature and density, and for the first time we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 K \\div 80,000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density ˜103 cm-3), and a more compact component (density ≥slant 105 cm-3) likely associated with the hottest gas. A further neutral component is also evidenced, having a temperature ≲10,000 K and a density >104 cm-3. The gas fractional ionization was estimated by solving the ionization equilibrium equations of atoms detected in different ionization stages. We find that neutral and fully ionized regions co-exist inside the shock. Also, indications in favor of at least partially dissociative shock as the main mechanism for molecular excitation are derived. Chemical abundances are estimated for the majority of the detected species. On average, abundances of non-refractory/refractory elements are lower than solar of about 0.15/0.5 dex. This indicates the presence of dust inside the medium, with a depletion factor of iron of ˜40%. Based on observations collected at the European Southern Observatory, (92.C-0058).
Photoionization and heating of a supernova-driven turbulent interstellar medium
NASA Astrophysics Data System (ADS)
Barnes, J. E.; Wood, Kenneth; Hill, Alex S.; Haffner, L. M.
2014-06-01
The diffuse ionized gas (DIG) in galaxies traces photoionization feedback from massive stars. Through three-dimensional photoionization simulations, we study the propagation of ionizing photons, photoionization heating and the resulting distribution of ionized and neutral gas within snapshots of magnetohydrodynamic simulations of a supernova-driven turbulent interstellar medium. We also investigate the impact of non-photoionization heating on observed optical emission line ratios. Inclusion of a heating term which scales less steeply with electron density than photoionization is required to produce diagnostic emission line ratios similar to those observed with the Wisconsin Hα Mapper. Once such heating terms have been included, we are also able to produce temperatures similar to those inferred from observations of the DIG, with temperatures increasing to above 15 000 K at heights |z| ≳ 1 kpc. We find that ionizing photons travel through low-density regions close to the mid-plane of the simulations, while travelling through diffuse low-density regions at large heights. The majority of photons travel small distances (≲100 pc); however some travel kiloparsecs and ionize the DIG.
Ionized gas at the edge of the central molecular zone
NASA Astrophysics Data System (ADS)
Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.; Velusamy, T.; Requena-Torres, M. A.; Wiesemeyer, H.
2015-04-01
Context. The edge of the central molecular zone (CMZ) is the location where massive dense molecular clouds with large internal velocity dispersions transition to the surrounding more quiescent and lower CO emissivity region of the Galaxy. Little is known about the ionized gas surrounding the molecular clouds and in the transition region. Aims: We determine the properties of the ionized gas at the edge of the CMZ near Sgr E using observations of N+ and C+. Methods: We observed a small portion of the edge of the CMZ near Sgr E with spectrally resolved [C ii] 158 μm and [N ii] 205 μm fine structure lines at six positions with the GREAT instrument on SOFIA and in [C ii] using Herschel HIFI on-the-fly strip maps. We use the [N ii] spectra along with a radiative transfer model to calculate the electron density of the gas and the [C ii] maps to illuminate the morphology of the ionized gas and model the column density of CO-dark H2. Results: We detect two [C ii] and [N ii] velocity components, one along the line of sight to a CO molecular cloud at - 207 km s-1 associated with Sgr E and the other at -174 km s-1 outside the edge of another CO cloud. From the [N ii] emission we find that the average electron density is in the range of ~5 to 21 cm-3 for these features. This electron density is much higher than that of the disk's warm ionized medium, but is consistent with densities determined for bright diffuse H ii nebula. The column density of the CO-dark H2 layer in the -207 km s-1 cloud is ~1-2 × 1021 cm-2 in agreement with theoretical models. The CMZ extends further out in Galactic radius by ~7 to 14 pc in ionized gas than it does in molecular gas traced by CO. Conclusions: The edge of the CMZ likely contains dense hot ionized gas surrounding the neutral molecular material. The high fractional abundance of N+ and high electron density require an intense EUV field with a photon flux of order 106 to 107 photons cm-2 s-1, and/or efficient proton charge exchange with nitrogen, at temperatures of order 104 K, and/or a large flux of X-rays. Sgr E is a region of massive star formation as indicated by the presence of numerous compact H ii regions. The massive stars are potential sources of the EUV radiation that ionizes and heat the gas. In addition, X-ray sources and the diffuse X-ray emission in the CMZ are candidates for ionizing nitrogen.
Highly ionized physical vapor deposition plasma source working at very low pressure
NASA Astrophysics Data System (ADS)
Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.
2012-04-01
Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.
HF Propagation Effects Caused by an Artificial Plasma Cloud in the Ionosphere
NASA Astrophysics Data System (ADS)
Joshi, D. R.; Groves, K. M.; McNeil, W. J.; Caton, R. G.; Parris, R. T.; Pedersen, T. R.; Cannon, P. S.; Angling, M. J.; Jackson-Booth, N. K.
2014-12-01
In a campaign carried out by the NASA sounding rocket team, the Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma and measure the effects on high frequency (HF) radio wave propagation. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud that persisted for tens of minutes to hours in the post-sunset period. Data from the experiments has been analyzed to understand the impacts of the artificial ionization on HF radio wave propagation. Swept frequency HF links transiting the artificial ionization region were employed to produce oblique ionograms that clearly showed the effects of the samarium cloud. Ray tracing has been used to successfully model the effects of the ionized cloud. Comparisons between observations and modeled results will be presented, including model output using the International Reference Ionosphere (IRI), the Parameterized Ionospheric Model (PIM) and PIM constrained by electron density profiles measured with the ALTAIR radar at Kwajalein. Observations and modeling confirm that the cloud acted as a divergent lens refracting energy away from direct propagation paths and scattering energy at large angles relative to the initial propagation direction. The results confirm that even small amounts of ionized material injected in the upper atmosphere can result in significant changes to the natural propagation environment.
NASA Astrophysics Data System (ADS)
Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.
2015-10-01
The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.
NASA Astrophysics Data System (ADS)
Sasmal, Sudipta; Chakrabarti, Sandip Kumar; Palit, Sourav; Chakraborty, Suman; Ghosh, Soujan; Ray, Suman
2016-07-01
We present the nature of perturbations in the propagation characteristics of Very Low Frequency (VLF) signals received at Ionospheric & Earthquake Research Centre (IERC) (Lat. 22.50 ^{o}N, Long. 87.48 ^{o}E) during and prior to the latest strong earthquakes in Nepal on 12 May 2015 at 12:50 pm local time (07:05 UTC) with a magnitude of 7.3 and depth 18 km at southeast of Kodari. The VLF signal emitted from JJI transmitter (22.2kHz) in Japan (Lat. 32.08 ^{o}N, Long. 130.83 ^{o}E) shows strong shifts in sunrise and sunset terminator times towards nighttime beginning three to four days prior to the earthquake. The shift in terminator times is numerically simulated using Long Wavelength Propagation Capability (LWPC) code. Electron density variation as a function of height is calculated for seismically quiet days using the Wait's exponential profile and it matches with the IRI model. The perturbed electron density is calculated using the effective reflection height (h') and sharpness parameter (β) and the rate of ionization due to earthquake is being obtained by the equation of continuity for ionospheric D-layer. We compute the ion production and recombination profiles during seismic and non-seismic conditions incorporating D-region ion chemistry processes and calculate the unperturbed and perturbed electron density profile and ionization rate at different heights which matches with the exponential profile. During the seismic condition, for both the cases, the rate of ionization and the electron density profile differ significantly from the normal values. We interpret this to be due to the seismo-ionospheric coupling processes.
Copernicus observations of distant unreddened stars. I. Line of sight to MU Colombae and HD 28497
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shull, J.M.; York, D.G.
1977-02-01
Copernicus UV data on interstellar lines toward ..mu.. Col and HD 28497 are analyzed to study the abundances and physical conditions in the many components found in each line of sight. Despite low mean neutral hydrogen densities toward these stars, a substantial portion of the neutral gas is associated with dense condensations containing H/sub 2/. In several high-velocity components, Fe, Ca, and possibly Si appear to be nearer their cosmic abundances than is typical in interstellar gas; this effect may be related to the correlation of N (Ca II)/N (Na I) with cloud velocity, and suggests a grain-disruption model. Low-velocitymore » ionized gas with n/sub e/=0.1 to 0.3 cm/sup -3/ appears to be associated with an extended H II region near ..mu.. Col; ionized gas of similar density is seen at the same velocities as the four neutral components toward HD 28497. Si III absorption, with a wide profile at high negative velocities, unaccompanied by any detectable Si II, N II, or neutral gas, is reported in both stars. The observed Si III column densities and velocity fields may be explained by collisionally ionized gas at 30,000 to 100,000 K behind radiatively cooling strong shocks.« less
Ion Traps at the Sun: Implications for Elemental Fractionation
NASA Astrophysics Data System (ADS)
Fleishman, Gregory D.; Musset, Sophie; Bommier, Véronique; Glesener, Lindsay
2018-04-01
Why the tenuous solar outer atmosphere, or corona, is much hotter than the underlying layers remains one of the greatest challenges for solar modeling. Detailed diagnostics of the coronal thermal structure come from extreme ultraviolet (EUV) emission. The EUV emission is produced by heavy ions in various ionization states and depends on the amount of these ions and on plasma temperature and density. Any nonuniformity of the elemental distribution in space or variability in time affects thermal diagnostics of the corona. Here we theoretically predict ionized chemical element concentrations in some areas of the solar atmosphere, where the electric current is directed upward. We then detect these areas observationally, by comparing the electric current density with the EUV brightness in an active region. We found a significant excess in EUV brightness in the areas with positive current density rather than negative. Therefore, we report the observational discovery of substantial concentrations of heavy ions in current-carrying magnetic flux tubes, which might have important implications for the elemental fractionation in the solar corona known as the first ionization potential effect. We call such areas of heavy ion concentration the “ion traps.” These traps hold enhanced ion levels until they are disrupted by a flare, whether large or small.
Observation of Transonic Ionization Fronts in Low-Density Foam Targets
NASA Astrophysics Data System (ADS)
Hoarty, D.; Barringer, L.; Vickers, C.; Willi, O.; Nazarov, W.
1999-04-01
Transonic ionization fronts have been observed in low-density chlorinated foam targets using time-resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x rays produced by high-power laser irradiation of a thin foil. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions at a number of times. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.
Oster, L; Horowitz, Y S; Biderman, S; Haddad, J
2003-12-01
We demonstrate the viability of the concept of using existing molecular nanostructures in thermoluminescent solid-state materials as solid-state nanodosimeters. The concept is based on mimicking radiobiology (specifically the ionization density dependence of double strand breaks in DNA) by using the similar ionization density dependence of simultaneous electron-hole capture in spatially correlated trapping and luminescent centres pairs in the thermoluminescence of LiF:Mg,Ti. This simultaneous electron-hole capture has been shown to lead to ionization density dependence in the relative intensity of peak 5a to peak 5 similar to the ratio of double-strand breaks to single-strand breaks for low energy He ions.
Herschel Galactic Plane Survey of [NII] Fine Structure Emission
NASA Astrophysics Data System (ADS)
Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L.
2015-12-01
We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10-8-10-7 Wm-2 sr-1 level over the range -60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10-50 cm-3 with an average value of 29 cm-3 and N+ column densities 1016-1017 cm-2. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.
Propagation of a laser-driven relativistic electron beam inside a solid dielectric.
Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B
2012-09-01
Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha P.; Macalpine, Gordon M.
1992-01-01
Well-constrained photoionization models for the Seyfert I galaxy NGC 3783 are developed. Both cross-correlation analyses and line variability trends with varying ionizing radiation flux require a multicomponent picture. All the data for He II 1640 A, C IV 1549 A, and semiforbidden C III 1909 A can be reasonably well reproduced by two cloud components. One has a source-cloud distance of 24 lt-days, gas density around 3 x 10 exp 10/cu cm, ionization parameter range of 0.04-0.2, and cloud thickness such that about half of the carbon is doubly ionized and about half is triply ionized. The other component is located approximately 96 lt-days from the source, is shielded from the source by the inner cloud, has a density about 3 x 10 to the 9th/cu cm, and is characterized by an ionization parameter range of 0.001-0.03, The cloud thickness is such that about 45 percent carbon is doubly ionized and about 55 percent is singly ionized.
Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Huaming; Yang, Bo; Mao, Xianglei
We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less
Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel
Hou, Huaming; Yang, Bo; Mao, Xianglei; ...
2018-05-10
We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less
The collisional drift mode in a partially ionized plasma. [in the F region
NASA Technical Reports Server (NTRS)
Hudson, M. K.; Kennel, C. F.
1974-01-01
The structure of the drift instability was examined in several density regimes. Let sub e be the total electron mean free path, k sub z the wave-vector component along the magnetic field, and the ratio of perpendicular ion diffusion to parallel electron streaming rates. At low densities (k sub z lambda 1) the drift mode is isothermal and should be treated kineticly. In the finite heat conduction regime square root of m/M k sub z Lambda sub 1) the drift instability threshold is reduced at low densities and increased at high densities as compared to the isothermal threshold. Finally, in the energy transfer limit (k sub z kambda sub e square root of m/M) the drift instability behaves adiabatically in a fully ionized plasma and isothermally in a partially ionized plasma for an ion-neutral to Coulomb collision frequency ratio.
Reionization of the Universe and the Photoevaporation of Cosmological Minihalos
NASA Technical Reports Server (NTRS)
Shapiro, Paul R.; Raga, Alejandro C.
2000-01-01
The first sources of ionizing radiation to condense out of the dark and neutral Intergalactic Medium (IGM) sent ionization fronts sweeping outward through their surroundings, overtaking other condensed objects and photoevaporating them. This feedback effect of universal reionization on cosmic structure formation is demonstrated here for the case of a cosmological minihalo of dark matter and baryons exposed to an external source of ionizing radiation with a quasar-like spectrum, just after the passage of the global ionization front created by the source. We model the pre-ionization minihalo as a truncated, nonsingular isothermal sphere in hydrostatic equilibrium following its collapse out of the expanding background universe and virialization. Results are presented of the first, gas dynamical simulations of this process, including radiative transfer. A sample of observational diagnostics is also presented, including the spatially-varying ionization levels of C, N, and O in the flow if a trace of heavy elements is present and the integrated column densities of H I, He I and He II, and C IV through the photoevaporating gas at different velocities, which would be measured in absorption against a background source like that responsible for the ionization.
Ionization chamber correction factors for MR-linacs
NASA Astrophysics Data System (ADS)
Pojtinger, Stefan; Steffen Dohm, Oliver; Kapsch, Ralf-Peter; Thorwarth, Daniela
2018-06-01
Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B. The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0–2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.
Ionization chamber correction factors for MR-linacs.
Pojtinger, Stefan; Dohm, Oliver Steffen; Kapsch, Ralf-Peter; Thorwarth, Daniela
2018-06-07
Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B . The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0-2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.
Verma, Prakash; Bartlett, Rodney J
2014-05-14
This paper's objective is to create a "consistent" mean-field based Kohn-Sham (KS) density functional theory (DFT) meaning the functional should not only provide good total energy properties, but also the corresponding KS eigenvalues should be accurate approximations to the vertical ionization potentials (VIPs) of the molecule, as the latter condition attests to the viability of the exchange-correlation potential (VXC). None of the prominently used DFT approaches show these properties: the optimized effective potential VXC based ab initio dft does. A local, range-separated hybrid potential cam-QTP-00 is introduced as the basis for a "consistent" KS DFT approach. The computed VIPs as the negative of KS eigenvalue have a mean absolute error of 0.8 eV for an extensive set of molecule's electron ionizations, including the core. Barrier heights, equilibrium geometries, and magnetic properties obtained from the potential are in good agreement with experiment. A similar accuracy with less computational efforts can be achieved by using a non-variational global hybrid variant of the QTP-00 approach.
Photoionization in the halo of the Galaxy
NASA Technical Reports Server (NTRS)
Bregman, Joel N.; Harrington, J. Patrick
1986-01-01
The ionizing radiation field in the halo is calculated and found to be dominated in the 13.6-45 eV range by light from O-B stars that escapes the disk, by planetary nebulae at 45-54 eV, by quasars and the Galactic soft X-ray background at 54-2000 eV, and by the extragalactic X-ray background at higher energies. Photoionization models are calculated with this radiation field incident on halo clouds of constant density for a variety of densities, for normal and depleted abundances, and with variations of the incident spectrum. For species at least triply ionized, such as Si IV, C IV, N V, and O VI, the line ratios are determined by intervening gas with the greatest volume, which is not necessarily the greatest mass component. Column densities from doubly ionized species like Si III should be greater than from triply ionized species. The role of photoionized gas in cosmic ray-supported halos and Galactic fountains is discussed. Observational tests of photoionization models are suggested.
Equilibrium theory of cylindrical discharges with special application to helicons
NASA Astrophysics Data System (ADS)
Curreli, Davide; Chen, Francis F.
2011-11-01
Radiofrequency discharges used in industry often have centrally peaked plasma density profiles n(r) although ionization is localized at the edge, even in the presence of a dc magnetic field. This can be explained with a simple cylindrical model in one dimension as long as the short-circuit effect at the endplates causes a Maxwellian electron distribution. Surprisingly, a universal profile can be obtained, which is self-similar for all discharges with uniform electron temperature Te and neutral density nn. When all collisions and ionizations are radially accounted for, the ion drift velocity toward the wall reaches the Bohm velocity at a radius which can be identified with the sheath edge, thus obviating a pre-sheath calculation. For non-uniform Te and nn, the profiles change slightly but are always peaked on axis. For helicon discharges, iteration with the HELIC code for antenna-wave coupling yields profiles consistent with both energy deposition and diffusion profiles. Calculated density is in absolute-value agreement with experiment.
Wuest, C.R.; Lowry, M.E.
1994-03-29
An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.
Wuest, Craig R.; Lowry, Mark E.
1994-01-01
An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.
Density, Velocity and Ionization Structure in Accretion-Disc Winds
NASA Technical Reports Server (NTRS)
Sonneborn, George (Technical Monitor); Long, Knox
2004-01-01
This was a project to exploit the unique capabilities of FUSE to monitor variations in the wind- formed spectral lines of the luminous, low-inclination, cataclysmic variables(CV) -- RW Sex. (The original proposal contained two additional objects but these were not approved.) These observations were intended to allow us to determine the relative roles of density and ionization state changes in the outflow and to search for spectroscopic signatures of stochastic small-scale structure and shocked gas. By monitoring the temporal behavior of blue-ward extended absorption lines with a wide range of ionization potentials and excitation energies, we proposed to track the changing physical conditions in the outflow. We planned to use a new Monte Carlo code to calculate the ionization structure of and radiative transfer through the CV wind. The analysis therefore was intended to establish the wind geometry, kinematics and ionization state, both in a time-averaged sense and as a function of time.
NASA Astrophysics Data System (ADS)
Tsel'Sov, Iu. G.; Kondrat'ev, A. S.
1990-12-01
A method is developed for determining the temperature of an ionized gas on the basis of electron-density sounding. This technique is used to measure the cross-sectional temperature distribution of an axisymmetric ionized gas flow using microwave diagnostics.
Measurements of trap dynamics of cold OH molecules using resonance-enhanced multiphoton ionization
NASA Astrophysics Data System (ADS)
Gray, John M.; Bossert, Jason A.; Shyur, Yomay; Lewandowski, H. J.
2017-08-01
Trapping cold, chemically important molecules with electromagnetic fields is a useful technique to study small molecules and their interactions. Traps provide long interaction times, which are needed to precisely examine these low-density molecular samples. However, the trapping fields lead to nonuniform molecular density distributions in these systems. Therefore, it is important to be able to experimentally characterize the spatial density distribution in the trap. Ionizing molecules at different locations in the trap using resonance-enhanced multiphoton ionization (REMPI) and detecting the resulting ions can be used to probe the density distribution even at the low density present in these experiments because of the extremely high efficiency of detection. Until recently, one of the most chemically important molecules, OH, did not have a convenient REMPI scheme identified. Here, we use a newly developed 1 +1' REMPI scheme to detect trapped cold OH molecules. We use this capability to measure the trap dynamics of the central density of the cloud and the density distribution. These types of measurements can be used to optimize loading of molecules into traps, as well as to help characterize the energy distribution, which is critical knowledge for interpreting molecular collision experiments.
Recombination of H(3+) and D(3+) ions with electrons
NASA Technical Reports Server (NTRS)
Johnsen, R.; Gougousi, T.; Golde, M. F.
1994-01-01
Flowing-afterglow measurements in decaying H3(+) or D3(+) plasmas suggest that de-ionization does not occur by simple binary recombination of a single ion species. We find that vibrational excitation of the ions fails to provide an explanation for the effect, contrary to an earlier suggestion. Instead, we suggest that collisional stabilization of H3** Rydberg molecules by ambient electrons introduces an additional dependence on electron density. The proposed mechanism would permit plasma de-ionization to occur without the need for dissociative recombination by the mechanism of potential-surface crossings.
Measurements of ion velocity separation and ionization in multi-species plasma shocks
NASA Astrophysics Data System (ADS)
Rinderknecht, Hans G.; Park, H.-S.; Ross, J. S.; Amendt, P. A.; Wilks, S. C.; Katz, J.; Hoffman, N. M.; Kagan, G.; Vold, E. L.; Keenan, B. D.; Simakov, A. N.; Chacón, L.
2018-05-01
The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks ( M ˜6 ) propagating through low-density ( ρ˜0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. The forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause.
Fluid simulation of the bias effect in inductive/capacitive discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu-Ru; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, BE-2610 Antwerp; Gao, Fei
Computer simulations are performed for an argon inductively coupled plasma (ICP) with a capacitive radio-frequency bias power, to investigate the bias effect on the discharge mode transition and on the plasma characteristics at various ICP currents, bias voltages, and bias frequencies. When the bias frequency is fixed at 13.56 MHz and the ICP current is low, e.g., 6 A, the spatiotemporal averaged plasma density increases monotonically with bias voltage, and the bias effect is already prominent at a bias voltage of 90 V. The maximum of the ionization rate moves toward the bottom electrode, which indicates clearly the discharge mode transition in inductive/capacitivemore » discharges. At higher ICP currents, i.e., 11 and 13 A, the plasma density decreases first and then increases with bias voltage, due to the competing mechanisms between the ion acceleration power dissipation and the capacitive power deposition. At 11 A, the bias effect is still important, but it is noticeable only at higher bias voltages. At 13 A, the ionization rate is characterized by a maximum at the reactor center near the dielectric window at all selected bias voltages, which indicates that the ICP power, instead of the bias power, plays a dominant role under this condition, and no mode transition is observed. Indeed, the ratio of the bias power to the total power is lower than 0.4 over a wide range of bias voltages, i.e., 0–300 V. Besides the effect of ICP current, also the effect of various bias frequencies is investigated. It is found that the modulation of the bias power to the spatiotemporal distributions of the ionization rate at 2 MHz is strikingly different from the behavior observed at higher bias frequencies. Furthermore, the minimum of the plasma density appears at different bias voltages, i.e., 120 V at 2 MHz and 90 V at 27.12 MHz.« less
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
NASA Astrophysics Data System (ADS)
Weber, T. E.; Intrator, T. P.; Smith, R. J.
2015-04-01
Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.
Ionization-Enhanced Decomposition of 2,4,6-Trinitrotoluene (TNT) Molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin; Wright, David; Cliffel, David
2011-01-01
The unimolecular decomposition reaction of TNT can in principle be used to design ways to either detect or remove TNT from the environment. Here, we report the results of a density functional theory study of possible ways to lower the reaction barrier for this decomposition process by ionization, so that decomposition and/or detection can occur at room temperature. We find that ionizing TNT lowers the reaction barrier for the initial step of this decomposition. We further show that a similar effect can occur if a positive moiety is bound to the TNT molecule. The positive charge produces a pronounced electronmore » redistribution and dipole formation in TNT with minimal charge transfer from TNT to the positive moiety.« less
NASA Astrophysics Data System (ADS)
Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard
2016-06-01
We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.
The effect of working gas impurities on plasma jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X. Y.; He, M. B., E-mail: pulhmb@mail.hust.edu.cn; IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240
Air intrusion reduced the purity of working gas inside the tube for plasma jet, and thereby, affected the discharge dynamics. In this paper, the effect of using working gas with different purity level (helium purity 99.99999%, 99.99%, 99.9%, and 99%) on photoionization and the chemical reactivity of plasma jet were studied using a 2 dimensional plasma jet model. Photoionization of air species acted as a source of pre-ionization in front of the ionization region, which facilitated the transition from localized discharge to streamers inside the tube. The density of reactive species inside the tube was found to increase with themore » concentration of working gas impurities. For the highest purity helium (99.99999%), despite a low photoionization rate and the distance between the photoionization region and ionization region inside the tube, by increasing the applied voltage and decreasing the distance between the electrode and nozzle, plasma jets were formed.« less
An Experimental Study of the Ionization of Low-Density Gas Flows by Induced Discharges
NASA Technical Reports Server (NTRS)
Barger, R. L.; Brooks, J. D.; Beasley, W. D.
1960-01-01
Induced discharges are advantageous for ionizing low-density flows in that they introduce no electrode contamination into the flow and they provide a relatively high degree of ionization with good coupling of power into the gas. In this investigation a 40-megacycle oscillator was used to produce and maintain induced discharges in argon and mercury-vapor flows. Methods for preventing blowout of the discharge were determined, and power measurements were made with an in-line wattmeter. Some results with damped oscillations pulsed at 1,000 pulses per second are also presented.
Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds
NASA Astrophysics Data System (ADS)
Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.
2013-04-01
We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.
Investigation of a Mercury-Argon Hot Cathode Discharge
NASA Astrophysics Data System (ADS)
Wamsley, Robert Charles
Classical absorption and laser induced fluorescence (LIF) experiments are used to investigate processes in the cathode region of a Hg-Ar hot cathode discharge. The absorption and LIF measurements are used to test the qualitative understanding and develop a quantitative model of a hot cathode discharge. The main contribution of this thesis is a model of the negative glow region that demonstrates the importance of Penning ionization to the ionization balance in the negative glow. We modeled the excited argon balance equation using a Monte Carlo simulation. In this simulation we used the trapped radiative decay rate of the resonance levels and the Penning ionization rate as the dominant loss terms in the balance equation. The simulated data is compared to and found to agree with absolute excited argon densities measured in a classical absorption experiment. We found the primary production rate per unit volume of excited Ar atoms in the simulation is sharply peaked near the cathode hot spot. We used the ion production rate from this simulation and a Green's function solution to the ambipolar diffusion equation to calculate the contribution of Penning ionization to the total ion density. We compared the results of this calculation to our experimental values of the Hg ^+ densities in the negative glow. We found that Penning ionization is an important and possibly the dominant ionization process in the negative glow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogino, Yousuke; Ohnishi, Naofumi
A thrust power of a gas-driven laser-propulsion system is obtained through interaction with a propellant gas heated by a laser energy. Therefore, understanding the nonequilibrium nature of laser-produced plasma is essential for increasing available thrust force and for improving energy conversion efficiency from a laser to a propellant gas. In this work, a time-dependent collisional-radiative model for air plasma has been developed to study the effects of nonequilibrium atomic and molecular processes on population densities for an air-driven type laser propulsion. Many elementary processes are considered in the number density range of 10{sup 12}/cm{sup 3}<=N<=10{sup 19}/cm{sup 3} and the temperaturemore » range of 300 K<=T<=40,000 K. We then compute the unsteady nature of pulsively heated air plasma. When the ionization relaxation time is the same order as the time scale of a heating pulse, the effects of unsteady ionization are important for estimating air plasma states. From parametric computations, we determine the appropriate conditions for the collisional-radiative steady state, local thermodynamic equilibrium, and corona equilibrium models in that density and temperature range.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikia, Partha, E-mail: partha.008@gmail.com; Institute of Physics, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago; Saikia, Bipul Kumar
2016-04-15
We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO{sub 2} films. The parameters of the hydrogen-added Ar/O{sub 2} plasma influence the properties and the structural phases of the deposited TiO{sub 2} film. Therefore, the variation of plasma parameters such as electron temperature (T{sub e}), electron density (n{sub e}), ion density (n{sub i}), degree of ionization of Ar and degree of dissociation of H{sub 2} as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma.more » On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO{sub 2} film.« less
First-principles studies of electron transport in Ga2O3
NASA Astrophysics Data System (ADS)
Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; van de Walle, Chris G.
Ga2O3 is a wide-gap semiconductor with a monoclinic crystal structure and a band gap of 4.8 eV. Its high carrier mobility and large band gap have attracted a lot of attention for use in high power electronics and transparent conductors. Despite its potential for adoption in these applications, an understanding of its carrier transport properties is still lacking. In this study we use first-principles calculations to analyze and compute the electron scattering rates in Ga2O3. Scattering due to ionized impurities and polar longitudinal-optical (LO) phonon is taken into account. We find that the electron mobility is nearly isotropic, despite the low-symmetry monoclinic structure of Ga2O3. At low carrier densities ( 1017 cm-3), the mobility is limited by LO phonon scattering. Scattering by ionized impurities becomes increasingly important at higher carrier densities. This type of scattering is enhanced when compensating native point defects are present; in particular, gallium vacancies, which are triply negatively charged, can have a strong effect on mobility. These effects explain the downturn in mobility observed in experiments at high carrier densities. This work was supported by ARO and NSF.
A flux-limited treatment for the conductive evaporation of spherical interstellar gas clouds
NASA Technical Reports Server (NTRS)
Dalton, William W.; Balbus, Steven A.
1993-01-01
In this work, we present and analyze a new analytic solution for the saturated (flux-limited) thermal evaporation of a spherical cloud. This work is distinguished from earlier analytic studies by allowing the thermal conductivity to change continuously from a diffusive to a saturated form, in a manner usually employed only in numerical calculations. This closed form solution will be of interest as a computational benchmark. Using our calculated temperature profiles and mass-loss rates, we model the thermal evaporation of such a cloud under typical interstellar medium (ISM) conditions, with some restrictions. We examine the ionization structure of the cloud-ISM interface and evaluate column densities of carbon, nitrogen, oxygen, neon, and silicon ions toward the cloud. In accord with other investigations, we find that ionization equilibrium is far from satisfied under the assumed conditions. Since the inclusion of saturation effects in the heat flux narrows the thermal interface relative to its classical structure, we also find that saturation effects tend to lower predicted column densities.
Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Whitehead, M.A.
1988-10-01
The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, andmore » Bogdanovic's Fermi-hole parameters (Phys. Rev. A 14, 1 (1976)), and Vosko, Wilk, and Nusair's correlation correction (Can. J. Phys. 58, 1200 (1980)), are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered.« less
Influence of defects on the absorption edge of InN thin films: The band gap value
NASA Astrophysics Data System (ADS)
Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.
2007-07-01
We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.
NASA Technical Reports Server (NTRS)
Smith, M.
1972-01-01
Fluctuations in electron density and temperature coupled through Ohm's law are studied for an ionizable medium. The nonlinear effects are considered in the limit of a third order quasi-linear treatment. Equations are derived for the amplitude of the fluctuation. Conditions under which a steady state can exist in the presence of the fluctuation are examined and effective transport properties are determined. A comparison is made to previously considered second order theory. The effect of third order terms indicates the possibility of fluctuations existing in regions predicted stable by previous analysis.
The effect of extreme ionization rates during the initial collapse of a molecular cloud core
NASA Astrophysics Data System (ADS)
Wurster, James; Bate, Matthew R.; Price, Daniel J.
2018-05-01
What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.
NASA Astrophysics Data System (ADS)
Duru, F.; Gurnett, D. A.; Morgan, D. D.; Halekas, J.; Frahm, R. A.; Lundin, R.; Dejong, W.; Ertl, C.; Venable, A.; Wilkinson, C.; Fraenz, M.; Nemec, F.; Connerney, J. E. P.; Espley, J. R.; Larson, D.; Winningham, J. D.; Plaut, J.; Mahaffy, P. R.
2017-10-01
In a two-week period between February and March of 2015, a series of interplanetary coronal mass ejections (ICMEs) and solar energetic particle (SEP) events encountered Mars. The interactions were observed by several spacecraft, including Mars Express (MEX), Mars Atmosphere and Volatile Evolution Mission (MAVEN), and Mars Odyssey (MO). The ICME disturbances were characterized by an increase in ion speed, plasma temperature, magnetic field magnitude, and energetic electron flux. Furthermore, increased solar wind density and speeds, as well as unusually high local electron densities and high flow velocities were detected on the nightside at high altitudes during the March 8 event. These effects are thought to be due to the transport of ionospheric plasma away from Mars. In the deep nightside, the peak ionospheric electron density at the periapsis of MEX shows a substantial increase, reaching number densities about 2.7 × 104 cm-3 during the second ICME in the deep nightside. This corresponds to an increase in the MO High-Energy Neutron Detector flux suggesting an increase in the ionization of the neutral atmosphere due to the high intensity of charged particles. Measurements of the SEP fluxs show a substantial enhancement before the shock of a fourth ICME causing impact ionization and absorption of the surface echo intensity which drops to the noise levels, below 10-15 V2m-2 Hz-1 from values of about 2 × 10-14 V2m-2 Hz-1. Moreover, the peak ionospheric density exhibits a discrete enhancement over a period of about 30 h around the same location, which may be due to impact ionization. Ion escape rates at this time are estimated to be in the order of 1025 to 1026 s-1.
Propagation of ultrashort laser pulses in optically ionized gases
NASA Astrophysics Data System (ADS)
Morozov, A.; Luo, Y.; Suckewer, S.; Gordon, D. F.; Sprangle, P.
2010-02-01
Propagation of 800 nm, 120 fs laser pulses with intensities of 4×1016 W/cm2 in supersonic gas jets of N2 and H2 is studied using a shear-type interferometer. The plasma density distribution resulting from photoionization is resolved in space and time with simultaneously measured initial neutral density distribution. A distinct difference in laser beam propagation distance is observed when comparing propagation in jets of H2 and N2. This is interpreted in terms of ionization induced refraction, which is stronger when electrons are produced from states of higher ionization potential. Three dimensional particle-in-cell simulations, based on directly solving the Maxwell-Lorentz system of equations, show the roles played by the forward Raman and ionization scattering instabilities, which further affect the propagation distance.
Self-shielding of hydrogen in the IGM during the epoch of reionization
NASA Astrophysics Data System (ADS)
Chardin, Jonathan; Kulkarni, Girish; Haehnelt, Martin G.
2018-04-01
We investigate self-shielding of intergalactic hydrogen against ionizing radiation in radiative transfer simulations of cosmic reionization carefully calibrated with Lyα forest data. While self-shielded regions manifest as Lyman-limit systems in the post-reionization Universe, here we focus on their evolution during reionization (redshifts z = 6-10). At these redshifts, the spatial distribution of hydrogen-ionizing radiation is highly inhomogeneous, and some regions of the Universe are still neutral. After masking the neutral regions and ionizing sources in the simulation, we find that the hydrogen photoionization rate depends on the local hydrogen density in a manner very similar to that in the post-reionization Universe. The characteristic physical hydrogen density above which self-shielding becomes important at these redshifts is about nH ˜ 3 × 10-3 cm-3, or ˜20 times the mean hydrogen density, reflecting the fact that during reionization photoionization rates are typically low enough that the filaments in the cosmic web are often self-shielded. The value of the typical self-shielding density decreases by a factor of 3 between redshifts z = 3 and 10, and follows the evolution of the average photoionization rate in ionized regions in a simple fashion. We provide a simple parameterization of the photoionization rate as a function of density in self-shielded regions during the epoch of reionization.
Self-shielding of hydrogen in the IGM during the epoch of reionization
NASA Astrophysics Data System (ADS)
Chardin, Jonathan; Kulkarni, Girish; Haehnelt, Martin G.
2018-07-01
We investigate self-shielding of intergalactic hydrogen against ionizing radiation in radiative transfer simulations of cosmic reionization carefully calibrated with Lyα forest data. While self-shielded regions manifest as Lyman limit systems in the post-reionization Universe, here we focus on their evolution during reionization (redshifts z = 6-10). At these redshifts, the spatial distribution of hydrogen-ionizing radiation is highly inhomogeneous, and some regions of the Universe are still neutral. After masking the neutral regions and ionizing sources in the simulation, we find that the hydrogen photoionization rate depends on the local hydrogen density in a manner very similar to that in the post-reionization Universe. The characteristic physical hydrogen density above which self-shielding becomes important at these redshifts is about nH ˜ 3 × 10-3 cm-3, or ˜20 times the mean hydrogen density, reflecting the fact that during reionization photoionization rates are typically low enough that the filaments in the cosmic web are often self-shielded. The value of the typical self-shielding density decreases by a factor of 3 between redshifts z = 3 and 10, and follows the evolution of the average photoionization rate in ionized regions in a simple fashion. We provide a simple parametrization of the photoionization rate as a function of density in self-shielded regions during the epoch of reionization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lei; School of Astronautics, Beihang University, Beijing 100191; Zeng, Guangshang
2016-07-15
Wall–plasma interactions excited by ablation controlled arcs are very critical physical processes in pulsed plasma thrusters (PPTs). Their effects on the ionization processes of ablated vapor into discharge plasma directly determine PPT performances. To reveal the physics governing the ionization phenomena in PPT discharge, a modified model taking into account the pyrolysis effect of heated polytetrafluoroethylene propellant on the wall–plasma interactions was developed. The feasibility of the modified model was analyzed by creating a one-dimensional simulation of a rectangular ablative PPT. The wall–plasma interaction results based on this modified model were found to be more realistic than for the unmodifiedmore » model; this reflects the dynamic changes of the inflow parameters during discharge in our model. Furthermore, the temporal and spatial variations of the different plasma species in the discharge chamber were numerically studied. The numerical studies showed that polytetrafluoroethylene plasma was mainly composed of monovalent ions; carbon and fluorine ions were concentrated in the upstream and downstream discharge chamber, respectively. The results based on this modified model were in good agreement with the experimental formation times of the various plasma species. A large number of short-lived and highly ionized carbon and fluorine species (divalent and trivalent ions) were created during initial discharge. These highly ionized species reached their peak density earlier than the singly ionized species.« less
Simulations of Hall reconnection in partially ionized plasmas
NASA Astrophysics Data System (ADS)
Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni
2017-04-01
Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is heavily affected by collisions with the neutrals. In line with experimental results, we observe reduction of the reconnection rate and no variation of the half-thickness of the ion diffusion region with decreasing IP (increasing gas density). Contrarily to the experiments, we can confidently state that these effects are not influenced by boundary constraints. We then provide an explanation for the behaviour observed.
A simple way to model nebulae with distributed ionizing stars
NASA Astrophysics Data System (ADS)
Jamet, L.; Morisset, C.
2008-04-01
Aims: This work is a follow-up of a recent article by Ercolano et al. that shows that, in some cases, the spatial dispersion of the ionizing stars in a given nebula may significantly affect its emission spectrum. The authors found that the dispersion of the ionizing stars is accompanied by a decrease in the ionization parameter, which at least partly explains the variations in the nebular spectrum. However, they did not research how other effects associated to the dispersion of the stars may contribute to those variations. Furthermore, they made use of a unique and simplified set of stellar populations. The scope of the present article is to assess whether the variation in the ionization parameter is the dominant effect in the dependence of the nebular spectrum on the distribution of its ionizing stars. We examined this possibility for various regimes of metallicity and age. We also investigated a way to model the distribution of the ionizing sources so as to bypass expensive calculations. Methods: We wrote a code able to generate random stellar populations and to compute the emission spectra of their associated nebulae through the widespread photoionization code cloudy. This code can process two kinds of spatial distributions of the stars: one where all the stars are concentrated at one point, and one where their separation is such that their Strömgren spheres do not overlap. Results: We found that, in most regimes of stellar population ages and gas metallicities, the dependence of the ionization parameter on the distribution of the stars is the dominant factor in the variation of the main nebular diagnostics with this distribution. We derived a method to mimic those effects with a single calculation that makes use of the common assumptions of a central source and a spherical nebula, in the case of constant density objects. This represents a computation time saving by a factor of at least several dozen in the case of H ii regions ionized by massive clusters.
QTAIM charge density study of natural cinnamic acids
NASA Astrophysics Data System (ADS)
González Moa, María J.; Mandado, Marcos; Mosquera, Ricardo A.
2006-06-01
B3LYP/6-311++G(2d,2p) 6d ionization potentials and O-H bond dissociation energies of natural cinnamic acids are consistent with an important antioxidant activity. The QTAIM analysis indicates that: (i) the benzene ring and the propenoic acid fragment of cinnamic acids behave as independent π systems; (ii) the ionization process consists in a loss of nearly 1 a.u. of π electron density by the atoms involved in HOMO accompanied by a reorganization of σ electron density that is mostly provided by the remaining atoms.
Sato, Tatsuhiko; Manabe, Kentaro; Hamada, Nobuyuki
2014-01-01
The risk of internal exposure to 137Cs, 134Cs, and 131I is of great public concern after the accident at the Fukushima-Daiichi nuclear power plant. The relative biological effectiveness (RBE, defined herein as effectiveness of internal exposure relative to the external exposure to γ-rays) is occasionally believed to be much greater than unity due to insufficient discussions on the difference of their microdosimetric profiles. We therefore performed a Monte Carlo particle transport simulation in ideally aligned cell systems to calculate the probability densities of absorbed doses in subcellular and intranuclear scales for internal exposures to electrons emitted from 137Cs, 134Cs, and 131I, as well as the external exposure to 662 keV photons. The RBE due to the inhomogeneous radioactive isotope (RI) distribution in subcellular structures and the high ionization density around the particle trajectories was then derived from the calculated microdosimetric probability density. The RBE for the bystander effect was also estimated from the probability density, considering its non-linear dose response. The RBE due to the high ionization density and that for the bystander effect were very close to 1, because the microdosimetric probability densities were nearly identical between the internal exposures and the external exposure from the 662 keV photons. On the other hand, the RBE due to the RI inhomogeneity largely depended on the intranuclear RI concentration and cell size, but their maximum possible RBE was only 1.04 even under conservative assumptions. Thus, it can be concluded from the microdosimetric viewpoint that the risk from internal exposures to 137Cs, 134Cs, and 131I should be nearly equivalent to that of external exposure to γ-rays at the same absorbed dose level, as suggested in the current recommendations of the International Commission on Radiological Protection. PMID:24919099
Modeling Line Emission from Structures Seen at High Resolution in the Nebulae m1 and M16
NASA Astrophysics Data System (ADS)
Sankrit, Ravi
1998-12-01
Narrow band images of the Crab Nebula supernova remnant and of the Eagle Nebula H II region taken with the Hubble Space Telescope (HST) show the ionization structure of the emitting gas in unprecedented detail because of the high spatial resolution. The physics of the emission processes-shock excited emission and photoionized emission-is well understood. Sophisticated numerical codes are used to model the ionization structure and emission observed in these images. It is found that the thin skin of material around the Crab synchrotron nebula visible in (O III) λ5007 emission is best explained as the cooling region behind a shock driven by the synchrotron nebula into a surrounding remnant of freely expanding ejecta. Shock models, with parameters derived from independently known properties of the Crab, explain the observed spectrum of the skin while photoionization models fail to explain the observed strength of high ionization lines such as C IV λ1549. This result is clear evidence that the synchrotron nebula is interacting with an extended remnant of ejecta, which in turn has significant implications for the structure and evolution of the Crab. At HST resolution, it is seen that low ionization emission, from lines such as (O I) λ6300, is concentrated in sharp structures while high ionization emission (from (O III) λ5007) is much more diffuse. Individual filaments are found to lie along a sequence of ionization structure ranging from features in which all lines are concentrated in the same compact volume through features with low ionization cores surrounded by high ionization envelopes. Photoionization models of cylindrically symmetrical filaments with varying 'core-halo' density profiles can match the observed variation in the filament structure in the Crab. A photoionization model of a uniform low density medium matches the extended diffuse component which dominates the high ionization emission. It is found that detailed knowledge of the filament structures present in an aperture is needed to correctly interpret ground-based spectra of the Crab. The images also show that many filament cores coincide with dust extinction features, which suggest that the dust to gas mass ratio may be up to an order of magnitude higher than is typical in the interstellar medium. Nebula show the interface between the ionized gas and the molecular cloud in tangency against the background of the ionized cavity which constitutes the H II region. A photoionization model using a density profile for the photoevaporative flow that is expected at such an interface is successful at explaining the observed emission profiles of Hα λ6563, (S II) λλ6716,6731, and (O III) λ5007. The ionizing flux is well constrained by the Hα emission and the sulphur abundance is constrained by the peak of the (S II) emission. A grid of models using the same density profiles shows how various emission properties depend on the ionizing continuum shape, ionizing flux and elemental abundances.
The Origins of Scintillator Non-Proportionality
NASA Astrophysics Data System (ADS)
Moses, W. W.; Bizarri, G. A.; Williams, R. T.; Payne, S. A.; Vasil'ev, A. N.; Singh, J.; Li, Q.; Grim, J. Q.; Choong, W.-S.
2012-10-01
Recent years have seen significant advances in both theoretically understanding and mathematically modeling the underlying causes of scintillator non-proportionality. The core cause is that the interaction of radiation with matter invariably leads to a non-uniform ionization density in the scintillator, coupled with the fact that the light yield depends on the ionization density. The mechanisms that lead to the luminescence dependence on ionization density are incompletely understood, but several important features have been identified, notably Auger-like processes (where two carriers of excitation interact with each other, causing one to de-excite non-radiatively), the inability of excitation carriers to recombine (caused either by trapping or physical separation), and the carrier mobility. This paper reviews the present understanding of the fundamental origins of scintillator non-proportionality, specifically the various theories that have been used to explain non-proportionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, N. N., E-mail: antonovnickola@gmail.com; Gavrikov, A. V.; Samokhin, A. A.
The method of plasma separation of spent nuclear fuel can be tested with a model substance which has to be transformed from the condensed to plasma state. For this purpose, electron-induced discharge in lead vapor injected into the interelectrode gap is simulated using the kinetic approach. The ionization efficiency, the electrostatic-potential distribution, and those of the ion and electron densities in the discharge gap are derived as functions of the discharge-current density and concentration of the vapor of the model substance. Given a discharge-current density of 3.5 A/cm{sup 2} and a lead-vapor concentration of 2 × 10{sup 12} cm{sup –3},more » the simulated ionization efficiency proves to be nearly 60%. The discharge in lead vapor is also investigated experimentally.« less
Spatial Fluctuations of the Intergalactic Temperature-Density Relation After Hydrogen Reionization
NASA Astrophysics Data System (ADS)
Keating, Laura C.; Puchwein, Ewald; Haehnelt, Martin G.
2018-04-01
The thermal state of the post-reionization IGM is sensitive to the timing of reionization and the nature of the ionizing sources. We have modelled here the thermal state of the IGM in cosmological radiative transfer simulations of a realistic, extended, spatially inhomogeneous hydrogen reionization process, carefully calibrated with Lyα forest data. We compare these with cosmological simulations run using a spatially homogeneous ionizing background. The simulations with a realistic growth of ionized regions and a realistic spread in reionization redshifts show, as expected, significant spatial fluctuations in the temperature-density relation (TDR) of the post-reionization IGM. The most recently ionized regions are hottest and exhibit a flatter TDR. In simulations consistent with the average TDR inferred from Lyα forest data, these spatial fluctuations have a moderate but noticeable effect on the statistical properties of the Lyα opacity of the IGM at z ˜ 4 - 6. This should be taken into account in accurate measurements of the thermal properties of the IGM and the free-streaming of dark matter from Lyα forest data in this redshift range. The spatial variations of the TDR predicted by our simulations are, however, smaller by about a factor two than would be necessary to explain the observed large spatial opacity fluctuations on large (≥ 50 h-1 comoving Mpc) scales at z ≳ 5.5.
ASYMMETRIC MAGNETIC RECONNECTION IN WEAKLY IONIZED CHROMOSPHERIC PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Nicholas A.; Lukin, Vyacheslav S., E-mail: namurphy@cfa.harvard.edu
2015-06-01
Realistic models of magnetic reconnection in the solar chromosphere must take into account that the plasma is partially ionized and that plasma conditions within any two magnetic flux bundles undergoing reconnection may not be the same. Asymmetric reconnection in the chromosphere may occur when newly emerged flux interacts with pre-existing, overlying flux. We present 2.5D simulations of asymmetric reconnection in weakly ionized, reacting plasmas where the magnetic field strengths, ion and neutral densities, and temperatures are different in each upstream region. The plasma and neutral components are evolved separately to allow non-equilibrium ionization. As in previous simulations of chromospheric reconnection,more » the current sheet thins to the scale of the neutral–ion mean free path and the ion and neutral outflows are strongly coupled. However, the ion and neutral inflows are asymmetrically decoupled. In cases with magnetic asymmetry, a net flow of neutrals through the current sheet from the weak-field (high-density) upstream region into the strong-field upstream region results from a neutral pressure gradient. Consequently, neutrals dragged along with the outflow are more likely to originate from the weak-field region. The Hall effect leads to the development of a characteristic quadrupole magnetic field modified by asymmetry, but the X-point geometry expected during Hall reconnection does not occur. All simulations show the development of plasmoids after an initial laminar phase.« less
Spatial fluctuations of the intergalactic temperature-density relation after hydrogen reionization
NASA Astrophysics Data System (ADS)
Keating, Laura C.; Puchwein, Ewald; Haehnelt, Martin G.
2018-07-01
The thermal state of the post-reionization IGM is sensitive to the timing of reionization and the nature of the ionizing sources. We have modelled here the thermal state of the IGM in cosmological radiative transfer simulations of a realistic, extended, spatially inhomogeneous hydrogen reionization process, carefully calibrated with Ly α forest data. We compare these with cosmological simulations run using a spatially homogeneous ionizing background. The simulations with a realistic growth of ionized regions and a realistic spread in reionization redshifts show, as expected, significant spatial fluctuations in the temperature-density relation (TDR) of the post-reionization IGM. The most recently ionized regions are hottest and exhibit a flatter TDR. In simulations consistent with the average TDR inferred from Ly α forest data, these spatial fluctuations have a moderate but noticeable effect on the statistical properties of the Ly α opacity of the IGM at z ˜ 4-6. This should be taken into account in accurate measurements of the thermal properties of the IGM and the free-streaming of dark matter from Ly α forest data in this redshift range. The spatial variations of the TDR predicted by our simulations are, however, smaller by about a factor of 2 than would be necessary to explain the observed large spatial opacity fluctuations on large (≥50 h-1 comoving Mpc) scales atz ≳ 5.5.
Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stranak, Vitezslav, E-mail: stranak@prf.jcu.cz; Hubicka, Zdenek; Cada, Martin
2014-04-21
The metal ionized flux fraction and production of double charged metal ions Me{sup 2+} of different materials (Al, Cu, Fe, Ti) by High Power Impulse Magnetron Sputtering (HiPIMS) operated with and without a pre-ionization assistance is compared in the paper. The Electron Cyclotron Wave Resonance (ECWR) discharge was employed as the pre-ionization agent providing a seed of charge in the idle time of HiPIMS pulses. A modified grid-free biased quartz crystal microbalance was used to estimate the metal ionized flux fraction ξ. The energy-resolved mass spectrometry served as a complementary method to distinguish particular ion contributions to the total ionizedmore » flux onto the substrate. The ratio between densities of doubly Me{sup 2+} and singly Me{sup +} charged metal ions was determined. It is shown that ECWR assistance enhances Me{sup 2+} production with respect of absorbed rf-power. The ECWR discharge also increases the metal ionized flux fraction of about 30% especially in the region of lower pressures. Further, the suppression of the gas rarefaction effect due to enhanced secondary electron emission of Me{sup 2+} was observed.« less
NASA Astrophysics Data System (ADS)
Nemschokmichal, Sebastian; Tschiersch, Robert; Höft, Hans; Wild, Robert; Bogaczyk, Marc; Becker, Markus M.; Loffhagen, Detlef; Stollenwerk, Lars; Kettlitz, Manfred; Brandenburg, Ronny; Meichsner, Jürgen
2018-05-01
The phenomenology and breakdown mechanism of dielectric barrier discharges are strongly determined by volume and surface memory effects. In particular, the pre-ionization provided by residual species in the volume or surface charges on the dielectrics influences the breakdown behavior of filamentary and diffuse discharges. This was investigated by advanced diagnostics such as streak camera imaging, laser photodetachment of negative ions and laser photodesorption of electrons from dielectric surfaces in correlation with 1D fluid modeling. The streak camera images show that an increasing number of residual charges in the volume changes the microdischarge breakdown in air-like gas mixtures from a cathode-directed streamer to a simultaneous propagation of cathode- and anode-directed streamers. In contrast, seed electrons are important for the pre-ionization if the density of residual charges in the volume is low. One source of seed electrons are negative ions, whose density exceeds the electron density during the pre-phase of diffuse helium-oxygen barrier discharges as indicated by the laser photodetachment experiments. Electrons desorbed from the cathodic dielectric have an even larger influence. They induce a transition from the glow-like to the Townsend-like discharge mode in nominally pure helium. Apart from analyzing the importance of the pre-ionization for the breakdown mechanism, the opportunities for manipulating the lateral structure and discharge modes are discussed. For this purpose, the intensity and diameter of a diffuse discharge in helium are controlled by an illuminated semiconducting barrier. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
Efficient ionisation of calcium, strontium and barium by resonant laser pumping
NASA Technical Reports Server (NTRS)
Skinner, C. H.
1980-01-01
Efficient ionization has been observed when an atomic vapor of strontium, barium or calcium was illuminated with a long pulse tunable laser at the frequency of the atomic resonance line. The variation in the degree of ionization with neutral density and laser intensity has been measured using the 'hook' method. The maximum ionization observed was 94%. Excited state populations were measured yielding an excitation temperature (depending on exact experimental conditions) in the region of 0.4 eV. The decay of ion density after the laser pulse was monitored and the recombination coefficients determined. The results are interpreted in terms of an electron heating model.
Photoionization of High-altitude Gas in a Supernova-driven Turbulent Interstellar Medium
NASA Astrophysics Data System (ADS)
Wood, Kenneth; Hill, Alex S.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.
2010-10-01
We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.
SR90, strontium shaped-charge critical ionization velocity experiment
NASA Technical Reports Server (NTRS)
Wescott, Eugene M.; Stenbaek-Nielsen, Hans; Swift, Daniel W.; Valenzuela, Arnoldo; Rees, David
1990-01-01
In May 1986 an experiment was performed to test Alfven's critical ionization velocity (CIV) effect in free space, using the first high explosive shaped charge with a conical liner of strontium metal. The release, made at 540 km altitude at dawn twilight, was aimed at 48 deg to B. The background electron density was 1.5 x 10(exp 4) cu cm. A faint field-aligned Sr(+) ion streak with tip velocity of 2.6 km/s was observed from two optical sites. Using two calibration methods, it was calculated that between 4.5 x 10(exp 20) and 2 x 10(exp 21) ions were visible. An ionization time constant of 1920 s was calculated for Sr from the solar UV spectrum and ionization cross section which combined with a computer simulation of the injection predicts 1.7 x 10(exp 21) solar UV ions in the low-velocity part of the ion streak. Thus all the observed ions are from solar UV ionization of the slow (less than critical) velocity portion of the neutral jet. The observed neutral Sr velocity distribution and computer simulations indicate that 2 x 10(exp 21) solar UV ions would have been created from the fast (greater than critical) part of the jet. They would have been more diffuse, and were not observed. Using this fact it was estimated that any CIV ions created were less than 10(exp 21). It was concluded that future Sr CIV free space experiments should be conducted below the UV shadow height and in much larger background plasma density.
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P.; Smith, R. J.
2015-04-15
Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and highermore » temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.« less
NASA Technical Reports Server (NTRS)
Hoch, Edward L.; Hallinan, Thomas J.; Stenbaek-Nielsen, Hans C.
1994-01-01
Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionopshere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5 x 10(exp 10) atoms/sq cm. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated b Stenbaek-Nielsen (1989).
HERSCHEL GALACTIC PLANE SURVEY OF [N ii] FINE STRUCTURE EMISSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.
2015-12-01
We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10{sup −8}–10{sup −7} Wm{sup −2} sr{sup −1} level over the range –60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointingmore » is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10–50 cm{sup −3} with an average value of 29 cm{sup −3} and N{sup +} column densities 10{sup 16}–10{sup 17} cm{sup −2}. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.« less
NASA Astrophysics Data System (ADS)
Levaton, J.; Klein, A. N.; Binder, C.
2018-01-01
In the present work, we extensively discuss the role of N(2D) and N(2P) atoms in the ionization processes of pink afterglow based on optical emission spectroscopy analysis and kinetic numerical modelling. We studied the pink afterglow generated by a nitrogen DC discharge operating at 0.6 Slm-1 flow rate, 45 mA discharge current and pressures ranging from 250 to 1050 Pa. The 391.4 nm nitrogen band was monitored along the afterglow furnishing the relative density of the N2+(B2Σ+u, v = 0) state. A numerical model developed to calculate the nitrogen species densities in the afterglow fits the excited ion density profiles well for the experimental conditions. From the modelling results, we determine the densities of the N+, N2+, N3+, and N4+ ions; the calculations show that the N3+ ion density predominates in the afterglow at the typical residence times of the pink afterglow. This behaviour has been observed experimentally and reported in the literature. Furthermore, we calculate the fractional contribution in the ionization for several physical-chemical mechanisms in the post-discharge. Even with the N3+ ion density being dominant in the afterglow, we find through the calculations that the ionization is dominated by the reactions N(2D) + N(2P) → N2+(X2Σ+g) + e and N2(a'1Σ-u) + N2(X 1Σg+, v > 24) → N4+ + e. The ion conversion mechanisms, or ion transfer reactions, which are responsible for the fact that the N3+ density dominates in the post-discharge, are investigated.
Observation of ionization enhancement in two-color circularly polarized laser fields
NASA Astrophysics Data System (ADS)
Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.
2017-08-01
When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.
Highly-ionized metals as probes of the circumburst gas in the natal regions of gamma-ray bursts
NASA Astrophysics Data System (ADS)
Heintz, K. E.; Watson, D.; Jakobsson, P.; Fynbo, J. P. U.; Bolmer, J.; Arabsalmani, M.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Japelj, J.; Kaper, L.; Krogager, J.-K.; Pugliese, G.; Sánchez-Ramírez, R.; Selsing, J.; Sparre, M.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.
2018-06-01
We present here a survey of high-ionization absorption lines in the afterglow spectra of long-duration gamma-ray bursts (GRBs) obtained with the VLT/X-shooter spectrograph. Our main goal is to investigate the circumburst medium in the natal regions of GRBs. Our primary focus is on the N V λλ 1238,1242 line transitions, but we also discuss other high-ionization lines such as O VI, C IV and Si IV. We find no correlation between the column density of N V and the neutral gas properties such as metallicity, H I column density and dust depletion, however the relative velocity of N V, typically a blueshift with respect to the neutral gas, is found to be correlated with the column density of H I. This may be explained if the N V gas is part of an H II region hosting the GRB, where the region's expansion is confined by dense, neutral gas in the GRB's host galaxy. We find tentative evidence (at 2σ significance) that the X-ray derived column density, NH, X, may be correlated with the column density of N V, which would indicate that both measurements are sensitive to the column density of the gas located in the vicinity of the GRB. We investigate the scenario where N V (and also O VI) is produced by recombination after the corresponding atoms have been stripped entirely of their electrons by the initial prompt emission, in contrast to previous models where highly-ionized gas is produced by photoionization from the GRB afterglow.
Dense clumps of ionized gas near Pi Scorpii, as revealed by the fine-structure excitation of N II
NASA Technical Reports Server (NTRS)
Bertoldi, Frank; Jenkins, Edward B.
1992-01-01
The column density and the emission of the ionized gas along the line of sight toward the B1 V + B2 V binary star Pi Sco are measured on the basis of the fine-structure absorption lines of the ground state N II. It is found that the bulk of this ionized gas must be clumped on a length scale of 0.025 pc, which is far smaller than the observed size of the diffuse H II region surrounding Pi Sco of about 6 pc. The observed column density of S III toward Pi Sco yields an upper limit on the distance of the absorbing, clumped gas from the star of less than about 0.02 pc, assuming that both the N II and S III absorption arise from the same gas. The possibility that the ionized gas originates from a photoevaporating circumstellar disk directly surrounding Pi Sco is excluded, since such a disk would have an unusual size of order 0.025 pc and would have had to survive for the estimated age of Pi Sco of 5-8 Myr. The derived mean density of the clumped gas is of order 40/cu cm, so that the gas is at a pressure that far exceeds the mean pressure in the H II region. It is concluded that the ionized gas could originate from evaporation flows off a cluster of compact neutral objects that evaporate due to the ionizing radiation of Pi Sco.
Measurement of partial pressures in vacuum technology and vacuum physics
NASA Technical Reports Server (NTRS)
Huber, W. K.
1986-01-01
It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.
Classical molecular dynamics simulations for non-equilibrium correlated plasmas
NASA Astrophysics Data System (ADS)
Ferri, S.; Calisti, A.; Talin, B.
2017-03-01
A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.
LINER galaxy properties and the local environment
NASA Astrophysics Data System (ADS)
Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria
2018-05-01
We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.
Impact Ionization: Beyond the Golden Rule
1992-01-01
3]. Hence, the use electronic kinetic energy, H. is the phonon bath Hamil- of Monte Carlo methods combined with density matrix tonian, HA, is the...0 o5 () Wace i.a (bN w...,,,ae (W ( Ib) k- Figure 2. (a) Ionization rate in the 1 11 > direction. Figure 3. (a) Equal ionization rate curves in the k
Inductively coupled Cl2/Ar plasma: Experimental investigation and modeling
NASA Astrophysics Data System (ADS)
Efremov, A. M.; Kim, Dong-Pyo; Kim, Chang-Il
2003-07-01
Electrophysical and kinetic characteristics of Cl2/Ar plasma were investigated to understand the influence of the addition of Ar on the volume densities and fluxes of active particles, both neutral and charged. Our analysis combined both experimental methods and plasma modeling. It was found that addition of Ar to Cl2 leads to deformation of the electron energy distribution function and an increase of the electron mean energy due to the ``transparency'' effect. Direct electron impact dissociation of Cl2 molecules represents the main source of chlorine atoms in the plasma volume. The contributions of stepwise dissociation and ionization involving Ar metastable atoms were found to be negligible. Addition of Ar to Cl2 causes the decrease of both electron and ion densities due to a decrease in the total ionization rate and the acceleration of heterogeneous decay of charged particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, S.; Saha, J. K.; Chandra, R.
The Rayleigh-Ritz variational technique with a Hylleraas basis set is being tested for the first time to estimate the structural modifications of a lithium atom embedded in a weakly coupled plasma environment. The Debye-Huckel potential is used to mimic the weakly coupled plasma environment. The wave functions for both the helium-like lithium ion and the lithium atom are expanded in the explicitly correlated Hylleraas type basis set which fully takes care of the electron-electron correlation effect. Due to the continuum lowering under plasma environment, the ionization potential of the system gradually decreases leading to the destabilization of the atom. Themore » excited states destabilize at a lower value of the plasma density. The estimated ionization potential agrees fairly well with the few available theoretical estimates. The variation of one and two particle moments, dielectric susceptibility and magnetic shielding constant, with respect to plasma density is also been discussed in detail.« less
NASA Technical Reports Server (NTRS)
Beckman, J. E.; Rozas, M.; Zurita, A.; Watson, R. A.; Knapen, J. H.
2000-01-01
In this paper we present evidence that the H II regions of high luminosity in disk galaxies may be density bounded, so that a significant fraction of the ionizing photons emitted by their exciting OB stars escape from the regions. The key piece of evidence is the presence, in the Ha luminosity functions (LFs) of the populations of H iI regions, of glitches, local sharp peaks at an apparently invariant luminosity, defined as the Stromgren luminosity Lstr), LH(sub alpha) = Lstr = 10(sup 38.6) (+/- 10(sup 0.1)) erg/ s (no other peaks are found in any of the LFs) accompanying a steepening of slope for LH(sub alpha) greater than Lstr This behavior is readily explicable via a physical model whose basic premises are: (a) the transition at LH(sub alpha) = Lstr marks a change from essentially ionization bounding at low luminosities to density bounding at higher values, (b) for this to occur the law relating stellar mass in massive star-forming clouds to the mass of the placental cloud must be such that the ionizing photon flux produced within the cloud is a function which rises more steeply than the mass of the cloud. Supporting evidence for the hypothesis of this transition is also presented: measurements of the central surface brightnesses of H II regions for LH(sub alpha) less than Lstr are proportional to L(sup 1/3, sub H(sub alpha)), expected for ionization bounding, but show a sharp trend to a steeper dependence for LH(sub alpha) greater than Lstr, and the observed relation between the internal turbulence velocity parameter, sigma, and the luminosity, L, at high luminosities, can be well explained if these regions are density bounded. If confirmed, the density-bounding hypothesis would have a number of interesting implications. It would imply that the density-bounded regions were the main sources of the photons which ionize the diffuse gas in disk galaxies. Our estimates, based on the hypothesis, indicate that these regions emit sufficient Lyman continuum not only to ionize the diffuse medium, but to cause a typical spiral to emit significant ionizing flux into the intergalactic medium. The low scatter observed in Lstr, less than 0.1 mag rms in the still quite small sample measured to date, is an invitation to widen the data base, and to calibrate against primary standards, with the aim of obtaining a precise, approx. 10(exp 5) solar luminosity widely distributed standard candle.
NASA Astrophysics Data System (ADS)
Pan, Changji; Jiang, Lan; Wang, Qingsong; Sun, Jingya; Wang, Guoyan; Lu, Yongfeng
2018-05-01
The femtosecond (fs) laser is a powerful tool to study ultrafast plasma dynamics, especially electron relaxation in strong ionization of dielectrics. Herein, temporal-spatial evolution of femtosecond laser induced plasma in fused silica was investigated using a two-color pump-probe technique (i.e., 400 nm and 800 nm, respectively). We demonstrated that when ionized electron density is lower than the critical density, free electron relaxation time is inversely proportional to electron density, which can be explained by the electron-ion scattering regime. In addition, electron density evolution within plasma was analyzed in an early stage (first 800 fs) of the laser-material interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; McCrory, R. L.
2016-04-15
Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm{sup 3} and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T < 50 eV). The orbital-free molecular dynamics method is only used to gauge the average ionization behavior of CH under the average-atommore » model in conjunction with the pressure-matching mixing rule. The thermal conductivities (κ{sub QMD}) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted with a generalized Coulomb logarithm [(lnΛ){sub QMD}] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted ∼20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less
NASA Technical Reports Server (NTRS)
Fetzer, G. J.; Stockley, J. E.
1992-01-01
A 3+1 resonant multiphoton ionization process in naturally occurring argon is studied at 314.5 nm as a candidate for providing a long ionized channel through the atmosphere. Results are presented which indicate peak electron densities up to 10 exp 8/cu cm can be created using laser intensities on the order of 10 exp 8 W/sq cm.
THE KINEMATICS AND IONIZATION OF NUCLEAR GAS CLOUDS IN CENTAURUS A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bicknell, Geoffrey V.; Sutherland, Ralph S.; Neumayer, Nadine, E-mail: Geoff.Bicknell@anu.edu.au, E-mail: Ralph.Sutherland@anu.edu.au, E-mail: nadine.neumayer@universe-cluster.de
2013-03-20
Neumayer et al. established the existence of a blueshifted cloud in the core of Centaurus A, within a few parsecs of the nucleus and close to the radio jet. We propose that the cloud has been impacted by the jet, and that it is in the foreground of the jet, accounting for its blueshifted emission on the southern side of the nucleus. We consider both shock excitation and photoionization models for the excitation of the cloud. Shock models do not account for the [Si VI] and [Ca VIII] emission line fluxes. However, X-ray observations indicate a source of ionizing photonsmore » in the core of Centaurus A; photoionization by the inferred flux incident on the cloud can account for the fluxes in these lines relative to Brackett-{gamma}. The power-law slope of the ionizing continuum matches that inferred from synchrotron models of the X-rays. The logarithm of the ionization parameter is -1.9, typical of that in Seyfert galaxies and consistent with the value proposed for dusty ionized plasmas. The model cloud density depends upon the Lorentz factor of the blazar and the inclination of our line of sight to the jet axis. For acute inclinations, the inferred density is consistent with expected cloud densities. However, for moderate inclinations of the jet to the line of sight, high Lorentz factors imply cloud densities in excess of 10{sup 5} cm{sup -3} and very low filling factors, suggesting that models of the gamma-ray emission should incorporate jet Lorentz factors {approx}< 5.« less
Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets
NASA Astrophysics Data System (ADS)
Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.
2000-04-01
The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.
Axial Structure of High-Vacuum Planar Magnetron Discharge Space
NASA Astrophysics Data System (ADS)
Miura, Tsutomu
1999-09-01
The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.
Time-dependent Cooling in Photoionized Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnat, Orly, E-mail: orlyg@phys.huji.ac.il
I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts ( z = 0 − 3), for a range of temperatures (10{sup 8}–10{sup 4} K), densities (10{sup −7}–10{sup 3} cm{sup −3}), and metallicities (10{sup −3}–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibriummore » (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).« less
NASA Technical Reports Server (NTRS)
Serabyn, E.; Guesten, R.; Mundy, L.
1993-01-01
The density and temperature structure of the bright-rimmed cometary globule IC 1396E is estimated, and the possibility that recent internal star formation was triggered by the ionization front in its southern surface is assessed. On the basis of NH3 data, gas temperatures in the globule are found to increase outward from the center, from a minimum of 17 K in its tail to a maximum of 26 K on the surface most directly facing the stars ionizing IC 1396. On the basis of a microturbulent radiative transfer code to model the radial dependence of the CS line intensities, and also the intensities of the optically thin 2-1 and 5-4 lines toward the cloud center, a radial density dependence of r exp -1.55 to r exp -1.75 is found.
Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas
NASA Astrophysics Data System (ADS)
Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.
1998-05-01
Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.
Resonant enhanced multiphoton ionization studies of atomic oxygen
NASA Technical Reports Server (NTRS)
Dixit, S. N.; Levin, D.; Mckoy, V.
1987-01-01
In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels.
Shining a light on galactic outflows: photoionized outflows
NASA Astrophysics Data System (ADS)
Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida
2016-04-01
We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.
Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.
Capolupo, A; Giampaolo, S M; Illuminati, F
2013-10-01
Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.
NASA Astrophysics Data System (ADS)
Shingledecker, Christopher N.; Bergner, Jennifer B.; Le Gal, Romane; Öberg, Karin I.; Hincelin, Ugo; Herbst, Eric
2016-10-01
The chemistry of dense interstellar regions was analyzed using a time-dependent gas-grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO+]/[DCO+] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational results for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ-ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO+]/[DCO+] to ζ, we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO+]/[DCO+] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.
The ratio of neutral hydrogen to neutral helium in the local interstellar medium
NASA Astrophysics Data System (ADS)
Green, James Carswell
The results are described from a sounding rocket borne EUV spectrometer that was designed and built. This instrument operated from 400 to 1150A with a spectral resolution of approx. 15A. The instrument effective area was about 1 sq cm. The instrument was successfully launched, and observed the nearby DA white dwarf G191-B2B. From this observation, it was determined that the stellar effective temperature is 61,000 + or -4000 to 6000K, and the ratio of helium to hydrogen in the stellar photosphere is 1.0 + or -0.68 to 2.2 x 10-4. Additionally, the neutral column densities of helium and hydrogen were measured to the star. The neutral helium column density was determined from the first observation of the interstellar absorption edge at 504A. The ratio of neutral helium to neutral hydrogen constrains the mean ionization of the warm gas along the line of sight to G191-B2B. The fractional ionization of hydrogen (H II/H) is approx. less than 20 percent, unless significant helium ionization is present as well. The scenario where the fractional ionization of hydrogen is high (H II/H) approx. less than 40 percent and the helium is neutral is ruled out with 99 percent certainty. This result is consistent with some recent theoretical calculations. Using these results, a self-consistent model of the local interstellar medium along the line of sight to G191-B2B is developed. In addition, an unexpected emission feature at 584A was detected in this observation with a high level of significance. Possible sources of this emission are examined, including the companion K dwarf G191-B2A, and an emission nebula near or around G191-B2B.
Effects of Io's volcanos on the plasma torus and Jupiter's magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, A.F.
1980-12-01
Io's volcanism can have dominant effects on Jupiter's magnetosphere. A model is developed in which a neutral gas torus is formed at Io's orbit by volcanic SO/sub 2/ escaping from Io. Ionization and dissociation of volcanic SO/sub 2/ is shown to be the dominant source of plasma in Jupiter's magnetosphere. The failure of Voyager observations to confirm predictions of the magnetic anomaly model is naturally explained. A 30--50 KeV sulfur and oxygen ion plasma is formed in the outer magnetosphere, with density roughly equal to the proton density there, by ionization of sulfur and oxygen atoms on highly eccentric ellipticalmore » orbits around Jupiter. When these atoms are ionized in the outer magnetosphere, they are swept up by the Jovian magnetic field and achieve 30--50 keV energies. Such atoms are created by dissociative attachment of SO/sub 2/ by < or approx. =10 eV electrons. Substantial losses of radiation-belt charged particles result from passage through the neutral gas torus. Such losses can account for observed anomalies in charged particle depletions near Io; these could not be understood in terms of satellite sweeping alone. Substantial ionization energy loss occurs for < or approx. =1 MeV protons and < or approx. =100 keV electrons; losses of < or approx. =1 MeV protons are much greater than for comparable energy electrons. Losses of < or approx. =1 MeV per nucleon ions are also severe. Other consequences of the model include intrinsic time variability in the Jovian magnetosphere, on times > or approx. =10/sup 6/ s, caused by variations in Io's volcanic activity. Charged particle losses in the neutral gas torus tend to yield dumbbell-shaped pitch-angle distributions. Negative ions are predicted in the Io plasma torus.« less
First-principles equation of state and shock compression predictions of warm dense hydrocarbons
Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...
2017-07-10
We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07–22.4gcm –3 and 6.7 × 10 3 – 1.29 × 10 8K. The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K-shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativisticmore » effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K- and L-shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L-shell eigenstates in carbon, while they remain distinct for higher-Z elements. Lastly, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.« less
First-principles equation of state and shock compression predictions of warm dense hydrocarbons
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Driver, Kevin P.; Soubiran, François; Militzer, Burkhard
2017-07-01
We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07 -22.4 g cm-3 and 6.7 ×103-1.29 ×108K . The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K -shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativistic effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K - and L -shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L -shell eigenstates in carbon, while they remain distinct for higher-Z elements. Finally, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.
Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region
NASA Technical Reports Server (NTRS)
Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.
1996-01-01
We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our observational study produce line width correlations only if the width is defined by a parameter that is more sensitive to extended profile wings than is the FWHM. Our sample of six objects is in effect augmented by incorporating the larger sample (16 objects) of Veilleux into some of our discussion. This paper focuses on new interpretations of NLR emission-line spectra and line profiles that stem directly from the observations. Paper 2 focuses on modeling and complements this paper by illustrating explicitly the effects that spatial variations in electron density, ionization parameter, and column density have on model profiles. By comparing model profiles with the observed profiles presented here, as well as with those presented by Veilleux, Paper 2 yields insight into how the electron density, ionization parameter, and column density likely vary throughout the NLR.
COMPARING SPATIAL DISTRIBUTIONS OF SOLAR PROMINENCE MASS DERIVED FROM CORONAL ABSORPTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Holly; Kilper, Gary; Kucera, Therese
2011-01-20
In a previous study, Gilbert et al. derived the column density and total mass of solar prominences using a new technique, which measures how much coronal radiation in the Fe XII (195 A) spectral band is absorbed by prominence material, while considering the effects of both foreground and background radiation. In the present work, we apply this method to a sample of prominence observations in three different wavelength regimes: one in which only H{sup 0} is ionized (504 A < {lambda} < 911 A), a second where both H{sup 0} and He{sup 0} are ionized (228 A < {lambda}
Turbulence in the ionized gas of the Orion nebula
NASA Astrophysics Data System (ADS)
Arthur, S. J.; Medina, S.-N. X.; Henney, W. J.
2016-12-01
In order to study the nature, origin, and impact of turbulent velocity fluctuations in the ionized gas of the Orion nebula, we apply a variety of statistical techniques to observed velocity cubes. The cubes are derived from high resolving power (R ≈ 40 000) longslit spectroscopy of optical emission lines that span a range of ionizations. From velocity channel analysis (VCA), we find that the slope of the velocity power spectrum is consistent with predictions of Kolmogorov theory between scales of 8 and 22 arcsec (0.02 to 0.05 pc). The outer scale, which is the dominant scale of density fluctuations in the nebula, approximately coincides with the autocorrelation length of the velocity fluctuations that we determine from the second-order velocity structure function. We propose that this is the principal driving scale of the turbulence, which originates in the autocorrelation length of dense cores in the Orion molecular filament. By combining analysis of the non-thermal linewidths with the systematic trends of velocity centroid versus ionization, we find that the global champagne flow and smaller scale turbulence each contribute in equal measure to the total velocity dispersion, with respective root-mean-square widths of 4-5 km s-1. The turbulence is subsonic and can account for only one half of the derived variance in ionized density, with the remaining variance provided by density gradients in photoevaporation flows from globules and filaments. Intercomparison with results from simulations implies that the ionized gas is confined to a thick shell and does not fill the interior of the nebula.
Effects of Radiation on Capacitor Dielectrics
NASA Technical Reports Server (NTRS)
Bouquet, F. L.; Somoano, R. B.; Frickland, P. O.
1987-01-01
Data gathered on key design parameters. Report discusses study of electrical and mechanical properties of irradiated polymer dielectric materials. Data compiled for use by designers of high-energy-density capacitors that operate in presence of ionizing radiation. Study focused on polycarbonates, polyetheretherketones, polymethylpentenes, polyimides (including polyetherimide), polyolefins, polysulfones (including polyethersulfone and polyphenylsulfone), and polyvinylidene fluorides.
Muon reactivation in muon-catalyzed D-T fusion
NASA Astrophysics Data System (ADS)
Rafelski, H. E.; Müller, B.; Rafelski, J.; Trautmann, D.; Viollier, R. D.
We comprehensively reanalyze and search for the density dependence of the effective muon alpha sticking fraction ωsff observed experimentally in muon catalyzed deuterium-tritium fusion. In our work particular emphasis has been put on the density dependent dense hydrogen stopping power. The main technical details and improvements in this work are: The (αμ) + 2s and 2p states are treated independently and are assigned individual reaction rates. The essential muonic excitation rates have been recalculated taking into account finite nuclear mass effects. The stopping power for a charged projectile in liquid heavy hydrogen is modified to account for dynamic screening effects and a density dependent effective ionization potential. It is shown that the medium dependent stopping power for the (αμ) + ion is the crucial factor controlling the density dependence of the effective sticking fraction. It is also pointed out that the muonic helium K α X-ray yield and the sticking fraction at high density can not be simultaneously brought into agreement with the experimental results without invoking novel mechanisms suppressing Stark mixing in the (Heμ) L-shell.
Joshi, Hemant K; Cooney, J Jon A; Inscore, Frank E; Gruhn, Nadine E; Lichtenberger, Dennis L; Enemark, John H
2003-04-01
Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur pi-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin MoW enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp(2)Mo(bdt) (compound 2), and Cp(2)Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is eta(5)- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d(1), d(2), and d(0), respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A "dithiolate-folding-effect" involving an interaction of the metal in-plane and sulfur-pi orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes.
Adaptive Identification and Characterization of Polar Ionization Patches
NASA Technical Reports Server (NTRS)
Coley, W. R.; Heelis, R. A.
1995-01-01
Dynamics Explorer 2 (DE 2) spacecraft data are used to detect and characterize polar cap 'ionization patches' loosely defined as large-scale (greater than 100 km) regions where the F region plasma density is significantly enhanced (approx greater than 100%) above the background level. These patches are generally believed to develop in or equatorward of the dayside cusp region and then drift in an antisunward direction over the polar cap. We have developed a flexible algorithm for the identification and characterization of these structures, as a function of scale-size and density enhancement, using data from the retarding potential analyzer, the ion drift meter, and the langmuir probe on board the DE 2 satellite. This algorithm was used to study the structure and evolution of ionization patches as they cross the polar cap. The results indicate that in the altitude region from 240 to 950 km ion density enhancements greater than a factor of 3 above the background level are relatively rare. Further, the ionization patches show a preferred horizontal scale size of 300-400 km. There exists a clear seasonal and universal time dependence to the occurrence frequency of patches with a northern hemisphere maximum centered on the winter solstice and the 1200-2000 UT interval.
On the effective point of measurement in megavoltage photon beams.
Kawrakow, Iwan
2006-06-01
This paper presents a numerical investigation of the effective point of measurement of thimble ionization chambers in megavoltage photon beams using Monte Carlo simulations with the EGSNRC system. It is shown that the effective point of measurement for relative photon beam dosimetry depends on every detail of the chamber design, including the cavity length, the mass density of the wall material, and the size of the central electrode, in addition to the cavity radius. Moreover, the effective point of measurement also depends on the beam quality and the field size. The paper therefore argues that the upstream shift of 0.6 times the cavity radius, recommended in current dosimetry protocols, is inadequate for accurate relative photon beam dosimetry, particularly in the build-up region. On the other hand, once the effective point of measurement is selected appropriately, measured depth-ionization curves can be equated to measured depth-dose curves for all depths within +/- 0.5%.
Aerobrake plasmadynamics - Macroscopic effects
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1990-01-01
The flow around an aerobraking spacecraft (such as the Aeroassist Flight Experiment reentry vehicle) will contain a region of partially ionized gas, that is, a plasma. It is shown here by numerical simulation that macroscopic plasmadynamic effects (which are not included in standard aerothermodynamic simulations) will have a noticeable effect on the reentry flow field. In particular, there are thermoelectric phenomena which can have a major influence in flow dynamics at the front of an ionizing bowshock. These thermoelectric phenomena arise because of the presence of large density and temperature gradients at the front of a reentry bowshock, and they include strong local magnetic fields, electric currents, and ohmic heating. One important result is the dramatic increase in temperature (over the case where plasma effects are neglected) at a reentry shock front; the implication is that macroscopic plasmadynamic effects can no longer be neglected in simulations of hypersonic reentry flow fields.
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Sukhmander; Malik, Hitendra K.
Role of ionization to Rayleigh instability is clarified in a Hall thruster plasma under the variety of profiles of electron drift velocity, namely, step-like profile (SLP) and two different super-Gaussian profiles (SGP1 and SGP2). For this, a relevant Rayleigh equation is derived and solved numerically using fourth-order Runge-Kutta method. Interestingly, an upper cutoff frequency of oscillations {omega}{sub max} is realized for the occurrence of the instability that shows dependence on the ionization rate {alpha}, electron drift velocity u{sub 0}, electron cyclotron frequency {Omega}, azimuthal wave number k{sub y}, plasma density n{sub 0}, density gradient {partial_derivative}n{sub 0}/{partial_derivative}x, ion (electron) thermal speedmore » V{sub thI}(V{sub thE}), and ion (electron) plasma frequency {omega}{sub pi}({omega}{sub pe}). The frequency {omega}{sub max} follows the trend {omega}{sub max} (for SGP2) >{omega}{sub max} (for SLP) >{omega}{sub max} (for SGP1) and shows a similar behaviour with ionization for all types of the velocity profiles. The instability is found to grow faster for the higher {alpha} and the ion temperature but it acquires lower rate under the effect of the higher electron temperature; the perturbed potential also varies in accordance with the growth rate. The electron temperature influences the growth rate and cutoff frequency less significantly in comparison with the ion temperature.« less
Hossack, Aaron C; Firman, Taylor; Jarboe, Thomas R; Prager, James R; Victor, Brian S; Wrobel, Jonathan S; Ziemba, Timothy
2013-10-01
A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2-3) × 10(19) m(-3) to 1 × 10(19) m(-3). Deuterium spheromak formation is possible with density as low as 2 × 10(18) m(-3). The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.
Particle visualization in high-power impulse magnetron sputtering. I. 2D density mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos
2015-04-28
Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. This paper deals with two-dimensional density mapping in the discharge volume obtained by laser-induced fluorescence imaging. The time-resolved density evolution of Ti neutrals, singly ionized Ti atoms (Ti{sup +}), and Ar metastable atoms (Ar{sup met}) in the area above the sputtered cathode is mapped for the first time in this type of discharges. The energetic characteristics of the discharge species are additionally studied by Doppler-shift laser-induced fluorescence imaging. The questions related to the propagation of both the neutral and ionized discharge particles, as well as to theirmore » spatial density distributions, are discussed.« less
Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J
2013-12-13
We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100 μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5 μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length.
Modeling nitrogen plasmas produced by intense electron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angus, J. R.; Swanekamp, S. B.; Schumer, J. W.
2016-05-15
A new gas–chemistry model is presented to treat the breakdown of a nitrogen gas with pressures on the order of 1 Torr from intense electron beams with current densities on the order of 10 kA/cm{sup 2} and pulse durations on the order of 100 ns. For these parameter regimes, the gas transitions from a weakly ionized molecular state to a strongly ionized atomic state on the time scale of the beam pulse. The model is coupled to a 0D–circuit model using the rigid–beam approximation that can be driven by specifying the time and spatial profiles of the beam pulse. Simulation results are inmore » good agreement with experimental measurements of the line–integrated electron density from experiments done using the Gamble II generator at the Naval Research Laboratory. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of optically allowed states with excitation energies close to the ionization limit.« less
Verma, Prakash; Bartlett, Rodney J
2016-07-21
Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.
Breakdown simulations in a focused microwave beam within the simplified model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.
2016-07-15
The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime ofmore » subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.« less
NASA Astrophysics Data System (ADS)
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing
2017-09-01
The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.
OSIRIS Modeling of High Energy Electron Transport in Warm Dense Matter
NASA Astrophysics Data System (ADS)
May, J.; Yabuuchi, T.; McGuffey, C.; Wei, Ms; Beg, F.; Mori, Wb
2016-10-01
In experiments on the Omega EP laser, a high intensity laser beam (eA /me c > 1) is focused onto a gold foil, generating relativistic electrons. Behind the Au foil is a layer of plastic foam through which the electrons are allowed to transport, and on the far side of the CH from the gold is a copper foil; electron fluence is measured by recording the k- α from that foil. The foam layer is either pre-ionized via a shock launched from an ablator irradiated earlier with a beam perpendicular to the high intensity beam; or the foam is in the solid state when the high intensity beam is switched on. In the latter case the foam - which has an initial density of 200mg /cm3 - heats to a temperature of 40eV and rarifies to a density of 30mg /cm3 . Results show an order of magnitude decrease in k- α when the CH layer is pre-ionized compared to cold CH. OSIRIS simulations indicate that the primary explanation for the difference in transport seen in the experiment is the partial resistive collimation of the beam in the higher density material, caused by collisional resistivity. The effect seems to be mostly caused by the higher density itself, with temperature having minimal effect. The authors acknowledge the support of the Department of Energy under contract DE-NA 0001833 and the National Science Foundation under contract ACI 1339893.
Investigation of critical parameters controlling the efficiency of associative ionization
NASA Astrophysics Data System (ADS)
Le Padellec, A.; Launoy, T.; Dochain, A.; Urbain, X.
2017-05-01
This paper compiles our merged-beam experimental findings for the associative ionization (AI) process from charged reactants, with the aim of guiding future investigations with e.g. the double electrostatic ion storage ring DESIREE in Stockholm. A reinvestigation of the isotopic effect in H-(D-) + He+ collisions is presented, along with a review of {{{H}}}3+ and NO+ production by AI involving ion pairs or excited neutrals, and put in perspective with the mutual neutralization and radiative association reactions. Critical parameters are identified and evaluated for their systematic role in controlling the magnitude of the cross section: isotopic substitution, exothermicity, electronic state density, and spin statistics.
Quasar Outflows and AGN Feedback in the Extreme UV: HST/COS Observations of QSO HE0238-1904
NASA Astrophysics Data System (ADS)
Arav, Nahum; Borguet, B.; Chamberlain, C.; Edmonds, D.; Danforth, C.
2014-01-01
Spectroscopic observations of quasar outflows at rest-frame 500-1000 Angstrom have immense diagnostic power. We present analyses of such data, where absorption troughs from three important ions are measured: first, O IV and O IV* that allow us to obtain the distance of high ionization outflows from the AGN; second, Ne VIII and Mg X that are sensitive to the very high ionization phase of the outflow. Their inferred column densities, combined with those of troughs from O VI, N IV, and H I, yield two important results: 1) The outflow shows two ionization phases, where the high ionization phase carries the bulk of the material. This is similar to the situation seen in x-ray warm absorber studies. Furthermore, the low ionization phase is inferred to have a volume filling factor of 10^(-5)-10^(-6). 2) From the O IV to O IV* column density ratio, and the knowledge of the ionization parameter, we determine a distance of 3000 pc. from the outflow to the central source. Since this is a typical high ionization outflow, we can determine robust values for the mass flux and kinetic luminosity of the outflow: 40 solar masses per year and 10^45 ergs/s, respectively, where the latter is roughly equal to 1% of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high ionization wind suggests that quasar outflows are a major contributor to AGN feedback mechanisms.
Radionuclide Ionization in Protoplanetary Disks: Calculations of Decay Product Radiative Transfer
NASA Astrophysics Data System (ADS)
Cleeves, L. Ilsedore; Adams, Fred C.; Bergin, Edwin A.; Visser, Ruud
2013-11-01
We present simple analytic solutions for the ionization rate ζSLR arising from the decay of short-lived radionuclides (SLRs) within protoplanetary disks. We solve the radiative transfer problem for the decay products within the disk, and thereby allow for the loss of radiation at low disk surface densities; energy loss becomes important outside R >~ 30 AU for typical disk masses Mg = 0.04 M ⊙. Previous studies of chemistry/physics in these disks have neglected the impact of ionization by SLRs, and often consider only cosmic rays (CRs), because of the high CR-rate present in the interstellar medium. However, recent work suggests that the flux of CRs present in the circumstellar environment could be substantially reduced by relatively modest stellar winds, resulting in severely modulated CR ionization rates, ζCR, equal to or substantially below that of SLRs (ζSLR <~ 10-18 s-1). We compute the net ionizing particle fluxes and corresponding ionization rates as a function of position within the disk for a variety of disk models. The resulting expressions are especially simple for the case of vertically Gaussian disks (frequently assumed in the literature). Finally, we provide a power-law fit to the ionization rate in the midplane as a function of gas disk surface density and time. Depending on location in the disk, the ionization rates by SLRs are typically in the range ζSLR ~ (1-10) × 10-19 s-1.
Are the argon metastables important in high power impulse magnetron sputtering discharges?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudmundsson, J. T., E-mail: tumi@hi.is; Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik; Lundin, D.
2015-11-15
We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization ismore » always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.« less
Particle versus density models in spark formation: X-rays from pulled fronts?
NASA Astrophysics Data System (ADS)
Ebert, Ute
2008-03-01
Streamer discharges govern the early stages of sparks and lightning, of spark-like phenomena in water, oil, and semiconductors, in industrial corona reactors, or in gigantic sprite discharges above thunderclouds [1,2]. Thunderstorms recently have been found to emit terrestrial gamma-ray flashes or X-rays towards satellites and towards the ground. These emissions might be explained by particle models of ``pulled'' streamer ionization fronts. In general, the growing discharge channel has an inner structure with multiple scales [1-3]. While the largest part of this channel can be treated in a density approximation for the electrons and ions, the dynamics of the ionization front is that of a pulled front; it is determined in the leading edge where the density approach eventually breaks down. We therefore investigate a realistic MC particle model for the motion of single electrons in a discharge in pure nitrogen. The particle model not only incorporates particle fluctuations, but also shows that the electron energies are systematically larger in the leading edge of the front than in the corresponding density model, and that the ionization level behind the front is higher as well, while the front velocity hardly changes [3]. These effects increase with increasing applied electric field and might actually cause the recently observed X-ray emission from lightning through rare very energetic runaway electrons in the tail of the distribution. Comparing the leading edge of the particle front with a linear particle avalanche, the avalanche shows the same mean density gradient and energy overshoot in its leading edge as the nonlinear front; hence the pulled front concept in this sense applies to discrete particle models as well [3]. This gives a key to understanding the above effects through analytical approximations and to develop efficient numerical methods coupling particle and density models in space.[1] U. Ebert et al., Plasma Sources Sci. Techn. 15, S118 (2006) (arXiv:physics/0604023).[2] Streamers, sprites, leaders, lightning: From micro- to macroscales, workshop in Oct. 2007: http://www.lorentzcenter.nl/lc/web/2007/265/info.php3?wsid=265; and cluster issue in J. Phys. D in fall 2008; organizers/editors: U. Ebert and D.D. Sentman.[3] C. Li et al., J. Appl. Phys. 101, 123305 (2007) (arXiv:physics/0702129).
NASA Astrophysics Data System (ADS)
Dzifčáková, Elena; Dudík, Jaroslav
2018-03-01
Context. Transition region (TR) spectra typically show the Si IV 1402.8 Å line to be enhanced by a factor of 5 or more compared to the neighboring O IV 1401.2 Å, contrary to predictions of ionization equilibrium models and the Maxwellian distribution of particle energies. Non-equilibrium effects in TR spectra are therefore expected. Aims: To investigate the combination of non-equilibrium ionization and high-energy particles, we apply the model of the periodic electron beam, represented by a κ-distribution that recurs at periods of several seconds, to plasma at chromospheric temperatures of 104 K. This simple model can approximate a burst of energy release involving accelerated particles. Methods: Instantaneous time-dependent charge states of silicon and oxygen were calculated and used to synthesize the instantaneous and period-averaged spectra of Si IV and O IV. Results: The electron beam drives the plasma out of equilibrium. At electron densities of Ne = 1010 cm-3, the plasma is out of ionization equilibrium at all times in all cases we considered, while for a higher density of Ne = 1011 cm-3, ionization equilibrium can be reached toward the end of each period, depending on the conditions. In turn, the character of the period-averaged synthetic spectra also depends on the properties of the beam. While the case of κ = 2 results in spectra with strong or even dominant O IV, higher values of κ can approximate a range of observed TR spectra. Spectra similar to typically observed spectra, with the Si IV 1402.8 Å line about a factor 5 higher than O IV 1401.2 Å, are obtained for κ = 3. An even higher value of κ = 5 results in spectra that are exclusively dominated by Si IV, with negligible O IV emission. This is a possible interpretation of the TR spectra of UV (Ellerman) bursts, although an interpretation that requires a density that is 1-3 orders of magnitude lower than for equilibrium estimates. Movies associated to Fig. A.1 are available at http://https://www.aanda.org
Gas engineering studies for high pressure self-sustained diffuse discharge closing switches
NASA Astrophysics Data System (ADS)
Hunter, S. R.; Christophorou, L. G.; Carter, J. G.
The operating voltage and discharge stability of diffuse discharges for fast-closing switch applications are critically dependent on the variation of the ionization (alpha/N) and attachment (eta/N) coefficients with E/N (gas density normalized electric field strength). Gases and gas mixtures which possess low (E/N)/sub lim/ values (i.e., the E/N value when anti alpha/N = alpha/N - eta/N = 0) and effective ionization coefficients, anti alpha/N, which vary slowly with E/N near (E/N)(sub lim) lead to lower voltage (i.e., more efficient) operation with increased discharge stability. Several gas mixtures with these characteristics are discussed. It is argued that further improvements in switch efficiency and discharge stability can be obtained by adding a low ionization onset gas additive to these binary mixtures, such that at low E/N, alpha/N is greater than eta/N, while at higher E/N, eta/N is greater than alpha/N over a restricted E/N range. Several low ionization onset gas additives are suggested and the electron attachment and ionization coefficients in selected gas mixtures which possess these desirable characteristics are given.
Star of Lima - Overview and optical diagnostics of a barium Alfven critical velocity experiment
NASA Technical Reports Server (NTRS)
Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.
1986-01-01
The Alfven critical velocity mechanism for ionization of a neutral gas streaming across the magnetic field has been demonstrated in laboratory experiments. In March 1983, two rocket-borne experiments with Ba and Sr tested the effect in the wall-less laboratory of space from Punto Lobos, Peru, near 430 km altitude. 'Star of Lima' used a conical Ba shaped charge aimed at an instrument payload about 2 km away. Because of rocket overperformance the detonation occurred in partial sunlight, so that less than 21.6 percent of the ionizing UV was present. Particle and field measurements indicate the production of hot electrons and waves in the energy and frequency range that are respectively predicted to produce a cascade of ionization by the Alfven mechanism. However, the ionization fluxes and wave energy density did not reach cascade levels, and optical observations indicate that only 2.5 to 5 x 10 to the 20th Ba ions were produced. A substantial portion and perhaps all of the ionization could have been produced by solar UV. The failure of the Alfven process in this experiment is not well understood.
Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas
NASA Technical Reports Server (NTRS)
Braun, C. G.; Kunc, J. A.
1989-01-01
A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.
Discharge dynamics and plasma density recovery by on/off switches of additional gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyo-Chang, E-mail: lhc@kriss.re.kr; Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763; Kwon, Deuk-Chul
2016-06-15
Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due tomore » enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollmann, E. M.; Yu, J. H.; Doerner, R. P.
2015-09-14
The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaskot, A. E.; Ravindranath, S.
The increasing neutrality of the intergalactic medium at z > 6 suppresses Ly α emission, and spectroscopic confirmation of galaxy redshifts requires the detection of alternative ultraviolet lines. The strong [C iii] λ 1907+C iii] λ 1909 doublet frequently observed in low-metallicity, actively star-forming galaxies is a promising emission feature. We present CLOUDY photoionization model predictions for C iii] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Onlymore » the stellar models that incorporate binary interaction effects reproduce the highest observed C iii] EWs. The spectral energy distributions from the binary stellar population models also generate observable C iii] over a longer timescale relative to single-star models. We show that diagnostics using C iii] and nebular He ii λ 1640 can separate star-forming regions from shock-ionized gas. We also find that density-bounded systems should exhibit weaker C iii] EWs at a given ionization parameter, and C iii] EWs could, therefore, select candidate Lyman continuum-leaking systems. In almost all models, C iii] is the next strongest line at <2700 Å after Ly α , and C iii] reaches detectable levels for a wide range of conditions at low metallicity. C iii] may therefore serve as an important diagnostic for characterizing galaxies at z > 6.« less
Highly ionized atoms in cooling gas
NASA Technical Reports Server (NTRS)
Edgar, R. J.; Chevalier, R. A.
1986-01-01
The ionization of low density gas cooling from a high temperature was calculated. The evolution during the cooling is assumed to be isochoric, isobaric, or a combination of these cases. The calculations are used to predict the column densities and ultraviolet line luminosities of highly ionized atoms in cooling gas. In a model for cooling of a hot galactic corona, it is shown that the observed value of N(N V) can be produced in the cooling gas, while the predicted value of N(Si IV) falls short of the observed value by a factor of about 5. The same model predicts fluxes of ultraviolet emission lines that are a factor of 10 lower than the claimed detections of Feldman, Brune, and Henry. Predictions are made for ultraviolet lines in cooling flows in early-type galaxies and clusters of galaxies. It is shown that the column densities of interest vary over a fairly narrow range, while the emission line luminosities are simply proportional to the mass inflow rate.
NASA Astrophysics Data System (ADS)
Yu, W.; Gao, C.-Z.; Zhang, Y.; Zhang, F. S.; Hutton, R.; Zou, Y.; Wei, B.
2018-03-01
We calculate electron capture and ionization cross sections of N2 impacted by the H+ projectile at keV energies. To this end, we employ the time-dependent density-functional theory coupled nonadiabatically to molecular dynamics. To avoid the explicit treatment of the complex density matrix in the calculation of cross sections, we propose an approximate method based on the assumption of constant ionization rate over the period of the projectile passing the absorbing boundary. Our results agree reasonably well with experimental data and semi-empirical results within the measurement uncertainties in the considered energy range. The discrepancies are mainly attributed to the inadequate description of exchange-correlation functional and the crude approximation for constant ionization rate. Although the present approach does not predict the experiments quantitatively for collision energies below 10 keV, it is still helpful to calculate total cross sections of ion-molecule collisions within a certain energy range.
Highly ionized atoms in cooling gas. [in model for cooling of hot Galactic corona
NASA Technical Reports Server (NTRS)
Edgar, Richard J.; Chevalier, Roger A.
1986-01-01
The ionization of low density gas cooling from a high temperature was calculated. The evolution during the cooling is assumed to be isochoric, isobaric, or a combination of these cases. The calculations are used to predict the column densities and ultraviolet line luminosities of highly ionized atoms in cooling gas. In a model for cooling of a hot galactic corona, it is shown that the observed value of N(N V) can be produced in the cooling gas, while the predicted value of N(Si IV) falls short of the observed value by a factor of about 5. The same model predicts fluxes of ultraviolet emission lines that are a factor of 10 lower than the claimed detections of Feldman, Bruna, and Henry. Predictions are made for ultraviolet lines in cooling flows in early-type galaxies and clusters of galaxies. It is shown that the column densities of interest vary over a fairly narrow range, while the emission line luminosities are simply proportional to the mass inflow rate.
NASA Astrophysics Data System (ADS)
Hollett, Joshua W.; Pegoretti, Nicholas
2018-04-01
Separate, one-parameter, on-top density functionals are derived for the short-range dynamic correlation between opposite and parallel-spin electrons, in which the electron-electron cusp is represented by an exponential function. The combination of both functionals is referred to as the Opposite-spin exponential-cusp and Fermi-hole correction (OF) functional. The two parameters of the OF functional are set by fitting the ionization energies and electron affinities, of the atoms He to Ar, predicted by ROHF in combination with the OF functional to the experimental values. For ionization energies, the overall performance of ROHF-OF is better than completely renormalized coupled-cluster [CR-CC(2,3)] and better than, or as good as, conventional density functional methods. For electron affinities, the overall performance of ROHF-OF is less impressive. However, for both ionization energies and electron affinities of third row atoms, the mean absolute error of ROHF-OF is only 3 kJ mol-1.
The evolving intergalactic medium - The uncollapsed baryon fraction in a cold dark matter universe
NASA Technical Reports Server (NTRS)
Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif
1991-01-01
The time-varying density of the intergalactic medium (IGM) is calculated by coupling detailed numerical calculations of the thermal and ionization balance and radiative transfer in a uniform IGM of H and He to the linearized equations for the growth of density fluctuations in both gases and a dark component in a cold dark matter universe. The IGM density is identified with the collapsed baryon fraction. It is found that even if the IGM is never reheated, a significant fraction of the baryons remain uncollapsed at redshifts of four. If instead the collapsed fraction releases enough ionizing radiation or thermal energy to reionize the IGM by z greater than four as required by the Gunn-Peterson (GP) constraint, the uncollapsed fraction at z of four is even higher. The known quasar distribution is insufficient to supply the ionizing radiation necessary to satisfy the GP constraint in this case and, if stars are instead responsible, a substantial metallicity must have been produced by z of four.
Hydrodynamic optical-field-ionized plasma channels
NASA Astrophysics Data System (ADS)
Shalloo, R. J.; Arran, C.; Corner, L.; Holloway, J.; Jonnerby, J.; Walczak, R.; Milchberg, H. M.; Hooker, S. M.
2018-05-01
We present experiments and numerical simulations which demonstrate that fully ionized, low-density plasma channels could be formed by hydrodynamic expansion of plasma columns produced by optical field ionization. Simulations of the hydrodynamic expansion of plasma columns formed in hydrogen by an axicon lens show the generation of 200 mm long plasma channels with axial densities of order ne(0 ) =1 ×1017cm-3 and lowest-order modes of spot size WM≈40 μ m . These simulations show that the laser energy required to generate the channels is modest: of order 1 mJ per centimeter of channel. The simulations are confirmed by experiments with a spherical lens which show the formation of short plasma channels with 1.5 ×1017cm-3≲ne(0 ) ≲1 ×1018cm-3 and 61 μ m ≳WM≳33 μ m . Low-density plasma channels of this type would appear to be well suited as multi-GeV laser-plasma accelerator stages capable of long-term operation at high pulse repetition rates.
Cosmic Ray Flux in the Presence of a Neutral Background
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lodhi, Arfin; Diaz, Abel
2007-01-01
The study of cosmic rays (CRs) is a very mature subject developed around the concept of radiative particle flux phi as a mono-variant function of energy E, that is phi = phi(E). This is based on the notion of the cosmos as being filled with cosmic radiation in the form of a collisionless exosphere of plasma. Neutrals, however, are likewise ubiquitous in space and planetary trapped-radiation belts. It will be shown that in the presence of a neutral background of density rho, flux phi is actually bivariant in energy E and rho, creating a surface phi(E,rho). This is an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present. The effect is produced by multiple scattering of charged particles off neutral and ionized atoms along with ionization loss where charged and neutral populations interact. For the harder portion of CR spectra, flux is mono-variant but at nonrelativistic energies (below approx, 350 MeV) it becomes sensitive to the presence of neutral backgrounds. The dependence of phi(E,rho) upon background neutrals is helpful in discussing the anomalous CR (ACR) flux made up of ionized components of the heliospheric neutral atmosphere.
The Hydrodynamical Models of the Cometary Compact HII Region
NASA Astrophysics Data System (ADS)
Zhu, Feng-Yao; Zhu, Qing-Feng; Li, Juan; Zhang, Jiang-Shui; Wang, Jun-Zhi
2015-10-01
We have developed a full numerical method to study the gas dynamics of cometary ultracompact H ii regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a 40.9/21.9 M⊙ star are simulated. In the bow-shock models, the massive star is assumed to move through dense (n = 8000 cm-3) molecular material with a stellar velocity of 15 km s-1. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne ii] 12.81 μm and H2 S(2) lines from the ionized regions and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell are mainly due to the expansion of the H ii region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion. The kinematics of the molecular gas inside the dense shell simply reflects the motion of the dense shell with respect to the star. These differences can be used to distinguish two sets of models.
Simple and universal model for electron-impact ionization of complex biomolecules
NASA Astrophysics Data System (ADS)
Tan, Hong Qi; Mi, Zhaohong; Bettiol, Andrew A.
2018-03-01
We present a simple and universal approach to calculate the total ionization cross section (TICS) for electron impact ionization in DNA bases and other biomaterials in the condensed phase. Evaluating the electron impact TICS plays a vital role in ion-beam radiobiology simulation at the cellular level, as secondary electrons are the main cause of DNA damage in particle cancer therapy. Our method is based on extending the dielectric formalism. The calculated results agree well with experimental data and show a good comparison with other theoretical calculations. This method only requires information of the chemical composition and density and an estimate of the mean binding energy to produce reasonably accurate TICS of complex biomolecules. Because of its simplicity and great predictive effectiveness, this method could be helpful in situations where the experimental TICS data are absent or scarce, such as in particle cancer therapy.
Hole-transport material variation in fully vacuum deposited perovskite solar cells
NASA Astrophysics Data System (ADS)
Polander, Lauren E.; Pahner, Paul; Schwarze, Martin; Saalfrank, Matthias; Koerner, Christian; Leo, Karl
2014-08-01
This work addresses the effect of energy level alignment between the hole-transporting material and the active layer in vacuum deposited, planar-heterojunction CH3NH3PbIx-3Clx perovskite solar cells. Through a series of hole-transport materials, with conductivity values set using controlled p-doping of the layer, we correlate their ionization potentials with the open-circuit voltage of the device. With ionization potentials beyond 5.3 eV, a substantial decrease in both current density and voltage is observed, which highlights the delicate energetic balance between driving force for hole-extraction and maximizing the photovoltage. In contrast, when an optimal ionization potential match is found, the open-circuit voltage can be maximized, leading to power conversion efficiencies of up to 10.9%. These values are obtained with hole-transport materials that differ from the commonly used Spiro-MeO-TAD and correspond to a 40% performance increase versus this reference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shingledecker, Christopher N.; Le Gal, Romane; Hincelin, Ugo
2016-10-20
The chemistry of dense interstellar regions was analyzed using a time-dependent gas–grain astrochemical simulation and a new chemical network that incorporates deuterated chemistry, taking into account nuclear spin states for the hydrogen chemistry and its deuterated isotopologues. With this new network, the utility of the [HCO{sup +}]/[DCO{sup +}] abundance ratio as a probe of the cosmic-ray ionization rate has been re-examined, with special attention paid to the effect of the initial value of the ortho-to-para ratio (OPR) of molecular hydrogen. After discussing the use of the probe for cold cores, we compare our results with previous theoretical and observational resultsmore » for a molecular cloud close to the supernova remnant W51C, which is thought to have an enhanced cosmic-ray ionization rate ζ caused by the nearby γ -ray source. In addition, we attempt to use our approach to estimate the cosmic-ray ionization rate for L1174, a dense core with an embedded star. Beyond the previously known sensitivity of [HCO{sup +}]/[DCO{sup +}] to ζ , we demonstrate its additional dependence on the initial OPR and, secondarily, on the age of the source, its temperature, and its density. We conclude that the usefulness of the [HCO{sup +}]/[DCO{sup +}] abundance ratio in constraining the cosmic-ray ionization rate in dense regions increases with the age of the source and the ionization rate as the ratio becomes far less sensitive to the initial value of the OPR.« less
Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.
1994-01-01
The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of plasma drift relative to the neutrals, where the loss rate is characterized by the neutral drift velocity. It is also shown that a factor of 4 increase in the ambient plasma density, increases the CIV ionization yield by almost 2 orders of magnitude at the end of a typical run. It is concluded that a larger ambient plasma density can result in a larger CIV yield because of (1) larger seed ion production by non-CIV mechanisms, (2) smaller Alfven velocity and hence weak momentum coupling, and (3) smaller ratio of the ion beam density to the ambient ion density, and therefore a weaker modulation of the beam velocity. The simulation results are used to interpret various chemical release experiments in space.
PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges
NASA Astrophysics Data System (ADS)
Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.
2018-05-01
Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.
Raman-Scattering Line Profiles of the Symbiotic Star AG Peg
NASA Astrophysics Data System (ADS)
Lee, Seong-Jae; Hyung, Siek
2017-06-01
The high dispersion Hα and Hβ line profiles of the Symbiotic star AG Peg consist of top double Gaussian and bottom components. We investigated the formation of the broad wings with Raman scattering mechanism. Adopting the same physical parameters from the photo-ionization study of Kim and Hyung (2008) for the white dwarf and the ionized gas shell, Monte Carlo simulations were carried out for a rotating accretion disk geometry of non-symmetrical latitude angles from -7° < θ < +7° to -16° < θ < +16°. The smaller latitude angle of the disk corresponds to the approaching side of the disk responsible for weak blue Gaussian profile, while the wider latitude angle corresponds to the other side of the disk responsible for the strong red Gaussian profile. We confirmed that the shell has the high gas density ˜ 109.85 cm-3 in the ionized zone of AG Peg derived in the previous photo-ionization model study. The simulation with various HI shell column densities (characterized by a thickness ΔD × gas number density nH) shows that the HI gas shell with a column density Hhi ≈ 3 - 5 × 1019 cm-2 fits the observed line profiles well. The estimated rotation speed of the accretion disk shell is in the range of 44 - 55 kms-1. We conclude that the kinematically incoherent structure involving the outflowing gas from the giant star caused an asymmetry of the disk and double Gaussian profiles found in AG Peg.
Cataract production in mice by heavy charged particles
NASA Technical Reports Server (NTRS)
Ainsworth, E. J.; Jose, U.; Yang, V. V.; Barker, M. E.
1981-01-01
The cataractogenic effects of heavy charged particles are evaluated in mice in relation to dose and ionization density. The relative biological effectiveness in relation to linear energy transfer for various particles is considered. Results indicated that low single doses (5 to 20 rad) of Fe 56 or Ar 40 particles are cataractogenic at 11 to 18 months after irradiation; onset and density of the opacification are dose related and cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial linear energy transfer dependence. The severity of cataracts is reduced significantly when 417 rad of Co 60 gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of C12 doses over 24 weeks.
Zan, Peng; Yang, Bang-hua; Shao, Yong; Yan, Guo-zheng; Liu, Hua
2010-01-01
This paper reports on the electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter. The coupling coils and human tissues, including the skin, fat, muscle, liver, and blood, were considered. Specific absorption rate (SAR) and current density were analyzed by a finite-length solenoid model. First, SAR and current density as a function of frequency (10–107 Hz) for an emission current of 1.5 A were calculated under different tissue thickness. Then relations between SAR, current density, and five types of tissues under each frequency were deduced. As a result, both the SAR and current density were below the basic restrictions of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The results show that the analysis of these data is very important for developing the artificial anal sphincter system. PMID:21121071
Zan, Peng; Yang, Bang-hua; Shao, Yong; Yan, Guo-zheng; Liu, Hua
2010-12-01
This paper reports on the electromagnetic effects on the biological tissue surrounding a transcutaneous transformer for an artificial anal sphincter. The coupling coils and human tissues, including the skin, fat, muscle, liver, and blood, were considered. Specific absorption rate (SAR) and current density were analyzed by a finite-length solenoid model. First, SAR and current density as a function of frequency (10-10(7) Hz) for an emission current of 1.5 A were calculated under different tissue thickness. Then relations between SAR, current density, and five types of tissues under each frequency were deduced. As a result, both the SAR and current density were below the basic restrictions of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The results show that the analysis of these data is very important for developing the artificial anal sphincter system.
Conduction in fully ionized liquid metals
NASA Technical Reports Server (NTRS)
Stevenson, D. J.; Ashcroft, N. W.
1973-01-01
Electron transport is considered in high density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.
Ionization equilibrium and radiative energy loss rates for C, N, and O ions in low-density plasmas
NASA Technical Reports Server (NTRS)
Jacobs, V. L.; Davis, J.; Rogerson, J. E.; Blaha, M.
1978-01-01
The results of calculations of the ionization equilibrium and radiative energy loss rates for C, N and O ions in low-density plasmas are presented for electron temperatures in the range 10,000-10,000,000 K. The ionization structure is determined by using the steady-state corona model, in which electron impact ionization from the ground states is balanced by direct radiative and dielectronic recombination. With an improved theory, detailed calculations are carried out for the dielectronic recombination rates in which account is taken of all radiative and autoionization processes involving a single-electron electric-dipole transition of the recombining ion. The radiative energy loss processes considered are electron-impact excitation of resonance line emission, direct radiative recombination, dielectronic recombination, and electron-ion bremsstrahlung. For all three elements, resonance line emission resulting from 2s-2p transitions produces a broad maximum in the energy loss rate near 100,000 K.
On the formation and expansion of H II regions
NASA Technical Reports Server (NTRS)
Franco, Jose; Tenorio-Tagle, Guillermo; Bodenheimer, Peter
1990-01-01
The evolution of H II regions in spherical clouds with small, constant-density cores and power-law density distributions r exp -w outside the core is described analytically. It is found that there is a critical exponent above which the cloud becomes completely ionized. Its value in the formation phase depends on the initial conditions, but it has a well-defined value w(crit) = 3/2 during the expansion phase. For w less than w(crit), the radius of the H II region grows at a given rate, while neutral mass accumulates in the interphase between the ionization and shock fronts. For w = w(crit), the fronts move together without mass accumulation. Cases with w greater than w(crit) lead to the champagne phase: once the cloud is fully ionized, the expansion becomes supersonic. For self-gravitating disks without magnetic fields, the main features include a new 'variable-size' stage. The initial shape of the H II region has a critical point beyond which the disk becomes completely ionized.
Magnet/Hall-Effect Random-Access Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1991-01-01
In proposed magnet/Hall-effect random-access memory (MHRAM), bits of data stored magnetically in Perm-alloy (or equivalent)-film memory elements and read out by using Hall-effect sensors to detect magnetization. Value of each bit represented by polarity of magnetization. Retains data for indefinite time or until data rewritten. Speed of Hall-effect sensors in MHRAM results in readout times of about 100 nanoseconds. Other characteristics include high immunity to ionizing radiation and storage densities of order 10(Sup6)bits/cm(Sup 2) or more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutzler, F.W.; Painter, G.S.
1991-03-15
The rapid variation of charge and spin densities in atoms and molecules provides a severe test for local-density-functional theory and for the use of gradient corrections. In the study reported in this paper, we use the Langreth, Mehl, and Hu (LMH) functional and the generalized gradient approximation (GGA) of Perdew and Yue to calculate {ital s}-{ital d} transition energies, 4{ital s} ionization energies, and 3{ital d} ionization energies for the 3{ital d} transition-metal atoms. These calculations are compared with results from the local-density functional of Vosko, Wilk, and Nusair. By comparison with experimental energies, we find that the gradient functionalsmore » are only marginally more successful than the local-density approximation in calculating energy differences between states in transition-metal atoms. The GGA approximation is somewhat better than the LMH functional for most of the atoms studied, although there are several exceptions.« less
NASA Astrophysics Data System (ADS)
Tu, Shao-yong; Yuan, Yong-teng; Hu, Guang-yue; Miao, Wen-yong; Zhao, Bin; Zheng, Jian; Jiang, Shao-en; Ding, Yong-kun
2016-01-01
Efficient multi-keV x-ray sources can be produced using nanosecond laser pulse-heated middle-Z underdense plasmas generated using gas or foam. Previous experimental results show that an optimal initial target density exists for efficient multi-keV x-ray emission at which the laser ionization wave is supersonic. Here we explore the influence of the laser intensity and the pulse duration on this optimal initial target density via a one-dimensional radiation hydrodynamic simulation. The simulation shows that the optimal initial density is sensitive to both the laser intensity and the pulse duration. However, the speed of the supersonic ionization wave at the end of the laser irradiation is always maintained at 1.5 to 1.7 times that of the ion acoustic wave under the optimal initial density conditions.
Microwave reflectometer ionization sensor
NASA Technical Reports Server (NTRS)
Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.
1993-01-01
The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.
[Pharmacogenomics in neuro-oncology].
Riese-Jorda, H H; Baez, J M
Chemotherapy protocols for treatment of brain tumors use toxic molecules for killing cancer cells in a similar way that protocols for treating other cancers. Therefore, secondary effects and poor response are the major handicaps. Technological developments based on pharmacogenomics and pharmacoproteomics will predict response and toxicity giving rise to a personalized medicine. However, there are only few studies that correlate chemotherapeutical molecules for brain tumor treatment and prediction of response and toxicity. The development of new technologies based on high-density microarrays allows the progressive identification of genes whose presence will predict the efficacy of therapeutic protocols. Once identified, specific equipments based on low-density arrays will detect exclusively in an easy and fast way the presence of genes in order to predict patient's response and avoid toxicity. Other more sophisticated techniques at present still at an experimental step based on proteomics as MALDI (Matrix-Assisted Laser Desorption Ionization) and SELDI (Surface-Enhanced Laser Desorption Ionization) will allow the identification of proteins that could predict response and toxicity.
NASA Astrophysics Data System (ADS)
Gaul, Christopher; Hutsch, Sebastian; Schwarze, Martin; Schellhammer, Karl Sebastian; Bussolotti, Fabio; Kera, Satoshi; Cuniberti, Gianaurelio; Leo, Karl; Ortmann, Frank
2018-05-01
Doping plays a crucial role in semiconductor physics, with n-doping being controlled by the ionization energy of the impurity relative to the conduction band edge. In organic semiconductors, efficient doping is dominated by various effects that are currently not well understood. Here, we simulate and experimentally measure, with direct and inverse photoemission spectroscopy, the density of states and the Fermi level position of the prototypical materials C60 and zinc phthalocyanine n-doped with highly efficient benzimidazoline radicals (2-Cyc-DMBI). We study the role of doping-induced gap states, and, in particular, of the difference Δ1 between the electron affinity of the undoped material and the ionization potential of its doped counterpart. We show that this parameter is critical for the generation of free carriers and influences the conductivity of the doped films. Tuning of Δ1 may provide alternative strategies to optimize the electronic properties of organic semiconductors.
NASA Astrophysics Data System (ADS)
Snowden, D.; Winglee, R.
2013-08-01
We describe a new multi-fluid model of Titan's interaction with Saturn's magnetosphere that includes finer resolution in Titan's ionosphere, photoionization, electron-impact ionization, dissociative recombination, and ion-neutral coupling in the momentum and energy equations. We compare simulation results to data from Cassini's T55 flyby to show that including magnetospheric electron-impact ionization in Titan's nightside ionosphere is necessary to calculate electron densities, electron temperatures, and ion velocities that are consistent with Cassini observations. However, similar to other studies, we find that the electron-impact ionization rate calculated by the model needs to be significantly reduced to produce an electron density that is in agreement with the observations. We also find that an upstream plasma flow with significant components northward and radially outward from Saturn is needed to reproduce the gradual increase in electron density observed during the ingress portion of T55. This suggests that Titan was in a nonideal environment with a plasma flow oriented away from the direction of corotation during T55 and likely during the subsequent flybys T56, T57, T58, and T59 when similar electron density enhancements were seen on the inbound portion of Cassini's trajectory.
Density diagnostics of ionized outflows in active galacitc nuclei
NASA Astrophysics Data System (ADS)
Mao, J.; Kaastra, J.; Mehdipour, M.; Raassen, T.; Gu, L.
2017-10-01
Ionized outflows in Active Galactic Nuclei are thought to influence their nuclear and local galactic environment. However, the distance of outflows with respect to the central engine is poorly constrained, which limits our understanding of the kinetic power by the outflows. Therefore, the impact of AGN outflows on their host galaxies is uncertain. Given the density of the outflows, their distance can be immediately obtained by the definition of the ionization parameter. Here we carry out a theoretical study of density diagnostics of AGN outflows using absorption lines from metastable levels in Be-like to F-like ions. With the new self-consistent photoionization model (PION) in the SPEX code, we are able to calculate ground and metastable level populations. This enable us to determine under what physical conditions these levels are significantly populated. We then identify characteristic transitions from these metastable levels in the X-ray band. Firm detections of absorption lines from such metastable levels are challenging for current grating instruments. The next generation of spectrometers like X-IFU onboard Athena will certainly identify the presence/absence of these density- sensitive absorption lines, thus tightly constraining the location and the kinetic power of AGN outflows.
Lightning propagation and flash density in squall lines as determined with radar
NASA Technical Reports Server (NTRS)
Mazur, V.; Rust, W. D.
1983-01-01
Lightning echo rise times and range-time variations due to discharge propagation are determined using S and L band radars, and the evolution of precipitation reflectivity and the associated lightning activity in squall lines is investigated using VHF and L band radars. The rise time of radar echoes can be explained by ionized channel propagation through the radar beams. Speeds of at least 250,000 m/s are found from measurements of the radial velocity of streamer propagation along the antenna beam. The range-time variations in lightning echoes indicate that either new ionization occurs as streamers develop into different parts of the cloud, channel delay occurs during which adequate ionization exists for radar detection, or continuing current occurs. Determinations of the lightning flash density for a squall line in the U.S. show that the maximum lightning density tends to be near the leading edge of the precipitation cores in developing cells. Long discharges are produced as a cell in the squall line develops and the total lightning density increases, although short discharges predominate. As the cell dissipates, short flashes diminish or cease and the long flashes dominate the lightning activity.
Vacuum ultraviolet photoionization of carbohydrates and nucleotides
NASA Astrophysics Data System (ADS)
Shin, Joong-Won; Bernstein, Elliot R.
2014-01-01
Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5'-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.
Vacuum ultraviolet photoionization of carbohydrates and nucleotides.
Shin, Joong-Won; Bernstein, Elliot R
2014-01-28
Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.
Physical Conditions in Low Ionization Regions of the Orion Nebula
NASA Technical Reports Server (NTRS)
Baldwin, J. A.; Crotts, A.; DuFour, R. J.; Ferland, G. J.; Heathcote, S.; Hester, J. J.; Korista, K. T.; Martin, P. J.; ODell, C. R.
1996-01-01
We reexamine the spectroscopic underpinnings of recent claims that low ionization (O(I)) and (Fe(II)) lines from the Orion H(II) region are produced in a region where the iron-carrying grains have been destroyed and the electron density is surprisingly high. Our new HST and CTIO observations show that previous reported detections of(O(I)) lambda 5577 were strongly affected by telluric emission. Our line limits consistent with a moderate density (approx. 10(exp 4)/cu. cm photoionized gas. We show that a previously proposed model of the Orion H(II) region reproduces the observed (O(I)) and (Fe(II)) spectrum. These lines are fully consistent with formation in a moderate density dusty region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maneva, Yana G.; Laguna, Alejandro Alvarez; Poedts, Stefaan
2017-02-20
In order to study chromospheric magnetosonic wave propagation including, for the first time, the effects of ion–neutral interactions in the partially ionized solar chromosphere, we have developed a new multi-fluid computational model accounting for ionization and recombination reactions in gravitationally stratified magnetized collisional media. The two-fluid model used in our 2D numerical simulations treats neutrals as a separate fluid and considers charged species (electrons and ions) within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskiis transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations and the solenoidality of the magneticmore » field is enforced with a hyperbolic divergence-cleaning scheme. The initial density and temperature profiles are similar to VAL III chromospheric model in which dynamical, thermal, and chemical equilibrium are considered to ensure comparison to existing MHD models and avoid artificial numerical heating. In this initial setup we include simple homogeneous flux tube magnetic field configuration and an external photospheric velocity driver to simulate the propagation of MHD waves in the partially ionized reactive chromosphere. In particular, we investigate the loss of chemical equilibrium and the plasma heating related to the steepening of fast magnetosonic wave fronts in the gravitationally stratified medium.« less
The effect of low-energy electrons on the response of ion chambers to ionizing photon beams
NASA Astrophysics Data System (ADS)
La Russa, Daniel J.
Cavity ionization chambers are one of the most popular and widely used devices for quantifying ionizing photon beams. This popularity originates from the precision of these devices and the relative ease with which ionization measurements are converted to quantities of interest in therapeutic radiology or radiation protection, collectively referred to as radiation dosimetry. The formalisms used for these conversions, known as cavity theory, make several assumptions about the electron spectrum in the low-energy range resulting from the incident photon beam. These electrons often account for a significant fraction of the ion chamber response. An inadequate treatment of low-energy electrons can therefore significantly effect calculated quantities of interest. This thesis sets out to investigate the effect of low-energy electrons on (1) the use of Spencer-Attix cavity theory with 60Co beams; and (2) the standard temperature-pressure correction factor, P TP, used to relate the measured ionization to a set of reference temperature and pressure conditions for vented ion chambers. Problems with the PTP correction are shown to arise when used with kilovoltage x rays, where ionization measurements are due primarily to electrons that do not have enough energy to cross the cavity. A combination of measurements and Monte Carlo calculations using the EGSnrc Monte Carlo code demonstrate the breakdown of PTP in these situations when used with non-air-equivalent chambers. The extent of the breakdown is shown to depend on cavity size, energy of the incident photons, and the composition of the chamber. In the worst case, the standard P TP factor overcorrects the response of an aluminum chamber by ≈12% at an air density typical of Mexico City. The response of a more common graphite-walled chamber with similar dimensions at the same air density is undercorrected by ≈ 2%. The EGSnrc Monte Carlo code is also used to investigate Spencer-Attix cavity theory as it is used in the formalism to determine the air kerma for a 60Co beam. Following a comparison with measurements in the literature, the air kerma formalism is shown to require a fluence correction factor, Kfl, to ensure the accuracy of the formalism regardless of chamber composition and cavity size. The need for such a correction stems from the fact that the cavity clearly distorts the fluence for mismatched cavity and wall materials, and the inability to select the appropriate "cut-off" energy, Delta, in the Spencer-Attix stopping-power ratio. A discussion of this issue is followed by detailed calculations of K fl values for several of the graphite ionization chambers used at national metrology institutes, which range between 0.9999 and 0.9994 with a one standard deviation uncertainty of +/- 0.0002.
Modeling of Microplasmas with Nano-Engineered Electrodes
NASA Astrophysics Data System (ADS)
Macheret, Sergey; Tholeti, Siva Shashank; Alexeenko, Alina
2015-09-01
Microplasmas can potentially be used as unique tunable dielectrics for reconfigurable radio-frequency systems, if electron densities of 1010-1012 cm-3 can be sustained in cavities smaller than 100 micron. However, for low loss tangent, gas pressures below 10 mTorr would be required, whereas the physics of electron impact ionization dictates the pd scaling so that microplasmas must operate at high gas pressures, hundreds of Torr, and also high voltages. We analyze a new principle of plasma generation that goes well beyond the pd scaling by eliminating electron impact ionization. In the new concept, electrons are generated at the cathode by field emission from nanotubes, and ions are independently produced in field ionization at atomically-sharp tips on the anode. The electrons and ions then move in the opposite directions, mix, and create a plasma. The low pressure results in collisionless motion with no electron-impact ionization. One-dimensional PIC/MCC calculations show that emitters such as carbon nanotubes placed sparsely on the cathode, combined with field ionization nanorods at the anode, can indeed ensure steady-state electron densities of up to 1012 cm-3 at gas pressure lower than 10 mTorr with only 50-100 Volts applied cross a 40-50 μm gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.
2014-08-20
We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for Cmore » IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.« less
Radio and infrared study of southern H II regions G346.056-0.021 and G346.077-0.056
NASA Astrophysics Data System (ADS)
Das, S. R.; Tej, A.; Vig, S.; Liu, T.; Ghosh, S. K.; Chandra, C. H. I.
2018-04-01
Aim. We present a multiwavelength study of two southern Galactic H II regions G346.056-0.021 and G346.077-0.056 which are located at a distance of 10.9 kpc. The distribution of ionized gas, cold and warm dust, and the stellar population associated with the two H II regions are studied in detail using measurements at near-infrared, mid-infrared, far-infrared, submillimeter and radio wavelengths. Methods: The radio continuum maps at 1280 and 610 MHz were obtained using the Giant Metrewave Radio Telescope to probe the ionized gas. The dust temperature, column density, and dust emissivity maps were generated using modified blackbody fits in the far-infrared wavelength range 160-500 μm. Various near- and mid-infrared color and magnitude criteria were adopted to identify candidate ionizing star(s) and the population of young stellar objects in the associated field. Results: The radio maps reveal the presence of diffuse ionized emission displaying distinct cometary morphologies. The 1280 MHz flux densities translate to zero age main sequence spectral types in the range O7.5V-O7V and O8.5V-O8V for the ionizing stars of G346.056-0.021 and G346.077-0.056, respectively. A few promising candidate ionizing star(s) are identified using near-infrared photometric data. The column density map shows the presence of a large, dense dust clump enveloping G346.077-0.056. The dust temperature map shows peaks towards the two H II regions. The submillimeter image shows the presence of two additional clumps, one being associated with G346.056-0.021. The masses of the clumps are estimated to range between 1400 and 15250 M⊙. Based on simple analytic calculations and the correlation seen between the ionized gas distribution and the local density structure, the observed cometary morphology in the radio maps is better explained invoking the champagne-flow model. GMRT data (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A36
Phase Transition to an Opaque Plasma in a Sonoluminescing Bubble
NASA Astrophysics Data System (ADS)
Kappus, Brian; Khalid, Shahzad; Chakravarty, Avik; Putterman, Seth
2011-06-01
Time-resolved spectrum measurements of a sonoluminescing Xe bubble reveal a transition from transparency to an opaque Planck blackbody. As the temperature is <10000K and the density is below liquid density, the photon scattering length is 10 000 times too large to explain its opacity. We resolve this issue with a model that reduces the ionization potential. According to this model, sonoluminescence originates in a new phase of matter with high ionization. Analysis of line emission from Xe* also yields evidence of phase segregation for this first-order transition inside a bubble.
Effect of segmented electrode length on the performances of Hall thruster
NASA Astrophysics Data System (ADS)
Duan, Ping; Chen, Long; Liu, Guangrui; Bian, Xingyu; Yin, Yan
2016-09-01
The influences of the low-emissive graphite segmented electrode placed near the channel exit on the discharge characteristics of Hall thruster are studied using the particle-in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with the increasing of segmented electrode length, the equipotential lines bend towards the channel exit, and approximately parallel to the wall at the channel surface, radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of ionization rate in discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected.
Ketkov, Sergey Yu; Tzeng, Sheng-Yuan; Wu, Pei-Ying; Markin, Gennady V; Tzeng, Wen-Bih
2017-10-04
High-resolution mass-analyzed threshold ionization (MATI) spectra of (η 6 -Ph 2 ) 2 Cr and (η 6 -Ph 2 )(η 6 -PhMe)Cr demonstrate that the Ph groups work as electron donors, decreasing the ionization energy of the gas-phase bisarene complexes. In contrast to electrochemical data, a close similarity of the Ph and Me group effects on the oxidation of free sandwich molecules has been revealed. However, DFT calculations testify for the opposite shifts of the electron density caused by the Me and Ph substituents in the neutral complexes, the latter behaving as an electron-accepting fragment. On the contrary, in the bisarene cations, the Ph group becomes a stronger donor than methyl. This change provides the similar substituent effects observed with the MATI experiment. On the other hand, the well-documented opposite influence of the Me and Ph fragments on the redox potential of the (η 6 -arene) 2 Cr +/0 couple in solution appears to be a result of solvation effects but not intramolecular interactions as shown for the first time in this work. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radiation Resistances of Dielectric Liquids
NASA Technical Reports Server (NTRS)
Bouquet, Frank L.; Somoano, Robert B.
1987-01-01
Report presents data on effects of ionizing radiation on dielectric liquids for high-energy-density, pulsed-power capacitors. Based on Jet Propulsion Laboratory test results, search of NASA and Department of Energy computer files, survey of open literature, and contacts with manufacturers and suppliers. Covers 22 organic liquids, although detailed data found for only one compound, polydimethyl siloxane. Generic data on effects of radiation on compounds with similar chemical structures provided where data on specific compounds lacking.
NASA Astrophysics Data System (ADS)
Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.
1993-02-01
Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.
Interstellar gas in the Gum Nebula
NASA Technical Reports Server (NTRS)
Wallerstein, G.; Jenkins, E. B.; Silk, J.
1980-01-01
A survey of the interstellar gas near the Gum Nebula by optical observation of 67 stars at Ca II, 42 stars at Na I, and 14 stars in the UV with the Copernicus satellite provided radial velocities and column densities for all resolved absorption components. Velocity dispersions for gas in the Gum Nebula are not significantly larger than in the general interstellar medium; the ionization structure is predominantly that of an H II region with moderately high ionization. Denser, more highly ionized clouds are concentrated toward the Gum Nebula; these clouds do not show the anomalously high ionization observed in the Vela remnant clouds.
Theory of void formation in dusty plasmas
NASA Astrophysics Data System (ADS)
Hu, Zuquan; Chen, Yinhua; Zheng, Xiang; Huang, Feng; Shi, Gei-fen; Yu, M. Y.
2009-06-01
A fluid theory of void formation in dusty plasmas taking into account ionization is proposed. It is shown that if the ionization rate is larger than a threshold, an initial steady-state dust-density distribution can evolve into a stable distribution containing a void. As the ionization rate is further increased, the time required for void formation decreases. The void size first increases, but then decreases. However, for still larger ionization rates, the dusty region of the plasma becomes ringlike, including the convection term in dust momentum equation. The results are in agreement with existing experiments and theories.
An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines
NASA Astrophysics Data System (ADS)
Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima
We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossack, Aaron C.; Jarboe, Thomas R.; Victor, Brian S.
2013-10-15
A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2–3) × 10{sup 19} m{sup −3} to 1 × 10{sup 19} m{sup −3}. Deuterium spheromak formation is possible with density as low as 2 × 10{sup 18} m{sup −3}. The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reductionmore » of breakdown density is presented.« less
NASA Astrophysics Data System (ADS)
Lee, W. K.; Kil, H.; Krall, J.
2016-12-01
Significant longitudinal and latitudinal modulations in plasma density were observed by satellites during the 17 March 2015 storm. Pronounced equatorial ionization anomaly (EIA) and ionization trough developed in the Indian sector (60°-90°E), whereas those features did not appear in the African sector (20°-40°E). Significant ionospheric uplift was observed in the Indian sector, but the uplift was ignorable in the African sector. The vertical ExB drift is an important factor for the longitudinal variation of the ionospheric morphology, but the observed latitudinal density profiles are not explained satisfactorily by the effect of the vertical ExB drift alone. In this study, we investigate the combined effect of vertical ExB drift and meridional winds by conducting SAMI2 (Sam2 is Another Model of the Ionosphere) model simulations. By comparing the model results with satellite observations, we will assess the ionospheric conditions in the Indian and African sectors. The observations of Defense Meteorological satellite Program, Swarm, and Communication/Navigation Outage Forecasting System satellites will be analyzed for this purpose.
Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238-1904
NASA Astrophysics Data System (ADS)
Arav, Nahum; Borguet, Benoit; Chamberlain, Carter; Edmonds, Doug; Danforth, Charles
2013-12-01
Spectroscopic observations of quasar outflows at rest-frame 500-1000 Å have immense diagnostic power. We present analyses of such data, where absorption troughs from O IV and O IV* allow us to obtain the distance of the outflows from the AGN and troughs from Ne VIII and Mg X reveal the warm absorber phase of the outflow. Their inferred column densities, combined with those of O VI, N IV and H I, yield two important results. (1) The outflow shows two ionization phases, where the high-ionization phase carries the bulk of the material. This is similar to the situation seen in X-ray warm absorber studies. Furthermore, the low-ionization phase is inferred to have a volume filling factor of 10-5-10-6. (2) We determine a distance of 3000 pc from the outflow to the central source using the O IV*/O IV column density ratio and the knowledge of the ionization parameter. Since this is a typical high-ionization outflow, we can determine robust values for the outflow's mass flux and kinetic luminosity of 40 M⊙ yr-1 and 1045 erg s-1, respectively, where the latter is roughly equal to 1 per cent of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high-ionization wind suggest that quasar outflows are a major contributor to AGN feedback mechanisms.
Hu, S. X.; Collins, Lee A.; Goncharov, V. N.; ...
2016-04-14
Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations on the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm 3 and T = 15,625 to 500,000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which exhibits the correct behaviors of continuum lowering and pressure ionization. The thermal conductivities (κ QMD) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted withmore » a generalized Coulomb logarithm [(lnΛ) QMD] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Furthermore, hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted –20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less
NASA Astrophysics Data System (ADS)
Whalen, Daniel; Norman, Michael L.
2006-02-01
Radiation hydrodynamical transport of ionization fronts (I-fronts) in the next generation of cosmological reionization simulations holds the promise of predicting UV escape fractions from first principles as well as investigating the role of photoionization in feedback processes and structure formation. We present a multistep integration scheme for radiative transfer and hydrodynamics for accurate propagation of I-fronts and ionized flows from a point source in cosmological simulations. The algorithm is a photon-conserving method that correctly tracks the position of I-fronts at much lower resolutions than nonconservative techniques. The method applies direct hierarchical updates to the ionic species, bypassing the need for the costly matrix solutions required by implicit methods while retaining sufficient accuracy to capture the true evolution of the fronts. We review the physics of ionization fronts in power-law density gradients, whose analytical solutions provide excellent validation tests for radiation coupling schemes. The advantages and potential drawbacks of direct and implicit schemes are also considered, with particular focus on problem time-stepping, which if not properly implemented can lead to morphologically plausible I-front behavior that nonetheless departs from theory. We also examine the effect of radiation pressure from very luminous central sources on the evolution of I-fronts and flows.
NASA Astrophysics Data System (ADS)
Yamakita, Yoshihiro; Tanaka, Hideyasu; Maruyama, Ryo; Yamakado, Hideo; Misaizu, Fuminori; Ohno, Koichi
2000-08-01
A highly sensitive electron energy analyzer which utilizes a "magnetic bottle" combined with a retarding electrostatic field has been developed for Penning ionization electron spectroscopy. A beam of metastable rare-gas atoms is crossed with a continuous supersonic sample beam in the source region of the analyzer. The emitted electrons are collected by an inhomogeneous magnetic field (the magnetic bottle effect) with a high efficiency of nearly 4π solid angle, which is more than 103 times higher than that of a conventional hemispherical analyzer. The kinetic energy of electrons is analyzed by scanning the retarding field in a flight tube of the analyzer in the presence of a weak magnetic field. The velocity of the metastable atoms can also be resolved by a time-of-flight method in the present instrument. Examples of Penning ionization electron energy spectra as a function of collision energy are presented for Ar and N2 with metastable He*(2 3S) atoms. This instrument has opened the possibility for extensive studies of Penning ionization electron spectroscopy for low-density species, such as clusters, ions, electronically excited species, unstable or transient species, and large molecules with low volatility.
Detailed Numerical Simulations on the Formation of Pillars Around H II Regions
NASA Astrophysics Data System (ADS)
Gritschneder, Matthias; Burkert, Andreas; Naab, Thorsten; Walch, Stefanie
2010-11-01
We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100 cm-3 or 300 cm-3. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of the mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation driven implosion of pre-existing clumps.
DETAILED NUMERICAL SIMULATIONS ON THE FORMATION OF PILLARS AROUND H II REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritschneder, Matthias; Burkert, Andreas; Naab, Thorsten
2010-11-10
We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100 cm{sup -3} or 300 cm{sup -3}. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of themore » mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation driven implosion of pre-existing clumps.« less
NASA Astrophysics Data System (ADS)
Zhao, Shu-Xia
2018-03-01
In this work, the behavior of electron temperature against the power in argon inductively coupled plasma is investigated by a fluid model. The model properly reproduces the non-monotonic variation of temperature with power observed in experiments. By means of a novel electron mean energy equation proposed for the first time in this article, this electron temperature behavior is interpreted. In the overall considered power range, the skin effect of radio frequency electric field results in localized deposited power density, responsible for an increase of electron temperature with power by means of one parameter defined as power density divided by electron density. At low powers, the rate fraction of multistep and Penning ionizations of metastables that consume electron energy two times significantly increases with power, which dominates over the skin effect and consequently leads to the decrease of temperature with power. In the middle power regime, a transition region of temperature is given by the competition between the ionizing effect of metastables and the skin effect of electric field. The power location where the temperature alters its trend moves to the low power end as increasing the pressure due to the lack of metastables. The non-monotonic curve of temperature is asymmetric at the short chamber due to the weak role of skin effect in increasing the temperature and tends symmetric when axially prolonging the chamber. Still, the validity of the fluid model in this prediction is estimated and the role of neutral gas heating is guessed. This finding is helpful for people understanding the different trends of temperature with power in the literature.
Air density dependence of the soft X-ray PTW 34013 ionization chamber.
Torres Del Río, Julia; Forastero, Cristina; Tornero-López, Ana M; López, Jesús J; Guirado, Damián; Perez-Calatayud, José; Lallena, Antonio M
2018-02-01
We studied the dependence on air density of the response of the PTW 34013 ionization chamber, recently upgraded for dosimetry control of low energy X-ray beams. Measurements were performed by changing the pressure conditions inside a pressure chamber. The behavior of the measurements against the air density inside this chamber was analyzed. X-ray beams generated with 50, 70, 100, 150 and 200 kVp and the two electrometer polarities were considered. For all beams studied, measurements corrected with the conventional temperature and pressure factor showed a residual dependence on the air density that was described with a linear function of the air density. For the 50 and 70 kVp beams, corrected measurements remained ∼1% smaller than the value found at standard pressure/temperature conditions, for both electrometer polarities and for the air density range typical in clinical conditions. For air densities smaller than the standard one, measurements found for 100, 150 and 200 kVp beams were below or above the value found at standard pressure and temperature when the negative or positive electrometer polarities were used, respectively. The differences with the measurements at standard conditions were less than 1% for the 100 kVp beam and below 4% for the other two beams. The PTW 34013 ionization chamber showed a dependence on the air density that is not properly described with the usual temperature and pressure correction factor. This residual dependence is negligible for low energy beams, for which this chamber is recommended, but is more substantial for beams with energy above 80 kVp. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect
NASA Astrophysics Data System (ADS)
Seidl, Michael; Perdew, John P.; Brajczewska, Marta; Fiolhais, Carlos
1997-05-01
The ionization energy of a large spherical metal cluster of radius R is I(R)=W+(+c)/R, where W is the bulk work function and c~-0.1 is a material-dependent quantum correction to the electrostatic size effect. We present 'Koopmans' and 'displaced-profile change-in-self-consistent-field' expressions for W and c within the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the 'displaced-profile' expressions are the more accurate ones. This profile insensitivity is important, because it is not practical to extract c from solutions of the Kohn-Sham equations for small metal clusters.
Propagation of intense short laser pulses in the atmosphere.
Sprangle, P; Peñano, J R; Hafizi, B
2002-10-01
The propagation of short, intense laser pulses in the atmosphere is investigated theoretically and numerically. A set of three-dimensional (3D), nonlinear propagation equations is derived, which includes the effects of dispersion, nonlinear self-focusing, stimulated molecular Raman scattering, multiphoton and tunneling ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot size, and electron density are derived for an intense ionizing laser pulse. From these equations we obtain an equilibrium for a single optical-plasma filament, which involves a balancing between diffraction, nonlinear self-focusing, and plasma defocusing. The equilibrium is shown to require a specific distribution of power along the filament. It is found that in the presence of ionization a self-guided optical filament is not realizable. A method for generating a remote spark in the atmosphere is proposed, which utilizes the dispersive and nonlinear properties of air to cause a low-intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen parameters, we find that the transverse and longitudinal focal lengths can be made to coincide, resulting in rapid intensity increase, ionization, and white light generation in a localized region far from the source. Coupled equations for the laser spot size and pulse duration are derived, which can describe the focusing and compression process in the low-intensity regime. More general examples involving beam focusing, compression, ionization, and white light generation near the focal region are studied by numerically solving the full set of 3D, nonlinear propagation equations.
Time-dependent Ionization in a Steady Flow in an MHD Model of the Solar Corona and Wind
NASA Astrophysics Data System (ADS)
Shen, Chengcai; Raymond, John C.; Mikić, Zoran; Linker, Jon A.; Reeves, Katharine K.; Murphy, Nicholas A.
2017-11-01
Time-dependent ionization is important for diagnostics of coronal streamers and pseudostreamers. We describe time-dependent ionization calculations for a three-dimensional magnetohydrodynamic (MHD) model of the solar corona and inner heliosphere. We analyze how non-equilibrium ionization (NEI) influences emission from a pseudostreamer during the Whole Sun Month interval (Carrington rotation CR1913, 1996 August 22 to September 18). We use a time-dependent code to calculate NEI states, based on the plasma temperature, density, velocity, and magnetic field in the MHD model, to obtain the synthetic emissivities and predict the intensities of the Lyα, O VI, Mg x, and Si xii emission lines observed by the SOHO/Ultraviolet Coronagraph Spectrometer (UVCS). At low coronal heights, the predicted intensity profiles of both Lyα and O VI lines match UVCS observations well, but the Mg x and Si xii emission are predicted to be too bright. At larger heights, the O VI and Mg x lines are predicted to be brighter for NEI than equilibrium ionization around this pseudostreamer, and Si xii is predicted to be fainter for NEI cases. The differences of predicted UVCS intensities between NEI and equilibrium ionization are around a factor of 2, but neither matches the observed intensity distributions along the full length of the UVCS slit. Variations in elemental abundances in closed field regions due to the gravitational settling and the FIP effect may significantly contribute to the predicted uncertainty. The assumption of Maxwellian electron distributions and errors in the magnetic field on the solar surface may also have notable effects on the mismatch between observations and model predictions.
Ionization balance in Titan's nightside ionosphere
NASA Astrophysics Data System (ADS)
Vigren, E.; Galand, M.; Yelle, R. V.; Wellbrock, A.; Coates, A. J.; Snowden, D.; Cui, J.; Lavvas, P.; Edberg, N. J. T.; Shebanits, O.; Wahlund, J.-E.; Vuitton, V.; Mandt, K.
2015-03-01
Based on a multi-instrumental Cassini dataset we make model versus observation comparisons of plasma number densities, nP = (nenI)1/2 (ne and nI being the electron number density and total positive ion number density, respectively) and short-lived ion number densities (N+, CH2+, CH3+, CH4+) in the southern hemisphere of Titan's nightside ionosphere over altitudes ranging from 1100 and 1200 km and from 1100 to 1350 km, respectively. The nP model assumes photochemical equilibrium, ion-electron pair production driven by magnetospheric electron precipitation and dissociative recombination as the principal plasma neutralization process. The model to derive short-lived-ion number densities assumes photochemical equilibrium for the short-lived ions, primary ion production by electron-impact ionization of N2 and CH4 and removal of the short-lived ions through reactions with CH4. It is shown that the models reasonably reproduce the observations, both with regards to nP and the number densities of the short-lived ions. This is contrasted by the difficulties in accurately reproducing ion and electron number densities in Titan's sunlit ionosphere.
NASA Astrophysics Data System (ADS)
Palit, Sourav; Chakrabarti, Sandip Kumar; Pal, Sujay; Basak, Tamal
Extra ionization by X-rays during solar flares affects VLF signal propagation through D-region ionosphere. Ionization produced in the lower ionosphere due to X-ray spectra of solar flares are simulated with an efficient detector simulation program, GEANT4. The balancing between the ionization and loss processes, causing the lower ionosphere to settle back to its undisturbed state is handled with a simple chemical model consisting of four broad species of ion densities. Using the electron densities, modified VLF signal amplitude is then computed with LWPC code. VLF signal along NWC (Australia) to IERC/ICSP (India) propagation path is examined during a M and a X-type solar flares and observational deviations are compared with simulated results. The agreement is found to be excellent.
NASA Astrophysics Data System (ADS)
Brahme, Anders; Lind, Bengt K.
2002-04-01
Radiation therapy is today in a state of very rapid development with new intensity modulated treatment techniques continuously being developed. This has made intensity modulated electron and photon beams almost as powerful as conventional uniform beam proton therapy. To be able to cure also the most advanced hypoxic and radiation resistant tumors of complex local spread, intensity modulated light ion beams are really the ultimate tool and only slightly more expensive than proton therapy. The aim of the new center for ion therapy and tumor diagnostics in Stockholm is to develop radiobiologically optimized 3-dimensional pencil beam scanning techniques. Beside the "classical" approaches using low ionization density hydrogen ions (protons, but also deuterons and tritium nuclei) and high ionization density carbon ions, two new approaches will be developed. In the first one lithium or beryllium ions, that induce the least detrimental biological effect to normal tissues for a given biological effect in a small volume of the tumor, will be key particles. In the second approach, referred patients will be given a high-dose high-precision "boost" treatment with carbon or oxygen ions during one week preceding the final treatment with conventional radiations in the referring hospital. The rationale behind these approaches is to reduce the high ionization density dose to the normal tissue stroma inside the tumor and to ensure a microscopically uniform dose delivery. The principal idea of the center is to closely integrate ion therapy into the clinical routine and research of a large radiotherapy department. The light ion therapy center will therefore be combined with advanced tumor diagnostics including MR and PET-CT imaging to facilitate efficient high-precision high-dose boost treatment of remitted patients. The possibility to do 3D tumor diagnostics and 3D dose delivery verification with the same PET camera will be the ultimate step in high quality adaptive radiation therapy where alterations in the delivered dose can be corrected by subsequent treatments
Dai, Jiayu; Hou, Yong; Yuan, Jianmin
2010-06-18
Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.
High Resolution IRS Mapping of the Star-Forming Region NGC 6334 A
NASA Astrophysics Data System (ADS)
Sarma, Anuj; Abel, Nicholas; Ferland, Gary; Mayo, Elizabeth; Troland, Thomas
2005-06-01
Star formation involves the interplay of thermal, gravitational and magnetic forces. These processes lead to a dynamically evolving region in which O stars ionize the surrounding medium, and the ionized gas expands into the molecular cloud. Of these forces, magnetic effects are the least understood. A detailed analysis of the conditions in star-forming environments requires that one combine magnetic field observations with observations of the ionized, atomic, and molecular gas along with dust. We propose to carry out high-resolution IRS spectroscopy between 9.9-37.2 microns of the nearby (1.7 kpc) star-forming region NGC 6334 A. Maps of the magnetic field strength in the molecular gas exist for NGC 6334 A, yet the conditions in the H II region, the surrounding photodissociated region (PDR), and the dynamical interaction between the two regions are poorly understood. In the H II region, our proposed observation will allow us to use well-known infrared diagnostic ratios to determine the electron density, temperature, and the hardness of the continuum source. Spitzer observations of rotational transitions of molecular hydrogen and PAH emission, combined with previous observations, will allow us to determine the hydrogen density, UV radiation flux, and temperature in the PDR. We will combine our observations with theoretical calculations, using the spectral synthesis code Cloudy. Recent improvements to Cloudy include a ~1000 reaction molecular network, the ability to treat the dynamical flow of ionized gas into a molecular cloud, and the effects of magnetic pressure. Matching the observed spectra with theoretical calculations will tell us the physical conditions in the H II region and PDR, the role of magnetic fields in NGC 6334 A, and the importance of dynamics in the region. Overall, IRS observations of NGC 6334 A offers a unique opportunity to study, at high spatial resolution, many of the physical processes in star-forming regions.
NASA Technical Reports Server (NTRS)
Costes, S.; Streuli, C. H.; Barcellos-Hoff, M. H.
2000-01-01
We previously reported that laminin immunoreactivity in mouse mammary epithelium is altered shortly after whole-body irradiation with 0.8 Gy from 600 MeV/nucleon iron ions but is unaffected after exposure to sparsely ionizing radiation. This observation led us to propose that the effect could be due to protein damage from the high ionization density of the ion tracks. If so, we predicted that it would be evident soon after radiation exposure in basement membranes of other tissues and would depend on ion fluence. To test this hypothesis, we used immunofluorescence, confocal laser scanning microscopy, and image segmentation techniques to quantify changes in the basement membrane of mouse skin epidermis. At 1 h after exposure to 1 GeV/nucleon iron ions with doses from 0.03 to 1.6 Gy, neither the visual appearance nor the mean pixel intensity of laminin in the basement membrane of mouse dorsal skin epidermis was altered compared to sham-irradiated tissue. This result does not support the hypothesis that particle traversal directly affects laminin protein integrity. However, the mean pixel intensity of laminin immunoreactivity was significantly decreased in epidermal basement membrane at 48 and 96 h after exposure to 0.8 Gy 1 GeV/nucleon iron ions. We confirmed this effect with two additional antibodies raised against affinity-purified laminin 1 and the E3 fragment of the long-arm of laminin 1. In contrast, collagen type IV, another component of the basement membrane, was unaffected. Our studies demonstrate quantitatively that densely ionizing radiation elicits changes in skin microenvironments distinct from those induced by sparsely ionizing radiation. Such effects may might contribute to the carcinogenic potential of densely ionizing radiation by altering cellular signaling cascades mediated by cell-extracellular matrix interactions.
CIFOG: Cosmological Ionization Fields frOm Galaxies
NASA Astrophysics Data System (ADS)
Hutter, Anne
2018-03-01
CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.
NASA Astrophysics Data System (ADS)
Salem, S.; Moslem, W. M.; Radi, A.
2017-05-01
Self-similar plasma expansion approach is used to solve a plasma model based on the losing phenomenon of Titan atmospheric composition. To this purpose, a set of hydrodynamic fluid equations describing a plasma consisting of two positive ions with different masses and isothermal electrons is used. With the aid of self-similar transformation, numerical solution of the fluid equations has been performed to examine the density, velocity, and potential profiles. The effects of different plasma parameters, i.e., density and temperature ratios, are studied on the expanding plasma profiles. The present investigation could be useful to recognize the ionized particles escaping from Titan atmosphere.
Ion recombination correction in carbon ion beams.
Rossomme, S; Hopfgartner, J; Lee, N D; Delor, A; Thomas, R A S; Romano, F; Fukumura, A; Vynckier, S; Palmans, H
2016-07-01
In this work, ion recombination is studied as a function of energy and depth in carbon ion beams. Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination. One model is generally used for photon beams and the other model, developed by Jaffé, takes into account the ionization density along the ion track. An investigation was carried out to ascertain the effect on the ion recombination correction with varying ionization chamber orientation with respect to the direction of the ion tracks. The variation of the ion recombination correction factors as a function of depth was studied for a Markus ionization chamber in the 62 MeV/n nonmodulated carbon ion beam. This variation can be related to the depth distribution of linear energy transfer. Results show that the theory for photon beams is not applicable to carbon ion beams. On the other hand, by optimizing the value of the ionization density and the initial mean-square radius, good agreement is found between Jaffé's theory and the experimental results. As predicted by Jaffé's theory, the results confirm that ion recombination corrections strongly decrease with an increasing angle between the ion tracks and the electric field lines. For the Markus ionization chamber, the variation of the ion recombination correction factor with depth was modeled adequately by a sigmoid function, which is approximately constant in the plateau and strongly increasing in the Bragg peak region to values of up to 1.06. Except in the distal edge region, all experimental results are accurately described by Jaffé's theory. Experimental results confirm that ion recombination in the investigated carbon ion beams is dominated by initial recombination. Ion recombination corrections are found to be significant and cannot be neglected for reference dosimetry and for the determination of depth dose curves in carbon ion beams.
[Ionization energies and infrared spectra studies of histidine using density functional theory].
Hu, Qiong; Wang, Guo-Ying; Liu, Gang; Ou, Jia-Ming; Wang, Rui-Li
2010-05-01
Histidines provide axial ligands to the primary electron donors in photosynthetic reaction centers (RCs) and play an important role in the protein environments of these donors. In this paper the authors present a systematic study of ionization energies and vibrational properties of histidine using hybrid density functional theory (DFT). All calculations were undertaken by using B3LYP method in combination with four basis sets: 6-31G(d), 6-31G(df, p), 6-31+G(d) and 6-311+G(2d, 2p) with the aim to investigate how the basis sets influence the calculation results. To investigate solvent effects and gain a detailed understanding of marker bands of histidine, the ionization energies of histidine and the vibrational frequencies of histidine which are unlabeled and 13C, 15N, and 2H labeled in the gas phase, CCl4, protein environment, THF and water solution, which span a wide range of dielectric constant, were also calculated. Our results showed that: (1) The main geometry parameters of histidine were impacted by basis sets and mediums, and C2-N3 and N3-C4 bond of imidazole ring of histidine side chain display the maximum bond lengths in the gas phase; (2) single point energies and frequencies calculated were decreased while ionization energies increased with the increasing level of basis sets and diffuse function applied in the same solvent; (3) with the same computational method, the higher the dielectric constant of the solvent used, the lower the ionization energy and vibrational frequency and the higher the intensity obtained. In addition, calculated ionization energy in the gas phase and marker bands of histidine as well as frequency shift upon 13C and 15N labeling at the computationally more expensive 6-311+G(2d, 2p) level are in good agreement with experimental observations available in literatures. All calculations indicated that the results calculated by using higher level basis set with diffuse function were more accurate and closer to the experimental value. In conclusion, the results provide useful information for the further studies of the functional and vibrational properties of chlorophyll-a ligated to histidine residue in photosynthetic reaction center.
Vacuum ultraviolet photoionization of carbohydrates and nucleotides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Joong-Won, E-mail: jshin@govst.edu; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872; Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu
Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate,more » rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.« less
NASA Astrophysics Data System (ADS)
Harrach, Robert J.; Rogers, Forest J.
1981-09-01
Two equation-of-state (EOS) models for multipy ionized matter are evaluated for the case of an aluminum plasma in the temperature range from about one eV to several hundred eV, spanning conditions of weak to strong ionization. Specifically, the simple analytical mode of Zel'dovich and Raizer and the more comprehensive model comprised by Rogers' plasma physics avtivity expansion code (ACTEX) are used to calculate the specific internal energy ɛ and average degree of ionization Z¯*, as functons of temperature T and density ρ. In the absence of experimental data, these results are compared against each other, covering almost five orders-of-magnitude variation in ɛ and the full range of Z¯* We find generally good agreement between the two sets of results, especially for low densities and for temperatures near the upper end of the rage. Calculated values of ɛ(T) agree to within ±30% over nearly the full range in T for densities below about 1 g/cm3. Similarly, the two models predict values of Z¯*(T) which track each other fairly well; above 20 eV the discrepancy is less than ±20% fpr ρ≲1 g/cm3. Where the calculations disagree, we expect the ACTEX code to be more accurate than Zel'dovich and Raizer's model, by virtue of its more detailed physics content.
Fast ionized X-ray absorbers in AGNs
NASA Astrophysics Data System (ADS)
Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.
2016-05-01
We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N_H, line-of-sight (LoS) velocity v, ionization parameter ξ, among others. Assuming that the wind density scales as n ∝ r-1, we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe Kα absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.
THE HYDRODYNAMICAL MODELS OF THE COMETARY COMPACT H ii REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Feng-Yao; Zhu, Qing-Feng; Li, Juan
2015-10-10
We have developed a full numerical method to study the gas dynamics of cometary ultracompact H ii regions, and associated photodissociation regions (PDRs). The bow-shock and champagne-flow models with a 40.9/21.9 M{sub ⊙} star are simulated. In the bow-shock models, the massive star is assumed to move through dense (n = 8000 cm{sup −3}) molecular material with a stellar velocity of 15 km s{sup −1}. In the champagne-flow models, an exponential distribution of density with a scale height of 0.2 pc is assumed. The profiles of the [Ne ii] 12.81 μm and H{sub 2} S(2) lines from the ionized regionsmore » and PDRs are compared for two sets of models. In champagne-flow models, emission lines from the ionized gas clearly show the effect of acceleration along the direction toward the tail due to the density gradient. The kinematics of the molecular gas inside the dense shell are mainly due to the expansion of the H ii region. However, in bow-shock models the ionized gas mainly moves in the same direction as the stellar motion. The kinematics of the molecular gas inside the dense shell simply reflects the motion of the dense shell with respect to the star. These differences can be used to distinguish two sets of models.« less
Variational description of the positive column with two-stem ionization
NASA Technical Reports Server (NTRS)
Crawford, F. W.
1979-01-01
The ionization balance in diffusion dominated discharges which depends on both one and two step ionization processes is considered. The Spenke diffusion equation (D sq delta n + neutrino n + sq kn =0) describing such conditions is solved by the Rayleigh-Ritz variational method. Simple analytic approximations to the density profile, and the similarity relation between neutrino,k,D and the discharge dimensions, are derived for planar and cylindrical geometry, and compared with exact computations for certain limiting cases.
A Numerical Simulation of the Energy Conversion Process in Microwave Rocket
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Teppei; Oda, Yasuhisa; Komurasaki, Kimiya
2008-04-28
In Microwave Rocket, a high power microwave beam ionizes atmospheric air inside of the thruster and the ionization front drives a shock wave. In this paper, CFD simulation was conducted using measured propagation velocity of the ionization front to evaluate the engine performance. As a result, maximum cycle efficiency was obtained at the power density of about 200 kW/m{sup 2} which is the transitional beam power condition between Microwave Supported Combustion and Microwave Supported Detonation regimes.
Invariant criteria for bound states, degree of ionization, and plasma phase transition
NASA Technical Reports Server (NTRS)
Girardeau, M. D.
1990-01-01
Basis invariant characterizations of bound states and bound fraction of a partially ionized hydrogen plasma are given in terms of properties of the spectrum of eigenvalues and eigenfunctions of the equilibrium quantum statistical one-proton-one-electron reduced density matrix. It is suggested that these can be used to place theories of a proposed plasma-ionization phase transition on a firm foundation. This general approach may be relevant to cosmological questions such as the quark deconfinement-confinement transition.
NASA Astrophysics Data System (ADS)
Rao, Ashwath; Verma, Ankita; Singh, B. R.
2015-06-01
This paper describes the effect of ionizing radiation on the interface properties of Al/Ta2O5/Si metal oxide semiconductor (MOS) capacitors using capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The devices were irradiated with X-rays at different doses ranging from 100 rad to 1 Mrad. The leakage behavior, which is an important parameter for memory applications of Al/Ta2O5/Si MOS capacitors, along with interface properties such as effective oxide charges and interface trap density with and without irradiation has been investigated. Lower accumulation capacitance and shift in flat band voltage toward negative value were observed in annealed devices after exposure to radiation. The increase in interfacial oxide layer thickness after irradiation was confirmed by Rutherford Back Scattering measurement. The effect of post-deposition annealing on the electrical behavior of Ta2O5 MOS capacitors was also investigated. Improved electrical and interface properties were obtained for samples deposited in N2 ambient. The density of interface trap states (Dit) at Ta2O5/Si interface sputtered in pure argon ambient was higher compared to samples reactively sputtered in nitrogen-containing plasma. Our results show that reactive sputtering in nitrogen-containing plasma is a promising approach to improve the radiation hardness of Ta2O5/Si MOS devices.
THE FRACTIONAL IONIZATION OF THE WARM NEUTRAL INTERSTELLAR MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, Edward B., E-mail: ebj@astro.princeton.edu
2013-02-10
When the neutral interstellar medium is exposed to extreme-ultraviolet and soft X-ray radiation, the argon atoms in it are far more susceptible to being ionized than the hydrogen atoms. We make use of this fact to determine the level of ionization in the nearby warm neutral medium. By analyzing Far-Ultraviolet Spectroscopic Explorer observations of ultraviolet spectra of 44 hot subdwarf stars a few hundred parsecs away from the Sun, we can compare column densities of Ar I to those of O I, where the relative ionization of oxygen can be used as a proxy for that of hydrogen. The measuredmore » deficiency [Ar I/O I]=-0.427{+-}0.11 dex below the expectation for a fully neutral medium implies that the electron density n(e) Almost-Equal-To 0.04 cm{sup -3} if n(H) = 0.5 cm{sup -3}. This amount of ionization is considerably larger than what we expect from primary photoionizations resulting from cosmic rays, the diffuse X-ray background, and X-ray emitting sources within the medium, along with the additional ionizations caused by energetic secondary photoelectrons, Auger electrons, and photons from helium recombinations. We favor an explanation that bursts of radiation created by previous, nearby supernova remnants that have faded by now may have elevated the ionization, and the gas has not yet recombined to a quiescent level. A different alternative is that the low-energy portion of the soft X-ray background is poorly shielded by the H I because it is frothy and has internal pockets of very hot, X-ray emitting gases.« less
Poppinga, D; Schoenfeld, A A; Doerner, K J; Blanck, O; Harder, D; Poppe, B
2014-02-01
The purpose of this study is the correction of the lateral scanner artifact, i.e., the effect that, on a large homogeneously exposed EBT3 film, a flatbed scanner measures different optical densities at different positions along the x axis, the axis parallel to the elongated light source. At constant dose, the measured optical density profiles along this axis have a parabolic shape with significant dose dependent curvature. Therefore, the effect is shortly called the parabola effect. The objective of the algorithm developed in this study is to correct for the parabola effect. Any optical density measured at given position x is transformed into the equivalent optical density c at the apex of the parabola and then converted into the corresponding dose via the calibration of c versus dose. For the present study EBT3 films and an Epson 10000XL scanner including transparency unit were used for the analysis of the parabola effect. The films were irradiated with 6 MV photons from an Elekta Synergy accelerator in a RW3 slab phantom. In order to quantify the effect, ten film pieces with doses graded from 0 to 20.9 Gy were sequentially scanned at eight positions along the x axis and at six positions along the z axis (the movement direction of the light source) both for the portrait and landscape film orientations. In order to test the effectiveness of the new correction algorithm, the dose profiles of an open square field and an IMRT plan were measured by EBT3 films and compared with ionization chamber and ionization chamber array measurement. The parabola effect has been numerically studied over the whole measuring field of the Epson 10000XL scanner for doses up to 20.9 Gy and for both film orientations. The presented algorithm transforms any optical density at position x into the equivalent optical density that would be measured at the same dose at the apex of the parabola. This correction method has been validated up to doses of 5.2 Gy all over the scanner bed with 2D dose distributions of an open square photon field and an IMRT distribution. The algorithm presented in this study quantifies and corrects the parabola effect of EBT3 films scanned in commonly used commercial flatbed scanners at doses up to 5.2 Gy. It is easy to implement, and no additional work steps are necessary in daily routine film dosimetry.
USDA-ARS?s Scientific Manuscript database
The administration of primaquine (PQ), an essential drug for treatment and radical cure of malaria, can lead to methemoglobin formation and life-threatening hemolysis for glucose-6-phosphate dehydrogenase deficient patients. The ionization potential (IP, a quantitative measure of the ability to lose...
Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations
NASA Astrophysics Data System (ADS)
Kocher, Manan; Landi, Enrico; Lepri, Susan. T.
2018-06-01
In the present work, we analyze a filament eruption associated with an interplanetary coronal mass ejection that arrived at L1 on 2011 August 5. In multiwavelength Solar Dynamic Observatory/Advanced Imaging Assembly (AIA) images, three plasma parcels within the filament were tracked at high cadence along the solar corona. A novel absorption diagnostic technique was applied to the filament material traveling along the three chosen trajectories to compute the column density and temperature evolution in time. Kinematics of the filamentary material were estimated using STEREO/Extreme Ultraviolet Imager and STEREO/COR1 observations. The Michigan Ionization Code used inputs of these density, temperature, and speed profiles for the computation of ionization profiles of the filament plasma. Based on these measurements, we conclude that the core plasma was in near ionization equilibrium, and the ionization states were still evolving at the altitudes where they were visible in absorption in AIA images. Additionally, we report that the filament plasma was heterogeneous, and the filamentary material was continuously heated as it expanded in the low solar corona.
Energetic particles and ionization in the nighttime middle and low latitude ionosphere
NASA Technical Reports Server (NTRS)
Voss, H. D.; Smith, L. G.
1977-01-01
Seven Nike Apache rockets, each equipped with an energetic particle spectrometer (12 E 80 keV) and electron-density experiments, were launched from Wallops Island, Virginia and Chilca, Peru, under varying geomagnetic conditions near midnight. At Wallops Island the energetic particle flux (E 40 keV) is found to be strongly dependent on Kp. The pitch-angle distribution is asymmetrical about a peak at 90 D signifying a predominately quasi-trapped flux and explaining the linear increase of count rate with altitute in the altitude region 120 to 200 km. The height-averaged ionization rates derived from the electron-density profiles are consistent with the rates calculated from the observed total particle flux for magnetic index Kp 3. In the region 90 to 110 km it is found that the nighttime ionization is primarily a result of Ly-beta radiation from the geocorona and interplanetary hydrogen for even very disturbed conditions. Below 90 km during rather disturbed conditions energetic electrons can be a significant ionization source. Two energetic particle precipitation zones have been identified at midlatitudes.
EFFECTS OF ULTRAVIOLET BACKGROUND AND LOCAL STELLAR RADIATION ON THE H I COLUMN DENSITY DISTRIBUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagamine, Kentaro; Choi, Jun-Hwan; Yajima, Hidenobu, E-mail: kn@physics.unlv.ed
We study the impact of ultraviolet background (UVB) radiation field and the local stellar radiation on the H I column density distribution f(N{sub H{sub I}}) of damped Ly{alpha} systems (DLAs) and sub-DLAs at z = 3 using cosmological smoothed particle hydrodynamics simulations. We find that, in the previous simulations with an optically thin approximation, the UVB was sinking into the H I cloud too deeply, and therefore we underestimated the f(N{sub H{sub I}}) at 19 < log N{sub H{sub I}} < 21.2 compared to the observations. If the UVB is shut off in the high-density regions with n{sub gas}>6 xmore » 10{sup -3} cm{sup -3}, then we reproduce the observed f(N{sub H{sub I}}) at z = 3 very well. We also investigate the effect of local stellar radiation by postprocessing our simulation with a radiative transfer code and find that the local stellar radiation does not change the f(N{sub H{sub I}}) very much. Our results show that the shape of f(N{sub H{sub I}}) is determined primarily by the UVB with a much weaker effect by the local stellar radiation and that the optically thin approximation often used in cosmological simulation is inadequate to properly treat the ionization structure of neutral gas in and out of DLAs. Our result also indicates that the DLA gas is closely related to the transition region from optically thick neutral gas to optically thin ionized gas within dark matter halos.« less
NASA Technical Reports Server (NTRS)
Depaola, B. D.; Marcum, S. D.; Wrench, H. K.; Whitten, B. L.; Wells, W. E.
1979-01-01
It is very useful to have a method of estimation for electron temperature and electron densities in nuclear pumped plasmas because measurements of such quantities are very difficult. This paper describes a method, based on rate equation analysis of the ionized species in the plasma and the electron energy balance. In addition to the ionized species, certain neutral species must also be calculated. Examples are given for pure helium and a mixture of helium and argon. In the HeAr case, He(+), He2(+), He/2 3S/, Ar(+), Ar2(+), and excited Ar are evaluated.
Phase transition to an opaque plasma in a sonoluminescing bubble.
Kappus, Brian; Khalid, Shahzad; Chakravarty, Avik; Putterman, Seth
2011-06-10
Time-resolved spectrum measurements of a sonoluminescing Xe bubble reveal a transition from transparency to an opaque Planck blackbody. As the temperature is <10 000 K and the density is below liquid density, the photon scattering length is 10 000 times too large to explain its opacity. We resolve this issue with a model that reduces the ionization potential. According to this model, sonoluminescence originates in a new phase of matter with high ionization. Analysis of line emission from Xe* also yields evidence of phase segregation for this first-order transition inside a bubble.
The line continuum luminosity ratio in AGN: Or on the Baldwin Effect
NASA Technical Reports Server (NTRS)
Mushotzky, R.; Ferland, F. J.
1983-01-01
The luminosity dependence of the equivalent width of CIV in active galaxies, the "Baldwin" effect, is shown to be a consequence of a luminosity dependent ionization parameter. This law also agrees with the lack of a "Baldwin" effect in Ly alpha or other hydrogen lines. A fit to the available data gives a weak indication that the mean covering factor decreases with increasing luminosity, consistent with the inference from X-ray observations. The effects of continuum shape and density on various line ratios of interest are discussed.
Ionization studies in laser-excited alkaline-earth vapors.
Hermann, J P; Wynne, J J
1980-06-01
We report on the time behavior of ionization signals produced by laser excitation of Ca and Ba atomic vapor to high-Rydberg states. A space-charge-limited thermionic diode detector shows a long-lived (>I-msec) ionization signal. However, optical detection of atomic ions (Ca+, Ba+) shows that these species live for much shorter times (<100 microsec). These results, in conjunction with published results on mass-spectrometric studies of high-density atomic beams, suggest that our ionization signal is primarily due to molecular species (Ca2+, Ba2+). We also observed optically pumped amplified spontaneous emission and stimulated electronic Raman scattering in Ca+ and Ba+.
Nighttime ionization by energetic particles at Wallops Island in the altitude region 120 to 200 km
NASA Technical Reports Server (NTRS)
Voss, H. D.; Smith, L. G.
1979-01-01
Five Nike Apache rockets, each including an energetic particle spectrometer and an electron density-electron temperature experiment, have been launched from Wallops Island (L = 2.6) near midnight under varying geomagnetic conditions. On the most recent of these (5 January 1978) an additional spectrometer with a broom magnet, and a 391.4 nm photometer were flown. The data from this flight indicate that the energetic particle flux consists predominantly of protons, neutral hydrogen and possibly other energetic nuclei. The energy spectrum becomes much softer and the flux more intense with increasing Kp for 10-100 keV. The pitch angle distribution at 180 km is asymmetrical with a peak at 90 deg indicating that the majority of particles are near their mirroring altitude. Ionization rates are calculated based on the measured energy spectrum and mirror height distribution. The resulting ionization rate profile is found to be nearly constant with altitude in the region 120 to 200 km. The measured energetic particle flux and calculated ionization rate from the five flights are found to vary with magnetic activity (based on the Kp and Dst indexes) in the same way as the independently derived ionization rates deduced from the electron density profile.
Fast Magnetoresistive Random-Access Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1991-01-01
Magnetoresistive binary digital memories of proposed new type expected to feature high speed, nonvolatility, ability to withstand ionizing radiation, high density, and low power. In memory cell, magnetoresistive effect exploited more efficiently by use of ferromagnetic material to store datum and adjacent magnetoresistive material to sense datum for readout. Because relative change in sensed resistance between "zero" and "one" states greater, shorter sampling and readout access times achievable.
Far-infrared image restoration analysis of the protostellar cluster in S140
NASA Technical Reports Server (NTRS)
Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.
1986-01-01
Image restoration techniques are applied to one-dimensional scans at 50 and 100 microns of the protostellar cluster in S140. These measurements resolve the surrounding nebula clearly, and Fourier methods are used to match the effective beam profiles at these wavelengths. This allows the radial distribution of temperature and dust column density to be derived at a diffraction limited spatial resolution of 23 arcsec (0.1 pc). Evidence for heating of the S140 molecular cloud by a nearby ionization front is established, and the dissociation of molecules inside the ionization front is spatially well correlated with the heating of the dust. The far-infrared spectral distribution of the three near-infrared sources within 10 arcsesc of the cluster center is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perdian, D.C.; Cha, Sangwon; Oh, Jisun
2010-03-18
Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations atmore » the cellular level.« less
The power of exact conditions in electronic structure theory
NASA Astrophysics Data System (ADS)
Bartlett, Rodney J.; Ranasinghe, Duminda S.
2017-02-01
Once electron correlation is included in an effective one-particle operator, one has a correlated orbital theory (COT). One such theory is Kohn-Sham density functional theory (KS-DFT), but there are others. Such methods have the prospect to redefine traditional Molecular Orbital (MO) theory by building a quantitative component upon its conceptual framework. This paper asks the question what conditions should such a theory satisfy and can this be accomplished? One such condition for a COT is that the orbital eigenvalues should satisfy an ionization theorem that generalizes Koopmans' approximation to the exact principal ionization potentials for every electron in a molecule. Guided by this principle, minimal parameterizations of KS-DFT are made that provide a good approximation to a quantitative MO theory.
HF propagation results from the Metal Oxide Space Cloud (MOSC) experiment
NASA Astrophysics Data System (ADS)
Joshi, Dev; Groves, Keith M.; McNeil, William; Carrano, Charles; Caton, Ronald G.; Parris, Richard T.; Pederson, Todd R.; Cannon, Paul S.; Angling, Matthew; Jackson-Booth, Natasha
2017-06-01
With support from the NASA sounding rocket program, the Air Force Research Laboratory launched two sounding rockets in the Kwajalein Atoll, Marshall Islands in May 2013 known as the Metal Oxide Space Cloud experiment. The rockets released samarium metal vapor at preselected altitudes in the lower F region that ionized forming a plasma cloud. Data from Advanced Research Project Agency Long-range Tracking and Identification Radar incoherent scatter radar and high-frequency (HF) radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. The HF radio wave ray-tracing toolbox PHaRLAP along with ionospheric models constrained by electron density profiles measured with the ALTAIR radar have been used to successfully model the effects of the cloud on HF propagation. Up to three new propagation paths were created by the artificial plasma injections. Observations and modeling confirm that the small amounts of ionized material injected in the lower F region resulted in significant changes to the natural HF propagation environment.
Laser-driven relativistic electron beam interaction with solid dielectric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.
2012-07-30
The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phasemore » shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.« less
Multi-fluid Approach to High-frequency Waves in Plasmas. III. Nonlinear Regime and Plasma Heating
NASA Astrophysics Data System (ADS)
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume
2018-03-01
The multi-fluid modeling of high-frequency waves in partially ionized plasmas has shown that the behavior of magnetohydrodynamic waves in the linear regime is heavily influenced by the collisional interaction between the different species that form the plasma. Here, we go beyond linear theory and study large-amplitude waves in partially ionized plasmas using a nonlinear multi-fluid code. It is known that in fully ionized plasmas, nonlinear Alfvén waves generate density and pressure perturbations. Those nonlinear effects are more pronounced for standing oscillations than for propagating waves. By means of numerical simulations and analytical approximations, we examine how the collisional interaction between ions and neutrals affects the nonlinear evolution. The friction due to collisions dissipates a fraction of the wave energy, which is transformed into heat and consequently raises the temperature of the plasma. As an application, we investigate frictional heating in a plasma with physical conditions akin to those in a quiescent solar prominence.
IONIZED GAS IN THE FIRST 10 kpc OF THE INTERSTELLAR GALACTIC HALO: METAL ION FRACTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howk, J. Christopher; Consiglio, S. Michelle, E-mail: jhowk@nd.edu, E-mail: smconsiglio@ucla.edu
2012-11-10
We present direct measures of the ionization fractions of several sulfur ions in the Galactic warm ionized medium (WIM). We obtained high-resolution ultraviolet absorption-line spectroscopy of post-asymptotic giant branch stars in the globular clusters Messier 3 [(l, b) = (42.{sup 0}2, +78.{sup 0}7), d = 10.2 kpc, and z = 10.0 kpc] and Messier 5 [(l, b) = (3.{sup 0}9, +46.{sup 0}8), d = 7.5 kpc, and z = +5.3 kpc] with the Hubble Space Telescope and Far Ultraviolet Spectroscopic Explorer to measure, or place limits on, the column densities of S I, S II, S III, S IV, Smore » VI, and H I. These clusters also house millisecond pulsars, whose dispersion measures give an electron column density from which we infer the H II column in these directions. We find fractions of S{sup +2} in the WIM for the M 3 and M 5 sight lines x(S{sup +2}) {identical_to} N(S{sup +2})/N(S) = 0.33 {+-} 0.07 and 0.47 {+-} 0.09, respectively, with variations perhaps related to location. With negligible quantities of the higher ionization states, we conclude that S{sup +} and S{sup +2} account for all of the S in the WIM. We extend the methodology to study the ion fractions in the warm and hot ionized gas of the Milky Way, including the high ions Si{sup +3}, C{sup +3}, N{sup +4}, and O{sup +5}. The vast majority of the Galactic ionized gas is warm (T {approx} 10{sup 4} K) and photoionized (the WIM) or very hot (T > 4 Multiplication-Sign 10{sup 5} K) and collisionally ionized. The common tracer of ionized gas beyond the Milky Way, O{sup +5}, traces <1% of the total ionized gas mass of the Milky Way.« less
The Mass and Absorption Columns of Galactic Gaseous Halos
NASA Astrophysics Data System (ADS)
Qu, Zhijie; Bregman, Joel N.
2018-01-01
The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass <~ 3 * 10^11 M_Sun, while for more massive galaxies, the O VI is from the cooling-down medium from higher temperature materials (collisional ionized). As higher ionization states, Mg X and Ne VIII are also consistent with observations with the column density of 10^13.5 - 10^14.0 cm^-2, however, the absorber-galaxy pair sample is few to constrain the connection with the galaxy. Based on our calculation, such a gaseous halo cannot close the census of baryonic materials in the galaxy, which shows the same tendency as the baryonic fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.
The Pulsed High Density Experiment (PHDX) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slough, John P.; Andreason, Samuel
The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasmamore » ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.« less
An investigation of the ionospheric D region at sunrise
NASA Technical Reports Server (NTRS)
Turco, R. P.; Sechrist, C. F., Jr.
1970-01-01
The growth over sunrise of the C and D layers of the ionosphere is investigated. The model which is analyzed includes the negative ion species O(-), O2(-), O3(-), O4(-), NO3(-), CO3(-), and CO4(-). Ionization sources due to galactic cosmic rays, precipitated electrons, ionization of NO by scattered Lyman alpha radiation, and the direct solar radiation ionization are also included. The photodetachment of most of the negative ions is discussed, as well as the time variation of these parameters. The time variations of the electron, negative ion, and positive ion densities are calculated over sunrise. From these data, the mesospheric C and D layer development is plotted. Several model parameters are varied until the best agreement with experimentally determined electron densities is obtained. The results are discussed in light of several atmospheric parameters including the O and NO concentrations and the electron-ion recombination coefficient.
Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets
NASA Technical Reports Server (NTRS)
Hartigan, Patrick; Morse, Jon A.; Raymond, John
1994-01-01
In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.
Ionization of Interstellar Hydrogen
NASA Astrophysics Data System (ADS)
Whang, Y. C.
1996-09-01
Interstellar hydrogen can penetrate through the heliopause, enter the heliosphere, and may become ionized by photoionization and by charge exchange with solar wind protons. A fluid model is introduced to study the flow of interstellar hydrogen in the heliosphere. The flow is governed by moment equations obtained from integration of the Boltzmann equation over the velocity space. Under the assumption that the flow is steady axisymmetric and the pressure is isotropic, we develop a method of solution for this fluid model. This model and the method of solution can be used to study the flow of neutral hydrogen with various forms of ionization rate β and boundary conditions for the flow on the upwind side. We study the solution of a special case in which the ionization rate β is inversely proportional to R2 and the interstellar hydrogen flow is uniform at infinity on the upwind side. We solve the moment equations directly for the normalized density NH/NN∞, bulk velocity VH/VN∞, and temperature TH/TN∞ of interstellar hydrogen as functions of r/λ and z/λ, where λ is the ionization scale length. The solution is compared with the kinetic theory solution of Lallement et al. The fluid solution is much less time-consuming than the kinetic theory solutions. Since the ionization rate for production of pickup protons is directly proportional to the local density of neutral hydrogen, the high-resolution solution of interstellar neutral hydrogen obtained here will be used to study the global distribution of pickup protons.
Fluid modeling of a high-voltage nanosecond pulsed xenon microdischarge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levko, Dmitry; Raja, Laxminarayan L.
2016-07-15
A computational modeling study of high-voltage nanosecond pulsed microdischarge in xenon gas at 10 atm is presented. The discharge is observed to develop as two streamers originating from the cathode and the anode, and propagating toward each other until they merge to form a single continuous discharge channel. The peak plasma density obtained in the simulations is ∼10{sup 24 }m{sup −3}, i.e., the ionization degree of plasma does not exceed 1%. The influence of the initial gas pre-ionization is established. It is seen that an increase in the seeded plasma density results in an increase in the streamer propagation velocity andmore » an increase in the plasma density obtained after the merging of two streamers.« less
The formation of molecules in interstellar clouds from singly and multiply ionized atoms
NASA Technical Reports Server (NTRS)
Langer, W. D.
1978-01-01
The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.
The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi
We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less
NASA Astrophysics Data System (ADS)
Mesa-Delgado, A.; Núñez-Díaz, M.; Esteban, C.; López-Martín, L.; García-Rojas, J.
2011-10-01
We present integral field spectroscopy of two selected zones in the Orion nebula obtained with the Potsdam Multi-Aperture Spectrophotometer, covering the optical spectral range from 3500 to 7200 Å and with a spatial resolution of 1 arcsec. The observed zones are located on the prominent Bright bar and on the brightest area at the north-east of the Orion south cloud, both containing remarkable ionization fronts. We obtain maps of emission-line fluxes and ratios, electron density and temperatures, and chemical abundances. We study the ionization structure and morphology of both fields, whose ionization fronts show different inclination angles with respect to the plane of the sky. We find that the maps of electron density, O+/H+ and O/H ratios show a rather similar structure. We interpret this as produced by the strong dependence on density of the [O II] lines used to derive the O+ abundance, and that our nominal values of electron density - derived from the [S II] line ratio - may be slightly higher than the appropriate value for the O+ zone. We measure the faint recombination lines of O II in the field at the north-east of the Orion south cloud, allowing us to explore the so-called abundance discrepancy problem. We find a rather constant abundance discrepancy across the field and a mean value similar to that determined in other areas of the Orion nebula, indicating that the particular physical conditions of this ionization front do not contribute to this discrepancy. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
MacDonald, M. J.; Gorkhover, T.; Bachmann, B.; ...
2016-08-08
Atomic clusters can serve as ideal model systems for exploring ultrafast (~100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally-resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities and ionization. Single shot x-ray Thomson scatterings signals were recorded at 120 Hz using a crystal spectrometer in combination withmore » a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. As a result, such measurements are important for understanding collective effects in laser-matter interactions on femtosecond timescales, opening new routes for the development of schemes for their ultrafast control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Gorkhover, T.
2016-11-15
Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination withmore » a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.« less
Diagnostic studies of ion beam formation in inductively coupled plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Jenee L.
2015-01-01
This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 10 15 cm -3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M 2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO +)more » ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.« less
Appearance of ionization instability in a low-voltage arc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobelevskii, A.V.; Nastoyashchii, A.F.
1986-09-01
The conditions for the appearance of the ionization instability in a low-voltage arc are examined. On the basis of the model of a Knudsen arc a criterion is obtained for the appearance of the instability and the possible types of dispersion relations are analyzed. The possibility of ionization instability in a short arc in cesium vapor is discussed. The results of a numerical investigation of the appearance of ionization instability, including the nonlinear stage, in a two-dimensional formulation of the problem are presented. When the fluctuations in the elec tron temperature are in antiphase with the density fluctuations, stable (long-lived)more » two-dimensional structures, which are characterized by a high degree of modulation of the degree of ionization of the gas, can form.« less
Spectrophotometry of six broad absorption line QSOs
NASA Technical Reports Server (NTRS)
Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.
1987-01-01
Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.
Radiation-induced gene expression in the nematode Caenorhabditis elegans
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.; Jones, Tamako A.; Chesnut, Aaron; Smith, Anna L.
2002-01-01
We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by RT-PCR differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density.
OT2_pgolds01_6: Herschel [NII] Observations to Define the Source of [CII] Emission
NASA Astrophysics Data System (ADS)
Goldsmith, P.
2011-09-01
The 158 micron line of ionized carbon is the strongest single long-wavelength emission feature from the interstellar medium and is the most important coolant of gas in which hydrogen is in atomic form. It is a key determinant of the evolution of these largely atomic regions into denser, cooler molecular clouds in which new stars are formed, and is widely used as a tracer of star formation in the Milky Way and other galaxies. There is, however, an ongoing, serious controversy about the origin of the [CII] emission, which has been asserted to come from the extended low-density warm interstellar medium, but has more generally been associated with the primarily molecular photon dominated regions (PDRs) intimately associated with massive, young stars. We propose a combined HIFI and PACS study of the two far-infrared [NII] fine structure lines in order to resolve the important question of the fraction of CII emission that arises in ionized gas. Specifically, we will (1) utilize the fact that due to its ionization potential NII is found only in HII regions, and with PACS 122 and 205 micron observations, determine electron densities in a sample of such regions in the Galactic plane; (2) utilize available data on radio free-free and H-alpha emission to determine the NII column densities and from this the CII column densities in the HII regions; (3) use the electron densities to determine the fraction of CII emission arising in the ionized interstellar medium. These observations will be carried out at 150 of the positions in the Galactic plane observed in [CII] by the GOT-C+ project. We will also carry out HIFI observations of 10 selected positions in the 205 micron line to determine spectral characteristics of the NII emission line, which with CII, CI, and CO profiles already in hand will serve as a further discriminant among the proposed sources of CII emission.
NASA Astrophysics Data System (ADS)
Joussot, Romain; Lago, Viviana; Parisse, Jean-Denis
2014-12-01
This paper describes experimental and numerical investigations focused on the shock wave modification, induced by a dc glow discharge, of a Mach 2 flow under rarefied regime. The model under investigation is a flat plate equipped with a plasma actuator composed of two electrodes. The glow discharge is generated by applying a negative potential to the upstream electrode, enabling the creation of a weakly ionized plasma. The natural flow (i.e. without the plasma) exhibits a thick laminar boundary layer and a shock wave with a hyperbolic shape. Images of the flow obtained with an ICCD camera revealed that the plasma discharge induces an increase in the shock wave angle. Thermal effects (volumetric, and at the surface) and plasma effects (ionization, and thermal non-equilibrium) are the most relevant processes explaining the observed modifications. The effect induced by the heating of the flat plate surface is studied experimentally by replacing the upstream electrode by a heating element, and numerically by modifying the thermal boundary condition of the model surface. The results show that for a similar temperature distribution over the plate surface, modifications induced by the heating element are lower than those produced by the plasma. This difference shows that other effects than purely thermal effects are involved with the plasma actuator. Measurements of the electron density with a Langmuir probe highlight the fact that the ionization degree plays an important role into the modification of the flow. The gas properties, especially the isentropic exponent, are indeed modified by the plasma above the actuator and upstream the flat plate. This leads to a local modification of the flow conditions, inducing an increase in the shock wave angle.
Energetic electrons in the midlatitude nighttime E-region
NASA Technical Reports Server (NTRS)
Smith, L. G.; Geller, M. A.; Voss, H. D.
1974-01-01
An analysis of electron density profiles in the upper E region near midnight at Wallops Island is shown to indicate that the ionization rate is very strongly correlated with geomagnetic activity. This suggests that energetic electrons are the principal source of ionization at midlatitudes in the upper E region near midnight, even under rather quiet geomagnetic conditions.
Equatorial ion composition, 140-200 km, based on Atmosphere Explorer E data
NASA Technical Reports Server (NTRS)
Miller, N. J.; Grebowsky, J. M.; Hedin, A. E.; Spencer, N. W.
1993-01-01
We have used in situ measurements of ion composition and horizontal winds, taken from equatorial orbiting Atmosphere Explorer E in eccentric orbit during 1975-1976 to investigate the bottomside ionosphere at altitudes 140-200 km. Representative daytime altitude profiles of ionization were stable against wide variations in horizontal wind patterns. Special features that sometimes appeared in the structured nightside ionization were apparent ion composition waves, intermediate layers of enhanced ionization, and ionization depletions similar to equatorial ionization bubbles. Apparent ion composition waves displayed a horizontal wave length of about 650 km. Enhanced layers of ionization appeared to be newly separated from the bottomside midnight F layer; its ions were primarily NO(+) and O2(+) without significant densities of metallic ions, an indication that metallic ions are not required to produce the layers at altitudes above 140 km. Equatorial ionization depletions were observed at lower altitudes than previously reported and displayed molecular ion depletions as well as O(+) depletions.
The remarkably high excitation planetary nebula GC 6537
Aller, Lawrence H.; Hung, Siek; Feibelman, Walter A.
1999-01-01
NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution ≈ 0.2 Å) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [Neiv] and [Nev] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations. PMID:10318889
The remarkably high excitation planetary nebula GC 6537.
Aller, L H; Hung, S; Feibelman, W A
1999-05-11
NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution approximately 0.2 A) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [NeIV] and [NeV] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations.
NASA Technical Reports Server (NTRS)
Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hampton, D. L.; Delamere, P. A.
1994-01-01
As part of the NASA Combined Release and Radiation Effects Satellite (CRRES) chemical release program in September 1990, two Ba and also one each Sr and Ca canisters of a boron-titanium thermite mixture, which vaporizes the element on ignition, were released near perigee after dusk in the South Pacific to study the critical velocity effect proposed by Alfven. The critical velocities of these three elements are 2.7, 3.5, and 5.4 km/s respectively, all well below the orbital velocity of 9.4 km/s. On September 10, 1990, a Sr and Ba pair (G-13, or critical ionization velocity (CIV) I) was released near Rarotonga at approximately 515 km altitude in a background electron density of 3.4 x 10(exp 6)/cu cm. On September 14, 1990, G-14 or CIV II released a Ca and Ba pair west of New Caledonia near 595 km at an electron density of 1.5 x 10(exp 6)/cu cm. Ions of all three elements were observed with low-light level imagers from two aircraft after they had transited up the magnetic field lines into the sunlight. Emissions from the spherically expanding neutral gas shells below the solar terminator, observed with cameras filtered for the Ba(+) ion line at 4554 A and also in unfiltered imagers for approximately 15 s after release, are probably due to excitation by hot electrons created in the CIV process. The ions created clearly lost much of their energy, which we now show can be explained by elastic collisions: Ba(+) + O. Inventories of the observed ions indicate yields of 0.15% and 1.84% for Ba in the first and second experiments, 0.02% for Sr and 0.27% for Ca. Ionization from all the releases continued along the satellite trajectory much longer (greater than 45 s) than expected for a CIV process. The ion production along the satellite track versus time typically shows a rapid rise to a peak in a few seconds followed by an exponential decrease to a level essentially constant rate. The characteristic distances for CIV I and II are 47 and 62 km, respectively. We interpret the early time rise and exponential fall to be due to CIV ionization, of 0.014% (CIV I) and 0.40% (CIV II) for the Ba releases. The later ions produced at a constant rate probably have origins from other such processes as stripping and associative ionization collisions with atmospheric constituents primarily O, and charge exchange with O(+), He(+), and H(+). We suggest that the much larger Ba ionization rate in CIV II than CIV I is due to the fact that the release occurred in the peak Ca density where hot electrons were already present.
Densities and filling factors of the diffuse ionized gas in the Solar neighbourhood
NASA Astrophysics Data System (ADS)
Berkhuijsen, E. M.; Müller, P.
2008-10-01
Aims: We analyse electron densities and filling factors of the diffuse ionized gas (DIG) in the Solar neighbourhood. Methods: We have combined dispersion measures and emission measures towards 38 pulsars at distances known to better than 50%, from which we derived the mean density in clouds, N_c, and their volume filling factor, F_v, averaged along the line of sight. The emission measures were corrected for absorption by dust and contributions from beyond the pulsar distance. Results: The scale height of the electron layer for our sample is 0.93± 0.13 kpc and the midplane electron density is 0.023± 0.004 cm-3, in agreement with earlier results. The average density along the line of sight is < n_e> = 0.018± 0.002 cm-3 and is nearly constant. Since < n_e> = F_vN_c, an inverse relationship between Fv and Nc is expected. We find F_v(N_c) = (0.011± 0.003) N_c-1.20± 0.13, which holds for the ranges N_c= 0.05-1 cm-3 and F_v= 0.4-0.01. Near the Galactic plane the dependence of Fv on Nc is significantly stronger than away from the plane. Fv does not systematically change along or perpendicular to the Galactic plane, but the spread about the mean value of 0.08± 0.02 is considerable. The total pathlength through the ionized regions increases linearly to about 80 pc towards |z| = 1 kpc. Conclusions: Our study of Fv and Nc of the DIG is the first one based on a sample of pulsars with known distances. We confirm the existence of a tight, nearly inverse correlation between Fv and Nc in the DIG. The exact form of this relation depends on the regions in the Galaxy probed by the pulsar sample. The inverse F_v-Nc relation is consistent with a hierarchical, fractal density distribution in the DIG caused by turbulence. The observed near constancy of < n_e> then is a signature of fractal structure in the ionized medium, which is most pronounced outside the thin disk.
Heater-induced ionization inferred from spectrometric airglow measurements
NASA Astrophysics Data System (ADS)
Hysell, D. L.; Miceli, R. J.; Varney, R. H.; Schlatter, N.; Huba, J. D.
2013-12-01
Spectrographic airglow measurements were made during an ionospheric modification experiment at HAARP on March 12, 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert [1968, 1970], we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with significant induced ionization in view of the spatial intermittency of the airglow.
Increased upstream ionization due to formation of a double layer.
Thakur, S Chakraborty; Harvey, Z; Biloiu, I A; Hansen, A; Hardin, R A; Przybysz, W S; Scime, E E
2009-01-23
We report observations that confirm a theoretical prediction that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The theoretical model argues that the increased ionization is needed to balance the difference in diffusive losses upstream and downstream of the expansion region. In our expanding helicon source experiments, we find that the upstream plasma density increases sharply at the same antenna frequency at which the double layer appears.
Shapiro, Paul R; Mao, Yi; Iliev, Ilian T; Mellema, Garrelt; Datta, Kanan K; Ahn, Kyungjin; Koda, Jun
2013-04-12
The 21 cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density, and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization (≲40% ionized), but not late (≳80% ionized).
Assessment of nonequilibrium radiation computation methods for hypersonic flows
NASA Technical Reports Server (NTRS)
Sharma, Surendra
1993-01-01
The present understanding of shock-layer radiation in the low density regime, as appropriate to hypersonic vehicles, is surveyed. Based on the relative importance of electron excitation and radiation transport, the hypersonic flows are divided into three groups: weakly ionized, moderately ionized, and highly ionized flows. In the light of this division, the existing laboratory and flight data are scrutinized. Finally, an assessment of the nonequilibrium radiation computation methods for the three regimes in hypersonic flows is presented. The assessment is conducted by comparing experimental data against the values predicted by the physical model.
Reduction of the ionization energy for 1s-electrons in dense aluminum plasmas
NASA Astrophysics Data System (ADS)
Lin, C.; Reinholz, H.; Röpke, G.
2017-02-01
The properties of a bound multi-electron system immersed in a plasma environment are strongly modified by the surrounding plasma. In particular, the modification of the ionization energy is described by the electronic self-energy within the framework of the quantum statistical theory. We present the energy shift of the eigenstates and the lowering of the continuum edge of free electrons in a plasma. The reduction of the ionization potential is determined by their difference. This ionization potential depression for the 1s-levels in dense aluminum plasmas is calculated. Comparisons with other theories and the experimental data are shown for aluminum plasma at solid density 2.7 g/cm3.
Large Time Projection Chambers for Rare Event Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heffner, M
The Time Projection Chamber (TPC) concept [add ref to TPC section] has been applied to many projects outside of particle physics and the accelerator based experiments where it was initially developed. TPCs in non-accelerator particle physics experiments are principally focused on rare event detection (e.g. neutrino and darkmater experiments) and the physics of these experiments can place dramatically different constraints on the TPC design (only extensions to the traditional TPCs are discussed here). The drift gas, or liquid, is usually the target or matter under observation and due to very low signal rates a TPC with the largest active massmore » is desired. The large mass complicates particle tracking of short and sometimes very low energy particles. Other special design issues include, efficient light collection, background rejection, internal triggering and optimal energy resolution. Backgrounds from gamma-rays and neutrons are significant design issues in the construction of these TPCs. They are generally placed deep underground to shield from cosmogenic particles and surrounded with shielding to reduce radiation from the local surroundings. The construction materials have to be carefully screened for radiopurity as they are in close contact with the active mass and can be a signification source of background events. The TPC excels in reducing this internal background because the mass inside the fieldcage forms one monolithic volume from which fiducial cuts can be made ex post facto to isolate quiet drift mass, and can be circulated and purified to a very high level. Self shielding in these large mass systems can be significant and the effect improves with density. The liquid phase TPC can obtain a high density at low pressure which results in very good self-shielding and compact installation with a lightweight containment. The down sides are the need for cryogenics, slower charge drift, tracks shorter than the typical electron diffusion, lower energy resolution (e.g. xenon) and limited charge readout options. Slower charge drift requires long electron lifetimes placing strict limits on the oxygen and other impurities with high electron affinity. A significant variation of the liquid phase TPC, that improves the charge readout, is the dual-phase TPC where a gas phase layer is formed above the liquid into which the drifting electrons are extracted and amplified, typically with electroluminescence. The successful transfer of electrons through the phase boundary requires careful control of its position and setting up an appropriate electric field. A high pressure gas phase TPC has no cryogenics and density is easily optimized for the signal, but a large heavy pressure vessel is required. Although shelf shielding is reduced, it can in some cases approach that of the liquid phase; in xenon at 50atm the density is about half that of water or about 1/6 of liquid xenon. A significant feature of high pressure xenon gas is the energy resolution. Below a density of about 0.5g/cc the intrinsic resolution is only a few times that of high purity germanium. A neutrino-less double beta decay (0{nu}2{beta}) TPC operated below this density limit could enjoy excellent energy resolution and maintain particle tracking for background rejection. An observable interaction with the TPC results in a charged particle that travels in the drift matter exciting and ionizing the atoms until the initial energy is converted into ionization, scintillation, or heat with relatively large fluctuations around a mean distribution. Rare event TPCs can be designed to detect scintillation light as well as charge to exploit the anti-correlation to improve energy resolution and/or signal to noise. An electric drift field separates the electrons and positive ions from the ionization although the separation is not complete and some electrons are captured, exciting atoms and releasing more light than the primary excitation alone. The average partition between the scintillation and ionization can be manipulated to increase the ionization (at a loss of scintillation) by a number of methods such as, increasing the strength of the electric field up to a saturation of the ionization yield, increasing the temperature to enhance the diffusion of the ionized electrons, and adding dopants such as triethylamine that can be photoionized by the scintillation photons releasing more ionization. Scintillation light is typically collected with photomultiplier tubes (PMTs) and avalanche photo diodes (APDs) although any fast (compared to the ionization drift speed) light collector capable of detecting the typically UV photons, maintaining high radiopurity and perhaps withstanding pressure would work. CCDs are slow and therefore only record 2 dimensions integrating over the time direction, some of which can be recovered with a few PMTs.« less
Measuring the dependence of the decay curve on the electron energy deposit in NaI(Tl)
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Bizarri, G.; Cherepy, N. J.; Hull, G.; Moses, W. W.; Payne, S. A.
2011-08-01
We report on the first measurement of the decay times of NaI(Tl) as a function of the deposited electron energy. It has been suggested that the decay curve depends on the ionization density, which is correlated with the electron energy deposit in the scintillator. The ionization creates excitation states, which can decay radiatively and non-radiatively through a number of competing processes. As a result, the rate at which the excitation decays depends on the ionization density. A measurement of the decay curve as a function of the ionization density will allow us to probe the kinetic rates of the competing processes. The Scintillator Light Yield Non-proportionality Characterization Instrument (SLYNCI) measures the electron response of scintillators utilizing fast sampling ADCs to digitize the raw signals from the detectors, and so can provide a measurement of the light pulse shape from the scintillator. Using data collected with the SLYNCI instrument, the intrinsic scintillation profile is extracted on an event-by-event basis by deconvolving the raw signal with the impulse response of the system. Scintillation profiles with the same electron energy deposit are summed to obtain decay curves as a function of the deposited electron energy. The decay time constants are obtained by fitting the decay curves with a two-component exponential decay. While a slight dependence of the decay time constants on the electron energy deposit is observed, the results are not statistically significant.
Fast Ionized X-Ray Absorbers in AGNs
NASA Technical Reports Server (NTRS)
Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.
2016-01-01
We investigate the physics of the X-ray ionized absorbers often identified as warm absorbers (WAs) and ultra-fast outflows (UFOs) in Seyfert AGNs from spectroscopic studies in the context of magnetically-driven accretion-disk wind scenario. Launched and accelerated by the action of a global magnetic field anchored to an underlying accretion disk around a black hole, outflowing plasma is irradiated and ionized by an AGN radiation field characterized by its spectral energy density (SED). By numerically solving the Grad-Shafranov equation in the magnetohydrodynamic (MHD) framework, the physical property of the magnetized disk-wind is determined by a wind parameter set, which is then incorporated into radiative transfer calculations with xstar photoionization code under heating-cooling equilibrium state to compute the absorber's properties such as column density N(sub H), line-of-sight (LoS) velocity v, ionization parameter xi, among others. Assuming that the wind density scales as n varies as r(exp. -1), we calculate theoretical absorption measure distribution (AMD) for various ions seen in AGNs as well as line spectra especially for the Fe K alpha absorption feature by focusing on a bright quasar PG 1211+143 as a case study and show the model's plausibility. In this note we demonstrate that the proposed MHD-driven disk-wind scenario is not only consistent with the observed X-ray data, but also help better constrain the underlying nature of the AGN environment in a close proximity to a central engine.
A quantum relaxation-time approximation for finite fermion systems
NASA Astrophysics Data System (ADS)
Reinhard, P.-G.; Suraud, E.
2015-03-01
We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.
NASA Technical Reports Server (NTRS)
Lamers, H. J. G. L. M.; Gathier, R.; Snow, T. P.
1980-01-01
From a study of the UV lines in the spectra of 25 stars from 04 to B1, the empirical relations between the mean density in the wind and the ionization fractions of O VI, N V, Si IV, and the excited C III (2p 3P0) level were derived. Using these empirical relations, a simple relation was derived between the mass-loss rate and the column density of any of these four ions. This relation can be used for a simple determination of the mass-loss rate from O4 to B1 stars.
CRIT II electric, magnetic, and density measurements within an ionizing neutral stream
NASA Technical Reports Server (NTRS)
Swenson, C. M.; Kelley, M. C.; Primdahl, F.; Baker, K. D.
1990-01-01
Measurements from rocket-borne sensors inside a high-velocity neutral barium beam show a-factor-of-six increase in plasma density in a moving ionizing front. This region was colocated with intense fluctuating electric fields at frequencies well under the lower hybrid frequency for a barium plasma. Large quasi-dc electric and magnetic field fluctuations were also detected with a large component of the current and the electric field parallel to B(0). An Alfven wave with a finite electric field component parallel to the geomagnetic field was observed to propagate along B(0), where it was detected by an instrumented subpayload.
NASA Technical Reports Server (NTRS)
Lippmann, S.; Finkenthal, M.; Huang, L. K.; Moos, H. W.; Stratton, B. C.; Yu, T. L.; Bhatia, A. K.
1987-01-01
Calcium was introduced into the TEXT tokamak, and its spectral emission was recorded in the 50-360 A range by an absolutely calibrated grazing incidence spectrometer. These observations of highly ionized species of calcium at known conditions of plasma electron temperature and density allow testing of line brightness ratio predictions based on theoretical values of temperature-dependent electron excitation rates. The confirmation of the expected ratios in Be I-like to O I-like calcium allows more confident use of these ratios as a density diagnostic of remote astrophysical sources such as solar flares.
Study of Pulsed vs. RF Plasma Properties for Surface Processing Applications
NASA Astrophysics Data System (ADS)
Tang, Ricky; Hopkins, Matthew; Barnat, Edward; Miller, Paul
2015-09-01
The ability to manipulate the plasma parameters (density, E/N) was previously demonstrated using a double-pulsed column discharge. Experiments extending this to large-surface plasmas of interest to the plasma processing community were conducted. Differences between an audio-frequency pulsed plasma and a radio-frequency (rf) discharge, both prevalent in plasma processing applications, were studied. Optical emission spectroscopy shows higher-intensity emission in the UV/visible range for the pulsed plasma comparing to the rf plasma at comparable powers. Data suggest that the electron energy is higher for the pulsed plasma leading to higher ionization, resulting in increased ion density and ion flux. Diode laser absorption measurements of the concentration of the 1S5 metastable and 1S4 resonance states of argon (correlated with the plasma E/N) provide comparisons between the excitation/ionization states of the two plasmas. Preliminary modeling efforts suggest that the low-frequency polarity switch causes a much more abrupt potential variation to support interesting transport phenomena, generating a ``wave'' of higher temperature electrons leading to more ionization, as well as ``sheath capture'' of a higher density bolus of ions that are then accelerated during polarity switch.
RF Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.
2003-10-01
Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.
Ionization Efficiency in the Dayside Martian Upper Atmosphere
NASA Astrophysics Data System (ADS)
Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.
2018-04-01
Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.
Spontaneous-Desorption Ionizer for a TOF-MS
NASA Technical Reports Server (NTRS)
Schultz, J. Albert
2006-01-01
A time-of-flight mass spectrometer (TOF-MS) like the one mentioned in the immediately preceding article has been retrofitted with an ionizer based on a surface spontaneous-desorption process. This ionizer includes an electron multiplier in the form of a microchannel plate (MCP). Relative to an ionizer based on a hot-filament electron source, this ionizer offers advantages of less power consumption and greater mechanical ruggedness. The current density and stability characteristics of the electron emission of this ionizer are similar to those of a filament-based ionizer. In tests of various versions of this ionizer in the TOF-MS, electron currents up to 100 nA were registered. Currents of microamperes or more - great enough to satisfy requirements in most TOFMS applications - could be obtained by use of MCPs different from those used in the tests, albeit at the cost of greater bulk. One drawback of this ionizer is that the gain of the MCP decreases as a function of the charge extracted thus far; the total charge that can be extracted over the operational lifetime is about 1 coulomb. An MCP in the ion-detector portion of the TOF-MS is subject to the same limitation.
Ion density evolution in a high-power sputtering discharge with bipolar pulsing
NASA Astrophysics Data System (ADS)
Britun, N.; Michiels, M.; Godfroid, T.; Snyders, R.
2018-06-01
Time evolution of sputtered metal ions in high power impulse magnetron sputtering (HiPIMS) discharge with a positive voltage pulse applied after a negative one (regime called "bipolar pulse HiPIMS"—BPH) is studied using 2-D density mapping. It is demonstrated that the ion propagation dynamics is mainly affected by the amplitude and duration of the positive pulse. Such effects as ion repulsion from the cathode and the ionization zone shrinkage due to electron drift towards the cathode are clearly observed during the positive pulse. The BPH mode also alters the film crystallographic structure, as observed from X-ray diffraction analysis.
Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field
NASA Astrophysics Data System (ADS)
Chen, Hsiao-Wen; Johnson, Sean D.; Zahedy, Fakhri S.; Rauch, Michael; Mulchaey, John S.
2017-06-01
Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.
Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsiao-Wen; Zahedy, Fakhri S.; Johnson, Sean D.
Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition tomore » gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, Shamus A.; Thakkar, Ajit J., E-mail: ajit@unb.ca
2014-08-21
Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.
Blair, Shamus A; Thakkar, Ajit J
2014-08-21
Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.
A Mini-BAL Outflow at 900 pc from the Central Source: VLT/X-shooter Observations
NASA Astrophysics Data System (ADS)
Xu, Xinfeng; Arav, Nahum; Miller, Timothy; Benn, Chris
2018-05-01
We determine the physical conditions and location of the outflow material seen in the mini-BAL quasar SDSS J1111+1437 (z = 2.138). These results are based on the analysis of a high S/N, medium-resolution VLT/X-shooter spectrum. The main outflow component spans the velocity range ‑1500 to ‑3000 km s‑1 and has detected absorption troughs from both high-ionization species: C IV, N V, O VI, Si IV, P V, and S IV; and low-ionization species: H I, C II, Mg II, Al II, Al III, Si II, and Si III. Measurements of these troughs allow us to derive an accurate photoionization solution for this absorption component: a hydrogen column density, {log}({N}{{H}})={21.47}-0.27+0.21 cm‑2 and ionization parameter, {log}({U}{{H}})=-{1.23}-0.25+0.20. Troughs produced from the ground and excited states of S IV combined with the derived {U}{{H}} value allow us to determine an electron number density of {log}({n}{{e}})={3.62}-0.11+0.09 cm‑3 and to obtain the distance of the ionized gas from the central source: R={880}-260+210 pc.
NASA Astrophysics Data System (ADS)
Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.
2018-06-01
The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.
Density PDFs of diffuse gas in the Milky Way
NASA Astrophysics Data System (ADS)
Berkhuijsen, E. M.; Fletcher, A.
2012-09-01
The probability distribution functions (PDFs) of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5∘ and |b|≥ 5∘ are considered separately. Our results provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.
Determination of structure parameters in strong-field tunneling ionization theory of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Songfeng; Jin Cheng; College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070
2010-03-15
In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wave function of the molecular orbital from which the electron is removed. The orbital wave functions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory. We show that the asymptotic wave function can be improved with an iteration method and after one iteration accurate asymptotic wave functions and structure parameters are determined. Withmore » the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.« less
The Origins of [C ii] Emission in Local Star-forming Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croxall, K. V.; Smith, J. D.; Pellegrini, E.
The [C ii] 158 μ m fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [C ii] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [C ii] emission remains unclear because C{sup +} can be found in multiple phases of the interstellar medium. Here we measure the fractions of [C ii] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [N ii] 205 μ m fine-structuremore » line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [C ii]/[N ii] 122 μ m. Using the FIR [C ii] and [N ii] emission detected by the KINGFISH (Key Insights on Nearby Galaxies: a Far- Infrared Survey with Herschel ) and Beyond the Peak Herschel programs, we show that 60%–80% of [C ii] emission originates from neutral gas. We find that the fraction of [C ii] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and has a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [C ii] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided.« less
OT2_jhewitt_2: Understanding Shock Oxygen Chemistry in Interacting Supernova Remnants
NASA Astrophysics Data System (ADS)
Hewitt, J.
2011-09-01
Supernova remnants interacting with dense moelcular clouds provide astrochemical laboratories to study heating and cooling of the dense ISM, shock chemistry, destruction and sputtering of dust, and the reformation of molecules. Water is expected to be a major coolant for shocks into dense gas, yet the number of remnants in which IR lines of hydroxyl and water are detected is very limited. We propose Herschel PACS, SPIRE and HIFI observations of three remnants with particularly high shocked gas densities, high dust and IR line luinosities, and extreme ionization environments. The scientific objectives of this proposal are: (1) to determine the abundance and excitation of oxygen-bearing molecules, and (2) to study the effects of variable ionization sources on oxygen chemistry in dense molecular gas shocked by powerful supernova remnant blast waves.
Perdian, D C; Cha, Sangwon; Oh, Jisun; Sakaguchi, Donald S; Yeung, Edward S; Lee, Young Jin
2010-04-30
Mass spectrometric imaging has been utilized to localize individual astrocytes and to obtain cholesterol populations at the single-cell level in laser desorption ionization (LDI) with colloidal silver. The silver ion adduct of membrane-bound cholesterol was monitored to detect individual cells. Good correlation between mass spectrometric and optical images at different cell densities indicates the ability to perform single-cell studies of cholesterol abundance. The feasibility of quantification is confirmed by the agreement between the LDI-MS ion signals and the results from a traditional enzymatic fluorometric assay. We propose that this approach could be an effective tool to study chemical populations at the cellular level. Published in 2010 by John Wiley & Sons, Ltd.
Mercury ion thruster research, 1977. [plasma acceleration
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1977-01-01
The measured ion beam divergence characteristics of two and three-grid, multiaperture accelerator systems are presented. The effects of perveance, geometry, net-to-total accelerating voltage, discharge voltage and propellant are examined. The applicability of a model describing doubly-charged ion densities in mercury thrusters is demonstrated for an 8-cm diameter thruster. The results of detailed Langmuir probing of the interior of an operating cathode are given and used to determine the ionization fraction as a function of position upstream of the cathode orifice. A mathematical model of discharge chamber electron diffusion and collection processes is presented along with scaling laws useful in estimating performance of large diameter and/or high specific impluse thrusters. A model describing the production of ionized molecular nitrogen in ion thrusters is included.
NASA Astrophysics Data System (ADS)
Thomas, Adam D.; Dopita, Michael A.; Kewley, Lisa J.; Groves, Brent A.; Sutherland, Ralph S.; Hopkins, Andrew M.; Blanc, Guillermo A.
2018-04-01
NebulaBayes is a new Bayesian code that implements a general method of comparing observed emission-line fluxes to photoionization model grids. The code enables us to extract robust, spatially resolved measurements of abundances in the extended narrow-line regions (ENLRs) produced by Active Galactic Nuclei (AGN). We observe near-constant ionization parameters but steeply radially declining pressures, which together imply that radiation pressure regulates the ENLR density structure on large scales. Our sample includes four “pure Seyfert” galaxies from the S7 survey that have extensive ENLRs. NGC 2992 shows steep metallicity gradients from the nucleus into the ionization cones. An inverse metallicity gradient is observed in ESO 138-G01, which we attribute to a recent gas inflow or minor merger. A uniformly high metallicity and hard ionizing continuum are inferred across the ENLR of Mrk 573. Our analysis of IC 5063 is likely affected by contamination from shock excitation, which appears to soften the inferred ionizing spectrum. The peak of the ionizing continuum E peak is determined by the nuclear spectrum and the absorbing column between the nucleus and the ionized nebula. We cannot separate variation in this intrinsic E peak from the effects of shock or H II region contamination, but E peak measurements nevertheless give insights into ENLR excitation. We demonstrate the general applicability of NebulaBayes by analyzing a nuclear spectrum from the non-active galaxy NGC 4691 using a H II region grid. The NLR and H II region model grids are provided with NebulaBayes for use by the astronomical community.
Time-Dependent Photoionization of Gaseous Nebulae: The Pure Hydrogen Case
NASA Technical Reports Server (NTRS)
Garcia, J.; Elhoussieny, E. E.; Bautista, M. A.; Kallman, Timothy R.
2013-01-01
We study the problem of time-dependent photoionization of low density gaseous nebulae subjected to sudden changes in the intensity of ionizing radiation. To this end, we write a computer code that solves the full timedependent energy balance, ionization balance, and radiation transfer equations in a self-consistent fashion for a simplified pure hydrogen case. It is shown that changes in the ionizing radiation yield ionizationthermal fronts that propagate through the cloud, but the propagation times and response times to such fronts vary widely and nonlinearly from the illuminated face of the cloud to the ionization front (IF). IFthermal fronts are often supersonic, and in slabs initially in pressure equilibrium such fronts yield large pressure imbalances that are likely to produce important dynamical effects in the cloud. Further, we studied the case of periodic variations in the ionizing flux. It is found that the physical conditions of the plasma have complex behaviors that differ from any steady-state solution. Moreover, even the time average of ionization and temperature is different from any steady-state case. This time average is characterized by overionization and a broader IF with respect to the steady-state solution for a mean value of the radiation flux. Around the time average of physical conditions there is a large dispersion in instantaneous conditions, particularly across the IF, which increases with the period of radiation flux variations. Moreover, the variations in physical conditions are asynchronous along the slab due to the combination of nonlinear propagation times for thermal frontsIFs and equilibration times.
Multiple neutral density measurements in the lower thermosphere with cold-cathode ionization gauges
NASA Astrophysics Data System (ADS)
Lehmacher, G. A.; Gaulden, T. M.; Larsen, M. F.; Craven, J. D.
2013-01-01
Cold-cathode ionization gauges were used for rocket-borne measurements of total neutral density and temperature in the aurorally forced lower thermosphere between 90 and 200 km. A commercial gauge was adapted as a low-cost instrument with a spherical antechamber for measurements in molecular flow conditions. Three roll-stabilized payloads on different trajectories each carried two instruments for measurements near the ram flow direction along the respective upleg and downleg segments of a flight path, and six density profiles were obtained within a period of 22 min covering spatial separations up to 200 km. The density profiles were integrated below 125 km to yield temperatures. The mean temperature structure was similar for all six profiles with two mesopause minima near 110 and 101 km, however, for the downleg profiles, the upper minimum was warmer and the lower minimum was colder by 20-30 K indicating significant variability over horizontal scales of 100-200 km. The upper temperature minimum coincided with maximum horizontal winds speeds, exceeding 170 m/s.
Distance determination to Broad Line Absorbers in AGN
NASA Astrophysics Data System (ADS)
Bautista, Manuel; Arav, N.; Dunn, J.; Edmonds, D.; Korista, K. T.; Moe, M.; Benn, C.; Ignacio, G.
2009-01-01
We present various techniques for the determination of the physical conditions (density, temperature, total hydrogen column density, and ionization structure), chemical composition, and distances of Broad Line Absorbers (BAL) to the central engine in AGN. We start by discussing various density diagnostics from absorption lines from species such as C II, Si II, and Fe III. On the other hand, lines from metastable levels Fe II are often affected by Bowen fluorescence by scattered C IV photons. Lines from metastable levels of Ni II are usually excited by continuum fluorescence and mostly sensitive to the strength of the radiation field shortward of the Lyman continuum and as such they cam be used as direct distance indicators. Further, we show how the total hydrogen density of the absorber, its ionization parameter and distance can be determined through photoionization modeling of the absorber. Finally, we present our results for outflows of three different quasars: QSO 2359-1241 and SDSS J0318-0600.
Zhang, Yanzeng; Krasheninnikov, S. I.
2017-09-29
The modified Hasegawa-Mima equation retaining all nonlinearities is investigated from the point of view of the formation of blobs. The linear analysis shows that the amplitude of the drift wave packet propagating in the direction of decreasing background plasma density increases and eventually saturates due to nonlinear effects. Nonlinear modification of the time averaged plasma density profile results in the formation of large amplitude modes locked in the radial direction, but still propagating in the poloidal direction, which resembles the experimentally observed chain of blobs propagating in the poloidal direction. Such specific density profiles, causing the locking of drift waves,more » could form naturally at the edge of tokamak due to a neutral ionization source. Thus, locked modes can grow in situ due to plasma instabilities, e.g., caused by finite resistivity. Furthermore, the modulation instability (in the poloidal direction) of these locked modes can result in a blob-like burst of plasma density.« less
Behavior of collisional sheath in electronegative plasma with q-nonextensive electron distribution
NASA Astrophysics Data System (ADS)
Borgohain, Dima Rani; Saharia, K.
2018-03-01
Electronegative plasma sheath is addressed in a collisional unmagnetized plasma consisting of q-nonextensive electrons, Boltzmann distributed negative ions and cold fluid positive ions. Considering the positive ion-neutral collisions and ignoring the effects of ionization and collisions between negative species and positive ions (neutrals), a modified Bohm sheath criterion and hence floating potential are derived by using multifluid model. Using the modified Bohm sheath criterion, the sheath characteristics such as spatial profiles of density, potential and net space charge density have been numerically investigated. It is found that increasing values of q-nonextensivity, electronegativity and collisionality lead to a decrease of the sheath thickness and an increase of the sheath potential and the net space charge density. With increasing values of the electron temperature to negative ion temperature ratio, the sheath thickness increases and the sheath potential as well as the net space charge density in the sheath region decreases.
Occurrence of the dayside three-peak density structure in the F2 and the topside ionosphere
NASA Astrophysics Data System (ADS)
Astafyeva, Elvira; Zakharenkova, Irina; Pineau, Yann
2016-07-01
In this work, we discuss the occurrence of the dayside three-peak electron density structure in the ionosphere. We first use a set of ground-based and satellite-borne instruments to demonstrate the development of a large-amplitude electron density perturbation at the recovery phase of a moderate storm of 11 October 2008. The perturbation developed in the F2 and low topside ionospheric regions over the American sector; it was concentrated on the north from the equatorial ionization anomaly (EIA) but was clearly separated from it. At the F2 region height, the amplitude of the observed perturbation was comparable or even exceeded that of the EIA. Further analysis of the observational data together with the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics model simulation results showed that a particular local combination of the thermospheric wind surges provided favorable conditions for the generation of the three-peak EIA structure. We further proceed with a statistical study of occurrence of the three-peak density structure in the ionosphere in general. Based on the analysis of 7 years of the in situ data from CHAMP satellite, we found that such three-peak density structure occurs sufficiently often during geomagnetically quiet time. The third ionization peak develops in the afternoon hours in the summer hemisphere at solstice periods. Based on analysis of several quiet time events, we conclude that during geomagnetically quiet time, the prevailing summer-to-winter thermospheric circulation acts in similar manner as the storm-time enhanced thermospheric winds, playing the decisive role in generation of the third ionization peak in the daytime ionosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppinga, D., E-mail: daniela.poppinga@uni-oldenburg.de; Schoenfeld, A. A.; Poppe, B.
Purpose: The purpose of this study is the correction of the lateral scanner artifact, i.e., the effect that, on a large homogeneously exposed EBT3 film, a flatbed scanner measures different optical densities at different positions along thex axis, the axis parallel to the elongated light source. At constant dose, the measured optical densitiy profiles along this axis have a parabolic shape with significant dose dependent curvature. Therefore, the effect is shortly called the parabola effect. The objective of the algorithm developed in this study is to correct for the parabola effect. Any optical density measured at given position x ismore » transformed into the equivalent optical density c at the apex of the parabola and then converted into the corresponding dose via the calibration of c versus dose. Methods: For the present study EBT3 films and an Epson 10000XL scanner including transparency unit were used for the analysis of the parabola effect. The films were irradiated with 6 MV photons from an Elekta Synergy accelerator in a RW3 slab phantom. In order to quantify the effect, ten film pieces with doses graded from 0 to 20.9 Gy were sequentially scanned at eight positions along thex axis and at six positions along the z axis (the movement direction of the light source) both for the portrait and landscape film orientations. In order to test the effectiveness of the new correction algorithm, the dose profiles of an open square field and an IMRT plan were measured by EBT3 films and compared with ionization chamber and ionization chamber array measurement. Results: The parabola effect has been numerically studied over the whole measuring field of the Epson 10000XL scanner for doses up to 20.9 Gy and for both film orientations. The presented algorithm transforms any optical density at positionx into the equivalent optical density that would be measured at the same dose at the apex of the parabola. This correction method has been validated up to doses of 5.2 Gy all over the scanner bed with 2D dose distributions of an open square photon field and an IMRT distribution. Conclusions: The algorithm presented in this study quantifies and corrects the parabola effect of EBT3 films scanned in commonly used commercial flatbed scanners at doses up to 5.2 Gy. It is easy to implement, and no additional work steps are necessary in daily routine film dosimetry.« less
Electron precipitation control of the Mars nightside ionosphere
NASA Astrophysics Data System (ADS)
Lillis, R. J.; Girazian, Z.; Mitchell, D. L.; Adams, D.; Xu, S.; Benna, M.; Elrod, M. K.; Larson, D. E.; McFadden, J. P.; Andersson, L.; Fowler, C. M.
2017-12-01
The nightside ionosphere of Mars is known to be highly variable, with densities varying substantially with ion species, solar zenith angle, solar wind conditions and geographic location. The factors that control its structure include neutral densities, day-night plasma transport, plasma temperatures, dynamo current systems driven by neutral winds, solar energetic particle events, superthermal electron precipitation, chemical reaction rates and the strength, geometry and topology of crustal magnetic fields. The MAVEN mission has been the first to systematically sample the nightside ionosphere by species, showing that shorter-lived species such as CO2+ and O+ are more correlated with electron precipitation flux than longer lived species such as O2+ and NO+, as would be expected, and is shown in the figure below from Girazian et al. [2017, under review at Geophysical Research Letters]. In this study we use electron pitch-angle and energy spectra from the Solar Wind Electron Analyzer (SWEA) and Solar Energetic Particle (SEP) instruments, ion and neutral densities from the Neutral Gas and Ion Mass Spectrometer (NGIMS), electron densities and temperatures from the Langmuir Probe and Waves (LPW) instrument, as well as electron-neutral ionization cross-sections. We present a comprehensive statistical study of electron precipitation on the Martian nightside and its effect on the vertical, local-time and geographic structure and composition of the ionosphere, over three years of MAVEN observations. We also calculate insitu electron impact ionization rates and compare with ion densities to judge the applicability of photochemical models of the formation and maintenance of the nightside ionosphere. Lastly, we show how this applicability varies with altitude and is affected by ion transport measured by the Suprathermal and thermal Ion Composition (STATIC) instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jun Hyuk; Lee, Jong Won; Kim, Dong Yeong
The temperature-dependent external quantum efficiencies (EQEs) were investigated for a 620 nm AlGaInP red light-emitting diodes (LEDs), a 450 nm GaInN blue LED, and a 285 nm AlGaN deep-ultraviolet (DUV) LED. We observed distinct differences in the variation of the EQE with temperature and current density for the three types of LEDs. Whereas the EQE of the AlGaInP red LED increases as temperature decreases below room temperature, the EQEs of GaInN blue and AlGaN DUV LEDs decrease for the same change in temperature in a low-current density regime. The free carrier concentration, as determined from the dopant ionization energy, shows a strong material-system-specificmore » dependence, leading to different degrees of asymmetry in carrier concentration for the three types of LEDs. We attribute the EQE variation of the red, blue, and DUV LEDs to the different degrees of asymmetry in carrier concentration, which can be exacerbated at cryogenic temperatures. As for the EQE variation with temperature in a high-current density regime, the efficiency droop for the AlGaInP red and GaInN blue LEDs becomes more apparent as temperature decreases, due to the deterioration of the asymmetry in carrier concentration. However, the EQE of the AlGaN DUV LED initially decreases, then reaches an EQE minimum point, and then increases again due to the field-ionization of acceptors by the Poole-Frenkel effect. The results elucidate that carrier transport phenomena allow for the understanding of the droop phenomenon across different material systems, temperatures, and current densities.« less
Detection of the H92α recombination line from NGC 4945
NASA Astrophysics Data System (ADS)
Roy, A. L.; Oosterloo, T.; Goss, W. M.; Anantharamaiah, K. R.
2010-07-01
Context. Hydrogen ionized by young, high-mass stars in starburst galaxies radiates radio recombination lines (RRLs), whose strength can be used as a diagnostic of the ionization rate, conditions and gas dynamics in the starburst region, without problems of dust obscuration. However, the lines are weak and only few extragalactic starburst systems have been detected. Aims: We aimed to increase the number of known starburst systems with detectable RRLs for detailed studies, and we used the line properties to study the gas properties and dynamics. Methods: We searched for the RRLs H91α and H92α with rest frequencies of 8.6 GHz and 8.3 GHz in the nearby southern Seyfert galaxy NGC 4945 using the Australia Telescope Compact Array with resolution of 3”. This yielded a detection from which we derived conditions in the starburst regions. Results: We detected RRLs from the nucleus of NGC 4945 with a peak line strength integrated over the source of 17.8 mJy, making it the strongest extragalactic RRL emitter known at this frequency. The line and continuum emission from NGC 4945 can be matched by a model consisting of a collection of 10 to 300 H II regions with temperatures of 5000 K, densities of 103 cm-3 to 104 cm-3 and a total effective diameter of 2 pc to 100 pc. The Lyman continuum production rate required to maintain the ionization is 6 × 1052 s-1 to 3 × 1053 s-1, which requires 2000 to 10 000 O5 stars to be produced in the starburst, inferring a star formation rate of 2 M_⊙ yr-1 to 8 M_⊙ yr-1. We resolved the rotation curve within the central 70 pc region and this is well described by a set of rotating rings that were coplanar and edge on. We found no reason to depart from a simple flat rotation curve. The rotation speed of 120 km s-1 within the central 1” (19 pc) radius infers an enclosed mass of 3 × 107 M⊙, and an average surface density with the central 19 pc of 25 000 pc-2, which exceeds the threshold gas surface density for star formation. Conclusions: We discovered RRLs from NGC 4945. It is the strongest known extragalactic RRL emitter and is suited to high-quality spectroscopic study. We resolved the dynamics of the ionized gas in the central 70 pc and derived conditions and star formation rates in the ionized gas.
Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com
2016-08-15
The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less
Numerical calculation of nonlinear ultrashort laser pulse propagation in transparent Kerr media
NASA Astrophysics Data System (ADS)
Arnold, Cord L.; Heisterkamp, Alexander; Ertmer, Wolfgang; Lubatschowski, Holger
2005-03-01
In the focal region of tightly focused ultrashort laser pulses, sufficient high intensities to initialize nonlinear ionization processes are easily achieved. Due to these nonlinear ionization processes, mainly multiphoton ionization and cascade ionization, free electrons are generated in the focus resulting in optical breakdown. A model including both nonlinear pulse propagation and plasma generation is used to calculate numerically the interaction of ultrashort pulses with their self-induced plasma in the vicinity of the focus. The model is based on a (3+1)-dimensional nonlinear Schroedinger equation describing the pulse propagation coupled to a system of rate equations covering the generation of free electrons. It is applicable to any transparent Kerr medium, whose linear and nonlinear optical parameters are known. Numerical calculations based on this model are used to understand nonlinear side effects, such as streak formation, occurring in addition to optical breakdown during short pulse refractive eye surgeries like fs-LASIK. Since the optical parameters of water are a good first-order approximation to those of corneal tissue, water is used as model substance. The free electron density distribution induced by focused ultrashort pulses as well as the pulses spatio-temporal behavior are studied in the low-power regime around the critical power for self-focusing.
The Variable Fast Soft X-Ray Wind in PG 1211+143
NASA Astrophysics Data System (ADS)
Reeves, J. N.; Lobban, A.; Pounds, K. A.
2018-02-01
The analysis of a series of seven observations of the nearby (z = 0.0809) QSO PG 1211+143, taken with the Reflection Grating Spectrometer (RGS) onboard XMM-Newton in 2014, are presented. The high-resolution soft X-ray spectrum, with a total exposure exceeding 600 ks, shows a series of blueshifted absorption lines from the He and H-like transitions of N, O, and Ne, as well as from L-shell Fe. The strongest absorption lines are all systematically blueshifted by ‑0.06c, originating in two absorption zones from low- and high-ionization gas. Both zones are variable on timescales of days, with the variations in absorber opacity effectively explained by either column density changes or the absorber ionization responding directly to the continuum flux. We find that the soft X-ray absorbers probably exist in a two-phase wind at a radial distance of ∼1017–1018 cm from the black hole with the lower-ionization gas as denser clumps embedded within a higher-ionization outflow. The overall mass outflow rate of the soft X-ray wind may be as high as 2{M}ȯ yr‑1, close to the Eddington rate for PG 1211+143 and similar to that previously deduced from the Fe K absorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, R.; Soler, R.; Terradas, J.
Coronal rain clumps and prominence knots are dense condensations with chromospheric to transition region temperatures that fall down in the much hotter corona. Their typical speeds are in the range 30–150 km s{sup −1} and of the order of 10–30 km s{sup −1}, respectively, i.e., they are considerably smaller than free-fall velocities. These cold blobs contain a mixture of ionized and neutral material that must be dynamically coupled in order to fall together, as observed. We investigate this coupling by means of hydrodynamic simulations in which the coupling arises from the friction between ions and neutrals. The numerical simulations presentedmore » here are an extension of those of Oliver et al. to the partially ionized case. We find that, although the relative drift speed between the two species is smaller than 1 m s{sup −1} at the blob center, it is sufficient to produce the forces required to strongly couple charged particles and neutrals. The ionization degree has no discernible effect on the main results of our previous work for a fully ionized plasma: the condensation has an initial acceleration phase followed by a period with roughly constant velocity, and, in addition, the maximum descending speed is clearly correlated with the ratio of initial blob to environment density.« less
First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons
NASA Astrophysics Data System (ADS)
Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard
2017-10-01
Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.
NASA Astrophysics Data System (ADS)
Yi, S. A.; D'Avignon, E. C.; Khudik, V.; Shvets, G.
2010-11-01
We study self-injection into a plasma wakefield accelerator (PWFA) in the blowout regime analytically and through particle-in-cell (PIC) simulations. We propose a new injection mechanism into a plasma wakefield accelerator, where growth of the blowout region is enabled through a slow decrease in background plasma density along the direction of propagation. Deepening of the potential well due to this growth causes a reduction of electron Hamiltonian in the co-moving frame. This reduction depends on the shape of the blowout region, its growth rate, and impact parameter of the electron. When the reduction is greater than mc^2 [1,2], the electron becomes trapped inside the bubble. We demonstrate this effect using analytic expressions for the bubble potentials [3], and estimate plasma density gradients, and beam charge and size required for injection. We also apply the injection criterion to electron trapping through gas ionization. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945. [1] S. Kalmykov, S.A. Yi, V. Khudik, and G. Shvets, Phys. Rev. Lett. 103, 135004 (2009). [2] S.A. Yi, V. Khudik, S. Kalmykov, and G. Shvets, Plasma Phys. Contr. Fus., in press. [3] W. Lu, C. Huang, M. Zhou, M. Tzoufras et al., Phys. Plasmas 13, 056709 (2006).
Yu, Haiqing; Lu, Joann J.; Rao, Wei
2016-01-01
Density gradient centrifugation is widely utilized for various high purity sample preparations, and density gradient ultracentrifugation (DGU) is often used for more resolution-demanding purification of organelles and protein complexes. Accurately locating different isopycnic layers and precisely extracting solutions from these layers play a critical role in achieving high-resolution DGU separations. In this technique note, we develop a DGU procedure by freezing the solution rapidly (but gently) after centrifugation to fix the resolved layers and by slicing the frozen solution to fractionate the sample. Because the thickness of each slice can be controlled to be as thin as 10 micrometers, we retain virtually all the resolution produced by DGU. To demonstrate the effectiveness of this method, we fractionate complex V from HeLa mitochondria using a conventional technique and this freezing-slicing (F-S) method. The comparison indicates that our F-S method can reduce complex V layer thicknesses by ~40%. After fractionation, we analyze complex V proteins directly on a matrix assisted laser desorption/ionization, time-of-flight mass spectrometer. Twelve out of fifteen subunits of complex V are positively identified. Our method provides a practical protocol to identify proteins from complexes, which is useful to investigate biomolecular complexes and pathways in various conditions and cell types. PMID:27668122
Ionization potential depression in an atomic-solid-plasma picture
NASA Astrophysics Data System (ADS)
Rosmej, F. B.
2018-05-01
Exotic solid density matter such as heated hollow crystals allow extended material studies while their physical properties and models such as the famous ionization potential depression are presently under renewed controversial discussion. Here we develop an atomic-solid-plasma (ASP) model that permits ionization potential depression studies also for single and multiple core hole states. Numerical calculations show very good agreement with recently available data not only in absolute values but also for Z-scaled properties while currently employed methods fail. For much above solid density compression, the ASP model predicts increased K-edge energies that are related to a Fermi surface rising. This is in good agreement with recent quantum molecular dynamics simulations. For hot dense matter a quantum number dependent optical electron finite temperature ion sphere model is developed that fits well with line shift and line disappearance data from dense laser produced plasma experiments. Finally, the physical transparency of the ASP picture allows a critical discussion of current methods.
Quantum Phenomena in High Energy Density Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murnane, Margaret; Kapteyn, Henry
The possibility of implementing efficient (phase matched) HHG upconversion of deep- UV lasers in multiply-ionized plasmas, with potentially unprecedented conversion efficiency is a fascinating prospect. HHG results from the extreme nonlinear response of matter to intense laser light:high harmonics are radiated as a result of a quantum coherent electron recollision process that occurs during laser field ionization of an atom. Under current support from this grant in work published in Science in 2015, we discovered a new regime of bright HHG in highly-ionized plasmas driven by intense UV lasers, that generates bright harmonics to photon energies >280eV
Heater-induced ionization inferred from spectrometric airglow measurements
NASA Astrophysics Data System (ADS)
Hysell, D. L.; Miceli, R. J.; Kendall, E. A.; Schlatter, N. M.; Varney, R. H.; Watkins, B. J.; Pedersen, T. R.; Bernhardt, P. A.; Huba, J. D.
2014-03-01
Spectrographic airglow measurements were made during an ionospheric modification experiment at High Frequency Active Auroral Research Program on 12 March 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert (1968, 1970), we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with heater-induced ionization in view of the spatial intermittency of the airglow.
Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Joakim; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore; Ni, Pavel
Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side-on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.
Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore; Andersson, Joakim; Ni, Pavel
Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.
Clusters of primordial black holes and reionization problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belotsky, K. M., E-mail: k-belotsky@yandex.ru; Kirillov, A. A., E-mail: kirillov-aa@yandex.ru; Rubin, S. G., E-mail: sergeirubin@list.ru
2015-05-15
Clusters of primordial black holes may cause the formation of quasars in the early Universe. In turn, radiation from these quasars may lead to the reionization of the Universe. However, the evaporation of primordial black holes via Hawking’s mechanism may also contribute to the ionization of matter. The possibility of matter ionization via the evaporation of primordial black holes with allowance for existing constraints on their density is discussed. The contribution to ionization from the evaporation of primordial black holes characterized by their preset mass spectrum can roughly be estimated at about 10{sup −3}.
A photoionization instability in the early intergalactic medium
NASA Technical Reports Server (NTRS)
Hogan, Craig J.
1992-01-01
It is argued that any fairly uniform source of ionizing photons can be the cause of an instability in the pregalactic medium on scales larger than a photon path length. Underdense regions receive more ionizing energy per atom and reach higher temperature and entropy, driving the density down still further. Fluctuations created by this instability can lead to the formation of structures resembling protogalaxies and intergalactic clouds, obviating the need for gas clouds or density perturbations of earlier cosmological provenance, as is usually assumed in theories of galaxy and structure formation. Characteristic masses for clouds produced by the instability, with log mass in solar units plotted against log radius in kpc, are illustrated.
Mode transition induced by the magnetic field gradient in Hall thrusters
NASA Astrophysics Data System (ADS)
Han, Liang; Wei, Liqiu; Yu, Daren
2016-09-01
A mode transition phenomenon was found in Hall thrusters, which was induced by the increase of the magnetic field gradient. In the transition process, we observed experimentally that there have been obvious changes in the oscillation, the mean value of the discharge current, the thrust, the anode efficiency, and the plume pattern. The shifting and compression of the high magnetic field causes the electron density in the discharge channel to decrease and the ionization zone to move towards the exit plane. This also corresponds to a low atom density in the discharge channel, resulting in a loss of stability of the ionization at a high magnetic field gradient, which presents the transition of the discharge mode.
Characteristics of cesium iodide for use as a particle discriminator for high energy cosmic rays
NASA Technical Reports Server (NTRS)
Crannell, C. J.; Kurz, R. J.; Viehmann, W.
1973-01-01
The possible use of CsI to discriminate between high energy cosmic ray electrons and interacting protons has been investigated. The pulse-shape properties as a function of ionization density, temperature, and spectral response are presented for thallium-activated CsI and as a function of ionization density for sodium-activated CsI. The results are based on previously published data and on corroborative measurements from the present work. Experimental results on the response of CsI to electron-induced electromagnetic cascades and to interacting hadrons are described. Bibliographies of publications dealing with the properties of CsI and with pulse-shape discrimination techniques are presented.
Can a Penning ionization discharge simulate the tokamak scrape-off plasma conditions?
NASA Technical Reports Server (NTRS)
Finkenthal, M.; Littman, A.; Stutman, D.; Kovnovich, S.; Mandelbaum, P.; Schwob, J. L.; Bhatia, A. K.
1990-01-01
The tokamak scrape-off (the region between the vacuum vessel wall and the magnetically confined fusion plasma edge), represents a source/sink for the hot fusion plasma. The electron densities and temperatures are in the ranges 10 to the 11th - 10 to the 13th/cu cm and 1-40 eV, respectively (depending on the size, magnetic field intensity and configuration, plasma current, etc). In the work reported, the electron temperature and density have been estimated in a Penning ionization discharge by comparing its spectroscopic emission in the VUV with that predicted by a collisional radiative model. An attempt to directly compare this emission with that of the tokamak edge is briefly described.
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also, the average electron temperature is expected to be between 10,000 and 20,000 K. Thus only data for low energy electrons are relevant to the model.
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.; Yu, S.; Logan, B. G.
2002-11-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length ˜ 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures ˜ 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. At moderate pressures (> 1 mTorr) the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance. The source has recently been configured to operate with 2.45 GHz microwaves with similar results. At the present operating range the source can simulate the plasma produced by photo-ionization in the target chamber.
Esrafili, Mehdi D; Behzadi, Hadi
2013-06-01
A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.
NASA Astrophysics Data System (ADS)
Oka, Takeshi
2017-06-01
In deriving the simple formula, ζL=2k_eN(H_{3}^{+})(n_C/n_H)_SVR/f(H_{2}), used to estimate cosmic ray H_{2} ionization rate ζ from observed H_3^+ column density N(H_3^+) in the Central Molecular Zone (CMZ) of the Galactic center (GC), the following two effects were neglected: (1) the charge exchange reaction H_2^+ + H → H_2 + H^+ which significantly reduces H_3^+ production rate if the fraction of molecular hydrogen f(H_2) is much lower than 1, and (2) the production of electrons from ionization of H_2 and H which greatly increases the H_3^+ destruction rate if ζ is much higher than 10^{-15} s^{-1}. (Only electrons from VUV first ionization of C atoms had been considered). Recent more extensive analysis using the Meudon PDR code by Le Petit et al. has indicated that these effects are not negligible in the CMZ. While an extensive chemical model calculation is beyond the scope of our analysis, we have attempted to use our simple model considering only hydrogenic species and electrons to take these two effects into account. When (1) is introduced, the rate of H_3^+ production is approximated to be ζn_H[f(H_2)]^2, which is ˜ 3 times lower than the previous value for f(H_2) = 0.6 reported by Le Petit et al.^{c} When (2) is taken into account, the electron number density is approximated to be n_e = n_CR + ζn_H/[2k_en(H_3^+)] where the first and second term represents electrons from the C atoms and those from H_2 and H, respectively. The first term (in which R represents the increase of metallicity from the solar vicinity to the GC, R ≥ 3) has the electron fraction x_e = 5 × 10^{-4} and the second term becomes significant at ζ ˜ 10^{-15} s^{-1}. This introduces a non-linearity between ζ and N(H_3^+) and the latter reaches a maximum at ζ ˜ 10^{-14} s^{-1} and decreases as ζ increases further. Application of the results to the observed N(H_3^+) will be discussed. Oka, T., Geballe, T. R., Goto, M., Usuda, T., McCall, B. J. 2005, ApJ, 632, 882 Indriolo, N., McCall, B. J. 2012, ApJ, 745:91 Le Petit, F., Ruaud, M., Bron, E., Godard, B., Roueff, E., Languignon, D., Le Bourlot, J. 2016, A&A, 585, A105 Oka, T. 2013, Chem. Rev. 113, 8738
Atomic structure data based on average-atom model for opacity calculations in astrophysical plasmas
NASA Astrophysics Data System (ADS)
Trzhaskovskaya, M. B.; Nikulin, V. K.
2018-03-01
Influence of the plasmas parameters on the electron structure of ions in astrophysical plasmas is studied on the basis of the average-atom model in the local thermodynamic equilibrium approximation. The relativistic Dirac-Slater method is used for the electron density estimation. The emphasis is on the investigation of an impact of the plasmas temperature and density on the ionization stages required for calculations of the plasmas opacities. The level population distributions and level energy spectra are calculated and analyzed for all ions with 6 ≤ Z ≤ 32 occurring in astrophysical plasmas. The plasma temperature range 2 - 200 eV and the density range 2 - 100 mg/cm3 are considered. The validity of the method used is supported by good agreement between our values of ionization stages for a number of ions, from oxygen up to uranium, and results obtained earlier by various methods among which are more complicated procedures.
Biological Effects of Ionizing Radiation
DOE R&D Accomplishments Database
Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.
1952-04-07
This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.
NASA Astrophysics Data System (ADS)
Lehtinen, N. G.; Inan, U. S.; Bell, T. F.
2001-12-01
The presence of energetic runaway electron beams above thunderstorms is suggested by observations of terrestrial gamma ray flashes [Fishman et al., 1994], as well as by theoretical work [Roussel-Dupré and Gurevich, 1996; Lehtinen et al., 1999], although such beams have not been directly measured. In this paper we consider possible measurable effects of such beams in the conjugate hemisphere as a means to confirm their existence and quantify their properties. High-density relativistic runaway electron beams, driven upward by intense lightning-generated mesospheric quasi-static electric fields, have been predicted [Lehtinen et al., 2000] to be isotropized and thermalized during their interhemispherical traverse along the Earth's magnetic field lines so that only ~10% of the electrons which are below the loss cone should arrive at the geomagnetically conjugate ionosphere. As they encounter the Earth's atmosphere, the energetic electrons would be scattered and produce light and ionization, much like a beam of precipitating auroral electrons. A Monte Carlo approach is used to model the interaction of the downgoing electrons with the conjugate atmosphere, including the backscattering of electrons, as well as production of optical and gamma ray emissions and enhanced secondary ionization. Results indicate that these conjugate ionospheric effects of the runaway electron beam are detectable and thus may be used to quantify the runaway electron mechanism.
Investigation of mechanism of anode plasma formation in ion diode with dielectric anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pushkarev, A., E-mail: aipush@mail.ru
The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350–400 kV, 6–8 kA, 80 ns) with a focusing conical diode with B{sub r} external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1–2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction inmore » the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10–15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3–6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20–30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°–6°.« less
NASA Astrophysics Data System (ADS)
Zhang, Liang; Tinsley, Brian A.
2018-03-01
Simulations and parameterization of collision rate coefficients for aerosol particles with 3 μm radius droplets have been extended to a range of particle densities up to 2,000 kg m-3 for midtropospheric ( 5 km) conditions (540 hPa, -17°C). The increasing weight has no effect on collisions for particle radii less than 0.2 μm, but for greater radii the weight effect becomes significant and usually decreases the collision rate coefficient. When increasing size and density of particles make the fall speed of the particle relative to undisturbed air approach to that of the droplet, the effect of the particle falling away in the stagnation region ahead of the droplet becomes important, and the probability of frontside collisions can decrease to zero. Collisions on the rear side of the droplet can be enhanced as particle weight increases, and for this the weight effect tends to increase the rate coefficients. For charges on the droplet and for large particles with density ρ < 1,000 kg m-3 the predominant effect increases in rate coefficient due to the short-range attractive image electric force. With density ρ above about 1,000 kg m-3, the stagnation region prevents particles moving close to the droplet and reduces the effect of these short-range forces. Together with previous work, it is now possible to obtain collision rate coefficients for realistic combinations of droplet charge, particle charge, droplet radius, particle radius, particle density, and relative humidity in clouds. The parameterization allows rapid access to these values for use in cloud models.
Feeding and Feedback in the Powerful Radio Galaxy 3C 120
NASA Technical Reports Server (NTRS)
Tombesi, F.; Mushotzky, R. F.; Reynolds, C. S.; Kallman, T.; Reeves, J. N.; Braito, V.; Ueda, Y.; Leutenegger, M. A.; Williams, B. J.; Stawarz, L.;
2017-01-01
We present a spectral analysis of a 200-kilosecond observation of the broad-line radio galaxy 3C 120, performed with the high-energy transmission grating spectrometer on board the Chandra X-Ray Observatory. We find (i) a neutral absorption component intrinsic to the source with a column density of log N (sub H) equals 20.67 plus or minus 0.05 square centimeters; (ii) no evidence for a warm absorber (WA) with an upper limit on the column density of just log N (sub H) less than 19.7 square centimeters, assuming the typical ionization parameter log xi approximately equal to 2.5 ergs per second per centimeter; the WA may instead be replaced by (iii) a hot emitting gas with a temperature kT approximately equal to 0.7 kiloelectronvolts observed as soft X-ray emission from ionized Fe L-shell lines, which may originate from a kiloparsec-scale shocked bubble inflated by the active galactic nucleus (AGN) wind or jet with a shock velocity of about 1000 kilometers per second determined by the emission line width; (iv) a neutral Fe K alpha line and accompanying emission lines indicative of a Compton-thick cold reflector with a low reflection fraction R approximately equal to 0.2, suggesting a large opening angle of the torus; (v) a highly ionized Fe XXV emission feature indicative of photoionized gas with an ionization parameter log xi equal to 3.75 (sup plus 0.38) (sub minus 0.27) ergs per second per centimeter and a column density of log N (sub H) greater than 22 square centimeters localized within approximately 2 pc from the X-ray source; and (vi) possible signatures of a highly ionized disk wind. Together with previous evidence for intense molecular line emission, these results indicate that 3C 120 is likely a late-state merger undergoing strong AGN feedback.
Inelastic X-ray Scattering Measurements of Ionization in Warm, Dense Matter
NASA Astrophysics Data System (ADS)
Davis, Paul F.
In this work we demonstrate spectrally resolved x-ray scattering from electron-plasma waves in shock-compressed deuterium and proton-heated matter. Because the spectral signature of inelastic x-ray scattering is strongly dependent on the free electron density of the system, it is used to infer ionization in dynamically heated samples. Using 2-6 ns, 500 J laser pulses from LLNL's Janus laser, we shocked liquid deuterium to pressures approaching 50 GPa, reaching compressions of 4 times liquid density. A second laser produced intense 2 keV x-rays. By collecting and spectrally dispersing forward scattered photons at 45°, the onset of ionization was detected at compressions of about 3 times in the form of plasmon oscillations. Backscattered x-rays bolstered this observation by measuring the free electron distribution through Compton scattering. Comparison with simulations shows very close agreement between the pressure dependence of ionization and molecular dissociation in dynamically compressed deuterium. In a second set of experiments, a 10 ps, 200 J Titan laser pulse was split into two beams. One created a stream of MeV protons to heat samples of boron and boron-nitride and the other pumped 4.5 keV K-alpha radiation in a titanium foil to probe the hot target. We observed scattered x-rays 300 ps after heating, noting a strong difference in average ionization between the two target materials at temperatures of 16 eV and very similar mass densities. Comparison with electron structure calculations suggests that this difference is due to a persistence of long-range ion structure in BN resulting in high-temperature band structure. These results underscore the importance of understanding the complex electron structure of materials even at electron-volt temperatures and gigapascal pressures. Our results provide new data to guide the theoretical modeling of warm, dense matter important to understanding giant planets and inertial fusion targets.
Chaplin, Vernon H; Bellan, Paul M
2015-07-01
An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.
NASA Astrophysics Data System (ADS)
Antonov, N. N.; Samokhin, A. A.; Zhabin, S. N.; Gavrikov, A. V.; Smirnov, V. P.
2016-11-01
Spent nuclear fuel plasma separation method approbation implies the use of model substances. Thus it is necessary to solve the problem of material conversion into a cold plasma flow, as well as the problem of deposition on collectors. For this purpose, we carried out a kinetic and hydrodynamic simulation of the discharge with hot cathode in the lead vapor (lead vapor was injected into the interelectrode gap). Dependencies of the ionization efficiency, electrostatic potential distribution, density distribution of ions and electrons in the discharge gap on the discharge current density and the model substance vapor concentration were obtained. The simulation results show that at discharge current density of about 3.5 A/cm2 and the lead vapor concentration of 2 × 1012 cm-3, the ionization efficiency is close to 60%. Experimental research of the discharge with a hot cathode in the lead vapor was carried out. We also carried out the research of the Pb condensation coefficients on various substrates. For experimental data analysis the numerical model based on Monte Carlo method was used. The research results show that deposition coefficients at medium temperatures of substrates near 70 °C do not drop lower than 75%.
Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, N.; Tomita, K.; Sugita, K.
2012-07-15
This paper reports on the development of a method for measuring xenon plasma properties using the laser Thomson scattering technique, for application to ion engine system design. The thresholds of photo-ionization of xenon plasma were investigated and the number density of metastable atoms, which are photo-ionized by a probe laser, was measured using laser absorption spectroscopy, for several conditions. The measured threshold energy of the probe laser using a plano-convex lens with a focal length of 200 mm was 150 mJ for a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W; the probe lasermore » energy was therefore set as 80 mJ. Electron number density was found to be (6.2 {+-} 0.4) Multiplication-Sign 10{sup 17} m{sup -3} and electron temperature was found to be 2.2 {+-} 0.4 eV at a xenon mass flow rate of 20 {mu}g/s and incident microwave power of 6 W. The threshold of the probe laser intensity against photo-ionization in a miniature xenon ion thruster is almost constant for various mass flow rates, since the ratio of population of the metastable atoms to the electron number density is little changed.« less
The mean free path of hydrogen ionizing photons during the epoch of reionization
NASA Astrophysics Data System (ADS)
Rahmati, Alireza; Schaye, Joop
2018-05-01
We use the Aurora radiation-hydrodynamical simulations to study the mean free path (MFP) for hydrogen ionizing photons during the epoch of reionization. We directly measure the MFP by averaging the distance 1 Ry photons travel before reaching an optical depth of unity along random lines-of-sight. During reionization the free paths tend to end in neutral gas with densities near the cosmic mean, while after reionization the end points tend to be overdense but highly ionized. Despite the increasing importance of discrete, over-dense systems, the cumulative contribution of systems with NHI ≲ 1016.5 cm-2 suffices to drive the MFP at z ≈ 6, while at earlier times higher column densities are more important. After reionization the typical size of HI systems is close to the local Jeans length, but during reionization it is much larger. The mean free path for photons originating close to galaxies, {MFP_{gal}}, is much smaller than the cosmic MFP. After reionization this enhancement can remain significant up to starting distances of ˜1 comoving Mpc. During reionization, however, {MFP_{gal}} for distances ˜102 - 103 comoving kpc typically exceeds the cosmic MFP. These findings have important consequences for models that interpret the intergalactic MFP as the distance escaped ionizing photons can travel from galaxies before being absorbed and may cause them to under-estimate the required escape fraction from galaxies, and/or the required emissivity of ionizing photons after reionization.
Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium
NASA Technical Reports Server (NTRS)
Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)
2002-01-01
We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.
Zeng, Jiaolong; Yuan, Jianmin
2007-08-01
Calculation details of radiative opacity for lowly ionized gold plasmas by using our developed fully relativistic detailed level-accounting approach are presented to show the importance of accurate atomic data for a quantitative reproduction of the experimental observations. Even though a huge number of transition lines are involved in the radiative absorption of high- Z plasmas so that one believes that statistical models can often give a reasonable description of their opacities, we first show in detail that an adequate treatment of physical effects, in particular the configuration interaction (including the core-valence electron correlation), is essential to produce atomic data of bound-bound and bound-free processes for gold plasmas, which are accurate enough to correctly explain the relative intensity of two strong absorption peaks experimentally observed located near photon energy of 70 and 80 eV. A detailed study is also carried out for gold plasmas of an average ionization degree sequence of 10, for both spectrally resolved opacities and Rosseland and Planck means. For comparison, results obtained by using an average atom model are also given to show that even for a relatively higher density of matter, correlation effects are also important to predict the correct positions of absorption peaks of transition arrays.
PHOTOIONIZATION IN THE SOLAR WIND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landi, E.; Lepri, S. T., E-mail: elandi@umich.edu
2015-10-20
In this work we investigate the effects of photoionization on the charge state composition of the solar wind. Using measured solar EUV and X-ray irradiance, the Michigan Ionization Code and a model for the fast and slow solar wind, we calculate the evolution of the charge state distribution of He, C, N, O, Ne, Mg, Si, S, and Fe with and without including photoionization for both types of wind. We find that the solar radiation has significant effects on the charge state distribution of C, N, and O, causing the ionization levels of these elements to be higher than withoutmore » photoionization; differences are largest for oxygen. The ions commonly observed for elements heavier than O are much less affected, except in ICMEs where Fe ions more ionized than 16+ can also be affected by the solar radiation. We also show that the commonly used O{sup 7+}/O{sup 6+} density ratio is the most sensitive to photoionization; this sensitivity also causes the value of this ratio to depend on the phase of the solar cycle. We show that the O{sup 7+}/O{sup 6+} ratio needs to be used with caution for solar wind classification and coronal temperature estimates, and recommend the C{sup 6+}/C{sup 4+} ratio for these purposes.« less
Joshi, Hemant K.; Cooney, J. Jon A.; Inscore, Frank E.; Gruhn, Nadine E.; Lichtenberger, Dennis L.; Enemark, John H.
2003-01-01
Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur π-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin Mo/W enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp2Mo(bdt) (compound 2), and Cp2Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is η5- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d1, d2, and d0, respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A “dithiolate-folding-effect” involving an interaction of the metal in-plane and sulfur-π orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes. PMID:12655066
Molecular transitions as probes of the physical conditions of extragalactic environments
NASA Astrophysics Data System (ADS)
Viti, Serena
2017-11-01
Aims: We present a method to interpret molecular observations and molecular line ratios in nearby extragalactic regions. Methods: Ab initio grids of time dependent chemical models, varying in gas density, temperature, cosmic ray ionization rate, and radiation field, are used as inputs into RADEX calculations. Tables of abundances, column densities, theoretical line intensities, and line ratios for some of the most used dense gas tracers are provided. The degree of correlation as well as degeneracy inherent in molecular ratios is discussed. Comparisons of the theoretical intensities with example observations are also provided. Results: We find that, within the parameters space explored, chemical abundances can be constrained by a well-defined set of gas density, gas temperature, and cosmic ray ionization rates for the species we investigate here. However, line intensities, and more importantly line ratios, from different chemical models can be very similar, thereby leading to a clear degeneracy. We also find that the gas subjected to a galactic cosmic ray ionization rate will not necessarily have reached steady state in 1 million years. The species most affected by time dependency effects are HCN and CS, which are both high density tracers. We use our ab initio method to fit an example set of data from two galaxies, I.e. M 82 and NGC 253. We find that (I) molecular line ratios can be easily matched even with erroneous individual line intensities; (II) no set of species can be matched by a one-component interstellar medium (ISM); and (III) a species may be a good tracer of an energetic process but only under specific density and temperature conditions. Conclusions: We provide tables of chemical abundances and line intensities ratios for some of the most commonly observed extragalactic tracers of dense gas for a grid of models. We show that by taking the chemistry behind each species and the individual line intensities into consideration, many degeneracies that arise by just using molecular line ratios can be avoided. Finally we show that using a species or a ratio as a tracer of an individual energetic process, such as cosmic rays and UV, ought to be done with caution. Tables 2-11 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A118
Ionization Injection of Electrons into a Plasma Wakefield Accelerator at FACET
NASA Astrophysics Data System (ADS)
Clayton, Chris; E-200 At Facet Collaboration
2013-10-01
In the PWFA experiments at FACET, a low ionization-potential (IP) metal vapor gas (Li) is confined within a heat-pipe oven by a higher IP buffer gas (typically He). The Li is easily field-ionized by the FACET beam. A non-linear wake is formed in the blowout regime when the 20.3 GeV bunch containing 2e10 electrons in a σz ~ 30 μm is focused to a (vacuum) σr < 25 near the ~ 10cm-long boundary region. There the Li density rises from zero up to the oven's 30cm-long flat-topped density of 2.5e17 cm-3. To obtain a mono-energetic beam from accelerated ionization-injected electrons at the far end of the oven--the goal of this experiment--it is necessary for the FACET beam to have a betatron pinch just where the flat-topped region begins; i.e., where the wake wavelength is no longer changing. If the buffer gas contains a mixture of He and a moderate IP gas, the ``impurity'' gases will also be field ionized and potentially contribute more charge to the injected bunch than with He alone. Moderate IP gases were added to the He buffer gas: 10%, 20%, and 50% Ar (balance He) and 30% Ne (balance He) have been used. Evidence for ionization injection and acceleration appears through the observation of distinct features, characterized by their very narrow size and thus angular spread, at the image plane of a magnetic imaging spectrometer. Analysis aimed at characterizing these features with respect to energy, charge, and angular spread is underway and will be presented. This work was supported by the DOE and the NSF.
Oxygen Pickup Ions Measured by MAVEN Outside the Martian Bow Shock
NASA Astrophysics Data System (ADS)
Rahmati, A.; Cravens, T.; Larson, D. E.; Lillis, R. J.; Dunn, P.; Halekas, J. S.; Connerney, J. E. P.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.; Jakosky, B. M.
2015-12-01
The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars on September 21, 2014 and has since been detecting energetic oxygen pickup ions by its SEP (Solar Energetic Particles) and SWIA (Solar Wind Ion Analyzer) instruments. The oxygen pickup ions detected outside the Martian bowshock and in the upstream solar wind are associated with the extended hot oxygen exosphere of Mars, which is created mainly by the dissociative recombination of molecular oxygen ions with electrons in the ionosphere. We use analytic solutions to the equations of motion of pickup ions moving in the undisturbed upstream solar wind magnetic and motional electric fields and calculate the flux of oxygen pickup ions at the location of MAVEN. Our model calculates the ionization rate of oxygen atoms in the exosphere based on the hot oxygen densities predicted by Rahmati et al. (2014), and the sources of ionization include photo-ionization, charge exchange, and electron impact ionization. The photo-ionization frequency is calculated using the FISM (Flare Irradiance Spectral Model) solar flux model, based on MAVEN EUVM (Extreme Ultra-Violet Monitor) measurements. The frequency of charge exchange between a solar wind proton and an oxygen atom is calculated using MAVEN SWIA solar wind proton flux measurements, and the electron impact ionization frequency is calculated based on MAVEN SWEA (Solar Wind Electron Analyzer) solar wind electron flux measurements. The solar wind magnetic field used in the model is from the measurements taken by MAVEN MAG (magnetometer) in the upstream solar wind. The good agreement between our predicted pickup oxygen fluxes and the MAVEN SEP and SWIA measured ones confirms detection of oxygen pickup ions and these model-data comparisons can be used to constrain models of hot oxygen densities and photochemical escape flux.
Ablation from High Velocity Clouds: A Source for Low Velocity Ionized Gas
NASA Astrophysics Data System (ADS)
Shelton, Robin L.; Henley, D. B.; Kwak, K.
2012-05-01
High velocity clouds shed material as they move through the Galaxy. This material mixes with the Galactic interstellar medium, resulting in plasma whose temperature and ionization levels are intermediate between those of the cloud and those of the Galaxy. As time passes, the mixed material slows to the velocity of the ambient gas. This raises the possibility that initially warm (T 10^3 K), poorly ionized clouds moving through hot (T 10^6 K), very highly ionized ambient gas could lead to mixed gas that harbors significant numbers of high ions (O+5, N+4, and C+3) and thus helps to explain the large numbers of low-velocity high ions seen on high latitude lines of sight through the Galactic halo. We have used a series of detailed FLASH simulations in order to track the hydrodynamics of warm clouds embedded in hot Galactic halo gas. These simulations tracked the ablated material as it mixed and slowed to low velocities. By following the ionization levels of the gas in a time-dependent fashion, we determined that the mixed material is rich in O+5, N+4, and C+3 ions and continues to contain these ions for some time after slowing to low velocities. Combining our simulational results with estimates of the high velocity cloud infall rate leads to the finding that the mixed gas can account for 1/3 of the normal-velocity O+5 column density found on high latitude lines of sight. It accounts for lesser fractions of the N+4 and C+3 column densities. We will discuss our high velocity cloud results as part of a composite halo model that also includes cooling Galactic fountain gas, isolated supernova remnants, and ionizing photons.
A RELATION BETWEEN THE WARM NEUTRAL AND IONIZED MEDIA OBSERVED IN THE CANADIAN GALACTIC PLANE SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, T.; Kothes, R.; Brown, J. C., E-mail: Tyler.Foster@nrc-cnrc.gc.ca
2013-08-10
We report on a comparison between 21 cm rotation measure (RM) and the optically thin atomic hydrogen column density (N{sub H{sub I}}({tau} {yields} 0)) measured toward unresolved extragalactic sources in the Galactic plane of the northern sky. H I column densities integrated to the Galactic edge are measured immediately surrounding each of nearly 2000 sources in 1 arcmin 21 cm line data, and are compared to RMs observed from polarized emission of each source. RM data are binned in column density bins 4 Multiplication-Sign 10{sup 20} cm{sup -2} wide, and one observes a strong relationship between the number of hydrogenmore » atoms in a 1 cm{sup 2} column through the plane and the mean RM along the same line of sight and path length. The relationship is linear over one order of magnitude (from 0.8 to 14 Multiplication-Sign 10{sup 21} atoms cm{sup -2}) of column densities, with a constant RM/N{sub H{sub I}}{approx} -23.2 {+-} 2.3 rad m{sup -2}/10{sup 21} atoms cm{sup -2}, and a positive RM of 45.0 {+-} 13.8 rad m{sup -2} in the presence of no atomic hydrogen. This slope is used to calculate a mean volume-averaged magnetic field in the second quadrant of (B{sub Parallel-To }) {approx}1.0 {+-} 0.1 {mu}G directed away from the Sun, assuming an ionization fraction of 8% (consistent with the warm-neutral medium; WNM). The remarkable consistency between this field and (B) = 1.2 {mu}G found with the same RM sources and a Galactic model of dispersion measures (DMs) suggests that electrons in the partially ionized WNM are mainly responsible for pulsar DMs, and thus the partially ionized WNM is the dominant form of the magneto-ionic interstellar medium.« less
Zeng, Yi; Fang, Jun; Zhang, Yong-Ming
2018-01-01
The effect of altitude on typical combustible burning and related smoke detector response signals was investigated by comparison experiments at altitudes of 40 m and 3650 m based on EN54 standard tests. Point-type light scattering photoelectric smoke detectors and ionization smoke detectors were used for four kinds of EN54 fire tests, including two kinds of smouldering fires with wood (test fire no. 2 in EN54 standard or TF2) and cotton (TF3), and two kinds of flaming fires with polyurethane (TF4) and n-heptane (TF5). First, the influence of altitude or ambient pressure on mass loss for smouldering combustion (TF2 or TF3) was insignificant, while a significant decrease in the mass burning rate was found for flaming tests (TF4 and TF5) as reported in our previous studies. Second, for photoelectric smoke detectors in flaming fire tests, the effect of altitude was similar to that of the burning rate, whereas for the ionization smoke detectors, the response signal at high altitudes was shown to be ‘enhanced’ by the detection principle of the ionization chamber, leading to an even larger value than at normal altitude for smouldering conditions. Third, to provide a reference for smoke detector design in high-altitude areas, the differences between signal speed in rising and peak values at two locations are discussed. Also, relationship between ion chamber signals and smoke optical densities are presented by utilization of an ionization smoke detector and smoke concentration meter. Moreover, a hierarchical diagram is illustrated to provide a better understanding of the effects of altitude on combustible burning behaviour and the mechanisms of detector response. PMID:29765695
Tu, Ran; Zeng, Yi; Fang, Jun; Zhang, Yong-Ming
2018-04-01
The effect of altitude on typical combustible burning and related smoke detector response signals was investigated by comparison experiments at altitudes of 40 m and 3650 m based on EN54 standard tests. Point-type light scattering photoelectric smoke detectors and ionization smoke detectors were used for four kinds of EN54 fire tests, including two kinds of smouldering fires with wood (test fire no. 2 in EN54 standard or TF2) and cotton (TF3), and two kinds of flaming fires with polyurethane (TF4) and n -heptane (TF5). First, the influence of altitude or ambient pressure on mass loss for smouldering combustion (TF2 or TF3) was insignificant, while a significant decrease in the mass burning rate was found for flaming tests (TF4 and TF5) as reported in our previous studies. Second, for photoelectric smoke detectors in flaming fire tests, the effect of altitude was similar to that of the burning rate, whereas for the ionization smoke detectors, the response signal at high altitudes was shown to be 'enhanced' by the detection principle of the ionization chamber, leading to an even larger value than at normal altitude for smouldering conditions. Third, to provide a reference for smoke detector design in high-altitude areas, the differences between signal speed in rising and peak values at two locations are discussed. Also, relationship between ion chamber signals and smoke optical densities are presented by utilization of an ionization smoke detector and smoke concentration meter. Moreover, a hierarchical diagram is illustrated to provide a better understanding of the effects of altitude on combustible burning behaviour and the mechanisms of detector response.
NASA Astrophysics Data System (ADS)
Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang
2018-01-01
Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.
Non-ideal magnetohydrodynamic simulations of the two-stage fragmentation model for cluster formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Nicole D.; Basu, Shantanu, E-mail: N.Bailey@leeds.ac.uk, E-mail: basu@uwo.ca
2014-01-01
We model molecular cloud fragmentation with thin-disk, non-ideal magnetohydrodynamic simulations that include ambipolar diffusion and partial ionization that transitions from primarily ultraviolet-dominated to cosmic-ray-dominated regimes. These simulations are used to determine the conditions required for star clusters to form through a two-stage fragmentation scenario. Recent linear analyses have shown that the fragmentation length scales and timescales can undergo a dramatic drop across the column density boundary that separates the ultraviolet- and cosmic-ray-dominated ionization regimes. As found in earlier studies, the absence of an ionization drop and regular perturbations leads to a single-stage fragmentation on pc scales in transcritical clouds, somore » that the nonlinear evolution yields the same fragment sizes as predicted by linear theory. However, we find that a combination of initial transcritical mass-to-flux ratio, evolution through a column density regime in which the ionization drop takes place, and regular small perturbations to the mass-to-flux ratio is sufficient to cause a second stage of fragmentation during the nonlinear evolution. Cores of size ∼0.1 pc are formed within an initial fragment of ∼pc size. Regular perturbations to the mass-to-flux ratio also accelerate the onset of runaway collapse.« less
NASA Astrophysics Data System (ADS)
Kouznetsov, A.; Cully, C. M.
2017-12-01
During enhanced magnetic activities, large ejections of energetic electrons from radiation belts are deposited in the upper polar atmosphere where they play important roles in its physical and chemical processes, including VLF signals subionospheric propagation. Electron deposition can affect D-Region ionization, which are estimated based on ionization rates derived from energy depositions. We present a model of D-region ion production caused by an arbitrary (in energy and pitch angle) distribution of fast (10 keV - 1 MeV) electrons. The model relies on a set of pre-calculated results obtained using a general Monte Carlo approach with the latest version of the MCNP6 (Monte Carlo N-Particle) code for the explicit electron tracking in magnetic fields. By expressing those results using the ionization yield functions, the pre-calculated results are extended to cover arbitrary magnetic field inclinations and atmospheric density profiles, allowing ionization rate altitude profile computations in the range of 20 and 200 km at any geographic point of interest and date/time by adopting results from an external atmospheric density model (e.g. NRLMSISE-00). The pre-calculated MCNP6 results are stored in a CDF (Common Data Format) file, and IDL routines library is written to provide an end-user interface to the model.
Verification of difference of ion-induced nucleation rate for kinds of ionizing radiation
NASA Astrophysics Data System (ADS)
Suzuki, A.; Masuda, K.; Takeuchi, Y.; Itow, Y.; Sako, T.; Matsumi, Y.; Nakayama, T.; Ueda, S.; Miura, K.; Kusano, K.
2014-12-01
Correlation between the global cloud cover and the galactic cosmic rays intensity has been pointed out. So as one of hypotheses, the promotion of creation of cloud condensation nuclei by cosmic rays can be considered. In this study, we have carried out verification experiment of this hypothesis using an atmospheric reaction chamber at room temperature focusing on the kind of ionizing radiation. We introduced pure air, a trace of water vapor, ozone and sulfur dioxide gas in a chamber with a volume of 75[L]. The sulfur dioxide reacts chemically in the chamber to form sulfate aerosol. After introducing the mixed gas into the chamber, it was irradiated with ultraviolet light, which simulate solar ultraviolet radiation and with anthropogenic ionizing radiation for cosmic rays, particles and new particle formation due to ion-induced nucleation was observed by measuring and recording the densities of ions and aerosol particles, the particle size distribution, the concentrations of ozone and sulfur dioxide, the temperature and the relative humidity. Here, the experimental results of aerosol nucleation rate for different types of radiation are reported. In this experiment, we conducted experiments of irradiation with heavy ions and β-rays. For ionizing radiation Sr-90 β-rays with an average energy of about 1[MeV] and a heavy ion beam from a particle accelerator facility of HIMAC at NIRS (Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences) were used. The utilized heavy ion was 14N ions of 180[MeV/n] with intensities from 200[particles/spill] to 10000[particles/spill]. In this experimental run the chamber was irradiated for 10 hours and, the relationship between aerosol particle density for the particle size of > of 2.5[nm] and the generated ion density was verified. In the middle, the chamber was irradiated with β-rays for comparison. Increases in the ion density with the increase of the beam intensity were confirmed. Also, a rise in the aerosol particle density due to the ion density increase was confirmed. From this result, the ion-induced nucleation due to heavy ion irradiation could be verified. From the results of this study, ion-induced nucleation due to β-rays and heavy ion irradiation was confirmed.
El medio interestelar en los alrededores de la region HII Sh2-183
NASA Astrophysics Data System (ADS)
Cichowolski, S.; Cappa, C. E.; Blanco, A.; Eppens, L.; Ertini, K.; Leiva, M. M.
2017-10-01
We present a multiwavelength study of the HII region Sh2-183, located at (,) = (123.3,+3.0) at a distance of 7.0 1.5 kpc from the Sun. Based on the radio continuum data we estimated the amount of ionized gas, the electronic density, and the number of ionizing photons needed to keep the region ionized, which is important since the star/s responsible of the region was/were not detected yet. On the other hand, based on IRAS data we have analyzed the dust temperature and distribution. The Hi line data allowed the detection of a shell-like structure surrounding the ionized gas and the CO data revealed the presence of 6 molecular clouds probably related to Sh2-183, which harbor several young stellar object candidates.
NASA Astrophysics Data System (ADS)
Shafir, G.; Krasik, Ya. E.; Bliokh, Y. P.; Levko, D.; Cao, Y.; Leopold, J. G.; Gad, R.; Bernshtam, V.; Fisher, A.
2018-03-01
Ionization-induced self-channeling of a ≤500 MW , 9.6 GHz, <1 ns microwave beam injected into air at ˜4.5 ×103 Pa or He at ˜103 Pa is experimentally demonstrated for the first time. The plasma, generated by the impact ionization of the gas driven by the microwave beam, has a radial density distribution reducing towards the beam axis, where the microwave field is highest, because the ionization rate is a decreasing function of the microwave amplitude. This forms a plasma channel which prevents the divergence of the microwave beam. The experimental data obtained using various diagnostic methods are in good agreement with the results of analytical calculations, as well as particle in cell Monte Carlo collisional modeling.
The extreme ultraviolet spectrum of G191 - B2B and the ionization of the local interstellar medium
NASA Technical Reports Server (NTRS)
Green, James; Jelinsky, Patrick; Bowyer, Stuart
1990-01-01
The measurement of the extreme ultraviolet spectrum of the nearby hot white dwarf G191 - B2B is reported. The results are used to derive interstellar neutral column densities of 1.6 + or - 0.2 x 10 to the 18th/sq cm and 9.8 + 2.8 or - 2.6 x 10 to the 16th/sq cm for H I and He I, respectively. This ratio of neutral hydrogen to neutral helium indicates that the ionization of hydrogen along the line of sight is less than about 30 percent unless significant helium ionization is present. The scenario in which the hydrogen is highly ionized and the helium is neutral is ruled out by this observation.
NASA Astrophysics Data System (ADS)
Ali, Ahmad; Harries, Tim J.; Douglas, Thomas A.
2018-07-01
We simulate a self-gravitating, turbulent cloud of 1000 M⊙ with photoionization and radiation pressure feedback from a 34 M⊙ star. We use a detailed Monte Carlo radiative transfer scheme alongside the hydrodynamics to compute photoionization and thermal equilibrium with dust grains and multiple atomic species. Using these gas temperatures, dust temperatures, and ionization fractions, we produce self-consistent synthetic observations of line and continuum emission. We find that all material is dispersed from the (15.5 pc)3 grid within 1.6 Myr or 0.74 free-fall times. Mass exits with a peak flux of 2 × 10-3 M⊙ yr-1, showing efficient gas dispersal. The model without radiation pressure has a slight delay in the breakthrough of ionization, but overall its effects are negligible. 85 per cent of the volume, and 40 per cent of the mass, become ionized - dense filaments resist ionization and are swept up into spherical cores with pillars that point radially away from the ionizing star. We use free-free emission at 20 cm to estimate the production rate of ionizing photons. This is almost always underestimated: by a factor of a few at early stages, then by orders of magnitude as mass leaves the volume. We also test the ratio of dust continuum surface brightnesses at 450 and 850 µm to probe dust temperatures. This underestimates the actual temperature by more than a factor of 2 in areas of low column density or high line-of-sight temperature dispersion; the H II region cavity is particularly prone to this discrepancy. However, the probe is accurate in dense locations such as filaments.
NASA Astrophysics Data System (ADS)
Ali, Ahmad; Harries, Tim J.; Douglas, Thomas A.
2018-04-01
We simulate a self-gravitating, turbulent cloud of 1000M⊙ with photoionization and radiation pressure feedback from a 34M⊙ star. We use a detailed Monte Carlo radiative transfer scheme alongside the hydrodynamics to compute photoionization and thermal equilibrium with dust grains and multiple atomic species. Using these gas temperatures, dust temperatures, and ionization fractions, we produce self-consistent synthetic observations of line and continuum emission. We find that all material is dispersed from the (15.5pc)3 grid within 1.6Myr or 0.74 free-fall times. Mass exits with a peak flux of 2× 10-3M⊙yr-1, showing efficient gas dispersal. The model without radiation pressure has a slight delay in the breakthrough of ionization, but overall its effects are negligible. 85 per cent of the volume, and 40 per cent of the mass, become ionized - dense filaments resist ionization and are swept up into spherical cores with pillars that point radially away from the ionizing star. We use free-free emission at 20cm to estimate the production rate of ionizing photons. This is almost always underestimated: by a factor of a few at early stages, then by orders of magnitude as mass leaves the volume. We also test the ratio of dust continuum surface brightnesses at 450 and 850μ to probe dust temperatures. This underestimates the actual temperature by more than a factor of 2 in areas of low column density or high line-of-sight temperature dispersion; the HII region cavity is particularly prone to this discrepancy. However, the probe is accurate in dense locations such as filaments.
ALMA Reveals Weak [N II] Emission in "Typical" Galaxies and Intense Starbursts at z = 5-6
NASA Astrophysics Data System (ADS)
Pavesi, Riccardo; Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas Z.; Smolčić, Vernesa
2016-12-01
We report interferometric measurements of [N II] 205 μm fine-structure line emission from a representative sample of three galaxies at z = 5-6 using the Atacama Large (sub)Millimeter Array (ALMA). These galaxies were previously detected in [C II] and far-infrared continuum emission and span almost two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized interstellar medium properties for galaxies in the first billion years of cosmic time, separated by their {L}[{{C}{{II}}]}/{L}[{{N}{{II}}]} ratio. We find extremely low [N II] emission compared to [C II] ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}={68}-28+200) from a “typical” ˜ {L}{UV}* star-forming galaxy, likely directly or indirectly (by its effect on the radiation field) related to low dust abundance and low metallicity. The infrared-luminous modestly star-forming Lyman-break galaxy (LBG) in our sample is characterized by an ionized-gas fraction ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}≲ 20) typical of local star-forming galaxies and shows evidence for spatial variations in its ionized-gas fraction across an extended gas reservoir. The extreme SFR, warm and compact dusty starburst AzTEC-3 shows an ionized fraction higher than expected given its SFR surface density ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}=22+/- 8) suggesting that [N II] dominantly traces a diffuse ionized medium rather than star-forming H II regions in this type of galaxy. This highest redshift sample of [N II] detections provides some of the first constraints on ionized and neutral gas modeling attempts and on the structure of the interstellar medium at z = 5-6 in “normal” galaxies and starbursts.
Modelling and mitigating refractive propagation effects in precision pulsar timing observations
NASA Astrophysics Data System (ADS)
Shannon, R. M.; Cordes, J. M.
2017-01-01
To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.
Modeling viscosity and diffusion of plasma mixtures across coupling regimes
NASA Astrophysics Data System (ADS)
Arnault, Philippe
2014-10-01
Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.
Towards an exact correlated orbital theory for electrons
NASA Astrophysics Data System (ADS)
Bartlett, Rodney J.
2009-12-01
The formal and computational attraction of effective one-particle theories like Hartree-Fock and density functional theory raise the question of how far such approaches can be taken to offer exact results for selected properties of electrons in atoms, molecules, and solids. Some properties can be exactly described within an effective one-particle theory, like principal ionization potentials and electron affinities. This fact can be used to develop equations for a correlated orbital theory (COT) that guarantees a correct one-particle energy spectrum. They are built upon a coupled-cluster based frequency independent self-energy operator presented here, which distinguishes the approach from Dyson theory. The COT also offers an alternative to Kohn-Sham density functional theory (DFT), whose objective is to represent the electronic density exactly as a single determinant, while paying less attention to the energy spectrum. For any estimate of two-electron terms COT offers a litmus test of its accuracy for principal Ip's and Ea's. This feature for approximating the COT equations is illustrated numerically.
Triggering Mechanism for Neutron Induced Single-Event Burnout in Power Devices
NASA Astrophysics Data System (ADS)
Shoji, Tomoyuki; Nishida, Shuichi; Hamada, Kimimori
2013-04-01
Cosmic ray neutrons can trigger catastrophic failures in power devices. It has been reported that parasitic transistor action causes single-event burnout (SEB) in power metal-oxide-semiconductor field-effect transistors (MOSFETs) and insulated gate bipolar transistors (IGBTs). However, power diodes do not have an inherent parasitic transistor. In this paper, we describe the mechanism triggering SEB in power diodes for the first time using transient device simulation. Initially, generated electron-hole pairs created by incident recoil ions generate transient current, which increases the electron density in the vicinity of the n-/n+ boundary. The space charge effect of the carriers leads to an increase in the strength of the electric field at the n-/n+ boundary. Finally, the onset of impact ionization at the n-/n+ boundary can trigger SEB. Furthermore, this failure is closely related to diode secondary breakdown. It was clarified that the impact ionization at the n-/n+ boundary is a key point of the mechanism triggering SEB in power devices.
Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lingyan; Jie, Wanqi, E-mail: jwq@nwpu.edu.cn; Zha, Gangqiang, E-mail: zha-gq@hotmail.com
2014-06-09
The effects of sub-bandgap illumination on electrical properties of CdZnTe:In crystals and spectroscopic performances of the fabricated detectors were discussed. The excitation process of charge carriers through thermal and optical transitions at the deep trap could be described by the modified Shockley-Read-Hall model. The ionization probability of the deep donor shows an increase under illumination, which should be responsible for the variation of electrical properties within CdZnTe bulk materials with infrared (IR) irradiation. By applying Ohm's law, diffusion model and interfacial layer-thermionic-diffusion theory, we obtain the decrease of bulk resistivity and the increase of space charge density in the illuminatedmore » crystals. Moreover, the illumination induced ionization will further contribute to improving carrier transport property and charge collection efficiency. Consequently, the application of IR irradiation in the standard working environment is of great significance to improve the spectroscopic characteristics of CdZnTe radiation detectors.« less
2015-08-14
stream (SAPS) E field had been strong. During these E field events, the repeated development of equatorial ionization anomaly ( EIA ), storm-enhanced...density (SED) bulge and SED plume occurred in those longitude sectors that covered the local dusk-midnight hours. Thus, a well-formed EIA - SED...Observational results and CTIPe simulated wind vector maps suggest that 1) the enhanced growth of the EIA transported solar produced plasma to the
Electrofluidic gating of a chemically reactive surface.
Jiang, Zhijun; Stein, Derek
2010-06-01
We consider the influence of an electric field applied normal to the electric double layer at a chemically reactive surface. Our goal is to elucidate how surface chemistry affects the potential for field-effect control over micro- and nanofluidic systems, which we call electrofluidic gating. The charging of a metal-oxide-electrolyte (MOE) capacitor is first modeled analytically. We apply the Poisson-Boltzmann description of the double layer and impose chemical equilibrium between the ionizable surface groups and the solution at the solid-liquid interface. The chemically reactive surface is predicted to behave as a buffer, regulating the charge in the double layer by either protonating or deprotonating in response to the applied field. We present the dependence of the charge density and the electrochemical potential of the double layer on the applied field, the density, and the dissociation constants of ionizable surface groups and the ionic strength and the pH of the electrolyte. We simulate the responses of SiO(2) and Al(2)O(3), two widely used oxide insulators with different surface chemistries. We also consider the limits to electrofluidic gating imposed by the nonlinear behavior of the double layer and the dielectric strength of oxide materials, which were measured for SiO(2) and Al(2)O(3) films in MOE configurations. Our results clarify the response of chemically reactive surfaces to applied fields, which is crucial to understanding electrofluidic effects in real devices.
Density functional study of double ionization energies
NASA Astrophysics Data System (ADS)
Chong, D. P.
2008-02-01
In this paper, double ionization energies (DIEs) of gas-phase atoms and molecules are calculated by energy difference method with density functional theory. To determine the best functional for double ionization energies, we first study 24 main group atoms in the second, third, and fourth periods. An approximation is used in which the electron density is first obtained from a density functional computation with the exchange-correlation potential Vxc known as statistical average of orbital potentials, after which the energy is computed from that density with 59 different exchange-correlation energy functionals Exc. For the 24 atoms, the two best Exc functional providing DIEs with average absolute deviation (AAD) of only 0.25eV are the Perdew-Burke-Ernzerhof functional modified by Hammer et al. [Phys. Rev. B 59, 6413 (1999)] and one known as the Krieger-Chen-Iafrate-Savin functional modified by Krieger et al. (unpublished). Surprisingly, none of the 20 available hybrid functionals is among the top 15 functionals for the DIEs of the 24 atoms. A similar procedure is then applied to molecules, with opposite results: Only hybrid functionals are among the top 15 functionals for a selection of 29molecules. The best Exc functional for the 29molecules is found to be the Becke 1997 functional modified by Wilson et al. [J. Chem. Phys. 115, 9233 (2001)]. With that functional, the AAD from experiment for DIEs of 29molecules is just under 0.5eV. If the two suspected values for C2H2 and Fe(CO)5 are excluded, the AAD improves to 0.32eV. Many other hybrid functionals perform almost as well.
Simulating plasma production from hypervelocity impacts
NASA Astrophysics Data System (ADS)
Fletcher, Alex; Close, Sigrid; Mathias, Donovan
2015-09-01
Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30-72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff experiments, suggesting that the RF is correlated to the formation of fully ionized plasma.
Simulating plasma production from hypervelocity impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, Alex, E-mail: alexcf@stanford.edu; Close, Sigrid; Mathias, Donovan
2015-09-15
Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-producedmore » plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff experiments, suggesting that the RF is correlated to the formation of fully ionized plasma.« less
Radiation activated CHK1/MEPE pathway may contribute to microgravity-induced bone density loss
NASA Astrophysics Data System (ADS)
Zhang, Xiangming; Wang, Ping; Wang, Ya
2015-11-01
Bone density loss in astronauts on long-term space missions is a chief medical concern. Microgravity in space is the major cause of bone density loss (osteopenia), and it is believed that high linear energy transfer (LET) radiation in space exacerbates microgravity-induced bone density loss; however, the mechanism remains unclear. It is known that acidic serine- and aspartate-rich motif (ASARM) as a small peptide released by matrix extracellular phosphoglycoprotein (MEPE) promotes osteopenia. We previously discovered that MEPE interacted with checkpoint kinase 1 (CHK1) to protect CHK1 from ionizing radiation promoted degradation. In this study, we addressed whether the CHK1-MEPE pathway activated by radiation contributes to the effects of microgravity on bone density loss. We examined the CHK1, MEPE and secreted MEPE/ASARM levels in irradiated (1 Gy of X-ray) and rotated cultured human osteoblast cells. The results showed that radiation activated CHK1, decreased the levels of CHK1 and MEPE in human osteoblast cells and increased the release of MEPE/ASARM. These results suggest that the radiation-activated CHK1/MEPE pathway exacerbates the effects of microgravity on bone density loss, which may provide a novel targeting factor/pathway for a future countermeasure design that could contribute to reducing osteopenia in astronauts.
NASA Astrophysics Data System (ADS)
Knippenberg, S.; Nixon, K. L.; Brunger, M. J.; Maddern, T.; Campbell, L.; Trout, N.; Wang, F.; Newell, W. R.; Deleuze, M. S.; Francois, J.-P.; Winkler, D. A.
2004-12-01
We report on the results of an exhaustive study of the valence electronic structure of norbornane (C7H12), up to binding energies of 29 eV. Experimental electron momentum spectroscopy and theoretical Green's function and density functional theory approaches were all utilized in this investigation. A stringent comparison between the electron momentum spectroscopy and theoretical orbital momentum distributions found that, among all the tested models, the combination of the Becke-Perdew functional and a polarized valence basis set of triple-ζ quality provides the best representation of the electron momentum distributions for all of the 20 valence orbitals of norbornane. This experimentally validated quantum chemistry model was then used to extract some chemically important properties of norbornane. When these calculated properties are compared to corresponding results from other independent measurements, generally good agreement is found. Green's function calculations with the aid of the third-order algebraic diagrammatic construction scheme indicate that the orbital picture of ionization breaks down at binding energies larger than 22.5 eV. Despite this complication, they enable insights within 0.2 eV accuracy into the available ultraviolet photoemission and newly presented (e,2e) ionization spectra, except for the band associated with the 1a2-1 one-hole state, which is probably subject to rather significant vibronic coupling effects, and a band at ˜25 eV characterized by a momentum distribution of "s-type" symmetry, which Green's function calculations fail to reproduce. We note the vicinity of the vertical double ionization threshold at ˜26 eV.
Expansion of an ultracold Rydberg plasma
NASA Astrophysics Data System (ADS)
Forest, Gabriel T.; Li, Yin; Ward, Edwin D.; Goodsell, Anne L.; Tate, Duncan A.
2018-04-01
We report a systematic experimental and numerical study of the expansion of ultracold Rydberg plasmas. Specifically, we have measured the asymptotic expansion velocities, v0, of ultracold neutral plasmas (UNPs) which evolve from cold, dense samples of Rydberg rubidium atoms using ion time-of-flight spectroscopy. From this, we have obtained values for the effective initial plasma electron temperature, Te ,0=mionv02/kB (where mion is the Rb+ ion mass), as a function of the original Rydberg atom density and binding energy, Eb ,i. We have also simulated numerically the interaction of UNPs with a large reservoir of Rydberg atoms to obtain data to compare with our experimental results. We find that for Rydberg atom densities in the range 107-109 cm-3, for states with principal quantum number n >40 , Te ,0 is insensitive to the initial ionization mechanism which seeds the plasma. In addition, the quantity kBTe ,0 is strongly correlated with the fraction of atoms which ionize, and is in the range 0.6 ×| Eb ,i|≲ kBTe ,0≲2.5 ×|Eb ,i| . On the other hand, plasmas from Rydberg samples with n ≲40 evolve with no significant additional ionization of the remaining atoms once a threshold number of ions has been established. The dominant interaction between the plasma electrons and the Rydberg atoms is one in which the atoms are deexcited, a heating process for electrons that competes with adiabatic cooling to establish an equilibrium where Te ,0 is determined by their Coulomb coupling parameter, Γe˜0.01 .
NASA Astrophysics Data System (ADS)
Khalil, A. A. I.; Younis, W. O.; Gandol, M. A.
2017-03-01
We built a collinear dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) system to study the aluminum (Al) plasma emission by installing a pair of Nd: YAG lasers operating at 266 and 1064 nm. The spectral intensities of selected aluminum doubly-ionized lines were employed to evaluate the optical emission spectra. The influences of the energy ratio of two pulsed lasers on the LIBS intensity for different Al doubly-ionized spectral lines were investigated. The de-excitation rate parameters of the excited ion and the electron impact excitation were computed using the analytical formulas proposed by Smeets and Vriens. The transition probabilities and energy states were computed using Hibbert's configuration interaction, computer package (CIV3). By solving the coupled rate equations including 1 s 22 s 22 p 6n s (2S), 1 s 22 s 22 p 6n p (2P), 1 s 22 s 22 p 6n d (2D) (n = 3-5) and 1 s 22 s 22 p 6n f (2F) (n = 4, 5) states, the level population densities were computed. We also proposed a theoretical population model in order to investigate the effectiveness of the various processes that might affect the population of the upper levels in Al plasma by using the rate coefficients. In addition, the population densities for the 19 upper levels were also computed. Good compatibility between the experimental and the theoretical model data had been observed. Our results might be significant as reference data for the optimization of the DP-LIBS spectrometry and diagnostics of laser produced plasmas.
Partial-reflection studies of D-region winter variability. [electron density measurements
NASA Technical Reports Server (NTRS)
Denny, B. W.; Bowhill, S. A.
1973-01-01
D-region electron densities were measured from December, 1972, to July, 1973, at Urbana, Illinois (latitude 40.2N) using the partial-reflection technique. During the winter, electron densities at altitudes of 72, 76.5, and 81 km show cyclical changes with a period of about 5 days that are highly correlated between these altitudes, suggesting that the mechanism responsible for the winter anomaly in D-region ionization applies throughout this height region. From January 13 to February 3, a pronounced wave-like variation occurred in the partial-reflection measurements, apparently associated with a major stratospheric warming that developed in that period. During the same time period, a traveling periodic variation is observed in the 10-mb height; it is highly correlated with the partial-reflection measurements. Electron density enhancements occur approximately at the same time as increases in the 10-mb height. Comparison of AL and A3 absorption measurements with electron density measurements below 82 km indicates that the winter anomaly in D-region ionization is divided into two types. Type 1, above about 82 km, extends horizontally for about 200 km while type 2, below about 82 km, extends for a horizontal scale of at least 1000 km.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr
2015-04-15
The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it ismore » found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.« less
NASA Astrophysics Data System (ADS)
Liu, Liming; Hao, Xinfeng
2008-10-01
In order to study the effect of laser pulses on arc plasma and target metal in the hybrid welding process, the spectra of the plasmas in the welding process of magnesium alloys are analysed in this paper. The acquisition system of plasma spectra is set up and the spectral lines of welding plasma are acquired. Compared with tungsten-inert gas (TIG) welding, the intensities of the spectral lines of magnesium increase sharply while those of Ar decrease for strong evaporation and ionization of magnesium alloys in low-power laser/arc hybrid welding. The electron temperature and density are estimated by the Boltzmann plot method and the Stark broadening effect. The result shows that the electron temperature of arc plasma in the hybrid welding process is much lower than that in TIG welding, especially in the laser beam-affected zone. In contrast, the electron density of the plasma is enhanced. The influences of laser parameters on electron temperature are also studied. The changes in electron temperature and density indicate that the effect of laser pulse on the target metal is the dominant factor influencing the electron temperature and density in low-power laser/arc hybrid welding.
NASA Astrophysics Data System (ADS)
Fournier, K. B.; Goldstein, W. H.; Osterheld, A.; Finkenthal, M.; Lippmann, S.; Huang, L. K.; Moos, H. W.; Spector, N.
1994-09-01
Spectra of rare-earth atoms praseodymium, Z=59, to ytterbium, Z=70, emitted from the high-temperature (1 keV) low-density (1013 cm-3) TEXT tokamak (at the Fusion Research Center, University of Texas, Austin) and high-density (1020 cm-3) laser plasmas have been recorded in the soft-x-ray range of 50-200 Å with an image intensifier detector and on photographic plates. The brightest n=4 to n=4 transitions of galliumlike ions have been identified and their emission patterns have been studied by comparison with ab initio atomic structure calculations and collisional radiative models under the respective plasma conditions. We have investigated the use of the ratios of the intensities of 4-4 transitions as indicators of plasma densities. This is possible owing to the doublet structure of the galliumlike ground state, which leads to a strong density dependence for ratios of transitions between low-lying levels. We have also used semiempirical ionization balance calculations to characterize the charge state distribution of the tokamak plasmas, in preparation for an investigation of the use of ratios of galliumlike to zinclike and copperlike emission features as indicators of whether the impurities are in coronal equilibrium or undergoing ionization.
TH-AB-201-06: Examining the Influence of Humidity On Reference Ion Chamber Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taank, J; McEwen, M
2016-06-15
Purpose: International dosimetry protocols require measurements made with a vented ionization chamber to be corrected for the influence of air density by using the standard temperature-pressure correction factor. The effect of humidity, on the other hand, is generally ignored with the provision that the relative humidity is between certain limits (15% to 80%). However, there is little experimental data in the published literature as to the true effect of humidity on modern reference-class ion chambers. This investigation used two different radiation beams – a Co-60 irradiator and a Sr-90 check source – to examine the effect of humidity on severalmore » versions of the standard Farmer-type ion chamber. Methods: An environmental cabinet controlled the humidity. For the Co-60 beam, the irradiation was external, whereas for the Sr-90 measurements, the source itself was placed within the cabinet. Extensive measurements were carried out to ensure that the experimental setup provided reproducible readings. Four chamber types were investigated: IBA FC65-G (×2), IBA FC65-P, PTW30013 & Exradin A19. The different wall materials provided potentially different mechanical responses (i.e., in terms of expansion/contraction) to the water content in the air. The relative humidity was varied between 8 % and 97 % and measurements were made with increasing and decreasing humidity to investigate possible hysteresis effects. Results: Measurements in Co-60 were consistent with the published data obtained with primary standard cavity chambers in ICRU Report 31. Ionization currents with Sr-90 showed no dependence with the relative humidity, within the measurement uncertainties. Very good repeatability of the ionization current was obtained over successive wet/dry cycles, no hysteresis was observed, and there was no dependence on chamber type. Conclusion: This null result is very encouraging as it indicates that humidity has no significant effect on these particular types of ionization chambers, consistent with recommendations in current megavoltage dosimetry protocols.« less
An ISO and IUE Study of Planetary Nebula NGC 2440
NASA Technical Reports Server (NTRS)
Salas, J. Bernard; Pottasch, S. R.; Feibelman, W. A.; Wesselius, P. R.; Oegerle, William R. (Technical Monitor)
2002-01-01
The infrared and ultraviolet spectra of planetary nebula NGC 2440 is presented. The observations were made respectively by the Infrared Space Observatory (ISO) and International Ultraviolet Explorer (IUE) These data, in conjunction with published optical observations have been used to derive electron temperature and density. A trend of electron temperature with ionization potential is found. In particular the electron temperature increases from 11000 to 18000 K with increasing IBM. The electron density has a constant value of 4500/cu cm in agreement with previous determination. The chemical abundance has been derived for the following elements; helium, carbon, nitrogen, oxygen, neon, sulfur and argon. The ionization correction factor turns out to be very small (almost unnecessary) for all species except sulfur.
Morphology and ionization of the interstellar cloud surrounding the solar system.
Frisch, P C
1994-09-02
The first encounter between the sun and the surrounding interstellar cloud appears to have occurred 2000 to 8000 years ago. The sun and cloud space motions are nearly perpendicular, an indication that the sun is skimming the cloud surface. The electron density derived for the surrounding cloud from the carbon component of the anomalous cosmic ray population in the solar system and from the interstellar ratio of Mg(+) to Mg degrees toward Sirius support an equilibrium model for cloud ionization (an electron density of 0.22 to 0.44 per cubic centimeter). The upwind magnetic field direction is nearly parallel to the cloud surface. The relative sun-cloud motion indicates that the solar system has a bow shock.
Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas
NASA Technical Reports Server (NTRS)
Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.
1980-01-01
The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments Database
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
NASA Astrophysics Data System (ADS)
Finn, Charles W.; Morris, Simon L.; Crighton, Neil H. M.; Hamann, Fred; Done, Chris; Theuns, Tom; Fumagalli, Michele; Tejos, Nicolas; Worseck, Gabor
2014-06-01
We present HST/COS observations of highly ionized absorption lines associated with a radio-loud quasar (QSO) at z = 1.1319. The absorption system has multiple velocity components, with an overall width of ≈600 km s-1, tracing gas that is largely outflowing from the QSO at velocities of a few 100 km s-1. There is an unprecedented range in ionization, with detections of H I, N III, N IV, N V, O IV, O IV*, O V, O VI, Ne VIII, Mg X, S V and Ar VIII. We estimate the total hydrogen number density from the column density ratio N(OIV*) / N(OIV) to be log(nH/cm-3)˜3. Combined with constraints on the ionization parameter in the O IV bearing gas from photoionization equilibrium models, we derive a distance to the absorbing complex of 2.3≲R≲6.0kpc from the centre of the QSO. A range in ionization parameter, covering ˜two orders of magnitude, suggest absorption path lengths in the range 10-4.5≲labs≲1pc. In addition, the absorbing gas only partially covers the background emission from the QSO continuum, which suggests clouds with transverse sizes ltrans≲10-2.5 pc. Widely differing absorption path lengths, combined with covering fractions less than unity across all ions pose a challenge to models involving simple cloud geometries in associated absorption systems. These issues may be mitigated by the presence of non-equilibrium effects, which can be important in small, dynamically unstable clouds, together with the possibility of multiple gas temperatures. The dynamics and expected lifetimes of the gas clouds suggest that they do not originate from close to the active galactic nuclei, but are instead formed close to their observed location. Their inferred distance, outflow velocities and gas densities are broadly consistent with scenarios involving gas entrainment or condensations in winds driven by either supernovae, or the supermassive black hole accretion disc. In the case of the latter, the present data most likely does not trace the bulk of the outflow by mass, which could instead manifest itself as an accompanying warm absorber, detectable in X-rays.
NASA Astrophysics Data System (ADS)
Jappsen, A.-K.; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.-M.
2005-12-01
We study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos. We use three-dimensional, smoothed particle hydrodynamics simulations, run with the publicly available parallel code GADGET (Springel et al. 2001). We implement a sink particle algorithm. This allows us to safely represent gas that has collapsed beyond the resolution limit without causing numerical errors within the resolved regions of the simulation. We also include the necessary framework for following the non-equilibrium chemistry of H2 in the protogalactic gas, and a treatment of radiative heating and cooling. Our initial conditions represent protogalaxies forming within a fossil H ii region---a previously ionized H ii region that has not yet had time to cool and recombine. Prior to cosmological reionization, such regions should be relatively common, since the characteristic lifetimes of the likely ionizing sources are significantly shorter than a Hubble time. We show that in these regions, H2 is the dominant and most effective coolant, even in the presence of small amounts of metals. It is the amount of H2 which forms that controls whether or not the gas can collapse and form stars. For metallicities Z ≤ 10-3 Z⊙, we find that metal line cooling alters the density and temperature evolution of the gas by less than 1% compared to the metal-free case at densities below 1 cm-3 and temperatures above 2000 K. However, at higher densities and lower temperatures, metal line cooling does become rather more important, and will affect the ability of the gas to fragment. We also show that an external ultraviolet background delays or suppresses the cooling and collapse of the gas regardless of whether or not it is metal-enriched. RSK and A-KJ acknowledge support from the Emmy Noether Program of the Deutsche Forschungsgemeinschaft (grant no. KL1358/1). M-MML acknowledges support from NSF grants AST99-85392 and AST03-07854, and NASA grant NAG5-10103. SCOG acknowledges support from NSF grant AST03-07793, and NASA grant NAG5-13028. The simulations were performed on the cluster "sanssouci" at Astrophysikalisches Institut Potsdam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H. Wk.; Kang, S. K.; Won, I. H.
Distinctive discharge formation in atmospheric Ar and He plasmas was observed in the microwave frequency band using coaxial transmission line resonators. Ar plasmas formed a plasma plume whereas He formed only confined plasmas. As the frequency increased from 0.9 GHz to 2.45 GHz, the Ar plasma exhibited contraction and filamentation, and the He plasmas were constricted. Various powers and gas flow rates were applied to identify the effect of the electric field and gas flow rate on plasma plume formation. The He plasmas were more strongly affected by the electric field than the Ar plasmas. The breakdown and sustain powersmore » yielded opposite results from those for low-frequency plasmas (∼kHz). The phenomena could be explained by a change in the dominant ionization process with increasing frequency. Penning ionization and the contribution of secondary electrons in sheath region reduced as the frequency increased, leading to less efficient ionization of He because its ionization and excitation energies are higher than those of Ar. The emission spectra showed an increase in the NO and N{sub 2} second positive band in both the Ar and He plasmas with increasing frequency whereas the hydroxyl radical and atomic O peaks did not increase with increasing frequency but were highest at particular frequencies. Further, the frequency effect of properties such as the plasma impedance, electron density, and device efficiency were presented. The study is expected to be helpful for determining the optimal conditions of plasma systems for biomedical applications.« less
Production of high-density highly-ionized helicon plasmas in the ProtoMPEX
NASA Astrophysics Data System (ADS)
Caneses, J. F.; Kafle, N.; Showers, M.; Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Bigelow, T.; Rapp, J.
2017-10-01
High-density (2-6e19 m-3) Deuterium helicon plasmas in the ProtoMPEX have been produced that successfully use differential pumping to produce neutral gas pressures suitable for testing the RF electron and ion heating concepts. To minimize collisional losses when heating electrons and ions, plasmas with very low neutral gas content (<< 0.1 Pa) in the heating sections are required. This requirement is typically not compatible with the neutral gas pressures (1-2 Pa) commonly used in high-density light-ion helicon sources. By using skimmers, a suitable gas injection scheme and long duration discharges (>0.3 s), high-density plasmas with very low neutral gas pressures (<< 0.1 Pa) in the RF heating sections have been produced. Measurements indicate the presence of a highly-ionized plasma column and that discharges lasting at least 0.3 s are required to significantly reduce the neutral gas pressure in the RF heating sections to levels suitable for investigating electron/ion RF heating concepts in this linear configuration. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
X-ray Thomson scattering measurements of temperature and density from multi-shocked CH capsules
Fletcher, L. B.; Glenzer, S. H.; Kritcher, A.; ...
2013-05-24
Proof-of-principle measurements of the electron densities, temperatures, and ionization states of spherically compressed multi-shocked CH (polystyrene) capsules have been achieved using spectrally resolved x-ray Thomson scattering. A total energy of 13.5 kJ incident on target is used to compress a 70 μm thick CH shell above solid-mass density using three coalescing shocks. Separately, a laser-produced zinc He-α x-ray source at 9 keV delayed 200 ps-800 ps after maximum compression is used to probe the plasma in the non-collective scattering regime. The data show that x-ray Thomson scattering enables a complete description of the time-dependent hydrodynamic evolution of shock-compressed CH capsules,more » with a maximum measured density of ρ > 6 g cm –3. Additionally, the results demonstrate that accurate measurements of x-ray scattering from bound-free transitions in the CH plasma demonstrate strong evidence that continuum lowering is the primary ionization mechanism of carbon L-shell electrons.« less
X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres
NASA Technical Reports Server (NTRS)
Garcia, Javier; Kallman, Timothy R.
2009-01-01
We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.
NASA Astrophysics Data System (ADS)
Bharti, Gaurav; Bag, T.; Sunil Krishna, M. V.
2018-03-01
The effect of the geomagnetic storm on the equatorial ionization anomaly (EIA) and equatorial temperature anomaly (ETA) has been studied using the atomic oxygen dayglow emissions at 577.7 nm (OI 557.7 nm) and 732.0 nm (OII 732.0 nm). For the purpose of this study, four intense geomagnetic storms during the ascending phase of solar cycle 24 have been considered. This study is primarily based on the results obtained using photochemical models with necessary inputs from theoretical studies and experimental observations. The latest reaction rate coefficients, quantum yields and the corresponding cross-sections have also been incorporated in these models. The volume emission rate of airglow emissions has been calculated using the neutral densities from NRLMSISE-00 and charged densities from IRI-2012 model. The modeled volume emission rate (VER) for OI 557.7 nm shows a positive correlation with the Dst index at 150 km and negative correlation with Dst at 250 and 280 km altitudes. Latitudinal profile of the greenline emission rate at different altitudes show a distinct behaviour similar to what has been observed in EIA with crests on either sides of the equator. The EIA crests are found to show poleward movement in the higher altitude regions. The volume emission rate of 732.0 nm emission shows a strong enhancement during the main phase of the storm. The changes observed in the airglow emission rates are explained with the help of variations induced in neutral densities and parameters related to EIA and ETA. The latitudinal variation of 732.0 nm emission rate is correlated to the variability in EIA during the storm period.
Near infrared spectra of the Orion bar
NASA Astrophysics Data System (ADS)
Marconi, A.; Testi, L.; Natta, A.; Walmsley, C. M.
1998-02-01
We have used the LONGSP spectrometer on the 1.5-m TIRGO telescope to obtain long slit spectra in the J, H, and K wavelength bands towards two positions along the Orion bar. These data have been supplemented with images made using the ARNICA camera mounted on TIRGO as well as with an ESO NTT observation carried out by Dr A. Moorwood. We detect a variety of transitions of hydrogen, helium, OI, FeII, FeIII, and H_2. From our molecular hydrogen data, we conclude that densities are moderate (3-6x 10(4) cm(-3) ) in the layer responsible for the molecular hydrogen emission and give no evidence for the presence of dense neutral clumps. We also find that the molecular hydrogen bar is likely to be tilted by ~ 10 degrees relative to the line of sight. We discuss the relative merits of several models of the structure of the bar and conclude that it may be split into two structures separated by 0.2-0.3 parsec along the line of sight. It also seems likely to us that in both structures, density increases along a line perpendicular to the ionization front which penetrates into the neutral gas. We have used the 1.317mum OI line to estimate the FUV radiation field incident at the ionization front and find values of 1-3x 10(4) greater than the average interstellar field. From [FeII] line measurements, we conclude that the electron density in the ionized layer associated with the ionization front is of order 10(4) \\percc. Finally, our analysis of the helium and hydrogen recombination lines implies essential coincidence of the helium and hydrogen Stromgren spheres.
Optical Measurements of Air Plasma
2008-05-05
beam impact ionization of air was studied in the context of optical diagnostics . The electron beam originates in a pulsed 100 keV 20-mA source and...range of 636 Torr to 1 mTorr with pulse durations from 1 ms to 10 ms. Microwave diagnostics were used to quantify electron density and power; and an...optical diagnostic was used to quantify ozone production. An additional effort to quantify byproducts of electron impact ionization, that are
NASA Astrophysics Data System (ADS)
Shakhatov, V. A.; Lebedev, Yu. A.
2018-01-01
A review is given of experimental and theoretical data on the cross sections for ionization, excitation, and deexcitation of atomic hydrogen. The set of the cross sections required to calculate the electron energy distribution function and find the level-to-level rate coefficients needed to solve balance equations for the densities of neutral and charged particles in hydrogen plasma is determined.
Hybrid-PIC Modeling of the Transport of Atomic Boron in a Hall Thruster
NASA Technical Reports Server (NTRS)
Smith, Brandon D.; Boyd, Iaian D.; Kamhawi, Hani
2015-01-01
Computational analysis of the transport of boron eroded from the walls of a Hall thruster is performed by implementing sputter yields of hexagonal boron nitride and velocity distribution functions of boron within the hybrid-PIC model HPHall. The model is applied to simulate NASA's HiVHAc Hall thruster at a discharge voltage of 500V and discharge powers of 1-3 kW. The number densities of ground- and 4P-state boron are computed. The density of ground-state boron is shown to be a factor of about 30 less than the plasma density. The density of the excited state is shown to be about three orders of magnitude less than that of the ground state, indicating that electron impact excitation does not significantly affect the density of ground-state boron in the discharge channel or near-field plume of a Hall thruster. Comparing the rates of excitation and ionization suggests that ionization has a greater influence on the density of ground-state boron, but is still negligible. The ground-state boron density is then integrated and compared to cavity ring-down spectroscopy (CRDS) measurements for each operating point. The simulation results show good agreement with the measurements for all operating points and provide evidence in support of CRDS as a tool for measuring Hall thruster erosion in situ.